15 research outputs found

    Word Equations and Related Topics. Independence, Decidability and Characterizations

    Get PDF
    The three main topics of this work are independent systems and chains of word equations, parametric solutions of word equations on three unknowns, and unique decipherability in the monoid of regular languages. The most important result about independent systems is a new method giving an upper bound for their sizes in the case of three unknowns. The bound depends on the length of the shortest equation. This result has generalizations for decreasing chains and for more than three unknowns. The method also leads to shorter proofs and generalizations of some old results. Hmelevksii’s theorem states that every word equation on three unknowns has a parametric solution. We give a significantly simplified proof for this theorem. As a new result we estimate the lengths of parametric solutions and get a bound for the length of the minimal nontrivial solution and for the complexity of deciding whether such a solution exists. The unique decipherability problem asks whether given elements of some monoid form a code, that is, whether they satisfy a nontrivial equation. We give characterizations for when a collection of unary regular languages is a code. We also prove that it is undecidable whether a collection of binary regular languages is a code.Siirretty Doriast

    Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue Monoid

    Get PDF
    Partially lossy queue monoids (or plq monoids) model the behavior of queues that can forget arbitrary parts of their content. While many decision problems on recognizable subsets in the plq monoid are decidable, most of them are undecidable if the sets are rational. In particular, in this monoid the classes of rational and recognizable subsets do not coincide. By restricting multiplication and iteration in the construction of rational sets and by allowing complementation we obtain precisely the class of recognizable sets. From these special rational expressions we can obtain an MSO logic describing the recognizable subsets. Moreover, we provide similar results for the class of aperiodic subsets in the plq monoid

    Rational, recognizable, and aperiodic sets in the partially lossy queue monoid

    Get PDF
    Partially lossy queue monoids (or plq monoids) model the behavior of queues that can forget arbitrary parts of their content. While many decision problems on recognizable subsets in the plq monoid are decidable, most of them are undecidable if the sets are rational. In particular, in this monoid the classes of rational and recognizable subsets do not coincide. By restricting multiplication and iteration in the construction of rational sets and by allowing complementation we obtain precisely the class of recognizable sets. From these special rational expressions we can obtain an MSO logic describing the recognizable subsets. Moreover, we provide similar results for the class of aperiodic subsets in the plq monoid

    Verification of Automata with Storage Mechanisms

    Get PDF
    An important question in computer science is to ask, whether a given system conforms to a specification. Often this question is equivalent to ask whether a finite automaton with certain memory like a stack or queue can reach some given state. In this thesis we focus this reachability problem of automata having one or more lossy or reliable stacks or queues as their memory. Unfortunately, the reachability problem is undecidable or of high complexity in most of these cases. We circumvent this by several approximation methods. So we extend the exploration algorithm by Boigelot and Godefroid under-approximating the reachability problem of queue automata. We also study some automata having multiple stacks with a restricted behavior. These “asynchronous pushdown systems” have an efficiently decidable reachability problem. To show our results we first have to gain knowledge of several algebraic properties of the so-called transformation monoid of the studied storage mechanisms.An important research topic in computer science is the verification, i.e., the analysis of systems towards their correctness. This analysis consists of two parts: first we have to formalize the system and the desired properties. Afterwards we have to find algorithms to check whether the properties hold in the system. In many cases we can model the system as a finite automaton with a suitable storage mechanism, e.g., functional programs with recursive calls can be modeled as automata with a stack (or pushdown). Here, we consider automata with two variations of stacks and queues: 1. Partially lossy queues and stacks, which are allowed to forget some specified parts of their contents at any time. We are able to model unreliable systems with such memories. 2. Distributed queues and stacks, i.e., multiple such memories with a special synchronization in between. Often we can check the properties of our models by solving the reachability and recurrent reachability problems in our automata models. It is well-known that the decidability of these problems highly depends on the concrete data type of our automata’s memory. Both problems can be solved in polynomial time for automata with one stack. In contrast, these problems are undecidable if we attach a queue or at least two stacks to our automata. In some special cases we are still able to verify such systems. So, we will consider only special automata with multiple stacks - so-called asynchronous pushdown automata. These are multiple (local) automata each having one stack. Whenever these automata try to write something into at least one stack, we require a read action on these stacks right before these actions. We will see that the (recurrent) reachability problem is decidable for such asynchronous pushdown automata in polynomial time. We can also semi-decide the reachability problem of our queue automata by exploration of the configration space. To this end, we can join multiple consecutive transitions to so-called meta-transformations and simulate them at once. Here, we study meta-transformations alternating between writing words from a given regular language into the queues and reading words from another regular language from the queues. We will see that such metatransformations can be applied in polynomial time. To show this result we first study some algebraic properties of our stacks and queues.Ein wichtiges Forschungsthema in der Informatik ist die Verifikation, d.h., die Analyse von Systemen bezüglich ihrer Korrektheit. Diese Analyse erfolgt in zwei Schritten: Zuerst müssen wir das System und die gewünschten Eigenschaften formalisieren. Anschließend benötigen wir Algorithmen zum Testen, ob das System die Eigenschaften erfüllt. Oftmals können wir das Systemals endlichen Automaten mit geeignetem Speichermechanismus modellieren, z.B. rekursive Programme sind im Wesentlichen Automaten mit einem Stack. Hier betrachten wir Automaten mit zwei Varianten von Stacks und Queues: 1. Partiell vergessliche Stacks und Queues, welche bestimmte Teile ihrer Inhalte jederzeit vergessen können. Diese können für unzuverlässige Systeme verwendet werden. 2. Verteilte Stacks und Queues, d.h., mehrere Stacks und Queues mit vordefinierter Synchronisierung. Häufig lassen sich die Eigenschaften unserer Modelle mithilfe des (wiederholten) Erreichbarkeitsproblems in unseren Automaten lösen. Dabei ist bekannt, dass die Entscheidbarkeit dieser Probleme oftmals stark vom konkreten Datentyp des Speichers abhängt. Beide Probleme können für Automaten mit einem Stack in Polynomialzeit gelöst werden. Sie sind jedoch unentscheidbar, wenn wir Automaten mit einer Queue oder zwei Stacks betrachten. In bestimmten Spezialfällen sind aber dennoch in der Lage diese Systeme zu verifizieren. So können wir beispielsweise bestimmte Automaten mit mehreren Stacks betrachten - so genannte Asynchrone Kellerautomaten. Diese bestehen aus mehreren (lokalen) Automaten mit jeweils einem Stack. Wann immer diese Automaten etwas in mind. einen Stack schreiben, müssen sie unmittelbar zuvor von diesen Stacks etwas lesen. Das (wiederholte) Erreichbarkeitsproblem ist in asynchronen Kellerautomaten in Polynomialzeit entscheidbar. Wir können zudem das Erreichbarkeitsproblem von Queueautomaten durch Exploration des Konfigurationsraums semi-entscheiden. Hierzu können wir mehrere aufeinanderfolgende Transitionen zu so genannten Meta-Transformationen zusammenfassen und diese in einem Schritt simulieren. Hier betrachten wir Meta-Transformationen, die zwischen dem Lesen und Schreiben von Wörtern aus zwei gegebenen regulären Sprachen alternieren. Diese Meta-Transformationen können in Polynomialzeit ausgeführt werden. Für dieses Ergebnis müssen wir jedoch zunächst verschiedene algebraische Eigenschaften der Queues betrachten

