5,959 research outputs found

    Future directions for the development of Virtual Reality within an automotive manufacturer

    Get PDF
    Virtual Reality (VR) can reduce time and costs, and lead to increases in quality, in the development of a product. Given the pressure on car companies to reduce time-to-market and to continually improve quality, the automotive industry has championed the use of VR across a number of applications, including design, manufacturing, and training. This paper describes interviews with 11 engineers and employees of allied disciplines from an automotive manufacturer about their current physical and virtual properties and processes. The results guided a review of research findings and scientific advances from the academic literature, which formed the basis of recommendations for future developments of VR technologies and applications. These include: develop a greater range of virtual contexts; use multi-sensory simulation; address perceived differences between virtual and real cars; improve motion capture capabilities; implement networked 3D technology; and use VR for market research

    Multimodal Human-Machine Interface For Haptic-Controlled Excavators

    Get PDF
    The goal of this research is to develop a human-excavator interface for the hapticcontrolled excavator that makes use of the multiple human sensing modalities (visual, auditory haptic), and efficiently integrates these modalities to ensure intuitive, efficient interface that is easy to learn and use, and is responsive to operator commands. Two empirical studies were conducted to investigate conflict in the haptic-controlled excavator interface and identify the level of force feedback for best operator performance

    Collaborative Work Enabled by Immersive Environments

    Get PDF

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Design and evaluation of a haptically enable virtual environmentfor object assembly training

    Full text link

    A Haptic Study to Inclusively Aid Teaching and Learning in the Discipline of Design

    Get PDF
    Designers are known to use a blend of manual and virtual processes to produce design prototype solutions. For modern designers, computer-aided design (CAD) tools are an essential requirement to begin to develop design concept solutions. CAD, together with augmented reality (AR) systems have altered the face of design practice, as witnessed by the way a designer can now change a 3D concept shape, form, color, pattern, and texture of a product by the click of a button in minutes, rather than the classic approach to labor on a physical model in the studio for hours. However, often CAD can limit a designer’s experience of being ‘hands-on’ with materials and processes. The rise of machine haptic1 (MH) tools have afforded a great potential for designers to feel more ‘hands-on’ with the virtual modeling processes. Through the use of MH, product designers are able to control, virtually sculpt, and manipulate virtual 3D objects on-screen. Design practitioners are well placed to make use of haptics, to augment 3D concept creation which is traditionally a highly tactile process. For similar reasoning, it could also be said that, non-sighted and visually impaired (NS, VI) communities could also benefit from using MH tools to increase touch-based interactions, thereby creating better access for NS, VI designers. In spite of this the use of MH within the design industry (specifically product design), or for use by the non-sighted community is still in its infancy. Therefore the full benefit of haptics to aid non-sighted designers has not yet been fully realised. This thesis empirically investigates the use of multimodal MH as a step closer to improving the virtual hands-on process, for the benefit of NS, VI and fully sighted (FS) Designer-Makers. This thesis comprises four experiments, embedded within four case studies (CS1-4). Case study 1and2 worked with self-employed NS, VI Art Makers at Henshaws College for the Blind and Visual Impaired. The study examined the effects of haptics on NS, VI users, evaluations of experience. Case study 3 and4, featuring experiments 3 and4, have been designed to examine the effects of haptics on distance learning design students at the Open University. The empirical results from all four case studies showed that NS, VI users were able to navigate and perceive virtual objects via the force from the haptically rendered objects on-screen. Moreover, they were assisted by the whole multimodal MH assistance, which in CS2 appeared to offer better assistance to NS versus FS participants. In CS3 and 4 MH and multimodal assistance afforded equal assistance to NS, VI, and FS, but haptics were not as successful in bettering the time results recorded in manual (M) haptic conditions. However, the collision data between M and MH showed little statistical difference. The thesis showed that multimodal MH systems, specifically used in kinesthetic mode have enabled human (non-disabled and disabled) to credibly judge objects within the virtual realm. It also shows that multimodal augmented tooling can improve the interaction and afford better access to the graphical user interface for a wider body of users
    • …
    corecore