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Foreword

This report contains abstracts of the lectures presented at the workshop “Formal Languages, Au-
tomata and Petri-Nets” held at the University of Stuttgart on January 16-17, 1998. The workshop
brought together partners of the German-Hungarian project No. 233.6, Forschungszentrum Karls-
ruhe, Germany, and No. D/102, TéT Foundation, Budapest, Hungary. It provided an opportunity
to present work supported by this project as well as related topics.

The editor wishes to thank the University of Stuttgart and the “Vereinigung von Freunden der
Universitdt Stuttgart e.V.” for support which made the participation of the Hungarian colleagues
possible. Thanks are also due to the speakers for their contributions and to the members of the
group “Theoretische Informatik” for their assistance.

Stuttgart, January 1998 Holger Petersen
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Cooperating/Distributed Grammar Systems —
Various Different Points of View

Henning Bordihn
Institut fiir Wissens- und Sprachverarbeitung
Otto-von-Guericke-Universitat
Universitatsplatz 2, 39106 Magdeburg

Cooperating/distributed grammar systems (CD grammar systems, for short) have been intro-
duced by E. Csuhaj-Varji and J. Dassow in 1988 for describing multi-agent systems by means
of formal grammars and languages, based on blackboard architectures. A CD grammar system
consists of a finite set of grammars that cooperate in deriving words of a common language, where
the grammars work on the sentential form in turns according to some cooperation protocol (the
mode of derivation).

By the original motivation, competence and completeness of the agents are important features
that influence the behaviour of blackboard-type problem solving systems which can be formalized
and interpreted in the syntactic framework provided by CD grammar systems. Moreover, they
can form a basis of the cooperation protocol. We compare several formalizations of these concepts,
mainly variants of the well-known competence-based t-mode of derivation, concerning the induced
derivational power. The results are given for both forward deduction systems with generating and
backward deduction systems with accepting (analyzing) context-free grammar components.

We note that grammar systems with a cooperation strategy based on the concept of com-
pleteness / incompleteness of the components had already been considered by R. Meersman and
G. Rozenberg in 1978, as a generalization of two-level substitution grammars to a multi-level
approach.

Another point of view is given by seeing CD grammar systems working in ¢-mode of derivation
as a sequential analogue of extended tabled Lindenmayer (ETOL) systems (as context-free gram-
mars can be seen as sequential counterpart of extended non-tabled L systems). We consider CD
grammar systems which correspond to the usual variants of ETOL systems, in particular we define
CD grammar systems with pure context-free components and we order the generated language
classes in an almost complete hierarchy. Furthermore, the influence of restrictions in the number
of components is studied.
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Networks of Language Processors

Erzsébet Csuhaj-Varju
Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende u. 13-17, H-1111 Budapest, Hungary
email: csuhaj@sztaki.hu

Networks of language processors is a collective term ([6]) introduced as a formal language theo-
retic framework for describing several architectures for highly (massively) parallel and distributed
symbolic processing. The notion is strongly motivated by some recent models and paradigms ([8],
[14], [15], [12], [3], [4], [2], [10], [9], [5]). There are a lot of arguments for formulating such a
concept: among other things, the need for reliable language theoretic support of communication
networks, understanding the nature of massively parallel and distributed architectures, including
ones with biological or other nature-motivated background.

A network of language processors (an NLP system) consists of several language identifying
devices (or mechanisms computing multisets of strings), called language processors, which are
located at the nodes of a (virtual) network. The language processors operate on strings (on
sets of strings or multisets of strings) by performing rewriting steps and communication steps,
usually alternately. The strings can represent data and/or programs (the latter ones correspond
to operations in coded form or sets of rewriting rules). Both kinds of them can be rewritten and
communicated among the nodes, providing dynamism and introducing adaptation and evolution
in the mechanism. The same string can be interpreted at different nodes in different manners: it
can play the role of a piece of data at some node and the role of a rewriting rule at some another
one. Moreover, creation of new nodes and deletion of existing ones is allowed, mainly as a result
of communication, leading to a flexible, self-organizing topology of the network.

At the beginning, each node of the network is initialized by a language processor and a set
(multiset) of data strings which, together, form the initial configuration (initial state) of the
system. The network is functioning by changing its configurations (this term is used in the case
when rewriting rules are communicated) or its states (when only strings representing data are
transmitted). The change of the configuration (state) can take place either by a rewriting step or
by a communication step. By a rewriting step, some strings present at some nodes are rewritten
according to the rewriting rule set and the rewriting mode of the corresponding nodes (by the
metarules in the case of changing the rewriting rules). By a communication step, some strings (or
copies of some strings) which are present at some node and satisfy some criteria (a trigger) are
communicated to one or more other nodes. The language processors at the nodes of the network
can work either in synchronous or in asynchronous way.