    Preface

    Get PDF

    Workshop on Formal Languages, Automata and Petri Nets

    Get PDF
    This report contains abstracts of the lectures presented at the workshop 'Formal Languages, Automata and Petri-Nets' held at the University of Stuttgart on January 16-17, 1998. The workshop brought together partners of the German-Hungarian project No. 233.6, Forschungszentrum Karlsruhe, Germany, and No. D/102, TeT Foundation, Budapest, Hungary. It provided an opportunity to present work supported by this project as well as related topics

    Methods for relativizing properties of codes

    Get PDF
    The usual setting for information transmission systems assumes that all words over the source alphabet need to be encoded. The demands on encodings of messages with respect to decodability, error-detection, etc. are thus relative to the whole set of words. In reality, depending on the information source, far fewer messages are transmitted, all belonging to some specific language. Hence the original demands on encodings can be weakened, if only the words in that language are to be considered. This leads one to relativize the properties of encodings or codes to the language at hand. We analyse methods of relativization in this sense. It seems there are four equally convincing notions of relativization. We compare those. Each of them has their own merits for specific code properties. We clarify the differences between the four approaches. We also consider the decidability of relativized properties. If P is a property defining a class of codes and L is a language, one asks, for a given language C, whether C satisfies P relative to L. We show that in the realm of regular languages this question is mostly decidable

    Numbers and Languages

    Get PDF
    The thesis presents results obtained during the authors PhD-studies. First systems of language equations of a simple form consisting of just two equations are proved to be computationally universal. These are systems over unary alphabet, that are seen as systems of equations over natural numbers. The systems contain only an equation X+A=B and an equation X+X+C=X+X+D, where A, B, C and D are eventually periodic constants. It is proved that for every recursive set S there exists natural numbers p and d, and eventually periodic sets A, B, C and D such that a number n is in S if and only if np+d is in the unique solution of the abovementioned system of two equations, so all recursive sets can be represented in an encoded form. It is also proved that all recursive sets cannot be represented as they are, so the encoding is really needed. Furthermore, it is proved that the family of languages generated by Boolean grammars is closed under injective gsm-mappings and inverse gsm-mappings. The arguments apply also for the families of unambiguous Boolean languages, conjunctive languages and unambiguous languages. Finally, characterizations for morphisims preserving subfamilies of context-free languages are presented. It is shown that the families of deterministic and LL context-free languages are closed under codes if and only if they are of bounded deciphering delay. These families are also closed under non-codes, if they map every letter into a submonoid generated by a single word. The family of unambiguous context-free languages is closed under all codes and under the same non-codes as the families of deterministic and LL context-free languages.Siirretty Doriast

    Presentations for subsemigroups of groups

    Get PDF
    This thesis studies subsemigroups of groups from three perspectives: automatic structures, ordinary semigroup presentations, and Malcev presentaions. [A Malcev presentation is a presentation of a special type for a semigroup that can be embedded into a group. A group-embeddable semigroup is Malcev coherent if all of its finitely generated subsemigroups admit finite Malcev presentations.] The theory of synchronous and asynchronous automatic structures for semigroups is expounded, particularly for group-embeddable semigroups. In particular, automatic semigroups embeddable into groups are shown to inherit many of the pleasant geometric properties of automatic groups. It is proved that group- embeddable automatic semigroups admit finite Malcev presentations, and such presentations can be found effectively. An algorithm is exhibited to test whether an automatic semigroup is a free semigroup. Cancellativity of automatic semigroups is proved to be undecidable. Study is made of several classes of groups: virtually free groups; groups that satisfy semigroup laws (in particular [virtually] nilpotent and [virtually] abelian groups); polycyclic groups; free and direct products of certain groups; and one-relator groups. For each of these classes, the question of Malcev coherence is considered, together with the problems of whether finitely generated subsemigroups are finitely presented or automatic. This study yields closure and containment results regarding the class of Malcev coherent groups. The property of having a finite Malcev presentation is shown to be preserved under finite Rees index extensions and subsemigroups. Other concepts of index are also studied

    Acta Cybernetica : Volume 22. Number 2.

    Get PDF
    corecore