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ABSTRACT 
 
Osafo-Yeboah, Benjamin. MULTIMODAL HUMAN-MACHINE INTERFACE FOR 
HAPTIC-CONTROLLED EXCAVATORS. (Major Professor: Steven Jiang), North 
Carolina Agricultural and Technical State University. 
 

Since the 1940s, fluid power has been used effectively in combination with other 

technologies to provide power in the form of hydraulics or pneumatics for a variety of 

industries. One such machinery is the excavator. Although the excavator is widely used 

in industry, numerous design constraints make the interface less intuitive, resulting in 

long operator training and high cost. Further, traditional excavator-operator interfaces 

rely mainly on visual and to some extent auditory senses. This often leads to cognitive 

overload with its negative effect on performance. A haptic-controlled excavator interface 

has been proposed as an alternative to the traditional excavator interface. 

The goal of this research is to develop a human-excavator interface for the haptic-

controlled excavator that makes use of the multiple human sensing modalities (visual, 

auditory haptic), and efficiently integrates these modalities to ensure intuitive, efficient 

interface that is easy to learn and use, and is responsive to operator commands.  Two 

empirical studies were conducted to investigate conflict in the haptic-controlled excavator 

interface and identify the level of force feedback for best operator performance. A 

quantitative model of human interaction with haptic-controlled excavator was developed. 

Design recommendations to improve the existing haptic-controlled excavator interface 

were identified using interface design guidelines. Finally, an evaluation of the modified 

haptic-controlled excavator interface was conducted to assess operator performance and 

to identify potential usability problems. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction   

The term multimodal interface has become a buzzword used in many contexts and 

across several disciplines (Bernsen, 1994, 1997). Multimodal human–machine interaction 

lies at the crossroads of several research areas including computer science, psychology, 

artificial intelligence, human factors, ergonomics etc. Multimodal human-machine 

interface studies allow researchers to determine how computer technology could be made 

more usable by people, which requires the understanding of at least three things: the user 

who interacts with it, the system (the computer technology and its usability), and the 

interaction between the user and the system (Jaimes & Sebe, 2007). As Oviatt (1999) puts 

it, multimodal systems represent a research-level paradigm shift away from conventional 

windows-icons-menus- pointers (WIMP) interfaces toward providing users with greater 

expressive power, naturalness, flexibility, and portability. Well-designed multimodal 

systems integrate complementary modalities to yield a highly synergistic blend in which 

the strengths of each mode are capitalized upon and used to overcome weaknesses in the 

other (Oviatt, 1999).  

Traditionally, human-machine interfaces rely exclusively on visual modality (e.g. 

keyboards, displays, levers, pedals) and auditory modality (e.g. alarms) as the pathway 

for communication between humans and machines. However, as operator workload and 

task are increased, the visual modality becomes overloaded due to the limited number of 

channels through which the machine and the operator can communicate. The over-
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working of the visual and speech modalities lead to operator fatigue which ultimately 

results in under-performance and errors.  

A multimodal human-machine interface aims to develop the necessary technology 

that will provide a more intuitive and natural way for people to operate and control 

computers and machines. It allows users to control and interact with machines using 

multiple input modalities including speech, sight, touch, taste, smell, gestures. A 

multimodal human-machine interface therefore, has the potential to minimize the user's 

cognitive workload when performing complex tasks as attentional resources will be 

drawn from different resource pools.  

Recent research in human-machine interface has concentrated on investigating the 

cognitive behavior of the operator in order to find ways to reduce his/her mental 

workload. The use of multiple modalities for human-computer interaction will improve 

the nature of human-computer collaboration as the computer in human-computer 

interaction system becomes more of an active participant in the task (Schomaker et al., 

1995). To achieve these goals, appropriate interfaces that incorporate all or most sensing 

modalities such as visual, tactile, auditory, taste will be necessary. For example,    

Schomaker et al. (1995) suggests that if the task at hand involves the manipulation of 

objects, then an appropriate interface is likely to use a combination of visual, auditory  

and haptic/tactile information.  

Advances in technology have made multimodal interactive systems more feasible 

unlike the 1960s and 1970s when manual control modeling was the order of the day. This 

has led to the development of reasonable and user-friendly interfaces for various 
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interactive applications resembling natural human-computer interaction.  For example, in 

natural human-human interaction, verbal information exchanged alongside non-verbal 

signs, gestures, facial expressions and other cues that compliment the information 

exchange. As technology advances and programming languages becomes more intuitive, 

it is hoped that more of the cues and gestures that make human-human conversations so 

effective could be incorporated into programming language to further enhance the next 

generation human-computer interaction.  

While it is envisioned that multimodal human machine interfaces would have a 

profound impact on how humans interact with machines in the future, there are several 

potential troubling issues and disadvantages that need to be addressed in order to realize 

the full potential of multimodal human-machine interfaces. Among these problems is the 

issue of coordination and combination of multiple modalities. Hurtig & Jokinen (2006) 

suggest that special attention must be paid to the system on interpretation level and from 

the point of view of usability, since there is a danger that the users might be exposed to 

cognitive overload by the stimulation of too many media. For example, in route 

navigation tasks, they suggest that the system should guide users accurately and quickly 

and provide necessary assistance in tasks that are complicated and confusing. A study to 

investigate operator behavior while using a haptic-controlled excavator simulator by 

Osafo-Yeboah et al. (2009) found that there was great interdependence among certain 

operator behavior events, suggesting a possible struggle to coordinate operator’s hand 

and eye movements. Issues of coordination thus need to be properly investigated when 

designing multimodal human machine interface to enable users realize their full potential. 
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Oviatt (1999), however, cautions that multiple modalities alone do not bring benefits to 

the interface and may be ineffective or even disadvantageous. 

The five human senses are sight, touch, hearing, smell, and taste, and the input 

modalities of most computer input devices correspond to these senses. For example, 

cameras use the sense of sight, haptic sensors use the sense of touch, microphones use the 

sense of hearing, olfactory uses the sense of smell, and flavor uses the sense of taste.  

However, there are many other computer input devices activated by humans that do not 

fall under any of the categories described above but fall under a combination of the 

human senses, for example, keyboard, mouse, writing tablet, biometric sensors etc. 

(Legin et al., 2005). Designing an efficient and user-friendly multimodal human-machine 

interface requires experts with diverse backgrounds in topics such as psychology and 

cognitive science to understand the user’s perceptual, cognitive, and problem solving 

skills; sociology to understand the wider context of interaction; ergonomics to understand 

the user’s physical capabilities; graphic design to produce effective interface 

presentation; and computer science and engineering to be able to build the necessary 

technology (Jaimes & Sebe, 2007). 

1.2 Multimodal Application to Fluid Power Systems 

Since the 1940s, fluid power has been used effectively in combination with other 

technologies through the use of sensors, transducers and microprocessors to provide 

power in the form of hydraulics and/or pneumatics for a variety of industries. Since their 

introduction, fluid power systems have advanced progressively to meet the constant 

demand for new technology that accomplishes tasks more easily, efficiently, and 
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economically. Hydraulic systems are important actuators in modern industry, principally 

because they have a high power/mass ratio, fast response, and high stiffness: a 

combination unmatched by any other commercial technology (Alleyne & Liu, 2000). 

Industries that have benefited the most from advances in fluid power technology include 

agriculture, construction, manufacturing, mining, transportation, and aerospace. 

One particular application of fluid power technology that has seen major 

improvements in terms of engine performance, better operator interface and 

ergonomically safe cab design is the excavator (Carter, 2008). The excavator has 

numerous applications in the construction, mining, agricultural and transportation 

industries. The excavator is an earthmoving equipment that is powered by hydraulics, and 

consists of digging bucket attached to the end of a movable, articulated arm that can be 

used to tackle a wide variety of trenching, loading, scooping, filling, and leveling chores 

that would otherwise require multiple machines and considerably more time. An example 

of excavator is seen in Figure 1.1.  

Like most other earthmoving machinery, operating an excavator is not an easy 

task. First problem is the need for operators to solve the inverse kinematic relationships 

between lever displacement and bucket trajectory (Frankel, 2004). Secondly, the dual-

ended nature of excavators present concerns about operator ergonomics, visibility as well 

as comfort. A good design must ensure that operators have unrestricted sightlines, 

perform tasks comfortably and be in control of the equipment no matter which end of the 

machine they are operating. Further, fluid power systems present other issues such as 

high pressure, friction, containment and constant movement, which lead to problems in 
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controllability, leakage and efficiency.  These problems are compounded by the fact that 

excavator operation requires direct manual control, which in turn requires excessive 

amounts of energy, intense task concentration, and high skill level to accomplish.   

 

Figure 1.1: Bobcat backhoe excavator  

Due to these constraints, excavator operators have to be trained for long periods 

of time before they are able to comfortably operate the machine and solve the inverse 

kinematic relationships subconsciously. This requires great deal of skills, concentration, 

and effort on the part of the operator to accomplish. Since the only feedback available to 

the operator is the observed bucket speed, the engine’s response to a load, and/or pressure 

waves propagated back to the user’s hand, it is usually not easy for novice operators to 

have a ‘feel’ for the non-intuitive level motions (Kontz & Book, 2007). As a result, 

construction companies often have to hire or contract professional operators for even the 

simplest earthmoving tasks usually at a high cost and inconvenience.  
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To overcome this problem, the haptic interface is being considered as an 

alternative to the traditional direct manual manipulating control levers. Since human 

cognitive processes and perception build largely upon multimodality, a proper 

combination of different interface components will result in a flow of information on 

several parallel channels and has been shown to enhance effectiveness of interaction 

(Krapichler et al., 1999). By making use of the haptic control interface instead of the 

traditional levers and pedals, excavator operators will be freed from solving the inverse 

kinematic relationship and therefore, help them perform their tasks more effectively, and 

also shorten the training time for novice operators (Kontz & Book, 2007).  

By using special input/output devices (joysticks, stylus or other devices), 

operators can receive feedback in the form of ‘feel’ sensation in the hand while operating 

the excavator. In combination with visual display, haptic interface can be used to train 

operators to better perform digging tasks requiring hand-eye coordination, and provide 

valuable help to novice operators with little experience to improve their task 

performance. The excavator, like most traditional earthmoving equipment relies on visual 

and/or auditory feedback, providing operators with only two modalities. By incorporating 

the haptic interface into the new design, a third modality, ‘haptic feedback’ is introduced 

into the design with the expectation that this extra modality will compliment the other 

two modalities (visual and auditory) and result in improved operator performance. Also, 

haptic feedback will help excavator operators to avoid damaging utility lines during 

excavation, by providing a force feedback that alerts the operator to the presence of 

unusual obstacles whenever such utilities lines are encountered and, therefore, lead to a 
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safer use (Osafo-Yeboah et al., 2009). Further, such a multimodal designed excavator 

interface will be intuitive, easy to use and can reduce operator mental workload and stress 

level leading to improved situation awareness, facilitate depth judgment, and speed up 

decision making resulting in improved performance.  

1.3 Outline of Research Problem 

1.3.1 Research Goals. 

This research seeks to investigate how audio, visual and tactile sensory modalities 

could be incorporated into the design of a haptic-controlled excavator interface. A haptic-

controlled excavator interface testbed currently under development as part of a broader 

effort to develop efficient, effective and safe fluid power systems will be used to model, 

characterize and experiment on multimodal human-machine interfaces for emerging fluid 

power actuated devices, by taking advantage of the multiple sensing and display 

modalities to enhance operational effectiveness. To achieve this, two empirical studies 

will be conducted to investigate first, the existence of conflict and interference in a 

multimodal haptic-controlled excavator interface, second, to investigate whether force 

feedback improves operator performance when using haptic-controlled excavator, and 

third,  to identify the range of force feedback values necessary for best operator 

performance. In these empirical studies, performance measures will be task completion 

time, number of scoops required to fill bin, and rate of accuracy, A quantitative model 

will be developed to predict operator performance in tasks involving haptic-controlled 

excavator interface. Results from the two empirical studies together with interface design 

principles will be recommended for use in the design and development of a more 
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intuitive, safe, efficient and effective interface for excavators and other fluid power 

systems. The following sub-goals are outlined to help achieve the primary objective. 

1. Conduct an empirical research to investigate whether conflict exists between the 

haptic, visual and auditory modalities in a multimodal haptic-controlled excavator 

interface, and if conflicts do exist, how their impact could be minimized in the 

domain of haptic-controlled excavator interface.  

2. Conduct an empirical research to investigate the impact of haptic force feedback 

on operator performance in the haptic-controlled excavator interface domain, and 

to identify the level/range of force feedback values that result in preferred 

operator performance.  

3. Develop and implement a quantitative model that allows the prediction of 

operator performance in tasks involving haptic-controlled excavator interface 

through control theoretic approach. Develop a proof-of-concept based haptic-

controlled excavator interface model, implement model in Matlab and validate 

quantitative model results by comparing to experimental results. 

4. Use results from empirical studies, interface design principles and usability 

guidelines to recommend improvements to multimodal haptic-controlled 

excavator interface for safe, efficient, effective user interaction.  

Specifically, the following research questions will be answered: (1) Does conflict 

exist between sensory modalities (auditory, visual, and haptic) in the haptic-controlled 

excavator interface? (2) Are these conflicts significant enough to have an impact on the 

performance of operator-excavator interaction? (3) Do operators have problems 
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coordinating their hand-eye movement? If they do, how would this affect the efficient 

operation of the haptic-controlled excavator? (4) Does different force feedback affect 

operator performance? (5) What is the range of force feedback values that yield optimal 

operator performance? 

1.3.2 Intellectual Merit. 

This dissertation research will yield the following tangible contributions: 

1. This work will provide a comprehensive literature review of multimodal human 

machine interface systems, and the important role of the five human senses in 

designing effective, efficient, safe and intuitive user interfaces 

2. This work will provide a comprehensive understanding of whether or not conflicts 

do exist between visual, haptic and auditory modalities in the domain of 

multimodal human-excavator interface (haptic-controlled excavator interface), 

and how these conflicts affect operator performance. Recommendations from this 

work will provide valuable information to engineers and designers as they attempt 

to develop a truly intuitive, safe and efficient multimodal interfaces for excavators 

and other emerging fluid power systems. 

3. This work will provide empirical evidence to support the claim that the use of 

force feedback in a haptic-controlled excavator interface impacts operator 

performance. Further, this work will provide empirical evidence to identify the 

range of force feedback values that produces the optimal operator performance in 

a haptic-controlled excavator interface domain.  
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4. While there are control theory models that predict operator performance in pursuit 

tracking tasks such as in a piloting task, there are no such models to predict 

operator performance in a multimodal haptic-controlled excavator interface 

domain. This work developed and implemented a haptic-controlled human 

excavator model to predict operator performance in a multimodal haptic-

controlled excavator domain. 

5. This work developed a multimodal human-machine interface design framework 

for excavators and other fluid power systems of the future, and performed 

usability evaluation of the improved haptic-controlled excavator interface. 

1.4 Chapter Summary 

Multimodal human-machine interfaces present opportunity for engineers and 

designers to develop interfaces/products that are intuitive and thus allow users to have 

safe, efficient, natural, and fulfilling interaction with the system. This research provides 

an overview of multimodal human-machine interfaces and its application to fluid power 

systems. Specifically, a multimodal haptic-controlled human-excavator interface model, 

currently under construction at the Georgia Institute of Technology by the Center for 

Compact and Efficient Fluid Power Systems (CCEFP) is investigated as part of a larger 

effort to develop an efficient, safe and effective alternative to the traditional pedals and 

levers excavator interface.  

Empirical investigations are conducted to: (1) assess conflict and interference 

between visual, haptic and auditory modalities in the haptic-controlled excavator 

interface, and their impact on operator performance, (2) determine whether force 
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feedback in the haptic-controlled excavator interface affects performance, (3) identify the 

range of force feedback values that produce the best operator performance.  

Results from the empirical studies are used to modify and improve the current 

haptic-controlled excavator interface, and usability evaluation is conducted to assess the 

performance of the improved interface. Further, a quantitative model is developed using 

control theory approach to help predict operator performance in excavation task while 

using the haptic-controlled excavator interface.  

1.5 Organization of Dissertation 

The rest of this dissertation is organized as follows. Chapter 2 reviews multimodal 

human-machine interfaces and their basic theories. It compares these theories and 

summarizes their design challenges. Chapter 3 surveys conflicts in multimodal human-

machines interfaces, as well as an empirical investigation of conflicts in a haptic-

controlled excavator interface. In Chapter 4, an empirical study is conducted to 

investigate the impact of force feedback on performance in a haptic-controlled excavator 

interface. Chapter 5 presents a brief description of control theory and fuzzy logic model 

of perception, and presents a quantitative model to predict performance in a haptic-

controlled excavator interface. Chapter 6 presents an interface design framework for 

multimodal interfaces and combines recommendations from empirical studies to make 

design changes to existing haptic-controlled excavator interface. Finally, Chapter 7 

presents general discussion and conclusions as well as the rationale and the major 

contributions of the research. 
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CHAPTER 2 

LITERATURE REVIEW 

There are five human sensory modalities: sight, audio, tactile, taste and smell, 

however, it should be noted that at the neurophysiologic level, there are several 

identifiable input channels through which humans perceive. A summary of the simplified 

version of the input channels at the neurophysiologic level (Schomaker et al., 1995) is 

shown in Table 2.1. Though these input channels/modalities exist at the neurophysiologic 

level, not all are of interest when it comes to human computer interaction mainly because 

they do not have cortical representation (sense of balance and chemical senses) or they 

may have a very reduced one (taste modality) and do not give origin to conscious 

perception (Schomaker et al., 1995).  

Though taste and smell are described here as two of the five human senses, they 

are not very useful channels for human computer interaction due to the impractical nature 

of their applications in human computer interaction settings. Multimodal human-machine 

interface provides the users with multiple modalities with which they can interact with a 

system beyond the traditional keyboard and mouse input/output. A well-designed 

multimodal system integrates complementary modalities to yield a highly synergistic 

blend in which the strengths of each modality is capitalized upon and used to overcome 

weaknesses in the other (Oviatt, 1999) . Other advantages of using multiple modalities 

include increased usability, error prevention, robustness of the interface, helping users 

recover from errors, bringing more bandwidth to the communication, and adding 

alternative communication methods to different situations and environments (Jaimes & 



14 
 

Sebe, 2007). However, in practice, the modalities of seeing and hearing are the most 

commonly employed.  

Table 2.1: Overview of input channels at the neurophysiologic level  
       [Courtesy of Schomaker et al., 1995] 

Sensory Modality Form of Energy Receptor organ Receptor Cell 

Chemical (Internal) 

blood oxygen 
glucose 
pH (cerebrospinal 
fluid) 

O2 tension 
carbohydrate 
oxidation  ions 

carotid body 
hypothalamus 
medulla 

nerve endings 
gluco-receptors 
ventricle cells 

Chemical (external) 

taste 
smell 

ions and 
molecules 
molecules 

tongue and pharynx 
nose 

Taste bud cells 
olfactory receptors 

Somatic Senses 

touch 
pressure 
 
temperature 
pain 

mechanical 
mechanical 
 
thermal 
various 

skin 
skin and deep tissue 
 
skin, hypothalamus 
skin & various organs 

nerve terminal 
encapsulated nerve 
endings 
peripheral & 
central 
nerve terminal   

Muscle sense, kinesthesia 

muscle stretch 
muscle tension 
joint position 

mechanical 
mechanical 
mechanical 

muscle spindles 
tendon organs 
joint capsule & 
ligaments 

nerve terminal   
nerve terminal   
nerve terminal   

Sense of balance 

linear acceleration 
angular acceleration 

mechanical 
mechanical 

sacculus/utriculus 
sacculus/utriculus 

hair cells 
hair cells 

Hearing 

 mechanical cochlea hair cells 

Vision 

 light retina photoreceptors 
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In recent years, there has been a great deal of research in the area of haptic 

feedback and control, though taste and smell sensing modalities have not received as 

much attention. The increased interest generated in haptic input devices has opened up 

new possibilities for the fluid power industry. It is hoped that this will result in more 

intuitive designs of fluid power equipment which will enable even novice users to 

become proficient at operating heavy earthmoving equipment more quickly and 

efficiently than was previously possible (Frankel, 2004). The following sections describe 

each of the five human sensing modalities in detail. 

2.1 Visual Modality 

Vision is the physiological sense of sight by which the form, color, size, 

movements, and distance of objects are perceived. In other words, vision is the ability to 

see. Webster’s dictionary describes vision as ‘the special sense by which the qualities of 

an object constituting its appearance are perceived and which is mediated by the eye’. 

The visual system in humans allows individuals to absorb information from the 

environment. It is part of the central nervous system which enables humans to process 

detail visual information as well as several non-image forming photo response functions. 

The visual system interprets information from visible light to build a representation of the 

surrounding world. It also accomplishes a number of complex and non-image forming 

tasks, such as the reception of light and the formation of monocular representations; the 

construction of a binocular perception from a pair of two dimensional projections; the 

identification and categorization of visual objects; assessing distances to and between 

objects; and guiding body movements in relation to visual objects. 
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As an input modality for information processing, vision plays the most important 

role, and is traditionally believed to dominate haptic and auditory senses in object 

perception, however, recent studies have shown that object perception is a lot more 

complicated and depends on the situation (Locher, 1982; Sathian & Zangaladze, 2002). 

Vision is considered better at discriminating details of spatial geometry (shape, color etc.) 

whereas haptics is particularly effective for the detection of texture (Verry, 1998).  

Vision involves both the acquisition and processing of visual information by the 

visual system. Humans see when the lens of the eye focuses objects in the environment 

onto the retina; light-sensitive membrane at the back of the eye. The retina contains two 

types of photoreceptive cells: rods and cones (Howard, 1996). Rods are responsible for 

vision in low light, and cones handle color vision and detail. When light contacts rods 

and cones, a series of complex chemical reactions occur. This chemical reaction lead to 

the formation of activated rhodopsin, which causes electrical impulses in the optic nerve 

(Bruce et al., 2003). The electrical impulses are then transmitted to the brain where it is 

encoded and interpreted as light. The human visual system is sensitive to only a small 

fraction of the electromagnetic spectrum. The visible spectrum for humans ranges from 

about 400 nm to 700 nm as shown in Figure 2.1. The wavelengths in the visible spectrum 

have no intrinsic color; however, humans perceive color as a result of interpretation by 

our visual system. The human eye can discern differences between 8 and 12 million 

colors; however, we can reliably recall and identify only 6 to12 colors (Howard, 1996).  



 

Figure 2.1: Electromagn

 
In most human computer interaction, the human receives visual information from 

the computer through the windows, icons, menus, buttons etc. in 

(GUI); however, there are limited input devices or

computer senses the intent of their human users 

use computer vision (vision as a communication channel) in order to sense 

the user and their actions within the context of human computer interaction.

application of computer vision to sense human

the ability to ensure that the interaction between users and computers is truly natural.
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Electromagnetic spectrum of visible light for humans

Howard, 1996] 

In most human computer interaction, the human receives visual information from 

the computer through the windows, icons, menus, buttons etc. in graphical user interfaces 

there are limited input devices or ‘perceptual organs’ by which the 

s the intent of their human users (Quek, 1995). Vision-based interfaces 

mputer vision (vision as a communication channel) in order to sense 

heir actions within the context of human computer interaction.

application of computer vision to sense human communication without obstruction has 

the ability to ensure that the interaction between users and computers is truly natural.

 
umans [Courtesy of 

In most human computer interaction, the human receives visual information from 

graphical user interfaces 

by which the 

based interfaces 

mputer vision (vision as a communication channel) in order to sense and perceive 

heir actions within the context of human computer interaction. The 

communication without obstruction has 

the ability to ensure that the interaction between users and computers is truly natural. 
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2.2 Auditory Modality 
 

Auditory is the physiological process by which humans perceive sound. It 

involves the transformation of sound vibrations into nerve impulses in the inner ear 

which are then transferred to the brain where it is ultimately interpreted as sounds. 

The human ear can detect frequencies of 20Hz-20 kHz; however, it is most sensitive to 

those between 1 kHz and 3 kHz. Little or no speech information of value can be extracted 

above 8 kHz frequency. Similarly, perception of frequencies below 100Hz is tactile in 

nature and therefore difficult to assess (Truax, 2001). 

Usually, sound stimulation enters the ear canal as a sound pressure wave and is 

converted to vibrations of the middle ear. This vibrations lead to a corresponding motion 

in the cochlear fluid as a result of the movement of the stapes footplate (Stenfelt et al., 

2004). Through this mechanism, sound energy is transduced to electrical nerve energy 

which is then passed up the auditory nerve to the brain for interpretation. The 

transduction is accomplished by the displacement of tiny hair cells along the basilar 

membrane as the membrane moves differently to sounds of different frequencies  

(Wickens et al., 2004). 

Though auditory stimuli last for a short period of time, it is very effective in 

attracting user’s attention and providing information on changing circumstances to users 

as is the case in alarms. Auditory modality, thus, allows the artificial modification of 

sound characteristics such as pitch and tone, to convey information to users without the 

need to focus the sound at the location where it is presented (Leinonen et al., 1979). 

Another reason that accounts for the effectiveness of auditory modality in attracting 
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users’ attention is due to the fact that it is able to provide information beyond the reach of 

either visual or haptic modality. Sound has the unique ability to provide information from 

all the directions to users. As a result, it is possible for people to listen and hear actions 

even when they cannot see the source.  

In spite of the inherent expression capabilities and advantages that auditory 

modality offers, its application in human-computer interfaces has been limited. For 

example, overlapping auditory information with visual information in a human-computer 

interface will reinforce users’ ability to recollect and, therefore, prolong the time 

associated with memory fading due to the limitations of the working memory (Leinonen 

et al., 1979). Two types of audio messages that are used to present information to users in 

human-computer interface are auditory icons and earcons.  

Auditory icons are sounds designed to convey information about events by 

analogy to everyday sound-producing events (Bjur, 1998; Gaver, 1989). In other words, 

auditory icons are sounds from the everyday environment used in human-

computer/machine interfaces to help users understand what kind of information they are 

dealing with. For example, the sound of objects crashing into a trashcan may be used to 

denote the deletion of a file; as a result, auditory icons have the advantage of being 

understood by users without learning or memorization. Earcons on the other hand, are 

abstract tones that are used in structured combinations to create sound messages to 

represent parts of an interface (Brewster, 1997). For example, a tone may be used in an 

interface to represent an invalid operation by the user. However, since earcons have no 

intuitive relationship with sounds and objects they represent, users have to learn and 
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recall their associations. Other benefits of auditory channel when combined with other 

senses in a human machine interface as summarized by Kramer (1994), are shown in 

Table 2.2. 

Table 2.2: Advantages of auditory channel in human machine system [Courtesy of  

        Kramer, 1994] 

Quality Advantage 

 
Non-intrusive enhancement 

Augments visual displays without 
interfering with existing tools and skills 

Increase in perceived quality Affordable and easily 
 
Superior temporal quality 

Time series data. Shorter duration events 
can be detected with auditory displays 

 
High dimensionality 

Adds to and exceeds dimensionality of 
visual and haptic modalities 

 
Engagement  

Decreases learning times, reduces fatigue, 
and increases enthusiasm 

 
Complementary pattern recognition 
capabilities 

Provides the opportunity to bring new and 
different capabilities to the detection of 
relationships in data 

 
Inter-modal co-relation 

Reinforcement of sensed experiences, 
veridical representations 

 
Enhanced realism 

Immersive, interactive interfaces become 
more realistic 

 
 
Synsethesia 

Replacement of inappropriate or 
insufficient cues from other sensory 
channels 

 
 
 
Enhanced learning and creativity 

Provides a representation modality suited 
to the student’s learning style, encourages 
fresh interpretations techniques, imagined 
extensions of data when auditing 

 
Lower computational requirements 

Efficient use of CPU and memory 
resources for display tasks 
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2.3 Olfaction Modality 
 

Olfaction, the sense of smell is a direct sense. Humans can distinguish more than 

10,000 different smells or odorants usually detected by specialized olfactory receptor 

neurons that line the nose (Buck & Axel, 1991). The olfactory receptor neurons are out in 

the open in the nostrils and, therefore, come into contact with the air. They have hair-like 

projections called cilia which increase their surface area. When volatile materials give off 

molecules or odorants, air current sweeps these odorants up through the nostrils until the 

molecules hit the olfactory epithelium. The airborne molecules stimulate the olfactory 

receptor cells, bind to the cilia and send electrical impulses to the brain. The brain then 

interprets patterns in electrical activity as specific odors and the olfactory sensation is 

perceived as smell. 

Smell is man’s first response to stimuli, and may alert us to dangers before other 

senses do. For example, gas leak may be smelled before there is an explosion; fire may be 

smelled before there are flames, and we may recoil before we taste rotten food. In spite of 

smell being man’s first response to stimuli, it has received little application in human-

computer interaction, in part due to the challenges involved with odor generation and 

control of breathing space. 