The triggers, the conditions for communication, can be defined in various manners. The most
frequently discussed variants are those ones where filter languages are associated with the nodes
for controlling the input/output string flow. A string can be communicated from one node to
another one if it is an element of the output filter language of the sender node and it is in the
input filter language of the target node.

Variants of communication open a wide variety of classifications of networks of language proces-
sors. If each rewriting step is followed by a communication step, then we speak of networks of
language processors with nodes communicating by command. If the rewriting continues until a
previously prescribed state is reached (a state with a request for communication) and the communi-
cation step takes place afterwards, then we speak of NLP systems with components communicating
by request.
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NLP systems are both computational and language identifying devices. Languages can be
associated to networks of language processors in several manners. For example, we can distinguish
a master node and take, as the determined language, all strings which appear at this node during
all computations.

State sequences of networks of language processors are of particular interest: is there any
periodicity in the behaviour of the system, are there deadlock situations, what can we say about
the reachability of the states, about the safety of the system?

In this talk we provide the framework and discuss some variants of NLP systems, including
networks of Watson-Crick reactive systems ([7]), a model motivated by DNA computing, and
WAVE rewriting systems ([2]), grammatical models of the WAVE paradigm ([14],[15]).
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Some Identities Related to Automata,
Determinants, and Mobius Functions

Volker Diekert
Institut fir Informatik
Universitat Stuttgart
Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany

based on joint work with Yuji Kobayashi
Faculty of Science of Toho University, Japan

Mobius functions play an important role in combinatorics. For monoids they were introduced
by Cartier and Foata leading to a generalization of Mac Mahon’s Master Theorem. The spirit
of this theorem is an expression of certain series as the formal inverse of some determinant. In
the same spirit Choffrut and Goldwurm have shown recently that (an unambiguous lifting of)
the Mo6bius function of a free partially commutative monoid can be expressed as the determinant
of the minimal automaton recognizing the set of lexicographic normal forms, if and only if the
independence relation has a transitive orientation. Taking a slightly different viewpoint this result
is in fact a statement about languages defined by forbidden factors of length exactly two. The aim
of the present talk is a generalization to other classes of languages defined by forbidden factors.
The main result states:

Let F C X* be a finite set of forbidden factors, 1 ¢ F, and let | = max{|u| | u € F}, 1 > 2, the
mazimal length. Let S = X*\ X*FX* and M be an n X n-matriz associated to the minimal finite
automaton recognizing the language S. Then we find explicitly a polynomial D(S,l — 1) of degree
at most n(l — 1) - max{1, (I — 2)} such that we have the following identity in commuting variables:

S Det(l — M) =, D(S,l —1).
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On Graph-Controlled Grammars with Leftmost
Derivation

Henning Fernau
Wilhelm-Schickard-Institut fiir Informatik
Universitat Tiibingen
Sand 13, D-72076 Tibingen, Germany
email: fernau@informatik.uni-tuebingen.de

We try to study leftmost derivations in regulated rewriting in a systematic way by investigating
this notion in the framework of graph-controlled grammars. Since many seemingly different ways
of regulation can be seen as special cases of graph-controlled grammars [4], we obtain all known
and many new results on leftmost derivation in regulated rewriting (compare the Section 1.4 in the
monograph [2]). This work can be seen as continuation of previous works on leftmost derivation,
see [1, 5].

Moreover, we want to prove the versatility of graph-controlled grammars as unifying framework
for presenting results in regulated rewriting. Taking this approach, some published proofs can be
simplified considerably. Moreover, it is useful to detect unexplored sub-areas (which are sometimes
surprising findings in view of the maturity of the whole field). For example, there seems to be no
previous study of leftmost derivation in time-variant grammars.

