8 research outputs found

    Smart Trolley Apps: A Solution To Reduce Picking Error

    Get PDF
    An order picking activities refers to an act of retrieving any items from the storage locations in the warehouses. In common situation, these activities is often performed by human. Due to that condition, high human error and high cost impact were spotted on a manual order picking activities. Thus, previous studies have developed various methods to support the practitioners especially in creating a more efficient order picking process. In spite of the vast discussion and evidence that shows an order pickers tend to deviate from its optimal routes and putting the efficiency of these routing approaches at stake, very little discussion were focus on the implementation of smart application through IT usage and device to reduce the problem faced in the warehouse. Thus, it is the main intention of this this paper to presents a detailed analysis on the relative factors affecting the efficiency of order picking activities in the warehouse and suggest the smart trolley as a solution to overcome the problem. The smart trolley apps is then proposed to increase the picking process in warehouse. The results of this paper indicate that extensive use of smart trolley apps as a solution to a more effective ways of order picking

    Towards Robust Methods for Indoor Localization using Interval Data

    Get PDF
    International audienceIndoor localization has gained an increase in interest recently because of the wide range of services it may provide by using data from the Internet of Things. Notwithstanding the large variety of techniques available, indoor localization methods usually show insufficient accuracy and robustness performance because of the noisy nature of the raw data used. In this paper, we investigate ways to work explicitly with range of data, i.e., interval data, instead of point data in the localization algorithms, thus providing a set-theoretic method that needs no probabilistic assumption. We will review state-of-the-art infrastructure-based localization methods that work with interval data. Then, we will show how to extend the existing infrastructure-less localization techniques to allow explicit computation with interval data. The preliminary evaluation of our new method shows that it provides smoother and more consistent localization estimates than state-of-the-art methods

    A Safe, Efficient and Integrated Indoor Robotic Fleet for Logistic Applications in Healthcare and Commercial Spaces: The ENDORSE Concept

    Get PDF
    International audienceHospitals are rightfully considered a field of indoor logistic robotics of high commercial potential. However, today, only a handful of mobile robotic solutions for hospital logistics exist that have failed to trigger widespread acceptance by the market. This is because existing systems require costly infrastructure installation, they do not easily integrate to corporate IT solutions, are not adequately shielded from cybersecurity threats, and as a result, they do not fully automate procedures and traceability of the items they carry. Moreover, existing systems are limited on scope, focusing only on delivery services, and hence do not provide any other type of support to the medical and nursing staff. ENDORSE system will address the aforementioned technical challenges and functional limitations by pursuing four innovation pillars: (i) infrastructure-less multi-robot indoor navigation; (ii) advanced Human-Robot Interaction (HRI) for resolving deadlocks and achieving efficient sharing of space resources in crowded environments; (iii) deployment of the ENDORSE software as a cloud-based service facilitating its integration with corporate software solutions, complying with GDPR data security requirements; (iv) reconfigurable and modular hardware architectures so that diverse modules can be easily swapped. ENDORSE functionality will be demonstrated via the integration of an e-diagnostic support module for vital signs monitoring on a fleet of mobile robots, facilitating connectivity to cloud-based Electronic Health Records (EHR), and validated in an operational hospital environment for realistic assessment

    Discovering location based services: A unified approach for heterogeneous indoor localization systems

    Get PDF
    The technological solutions and communication capabilities offered by the Internet of Things paradigm, in terms of raising availability of wearable devices, the ubiquitous internet connection, and the presence on the market of service-oriented solutions, have allowed a wide proposal of Location Based Services (LBS). In a close future, we foresee that companies and service providers will have developed reliable solutions to address indoor positioning, as basis for useful location based services. These solutions will be different from each other and they will adopt different hardware and processing techniques. This paper describes the proposal of a unified approach for Indoor Localization Systems that enables the cooperation between heterogeneous solutions and their functional modules. To this end, we designed an integrated architecture that, abstracting its main components, allows a seamless interaction among them. Finally, we present a working prototype of such architecture, which is based on the popular Telegram application for Android, as an integration demonstrator. The integration of the three main phases –namely the discovery phase, the User Agent self-configuration, and the indoor map retrieval/rendering– demonstrates the feasibility of the proposed integrated architectur

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Smartphone application for accessible navigation

    Get PDF
    Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2018.The main aim of this study is to investigate how the modern smartphone technology can assist people with visual impairments in indoor navigation tasks. We use the free and open indoor navigation service Anyplace, to design an indoor guidance system that is accessible, inexpensive, simple and user-friendly to different user groups disregarding their disabilities. The Android application that Anyplace offers, was extended and modified to serve also the needs of visually impaired users. The presented system works well with the assistive applications that Android platform offers and provides various ways for interaction between the user and the system. The system is communicating with Anyplace server to inform the user about the information of the surrounding environment and guide him/her to the desired place in the building with accessible messages. The application can process, specific pre-defined user commands and location information from existing QR labels in the building. This thesis is focusing on assisting the impaired users on indoor navigation tasks, but not on replacing the assistive means that the visually impaired user is already using. (e.g. long cane, guide dog) Experimental results show the ability of the system to effectively communicate with the user and assist him/her in way-finding tasks in the building of the University of Macedonia

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    The Anatomy of the Anyplace Indoor Navigation Service

    No full text
    corecore