 Garcia-Ruiz et al. (2008)  defined an olfactory interface as one that employs one 

or more natural or artificially-created odors in a computer interface, with a purpose of 

assisting the human user. This could be achieved through the use of olfactory icons, 

which are computer-generated scent that conveys meaningful information to users, and 

must be  semantically and environmentally related to the information to be conveyed 
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(Kaye, 2004) . For example, a computer display showing a virtual environment of 

wildfire may release the smell of burning forest and will augment the user’s immersion 

experience. Similarly, Shoeib et al. (2006)  reported that the United States military in 

conjunction with the University of Southern California have developed a realistic virtual 

reality olfactory interface simulator that integrates smell to enhance training in war zone. 

In this simulator, soldiers wear an electronic collar which generates scents and odors 

through wireless network according to the activities performed and events generated in 

the virtual environment. For example, when soldiers shoot guns in the virtual 

environment, the electronic collar generates the scent of gun powder, which the soldiers 

can perceive. This enhances the soldiers’ perception of real war zone and makes training 

more effective. Another olfactory interface “Dollars & Scents” developed by Kaye 

(2001) mimics the changes in the stock market by releasing scents such as roses when the 

stock market is going up and lemons when the stock market is going down into the air. 

This provides a scent reminder by allowing users to create smell alarms.  

Thus, in principle, olfactory cues can be used to support such functions as sensory 

substitution and to convey high-level assessment of situations (such as alerting users to 

the presence life threatening stimuli), mood manipulation, increasing vigilance, 

decreasing stress, and improving the retention and recall of learned material (Sarter, 

2006). However, in doing so, care must be taken to avoid potential allergy and nausea 

reactions. This is further complicated by the difficulty in creating and delivering smell in 

human-computer interfaces, and the fact that smell is good for slow changing events but 

not so good for fast changing events often encountered in human-computer interaction. 
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2.4 Taste Modality 
 

Taste (gestation) is the sensation that results when taste buds in the tongue and 

throat convey information about the chemical composition of a soluble stimulus. In other 

words, taste is the sense that distinguishes the sweet, sour, salty, and bitter qualities of 

dissolved substances in contact with the taste buds on the tongue. Humans detect taste 

with taste receptor cells clustered in the taste buds found on the surface of the tongue 

(Erickson, 1982). Each taste bud has a pore that opens out to the surface of the tongue 

enabling molecules and ions taken into the mouth to reach the receptor cells inside. 

Humans like many other vertebrates, combine the sense of taste with the less direct sense 

of smell in the brain’s perception of flavor.  

2.5 Haptic Modality 

Haptics refers to sensing and manipulation through touch. The origin of the word 

haptic can be traced back to the Greek words: haptikos meaning “able to touch” and 

haptesthai which translates to “able to lay hold of” (Katz & Krueger, 1989; Révész, 

1950). However, today it is used broadly to encompass the study of touch and the human 

interaction with external environment via touch. More commonly, the word “haptic” or 

“haptics” refers to the capability to sense a natural or synthetic mechanical environment 

through touch and includes kinesthesia (or proprioception), the ability to perceive one’s 

body position, movement and weight (Hayward et al., 2004). The field of haptics is 

inherently multidisciplinary and draws from many disciplines, including biomechanics, 

neuroscience, psychophysics, robot design and control, mathematical modeling and 

simulation, software engineering, and systems control among others. 
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The term haptics has been used by psychologists who study how people use their 

hands to sense and manipulate objects since the early part of twentieth century (Salisbury, 

1995). Although humans interact with our surroundings through five sensory channels: 

sight, sound, taste, smell, and touch, it is only the sense of touch that enables humans to 

modify and manipulate the world around them (McLaughlin et al., 2002). Most of the 

information that humans gain by means of touch comes by way of the hand, which is 

both a perceptual and manipulative organ.  

The recent explosion in computer technology and the need for better and intuitive 

ways for humans to interact with machines and computer-generated virtual environments 

has led to increased interest in haptics. It promises profound changes to the way humans 

interact with machines by allowing users to have the sensation of ‘feel’ through the 

provision of force feedback (simulating object hardness, weight, and inertia) and/or 

tactile feedback (simulating surface contact geometry, smoothness, slippage, and 

temperature (Jacobson et al., 2002). Haptic interface devices share the unparalleled 

ability to provide for simultaneous and bi-directional information exchange between a 

user and a machine/computer as shown in Figure 2.2 (Minogue & Jones, 2006). 

 

Figure 2.2: Illustration of the simultaneous exchange of information between user  
    and machine unique to haptic interfaces [Courtesy of Minogue & Jones, 

2006] 

 
  
 

   
Computer 

(Virtual Environment) Haptic Device User 
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Tactile stimulus is conveyed to the brain in one of two ways: tactile information or 

kinesthetic information. Tactile information refers to the sense of natural contact with an 

object while kinesthetic information refers to the sense of position and motion. Srinivasan 

(1995) defined haptics into three sub-groups: human haptics, machine haptics and 

computer haptics. Human haptics is the study of human sensing and manipulation 

through touch.  Machine haptics is the complimentary study of the design and 

construction of machines and includes the development of technology to augment haptic 

communication between humans and machines as illustrated in Figure 2.3 (Srinivasan, 

1995). In this illustration, the human senses and controls the position of the hand, while 

the machine exerts forces to simulate contact with virtual objects. The human input 

system includes human senses that the operator uses to receive feedback from the 

machine and the environment such as the eyes for sensing visual feedback, ears for 

sensing auditory feedback or skin for sensing vibrations.  

Both the human and machine systems have sensors in the form of nerve receptors 

or encoders, processors in brain or computer, and actuators in muscles or motors. 

Computer haptics involves the development of algorithms and software needed to 

generate and render touch and feel into objects in virtual environments. A detailed 

description of haptics, its applications and an empirical study aimed at identifying the 

appropriate force feedback for use in haptic control excavator are provided in Chapter 4 

of this dissertation. Further, a conceptual model of the human-excavator interaction is 

described in Section 5.3. 
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Figure 2.3: Machine haptics interface with human [Courtesy of Srinivasan, 1995] 

By using special input/output devices: joysticks, stylus, data gloves, or other 

devices, users can receive feedback from computer applications in the form of ‘feel’ 

sensations in the hand or other parts of the body (Jacobson et al., 2002). In combination 

with a visual display, haptics technology can be used to train people for tasks requiring 

hand-eye coordination to reduce errors and improve performance.  

2.6 Haptic User Interface  

A haptic user interface is an interface that uses computer-controlled mechanism to 

allow users to interact with systems/machines through the sense of touch. Haptic provides 

an intuitive interface between man and machine, and requires little training and a working 

style most like that used by humans to interact with their environment and objects in day-

to-day life. In other words, the human interacts with elements of his/her task by looking, 

holding, manipulating, listening, and moving, thus, using as many of his/her natural skills 

as appropriate, or can reasonably be applied to a task (Stone, 2001). Haptic user 
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interfaces vary significantly in their complexity, and may range from devices with 

passive haptic displays or simple vibrotactile haptic feedback to complex systems with 

dynamic haptic feedback and sensing of finger, hand, head or body movement (Bjelland 

& Tangeland, 2007). Haptic user interfaces have wide range of applications that range 

from surgical devices in medicine to aviation, gaming and virtual reality industries, 

though their use in commercial products is low due to the technical challenges of their 

implementation.  

2.7 Theories of Multimodal Human Machine Interfaces 

Most of the advantages of multimodal human machine interface designs are 

rooted in the theory of cognitive psychology and human computer interaction studies 

(Dumas et al., 2009) . Specifically cognitive load theory, gestalt theory, Baddeley’s 

model of working memory as well as Wicken’s multiple resource theory are among the 

theories most often used to elucidate multimodal human machine interfaces (A. 

Baddeley, 1992; Wickens, 2002). As outlined by Dumas et al. (2009), research in 

cognitive psychology have shown that,  

(1) Humans are able to process multiple modalities partially independently, 

and therefore, presenting information with multiple modalities increases 

the humans working memory. 

(2) Humans have the tendency to mimic interpersonal interaction habits 

during multimodal interaction with machines/systems. 
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(3) Human performance is improved when interacting multimodally due to 

the way that human perception, communication, and memory systems 

function.  

Thus, some theories of cognitive psychology which help in explaining some of the 

benefits of multimodal human machine interface design are discussed below.  

2.7.1 Cognitive Load Theory. 

Cognitive load theory proposes that working memory is limited and, therefore, if 

learners are bombarded by information and, if the complexity of their instructional 

materials is not properly managed, then it will result in a cognitive overload. This 

cognitive overload impairs schema acquisition, later resulting in a lower performance 

(Sweller et al., 1990) . Once learners have acquired a schema, those patterns of behavior 

(schemas) may be practiced to promote skill automation (Anderson, 1982) but expertise 

occurs much later in the process, and is when a learner automates complex cognitive 

skills usually via problem solving (Shiffrin & Schneider, 1977). Schema acquisition is the 

ultimate goal of cognitive load theory. Anderson’s framework proposes initial schema 

acquisition occurs by the development of schema-based production rules, either by 

developing these rules during practice or by studying examples.  

 Sweller et al. (1990) also argued that since the working memory is the primary 

limitation in learning, presenting information in multiple modalities rather than single 

modality could help expand the processing capabilities by increasing the effective 

working memory. In other words, cognitive load theory assumes a limited working 

memory in which all conscious learning and thinking occurs, and an effectively unlimited 
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long-term memory that holds a large number of automated schemas that can be brought 

into working memory for processing (Dumas et al., 2009). Oviatt (2006) applied the 

cognitive load theory by testing different educational interface designs and found that 

user interface designs that minimized cognitive load freed up mental resources and 

improved students’ performance.  

2.7.2 Gestalt Theory. 

Gestalt theory refers to the form-forming capability of the human senses, 

particularly with respect to the visual recognition of figures and whole forms instead of 

just a collection of simple lines and curves. The phrase "The whole is greater than the 

sum of the parts" is often used to explain Gestalt theory (Koffka, 1999; Koka, 1935; 

Reiser, 1936). It was applied to visual perception by Wertheimer, Kohler and Koffka who 

founded the so-called gestalt approaches to form perception, with the goal to investigate 

the global and holistic processes involved in perceiving structures in the environment 

(Sternberg et al., 2009) . More specifically, the Gestalt theory explains how humans 

perceive groups of objects and how these perceived parts of objects form whole objects.  

The Gestalt theory has many principles/concepts with wide applications in human 

computer interactions. A brief summary of key concepts is provided below. 

Similarity - occurs when objects look similar to one another and, therefore, is perceived 

as a group or pattern. For example, in design similarity could be broken in order to attract 

user’s attention by using highlighting, underlining, sound, flashing or animation.  
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Continuation - occurs when the eye is compelled to move from one object to another. It 

is the eye’s instinctive action to follow a direction derived from the visual field (Fultz, 

1999; Koffka, 1999).  

Closure - occurs when an object is incomplete or a space is not completely enclosed. 

However, if enough of the shape is shown, then, users will be able to perceive the whole 

by filling in the missing parts. For example, a reader may be able to read the word ‘stud-

nt’ as student though one word is missing. This is due to the fact that most times users do 

not read the individual letters but rather the complete words. 

Proximity - occurs when elements are placed close together that they are perceived as a 

group. Users are able to mentally organize closer elements into a coherent object, because 

closely spaced elements are assumed to be related and those further apart are assumed to 

be unrelated (Fultz, 1999). 

Ground/Figure – occurs when the eyes differentiate an object from its surrounding area. 

A form or shape is naturally perceived as foreground while the surrounding area is 

perceived as background. For example, two different foreground colors may result in a 

user perceiving two different things from the same image and, therefore, a good balance 

between figure/ground relationships can make the perceived image clearer and add 

interest and detail to the image (Chang et al., 2002). 

Oviatt (2003) demonstrated that a number of human behaviors could be 

successfully predicted by design of map-based pen/voice interfaces using Gestalt 

principles. They observed that users consistently followed a defined multimodal 

integration pattern (sequential or simultaneous) during error handling and became 
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entrenched in their patterns rather than change their behavior. Further, they observed that 

Gestalt theory was accurate in predicting that a dominant number of subjects applied 

simultaneous integration over sequential integration. 

2.7.3 Baddeley’s Model of Working Memory. 
 

Baddeley and Hitch proposed their tripartite working memory model as an 

alternative to the short-term store in 1968. This model was later expanded upon by 

Baddeley and has become the dominant view in the field of working memory. The 

original short-term model by Baddeley & Hitch (1974) was composed of three main 

components: the central executive which acts as supervisory system and controls the flow 

of information from and to its slave systems, the phonological loop, and the visuo-spatial 

sketchpad. The slave systems are short-term storage systems dedicated to content domain 

(verbal and visuo-spatial, respectively). Baddeley (2000) added a third slave system, the 

“episodic buffer” to his model. The episodic buffer is dedicated to linking information 

across domains to form integrated units of visual, spatial, and verbal information with 

time sequencing (or chronological ordering), such as the memory of a story or a movie 

scene. The episodic buffer is also assumed to have links to long-term memory and 

semantic meaning (Baddeley, 2000). Though the slave processors are coordinated by a 

central executive, they function largely independently in terms of lower level modality 

processing (Dumas et al., 2009). Baddeley’s model of working memory is shown in 

Figure 2.4. Baddeley & Hitch (1974)’s argument for the distinction of two domain-

specific slave systems in the older model was derived from experimental findings with 

dual-task paradigms. 
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Figure 2.4: Baddeley’s model of working memory 

Performance of two simultaneous tasks requiring the use of two separate 

perceptual domains (i.e. a visual and a verbal task) was nearly as efficient as performance 

of the tasks individually. In contrast, when a person tried to carry out two tasks 

used the same perceptual domain, performance was less efficient than 

when performing the tasks individually. Therefore, performance is improved when 

humans interacted with two modalities that can be processed simultaneously in separate 

The Baddeley model’s strength is its ability to integrate large amount of 

findings from work on short-term and working memory.  
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performance depends upon the degree to which that capacity is allocated to tasks. 

However, Navon & Gopher (1979) proposed a multiple resource theory that argued that 

the human is a multiple processor, and that each processor may have its own capacities 

and that each capacity may be shared by several processors. Wickens (1984) extended the 

idea of multiple resource theory and argued that, there exist multiple attentional resources 

that are sometimes separate from one another which can be tapped simultaneously. He 

proposed separate pools of resources for information processing codes (spatial and 

verbal), different input modalities (visual, auditory, etc), different stages of information 

processing (encoding, central processing and responding), different response type (motor 

or verbal), and argued that these resources could be utilized separately or jointly 

depending on the information processing needs of the tasks at hand. These resource 

models are further described in Section 3.2.  
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CHAPTER 3 

INTERFERENCE IN MULTIMODAL HUMAN-EXCAVATOR 

INTERFACE 
 

3.1 Background 

A multimodal human-machine interface refers to human-machine interaction in 

which the user interacts with the application by using two or more input/output 

modalities. Thus, a human/machine system or interface is multimodal if it supports 

multiple human sensing modalities such as vision, auditory, touch or smell in the 

interaction. Multimodal interfaces represent a shift and a new paradigm in human-

machine interface design from the traditional graphical interfaces to interfaces that make 

use of the natural human-to-human interaction characteristics. The advent of multimodal 

interfaces based on recognition of human speech, gaze, gesture, touch and other natural 

behavior represents only the beginning of progression towards computational interfaces 

capable of human-like sensory perception (Thiran et al., 2009). 

A well-designed multimodal system integrates complementary modalities to yield 

a highly synergistic blend in which the strengths of each mode are capitalized upon and 

used to overcome weaknesses in the other (Oviatt, 1999). The user, therefore, has 

multiple modalities available for input/output interaction with the system. The purpose of 

using multiple sensing modalities in human machine interfaces is to design 

systems/interfaces that are easy to use, efficient, flexible, transparent, and provide a                                   

highly expressive mode of interaction between humans and computers/machines. Further, 

humans naturally interact with their environment multimodally. For example, humans can 
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speak about an object, touch the object, look at the object, point at the object, and smell 

the object concurrently.  

In everyday activity, humans interact with our environment through coordinated 

visual-haptic perceptions. For example, humans use both visual and haptic senses jointly 

in order to reach toward and grasp objects. Through the joint use of visual and haptic 

senses, that is looking at an object while handling it, humans are able to evaluate 

information about the shape, weight, texture, etc., that otherwise would not have been 

possible using either visual or haptic sense independently. The human brain as well as the 

brain of other dexterous primates contains specialized bimodal visuo-tactile neurons that 

coordinate information from vision and touch (Graziano & Gross, 1993; Leinonen et al., 

1979). According to Keehner (2008), the human memory, at a higher level of 

representation, uses similar parameters to code information from the eyes and from the 

hands, which allows the two sensory modalities to share common spatial reference 

frames. This ensures that memory representations arising from the two modalities are 

similar for objects regardless of whether they are perceived through vision or through 

touch. As a result, spatial cues presented in one modality can speed reactions to spatial 

cues presented in the other modality (Keehner, 2008).   

Multimodal interaction uses different modalities, visual, audio, and tactile 

feedback, to engage human perceptual, cognitive, and communication skills and help 

users to understand better what is being presented, which ultimately lead to more engaged 

user interaction and improve performance. Using multiple modalities in human-

computer/machine interaction will make the environment resemble that in which humans 
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naturally operate and result in a more efficient and effective interaction. Sharma et al. 

(1998) identified four issues that need to be considered in multimodal human machine 

interfaces as  

(a) Why integrate multiple modalities? 

(b) Which modalities to integrate? 

(c) When to integrate multiple modalities? 

(d) How to integrate multiple modalities? 

3.1.1 Rationale for Multimodal Human-Machine Interface 

Since humans interact naturally with their environment multimodally (i.e. see, 

touch, hear, smell, taste), it is envisaged that multimodal human-machine interfaces will 

migrate the natural habits used by humans to communicate with one another into the 

human-computer interaction (see Figure 3.1). Further, most human machine/computer 

interaction devices are practically unnatural and cumbersome, and rely on devices such as 

mouse, joystick, keyboard, pedals, etc., which effectively limit the ease with which the 

user can interact with the machine/computer (Sharma et al., 1998). Also, multimodal 

human-machine interface offers the user freedom to use a combination of modalities, or 

to switch to a better-suited modality, depending on the specifics of the task or 

environment at hand (Oviatt et al., 2000). For example, individual input modalities may 

be well suited in some situations, and less ideal or even inappropriate in others, and 

therefore, the choice of appropriate modality should be task dependent and requires 

careful consideration in the design of multimodal system. 

 



 

Figure 3.1: Human-to

Another rationale for integrating multiple sensory modalities into multimodal 

human machine interfaces is that the superior colliculus of the brain which receives and 

transmits signals from the cerebral cortex is multisensory. Therefore, there is a strong 
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human computer interaction 
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to-human interaction and human-to-computer interaction
[Courtesy of Sharma et al., 1998] 
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(1) They permit the flexible use of input modes, including alternation and integrated 

use. 

(2) They support improved efficiency, especially when manipulating graphical 

information. 

(3) They lead to enhancement in system robustness.  

(4) They can support greater precision of spatial information than a speech only 

interface, since pen input can be quite precise. 

(5) They give users alternatives in their interaction techniques. 

(6) They lead to enhanced error avoidance and ease of error resolution. 

(7) They accommodate a wider range of users, tasks, and environmental situations. 

(8) They are adaptable during continuously changing environmental conditions. 

(9) They accommodate individual differences, such as permanent or temporary 

handicaps. 

(10) They can help prevent overuse of any individual mode during extended computer 

usage. 

 In addition to the benefits outlined above, recent research indicates that humans 

may process information faster and better when it is presented in multiple modalities 

(Turk & Kölsch, 2004). A well-designed multimodal interface that allows user flexibility 

can potentially leverage people’s natural ability to use modes accurately and efficiently 

(Oviatt et al., 2000). Multimodal interfaces are, therefore, desirable in human-machine 

interaction because they support synergy, redundancy, disambiguation, and offer 

increased bandwidth for information exchange between humans and machines. However, 
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making a system multimodal by just adding a further modality to the system may not 

necessarily lead to improvement in the system as this may increase operator’s cognitive 

load due to the increased degrees of freedom. In some cases the different modalities may 

actually interfere with each other and may have a negative impact on system 

performance. 

3.1.2 Modalities Selection  

Humans perceive their environment through visual, touch, hearing, smell and 

taste senses and interact with it by using their actuators such as hands, body, face, voice, 

etc. (Sharma et al., 1998). Modalities for human sensing and actions are shown in Figure 

3.2. In human-to-human interaction, actuator actions of one human are perceived by 

senses of the other human in the environment, whereas in human-computer interaction, 

the computer perceives actions of humans. Thus, in order for human-computer interaction 

to be as natural and effective as possible, it is important that the computer is able to 

interpret all human actions such as hand, gaze, body, speech, gestures, etc. The richness 

of the interaction in human-to-human interaction can be attributed to the ability of 

humans to sense changes in facial expressions, gestures, body movements and other 

human expressions that are unavailable in human-to-computer interaction. Some 

computer sensory modalities are analogous to human sensory modalities; however, 

computers possess other sensory modalities that humans’ lack, such as the ability to 

accurately estimate the position of the human hand through magnetic sensors and 

measure subtle changes in the electric activity of the human brain (Sharma et al., 1998). 

 



 

Figure 3.2: Modalities of

Figure 3.3 shows human action modalities and computer sensing modalities and 

how they are related to each other. For example, a human action modality such as 

speaking may be interpreted by more than one computer sensing modality such as video 

and audio. Computer-sen

sensing, visual sensing, tactile and force feedback sensing, as well as neural sensing 

could be explored, and if sufficiently developed could be integrated with human sensing 

modalities to create efficient and effective human machine interfaces. 

actions such as facial expressions and hand or eye movement can be sensed through the 

same devices and used to infer different information.
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resources that must be shared among tasks during processing, so that whenever more than 

one task is performed, there is less capacity for each individual task and performance is 

impaired (Pashler, 1994). Bottleneck (task switching) model of task interference assumes 

that parallel processing may not be possible for certain mental operations and, therefore, 

such operations may require single mechanism to be dedicated for a period of time. When 

two tasks that require the same mechanism are to be performed at the same time a 

bottleneck results and one or both tasks will be impaired. The third interference models 

are the cross talk models in which interference do not depend on the sort of operation 

being carried out but on the content of information that is actually being processed, such 

as the type of sensory inputs present, and type of responses being produced.  

  For capacity sharing models, the decrease in performance when multiple 

modalities (resources) are available could be traced to the theories of single and multiple 

resources. The resource concept is founded on the underlying assumption that the human 

operator has limited capacity for processing resources that may be allocated to task 

performance (Wickens & Liu, 1988). Therefore, performing two tasks simultaneously 

require timesharing the scarce resource which may lead to one or both having fewer 

resources that required and may deteriorate performance.  

 As described by Szalma & Hancock (2002) , most of the early researchers in 

resource theories (Kahneman, 1973; Navon & Gopher, 1979; Norman & Bobrow, 1975; 

Wickens, 1980) conceptualized resources as commodities or pools of energy to be spent 

on task performance. Resources were described with either economic (supply and 

demand) or thermodynamic (tank of liquid to be divided among tasks) metaphors. In the 
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economic model, performance on one or more tasks suffered when the resource demands 

of the tasks exceeded available supply, while in the thermodynamic, resource was viewed 

as a tank of liquid to be divided among several tasks, and that under stressful conditions 

the amount of resources available is depleted and performance suffered.  The problem 

with these over-simplified non-biological models was that it failed to include the 

complex, dynamic and adaptive characteristics of humans. 

 One of the first authors to postulate the human processing capacity as a resource 

was Kahneman (1973), who proposed that there is a single pool of limited capacity 

available for a variety of human tasks, and that performance on tasks depends upon the 

degree to which a resource capacity is allocated to the particular task.  Thus, the single 

resource theory argues that operators have access to mental resources which they can 

strategically allocate to multiple tasks, and that task interference is dependent on task 

difficulty. The amount of capacity available is assumed to be limited and a function of 

arousal level. An allocation strategy determines how much processing capacity each task 

receives, and the strategy adopted is influenced by characteristics of the individual and 

motivational factors (Szalma & Hancock, 2002).  

3.2.1 Multiple Resource Model. 

 The multiple resource theory, first proposed by Wickens (1980) argues that the 

human is a multiple processor, that each processor may have its own capacities and that 

each capacity may be shared by several processors. Wickens (1981) extended the idea of 

multiple resources and proposed the existence of multiple attentional resources that are 

sometimes separate from one another and which can be tapped independently or jointly. 
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He proposed separate pools of resources for information processing codes (spatial vs. 

verbal), different input modalities (visual vs. auditory vs. haptic), different stages of 

information processing (encoding/central processing vs. responding), and different 

response type (motor or verbal), and argued that these resources could be utilized 

separately or jointly depending on the information processing needs of the tasks at hand.  

Wickens’ three-dimensional representation of the structure of multiple resources 

is shown below. Wickens’ model identified four important categorical and separate 

dimensions that account for the variance in time-sharing performance. These are the 

stages of processing, the codes of processing, modalities of input, and visual channels as 

shown in Figure 3.4. In the processing stages, perceptual and cogintive tasks (involving 

working memory) use resources that are different from action/response tasks. The code 

processing stage indicates that spatial activity and verbal activity use different attentional 

resources. Research has also shown that in the modalities dimension, processing of 

visual, auditory and haptic stimuli rely on separate attentional resources at the perceptual 

stage; however, at the central processing stage, common attentional resource may be used 

to process them (Smith & Buchholz, 1991). Thus, using Wicken’s multiple resource 

theory, the level of disruption or inteference between two tasks that are time-shared can 

be predicted, and can be used as a guide by designers to make decisions on whether to 

use voice or manual control, use auditory or visual displays, etc. Further, Wickens (2002) 

proposed the existence of separate resources which are both limited in capacity and 

allocatable amongst different tasks in human information processing system. 
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Three dimensional resource model [Courtesy of Wickens, 1981

Depending on the nature of the tasks, these attentional resources may process 

information sequentially if the different tasks require the same pool of resources, or can 

be processed in parallel if the task requires different resources. 

Thus, tasks that require separate attentional resources will be time shared

efficiently without significant cross-task interference. However, performance on tasks 

that require common attentional resources will depend on how attentional resources are 

allocated to the tasks due to interference. In other words, humans have limited c

resources, therefore, when an operator performs two or more tasks that require attentional 

resources from a single resource pool, task performance will be impaired

tentional resources exceeds supply. The importance of the concept of multiple 

resource theory lies in its ability to predict dual task interference levels between 

concurrently performed tasks, to be consistent with the neurophysiologic
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underlying task performance, and to account for variability in task interference (Wickens, 

2002). Thus, multiple resource theory predicts greater task interference when multiple 

tasks compete for limited and overlapping resources and when task difficulty is 

increased, as opposed to tasks that are easy, or tasks that draw on non-overlapping 

resource pools (Horrey & Wickens, 2003; Navon & Gopher, 1979).  

Several empirical studies have shown that the utilization of the separate resources 

outlined in multiple resource theory lead to improved user performance on information 

processing and recall tasks compared to single modality presentation, and that users find 

it easier to attend to information displayed using multiple modalities than unimodal 

systems (Parkes & Coleman, 1990; Wickens, Sandry, & Vidulich, 1983). For example, 

Wickens (1976) showed that, individuals performed better when task responses are 

distributed across manual and auditory inputs compared to when two manual or auditory 

responses were required. Similarly, Wickens & Liu (1988) showed that individuals 

performed better in a manual tracking task while simultaneously responding verbally to a 

secondary tone identification task, than when the secondary task required a manual 

response. 

Although the human sensory systems are traditionally thought of as distinct 

modes of resources, cross-modal interactions are increasingly being recognized for 

playing a vital role in human perception (Sathian & Zangaladze, 2002). A great ability of 

the human vision system is the capability for rapid and seemingly effortless recognition 

of objects despite variations (such as changes in viewpoint or illumination) in the sensory 

information about the object. In visual information processing, objects of interest attract 
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the eye and initiate a saccade that moves the object of interest from peripheral vision to 

the fovea for detailed assessment (Woods & Newell, 2004). Here, depth cues are used to 

deduce object’s size whereas other information such as texture and coloring as used to 

provide material composition (Woods & Newell, 2004). The next section describes an 

eye tracking study that was conducted to assess conflict and interference between visual, 

audio and haptic modalities in an excavator interface, to what extent these conflicts 

impact performance, and how the impact of such interference could be minimized in the 

human-excavator interface. 

3.3 Using Eye Tracking to Investigate Multimodal Interference 

Although eye tracking is a relatively new technique in Human-Computer 

Interaction (HCI), it has been established as a viable tool for usability assessment (Benel, 

Ottens, & Horst, 1991). Eye tracking is a technique whereby an individual’s eye 

movements are measured so that the researcher knows both where a person is looking at 

any given time and the sequence in which their eyes are shifting from one location to 

another (Poole & Ball, 2005). It involves the monitoring and application of eye 

movements to user interfaces:  both for analyzing interfaces, measuring usability, and 

gaining insight into human performance, as well as an actual control medium within a 

human-computer dialogue (Jacob & Karn, 2003).  

The structure of the human visual system enables high resolution vision to occur 

in only a small region, as a result, humans have to adjust and focus their gaze to the 

location from which visual information needs to be collected at any given moment. 