Although graph-controlled grammars are not as general as for example selective substitution
grammars, see Section 10 in [2], they may provide new insights and view on regulated grammars, so
that we promote their use as basic mechanism in regulated rewriting. There is another, pedagogical
reason for this promotion: graph-controlled grammars are very intuitive and easy to explain.
So, any student or working professional who likes to learn something about regulated rewriting
has the chance to get the basics including many of its ramifications quickly. Such things are
quite important in our eyes for a rather matured field like regulated rewriting. The need for
such systematic presentation is exemplified by the papers [6] and [3], where ideas from regulated
rewriting are applied to parsing theory and database theory, respectively, although the papers
indicate that the knowledge of basic facts in regulated rewriting is not too widespread.
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Structured Formal Verification of a Fragment of
the IBM /390 Clock Chip

Alfons Geser
Symbolisches Rechnen
Wilhelm-Schickard-Institut fiir Informatik
Sand 13, D-72076 Tiibingen

We present a simple and powerful method for formal verification of hardware. First the hard-
ware netlist is translated into a system of term graph rewriting rules that model the state transition
behaviour symbolically. This term graph rewriting system is then used to rewrite a specification
into normal form, which we can show is a term graph formed exclusively by propositional variables
and connectives. In the third phase the propositional term graph is evaluated as a functional de-
cision diagram. From it, one can read off whether verification was successful and if not, efficiently
derive a counterexample.

The choice of term graph rewriting, rather than term rewriting, is motivated by the adequate
translation that is possible in linear time. Term graph rewriting, as opposed to modal calculi,
offers neither quantifiers nor fixed points nor modal operators. However, its expressive power is
sufficient to prove bisimulation or reachability of states.

Using a prototype implementation we have successfully verified a fragment of an IBM chip
which contains a few symmetries and is complex enough to withstand a naive verification attempt.
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Minimality and Decidability Results Concerning
Generating Systems of
Primitive Recursive Functions

Sandor Horvath
Department of Computer Science
Eo6tvos Lordnd University
Muzeum korut 6-8., II. 2-3, Budapest
H-1088, Hungary
email: horvath@cs.elte.hu

Joint work with Holger Petersen

We consider the class of primitive recursive functions (the definition can be found in text-
books on computability, e.g. [3, 7, 8, 9]). As this class includes most of the functions usually
encountered in elementary arithmetic it is of some interest to find simple characterizations for
it. Significant simplifications in the recursion scheme employed in the definition of the primitive
recursive functions have been found by Gladstone [4, 5]. Further research in this direction is
reported in [2].

We are interested in the initial functions underlying the class of primitive recursive functions.
We reduce the set of initial functions to a minimum that cannot be simplified further without
losing some functions.

We also deal with the class of partial recursive functions and eliminate some initial functions
from a known generating system for this class.

Finally, we consider some decidability questions concerning program length and recursion-
depth.

Lemma 1 If from a set of initial functions all primitive recursive functions can be obtained by
composition and primitive recursion then it necessarily contains an n- or (n + 1)-place function
for every n > 1.

Theorem 1 FEvery primitive recursive function can be obtained by a finite number of applications
of composition and primitive recursion from the following functions:

1. The successor function S.
2. The projections U} and U3"">, n > 0.

Moreover this set of initial functions is minimal in the sense that mot all primitive recursive
functions can be obtained from a proper subset of these functions.

If the O-place functions (constants) are also considered as primitive recursive we get the fol-
lowing statement:

Theorem 2 FEvery primitive recursive function including constants can be obtained by a finite
number of applications of composition and primitive recursion from the initial functions given in
the preceding theorem and any O-place function. This set of initial functions is minimal.
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It is possible to show results analogous to the preceding theorem if the role of the projection
U} is interchanged with U2™*! for some m > 2 (U} is replaced by U3 and U™ is replaced
by Ufm+1). If 4 is added to the operations in Theorem 1 all partial recursive functions can be
derived. However Lemma 1 does not remain valid. We have:

Theorem 3 FEwvery partial recursive function can be obtained by a finite number of applications of
composition, primitive recursion, and unbounded minimization from the initial functions S, U},
and any infinite subset of {UF | k > 2}.

In [6] a generating system for the set of partial recursive functions is given equipped with the
initial functions N, U}, and S. Its operations are composition, primitive recursion, minimization,
and attachments of new variables to the left or to the right. The function N can be omitted by
applying p to U2. From Theorem 1 we get another reduction of the set of initial functions:

Theorem 4 FEvery partial recursive function can be obtained from the initial functions S and N
by composition, primitive recursion, minimization, and attachments of new variables.

By a standard numerical encoding of the representations of the one-place partial recursive func-
tions (in Kleene’s classical generating system), regarding the code numbers as “abstract programs”,
and assigning to every abstract program, as its “length”, the length of the original representation
(of the corresponding partial recursive function), we clearly get an (axiomatic) Blum program size
measure. Within the above encoding, the (abstract) programs of the one-place primitive recursive
functions form a subrecursive enumeration, see [1]. So by a general result we have that the set
SP(primrec) of the shortest programs of the one-place primitive recursive functions is recursively
enumerable. On the other hand it is also known that the analogous set SP(partrec) (of the short-
est programs of all the one-place partial recursive functions) is immune (i.e., infinite, and contains
no infinite r.e. subset). Now we formulate the following

Problem 1 Is SP(primrec) not recursive?