Therefore, an individual’s eye movements’ data provide information about the nature, 
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sequence and timing of cognitive operations. In other words, what a person is looking at 

is assumed to indicate the thought “on top of the stack” of cognitive processes (Just & 

Carpenter, 1976), thus this eye-mind hypothesis means that eye-movement recordings 

can provide a dynamic trace of where a person’s attention is being directed in relation to 

a visual display. By providing information about the nature and timing of mental 

processes, eye movement information could be useful in systems that attempts to 

facilitate human computer interaction by giving the computer more information about the 

user’s cognitive activities (Rudmann et al., 2003).  

The concept of using eye movements to predict users’ thought processes pre-dates 

the widespread use of computers by almost 100 years, and many different methods have 

been used to track eye movements since the use of eye tracking technology was first 

pioneered in reading research (Rayner & Pollatsek, 1989). Some initial eye tracking 

methods were quite invasive and involved direct mechanical contact with the cornea, 

however, this has evolved over the years to current non-invasive eye tracking techniques, 

which use light reflected from the cornea (Jacob & Karn, 2003). Further, eye movement 

research and eye tracking has flourished with advances in both eye tracking technology 

and psychological theory to link eye tracking data to cognitive processes. A lot of 

research work carried out in psychology and physiology have focused on exploring how 

the human eye operates and what it can reveal about perceptual and cognitive processes.  

The most common commercial eye-tracking systems in use today for human 

computer interface research that use human subjects are video-based pupil/corneal 

reflection eye-tracking systems. These eye-trackers rely on video localization of the pupil 
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in conjunction with infrared illumination. The infrared illumination reflects off the cornea 

and the location of the corneal reflections are detected and used as a benchmark to gauge 

the relative position of the pupil. As a result, these eye-trackers are very resilient to 

subject motion. These commercial eye-tracking systems measure point-of-regard by the 

“corneal-reflection/pupil-centre” method (Goldberg & Wichansky, 2003), which usually 

consist of a standard desktop computer with an infrared camera integrated into display 

monitor, and image processing software to locate and identify the features of the eye used 

for tracking. When the eye tracker is turned on, infrared light from an LED embedded in 

the infrared camera is first directed into the eye to create strong reflections in target eye 

features so they are easy to track. The use of the infrared light ensures that the user is not 

dazzled with visible light. When the light enters the retina, a large proportion of it is 

reflected back, making the pupil appear as a bright, well defined disc known as the 

“bright pupil” effect (Poole & Ball, 2005). Image processing software is used to identify 

the center of the pupil and the location of the corneal reflection, the vector between them 

is measured, with additional trigonometric calculations, point-of-regard is measured. It 

should be noted, however, that though it is possible to determine approximate point-of-

regard by the corneal reflection alone, by tracking both the center of pupil and the 

location of corneal reflection, eye movements can, critically, be disassociated from head 

movements (Jacob & Karn, 2003).  

3.4 Eye Tracking Study to Investigate Conflicts in Human-Excavator Interface 

In order to investigate whether there are conflicts or interferences in the human-

excavator interface, an empirical eye tracking study was conducted using the excavator 
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simulator. In this study, the Tobii® Eye Tracker was used to measure, record, play back, 

and analyze users’ eye movement on computer screen as they interacted and manipulated 

the haptic-controlled excavator. Increasing number of researchers are using the Tobii®  

Eye Tracker because, assessing the allocation of visual attention with conventional 

methods such as click analysis, questionnaires or simply asking subjects where they have 

paid attention to, are limited to those processes which are part of conscious reflection and 

conscious control. Therefore, relying exclusively on methods like those mentioned above 

may impact validity of results, since attentional processes do not solely depend on 

conscious human control. They are often controlled beyond subjects’ awareness, are 

therefore not reportable or are simply too fast to be analyzed by mouse movements 

(Schiessl et al., 2003). More importantly, what an individual looks at is usually a good 

reflection of the cognitive processes going on in the mind of that individual.  

In conducting this research, a task analysis of the sequence of steps required by an 

operator to successfully complete an excavation task was conducted to help identify the 

most critical/crucial tasks in excavator operation. Based on the results from the task 

analysis, the most critical tasks were identified and used to design a set of tasks to be 

carried by participants while interacting with an excavator simulation. Also, based on the 

results from the task analysis, the experimental tasks were designed in such as way that 

auditory, visual and haptic information are simultaneously presented and used by 

operators to accomplish the required tasks.  

Another design issue that was investigated in this study is hand-eye coordination 

of the excavator operator. Given that most motor control movement of the operator is 
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either initiated or guided by perception, it is critical that the relationship between 

excavator operator’s gaze and hand movement is fully understood. Several studies have 

been carried out to find how eye movement relates to hand movement. For example, 

Binsted et al. (2001) studied the temporal and spatial coupling of gaze and hand 

movement in direct hand pointing task and found similar patterns of hand-eye movement 

relationships including: (i) that gaze tended to initiated 70ms earlier than hand 

movement, (ii) that gaze typically makes two saccades to land on target and that the first 

saccade tended to undershoot, and (iii) that eye gaze stabilizes on target at 50% of total 

hand response time. The difference between these previous studies and the current study 

is that, the current study probed hand-eye coordination of excavator operators using 

haptic-controlled excavator simulator with haptic feedback. This helped in understanding 

the relation between hand movement and eye movement when operating the haptic-

controlled excavator so that potential operator difficulties could be mitigated.  

3.5 Methodology 

3.5.1 Research Questions. 

 This empirical study seeks to answer the following research questions.  

1)  Does conflict exists between sensory modalities (auditory, visual, and haptic) in 

the haptic-controlled excavator interface? 

2) Are these conflicts significant enough to have an impact on the performance of 

operator-excavator interaction? 

3) Do operators struggle to coordinate their hand-eye movement? If they do, how 

would this affect the efficient operation of the haptic-controlled excavator? 
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3.5.2 Participants. 

 Twenty-four students were recruited from the North Carolina Agricultural & 

Technical State University (NCA&T) to take part in this empirical study. The participants 

were grouped into two groups: novices and experts. The novices group consisted of 20 

volunteers with no prior knowledge of the haptic controlled excavator simulator, while 

the experts group consisted of 4 volunteers made up of members of Center for Compact 

and Efficient Fluid Power Systems (CCEFP) research team at NCA&T who have had the 

experience of interacting and manipulating the haptic-controlled excavator. 

The sample size for this study was determined using the t-test approach since the 

study was a comparison study. A 0.80 power was assumed, and using the formulation p = 

(ES)*α*�� �⁄ , where p is the power, ES is the effect size, α is the significance level, n is 

the sample size, and σ is the standard deviation. Using a pilot study, the effect size (ES) 

was estimated to be 2, and σ was estimated at 25.29 seconds (0.4215 minutes) from a 

previous study by the author (Osafo-Yeboah et al., 2010). Using a significance level of 

0.05, sample size was calculated to be 27. Thus, 27 participants would have given the 

study a statistical power of 0.8. However, due to resource and time constraints, only 20 

participants were recruited for the study with a statistical power of 0.68.  

 3.5.3 Equipment. 

The equipment for this experiment consisted of two Gateway computers, a Tobii® 

Eye Tracker T60, and a Phantom Omni 5.3 Haptic device. The two Gateway computers 

ran the excavator simulation program and were connected with the Tobii® Eye Tracker 

via a local network. Computer number one interfaced with the Phantom Omni and ran the 



53 
 

excavator dynamics simulation, while computer number two ran the xPC-target 

simulation. The excavator simulation graphics were displayed on the Tobii® Eye Tracker 

connected via a local network to the two Gateway computers. The schematic layout of 

the equipment setup is shown in Figure 3.5.  

The Phantom Omni device sat next to the Tobii® Eye Tracker on the right hand 

side of participants and had 6 degrees of freedom in total: up-down, left-right, front-back, 

and a rotating stylus with 3 degrees of freedom.  The C++ and MatLab programming that 

ran the simulation was developed by Mark Elton of Georgia Institute of Technology.  

 

Figure 3.5: Schematic equipment setup of simulation 

3.5.4 Experimental Design. 

A between-subject design was used in this experiment. The independent variable 

was expertise with two levels novices and experts. The dependent variables were task 

completion time, number of scoops to fill a bin, number of drops outside of the bin. Also, 

eye tracking data fixation count, fixation length and fixation duration were collected. 
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3.5.5 Task. 

Using the results from the task analysis study described in Chapter 6, participants 

were asked to perform a series of tasks that required them to move the boom/bucket 

assembly to the desired location using the stylus of the Phantom Omni device. Next, they 

had to position the bucket at the work area (trench), then scoop/dig soil, move content to 

the desired location (bin), and rotate anticlockwise to open bucket and unload its content. 

Participants performed two tasks, and the order of the tasks was randomized among all 

participants.  

 Task #1: 

Dig soil from the marked area to fill bin #1 (bin to the left of trench). Accomplish 

this by using the stylus of Phantom Omni device to control and manipulate the 

boom/bucket assembly of the simulated excavator. When the bin is full, there will 

be an audio alert and the content of the bin turns green. 

 Task #2: 

Dig soil from the marked area to fill bin #2 (bin to the right of trench). 

Accomplish this by using the stylus of the Phantom Omni device to control and 

manipulate the boom/bucket assembly of the simulated excavator. When the bin is 

full, there will be an audio alert and the content of the bin turns green. 

 3.5.6 Workload Assessment. 

 Workload is a hypothetical human-centered construct that represent the cost 

incurred by an operator to achieve a particular level of perception (Sheridan & Simpson, 

1979). Therefore, in order to assess the cost in terms of operator fatigue, stress, error, etc. 
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associated with operating the haptic-controlled excavator for a long period of time, the 

NASA TLX workload assessment was used. The NASA-TLX is a multidimensional, self-

reported assessment technique that provides an estimate of total workload based on six 

underlying psychological factors associated with task performance. The six underlying 

psychological factors that contribute to total workload are mental demand, physical 

demand, temporal demand, performance, effort and frustration level (Hart & Staveland, 

1988). Though there are other workload metrics, the NASA TLX was used in this study 

due to its high validity, applicability, ease of use and popularity in usability research. 

This was done to provide an understanding of operators’ perceived workload, so 

designers can mitigate their potential impact on system performance.  

3.5.7 Procedure. 

Participants were briefed on the purpose of the study upon arrival, and then asked 

to read and sign a consent form. They were briefed on how to complete a computer-based 

NASA TLX workload assessment after which a pre-test questionnaire was administered 

to collect demographic information. Participants were informed that their eye movements 

would be recorded with a remote desktop Tobii® Eye Tracker T60 and that they should 

maintain a steady head position as much as possible during the test. A short demo of the 

simulation was given, and participants were given a few minutes to familiarize 

themselves with the simulator. Questions about the simulator and controls from 

participants were answered by the experimenter after which actual testing started.  

To take the test, participants were seated in front of Tobii® Eye Tracker T60 with 

their heads about 60cm from the monitor. Participants’ head positions were adjusted so 
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that their head was in the middle of the monitor when viewed from behind. Once the 

appropriate head position is found, participants’ eyes were calibrated. This was done by 

asking the participant to follow the red calibration dot/ball with their eyes as it moved 

randomly across the screen, briefly stopping at each of the four diagonals and the center 

of the screen. After calibration, the excavator simulation was initiated and participants 

were asked to carry out the assigned digging tasks with the Phantom device while their 

eye movements were recorded with the Tobii® Eye Tracker. The experimental set up for 

this study is shown in Figure 3.6. Upon completion, participants were thanked, debriefed, 

and asked to complete the NASA TLX workload assessment and a post-test 

questionnaire. They were also asked for comments about their experience of using the 

haptic control excavator interface. Overall, the test took about one hour to complete. 

 

Figure 3.6: Experimental set-up for conflict study 
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3.6 Results 

Performance measures of task completion time (s), number of scoops to fill a bin, 

and number of scoops dropped outside of bin for both expert and novice operators 

together with their standard deviations are provided in Table 3.1, while Table 3.2 

provides the NASA TLX subjective workload assessment results obtained from 

participants for each workload metric and total workload. 

Table 3.1: Descriptive statistics for task completion time, number of scoops and   

       number of drops 

Expertise 

 

 

Statistic 

Performance Measure 

Completion 

Time (s) No of Scoops No of Drops 

Novices 
Mean 216.07 7.63 0.85 

Std.dev   67.60 1.36 1.03 

Experts 
Mean 138.13 6.38 0.25 

Std.dev     6.41 0.25 0.50 
 

Table 3.2: Descriptive statistics for NASA TLX subjective workload assessment for  

       experts and novices 

Expertise 

 

 
Statistics 

Workload Metric 

Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Performance Effort Frustration 

Total 

Workload 

Novices 

Mean 12.30 12.13 5.38 6.49 13.11 9.78 59.19 

Std.dev 7.92 9.68 5.84 5.37 8.02 8.83 19.54 

Experts 

Mean  6.00  5.67 1.92 6.92 11.83 5.50 37.83 

Std.dev 4.69 1.59 2.01 4.22 2.81 5.51 4.96 

Several constraints and limitation were encountered in this study that may have 

influenced the results reported. First, auditory and haptic factors were constant i.e. only 

one level of haptic feedback was used; similarly, only one auditory alert was used to 

signal the end of task completion. Second, due to the task domain (i.e. excavation using 
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haptic-controlled excavator), it was difficult to investigate the impact of each modality 

separately as visual cues were always present. Further, auditory feedback was not used as 

it did not provide any information because of the lab set up.  

3.6.1 Research Question 1. Conflict Detection. 

This analysis investigates conflicts between the sensory modalities (auditory, 

visual and haptic) that may exist in the haptic control excavator interface. In order to 

probe these conflicts, tasks that depend on auditory, visual and haptic cues were analyzed 

for expert and novice operators using the dynamic area of interest tool (dynamic AOI) 

within Tobii® Eye Tracker. The descriptive statistics show that both mean fixation count 

and mean fixation length were higher for novice operators than they were for expert 

operators within the area of interest (AOI). Similarly, mean fixation count and mean 

fixation length outside AOI were higher for novice operators than for expert operators. 

The results are shown in Tables 3.3 and 3.4. The mean number of fixation count for 

experts and novices were 190.13 and 281.35 respectively, while mean fixation length for 

experts and novices were 0.671 and 0.752 seconds respectively on AOI. 

Table 3.3: Descriptive statistics for fixation count, fixation length and fixation  

       duration within AOI for experts and novices 

Expertise  

 

 

Statistics Fixation Count 

Fixation Length 

(s) 

Fixation Duration 

(s) 

Novices 

Mean 281.35 0.752 0.195 
Std.dev 120.98 0.247 0.416 

Experts 

Mean 190.13 0.671 0.147 
Std.dev   43.53 0.075 0.068 

 
 
 



 

Table 3.4: Descriptive statistics for f

Expertise 

Novices 

Experts 

The mean number of 

were 1.625 and 7.975 respectively, while the 

0.095 seconds and 0.164s

3.7a-d show graphical representation of 

novices respectively within

Figures 3.7a and 3.7c represents the performance of experts, while 

and 3.7d represents the performance of novices.

Figure 3.7a: Fixation length 
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Descriptive statistics for fixation count and fixation length

 

Statistics Fixation Count  Fixation Length 

Mean 7.975 
Std.dev 22.56 
Mean 1.625 

Std.dev 1.061 

number of fixation count that fell outside AOI for experts and novices 

were 1.625 and 7.975 respectively, while the mean fixation length outside 

and 0.164seconds respectively for expert and novice operators. 

how graphical representation of fixation count and fixation length for 

novices respectively within AOI versus those outside of AOI. The notation 

represents the performance of experts, while (PR) in Figures 

represents the performance of novices. 

ength within AOI vs. fixation length outside AOI for e
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0.100 
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0.048 

experts and novices 
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Figure 3.7d: Fixation count within AOI vs. fixation count outside AOI for novices 
 

Prior to using any statistical tool to conduct any statistical analysis, a normality 

test, test for independence and test for homogeneity of variance (HOV) were performed 

on each of the data sets and compared to α=0.05 significance level. Normality test using 

the Shapiro-Wilk’s test revealed violation of normality assumption for fixation length 

(w=0.9954 and p=0.0009), fixation count (w=0.8304 and p=0.0001), and fixation 

duration (w=0.2885 and p=0.001).  Normality plots and histograms of the data sets can 

be seen in Appendix 1. Further, Levene’s test for homogeneity of variance showed high 

variety for fixation length (F 1, 46=4.55, and p=0.0383), fixation count (F1, 46 =2.52, and 

p=0.01192), and fixation duration (F 1, 46 =0.47, and p=0.4958). From the results above, 

model adequacy was not met, therefore, a non-parametric statistical analysis, the Mann-

Whitney-Wilcoxon test was used to analyze the data sets.  

Results from the non-parametric Mann-Whitney-Wilcoxon test showed that there 

was no statistically significant difference in fixation count outside AOI between experts ( 
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�̅=8.54) and novices (�̅=11.08), (z=48.0, and p=0.9054). However, there was a 

statistically significant difference in fixation count within AOI between experts 

(�̅=13.06) and novices (�̅=26.78), (z=104.50, and p=0.018). Further, the results showed 

that within AOI, there was a statistically significant difference in fixation length between 

experts and novices, (z=23.00, and p=0.0398). However, outside AOI, there was no 

statistically significant difference in fixation length between experts (�̅=20.626) and 

novices (�̅=25.275), (z =165.00, and p=0.3988).       

The higher number of fixation count and fixation length within AOI by expert 

operators, a difference which the results above show are significant, may be due to the 

fact that novice operators had harder time keeping their eyes focused in the task area 

compared to expert operators. In fact, the results show that, novices were nearly twice as 

likely (3.78 vs. 2.0) to look outside the area of interest while performing the task than 

experts as seen in Table 3.5 below. This may be due to the interference between the 

sensory cues that are required for successful execution of the excavation task.  The fact 

that fixation count and fixation length values were higher for novices than for experts 

may be due to the fact that novices had more difficulty in extracting useful information 

necessary to execute the task compared to experts. 

Table 3.5: Mean number of scan paths outside the area of interest (AOI) 

Expertise Statistics Mean # of Scan Paths Outside AOI 

Novices 

Mean 3.78 
Std.dev 1.44 

Experts 

Mean 2.00 
Std.dev 0.56 
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The high fixation count also might be an indication that, novices were less 

efficient in performing the assigned task compared to experts. Thus while experts focused 

most of their attention within the task area (the screen), novices were unable to focus 

their full attention on the task area, but alternated between looking at the screen and their 

hands. The results from this study, therefore, show the existence of possible interference 

between visual, haptic and auditory cues in the haptic control excavator interface.  

3.6.2 Research Question 2. Impact of Conflict on Performance. 

This analysis was conducted to investigate whether conflicts between visual, 

haptic and auditory cues in the haptic control excavator interface have a significant 

impact on operator performance. By measuring task completion time, number of scoops 

required to fill up a bin, and number of scoops dropped outside of bin, the performance of 

experts and novices were compared. Further, error rate (calculated as percentage of 

number of scoops dropped outside of bin to total number of scoops required to fill the 

bin) for experts and novices was compared. As can be observed from Table 3.6 below, 

experts had a mean task completion time of 138.26 seconds with a standard deviation of 

6.41seconds while novices completed the task in 216.08 seconds with a standard 

deviation of 67.60 seconds. Experts filled up bins in 6.375 scoops with a 4% error rate 

and standard deviation of 0.25, while novices filled up bins in 7.625 scoops with 11.15% 

error rate and standard deviation of 2.36. Figures 3.8-3.10 show the graphs of mean task 

completion time, mean number of scoops and error rate for expert and novice operators 

respectively. The mean number of scoops dropped outside of the bins by experts was 0.25 

scoops per bin, while for novices the mean number dropped outside the bin was 0.85 
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scoops per bin. Prior to conducting statistical analysis using the mean task completion 

time, mean number of scoops and mean number of drops outside the bin, a normality test, 

test for independence and test for homogeneity of variance (HOV) were performed on 

each of the data sets to detect any violations of model adequacy. 

Table 3.6: Descriptive statistics for task completion time, number of scoops, number 

       of drops and percentage error 

 

Expertise 

 

Statistics 

Completion 

Time (s) 

No of 

Scoops 

No of 

Drops 

Error rate 

(%) 

Novices 
Mean 216.07 7.63 0.85 11.15 

Std.dev   67.60 1.36 1.03 9.86 

Experts 
Mean 138.13 6.38 0.25 4.00 

Std.dev     6.41 0.25 0.50 3.38 
 

 

Figure 3.8: Mean task completion time for expert and novice operators 
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Figure 3.9: Mean number of scoops required to fill a bin by experts and novices 

 

 

Figure 3.10: Mean error rate for experts and novices 
 

Results of normality test using the Shapiro-Wilk’s test revealed violation of 

normality assumption for mean task completion time (w=0.8617 and p=0.0036), mean 

number of scoops to fill a bin (w=0.8295 and p=0.0009), and mean number of drops 

outside bin (w=0.7541 and p=0.001). Further, Levene’s test for homogeneity of variance 
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showed (F1, 22 =2.63, and p=0.1190); (F 1, 22 =3.45, and p=0.0768); and (F 1, 22=3.76, and 

p=0.0655) respectively for mean task completion time, mean number of scoops and mean 

number of drops outside bin. The analysis showed model adequacy was not met and, 

therefore, a non-parametric statistical analysis, the Mann-Whitney-Wilcoxon test was 

used to analyze the data sets. Normality plots and histograms of the data sets can be seen 

in Appendix 1. 

Results from the non-parametric Mann-Whitney-Wilcoxon test showed that there 

was a statistically significant difference in mean task completion time between experts 

(�̅= 3.25) and novices (�̅=14.35), (z=18, and p=0.0047). Further, the results showed a 

statistically significant difference in the mean number of scoops required to fill a bin 

between experts (�̅=5.25) and novices (�̅=13.90), (z=21, and p=0.0240). However, the 

results showed that there was no statistically significance in the mean number of drops 

outside of the bin between experts (�̅=9.375) and novices (�̅=13.125), (z=37.50, 

p=0.6059). 

The results show that the performance of experts was significantly better than that 

of novices, in terms of task completion time and the number of scoops required to fill up 

a bin, however, the performance of experts was not statistically different from novices in 

terms of the number of scoops dropped outside of the bin. This may be due to the fact 

that experts had a higher fixation count in the area of interest than novices, which may be 

attributed to the fact that experts were able to focus their attention in the work area where 

the actual excavation task took place, while novices wandered in and out of the area of 
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interest. Further, the results also show that, training can be used to greatly improve the 

performance of novice operators.   

3.6.3 Research Question 3. Hand-Eye Coordination. 

This analysis was conducted to investigate whether operators had difficulty 

coordinating their hand-eye movement. To probe whether experts and novices struggled 

to coordinate their hand-eye movements, the eye-tracking data obtained from the study 

was analyzed. Fixation count within and outside the AOI, fixation length within and 

outside AOI, as well as scan paths were analyzed. As shown in Table 3.7, within AOI, 

experts had lower mean fixation count than novices (190.125 vs. 281.35) and mean lower 

fixation lengths than novices (0.671seconds vs. 0.752 seconds). A non-parametric Mann-

Whitney-Wilcoxon test was performed since data set violated normality test as discussed 

in Section 3.6.1.   

Table 3.7: Mean fixation count and fixation length for experts and novices within  

       and outside AOI 

Experts Novices z-value p 

Within 
AOI 

Mean Fixation Count 190.125 281.35 104.50 0.0118 
Mean Fixation Length (s) 0.671 0.752 23.0 0.0398 

Outside 
AOI 

Mean Fixation Count 1.625 7.975 48.00 0.9045 
Mean Fixation  Length (s) 0.095 0.164 16.50 0.3955 

Results from the Mann-Whitney-Wilcoxon test showed that within AOI, there 

was a statistically significant difference between experts and novices (z=104.50, and 

p=0.0118) in mean fixation count, similarly, there was statistically significant difference 

between experts and novices in mean fixation length (z=23.0, and p=0.0398). Outside 

AOI, there was no statistically significant difference in mean fixation count between 
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experts and novices (z=48.0, and p=0.9054), similarly, there was no statistically 

significant difference between experts and novices in mean fixation length (z=16.5, and 

p=0.3988).  

Further, to gain an understanding of operators’ mental processes as they carried 

out the excavation task, the gaze plots and scan path data obtained using eye-tracking 

were analyzed. Since what the human eye looks at usually reflects what goes on mentally, 

the gaze plot data was used to gauge operators’ mental processes. The gaze plots for 

expert and novice operators are shown in Figures 3.11 and 3.12 respectively. 

 

Figure 3.11: Gaze plot for expert operators 
 
From the gaze plot data, it was observed that experts’ attention were focused on the 

environment where the task was performed, this is demonstrated by the fact that, most 

gaze lines of expert operators were within the work area as seen in Figure 3.11. Novice 

operators on the other hand, were unable to fully focus or limit their eye movements to 
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the work area as demonstrated by numerous gaze lines that go off the screen as seen in 

Figure 3.12. 

 

Figure 3.12: Gaze plot for novice operators 

The off screen gaze lines are indication of novices attempting to look at their 

hands as they performed the excavation task with the phantom device. This may be due to 

the fact that, novices struggle to keep their eyes focused on the screen where the actual 

excavation task takes place, but rather keep their eyes from looking on the screen to 

looking at their hands. A situation similar to an experienced driver’s ability to accelerate 

and brake while driving vehicle without having to look at the accelerator or brake pedals, 

an involuntary action. On the other hand, an inexperienced driver might be tempted to 

look at the accelerator or brake pedal in order to move or stop a vehicle, a voluntary 

action.  
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In summary, the results show that operators had difficulty coordinating their 

hand-eye movement while operating the haptic-controlled excavator. Further, the results 

show that, novice operators had more difficulty coordinating their hand-eye movement 

than did expert operators. This may be due to the fact that experts were able to retrieve 

information from memory to help them accomplish the task while novices did not. 

3.7 Chapter Summary 

In order to design an effective, intuitive and easy to use interface, it is important 

that the complimentary sensing cues are integrated in a way that capitalizes on the 

strengths of each mode in order to overcome the weakness in each other. To design a 

robust and easy to use haptic-controlled excavator interface, it is important that issues of 

conflict and interference between the multiple sensing cues used in the design are well 

understood. To accomplish this, an empirical study was conducted to assess whether 

conflict exists between visual, haptic and auditory cues that are necessary for the smooth 

operation of the haptic control excavator interface.  

The goal of the empirical study was to identify if there were conflict between 

visual, haptic and auditory cues in the haptic interface, and whether these conflicts had an 

impact on the performance of the operator. Results from the empirical study show that 

conflicts do exist between the visual and haptic modalities in the haptic control excavator 

interface, and this interference does impact the operation of the haptic control excavator. 

From the results, performance of novice operators was impacted more by the interference 

between the sensory cues than the performance of expert operators. Finally, results from 

the empirical study show that novice operators had a harder time coordinating their hand-



71 
 

eye movement than expert operators. Overall, the results from the empirical study 

provided an understanding of the interference between the sensory modalities and their 

effects on operator performance. 
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CHAPTER 4 

HAPTICS IN FLUID POWER SYSTEMS 

4.1 Background 
 

Touch is the fundamental attribute of interpersonal communication that makes 

human-human interaction so natural, intuitive and rich in information. Whether a greeting 

handshake, an encouraging pat on the back, or a comforting hug, physical contact is a 

basic means through which people achieve a sense of connection, indicate intention, and 

express emotion (Brave & Dahley, 1997). Touch is even more valuable in close personal 

relationships, such as family and friends, where it is often used to express affection. 

Haptic, or touch is omnipresent of everyday human activity and provide continual and 

essential source of information during the performance of virtually any physical activity 

ranging from reading a book, where we almost subconsciously hold and turn the pages, to 

participating in a sport, where proficiency in haptic interaction is highly prized and honed 

to near perfection (Oakley et al., 2003). Further, haptic feedback is of critical importance 

whenever humans interact with objects in our environment, either by picking objects or 

interacting and manipulating objects in some way, humans instinctively rely on the 

inherent haptic cues and feedback received from these interactions to inform us about the 

properties of the object such as its texture, shape, weight, hardness, stiffness etc.  

Though haptic or touch sense is used by humans to interact with environment, 

compared to visual and auditory senses, understanding of human haptics, which includes 

the sensory and motor systems of the hand, is very limited. One of the reasons for this 

lack of understanding of haptics is the apparent difficulty to experimentally present 
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control haptic stimuli, mainly due to the bidirectional nature of haptics (haptics can 

simultaneously be perceived and act upon the environment).  

Haptic interfaces are devices which are composed of mechanical components in 

physical contact with the human body (hand) for the purpose of exchanging information 

with the human nervous system, therefore, when performing tasks with a haptic interface, 

the human user conveys desired motor actions by physically manipulating the interface, 

which, in turn, displays tactual sensory information to the user by appropriately 

stimulating his or her tactile and kinesthetic sensory systems (Biggs & Srinivasan, 2002; 

Srinivasan, 1995).   

Haptic interfaces according to Srinivasan (1995) can thus, be viewed as having 

two basic functions: first to measure the positions and contact forces (and time 

derivatives) of the user's hand and/or other body parts, and second, to display contact 

forces and positions and/or their spatial and temporal distributions to the user. He further 

argues that, among these position (kinematic) and contact force variables, the choice of 

which variables are considered motor action variables (i.e. inputs to the computer) and 

which ones are considered sensory display variables (i.e. inputs to the human) depends on 

the design of hardware and software, as well as the tasks the interface is designed for, and 

that most current force reflecting haptic interfaces sense position of their end-effector and 

display forces to the human user. In many respects, haptic interface device is analogous 

to mouse, except that the mouse is passive and cannot communicate with the user, while 

the haptic device can provide force feedback to the user through haptic rendering.  
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4.2 Biomechanics of Touch 
 

The psychophysics of touch or the study of how humans perceive touch is vital to 

the design of efficient and responsive haptic interfaces. When humans touch objects, 

tactile information is provided by the spatio-temporal distribution of the mechanical loads 

on the skin at the point of contact (Biggs & Srinivasan, 2002). Primarily, humans 

perceive touch through one of two perceptual systems, the cutaneous/ tactile system or 

the kinaesthetic system. While the cutaneous or tactile system, refers to information 

sensed through the medium of skin, and encompasses such disparate sensations as 

texture, temperature and pain, the kinaesthetic system, refers to stimuli originating from 

an intimate knowledge of the internal state of the body (Burdea & Brooks, 1996).  

The ability of the tactile sense to perceive vibrations enables humans to 

distinguish among a wide variety of textural information while kinaesthetic sense enables 

humans to be aware of the positions of the limbs and the forces exerted by the muscles 

(Oakley, 2003). The tactile and kinaesthetic senses yield distinct but complementary 

information such that the tactile sense provides information about the fine grained details 

of an object, such as its texture, while the kinaesthetic sense informs us about the larger 

scale details of an object, such as its shape, weight, hardness, stiffness etc (Oakley, 2003). 

The finger pad which is tactilely sensitive than any other part of the human body, can 

detect the location of a point to within 0.15mm, detect two points that are approximately 

2mm apart and detect a dot 2 microns high on a smooth surface  (Johnson & Phillips, 

1981).   
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The finger pads of humans are made up of complex sensory structure which 

contains receptors (proprioceptors) in both the skin and the underlining tissues (Bem, 

2011; Strauss, 1999). These receptors carry signals to the brain. Whenever humans touch 

an object, contact is made between the finger pads and the surface of the object. As the 

hand reaches the object, it adjusts to the shape of the object and generates a unique set of 

data points that describe joint angles, muscle length and tension. The information/data 

collected by the receptors is sent to the brain where it is processed allowing the brain to 

understand the subtle tactile details (smoothness, coarseness, hardness, etc) about the 

object. Similarly, changes in muscle tension are processed to provide kinesthetic 

information (size, shape, position, etc.) of the object. The tactile and/or kinesthetic 

feedback that the human receives is referred to as haptic force feedback. Haptic 

perception incorporates both touch stimuli from the skin and kinaesthetic stimuli from the 

position and movement of joints and muscles. Unlike visual and auditory modalities, 

haptic design is nearly always a multimodal design: haptic is generally used in 

conjunction with other sensory modalities, usually to reinforce same tasks or to handle 

different tasks performed at the same time. In a multimodal environment, where the 

user’s primary attention as well as visual resources and possibly hands are engaged in 

other tasks, touch cues presented to the skin can be used to notify the user of events and 

to create relatively unintrusive, ambient background awareness (Hayward & MacLean, 

2007; MacLean & Hayward, 2008). 
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4.3 Applications of Haptics 
 

It is not difficult to identify ways in which haptics could be applied to aid humans. 

With advances in computing technology and the need for better and intuitive interaction 

between humans and machines, a number of researchers and universities are 

experimenting with haptics. Among the numerous applications as outlined by Hayward et 

al. (2004) include:  

1) Force-reflecting input devices for use with graphical user interface augmentation, 

where haptic cues are provided to enhance existing graphical interfaces to 

increase efficiency, speed and reduce fatigue. For example, haptic cues have been 

integrated into visualization tasks to allow researchers to interact haptically with 

data and to present mathematical data to the visually impaired.  

2) In teleoperation or telerobotics, a human operator controls the movement of a 

remote robot by relying on haptic feedback received from the remote robot. This 

is usually accomplished through remote manipulation of some distant robotic 

device, referred to as slave, by the manipulation of a local robotic device, called 

master. In a master-slave teleroperation, user manipulations of the master device 

are reflected in the slave device, and user receives haptic feedback from the 

environment through the slave-master arrangement.  The goal is to provide a 

representation of the objects that the slave physically encounters in the remote 

environment to the human operator through the sense of touch. The result of this 

representation is that the operator feels as though he/she is located in the remote 

environment. Telerobotics and remote manipulations have been traditionally 
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applied to perform complex, human controlled, physical manipulations in 

environments that are inhospitable by humans such as an environment 

contaminated by radioactive material, deep under water environment or space 

(Cooper, 1998). Remote manipulation has also been widely used to perform 

dangerous activities such as bomb disposal as well as for search and rescue 

missions in disaster zones that may be impossible humans to operate in.  

3) The use of force feedback in interacting with virtual environments has proven 

very successful for applications in entertainment industry. Video game makers 

have adopted passive haptics to take advantage of vibrating joysticks, controllers 

and steering wheels to reinforce on-screen activity. The use of force feedback in 

video games provides users an increased sense of involvement in the simulated 

environment and heightened sense of realism, all of which lead to improved user 

experience. Available literature indeed, suggests that the presence of force 

feedback in video games results in increased feelings of immersion in the virtual 

world (Oakley, 2003).  

4) Vehicle operation and control room operation to alleviate visual load in stressful 

and fast-paced environments. 

5) Medical robotics allows surgeons to reach organs and tissues that will otherwise 

be difficult to reach with minimal invasion, and training through simulation. 

Traditionally, surgical procedures training require skilled physical tasks, in which 

practitioners rely heavily on their sense of touch (Burdea & Brooks, 1996), and 

involve long periods of apprenticeship during which substantial number of 
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operations are first observed and then performed. This process posses several 

challenges, first, it posses danger to patients, second, it may prolong operation 

time and increase cost, and third, there is a lack of suitable patients for training 

which may lead to omission or reduction of training in a particular procedure. 

Hence, virtual reality simulations with haptic feedback could be used to augment 

traditional training techniques by providing simulated procedures through which 

students can practice and learn without the need for real patients. However, in 

order for these simulations to provide valuable training, they must achieve realism 

which often entails simulating the feel of a variety of medical implements as they 

grasp or cut and also simulate the behavior of deformable organic surfaces 

(Oakley, 2003). 

6) Force feedback is used as a physical rehabilitation tool to train stroke patients, and 

improve working conditions for visually impaired. Most stroke survivors have a 

natural tendency to overuse their less-affected arm or leg in performing activities 

of daily living. To help overcome the overuse of the less-affected arm, and to 

increase the productive use of the impaired arm, active force feedback could be 

embedded into a meaningful driving simulation environment to create a robot-

assisted therapy device which then motivates patients to engage the impaired arm 

and aid rehabilitation (Johnson et al., 2005; Popescu et al., 1999). Another area 

where force feedback presents huge potential is in education and training such as 

surgical training, dangerous systems or systems with limited availability such as 

surgical patients could be simulated using haptics (Hayward et al., 2004). For 
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example, the mechanical engineering department at Rice University has adopted a 

haptic paddle interface for the teaching of dynamic systems course to 

undergraduate students. Preliminary assessment showed that using the haptic 

interface improved students learning of dynamic systems concepts when 

compared to traditional teaching methods (Bowen & Marcia, 2006). Other 

application areas include engineering such as computer aided design, arts and 

graphic design for creation of animation, editing sounds and images as well as 

manufacturing to assist assembly design and reduce prototyping. 

4.4 Haptic, Visual and Auditory Modalities in Time and Space 

In order to develop a multimodal human-machine interface for application in fluid 

power systems, it is important to understand the synergistic relationships between haptic, 

visual and auditory modalities and how they exist in time and space. Gaver (1989) 

developed a model of the existence of sound and vision in time and space shown in Table 

4.1. Gaver (1989) used this model to argue that humans use visual and auditory 

information synergistically in daily activities, not only to increase the bandwidth of 

available information, but also because the visual and auditory information complement 

each other. For example, during casual conversation, one may read the lips of the speaker 

in order to fill in missing words. Based on Gaver (1989), a two-dimensional synergistic 

framework for the existence of touch, vision and sound in time and space is proposed as 

seen in Figure 4.1. This framework expands Gaver’s original model to include 

touch/haptic modality. 
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Table 4.1: Synergistic modes of vision & sound in time and space [Courtesy of Gaver, 
       1989] 

 
TIME SPACE 

SOUND 

 

Sound exists in time 

(a) Good for conveying 

changing events 

(b) Available only for a 

limited time  

 

 

Sound exists over space 

(a) Receiver does not need to 

face source 

(b) A limited number of 

messages can be conveyed 

simultaneously  

VISION 

 

Visual objects exists over time 

(a) Good for display of static 

objects 

(b) Can be accessed 

repetitively over time  

 

Visual objects exists in space 

(a) Receiver must face source 

(b) Messages can be spatially 

distributed  

The goal is to understand the synergistic relationships between vision, sound and 

touch in time and space, and the impact of this synergy on multimodal human-machine 

interface. Only haptic, visual and auditory modalities are considered in this framework 

because the other two human senses (taste and smell) are currently not well 

developed/natured technologically to be used efficiently and effectively in human-

machine system interaction. The key features of the expanded framework (i.e. the 

existence of haptics in time and over space, the existence of sound in time and over 

space, and the existence of vision in space and over time) are described below. In general, 

the existence of sound and haptic in time and space share some similarities, while the 

existence of vision in time and space is not shared with any other modality. 



 

Figure 4.1: Synergistic framework of vision, sound and touch in time and space

4.4.1 Haptic Exist

The haptic modality shares many similarities with auditory 

existence in time and space. The haptic modality exists in time because like sound, it is 

inherently ephemeral in nature, i.e. touch is short

example, we can touch an object to feel whether it is hot o

rough, heavy or light; we can also touch to express emotions such as touching a friend to 

express affection or love etc. In general, humans

determine object hardness, weight, inertia, contact 

temperature. The experience of touch in nature is also brief in most cases that it could be 
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ynergistic framework of vision, sound and touch in time and space

.1 Haptic Exists in Time and Over Space. 

The haptic modality shares many similarities with auditory modality in its 

existence in time and space. The haptic modality exists in time because like sound, it is 

inherently ephemeral in nature, i.e. touch is short-lived with a beginning and an end. For 

example, we can touch an object to feel whether it is hot or cold, hard or soft, smooth or 

rough, heavy or light; we can also touch to express emotions such as touching a friend to 

tion or love etc. In general, humans depend on the sense of touch to 

determine object hardness, weight, inertia, contact geometry, smoothness, slippage and 

temperature. The experience of touch in nature is also brief in most cases that it could be 

 
ynergistic framework of vision, sound and touch in time and space 

modality in its 

existence in time and space. The haptic modality exists in time because like sound, it is 

lived with a beginning and an end. For 

r cold, hard or soft, smooth or 

rough, heavy or light; we can also touch to express emotions such as touching a friend to 

depend on the sense of touch to 

geometry, smoothness, slippage and 

temperature. The experience of touch in nature is also brief in most cases that it could be 
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experienced. As a result, the sense of touch is most suitable for conveying information 

about changing events to a single user, especially in situations where the target recipient 

is an individual in which case sound may be unsuitable because sound may alert others 

around too. For example, we may set our cell phones to vibrate to alert us of incoming 

calls when we don’t want distract the attention of others around us. When driving on the 

highway, if a driver gets distracted and steers towards the side of the road, the grooves on 

the sides of the road vibrates the vehicle and alerts the driver to steers back onto the road.  

Unlike vision, touch exists over space, i.e. a user does not need to face the source 

of the stimuli to experience the sense of touch. We can sense when a friend touches us on 

the back or shoulder, thus, like sound touch can convey information to users irrespective 

of their orientation, however, for the purpose of humans interacting with computers, the 

number of messages that could be presented to a user simultaneously through touch 

sensation may be limited. 

Another obvious advantage of the touch modality in human computer interaction 

is its   unparalleled ability to provide for simultaneous and bi-directional information 

exchange between a user and a machine/computer. Touch, thus, allows both users and 

computers to experience simultaneous exchange of information through the use of haptic 

devices. The result is that users ‘feel’ engaged in the performing task; however, an 

obvious disadvantage of the touch modality is that it has limited reach zone and usually 

used in conjunction with visual or auditory mode in the design of human computer 

interfaces. 
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4.4.2 Sound Exists in Time and Over Space. 
 
 The existence of sound in time and space very much resembles that of touch 

sense. It is short-lived, with a start and finish points that could be experienced. As a 

result, sound is often used to convey information about changing events (Gaver, 1989). 

Like the sense of touch, a user does not need to faces the source of the stimuli in order to 

hear a sound. Sound can be heard from all directions irrespective of the user’s 

orientation; therefore, sound is often used to convey warning alerts to users. For example, 

sound is often used in alarm systems though other modalities such as visual alerts may be 

used as redundant cues.  

Another reason that accounts for the effectiveness of auditory modality in 

attracting users’ attention is due to the fact that it is able to provide information beyond 

the reach of either visual or haptic modality. Sound has the unique ability to provide 

information from all the directions to users, as a result, it is possible for people to listen 

and hear actions even when they cannot see the source. For example, it is possible to hear 

noise coming from next office or hear revving of a car outside the home even if we 

cannot see them. 

4.4.3 Vision Exists in Space and Over Time. 

Unlike sound and touch, vision exists in space, i.e. the user must face the source 

of the stimuli in order to see. Thus, in order to perceive visual information from the 

environment, one has to look in the direction of the visual stimuli. It is not possible to 

perceive visual stimuli if the user is not looking in its direction (a user cannot see from 

behind). On the other hand, many visual items can be displayed simultaneously provided 
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they are located in the same direction. Vision is, therefore, suitable for displaying static 

information which does not change but remain stable over time. For example, a user can 

monitor a panel that has several gauges, or monitor two or three computer screens at the 

same time etc. Also, unlike sound or touch, visual stimuli can be accessed repeatedly 

over time. In the design of multimodal operator-excavator interface for haptic-controlled 

excavator interface, visual, auditory and haptic modalities will be used to complement 

each other and strengthen the weakness in each other to produce a synergistic blend that 

is more efficient and effective than could be achieved from each modality working alone.  

4.5 Haptic-Controlled Excavator Interface Study 

As described in the preceding session, haptics has great potential if properly 

integrated into the haptic control excavator interface. First, the incorporation of haptics 

into the user interface of excavator will provide a simultaneous exchange of information 

between the operator and the excavator, thus, enabling the operator to experience an 

“immersed” interaction in the environment in which the task is being performed. Thus, in 

combination with visual display, haptic interface can be used to train operators to better 

perform digging tasks that require hand-eye coordination, and provide valuable help to 

novice operators to improve their task performance. 

Further, since human cognitive processes and perception build largely upon 

multimodality, a proper combination of haptic, visual and auditory modalities will result 

in a flow of information on several parallel channels which has been shown to enhance 

effectiveness of interaction(Krapichler et al., 1999). By making use of the haptic-

controlled interface instead of the traditional levers and pedals, the excavator operators 
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will be freed from solving the inverse kinematic relationship, and result in a more 

efficient and effective task performance and shorten training time for novice operators 

(Kontz & Book, 2007).  

In traditional excavator operation, operators rely only on visual and auditory 

information to accomplish the task of excavation, therefore, by incorporating the haptic 

modality into the new design, a third modality ‘haptic feedback’ is introduced with the 

expectation that this extra modality will help reduce the load placed on the visual system 

and lead to improve operator performance. For example, haptic feedback may help alert 

operator to the presence of buried unusual/unknown obstacles or objects that may be 

encountered in the work environment, and thus, help the operator avoid them. It is not 

uncommon to find excavator operators accidentally causing damage to underground 

utility lines (water, gas, electric power lines etc) in construction sites primarily due to 

their inability to see the presence of these lines before hand. With haptic control interface, 

it is expected that, when the bucket of the excavator encounters such an obstacle, force 

feedback will be sent to the operator to alerts him/her to the presence of such an obstacle, 

and enable the operator to perform the task in much more safe and efficient manner. In 

addition, humans have a natural tendency to interact multimodally with the environment, 

therefore, a multimodal haptic-controlled interface will be more intuitive, easy to learn 

and use, and can reduce operator’s mental workload and stress level resulting in 

improved situation awareness, better judgment, and decision making.  

Although the haptic interface promises reduced mental workload and improved 

operator performance over the traditional lever/pedal interface, its use as a control 
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interface for the excavator has not been fully explored because the technology is still 

being developed. Currently, the concept of haptic-controlled excavator interface is under 

development at Georgia Institute of Technology. The haptic input device is PHANToM 

1.0 originally designed by Salisbury (1995) and subsequently commercialized by 

SensAble Technologies. In order that the potential benefits of haptics in the excavator 

interface be realized, it is important to understand the basic biomechanical, sensorimotor, 

and cognitive abilities of the human haptic system, in order to properly determine the 

design specifications of the hardware and software of haptic interfaces. The following 

section describes a pilot study and an empirical study that were conducted to determine 

the appropriate force feedback values necessary in the haptic control excavator interface 

for best operator performance.  

4.6 Pilot Study 

 The first challenge of the empirical study was to identify low, medium and high 

force feedback range values to be used in the empirical study. Since the author was not 

aware of any experiment that had grouped force feedback values used in a haptic control 

excavator into low, medium and high, a pilot study was conducted to group the force 

feedback values into low, medium and high.  

4.6.1 Procedure. 

To do this, the author first conducted several trials using different force feedback 

values to assess their impact on performance of the operator. In these initial trials, task 

completion time was used as the measure/metric for assessing operator performance. This 

metric was used due to time constraints and also due to the fact that it is the most 
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important metric in the assessment of operator performance. Based on several trials, the 

author’s knowledge of the haptic-controlled excavator, and consultation with subject 

matter experts (SMEs), 10 possible ranges of force feedback values were identified. This 

was done by changing the force feedback parameters in the MatLab code that ran the 

excavator simulation and monitoring the effect of the change on operator performance. 

The initial ranges of force feedback values identified along with “0” (no force feedback) 

are shown in Table 4.2 below. 

Table 4.2: Initial range of force feedback values identified by author 

Group 1 2 3 4 5 6 7 8 9 10 

Range 
0.01-
0.05 

0.05- 
0.1 

0.1-
0.2 

0.3-
0.5 

0.6-
0.7 

0.8-
0.9 

1.0-
1.2 

1.2-
1.5 

1.5-
1.7 1.8-2.0 

After the initial ranges of force feedback values have been identified, five 

volunteers were recruited to participate in a pilot study to investigate how these different 

force feedback values affected operator performance. To conduct the pilot study, each of 

the five volunteers were first briefed on the purpose of the study, and then asked to sign a 

consent form. Volunteers were seated in front of the computer that ran the excavator 

simulation, and a 10-minutes trial demo was performed to familiarize them with the 

haptic control excavator. After volunteers became familiar with how to manipulate the 

haptic control excavator, all their questions were answered by the experimenter and 

actual testing began. A schematic equipment setup is shown in Figure 3.7 in Chapter 3; 

the only difference being that unlike the previous study, Tobii® Eye Tracker was not used 

in the current study.  
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For each range of force feedback values, volunteers were asked to load one of the 

bins (bin #1/left side bin) located the haptic control excavator work area by using the 

stylus of the Phantom Premium 1.5 device to control and manipulate the simulated 

excavator. The order of loading was randomized among volunteers to eliminate learning 

effect. Only the left side bin (bin #1) was used for this pilot study because asking 

volunteers to load both bins (bin #1 and bin #2) would have doubled the amount of time 

required to complete the experiment. Further, a prior study conducted by the author, 

Osafo-Yeboah et al. (2010)  showed that, task completion time for bin #1 and bin # 2 

were highly correlated. Results obtained from the pilot study are discussed in the next 

Section. 

4.6.2 Results from Pilot Study. 

  The descriptive statistics obtained from the pilot study are summarized in Table 

4.3 below. From the descriptive statistics, it was observed that task completion time 

improved as the force feedback values were gradually increased. This improvement in 

task completion time continued to a point, and then began to decline as the force 

feedback values got higher.  

Table 4.3: Force feedback range with corresponding mean task completion                                        

       time and standard deviation 

Force 
Feedback 

 Range (N) 
0.01-
0.05 

0.06- 
0.1 

0.11-
0.2 

0.3-
0.5 

0.6-
0.7 

0.8-
1.0 

1.10-
1.2 

1.2-
1.5 

1.5-
1.7 

1.8-
2.0 

Mean Task 
Completion 

Time (s) 174.4 171.1 170.8 162.8 151.5 148.3 150.1 167.0 178.4 174.3 

Std.dev 46.04 35.12 50.89 51.54 46.88 46.60 52.71 52.12 62.22 59.43 
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Based on this result, a low, medium and high force feedback range values were 

classified by combining the force feedback range values with similar task completion 

times. The resulting classification is shown in Table 4.4.  

Table 4.4: Classification of force feedback range values 

Force Feedback Range (N) Classification Mean Task Completion time (s) 

0.0-0.2 low 172.1 
0.2-1.2 medium 153.178 
> 1.2 high 173.24 

Prior to using Analysis of Variance (ANOVA) to analyze results, a residual plot 

and normality check was performed on data set to ensure no obvious violation. The 

normality check on task completion time showed no violation of normality using 

Shapiro-Wilk’s test statistic (w =0.9276 and p=0.4267). Further, no obvious violation of 

independence and randomness was observed from the residual plot.  

An ANOVA was conducted to compare the mean task completion times for the 

low, medium and high force feedback range values. The ANOVA analysis at α = 0.05 

showed that there was a statistically significant difference in mean task completion time 

between low, medium and high force feedback classifications (F2, 9 = 10.21, and 

p=0.0084). Further, a post-hoc Turkey test showed that the mean task completion time 

for medium classification was different from that of low and high classifications, 

however, the mean task completion time for the low and high classifications were not 

different. This means that there is little benefit to operators when force feedback is low, 

however, as force feedback is increased; performance improves resulting in lower task 

completion time. At high force feedback, the forces in the haptic devise begin to interfere 
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with task, resulting in reduced task completion time. The mean task completion time for 

each classification is shown in Figure 4.2. These force feedback range values Low, 

Medium and High were subsequently used in the empirical study to investigate the range 

of force feedback that produced best operator performance. 

 

Figure 4.2: Mean task completion time for low, medium and high force feedback 

4.7 Methodology 

This section describes an empirical study conducted to identify the range of force 

feedback values that yield best operator performance.  

4.7.1 Research Questions. 

This experimental study seeks to answer the following research questions. 

(1)  Does different force feedback levels affect operator performance? 

(2) What is the optimal range of force feedback values that yield best operator 

performance? 
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4.7.2 Participants. 

 Twenty students ages 19 to 46 years (mean age = 25.95 and standard deviation 

=7.06) were recruited from the North Carolina Agricultural & Technical State University 

to participate in this empirical study. Participants were made up of 12 males and 8 

females and consisted of both graduate and undergraduate students. Each participant 

received a $20 gift certificate for their time.  

 As described in Section 3.5.2, the sample size for this study was determined by 

assuming a power, p of 0.8 for the test. The formulation p= (ES)*α*�� �⁄ , where p is the 

power, ES is the effect size, α is the significance level, n is the sample size, and σ is the 

standard deviation was used. From the pilot study, the effect size (ES) was estimated to 

be 2, and σ was estimated at 25.29 seconds (0.4215 minutes) from a previous study by 

the author (Osafo-Yeboah et al., 2010). With a significance level, α of 0.05, sample size 

was calculated to be 27. However, due to monetary and time constraints, only twenty 

participants were recruited for this study, and the power was calculated as 0.688. 

4.7.3 Experimental Design. 

 A within-subject design was used in this experiment. The independent variable 

investigated in this experiment was the range of force feedback with 4 levels (no force 

feedback, low force feedback, medium force feedback and high force feedback). The 

dependent variables are 

(i) task completion time 

(ii) number of scoops required to fill a bin 

(iii) number of scoops dropped outside of bin, and  
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(iv)  accuracy rate ( percentage of the mean number of scoops dropped outside of bin 

to the mean number of scoops required to fill a bin) 

To remove learning effect/carry-over effect, the order of the test was completely 

randomized. One half of the participants started the test with the no force feedback 

condition and finished with the high force feedback condition, while the other half started 

with the high force feedback condition and finished with the no force feedback condition.  

4.7.4 Equipment. 

The equipment for this empirical study was similar to the setup used in the study 

described in Chapter 3. It consisted of three Gateway computers and a Phantom Omni 5.3 

Haptic device. Computer #1 interfaced with the Phantom Omni and ran the excavator 

dynamics simulation, computer #2 ran the xPC-target simulation, and computer #3 ran 

the excavator simulation graphics. All three computers were connected via a local 

network. The Phantom Omni device sat next to the excavator simulation graphics 

computer (computer #3) on the right hand side of participants and had 6 degrees of 

freedom in total: up-down, left-right, front-back, and a rotating stylus with 3 degrees of 

freedom. The schematic layout of the equipment setup is shown in Figure 4.3.  

4.7.5 Procedure. 

Participants were first briefed on the purpose of the study upon arrival, and asked 

to read and sign a consent form. A pre-test questionnaire was administered to collect 

demographic information. A short demo of the simulation was given, after which 

participants were given about 15 minutes to try out and familiarize themselves with the 

simulator. 



 

Figure 4.3:

Participants were also briefed on how to complete NASA TLX workload 

assessment questionnaire, and they were asked to complete one workload assessment 

after completing each section. 

complete the workload assessment 

had become familiar with the simulator and its controls and all their questions had been 

answered, actual testing commenced. 

Participants were seated in front of excavator simulation graph

(computer #3). They were instructed to use

computer #3 to control and manipulate the haptic control excavator to fill up bin #1 (left 

bin) in the simulated work environment

while Figure 4.5 provides a screen shot of the simulated work environment showing the 

excavator boom/bucket assembly, trench area and the bin.
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Figure 4.3: Schematic representation of equipment setup

Participants were also briefed on how to complete NASA TLX workload 

assessment questionnaire, and they were asked to complete one workload assessment 

after completing each section. Questions about the simulator and controls

d assessment were answered by the experimenter. Once participants 

had become familiar with the simulator and its controls and all their questions had been 

answered, actual testing commenced.   

Participants were seated in front of excavator simulation graphics computer 

They were instructed to use the Phantom Omni device that sat

to control and manipulate the haptic control excavator to fill up bin #1 (left 

work environment. Figure 4.4 shows a participant taking the test, 

provides a screen shot of the simulated work environment showing the 

excavator boom/bucket assembly, trench area and the bin. 
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assessment questionnaire, and they were asked to complete one workload assessment 
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Each participant had to fill bin #1 under four different conditions (no force 

feedback, low force feedback, medium force feedback, and high force feedback). These 

range of force feedback values were determined from the pilot study described in Section 

4.5. The Tobii® Eye Tracker was used to record the screen while participants were 

performing the tasks. This enabled the experimenter to playback each participant’s 

recorded task in order to analyze and extract required data.  

Once participants completed the experiment, they were thanked, debriefed and 

asked to complete a post-test questionnaire. They were also asked for their comments 

about their experience using the haptic control excavator interface. Overall, the 

experiment took about one hour to complete. 

 

Figure 4.4: Participant taking the test 
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Figure 4.5: Screen shot of haptic control excavator interface 

4.7.6 Data Collection. 

The task completion time, number of scoops to fill a bin, and the number of drops 

per bin were recorded for all participants. Also, a computer based NASA TLX workload 

assessment questionnaire and a subjective questionnaire were used to gauge participants’ 

subjective assessment of workload under the different force feedback conditions. 

Appendix B shows task completion time, number of scoops per bin, and the number of 

drops per bin for each participant.  

4.8 Results and Discussions 

To compare the performance of operators under different force feedback 

conditions, task completion time, number of scoops to fill a bin and the number of drops 

per bin for all participants were compared. Tables 4.5a-c show the mean task completion 

time, mean number of scoops per bin, and mean number of drops per bin for each of the 

four force feedback conditions investigated.  
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Table 4.5a: Descriptive statistics for mean task completion time for each force  

         feedback condition 

No 

Feedback 

Low 

Feedback 

Med 

Feedback 

High 

Feedback 

Mean Task 
Completion Time (s) 213.96 170.53 150.53 159.59 

Std. dev (s) 
 

81.75 64.67 52.92 63.99 

Table 4.5b: Descriptive statistics for mean number of scoops/bin for each force  

         feedback condition 

  No Feedback 

Low 

Feedback 

Med 

Feedback High Feedback 

Mean # of 
Scoops/bin 7.45 6.3 6.2 6.3 

Std. Dev 
 

1.73 1.08 1.20 1.38 

Table 4.5c: Descriptive statistics for mean number of drops/bin for each force  

         feedback condition 

  No Feedback 

Low 

Feedback 

Med 

Feedback 

High 

Feedback 

Mean # of 
Drops/bin 0.25 0.2 0.1 0.15 
 
Std. Dev 0.44 0.52 0.31 0.37 

Task completion time measured how long it took participants to completely fill up 

a bin, number of scoops measured the number of times a participant scooped and dumped 

into the bin in order to fill the it up, and the number of drops measured how many times a 

participant dropped the content of the bucket outside of the bin. Using appropriate 

statistical techniques in SAS, the data obtained from the experiment was analyzed to help 

answer the research questions.  
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Prior to using any statistical technique, a normality check, test for independence 

and test for homogeneity of variance (HOV) were performed to ensure no violation. 