Meyer and Ritchie’s loop programs compute exactly the primitive recursive functions. It is
known (see [1]) that the “complexity problem” of loop programs is undecidable for loop-depth
> 3. (This means that if an arbitrary loop program = has loop-depth n > 3 then it is undecidable
whether there exists an equivalent loop program 7' with loop-depth n — 1.) According to loop-
depth we obtain Meyer and Ritchie’s well-known hierarchy {L,,}, >0 (within the class of primitive
recursive functions). A related hierarchy is Axt’s hierarchy {K,},>0, in which the role of loop-
depth is played by the depth of primitive recursion. If we allow the more general simultaneous
primitive recursion, too, we get a modification {K3"}, >0 of Axt’s hierarchy. It is known that
the hierarchies {L,},>0 and {Kﬁim}nzg coincide, and L, = K, for n > 4. Clearly we can
construct an effective translation of the loop programs into the representations of the primitive
recursive functions in which simultaneous primitive recursion is allowed, too, such that, under
this translation, loop-depth n is always mapped into recursion-depth n, for every n > 0. We can
get an analogous effective translation of the loop programs into the “simple” representations of
the primitive recursive functions (in which simultaneous primitive recursion is not allowed), for
loop-depth n > 4. So, in view of the above we have:

Proposition 1 The problem of reducibility of recursion-depth n in the hierarchy {K5™},>¢ is
undecidable for n > 3, and the analogous problem in the Axt hierarchy is undecidable for n > 5.

Problem 2 Is the reducibility of recursion-depth n in the Axt hierarchy undecidable for n = 3,4,
too?
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Once More on the Context-Freeness of QQ N (ab*)"

Laszlé Kaszonyi
Department of Mathematics
Berzsenyi College
H-9700 Szombathely

Let @ be the language consisting of primitive words over the alphabet {a, b} and consider the
language L, = @ N (ab*)". It is conjectured that L, is context-free for all n € N. The validity
of the conjecture is proved for n-s having special number-theoretic character. The proofs of these
results are based on the well-known theorem of Ginsburg, which asserts — applied to our case —
that L, is context-free iff the set

E(L,) ={(eo,...,en—1) € N* | ab®---ab"~* € L, }

is a stratified semilinear set. Here we give a decomposition of E(L,) in special components and
conjecture that each of these components is a stratified semilinear set. We prove the validity of
the conjecture in a special case.

(Joint work with M. Katsura)
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On General Iteration Lemmata

Manfred Kudlek
Fachbereich Informatik, Universitat Hamburg
Vogt-Kolln-Strafle 30, 22527 Hamburg
email: kudlek@informatik.uni-hamburg.de

1 Introduction

The iteration lemmata for regular, linear and context-free languages are well known. They are
based on the catenation operation ( with unit element X ) on the free monoid V* over some
alphabet V', and the norm |w| ( length of words ).

In this paper other binary operations o on the power set on underlying monoids M are intro-
duced, as well as other general norms y. The operations have to be associative with zero element
(0 and unit element {A}, and distributive with U such that the resulting structure is an w-complete
semiring. The norm p has to be monotone with respect to o and U, with some minimal norms for
() and {A}, and be defined for all finite sets.

If rational, linear and algebraic languages are defined as fixed points of corresponding systems
of equations on w-complete semirings, it can be shown that iteration lemmata similar to the
classical ones hold for such languages.

2 Definitions

Let M be a monoid with binary operation o and unit element A\. Extend o to an associative binary
operation o : P(M) x P(M)—P (M), distributive with U ( Ao (BUC) = (Ao B)U (Ao () and
(AUB)oC = (Ao B)U(BoC() ), with unit element {A\} ( {A\} oA = A0 {\} = A ), and zero
element ) (o A=AoD=0).

Then S = (P(M),U,0,0,{\}) is an w-complete semiring, i.e. if A; C A;11 for 0 < i then
BolUisoAi = Ujso(B o Ai) and (U5 4i) © B = U;5q(Ai 0 B).

Define also A°©) = {A}, A°(M) = 4, A+ = 4o A°() - 4o =, o, A°P).