Normality testing using Shapiro Wilk’s test revealed violation of normality (w=0.9175, 

and p=0.0001) for task completion time, (w=0.828, and p=0.001) for number of scoops 

required to fill a bin, and (w=0.459, and p=0.0001) for number of drops outside of bin. 

Further, Levene’s test for homogeneity of variance showed (F (3, 76) =0.55, and 

p=0.6513); (F (3, 76) =2.38, and p=0.0760); and (F (3, 76) =1.87, and p=0.1412) for task 

completion time, number of scoops required to fill up a bin, and number of drops outside 

of bins respectively. Since the data failed model adequacy test, a non-parametric one-way 

ANOVA, the Kruskall-Wallis test was used in the analysis.  

4.8.1 Research Question 4. Impact of Force Feedback on Performance.  

This analysis investigated whether different range of force feedback values 

affected the performance of operators when using the haptic-controlled excavator 

interface. The results from the Kruskall-Wallis test showed a statistically significant 

difference in mean task completion time between the different levels of force feedback 

(H=9.94207, 3 d.f, and p=0.0242).  

Similarly, as seen from Tables 4.5a-c above, operator performance was affected 

by the level of force feedback. For example, in terms of task completion time, no force 

feedback, low force feedback, medium force feedback and high force feedback recorded 

mean task completion time of 213.96 seconds, 170.53 seconds, 150.53 seconds and 

159.59 seconds respectively with corresponding standard deviations of 81.74, 64.67, 

52.92 and 63.99 seconds respectively.  
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Mean task completion time of 213.96 seconds under no force feedback condition 

improved by about 20.30% under low force feedback condition to 170.53seconds. Under 

medium force feedback condition, the improvement in mean task completion time was 

29.65% (150.53 seconds vs. 213.96 seconds), while under high force feedback condition; 

the improvement in mean task completion time was 25.41% (159.59 seconds vs. 213.96 

seconds) as shown in Table 4.6. Further, there was an improvement of 11.72% in mean 

task completion time (170.53 vs. 150.53) seconds from low force feedback condition to 

medium force feedback condition, however, this improvement in mean task completion 

time diminished when high force feedback was used.  

Similarly, the mean number of scoops required to fill up a bin improved as force 

feedback increased from no force feedback to low force feedback (15.43%) and medium 

force feedback (16.78%). Figures 4.6-4.8 show mean task completion time, mean number 

of scoops required to fill a bin, and mean number of drops per bin along with their 

standard deviations.  

Table 4.6: Percentage improvements in operator performance measures 

 No 

Feedback 

Low 

Feedback 

Med 

Feedback 

High  

Feedback 

Mean Task Completion 
Time (s) 213.96 170.53 150.53 159.59 
% Improvement -       20.30% 29.65% 25.41% 
Mean # of Scoops/bin 7.45    6.3 6.2 6.3 
% Improvement -         15.33% 16.78% 15.33% 
Mean # of Drops/bin 0.25     0.2 0.1 0.15 
Mean Error Rate 5% 5% 3% 3% 

Further, a one-way non-parametric ANOVA (Kruskall-Wallis) test showed that, 

in terms of the mean number of scoops required to fill up a bin, there was a significant 
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difference between the different force feedback conditions (H=9.031, 3 d.f, and 

p=0.0288). However, a one-way non-parametric ANOVA (Kruskall-Wallis) test showed 

that, in terms of the mean number of drops per bin, there was no statistically significant 

difference between the different force feedback conditions (H=1.6549, 3 d.f, and 

p=0.6470).  

 

Figure 4.6: Mean task completion time for each force feedback condition 

 

Figure 4.7: Mean number of scoops for each force feedback condition 
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Figure 4.8: Mean Number of drops/bin for each force feedback condition  

To compare the means of the different force feedback conditions, a Mann-

Whitney-Wilcoxon test was used to compare each pair of the four levels of force 

feedback for task completion time and number of scoops to fill up a bin. The results of 

the Mann-Whitney-Wilcoxon comparison test are shown in Table 4.7 and 4.8. The results 

show that there is a statistically significant difference in task completion time between no 

force feedback and medium force force feedback (z=511.00, p=0.0097), and no force 

feedback and high force feedback (z=506.00, p=0.0137), however, there is no 

statistically significantly difference between no force feedback and low force feedback 

(z=473.50, p=0.0963).  

Lastly, the operator performance under force feedback was compared to 

performance under no force feedback. The results are summarized in Table 4.9. The 

results from the non-parametric Mann-Whitney-Wilcoxon test showed a statistically 
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significant difference in task completion time between the no force feedback and force 

feedback conditions (z=1012, and p=0.0248). 

Table 4.7: Mann-Whitney-Wilcoxon comparison test for mean task completion time 

 No Force 

Feedback 

Low Force 

Feedback 

Medium 

Force 

Feedback 

High Force 

Feedback 

 

No Force 

Feedback 

    

 

Low Force 

Feedback 

 

    

 

Medium Force 

Feedback 

 

    

High Force 

Feedback 

    

Table 4.8: Mann-Whitney-Wilcoxon comparison test for mean number of scoops 

 No Force 

Feedback 

Low Force 

Feedback 

Medium 

Force 

Feedback 

High Force 

Feedback 

 

No Force 

Feedback 

 

    

 

Low Force 

Feedback 

 

    

 

Medium Force 

Feedback 

 

    

High Force 

Feedback 

    

 

z=400.00  

z=438.00  z=443.50  

z=506.00  

(p=0.7985)

5  

(p=0.4614) (p=0.3775) 

(p =0.0137)  (p=0.0097)  

z=511.00  

(p=0.096)  

z=473.50  

z=403.00  

z=419.00  z=425.50  

z=494.21  

(p=0.8516)  

(p=0.8060)  (p=0.664)

(p=0.0251) (p=0.015)

z=500.50  

(p=0.0300) 

z=491.00  
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In terms of the number of scoops required to fill a bin, the results showed a 

statistically significant difference between no force feedback and force feedback 

conditions (z=1065, and p=0.0029), however, there was no significant difference in 

number of drops between force feedback and no force feedback conditions (z=877, and 

p=0.2446). The results show that, there was a 25.12% improvement in task completion 

time under force feedback compared to task completion time under no force feedback. 

Similarly, there was a 15.84% improvement in the number of scoops required to fill a bin 

when task was performed under force feedback compared to performance under no force 

feedback condition.  

Table 4.9: Performance under force feedback and no force feedback conditions 

No Force 

Feedback 

With Force 

Feedback % Improvement 

Mean Task Completion Time  213.96s 160.21s 25.12% 
Mean # of Scoops 7.45 6.27 15.84% 
Mean # of Drops 0.25 0.15 25% 
Mean Error Rate 5% 3% 2% 

In summary, it can be inferred from the analysis above that, the levels of force 

feedback had a significant effect on operator performance when using the haptic-

controlled excavator interface. The results showed a significant improvement of 20.30%, 

29.65% and 25.41% respectively for low force feedback, medium force feedback and 

high force feedback conditions compared to the no force feedback condition. 

4.8.2 Research Question 5. Levels of Force Feedback and Performance. 
 

This analysis investigates the range of force feedback values that produce the best 

operator performance. A summary of the performance measures for the three force 
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feedback conditions are shown in Table 4.10. Mean task completion times were 170.53s, 

150.53s and 159.59s respectively for low force feedback, medium force feedback and 

high force feedback, while the mean number of scoops required to fill up bins were 6.3, 

6.2 and 6.2 scoops respectively for low force feedback, medium force feedback and high 

force feedback. 

Finally, the mean error rates were 5%, 3% and 3% respectively for low force 

feedback, medium force feedback and high force feedback. A one-way non-parametric 

ANOVA (Kruskall-Wallis) test showed that, there was no statistically significant  

Table 4.10: Summary of performance measures for the 3 force feedback conditions 

  Low Feedback Med Feedback High Feedback 

Mean Task Completion 
Time (s) 170.53 150.53 159.59 

Mean # of Scoops/bin 6.3 6.2 6.3 

Mean # of Drops/bin 0.2 0.1 0.15 

Mean Error Rate  5%  3% 3% 

 difference (H=0.9834, 2 d.f, and p=0.6116) between the means of low force feedback, 

medium force feedback and high force feedback in terms of task completion time. 

Similarly, there was no statistically significant difference in mean number of scoops 

(H=0.9006, 2 d.f, and p=0.2093), and mean number of drops (H=0.8539, 2 d.f, and 

p=0.3158) between low force feedback, medium force feedback and high force feedback. 

Further, subjective questionnaire was used to solicit participants’ perception of 

the different force feedback levels investigated. Participants were asked to rate each force 

feedback levels on frustration, difficulty, comfort and fatigue. The following box plots 

describe the survey results. When asked to rate which of the force feedback level that was 
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most frustrating to manipulate and control, most participants identified high force 

feedback as the most frustrating to control. Low force feedback was rated as the least 

frustrating followed by medium force feedback and no force feedback levels respectively, 

shown in Figure 4.9. In terms of difficulty and ease of use, participants rated medium 

force feedback as the most easy to control, while high force feedback was rated as the 

most difficult as shown in the box plot in Figure 4.10. Finally, when participants were 

asked to rate force feedback levels in terms of comfort, medium force feedback was rated 

as the most comfortable, followed by low force feedback. High force feedback was rated 

the least comfortable followed by low force feedback (see Figure 4.11). Finally, a 

subjective workload assessment using NASA TLX was conducted to rate participants’ 

perception of workload associated with each of the different levels of force feedback 

investigated. 

 

Figure 4.9: Survey results describing participants’ level of frustration 
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Figure 4.10: Survey results describing level of task difficulty 

 

Figure 4.11: Survey results describing participants’ level of comfort 
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and mental workload, physical workload, temporal workload, performance, effort and 

total workload as the dependent variables. 
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in Figure 4.12. The workload scores for 

force feedback, and high force feedback were 

(standard deviation =22.54), 59.75 (s

deviation =15.19) respectively.

Figure 4.12: Subjective workload ratings for each force feedback type
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and mental workload, physical workload, temporal workload, performance, effort and 

total workload as the dependent variables. A plot of the means of the subscales of the 

as well as the overall workload for each force feedback 

. The workload scores for no force feedback, low force feedback, medium 

igh force feedback were 65.21 (standard deviation =42.3

(standard deviation =22.54), 59.75 (standard deviation =19.49), and 70.92 (standard 

=15.19) respectively. 

Subjective workload ratings for each force feedback type

ck of the total workload ratings showed no normality violations 

p=0.083); therefore, a one-way analysis of variance (ANOVA) was used 

to analyze the subjective ratings of total workload for the four force feedback conditions

ANOVA showed that, there was no statistically significant difference 

workload ratings for the four force feedback types (F (3, 80)

Workload Metric

No Force Feedback Low Force Feedback

Med. Force Feedback High Force Feedback

and mental workload, physical workload, temporal workload, performance, effort and 

A plot of the means of the subscales of the 

force feedback type is shown 

no force feedback, low force feedback, medium 

=42.39), 61.32 

, and 70.92 (standard 

 

Subjective workload ratings for each force feedback type 

showed no normality violations 

way analysis of variance (ANOVA) was used 

r the four force feedback conditions. 

there was no statistically significant difference 

(3, 80) = 1.32, and p 
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= 0.2743). In terms of the individual subscale measures, physical workload was rated the 

highest, followed by effort and frustration, while temporal workload was rated the least 

followed by performance across all force feedback types. This finding was not surprising 

as participants were under no time pressure to complete the task. The high ratings for 

physical workload, effort and frustration reflects the fact that participants had to put in 

physical effort in order control and manipulate the excavator with the haptic device and 

the frustration they felt due to the poor responsiveness of the haptic device.  

  Further, comparison of the subscale ratings showed that, medium force feedback 

had the highest total workload ratings on physical workload, mental workload and 

frustration. The author believes this may be attributed to the fact that the haptic device 

was more stable in the medium force feedback range than when other force feedback 

levels are used. This steadiness allowed participants to control and manipulate the haptic 

device with the least amount of effort, physical workload and mental workload. 

  In summary, the results showed that, performance under force feedback was 

statistically significant compared to performance under no force feedback in terms of task 

completion time (z=1012, and p=0.0248), and in terms of the number of scoops required 

to fill a bin (z=1065, and p=0.0029). Though medium force feedback range produced 

higher operator performance in terms of task completion time (150.53 versus 170.53 and 

159.59) seconds, as well as the number of scoops required to fill a bin (6.2 versus 6.3 and 

6.3), these differences were not statistically significant. However, results from the 

subjective questionnaire together with NASA TLX results showed that operators rated 

the medium force feedback range higher in terms of comfort, ease of use, and level of 
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frustration compared to the other levels of force feedback. NASA TLX results also show 

that the medium force feedback range received the best ratings in mental workload, 

physical workload and frustration compared to the other force feedback levels.  

4.9 Chapter Summary 

This chapter presented an empirical investigation to identify the level of force 

feedback appropriate for use in a haptic control excavator interface. The goal was first to 

conduct a pilot study to help classify force feedback range values and then conduct 

experiment to identify which of these force feedback levels produced the best operator 

performance. Based on the pilot study, four levels/ranges of force feedback were 

identified based on operator task completion times. These were:  

(i) No Force Feedback;  

(ii)   Low Force Feedback;  

(iii) Medium Force Feedback  

(iv) High Force Feedback. 

An empirical experiment using these force feedback range values identified medium 

force feedback as the force feedback range with best operator performance in terms of 

task completion time, number of scoops needed to fill up a bin as well as rate of 

accuracy. Further, the results show that the level of force feedback affects task 

performance, for example, task completion time under force feedback improves by about 

25.12% compared to task performance under no force feedback condition. Similarly, 

there is a 15.84% improvement in number of scoops needed to complete a bin under force 
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feedback compared to no force feedback condition. In addition, when using force 

feedback, the results showed that: 

(i) Task completion time under medium force feedback was 15% higher than task 

completion time under low force feedback, and 10% higher than task 

completion time under high force feedback. 

(ii) There was about 5% improvement in mean number of scoops under medium 

force feedback compared to both low and high medium force feedback 

conditions. 

(iii)  Drops rate improved by about 50% under medium force feedback condition 

compared to low force feedback and high force feedback conditions. 

(iv) Both NASA TLX assessment and subjective questionnaire rated medium 

force feedback condition higher in terms of operator preference to low force 

feedback and high force feedback conditions.  

(v) Medium force feedback provides a steadier control and, therefore, allowed 

operators to perform the excavation task more efficiently, compared to the low 

force feedback and high force feedback conditions. The low force feedback 

condition was not very useful to operators because, the feedback force in the 

haptic device was not discernible enough to assist operators, while the 

feedback force in high force feedback condition made the haptic device very 

unstable and jittery making it difficult to operate.  
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CHAPTER 5 

TATIVE MODELING OF HUMAN INTERACTION WITH 

HAPTIC-CONTROLLED EXCAVATOR 

Human actions are partly the results of internal information processing, and since 

this information flow is internal and invincible, special technologies and methodologies 

to allow inferences to be made and to postulate theories about information 

(Kantowitz & Sorkin, 1983). Modeling how human process information requires a 

conceptualization of the stages or events that represent the activities and events relate

the information. In human-machine interaction, the primary responsibility of the human 

operator is to extract information (visual, auditory, tactile, etc) for action selection and 

implementation. The basic structure of human multi-sensory information model

is shown in Figure 5.1 below. 

multi-sensory model structure [Courtesy of Deng & Ntuen, 1998]
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The increased complexity of sensory-based tasks such as excavation requires the 

human operator to process large volumes of information from multiple sources in order to 

accomplish the desired tasks. For example, in a typical excavation task, visual, auditory 

and tactile feedback information may be presented to the operator to enable him/her to 

accomplish the desired tasks. The feedback information may be presented through the use 

of a display, touch or auditory technology. Through this, the operator extracts cues which 

are then sent to the central nervous system for interpretation and necessary action.  

In modeling human-machine interaction, control theoretic models have been used 

because they provide an analytical approach that can describe the actions of humans in a 

human-machine system (Deng & Ntuen, 1998). Control theory deals with the 

mathematical analysis of dynamic systems and the mechanisms for achieving a desired 

state under changing internal and external conditions. Control theory modeling could be 

classified as either “open-loop” or “closed-loop” depending on whether feedback loop is 

present or otherwise. A system that has no feedback loop is referred to as open-loop 

while a system with a feedback loop between the input source and the output node is said 

to be a closed-loop system. In a closed-loop system as shown in Figure 5.2, output 

information is fed back to the human operator to help compensate dynamically for errors 

in the system. In using control theoretic approach to model human performance, the goal 

is to predict the human performance during task execution.  



 

Figure 5.
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Figure 5.2: Closed-looped control model 

ackground to Human Operator Modeling Using Control T
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machine systems. Most of the early work centered on the interaction of the human 

operator dynamics in aircraft control task for overall aircraft design and control. 

desire to analyze aircraft stability, handling qualities and manual control of

systems in a more analytic and mathematical context led early researchers to the concept 

of control theory, which provided an underlying quantitative theory on which a structured 

approach to the manual control of aircraft and weapons systems could be developed

of the pioneers who successfully applied control theory concepts to model human 

operator dynamic performance was Tustin (1944), who applied control theory concepts to 

model human control of a power driven gun (George, 2009). He introduced the concepts 

linear systems, describing function, and remnant as applied to the human 

operator performance modeling of the manual control task. Concepts which 
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design, human factor studies, simulator fidelity analysis and vehicle handling qualities 

research (George, 2009).  

Tustin developed describing function of the human operator in a gun tracking task 

with a delay term		−��
, a gain component K, and a lead term (1+
�s) in Laplace 

transformation as 

 H(s) = K	���(1+
�s)                                                                                       (5.1) 

where (1+
�s) represents operator’s tracking performance, 	��� represents the overall 

time delay in operator information processing and response, and K is the operator’s 

principle adjustment parameter.  

Since the time of Tustin, several researchers, Elkind (1956), Hess & Shipman 

(1965), Newell (1967) have spent considerable time and effort to characterize 

mathematically the dynamics of the human operators which have generated great amount 

of test and experimental data. These researchers looked at almost every possible control 

theory approach to model the human operator to different types of vehicles. Other than 

the aircraft, the automobile is the second most popular vehicle for the application of 

operator modeling that use control theory, as many of the fundamental concepts and 

models for the driver could be extended from pilot models.  

The most commonly used models that are used to characterize operator 

performance in manual tracking tasks are the Crossover Model (McRuer & Krendel, 

1959), Structural Isomorphic Model (McRuer & Krendel, 1959), Structural Pilot Model 

(Hess, 1965, 1985), Hosman’s Descriptive Pilot Model (Hosman & Stassen, 1999) and 

the Optimal Control Model (Kleinman et al.,1970). George (2009) in his dissertation 
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ides an extensive review of these models, a brief description of these models is 

The Crossover Model. 

Although the crossover model represents the simplest model of manual control 

task, in modeling human perception, cognition and motor pathways, it provides a 

surprisingly accurate result for simple manual control problems (George, 2009)

basic Crossover Model from Sheridan and Ferrell (1974) is shown in Figure 5.3.

asic compensatory closed loop human operator system model

In its simplest form, the model consists of a human operator describing function 

and a linear operator response function U(s) which is diluted by remnant input 

produce a total human operator of C(s), which then acts on the machine/plant with 

machine /plant dynamics Yc(s). The plant output, Y(s) is then fed back into the reference 

input and the resulting system error E(s) is received by the human operator describing 

function to adjust and minimize system error. Using experimental data and simulation 

Krendel, (1959) developed a relationship for the human operator 

describing function and the plant dynamics as  

f these models is 

Although the crossover model represents the simplest model of manual control 

d motor pathways, it provides a 

(George, 2009). The 

is shown in Figure 5.3. 
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In its simplest form, the model consists of a human operator describing function YH(s) 
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is received by the human operator describing 

Using experimental data and simulation 

developed a relationship for the human operator 
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  U(s) = YH(s)*E(s) + remnant                                                                             (5.2) 

 where YH(s) =  
�������(��(�����(��(�����(� (�����                                                                         (5.3) 

KH is the gain, 	����is the delay term, lead time is TL, lag time is TI and TN is the first 

order neuromuscular lag. Lead, TL and lag, TI are referred to as the operator equalization 

terms. McRuer & Krendel (1959) determined through their experiments that for a wide 

range of basic control models, the vehicle dynamics, YC(s) were either K, K/s or K/s
2.   

Although the Crossover Model was applicable in a wide range of basic control 

models, it is not applicable for higher order dynamics modeling especially outside 

crossover area as it only applies to single degree tracking tasks.  

5.1.2 Structural Isomorphic Model. 

The full Isomorphic Structural Model is a multiple-path-multiple-feedback model 

that expands on the crossover model to include all interactions of major perceptual, 

cognitive and motor pathways, while the reduced Structural Isomorphic Model is a 

simplified version of the full isomorphic model with many practical applications. It 

models the human operator using control theory transfer functions of human subsystem 

behaviors with interpretation of the human psycho-physiological outputs in control 

engineering terms, and corresponds more to the general model of human behavior with 

perceptual/sensory, central processing and neuromuscular responses (George, 2009). The 

Structural Isomorphic Model integrates multiple feedback loops for separate human 

subsystems to model the overall human operator. The human subsystems include the 

visual, vestibular, kinesthetic, central processing, proprioceptive, muscle manipulator, 

spindle/ tendon and nystagmus cross feed. To model total operator dynamics, the 
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Structural Isomorphic Model attempts to simulate the sensory, central and neuromuscular 

actuation systems as well as the interaction between the various subsystems, with the 

assumption that the subsystems add up to the total human dynamic model. This not only 

allows for total operator investigations, but also a study of psychophysical interactions 

between subsystems (George, 2009). The original model developed by McRuer (1980)       

provided a general model that could be adjusted to specific applications depending on the 

needs of the application such that specific subsystems/channels required for a particular 

task could be used while those not needed are ignored. McRuer’s Structural Isomorphic 

Model is shown in Figure 5.4 below.  

To model the visual system, the structural model uses fovial and peripheral vision 

as well as eye movement functionality and pathways that carry a continuous 

representation of display element to enrich field of view. The vestibular and kinesthetic 

system consists of two sensor types, the semi-circular canals and the otoliths, which are 

sensitive for angular and linear acceleration, respectively, and are used to model moving 

human-machine systems such as aircraft and automobiles. The neuromuscular system 

models proprioceptive feedback/stimulation that the human operator receives from the 

machine. The central processing system integrates and fuses the visual, vestibular, 

proprioceptive, and motor functions through cognitive processes and has proven difficult 

to model due to the complexities associated with modeling the various human sub-

systems. This is primarily due to the difficulties associated with determining the 

parameters of the Structural Isomorphic Model. 
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Figure 5.4: McRuer’s structural isomorphic model [Courtesy of George, 2009] 

5.1.3 Structural Pilot Model. 

Hess’s original pilot model was derived from a theory put forward by Smith 

(1976) which proposed that for a closed loop tracking task, the rate control is of 

fundamental importance to the human pilot, and that rate control is not only important for 

human-machine performance, but also for operator’s perceived vehicle handling 

qualities. A key point in Smith’s theory was that, any model of the human pilot dynamics 

that structurally corresponds to the human physiology in the tracking task will result in a 

sound natural and physical measure of pilot handling quality assessment (George, 2009). 

Smith’s human operator model is shown in Figure 5.5, where YH represents the structural 

pilot model, YC represents the control elements; m is the control output, C is the reference 
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input, and e is the pilot perception error. Given that the human transfer function YH is 

given by YH = 
�!�"#$��� , then the open loop transfer function for simple gain K, integrator 

(velocity control) K/s, and second order (acceleration) control K/s
2 are  

Yc= K, YHYC = 
�!��"����                                                                                       (5.4) 

YC = K/s, YHYC = 
�!��(�"�����                                                                                (5.5) 

YC = K/s
2
, YHYC = 

�!��%&'("(� )��*                                                                           (5.6) 

By using time delay components, and adjusting the gains, it is possible to derive the 

crossover model from Smith’s model.  

 

Figure 5.5: Smith’s human operator model [Courtesy of George, 2009] 
 

Hess’s structural pilot model is shown in Figure 5.6. In this model, Ke represents 

the gain of error e, Km is the effect factor for the output feedback m, Kc is the gain for 

input c, K1 and K2 are the gains for the proprioceptive feedback loops, T1 and T2 are the 
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time constants for Yf and Ym; τ0 and τ1 are the time delay constants for the error and input 

signals; +n is the damping ratio and ,n is the crossover frequency.  

 
Figure 5.6: Simplified structural pilot model [Courtesy of Rouse, 1995] 

5.1.4 Descriptive Pilot Model. 

Hosman’s descriptive pilot model is shown in Figure 5.7. In the descriptive pilot 

model, sensors represented by transfer functions, are placed in parallel to convert the 

stimuli, attitude, angular rate, and angular acceleration, to the sensory outputs Ri(,). 

Sensory information is integrated into a single output in the central nervous system 

(represented by the summing block in the model) where each of the modalities is 

weighted by a weighting factor W to define the contribution of that particular sensory 

input. A detailed and comprehensive review of the descriptive pilot model can be found 

in (Hosman & Stassen, 1999).  
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Figure 5.7: Hosman’s descriptive pilot model 

5.1.5 The Optimal Control Model. 

Kleinman & Baron (1970) proposed optimal control for the analysis of human-

machine systems, by incorporating the concepts and components of McRuer’s work (such 

as time delay, remnant concept and neuromotor model). To model human-machine 

system, Kleinman & Baron (1970) employed state space concepts, Linear Quadratic 

Gaussian optimal control theory and estimation theory to generate human operator 

models (George, 2009). The basic assumptions invoked in modeling human-machine 

system using the optimal control modeling are  

(1) That the human is well-motivated and behaves in an optimal manner subject 

to his inherent limitations and to the requirements of the control task 

(2) The human has an accurate internal model of the system dynamics and 

parameters affecting his control behavior 

(3) The human has the expertise required for the control task 



 

 These human characteristics are subject to operator

constraints such as time delays, system remnant and neuromuscular dynamics

can adapt to environmental changes by using natural sensors to receive and process 

information, and make real

human trait has made the application of control theory to human performance modeling 

attractive to many multimodal researchers 

Figure 5.8: Conceptual architecture for multi
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(1) The human behavior changes with respect to time and space.

attributes include

the stimuli, and the boundary of the human

(2) The human-system interaction is subject to some perturbations such as 

environmental noise during task execution.
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These human characteristics are subject to operator psychophysical limitations 

constraints such as time delays, system remnant and neuromuscular dynamics

can adapt to environmental changes by using natural sensors to receive and process 

information, and make real-time decisions based on their feedback mechanisms. This 

has made the application of control theory to human performance modeling 

attractive to many multimodal researchers (Deng, 1999).  

Conceptual architecture for multi-sensory information processing
[Courtesy of Deng, 1999] 

 
commonly observed and cited rationales as outlined by Deng (1999)

The human behavior changes with respect to time and space. The spatial 

attributes include such things as external and internal stimuli, the intensity of 

the stimuli, and the boundary of the human-system interaction.

system interaction is subject to some perturbations such as 

environmental noise during task execution. 

psychophysical limitations and 

constraints such as time delays, system remnant and neuromuscular dynamics. Humans 

can adapt to environmental changes by using natural sensors to receive and process 

ed on their feedback mechanisms. This 

has made the application of control theory to human performance modeling 

 

sensory information processing 

Deng (1999) are as follows 

The spatial 

such things as external and internal stimuli, the intensity of 

system interaction. 

system interaction is subject to some perturbations such as 
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(3) The human operator relies on his/her sensory information for feedback. 

Because the human behaves as a sub-optimal learner, he/she attempts to select 

an input-output information channel to improve performance. (Rouse, 1980).  

(4) The human is considered to be an intuitive statistician, a property that allows 

him to filter and smooth relevant information after data has been observed. 

The filtered data is then used for control decision making. 

      These properties of the human operator allow his task performance and behavior 

to be modeled using control theory (Fang, 1997). Further, humans as operators are known 

to behave in ways that tend to minimize their errors when performing control tasks by 

using feedback information from prior tasks. The classic human control model for 

manual control tasks developed by McRuer & Krendrel (1974)  for human pilots in 

pursuit compensatory tracking tasks is shown below. 

Yp = Kp 	��� '������ ���) - �(����.(���/ 0 �(��12���3& 24�*%�56�4�7��89                        (5.7) 

where Kp is Gain, 	���is pure information transmission time delay, and � is 

estimated to range from 0.06 to 0.1 sec., 	'������ ���) is series equalization, 

- �(����.(���/ is the  low frequency lag-lead, and 0 �(��12���3& 24�*%�56�4�7��89  

represents the dynamics of the neuromuscular actuation system of the arm with 

typical values 1 
;� = 10�	>��?  , @N = 16.5rad/sec, and AN = damping coefficient. 
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The principle idea here is that the human operator adapts a behavior characteristic to the 

environment and behaves like a “good servo” in the region of the crossover frequency 

resulting in a constant overall open-loop transfer function for the system (McRuer, 1967). 

The open-loop transfer function is then given by 

      G0(s ≈ jwc) = Gh(s)*Gp(s) = 
�$���$�

�                                                                           (5.8) 

 where Gh(s) is the transfer function modeling the human behavior as a linear feedback  

controller and Gp(s) is the system transfer function, Kc = speed control, BC �⁄  = heading 

control at low to moderate speeds, and 	��$�	is pure information transmission time 

delay. 

In humans, the central nervous system (CNS) is the central mechanism through 

which information processing takes place. The central nervous system performs 

information filtering and integration tasks based on motor commands it receives from 

neuromuscular system. Visual, auditory and tactile cues from the environment are 

encoded in different frames of reference than those in the coordinates of the central 

nervous system, and then sent to the extra-ocular muscle along a final common pathway 

(Deng, 1999). By combining the functions of the central nervous system and the 

neuromuscular system, McRuer (1974) was able to represent the human operator system 

by a transform function given by    

G(s) = 
����D!�(������(������(��� ��                                                                                       (5.9) 
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5.2 General Structure of the Optimal Control Models 

The general structure of the optimal control model developed by Kleinman et al., 

in 1971 is shown in Figure 5.9.  

 

Figure 5.9: Optimal control model of human operator 
 
The parameters of the optimal control model as outlined by Hess, 1976 are listed below. 

1. Time delay: A pure time delay is included in each of the control models. 

2. Neuromuscular dynamics: Each output of the neuromuscular system is modeled 

as a first-order lag. 

3. Observation and motor noise: Each variable which the human operator observes 

from his display is assumed to contained a human-induced additive noise related 

to the variance of the observed cue. 
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4. Rate perception: If a stimulus is perceived explicitly, then the human perceives 

the first order derivative of the sensory stimuli but not higher derivatives, and the 

displayed stimuli is also noise contaminated. 

5. Index of performance: the index of performance is subjectively selected by the 

human to minimize error rate. 

The optimal control model is generally represented by the state equation given by 

 ẋ(t) = Ax(t) + bu(t) + w(t),                                                                                (5.10) 

where, x(t) is an n-dimensional vector representing the random input, u(t) is a scalar 

representing the human input system, and w(t) is an n-dimensional vector representing 

random disturbance to the system. A is an nXn matrix and b is an nX1 matrix. It is 

assumed that the system is completely controllable, and that at the minimum, one system 

output can be described by the equation 

 Y (t) = cx(t) + du(t)                                                                                          (5.11) 

where Y(t) is system output, c is an mXm matrix and d is an mX1. In display applications, 

when viewing a display foveally or peripherally, the operator perceives an output that is 

both time-delayed and noise corrupted as observed by (Kleiman et al., 1971). Hence, 

output yp can be described by the equation 

 yp(t) = y(t-�) + vy(t-�)                                                                                       (5.12) 

Therefore, system output equation as described in equation (5.12) can be written as 

 yp(t) = cx(t-�) + du(t-�) + vy(t-�)                                                                      (5.13) 

  Equation (5.14) is referred to as the delayed noise version of equation (5.12). This 

is the signal that is processed by the operator in order to yield the command input uc(t). 
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Further, a motor noise given by um(t) representing the random error in control execution 

results due to operator’s poor knowledge of the system input u(t) is added to uc(t). Hence, 

 u(t) = uc(t) + um(t)                                                                                             (5.14) 

Further, (Deng, 1999) proposed an optimal control model for multimodal 

information processing formulated as a multiple input-multiple output (MIMO) model. 

The general block diagram of Deng’s optimal control model is shown in Figure 5.10 

below. As in other human operator control models, Deng’s model assume that 

multimodal information processing tasks are governed by the optimal control model 

equation given in (5.15) as  

Ẋ(t) = AX(t) + Bu(t) + Dw(t)                                                                                       (5.15) 

 

Figure 5.10: Optimal control system for multimodal system 
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5.3 Conceptual Model of Human-Excavator Interface 

In order to model and simulate the processes involved when a human operator 

interacts and manipulates an excavator in order to accomplish an excavation task, it is 

necessary to conceptualize the processes that describe the interaction. The operator uses 

the central processing system (long term memory and short term memory) to process 

information/cues received from the environment and then decides on the necessary action 

to take. The operator’s response is then executed in the form of commands given to the 

excavator, e.g. moving or rotating the haptic device in order to accomplish a given 

required task. A conceptual framework for the interaction between the operator and the 

excavator is shown in Figure 5.11.  

The model has the following interacting components:  (i) the human sensory 

system, (ii) the human output modalities, (iii) excavator input channels, (iv) excavator 

output modalities, (v) the central processing system, (vi) the excavator processing system 

as well as the visual, haptic, auditory and force feedback cues.  

(i) Human sensory system: The human sensory/input system includes human senses 

that the operator uses to receive feedback/information from the excavator and the 

environment such as the eyes, ears and the skin (palm) for sensing vibrations. 

Force feedback that operator receives allows a simultaneous exchange of 

information between operator and excavator and results in a more immersed 

interaction between operator and machine. 
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Figure 5.11: Conceptual model of operator-excavator interaction 

(ii) Human output modalities: The human output modalities include operator 

actions such as touch, gaze (e.g. stylus rotation) that are used by the operator to 

control and manipulate the excavator. The output modalities (operator actions) are 

influenced by environmental cues as well as force feedback from excavator. For 

example, an operator may decide to stop scooping task if force feedback alerts 

him to the presence of obstacles/foreign materials. Thus, there is an interaction 

between the actions that the operator takes and environmental as well as feedback 

cues. 

(iii)The excavator input channels: The excavator input channel includes the levers, 

stylus etc. through which the excavator receives commands from the user. These 
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commands are then processed through the built-in mechanical/electrical 

architecture to produce mechanical actions such as bucket and boom movements.  

(iv) The excavator output modalities: The excavator output modalities provide 

feedback from the excavator to the operator in the form of force feedback 

(vibration), audio or visual feedback. Common audio feedback that operator 

receives from excavator include audio alerts/alarms or engine revving sound 

though it may require some level of experience to fully utilize sound from revving 

engine. 

(v) Excavator processing system includes the built-in mechanical and electrical 

architecture/algorithms that allows excavator to convert operator commands (e.g. 

stylus rotation) into mechanical actions (e.g. bucket open/close) and be able to 

generate force feedback to operator. 

(vi) The central processing system of the operator include resources from both short 

term memory and long term memory that the operator uses to perceive cues from 

the environment, process the perceived cues and make decisions by issuing 

commands to the excavator (through stylus manipulation) in order to accomplish 

the required task. It must be noted that the interaction between these components 

takes place simultaneously rather than sequentially, though components are 

treated separately for the purpose of graphical display.  

5.4 Developing a Model for Human-Excavator Interaction 

The human-excavator system is a complex system with high degree of freedom, 

however, for ease of modeling, and to reduce the level of complexity into a manageable 



 

level, the subsystems of the human operator are assumed to be linear. To determine a 

model for the human-excavator interaction, transfer funct

component of the human subsystem

graphic representation of the human

Figure 5.12.  

The goal of this modeling work is primarily concerned with how the excavator 

operator combines and integrates visual, auditory and haptic cues/signals from the task 

environment to improve his/her performance on the task. Therefore, 

dynamics of the haptic device and the excavator along with

essential to how the operator interacts with the excavator in general, 

this model. 

Figure 5.12: Components of 
 

To develop a quantitative model for the 

excavator, the human-excavator system is assumed to be a closed

For ease of modeling and implementation, the model is assumed to be a simple closed

loop system as shown in Figure 5.
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level, the subsystems of the human operator are assumed to be linear. To determine a 

excavator interaction, transfer function for each dynamic 

of the human subsystem is obtained as measurable input-output relation. 

graphic representation of the human-excavator interaction and feedback loop is shown in 

The goal of this modeling work is primarily concerned with how the excavator 

operator combines and integrates visual, auditory and haptic cues/signals from the task 

to improve his/her performance on the task. Therefore, even though 

ic device and the excavator along with their complexities

essential to how the operator interacts with the excavator in general, it is not the focus of 

omponents of haptic-controlled human-excavator model

To develop a quantitative model for the interaction between operator and the 

excavator system is assumed to be a closed-loop control system. 

For ease of modeling and implementation, the model is assumed to be a simple closed

shown in Figure 5.13. In this model, the human operator receives 
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loop control system. 

For ease of modeling and implementation, the model is assumed to be a simple closed-
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signals/cues, R(s) (made up of visual, auditory and haptic cues) 

and ρh respectively from the environment

central processing system, sends signals to neuromuscular system which then acts on the 

haptic manipulator device with input 

by manipulation noise w(t),
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(made up of visual, auditory and haptic cues) with probabilities 

from the environment. The operator processes this information in the 

l processing system, sends signals to neuromuscular system which then acts on the 

haptic manipulator device with input U(o). The haptic manipulator device is also acted on 

w(t), and sends output U(o)s to the excavator system dynamics.

The excavator performs the excavation task and the output Y(s) is corrupted by display 

The displayed output Yd(s) is fed back to the operator, and it is subtracted 

R(s), which results in error term e(t) that the operator 

to improve his/her performance on the task. In this model, the excavator dynamics 

is represented by the state equations Y(s), and inputs include human control 
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The operator processes this information in the 
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to the excavator system dynamics. 
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Manipulation noise 

in perceptual resolution, image processing, situational awareness and attention switching.

A structural representation of the human operator 

shown in Figure 5.14. As shown in the model

auditory cues or tactile cues. 

of the system rather the system states, it is impo

difference between the observed versus the system state. Depending on the direction of 

deviations between the observed and system state, feedback could be positive or negative. 

The visual, auditory and haptic cues

respectively are integrated based on how a particular cue contributes to overall 

perception. When the cues arrive at the central nervous system (CNS), they are first 

processed by the memory filter

Figure 5.14: Structural model of human operator in multi
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Manipulation noise w(t) and display noise Vy(t) accounts for operator limitations 

in perceptual resolution, image processing, situational awareness and attention switching.

A structural representation of the human operator in multi-sensory excavat

. As shown in the model, signals can come from visual cues, 

auditory cues or tactile cues. Since the human operator only directly observes the output 

of the system rather the system states, it is important to include errors to account for the 

difference between the observed versus the system state. Depending on the direction of 

deviations between the observed and system state, feedback could be positive or negative. 

The visual, auditory and haptic cues with known transfer functions Yv, Ya

respectively are integrated based on how a particular cue contributes to overall 

perception. When the cues arrive at the central nervous system (CNS), they are first 

processed by the memory filter with a known transfer function.   

tructural model of human operator in multi-sensory excavation task

accounts for operator limitations 

in perceptual resolution, image processing, situational awareness and attention switching. 

sensory excavation task is 

, signals can come from visual cues, 

Since the human operator only directly observes the output 

rtant to include errors to account for the 

difference between the observed versus the system state. Depending on the direction of 

deviations between the observed and system state, feedback could be positive or negative. 

a and Yh 

respectively are integrated based on how a particular cue contributes to overall 

perception. When the cues arrive at the central nervous system (CNS), they are first 

 

sensory excavation task 
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Five transfer function blocks are identified for the model. These are the signal 

input transfer function, the central nervous system transfer function, the neuromuscular 

dynamics transfer function, the force generator transfer function and the task dynamics 

transfer function. Each of the subsystems in the structural model is described below.  

5.4.1 Signal/Cue Input and Perception. 

Visual cues are the primary source of information for human operator in most 

control tasks. This information could be derived from displayed instruments, out-the-

window view or a combination of both. An important feature of the visual pathway is its 

ability to provide a continuous display of signal to the operator by virtue of parallel fovea 

and parafovea pathways even when the eye is scanning, visual cues can be represented by 

the transfer function 

  EF = 	��G�                                                                                                     (5.16)  

with time delay τv values between 140ms-300ms (McRuer,1980) . Also, auditory cues are 

considered as processing time delays in control model similar to visual cues (Hess, 1995)  

with transfer function 

             	EH = 	��I�                                                                                     (5.17) 

with time delay τa=210ms often used to approximate the auditory information processing 

time delay. Further, according to McRuer (1980), tactile cues can be perceived as linear 

acceleration with transfer function 

             Eℎ = ���K�
L.N���                                                                         (5.18) 

with time delay τh = 0.1s. Using the structural model of the human operator in multi-

sensory information processing task shown in Figure 5.14, a transfer function for sensory 
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cue integration can be developed for the human operator in a task that requires visual, 

auditory and haptic information (McRuer, 1980; Deng, 1999).  Given that Yv, Ya and Yh 

are the transfer functions of visual, auditory and haptic cues, and ρv, ρa and ρh are the 

probabilities of occurrence respectively for visual, auditory and haptic cues, the transfer 

function of sensory cues integration G(CUES) is given by 

 GCUES (S) = ρvYv+ ρaYa + ρhYh                                                                                                                  (5.19) 

where ρv is probability of visual cues, ρa is probability of auditory cues, ρh is the 

probability of haptic cues, and ρv + ρa + ρh = 1. 

5.4.2 Central Nervous System (CNS). 

The central nervous system is the primary source for human information 

processing, and integration and sensory fusion of visual cues, vestibular, proprioceptive 

and motor functions all occur here. It performs information integration and fusion based 

on motor commands and neuromuscular inputs. Visual, auditory and haptic sensory data 

are all initially encoded in various frames of reference that are different from the 

coordinate system by the central nervous system. It is then sent to the extra-ocular 

muscles along a final common pathway, where it is combined with other current 

information to direct the eye to the target location (Deng, 1999). Several mathematical 

models Hess (1985) have been developed to quantify the processes that occur in the 

central nervous system. The central nervous system processes have been modeled as 

integral effect, proportional effect, rate effect, and acceleration effect. Proportional and 

rate effects are modeled as time delays while acceleration and lag effects are modeled as 

latency differences. Equations 5.20a-d represents the integral, proportional, rate, 
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acceleration effects respectively. For this work, the proportional model of the central 

nervous system will be used. 

G(s) = 
� 

� ���                                                                                                   (5.20a) 

G(s) = KP                                                                                                        (5.20b) 

G(s) = BO�	��P�                                                                                          (5.20c) 

G(s) = BQ�5	��R�                                                                                 (5.20d) 

5.4.3 Neuromuscular Dynamics System. 

 The central nervous system (brain and spinal cord) and neuromuscular system 

(nerves and muscles) form the nervous system. Muscular activities that are associated 

with tracking and manipulation are characterized by changes in the length and tension of 

the antagonist/agonist muscles pairs that drive these muscles. Muscles are mostly made 

out of “muscle fibers” called myofibrils whose chemical structure allows muscles to 

contract. To enable bones to move in multiple directions, antagonistic pairs of muscles 

are often present in the human body. When one of these muscles (the flexor) contracts, 

tension on the bone increases, and allow rotation in one direction. When the other muscle 

(the extensor) contracts, tension on the bone is released, enabling motion in the other 

direction. Changes in tension and rate of tension can be sensed by the Golgi tendon 

organs while changes in length and rate of change of length are sensed by the muscular 

spindles.  

By assuming that the human-excavator system is operating on random-appearing 

signals with stationary statistics, the neuromuscular system could be assumed to be 
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fluctuating about an operating point corresponding to some steady-state or average 

tension. Thus, muscle contractions which allow rotation in only one direction can be 

assumed as either positive or negative fluctuations of the agonist/antagonist pairs about a 

steady tension bias value and permits neuromuscular dynamics to be greatly simplified 

and modeled (McRuer, 1980). As shown in Figure 5.13, highly simplified model of the 

neuromuscular dynamics of the human operator is given by the transfer function in 

Equation 5.21. 

GN(s) = 
�S��DS�

��S7���T' 2
4S)%�5' 6S

4S)7��U
                                                                  (5.21) 

where Kn =2, Tn = 0.2, ,n =20, and +n = 0.825 

Operator’s neuromuscular response is modeled as a first order lag and represents the 

physical limitation on the operator’s overall working ability, as well as the subjective 

constraints associated with a good/bad task execution. For example, a good operator will 

make few erratic and rapid control inputs.  

5.4.4 Force Generator. 

The force generator accounts for the intentional force that is generated as a result 

of the operator’s reaction  to sensory feedback which forms an external feedback loop 

with the human operator in the loop (Deng, 1999). When performing a tracking or 

manipulation task, the human operator internally generates models appropriate for the 

task after receiving visual, auditory or tactile feedback cues. It is, therefore, important to 

include the operator’s internal mechanism necessary to generate the trajectory of 

operator’s reaction to both visual and tactile feedback when developing a model of the 
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human operator (Deng & Ntuen, 1998). However, for the human-excavator model under 

consideration, the force generator is assumed to be a constant and equal to one (1). 

5.4.5 Task Dynamics. 

The task dynamics in the model represents the performance of the excavator. 

Operator control behavior changes drastically when higher order controlled system is 

encountered. For example, with simple gain K or integrator K/s, the operator output is 

smooth and uniform; however, with higher order gains such as K/s2, the operator’s output 

is discrete and impulsive. Again, for ease of modeling, the task dynamics is assumed to 

be K/s or K/s2. 

5.5 The Haptic-Controlled Human-Excavator Model 

Recall Figure 5.12, given this as the closed-loop system of operator in excavation 

task, and applying the general transfer function formula for a closed-loop system,  

Forward loop transfer function = G(OL) = a                                                                 (5.22) 

Closed loop transfer function =G(CL) =	 V��V                                                                 (5.23) 

However, the forward transfer function of the operator-excavator model is given by   

  a = GCUES(S)*GN(S)*GF(S)*GCN(S)*GT(S)                                                      (5.24) 

where GCUES(S) = the transfer function representing cue/signal processing 

          GN(S) = the transfer function of the neuromuscular system 

         GF(S)   = the transfer function of the force generator system 

         GCN(S) = the transfer function of the central nervous system 

         GT(S) = the transfer function of the task dynamics system  
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From Equation (5.19), the transfer function for integration of visual, auditory and haptic 

cues can be represented by the equation below, 

GCUES(S) = ρvYv+ ρaYa + ρhYh  = ρv	��G� +ρa		��I�+ρh& 	−�ℎ�0.6�+1*                 (5.25) 

where  

   Ya = 		��I�,  

  Yv = 	��G�, 

   Yh = 
���K�L.N��� and 

  ρv + ρa + ρh = 1 

The neuromuscular dynamics has a transfer function given by Equation 5.21 (McRuer, 

1980) as 

 GN(S) = 
�S��DS�

(�S7���T' 24S)%�5'6S4S)7��U                                                        (5.26) 

The transfer function for the central nervous system for this model is assumed to be 

proportional given by equation 5.20b (Hess, 1985). 

 GCN(S) = Kp                                                                                        (5.27) 

The transfer function for the task dynamics is model as a second order gain Hess (1985) 

given by    

            GT(S) = 1/s2                                                                                                      (5.28) 

Finally the force generator for this model GF(S) is assumed to be 1. 

 GF(S)   = 1                                                                                                        (5.29) 
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Substituting Equations 5.25 through 5.29 into Equation 5.24, gives the forward loop 

transfer function of the haptic-controlled excavator model as  

GH(OL)= 0Tρv	−�F� 	+ ρa		−�H� + ρh & 	−�ℎ�0.6�+1*U ∗ B�	−
��
(
�^+1�3',̂�)2+2&+�,�*^+18 ∗ B` ∗ 1�2 ∗ 19                                                                             

             (5.30) 

Using the general closed-loop transfer function formulation, and substituting Equation 

5.30 into Equation 5.23, gives the closed-loop transfer function of the haptic-controlled 

excavator model GH(LC) as 

GH(CL)=

aTρv���G�	+ρa	���I��ρh&	−�ℎ�0.6�+1*U∗ B�	−
��
(
�^+1�3',̂�)2+2&+�,�*^+18∗B`∗ 1�2∗1b

c��aTρv���G�	+ρa	���I��ρh&	−�ℎ�0.6�+1*U∗ B�	−
��(
�^+1�3',̂�)2+2&+�,�*^+18∗B`∗ 1�2∗1bd
                                         

             (5.31) 

Simplifying equation 5.31 gives  

GH(CL) = 
���S�e���S�

(�f����g'� hS? )%�5ijS hS? k���l�%��m�S�e���S�                   (5.32) 

where KH = ρv	��G� +ρa		��I�+ρh& 	−�ℎ�0.6�+1* 

 



 

5.6 Traditional Human-

In the traditional human

auditory cues in order to perform a given excavation task. The instantaneous exchange of 

information between operator and machine that is associated with haptic modality is 

absent. A representation of the traditional human

5.15. In this model, the operator manipulates the excavator by using levers, pedals

joysticks as the input control 

Figure 5.

 The structural representation of the traditional human

in Figure 5.16. The visual and auditory cues with known transfer functions 

integrated based on how a particular cue contributes to overall perception. 

information source with visual and auditory cues

(1999), the transfer function of the cue integration 

 GCUES (S) = noYv+

where Yv= v	��G� is the transfer
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-Excavator Model 

In the traditional human-excavator model, the operator relies mainly on visual and 

auditory cues in order to perform a given excavation task. The instantaneous exchange of 

information between operator and machine that is associated with haptic modality is 

absent. A representation of the traditional human-excavator model is shown in Figure 

In this model, the operator manipulates the excavator by using levers, pedals

control devices. 

Figure 5.15: Traditional human-excavator model 

The structural representation of the traditional human-excavator model is shown 

The visual and auditory cues with known transfer functions 

integrated based on how a particular cue contributes to overall perception. 

information source with visual and auditory cues, McRuer (1980), Hess (1985), Deng 

the transfer function of the cue integration is given by  

+ nVYa = ρp ∗ 	−�F� + ρq ∗ 	−�H�	                                
is the transfer function of the visual cue, 

excavator model, the operator relies mainly on visual and 

auditory cues in order to perform a given excavation task. The instantaneous exchange of 

information between operator and machine that is associated with haptic modality is 

excavator model is shown in Figure 

In this model, the operator manipulates the excavator by using levers, pedals, 

 

or model is shown 

The visual and auditory cues with known transfer functions Yv, and Ya are 

integrated based on how a particular cue contributes to overall perception. For a bimodal 

, McRuer (1980), Hess (1985), Deng 

                               (5.33) 



 

  Ya= v	��I� is the tra

occurrence of visual cue, ρρp + ρq = 1 

The structural model of the bimodal visual

5.16 below.  

Figure 5.16: Structural representation of traditional human

Given the forward-loop transfer function of the operator

GT (OL) = a, and the closed loop transfer function is

 GT (OL) = a = GCUES

where GCUES(S) = the transfer function of cues present in 

          GN(S) = the transfer function of the neuromuscular system

          GF(S)   = the transfer function of the force generator system

         GCN(S) = the transfer function of the central nervous system

         GT(S) = the transfer func

141 

is the transfer function of auditory cue, ρv is the probability of 

occurrence of visual cue, ρa is the probability of occurrence of auditory cues, and 

ural model of the bimodal visual-auditory traditional excavator 

Structural representation of traditional human-excavator model

loop transfer function of the operator-excavator system

, and the closed loop transfer function is given by GT (CL) = a/1+a, 

CUES(S)*GN(S)*GF(S)*GCN(S)*GT(S)                                        

the transfer function of cues present in environment 

= the transfer function of the neuromuscular system 

= the transfer function of the force generator system 

= the transfer function of the central nervous system 

transfer function of the task dynamics system, then substituting

v is the probability of 

a is the probability of occurrence of auditory cues, and  

auditory traditional excavator is shown Figure 

 

excavator model 

excavator system, a, is given by 

/1+a,  

                                       (5.34) 

substituting  
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GCUES(S) =ρp ∗ 	−�F� + ρq ∗ 	−�H�, and Equations (5.26)-(5.29) into Equation (5.34) 

gives the forward loop transfer function of the traditional excavator model 

 GT(OL) = 0rρv ∗	−�F� +ρa ∗ 	−�H�s ∗ B�	−
��
(
�^+1�3',̂�)2+2&+�,�*^+18 ∗ B` ∗ 1�2 ∗ 19                                    

                         (5.35) 

Therefore, the closed loop transfer function of the traditional excavator model is given by 

GT(CL) =

arρv∗���G�+ρa∗���I�s∗ (S!�DS�
(DS2t1�3' 24S)%t%&6S4S*2t18∗�e∗ 1�%∗�b

u��arρv∗���G�+ρa∗���I�s∗ (S!�DS�
(DS2t1�3' 24S)%t%&6S4S*2t18∗�e∗ 1�%∗�bv

       (5.36) 

 Simplifying Equation (5.36) gives 

 GT(CL)  = 
�D�S�e���S�

(�f7���g'7 hS? )%�5ijS hS? k7��l7%��D�S�e���S�          (5.37) 

where KT = wρp ∗ 	−�F� + ρq ∗ 	−�H�x 
5.7 Model Representation in Matlab 

In order to investigate and compare the characteristics of the haptic-controlled 

excavator model with the traditional excavator model, both were implemented and 

analyzed as control systems using Matlab simulation software. A major characteristic of a 

control system is its stability which can be determined from the Bode plots and Nyquist 

diagrams. A control system is said to be stable if its impulse response approaches zero (0) 

as time approaches infinity or if every bounded input produces a bounded output. In other 
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words, a control system is said to be stable if its natural response decays to zero with 

time. By implementing in Matlab, Bode plots and Nyquist diagrams of both systems were 

obtained and compared.  A major characteristic of Matlab is that it allows different 

characteristics of the models such as Bode plots and Nyquist diagrams of the two systems 

to be compared.  

In order to implement the models, the two model equations were modified, 

simplified and represented as polynomial functions. First, the forward-loop function of 

the haptic-controlled human-excavator model Equation 5.32 was simplified and modified 

into  

 GH(OL) = 
���S�e��DS�

'�S h%? )�y�'%DS64 � 14%)�z�'�S�%6S4S )�{��%                                          (5.38) 

where KH = ρv	−�F� 	+ ρa		−�H� + ρh & 	−�ℎ�0.6�+1* 

and closed-loop transfer function GH(CL) is given by                                                    

 GH(CL) =
'�S h%? )�y�'%DS64 � 14%)�z�'�S�%6S4S )�{��%'�S h%? )�y�'%DS64 � 14%)�z�'�S�%6S4S )�{��%�L�����S�e��DS�            (5.39) 

The Bode plot and Nyquist diagram of the model is shown in Figure 5.17 and Figure 5.18 

respectively. In both figures, the blue line represents the open-loop transfer function; the 

green line represents the closed-loop transfer function, and the circled red-cross 

represents the -1 position on the real axis of the Nyquist plot. 
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Figure 5.17: Bode plot of haptic-controlled human-excavator model 

 

Figure 5.18: Nyquist plot for the haptic-controlled human-excavator model 
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Similarly, for the traditional human-excavator model, the modified and simplified 

forward loop transfer function GT(OL)  is 

 GT(OL)  = 
�D�S�e��DS�

'�S h%? )�y�'%DS64 � 14%)�z�'�S�%6S4S )�{��                                            (5.40) 

and the closed loop transfer function GT(CL)  is given by  

 GT(CL) = 
'�S h%? )�y�'%DS64 � 14%)�z�'�S�%6S4S )�{��%'�S h%? )�y�'%DS64 � 14%)�z�'�S�%6S4S )�{��%�L���D�S�e��DS�             (5.41) 

The Bode plot and Nyquist diagram of the model is shown in Figure 5.19 and Figure 5.20 

respectively. In these figures, red line represents the open-loop transfer function, while 

the black line represents the closed-loop transfer function. The red-cross represents the -1 

position on the real axis of the Nyquist plot. 

 

Figure 5.19: Bode plot of traditional human-excavator model 
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Figure 5.20: Nyquist plot for traditional human-excavator model 

From Figure 5.17, the Bode plot for the closed-loop transfer function of the 

haptic-controlled excavator model is observed to lie below zero indicating stability. The 

corresponding Nyquist diagram show that the Nyquist plot does not encircle (-1, 0) 

position as indicated by the ‘red-cross’ in Figure 5.18, also an indication that the haptic-

controlled excavator model is stable. Also, from Figure 5.19, the Bode plot for the 

closed-loop transfer function of the traditional excavator model is observed to lie below 

zero indicating that the model is stable, and the corresponding Nyquist plot of the 

traditional excavator model does not encircle -1 (indicated by ‘red-cross’), a further 

indication of the model’s stability as shown in Figure 5.20. Results from model 

implementation shown in Figures 5.17-5.20, therefore, suggest that both haptic-controlled 

excavator and the traditional excavator models are stable systems.   
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To compare the stability of haptic-controlled excavator model and the traditional 

excavator model, both models were plotted on a single bode diagram as shown in Figure 

5.21. From the plot, it can be observed that both the haptic-controlled excavator model 

and the traditional excavator models are stable, as the Bode plots of their closed-loop 

transfer plots lie below zero. However, the haptic-controlled excavator model appears 

more stable than the traditional excavator model because the Bode plot of the closed-loop 

haptic-controlled excavator model (green line) lie below the Bode plot for the closed-loop 

traditional excavator model (red line) form plot. 