Let u : P(M)—IN be a ( partial ) function ( norm ) defined for all finite sets, with the following
properties :

u(0) <1, u({A) <1, AC Bou(A) < u(B) , u(A), u(B) < p(AU B) < maz{p(4), u(B)},

pu(A), w(B) < p(A o B) < pu(A) + u(B) , (A#DANAF {A})=p(A°) =00 .

Example 1 : Let o = -, the usual catenation ( being associative with unit element A\ on
M =V*), and p be defined by

p@) =p{r}) =0, we V'=u({w}) = w|, p(AoB) = u(A) + u(B) ,

#(AU B) = maz{u(A), u(B)} , p(A°) =o0 .

Example 2 : Let o = w, the shuffle operation ( being associative and commutative on M = V*
with unit element A ), and p be defined as in Example 1.

Example 3 : Let V be an alphabet and I C V x V a symmetric, not necessarily reflexive,
relation, called an independence relation. Define uabv ~ ubav if (a,b) € I and consider its reflexive
and transitive closure ~*. Then ~* is an equivalence relation, and the set M = V*/ ~*  also
written V*/I, being a monoid, is called the trace monoid of V' with respect to I.

For t; = [u],t2 = [v] € M the binary operation on traces is defined by #; o t; = [uv], and the
neutral element is [A]. For ¢ = [w] € M a norm can be defined by u(t) = |w|.
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Let X = {X1,...,X,} be a set of variables such that X N M = .

A monomial over S with variables in X is a finite string of the form : A; 0 Aso...0 Ay , where
A e Xor A; C M, |A;i| < 0o,i =1,...,k. ( without loss of generality, A; = {a;} with a; € M
suffices ). A polynomial p(X) over S is a finite union of monomials where X = (Xy,---,X,,).

A system of equations over S is a finite set of equations : E = {X; = p;(X) | i =1,...,n},
where p;(X) are polynomials.

The solution of E is a n-tuple (L1, ..., L,) of languages over M, with L; = p;(L1,...,Ly)
and the n-tuple is minimal with this property, i.e. if (L],..., L) is another n-tuple that satisfies
E, then (Ly,...,Ly) < (L},...,L)) ( where the order is defined componentwise with respect to
inclusion ).

From the theory of semirings follows that any system of equations over S has a unique solution,
and this is the least fixed point starting with (X1,---, X,,) = (0,---,0).

A system of equations is called linear if all monomials are of the form A o X o B or A, and
rational if they are of the form X o A or A, with A C M and B C M. Corresponding families of
languages ( solutions of such systems of equations ) are denoted by ALG(0), LIN (o), and RAT (o).
If o is commutative then ALG (o) = LIN (o) = RAT (o).

3 Results

The following theorems can be proven in a way analogous to the classical iteration lemmata.

Theorem 1 : Let L € RAT (o) with L C M. Then there exist n(L) > 0 such that, for any
w € L with p({w}) > n(L), there exist z1,x2, 23 € M such that :

(i) w € {z1} o {wa} o {ws}.

(i) 0 < ({1} o {z2}) < n(L).

(lll) {1’1} o {1’2}0 o {1’3} g L. n

Theorem 2 : Let L € LIN(o) with L C M. Then there exist n(L) > 0 such that, for any
w € L with p({w}) > n(L), there exist 1,2, x3, x4, x5 € M such that :

(1) w € {561} o {CCQ} o {563} o {564} o {565}

(i) p({z1} o {za} o {za} o {xs}) <n(L).

(iii) 0 < p({w2} o {z4})

(i) V> 0 {21} o {2}°®) 0 {3} o {24}* ¥ o {a5} C L. 0

Theorem 3 : Let L € ALG(o) with L C M. Then there exist n(L) > 0 such that, for any
w € L with p({w}) > n(L), there exist 1, x2,x3, x4, x5 € M such that :

(i) w € {z1} o {wa} o {ws} o {wa} o {w5}.

(i) p(fw2} o {zs} o {z4}) < n(L).

(iii) 0 < p({w2} o {z4})

(IV) Vk Z 0: {.’L’l} o {.’IZQ}O(k) o {563} o {564}0(k) o {.7,'5} g L. 0

To prove these theorems the systems of equations are first converted into equivalent systems
of equations ( with additional variables ) where all monomials are in normal form ( X oY or «
for algebraic, @ o X or X o« or « for linear, and X o a or « for rational systems ).