 

Figure 5.21: Bode plot for haptic-controlled and traditional excavator models 

The Bode plots for the open-loop transfer functions of the haptic-controlled 

excavator model and the traditional excavator model are represented by ‘black’ and 
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stable, the haptic-controlled excavator model is more stable. This means that operators 

will be able to use the haptic-controlled excavator more efficiently and effectively than 

the traditional excavator model.  This may probably be due to that fact that the additional 

communication channel provides additional resources that helps the operator in executing 

the excavation task. 

 Further, the Bode plots of visual only, auditory only and haptic only sensory 

information processing within the haptic-controlled excavator interface were plotted and 

compared, Figure 5.22. Blue represents auditory only, pink represents haptic only, red 

represents visual only processing. 

 

Figure 5.22: Bode plot for visual, auditory and haptic sensory processing 
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visual-haptic, and auditory-haptic multisensory information processing within the domain 

of haptic-controlled excavator interface was developed and compared as shown in Figure 

5.23. Visual-auditory, visual-haptic and auditory-haptic multisensory information 

processing are represented by green, blue and yellow lines respectively. Again, it can be 

observed from the plot that visual-haptic multisensory processing had the highest gain 

and phase shift, followed by visual-auditory processing, while auditory-haptic processing 

gained the least in magnitude and phase shift. 

 

Figure 5.23: Bode plot for visual-auditory, visual-haptic, and auditory-haptic 

multisensory processing 

Finally, visual-auditory, visual-haptic and auditory-haptic multisensory 

information processing were compared to visual-auditory-haptic multisensory processing 

as shown in Figure 5.24. As expected, the visual-auditory-haptic multisensory processing 

(represented by black line) had the highest gain and phase angle shift. 
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Figure 5.24: Bode plot for visual-auditory, visual-haptic, auditory-haptic, and 

visual-auditory-haptic multisensory processing 

5.8 Chapter Summary 

 This chapter provided a brief overview of control theory and its application in 

modeling human information processing. A conceptual model of human-excavator 

interaction was developed, and a representation of the components of the human-

excavator system was presented. Structural model of the human-excavator system was 

proposed, a transfer function for each component of the structural model was developed 

for both haptic-controlled excavator and traditional excavator models. The haptic-

controlled excavator model and the traditional excavator model were implemented in 

Matlab and compared using Bode plots and Nyquist diagrams. The results showed that, 

both haptic-controlled and traditional excavator models are stable systems, however, the 

haptic-controlled excavator model was more stable and, therefore, easier to control by the 

operator.  
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CHAPTER 6 

USING USER-CENTERED DESIGN TO IMPROVE HAPTIC-

CONTROLLED EXCAVATOR INTERFACE 
 

One of common problems found in many fluid power system designs is that, 

engineers often are concerned with the utility of the system (i.e. whether the functionality 

of the system in principle can do what it is supposed to do) and, therefore, pay little 

attention to its usability (i.e. how well users can use the system to accomplish a given 

task). Often times, this lead to systems with high functionality but not as user friendly. As 

a result, operators have to be trained for long periods of time, in order to learn how to use 

these machines. Further, operators sometimes have to operate machines in an 

uncomfortable posture/position for long periods, which sometimes lead to cumulative 

trauma disorders (CTDs). The cost associated with long operator training and medical 

treatment for cumulative trauma disorders among other costs can have a major financial 

impact on the bottom-line of companies that use fluid power systems. 

 One design strategy that is often employed in designing systems that are user 

friendly is the User-Centered Design (UCD) approach which broadly describes design 

process in which end-users influence how a design takes shape. The concept of user-

centered design was first coined by Norman and Draper (1986) to emphasize the 

importance of having a clear understanding of the users but without necessarily involving 

them actively in the design (Gulliksen et al., 2003). 

With this design approach, the active involvement of users is sought in order to 

understand clearly user needs and requirements.  This is done iteratively throughout the 
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design and evaluation process usually involving a multi-disciplinary team working 

together to achieve the desired results. The goal is to design interface for fluid power 

systems that are intuitive, efficient, easy to learn and use, and help operators accomplish 

tasks while at the same time avoiding mistakes.  

It is not uncommon to come across everyday products/objects with poor and 

unintuitive designs and often leave users frustrated and unable to perform simple tasks. 

Most people have had the experience where they bought a product or gadget, took it 

home and found themselves frustrated and unable to use the product because the design is 

unfriendly, a problem often compounded by instructions that are difficult to understand. 

Similarly, it has been documented that excavator operators often need to be trained for 

long periods of time, in order to ensure that, they learn the inverse kinematic relationships 

between the lever displacement and bucket trajectory (Frankel, 2004).  

User-centered design is an approach to design that seeks to develop products that 

are more usable and support users do their tasks by involving users throughout the design 

process. The user-centered design is loosely defined as a method for designing ease of 

use into the total user experience, through improved usability of product/system by 

placing the needs of the intended end users at the core of product design (Norman & 

Draper, 1986). The term user-centered design originated in Norman’s research laboratory 

at the University of California San Diego (UCSD) in the 1980s and became widely used 

after he co-authored the book ‘User-Centered System Design: New Perspectives on 

Human-Computer Interaction’ with Draper in 1986 (Abras et al., 2004). User-centered 

design emphasizes that the purpose of the design is to serve the user, not to use the 
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specific technology, nor to be an elegant piece of programming, but rather, the needs of 

users should dominate design of the interface, and the needs of the interface should 

dominate the design of the rest of the system (Norman & Draper, 1986).  

User-centered design focuses on the requirements of  potential users from the 

product’s inception, and checks at each step of the design phase with users to ensure ease 

of use as well as user satisfaction with the final interface/product design (Norman, 1988). 

The user-centered design process puts user needs at the center of the design, involves 

users throughout the all phases of the design. User-centered design has been proven to be 

an effective design strategy that ensures ease of use, safety, and effectiveness of the 

interface. 

 The International Standards Organization (ISO) established standards in 1999, 

ISO 13407, provides guidance on user-centered design activities throughout the design 

and life-cycle of computer-based interactive systems in order to manage the design 

process, and describe user-centered design from four different perspectives: namely the 

rationale, principles, planning and activities of the user-centered design (Jokela et al., 

2003).   

Rationale: The rationale for using user-centered design in developing the haptic-

controlled excavator interface, as has been mention elsewhere, is to ensure intuitive, safe, 

effective, easy to use interface that is responsive to operator commands and, therefore, 

improves user satisfaction and productivity while reducing costs associated with operator 

training.  



 

Principles: The four general princi

understanding of user and task requirements, appropriately allocating resource functions 

between users and technology, continuous iteration of design improvements, and working 

with multi-disciplinary team to ensu

ISO 13407 for user-centered design was followed. 

Planning: Activities of work were planned and conducted so that results and 

recommendations could be used to modify the haptic

Activities: These activities describe the core of the user

shows a representation of activities in each phase of the user

Figure 6.1:
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The four general principles (active involvement of users and clear 

understanding of user and task requirements, appropriately allocating resource functions 

between users and technology, continuous iteration of design improvements, and working 

disciplinary team to ensure input from diverse background ) established by 

centered design was followed.  

: Activities of work were planned and conducted so that results and 

recommendations could be used to modify the haptic-controlled excavator interfac

: These activities describe the core of the user-centered design effort

shows a representation of activities in each phase of the user-centered design process.

 

Figure 6.1: Activities of user-centered design approach

ples (active involvement of users and clear 

understanding of user and task requirements, appropriately allocating resource functions 

between users and technology, continuous iteration of design improvements, and working 

re input from diverse background ) established by 

: Activities of work were planned and conducted so that results and 

controlled excavator interface. 

centered design effort. Figure 6.1 

centered design process. 

 

centered design approach 



155 
 

Typically, the user-centered design process is an iterative process, and  involves a 

usability evaluation of the current interface/product (or in the case of a new product, 

evaluation of similar products), to identify user requirements and needs through  

interviews and observations, conducting task analysis, setting up usability goals, 

developing prototypes, and conducting usability testing (Vredenburg et al., 2001).  

The following describes how each phase of the user-centered design process for the 

haptic-controlled excavator interface was achieved.  

1. First, a user profile is developed to provide information to designers about whom 

they designing the product for. This is accomplished by conducting interviews 

and surveys with potential users to identify their characteristics, needs and 

requirements.  

2. Second, in order to design products that meet the task needs of the operators, task 

analysis was carried out to gain good understanding of the nature of excavation 

tasks and how they are performed. A hierarchical task analysis was conducted to 

understand common excavation tasks through direct observation and interviews. 

From the results of the task analysis, usability goals for the haptic-controlled 

excavator interface were determined.  

3. Upon completion of task analysis, a usability testing was conducted using the 

haptic-controlled excavator interface currently under construction at the Georgia 

Institute of Technology, in Atlanta. The goal was to help identify potential 

usability problems in the interface and provide recommendations for 

improvement. Further, two empirical investigations were conducted. First, to 
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assess conflicts in the haptic-controlled excavator interface and the impact such 

conflicts might have on the performance of operators, and second, to determine 

the range of force feedback values that produce best operator performance. 

4. Results and recommendations from the design phases above were used to modify 

and improve the current haptic-controlled excavator interface.   

Using the user-centered design process described above ensures that it is easy for 

operators to determine what actions are possible while interacting with the haptic-

controlled excavator. It ensures operators can easily evaluate the current state of the 

system, and help them follow the natural mapping between their intentions and actions, 

and between actions and resulting effect, as well as between visible information and the 

interpretation of the system state (Abras et al., 2004; Norman, 1988). The following 

sections describe each of the user-centered design process.     

6.1 User Profile 

To help construct user profile for excavator operators and to identify user 

characteristics, needs and requirements, six excavator operators were interviewed. A 

summary of user profile and characteristics described next. First, all participants 

interviewed were males between the ages of 37 to 54 years old, with average age of about 

50 years. The number of years of excavator operating experience ranged from a minimum 

of 6 years experience to 27 years. When asked about their computer literacy, four 

participants said they considered themselves moderate to expert computer users, while 

two considered themselves as novices in terms of computer use. Majority said they use 

computer to surf the internet (Facebook, Craigslist), send and receive emails, play online 
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games. When asked if they would learn new computer skill, majority said they would, 

however, there was one participant who said he was not enthusiastic about learning new 

computer skill, though he added that if he needed to learn a new computer skill in order 

to perform his job, then he was willing to learn the new skill.  

All participants normally worked 8 hours/day for 5 days/week, all said they 

worked for extra hours/day and extra days/ week if their services were needed by their 

employer. When asked to describe the tasks that they perform in a typical day on the job, 

participants described machine operation (digging, scooping, loading, unloading, 

leveling, filling, piling, moving), as the primary tasks, together with other tasks such as 

preventive maintenance, problem diagnosis, ability to read grade plans and use grade 

stakes to measure the amount of earth removed, follow both spoken and hand signals.  

When participants were asked if they experienced fatigue while performing 

excavation tasks, five said they sometimes experienced fatigue and attributed such fatigue 

to cabin vibration, long periods of sitting, and the sometimes unfriendly work 

environment in which excavation task is performed. One participant, however, said he 

rarely experienced any fatigue and attributed this to his physical and mental strength, 

which according to him, helps him withstand the sometimes harsh environment in which 

he works. When probed specifically about shoulder and wrist fatigue, most participants 

said they experienced wrist fatigue from time to time due to twist and turn motions of the 

wrist when operating the excavator, however, only two participants felt shoulder fatigue 

was an issue to them, while the rest did not see shoulder fatigue as big problem. 
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6.2 Task Analysis 

Task analysis generally describes the physical tasks and cognitive plans required 

of a user to accomplish a particular goal. It includes a detailed description of both manual 

and mental activities, task durations and frequency, task allocation and complexity, 

environmental conditions, and any other unique factors involved in or required for user to 

perform a given task (Hone & Stanton, 2007; Kirwan & Ainsworth, 1992; Stanton, 

2006). It is the fundamental methodology used in the assessment and reduction of human 

error. Task analysis is used to analyze tasks that users of a system are expected to 

perform in order to eliminate the preconditions that give rise to errors before they occur, 

and can be used to aid in the design stage of a new system, the modification of an 

existing system, or as part of an audit of an existing system (Embrey, 2000).  

Several task analysis methods exist; however only hierarchical task analysis and 

cognitive task analysis are discussed in this work. A hierarchical task analysis is a 

systematic method of describing how work is organized in order to meet the overall 

objective of job and involves identifying in a top down fashion the overall goal of the 

task, then the various sub-tasks and the conditions under which they should be carried out 

to achieve that goal (Embrey, 2000).  

A hierarchical task analysis is a graphical representation of the decomposition of 

the high level tasks into constituent subtasks, operations, and actions used to accomplish 

them. Hierarchical task analysis can be described by goals, tasks and actions. The goals 

define what a user wishes to achieve, a task represent one of the activities that must be 

performed in order to achieve the goal, and an action is a simple task which has no 
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further structure or the lowest level of decomposition (Hone & Stanton, 2007). Cognitive 

task analysis on the other hand, models the internal representation and processing that 

users follow to perform a task. Cognitive task analysis is a methods use set of tools, 

techniques and protocols to identify the cognitive skills and mental demands needed to 

perform a task efficiently (Prasanna, Yang, & King, 2009).  

For this work, a hierarchical task analysis was used to help decompose excavator 

operation tasks and identify the crucial task necessary for successful completion of 

excavation task. 

6.2.1 Task Analysis of Haptic-Controlled Excavator Interface. 

The goal of conducting task analysis is to understand the critical tasks that 

excavator operators perform, so that operator-excavator interface is designed to assist 

operators to carry out these tasks. Task analysis is the breakdown of how a task is 

accomplished, including a detailed description of both manual and mental activities, task 

and element durations, task frequency, task allocation, task complexity, environmental 

conditions, necessary clothing and equipment, and any other unique factors involved in or 

required for one or more people to perform a given task. A task analysis breaks the 

excavation tasks into goals, tasks and actions needed to complete them successfully. The 

goals are what the operator wishes to achieve, tasks are the activities which must be 

performed in order to achieve those goals, and actions are the simple tasks (with no 

further structure) that must be performed to accomplish a task. A high level flow chart of 

the excavation task is shown in Figure 6.2. 
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Figure 6.2: Flow chart of excavation task 
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In order to understand the tasks that excavator operators perform, excavator 

operators were observed as they performed their tasks and then interviewed to understand 

the operators’ mental processes as they control and manipulate excavators. A hierarchical 

task analysis was conducted to break the excavation task into goals, sub goals, tasks and 

actions (simple operations) required to accomplish a given excavation task. The 

hierarchical task analysis result for the excavation task is shown in Figure 6.3.  

Also, the Goals, Operators, Methods and Selection (GOMS) method of task 

analysis (Card, Moran, & Newell, 1980) was used to decompose the excavation tasks into 

component operations for thorough understanding of task steps (Appendix C). Table 6.1 

shows typical tasks performed in an excavation task and their relative importance. From 

the task analysis, operator interviews and observations, the following tasks were 

identified as the most critical tasks necessary for successful completion of a given 

excavation task. 

1) Move boom/bucket 

2) Scoop/dig dirt 

3) Position boom/bucket 

4) Open/close bucket 

5) Load/unload bucket content 
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Table 6.1: Tasks in typical excavation task and their relative importance 

Task Importance 

Start excavator High 
Calibrate haptic device Medium 

Move to excavator to  work location Low 

Position boom & bucket High 

Scoop/dig dirt High 

Move bucket to damp site High 

Unload content of bucket High 

Move to storage  Medium 

Shut down Medium 

6.3 Usability Goals  

These usability goals were developed to help focus the attention and resources of 

the haptic-controlled excavator interface design team on user and issues important to 

them. This allowed the design team to focus on the ‘voice of users’ throughout all stages 

by continuously evaluating and testing through user interaction. Both qualitative and 

quantitative usability goals were developed for the haptic-controlled excavator interface. 

Qualitative usability goals are summarized in Table 6.2, and identify the critical tasks and 

design limitations that must be improved to increase the effectiveness and user 

friendliness of the haptic-controlled excavator interface. The qualitative usability goals 

were derived from the task analysis as well as the empirical investigations discussed in 

Chapter 3 and Chapter 4. Further, quantitative usability goals were developed to help 

define ease of use as well as ease of learning of the haptic-controlled excavator interface. 

The quantitative usability goals were formulated in terms of performance goals based on 

the two empirical studies conducted as part of this dissertation. 
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Table 6.2: Qualitative usability goals for haptic-controlled excavator  

Task/design area Usability goal 

Move boom/bucket The sensitivity of the haptic device 
(stylus) must be improved to ensure 
steadiness and firmness of stylus in 
order to ensure smooth, controlled 
movement of the boom/bucket 
assembly. 

Scoop/dig dirt Bucket open/close cycle must 
correspond appropriately with 
clockwise/anticlockwise stylus rotation 
to give operator control while 
manipulating the excavator. The 
current design is too sensitive and 
unsteady making operator control very 
difficult. This can lead to errors. 

Position boom & bucket Excavator boom/bucket assembly must 
correspond well with stylus and pen of 
haptic device to ensure complete 
controllability and ease of use  

Open/close bucket Opening and closing bucket must 
accurately correspond to clockwise and 
anticlockwise rotation of stylus. This 
will stabilize the controls and make the 
haptic-controlled excavator easy to 
learn and use and help reduce errors 

Load and unload Provide steadiness and firmness to 
stylus to ensure complete operator 
control by adding proportional weight 
to content of bucket.  
Provide weight to ensure sense of 
realness  

Adequate workspace around haptic device Providing adequate workspace around 
the haptic device to ensure 
uninterrupted operator control and safe 
operation of excavator and prevent 
errors 

Haptic force feedback Provide appropriate force feedback to 
allow steadier and effective control by 
operator as identified in the empirical 
study 
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Table 6.2: Qualitative usability goals for haptic-controlled excavator (cont) 

Task/design area Usability goal 

Adequate view of workspace   Provide adequate and unrestricted view 
of workspace for operators to see 
clearly at all times. A bucket mounted 
camera that sends instant video of work 
space to operator on a monitor mounted 
in the cabin.   

Placement of haptic device Position haptic device so that it is 
easily reachable by operators. This will 
improve hand-eye coordination as the 
tendency for operators to look at the 
haptic device will be minimized. 

Provision of proper arm rest Provide a properly designed and well 
placed arm rest to provide support to 
operator while using the haptic device. 
This reduce arm and shoulder fatigue. 

Bucket weight Develop and incorporate realistic 
weight of bucket content to give 
operators a sense of weightiness or 
gravity to provide steadiness to system 

Scooping sound Incorporate a realistic scooping sound 
into interface to provide feedback 
whenever the bucket scoops/digs to 
help prevent errors 

The performance goals quantified actual user performances while using the 

haptic-controlled excavator interface to perform excavation task. In setting the 

quantitative usability goals, task completion time, the number of scoops required to fill a 

bin, the number of drops outside of the bin, as well as the error rate were used as the 

performance measures. The quantitative usability goals for the haptic-controlled 

excavator interface are summarized in Figure 6.4. Performance measures for experts and 

novices were compared. Since this is a new design, performance of novices is used as the 

current or minimum standard upon which all future iterations will be based. Expert 
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performance is the target performance for the design, while future performance is the 

performance that the design seeks to achieve in the long term after several iterations.  

 

Figure 6.4: Quantitative usability goals for haptic-controlled excavator interface 

6.4 Usability Testing 

To evaluate the haptic-controlled excavator interface, usability testing was 

conducted using the prototype haptic-controlled excavator simulator under construction 

at the Georgia Institute Technology in Atlanta, GA. The purpose of this usability 

evaluation was to investigate the actions and behaviors of operators as they interact with 

a haptic-controlled excavator, and identify potential usability problems that may confront 

operators.  

Usability of a system/interface refers to the ease with which users are able to use 

the interface to accomplish the required task (or a measure of a product's potential to 

accomplish the goals of the user). According to Nielson 1993, a system’s acceptability 

has two dimensions: practical acceptability and social acceptability. Practical 

0 2 4 6 8 10 12 14

# of Drops

Task 

Completion 

Time (min)

# of Scoops

Error rate 

(%)

Future

Experts

Novices



 

acceptability is defined by usefulness, cost, reliability, compatibility etc. 

usefulness has two dimensions, utility and usability. Usability can be defined by 5 main 

attributes. These are learnability

Figure 6.5 represents the attributes of a system’s acceptability as well as the different 

dimensions of usability. 

Figure 6.5: Model of attributes of system acceptability

Usability of a system usually has some 

system utility describes whether or not a system performs as designed (system 

functionality), system usability describes whether or not the user is

use the system as designed (usefulness). A valid usability test, thus, 

information similar to what will be expected if the product/interface were to be used 

outside laboratory settings. To ensure test validity, 

comparable to the actual tasks performed by excavator operators.
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usefulness has two dimensions, utility and usability. Usability can be defined by 5 main 

learnability, efficiency, memorability, error rate, and

represents the attributes of a system’s acceptability as well as the different 

attributes of system acceptability [Courtesy of 

Usability of a system usually has some tradeoff with utility of the system. While 

system utility describes whether or not a system performs as designed (system 

functionality), system usability describes whether or not the user is able to successfully 

use the system as designed (usefulness). A valid usability test, thus, could 

information similar to what will be expected if the product/interface were to be used 

outside laboratory settings. To ensure test validity, participants performed

tasks performed by excavator operators. 

acceptability is defined by usefulness, cost, reliability, compatibility etc. Further, 

usefulness has two dimensions, utility and usability. Usability can be defined by 5 main 

and satisfaction. 

represents the attributes of a system’s acceptability as well as the different 
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 6.4.1 Usability Testing Methodology. 

 Twenty students, (14 males and 6 females) between the ages 21-31 (mean age = 

24, standard deviation = 2.37) were recruited from the Georgia Institute of Technology to 

take part in the usability testing. The equipment for the experiment consisted of 3 

computers, a Bobcat excavator cabin, a Phantom Premium 1.0A haptic device, a 52’’ 

Samsung flat screen LCD and 2 video cameras. The task involved using the stylus of the 

Phantom Premium device to dig dirt from the marked trench area and dump the dirt into 

two bins located to the left and right of the trench. The tasks were chosen based on task 

analysis results that identified moving, digging and dumping/pilling as common tasks 

often performed by excavator operators.  

 The test procedure involved briefing participants on the purpose of the study upon 

arrival, and asking them to read and sign a consent form. A pre-test questionnaire was 

then administered to collect demographic information. A short demo of the simulation 

was given, and participants were given a few minutes to familiarize themselves with the 

simulator. Questions about the simulator and controls from the participants were 

answered by the experimenter before the test started. All participants were informed that 

the experiment would be video-taped for further analysis. Upon completion of the tasks, 

the participants were thanked, debriefed, and asked to complete a post-test questionnaire. 

Participants were asked about their experience using the haptic-controlled excavator 

interface, their comfort level, and for their comments and suggestions. Overall, it took 

about 1 hour to complete the test.  
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 6.4.2 Usability Testing Results. 

Results from usability test are summarized in Table 6.3. The usability attributes of 

learnability, efficiency, memorability, error rate/prevention and user satisfaction were 

rated based on participants’ responses and other feedback received from participants. 

Table 6.3: Usability problems identified, and usability attributes impacted 

 

Usability problem 

 

Usability attribute impacted 

1. Excavator too sensitive/stiff to be properly 
controlled with phantom device/stylus. 
This may frustrate users and cause fatigue 
in shoulder and wrist 

Efficiency of use, learnability 
and user satisfaction 

2. Operators unable to steadily control 
excavator. Users found it difficult to 
maintain control of the excavator with the 
phantom/device stylus 

Efficiency of use, learnability, 
error prevention 

3.  Difficulty in maintaining hand-eye 
coordination due to stiffness and general 
awkwardness of interface  

Efficiency of use, learnability 
and error prevention 

4. Bucket movement is not properly 
synchronized with rotation of stylus 
(bucket movement responds poorly to 
stylus command/rotation) 

Memorability, error prevention, 
user satisfaction  

5. No difference between an empty and a full 
bucket, also no feeling of contact between 
the bucket and objects ( ground, bin, pipe, 
trench walls, etc) 

Learnability of use, memorability 
and error prevention 

6. Difficulty understanding the mapping 
between excavator and phantom device.  
Mapping of excavator arm to phantom 
device is reversed 

Learnability of use, memorability 
error prevention and efficiency of 
use 

7. Lack of appropriate arm rest/support may 
lead to fatigue in shoulder and elbow 

Efficiency of use, user 
satisfaction 

8. Restricted workspace around phantom 
device may interfere with task 
performance 

Efficiency of use, error 
prevention, and user satisfaction 
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On learnability, all participants judged the haptic controlled interface as being 

easy to learn. Similarly, all participants felt tasks were easy to performed, though some 

indicated that they found the interface a bit confusing initially. Even with initial 

confusion, they were able to learn the system fairly easily with little practice.  Since 

nearly all participants were novice users, the design implication is that the haptic 

controlled interface is generally easy to learn and use, and novice users can learn to use it 

within a reasonably short period of time with some improvement.   

When asked if they were able to efficiently carry out the assigned task using the 

haptic interface, most participants felt the efficiency of the interface could be improved.  

First, participants complained that the phantom device was too sensitive and stiff. Either 

way, it made control of the bucket as well as the movement of boom difficult. About 30% 

of participants felt that rotating the stylus of the Phantom device did not correspond well 

enough with open and close movements of the bucket, further most participants reported 

that the bucket did not respond very well to the rotation command of the stylus, or that 

the bucket opened/closed while the user had not given any rotation command. The 

combined effect of the stiffness and the general awkwardness of the phantom control 

resulted in fatigue and stress in the shoulder and wrist of participants. This prevented 

users from performing the task in a more efficient manner.  

On memorability of the system, most participants felt the interface was easy to 

remember. It was observed that three participants who have had a previous experience 

with the haptic interface had average task completion time of 117.13 seconds compared 

to the overall task completion time of 132.86 seconds for all participants. Clearly, those 
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who had prior experience with the interface were able to complete the tasks faster 

because they relied on their prior knowledge. A common concern expressed by 

participants was that the clockwise and counterclockwise movement of the stylus did not 

correspond well with bucket open/close motion. As a result, users sometimes had to 

rotate the stylus multiple times in order to open or close the bucket. This led to a situation 

where participants forgot which direction of rotation corresponded to bucket open or 

close movement.  

On error prevention, most participants felt the high sensitivity and stiffness of 

phantom device as well as the general lack of steady control made it difficult for users to 

avoid errors. For example, an operator might want to stop the excavator immediately in 

case of emergency; however, he might not be able to do this due to the lack of steady 

control. Also, because the excavator sometimes did not respond well to operator 

commands, operator may not be able to completely control the excavator at all times to 

prevent errors from occurring. Further, introducing start and stop points (limit points) on 

stylus rotation will help reduce operator frustration and improve performance on tasks.  

For example, when bucket is fully open, it should correspond to the limit of rotation of 

the stylus in one direction, likewise, when it is fully closed, it should correspond to the 

limit of rotation of the stylus in the other direction.  This way, a point in rotation will be 

reached when operator knows the bucket is fully opened/extended or when bucket is fully 

closed/retracted.  In other words stylus rotation should stop when bucket is fully open or 

closed (stylus should rotate 180° so it is exactly mimics the bucket).  
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6.5 Design Improvements to Haptic-Controlled Excavator Interface 

Based on the empirical studies, task analysis, user profile and the usability goals 

set for the haptic-controlled excavator interface, the following design improvements and 

modifications were suggested for the haptic-controlled excavator. 

(1) The results from the empirical study showed no statistically significant difference 

in task completion time, number of scoops and number of drops for the three 

levels of force feedback tested. However, the results also showed users preferred 

medium force feedback to low force feedback and high force feedback conditions 

in terms of comfort, ease of use and frustration. Further, users rated medium force 

feedback lower in terms of mental workload, physical workload, frustration and 

total workload in NASA TLX assessment. In light of the above, medium force 

feedback is recommended for the haptic-controlled excavator interface. Thus, a 

force feedback range of 0.2-1.2N is recommended for use on both the actual 

haptic-controlled excavator prototype currently under construction at Georgia 

Institute of Technology, as well as on the laboratory version of the simulator in 

use at North Carolina Agricultural & Technical State University (NCA&T). 

(2) The empirical study identified hand-eye coordination as an issue that affects 

operator performance, especially for novices, as they struggled to coordinate their 

eye movement between work area and haptic device. To reduce hand-eye 

coordination struggle, the haptic device must be positioned on an adjustable stand 

within the center of operator reach zone, and away from the cabin walls of the 

excavator as shown in Figure 6.6. As shown in Figure 6.6, the haptic device needs 
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(3) The questionnaire from 
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Figure 6.6: Proposed position of haptic device in excavator cabin
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to be placed within about 30cm from operator elbow, and be adjustable 

be fit different operators. This recommendation applies to the actual haptic

controlled excavator as well as the simulator version. 

questionnaire from empirical study as well as the user profile results 

identified shoulder, elbow and wrist fatigue as common problem associated with 

operation of the haptic device for long period of time. The fatigue associated with 

operating the haptic device for long hours can be minimized by providing 

adequate, well placed and comfortable arm rest as shown in Figure 6.7
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excavator and the simulator version at NCA&T.  
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trench. Further, this will eliminate the need for practice of excavator operators to 

depend on human assistants/lookouts commonly encountered in excavation tasks. 

This recommended for use on both the actual haptic-control excavator interface 

and the simulator version being used at NCA&T. 
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trench. Further, this will eliminate the need for practice of excavator operators to 
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depend on human assistants/lookouts commonly encountered in excavation tasks. 

This recommended for use on both the actual haptic-control excavator interface 

and the simulator version being used at NCA&T. 

(7)  Further, to simulate natural noises made by the bucket as it scoops dirt, a 

scooping sound is recommended to be incorporated in the haptic-controlled 

excavator. This will provide useful feedback to operators in performing 

excavation tasks. This will be especially helpful when conducting experiments 

with the simulated haptic-controlled excavator in laboratory settings, where most 

of the natural noises in a real environment might be absent. 

6.6 Chapter Summary 

 In this chapter, steps in user-centered design were used to identify changes 

necessary to improve the haptic controlled excavator interface. Steps outlined include the 

development of user profile through interviews with excavator operators, and a 

hierarchical task analysis to identify critical tasks in excavator operation. Results from 

user profile showed excavator operators generally tend to older, male with lots of on the 

job experience and novice to moderate computer skills. Task analysis identified moving, 

positioning, opening, scooping, unloading as the critical tasks performed in excavation 

task.  Next, the results from user profile and task analysis were used in combination with 

results from empirical studies discussed in Chapters 3 and 4, to develop a set of 

qualitative and quantitative usability goals for the haptic-controlled excavator. The 

usability goals were derived to help the design team to focus on “the voice of the user” 

throughout the design stage, and to identify critical tasks and improve design 
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shortcomings in order to increase effectiveness, efficiency and ease of use of the haptic-

controlled excavator.  

 Usability testing of the haptic-controlled excavator was conducted to identify 

potential usability problems users might encounter. Usability problems identified include 

difficulty in controlling bucket due to high sensitivity of stylus, highly unstable boom and 

bucket, poor synchronization between bucket and stylus, poor bucket response to stylus 

command, lack of proper arm rest, as well as restricted workspace among others.  

 Several design improvements and modifications were recommended to increase 

efficiency, effectiveness and to make the interface more intuitive and user friendly. One 

key recommendation is the use of medium force feedback in the haptic-controlled 

excavator interface, since it produced the best operator performance in terms of task 

completion time and number of scoops required to fill a bin. Further, medium force 

feedback was rated the least in terms of mental workload, physical workload, frustration 

and total workload in a NASA TLX assessment by operators. Also, it was rated the most 

easy to use and least frustrating by operators in a subjective assessment questionnaire. 

However, it must be noted that the higher operator performance recorded for medium 

force feedback was statistically not significant.   

 Other modifications recommended include positioning the haptic device within 

the center of operator reach zone and away from the cabin walls to reduce struggles in 

hand-eye coordination and to ensure unobstructed operator control. Further, the provision 

of appropriate arm rest is recommended to reduce elbow and shoulder fatigue. A 

boom/bucket mounted camera to provide secondary/redundant cues from work 
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environment is recommended, likewise, the incorporation of bucket weight to provide 

realistic operator feedback. 
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CHAPTER 7 
 

SUMMARY, DISCUSSION AND CONCLUSIONS 

7.1 Summary 

The purpose of this dissertation was to develop a multimodal human-machine 

interface for haptic-controlled excavator interface. In order to accomplish this goal, this 

dissertation is organized into six major chapters. Five research questions were addressed 

in two empirical investigations described in chapters 3 and 4. A summary of each chapter 

is presented below. 

Chapter 1 presented the context, motivation and objective for the dissertation, and 

defined the problem addressed in this dissertation. The context of the dissertation is 

multimodal human-machine interfaces, specifically, the use of touch/haptics in the design 

of haptic-controlled excavator interface. Designing haptic-controlled excavator interface 

is offered as an alternative to the traditional joystick, lever or pedal human-excavator 

interfaces currently in use. This has become necessary due to the rapidly aging and 

shrinking male boomer population from which most traditional excavator operators 

belong, and the need to attract younger and more diverse excavator operator population. 

The testbed for this dissertation is the excavator which belongs to the fluid power systems 

family. Specifically, the goals of the dissertation were: 

1. To provide a rationale for using haptic-controlled excavator interface as an 

alternative to the traditional joystick, levers and pedal human-excavator 

interface 
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2. Investigate interference in haptic-controlled excavator interface using 

empirical study 

3. Identify the range of force feedback values that results in best operator 

performance through empirical evaluation 

4. Develop a quantitative excavator-operator model 

5. Use user-centered design approach to make design improvements and 

modifications to the existing haptic-controlled excavator interface. 

Chapter 2 presented a literature review of multimodal human-machine interfaces 

together with their basic theories. The five human senses visual, auditory, haptic, smell 

and taste were reviewed. Their applications in multimodal human-machine interface 

design as well as their strength and limitations were also reviewed. The visual, auditory 

and haptic senses are used in a wide range of applications; however, the senses of taste 

and smell have limited applications in design mainly due to the fact that the technology is 

not well developed to allow their use in design. Theories of multimodal human-machine 

interfaces were reviewed and the rationale for using multimodal haptic-controlled 

excavator interface (i.e. an interface that uses visual, auditory and haptic senses) as an 

alternative to the traditional excavator interface (i.e. an interface that uses visual and 

auditory senses) was outlined.  

A strength/advantage in using multimodal human-machine interface to designing 

human-excavator interface is that 

1. It allows information exchange between human and excavator through 

multiple channels: visual, auditory and haptic; 
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2. It provides simultaneous exchange of information between human and 

machine through force feedback. 

3. It allows for more immersed interaction between human and machine as the 

force feedback provides a sense of ‘feel’ resulting in a more satisfactory 

interaction. 

4. It reduces information overload that is otherwise placed on the visual sense, 

and 

5. It provides redundant cues to the operator.  

These attributes make the haptic-controlled excavator interface more efficient, 

effective and intuitive compared to the traditional joystick, lever and pedal excavator 

interface.    

Chapter 3 presented theories of interference associated with multimodal human-

machine interface, as well as challenges and limitations. Multiple resource theory 

Wicken’s (1984) was discussed. An empirical investigation was conducted to assess (i) 

whether conflict exists between visual, haptic and auditory modalities in the haptic-

controlled excavator interface (ii) the impact of interference on operator performance 

while using the haptic-controlled excavator interface, and (iii) whether operators struggle 

to coordinate their hand-eye movement. A brief discussion of the research questions are 

provided in the next section.  

Chapter 4 presented a general overview of haptics and its application in fluid 

power systems as well as its strengths and limitations in multimodal human-machine 

interface. An empirical study was conducted to investigate (i) whether different levels of 
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force feedback affect operator performance, and (ii) identify the force feedback range that 

produce best operator performance. A brief discussion of the research questions is 

provided in the next section.  

Chapter 5 presented a quantitative human-excavator model using control theory 

approach of modeling human performance in pursuit or tracking tasks. Several control 

theory models used in characterizing operator performance in manual tracking tasks were 

discussed. The basic concept of the control theory is its ability to compare the control 

behavior of humans to that of inanimate automatic feedback control systems in order to 

model operator behavior. This is achieved by developing a mathematical analysis of the 

dynamic systems of the human operator and the mechanisms for achieving a desired 

steady state under changing internal and external conditions.  

A conceptual human-excavator model together with a control model of both the 

traditional excavator and the haptic-controlled excavator interface were developed. The 

models were implemented in MatLab, and their stabilities were compared using their 

Bode and Nyquist plots. Analysis of the models showed that both the traditional 

excavator and the haptic-controlled excavator interfaces were stable. However, the 

haptic-controlled excavator interface was found to be more stable than the traditional 

excavator interface, providing further proof for the rationale to use the haptic-controlled 

excavator interface as an alternative to the traditional excavator interface. 

Chapter 6 presented the user-design centered approach used to identify design 

problems in the haptic-controlled excavator interface as well as the necessary 

modifications needed to improve the interface. The user-centered design approach 
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ensured that ‘the voice of the user’ was at the center of the design throughout the design 

process. User profile developed through interviews showed that excavator operators are 

old, male, experienced with long work hours. Hierarchical task analysis was used to 

identify critical task performed in excavation. Qualitative and quantitative usability goals 

for the haptic-controlled excavator interface were developed, and usability evaluation 

was conducted. Design modifications and changes to improve the interface were 

proposed.  

7.2 Summary of Empirical Studies 

Two empirical studies were conducted in this dissertation to investigate 

interference in multimodal human-machine interface and the impact of force feedback on 

operator performance. The summary of results of the two empirical studies that address 

each of the five research questions in Chapters 3 and 4 are discussed below. 

7.2.1 Question 1. Conflict Detection.  

This question was answered by analyzing eye tracking data (fixation count and 

length) for tasks that depend on auditory, visual and haptic cues for expert and novice 

operators. The results showed that both mean number of fixation count and mean fixation 

lengths were higher for novice operators than they were for expert operators. However, 

mean number of fixation count outside the area of interest (AOI), and the length of 

fixation outside AOI were higher for novice operators than for expert operators. Further, 

novices were nearly twice as likely (3.78 vs. 2.0) to look outside the area of interest while 

performing the task compared to experts. The results showed that, while there was no 

statistically significant difference in fixation count outside AOI between experts and 
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novices, (z=48.0, and p=0.9054), within the area of interest, there was a statistically 

significant difference in fixation count in the area on interest between experts and novices 

(z=104.50, and p=0.018). Similarly, the results showed that in the area of interest, there 

was a statistically significant difference in fixation length between experts and novices, 

(z=23.00, and p=0.0398), whereas outside the area of interest, there was no statistically 

significant difference in fixation length between experts and novices (z =165.00, and 

p=0.3988). The significant difference in the higher  number of fixation count and fixation 

length within the area of interest by experts may be due to the fact that novice operators 

had harder time keeping their eyes focused in the task area compared to expert operators.  

7.2.2 Question 2. Impact of Conflict on Performance. 

This question was answered by comparing the performance of experts and 

novices using task completion time, number of scoops required to fill a bin, and number 

of scoops dropped outside of bin. Results from the empirical study showed that there was 

a statistically significant difference between experts and novices in task completion time 

(z=18, and p=0.0047), number of scoops required to fill a bin (z=21, and p=0.0240), 

however, there was no significant difference in the number of drops outside of the bin 

(z=37.50, p=06059). This may be due to the fact that experts had a higher fixation count 

in the area of interest than novices, which may be attributed to the fact that experts were 

able to focus their attention in the work area where the actual excavation task took place, 

while novices wandered in and out of the area of interest. Further, the results also show 

that, training can be used to greatly improve the performance of novice operators.   
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7.2.3 Question 3. Hand-Eye Coordination.  

This question was answered by analyzing eye-tracking data on and outside the 

area of interest together with scan paths data. Results showed that within the area of 

interest, there was a statistically significant difference between experts and novices in 

fixation count (z=104.50, and p=0.0118), and fixation length (z=23.0, and p=0.0398). 

However, outside the area of interest, there was no statistically significant difference 

between experts and novices in fixation count (z=48.0, and p=0.9054), and fixation 

length (z=16.5, and p=0.3988). Further, gaze plots show that novice operators had more 

difficulty coordinating their hand-eye movement than did expert operators.  

7.2.4 Question 4. Impact of Force Feedback on Performance.  

This question was answered by comparing the performance of operators under 

different force feedback conditions. The results showed a statistically significant 

difference in task completion time between the different levels of force feedback 

(H=9.94207, 2 d.f, and p=0.0242). Also, a statistically significant difference between the 

different force feedback conditions (H=9.031, 2 d.f, and p=0.0288) was obtained in terms 

of number of scoops. However, there was no statistically significant difference between 

the different force feedback conditions (H=1.6549, 2 d.f, and p=0.6470) in terms of the 

number of drops outside the bin. Thus, the results showed that, the levels of force 

feedback had a significant effect on operator performance. 

7.2.5 Question 5. Levels of Force Feedback and Performance. 

This question was answered by comparing the performance of operators under 

low, medium and high force feedback conditions. The results showed no statistically 
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significant difference in task completion time (H=0.9834, 2 d.f, and p=0.6116) between 

the means of low force feedback, medium force feedback and high force feedback. 

Likewise, there was no statistically significant difference in the mean number of scoops 

required to fill up a bin (H=0.2093, 2 d.f, and p=0.9006) for three force feedback 

conditions. However, in a subjective questionnaire completed after the test, participants 

rated medium force feedback as the least frustrating and most easy to use. Similar results 

were also obtained from NASA TLX workload assessment in which participants rated 

medium force feedback highest in terms of mental workload, physical workload, 

frustration and total workload.   

7.3 General Discussion 

The haptic-controlled excavator interface is a multimodal human-machine 

interface that is being developed as an alternative to the traditional human-excavator 

interface. It exploits the benefits of visual, auditory and haptic modalities in a user 

interface to synergistically compliment each others’ weakness in order to yield a more 

effective and intuitive interface. In particular, the simultaneous exchange of information 

between the human and machine is exploited to produce a more immersed interaction. 

Results from the empirical study showed that using force feedback indeed improved 

operator performance significantly for task completion time (H=9.94207, 2 d.f, and 

p=0.0242) and number of scoops to fill a bin (H=9.031, 2 d.f, and p=0.0288). However, 

on the question of which level of force feedback yields best operator performance, the 

results did not show a significant difference, though the author recommends medium 
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force feedback range since both NASA TLX assessment and subjective questionnaire 

showed operators preferred medium force feedback.  

In spite of the potential benefits associated with multimodal human-excavator 

interface discussed, results from the empirical study showed conflicts do exist between 

the visual, auditory and haptic modalities in a haptic-controlled excavator interface. The 

impact of the conflict on performance is greater on novices than experts. The impact of 

this can be seen in the poor hand-eye coordination observed in novices. The author has 

provided several design modifications to address these issues in Section 6.5.  

To provide a rationale for the use of haptic-controlled excavator interface as an 

alternative to the traditional human-excavator interface, quantitative models of both 

haptic-controlled excavator and traditional human-excavator interfaces were developed 

using control theory to model the human operator as a control system. The models were 

implemented in Matlab, and while both models showed stability, the haptic-controlled 

excavator model was found to be more stable than the traditional human-excavator 

model. Also, models of visual only, auditory only and haptic only sensory cue processing 

were developed and compared. The results showed that visual only information 

processing had the highest gain and phase angle shift followed by haptic only and 

auditory only cue processing respectively. 

7.4 Contributions 

This dissertation contributes towards the enhancement of multimodal human-

machine interface theory, specifically the development of haptic-controlled excavator 



188 
 

interface as an alternative to traditional human-excavator interface. The following are key 

contributions.  

1. The dissertation used empirical investigation to assess conflicts in haptic-

controlled excavator interface and provided design modifications necessary to 

mitigate the impact of potential conflicts on operator performance, and 

identified the level of force feedback in the haptic-controlled excavator 

interface that yields best operator performance. 

2. The dissertation developed a conceptual framework for the interaction 

between human operator and excavator which provided the basis for using 

multiple sensing modalities in the haptic-controlled excavator interface. 

3. The dissertation developed a quantitative model to aid in predicting operator 

performance in when using the haptic-controlled excavator and traditional 

excavator interfaces. Results from the quantitative model help provide a 

rationale for using the haptic-controlled excavator as an alternative to the 

traditional human-excavator interface. 

4. The dissertation developed a user-centered design approach that brought the 

user to the center of the haptic-controlled excavator interface design effort, 

and serves as template for developing haptic-controlled interfaces for other 

fluid power system in the future. 

7.5 Limitations 

As is often the case with most research, this study had several inherent 

limitations. First, the two empirical investigations were conducted in a laboratory 
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environment using a simulated haptic-controlled excavator and a computer screen as the 

task environment. This set up lacked the attributes of real excavator environment such as 

vibration and engine noise. It will, therefore, be useful to replicate the experiment in a 

real excavator cabin with characteristics similar to those found in excavation task 

environments. 

Both empirical studies recruited students as participants in conducting the 

investigation. This participant pool is not representative of the general excavator operator 

population which is usually older and male. Also, due to time and monetary constraints, 

only small number of participants 20 novices and 4 experts were recruited for the first 

empirical study; likewise, only 20 participants were recruited for the second empirical 

study. Since the haptic-controlled excavator interface is a new design, it was difficult to 

determine who an expert was. In this conducting this study, a person was considered an 

expert if he/she was a member of the CCEFP team, knowledgeable about the haptic-

controlled excavator, had experience with and used it several times in the past.  

Also, since the experiments were conducted in a simulated laboratory 

environment, the impact and/or contribution of sound/noise to operator performance was 

difficult to assess. In this study, the only use of sound was to provide an auditory alert to 

participants when excavation task was complete. It will be useful to replicate the 

experiment in an environment where quantifiable and measurable auditory cues could be 

used to assess its impact on operator performance during excavation task.  

In addition, using control theory to develop a quantitative model of the interaction 

between the operator and the haptic-controlled human excavator, several assumptions 
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were made about the conceptual model of the operator-excavator interaction. For 

example, the human operator was modeled as a purely mechanical system in order to 

develop the quantitative model. This may impact model adequacy and performance as the 

human is not purely mechanical as assumed in the model. Another limitation of this study 

is the fact that author was unable to validate the quantitative model due to time and 

resource constraints. 

7.6 Recommended Future Research 

The following have been proposed as logical follow up studies to the current 

study in a number of directions with meaningful implications.  

1. First, to make the results from the empirical investigations more realistic and 

to ensure that the results could be applied in real life environments; there is 

the need to replicate the experiments using haptic-controlled excavator with 

similar layout and attributes found in real excavation task environments.   

2. The participant pool for the current study was drawn from the student 

population which did not reflect the user population of excavator operators. 

Therefore, there is the need to replicate the study using a larger number of 

participants drawn from user group that resembles the true excavator operator 

population and investigate whether this has an impact on operator 

performance.  

3. The current study made little use of auditory feedback as the laboratory 

simulated haptic-controlled excavator environment made it difficult to 

practically incorporate quantifiable auditory information into the experimental 
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design. It will be useful to conduct the experiment using quantifiable auditory 

feedback in order to assess the impact of auditory feedback on operator 

performance during excavation task, and whether conflict might arise due to 

the use of auditory feedback. 

4.  The current study is focused on implementing the haptic-controlled interface 

on the excavator; however, since CCEFP is involved in multiple test bed 

projects, it will be useful to implement the haptic-controlled interface on the 

other test beds currently being developed by the CCEFP group.  

5. Another logical follow up study to the quantitative model developed in the 

current study is to validate the model by conducting simulated experiments 

using the developed model and comparing the results with empirical results 

obtained from user experiments. This will establish the validity and reliability 

of the quantitative model developed for the human-excavator interaction in a 

haptic-controlled excavator interface.   
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 APPENDIX 
 
Appendix A 
    

    

Figure A.1: Normal probability plot for fixation length 

 

    

Figure A.2: Normal probability plot for fixation count 
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Figure A.3: Normal probability plot for fixation duration 

 

 

Figure A.4: Normal probability plot for task completion time 
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Figure A.5: Normal probability plot for mean # of scoops 
    

 

 

Figure A.6: Normal probability plot for mean # of drops 
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Figure A.7: Histogram of mean task completion time 

 

 
 

Figure A.8: Histogram of mean # of scoops 
    

 

150 210 270 330 390

0

5

10

15

20

25

30

35

40

P
e

rc
e

n
t

score

6.6 7.8 9.0 10.2 11.4

0

10

20

30

40

50

60

P
e

rc
e

n
t

score



207 
 

 

 
 

Figure A.9: Histogram of mean # of drops 

 

 
 

Figure a.10: Residual plot for No, Low, Medium and High Force Feedback  
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Appendix B 

 

Table B.1: Task completion time for each participant 

Subject 

Task Completion Time (s)/Bin 

No Feedback Low Feedback Med. Feedback High Feedback 

Subj1 132.0 138.0 100.5 108.8 

Subj2 221.8 119.1 99.3 89.7 

Subj3 466.4 271.7 179.6 249.4 

Subj4 175.2 178.4 201.4 171.6 

Subj5 217.8 133.2 175 222 

Subj6 186.3 119.4 99.3 94.4 

Subj7 125.5 128.4 137.9 104 

Subj8 123.7 262.6 126.6 145.3 

Subj9 161.1 217.0 196.2 184.5 

Subj10 120.8 67.4 101.6 108 

Subj11 197.8 91.2 123.3 113.6 

Subj12 199.4 191.9 136.4 174.2 

Subj13 253.2 119.2 140.2 112 

Subj14 257.4 246.3 213.6 349.8 

Subj15 320.8 268 258.9 172 

Subj16 150.9 173.4 106.7 154.6 

Subj17 292.4 263.6 252.8 211.8 

Subj18 242.7 161.1 142.3 164.5 

Subj19 202.0 100.5 66.9 98.9 

Subj20 232.0 160.1 152.1 162.6 
 

 

Table B.2: Number of scoops/bin for each participant 

Number of Scoops/Bin 

No Feedback Low Feedback 

Medium 

Feedback 

High 

Feedback 

Subj1 6 6 5 6 

Subj2 9 6 6 5 

Subj3 10 8 6 7 

Subj4 8 7 8 7 
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Table B.2: Number of scoops/bin for each participant (cont.) 

Number of Scoops/Bin 

No Feedback Low Feedback 

Medium 

Feedback 

High 

Feedback 

Subj5 9 6 6 8 

Subj6 7 5 5 5 

Subj7 7 6 7 5 

Subj8 9 9 6 6 

Subj9 5 6 7 6 

Subj10 8 8 10 11 

Subj11 6 5 6 6 

Subj12 10 7 5 7 

Subj13 7 5 6 5 

Subj14 6 6 7 7 

Subj15 11 7 6 6 

Subj16 6 5 6 6 

Subj17 7 6 5 5 

Subj18 6 6 6 6 

Subj19 5 6 6 6 

Subj20 7 6 5 6 
 

 

Table B.3: Number of drops/bin for each participant 

Number of Drops/Bin 

No Feedback Low Feedback 

Medium 

Feedback High Feedback 

Subj1 0 0 0 0 

Subj2 0 0 0 0 

Subj3 1 0 0 1 

Subj4 1 2 1 0 

Subj5 1 0 0 0 

Subj6 0 0 1 0 

Subj7 0 0 0 0 

Subj8 0 0 0 0 

Subj9 0 0 0 0 
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Table B.3: Number of drops/bin for each participant (cont.) 

Number of Drops/Bin 

No Feedback Low Feedback 

Medium 

Feedback High Feedback 

Subj10 0 0 0 0 

Subj11 0 0 0 0 

Subj12 0 1 0 1 

Subj13 1 0 0 0 

Subj14 0 1 0 0 

Subj15 1 0 0 0 

Subj16 0 0 0 0 

Subj17 0 0 0 0 

Subj18 0 0 0 0 

Subj19 0 0 0 0 

Subj20 0 0 0 1 

Appendix C 

 
1. Task Analysis of excavator operation using GOMS (Goals, Operators, Methods 

and Selection) Approach.  
 

Steps: 

1. Data collection 
- Interviews  were conducted and subject matter experts (SME’s) were observed 

to gain in-depth understanding of excavation tasks 
2. Definition of task under analysis 

- To conduct a task analysis of excavation task using the haptic controlled 
excavator 

3. The overall goal of the task analysis 
- Use the haptic control excavator to dig a 6ft trench 

4. Sub-tasks 
i. Start the excavator 

ii. Calibrate the haptic device (stylus) 
iii. Move the excavator to the desired work location 
iv. Position boom and bucket 
v. Scoop dirt/soil 

vi. Move dirt/soil to desired location and unload/release 
vii. Shut down excavator  
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5. Decomposing the sub-tasks into actions/operations 
 

i. Goal: Start Excavator 

Method for Goal: Start Excavator 
Step 1: Stretch arm to reach starter/ignition key 
Step 2: Turn starter ignition key 
Step 3: Turn head 
Step 4: Look at control panel (indicators/gauges) 
Step 5: Recall that when excavator is turned on, power on indicator turns red 
Step 6: Verify that power on indicator is lit/illuminated 
Step 7: Return with goal accomplished 
 

ii. Goal: Calibrate the haptic device 

Method for Goal: Calibrate the haptic device 
Step 1: Stretch arm to reach stylus 
Step 2: Grab haptic device (Stylus) 
Step 3: Recall that when stylus is moved up, the boom moves up 
Step 4: Move stylus up 
Step 5: Verify that the boom assembly moves up 
Step 6: Recall that when stylus is moved down, the boom moves down 
Step 7: Move stylus down 
Step 8: Verify that the boom assembly moves down 
Step 9: Recall that when stylus is moved left, the boom moves left 
Step 10: Move stylus to the left 
Step 11: Verify that the boom assembly moves left 
Step 12: Recall that when stylus is moved to the right, the boom moves to the 
right 
Step 13: Move stylus to the right 
Step 14: Verify that the boom assembly moves to the right 
Step 15: Recall that rotating the stylus clockwise and anticlockwise, opens and 
closes the bucket 
Step 16: Rotate stylus clockwise the anticlockwise 
Step 17: Verify that bucket opens and closes 
Step 18: Return with goal accomplished 
 

iii. Goal: Move excavator to desired work location 

Method for Goal: Move the excavator to work location 
Step 1: Stretch to reach lever 
Step 2: Select forward/ backward lever 
Step 3: Extend foot 
Step 4: Press foot on travel/accelerator pedal 
Step 5: Move excavator to desired work location 
Step 6: Release foot from the travel/accelerator pedal 
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Step 7: Release forward/ backward lever 
Step 8: Return with goal accomplished 

Selection rule set for goal: Position boom and bucket 
If operator is inexperienced, then accomplish goal by using sequential positioning 
technique.  
If operator is experienced, then use simultaneous positioning technique to accomplish 
goal. 
 
iv. Goal: Position boom and bucket using sequential positioning technique 

Method for Goal: Position boom and bucket using sequential positioning 

technique 
Step 1: Stretch arm to reach arm controller/lever 
Step 2: Grab swing arm controller/lever 
Step 3: Extend foot 
Step 4: Press foot on travel pedal 
Step 5: Tilt/turn head 
Step 6: Adjust swing arm controller/lever 
Step 7: Position boom and bucket assembly 
Step 8: Verify boom and bucket are at the desired position 
Step 9: Release foot from pedal 
Step 10: Release swing arm controller 
Step 11: Return with goal accomplished 
Goal: Position boom and bucket using simultaneous positioning technique 

Method for Goal: Position boom and bucket using simultaneous positioning 

technique 
Step 1: Reach arm 
Step 2: Grab swing arm controller and simultaneously extend foot  
Step 3: Press foot on travel pedal 
Step 4: Tilt head 
Step 5: Position excavator 
Step 6: Verify boom and bucket are at the desired position 
Step 7: Release foot and swing arm controller 
Step 8: Return with goal accomplished 
 

v. Goal: Scoop dirt/soil 

Method for goal: Scoop dirt/soil 
Step 1: Reach arm 
Step 2: Grab stylus 
Step 3: Recall that when stylus is pushed backwards (away from operator), the 
boom/arm assembly extends 
Step 4: Push stylus backwards (away from operator) and up 
Step 5: Verify that boom/arm assembly of excavator is extended 
Step 6: Hold stylus steady and rotate in anticlockwise direction  
Step 7: Recall that rotating the stylus anticlockwise opens the bucket 
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Step 8 Verify that the bucket is opened and the boom/arm assembly is extended 
Step 9: Pull the stylus down and forward (towards operator) 
Step 10: Verify that boom and bucket assembly is lowered 
Step 11: Rotate stylus in clockwise direction and pull forward 
Step 12: Verify that soil is scooped into bucket 
Step 13: Move stylus up 
Step 14: Verify that bucket and its content is above ground level 
Step 15: Return with goal accomplished 
 

vi. Goal: Move soil to desired location and unload/release 

Method for Goal: Move dirt/soil to desired location and unload/release 
Step 1: Hold stylus ready and move to either left or right 
Step 2: Verify that boom assembly has moved to the left or right 
Step 3: Stop when bucket reaches the desired location 
Step 4: Rotate the stylus in anticlockwise direction 
Step 5: Recall that anticlockwise rotation opens the bucket 
Step 6: Verify that bucket opens and releases content 
Step 7: Move stylus left or right  
Step 8: Verify that the boom/bucket assembly moves back to the work area 
Step 9: Return with goal accomplished 
 

vii. Goal: Shut down excavator  

Method for goal: Shut down excavator 
Step 1: Reach with arm 
Step 2: Select forward/backward lever 
Step 3: Extend foot 
Step 4: Press foot on travel/accelerator pedal 
Step 5: Verify that excavator has moved to desired location 
Step 6: Release hands and foot from pedal 
Step 7: Reach hands 
Step 8: Grab ignition key 
Step 9: Turn ignition key 
Step 10: Recall that when the ignition key is turned off, the ‘power on’ 
illumination goes off 
Step 11: Verify that power has been turned off 
Step 12: Return with goal accomplished 
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