Any w € L can be generated as w € {1} o---o{fB} where the 3; € M are the leaves of a
binary derivation tree with respect to o, and the children of each node correspond to monomials.
Note that p is monotone with respect to U and o, but bounded by the sum.
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Dense Completeness

Klaus-Jorn Lange
Theoretische Informatik / Formale Sprachen
Wilhelm-Schickard-Institut fiir Informatik
Sand 13, D-72076 Tiibingen

Formal Language Theory and Structural Complexity Theory exhibit close relationships. In
spite of the fact that both theories pursue comparable questions like, e.g., the comparison of
determinism and nondeterminism, they both succeed quite differently in answering these questions.
While Complexity Theory is to a large extent a collection of open problems and most of its results
relate open problems, the phenomenon of open problems is almost unknown in Formal Language
Theory. This raises the question, how close their mutual relationship is.

Almost all formal languages that are in some way context-free, are related to the classes NP,
NAuzPDA,:, NSPACE(logn), or NC'. Analogous relations hold between deterministic versions
of these families and the classes P, DAuzPDAy;, DSPACE(logn), and NC'. The type of these
relations is that a family of formal languages A is contained in a complexity class B and that A
contains a B-complete language.

Based on an observation by Richard Beigel it is now possible to construct in a systematic way
for a class of formal languages A, defined by sequential one-way automata and for which the class
B is closed under logspace reductions, a type of nondeterministic one-way automata, such that for
a corresponding class of languages A’ it holds that A C A’ € B and

Veesdaca : LOG(A) = LOG(B).

The family A’ thus lies dense in the class 5. The construction and some of its properties will
be presented in the lecture. It is open whether a comparable construction can be found for
deterministic families or classes below DSPACE(logn).
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Confluence of Terminating 2—Dimensional String
Rewriting Systems is Undecidable

Markus Lohrey
Institut fir Informatik
Universitat Stuttgart
Breitwiesenstr. 20-22, D-70565 Stuttgart

2—-dimensional string rewriting systems are a straight forward generalization of ordinary string
rewriting systems. Given two finite alphabets ¥; and ¥, a 2—dimensional string rewriting system
over (¥1,%5) is a finite set R of rules of the form (I1,l2) — (r1,r2), where l;,7, € ¥; and
l2,m2 € Xo. As expected, R defines a 1-step rewrite relation —x by (u1,us) =g (vi,v2) iff there
exist a rule (I1,l2) — (r1,72) in R and strings v}, uy € X1, uh,ud € X such that uy = ujliuf,
us = uhloul and vy = uiriu, vo = ubrouly. Thus, 2-dimensional string rewriting is a special case
of trace rewriting.

For ordinary string rewriting systems it is known to be decidable whether a given terminating
string rewriting system is confluent. In contrast to this result, I will prove that the question
whether a terminating 2-dimensional string rewriting system over ({1},¥) is confluent is unde-
cidable. The proof is based on a technique developed by Narendran and Otto.
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The Code Problem for Trace Monoids

Anca Muscholl
Institut fiir Informatik
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The topic of codes in the framework of trace monoids leads to interesting and challenging
decision problems of combinatorial flavour. We consider in this talk the unique decipherability
problem (code problem), i.e. the question whether a (finite) subset X of a trace monoid generates
a free monoid.

The code problem is in general undecidable, yet there is no exact characterization of the trace
monoids where this problem is decidable. We establish in this talk the decidability resp. unde-
cidability of the code problem for some particular families of graphs (i.e., commutation relations
I). These results are tightly connected to the emptiness problem for certain types of multicounter
automata.
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On Some Recognizable Picture-Languages *

Klaus Reinhardt
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In [GRST94] pictures are defined as two-dimensional rectangular arrays of symbols of a given
alphabet. A set (language) of pictures is called recognizable if it is recognized by a finite tiling
system. It was shown in [GRST94] that a picture language is recognizable iff it is definable in
existential monadic second-order logic. In [Wil97] it was shown that star-free picture expressions
are strictly weaker than first-order logic. A comparison to other regular and contextfree formalisms
to describe picture languages can be found in [Mat97b, Mat97a].

We show that the language of pictures over {a,b}, where all occurring b’s are connected is
recognizable, which solves an open problem in [Mat97a]. (Connectedness is not recognizable in
general [FSV95].)

Furthermore we show that the language of pictures over {a,b}, where the number of a’s is
equal to the number of b’s is nonuniformly recognizable. Hereby we use counters similar to those
used in [Fiir82].
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On the Power of Parallel Communicating
Grammar Systems

Gyorgy Vaszil
Computer and Automation Research Institute
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Kende u. 13-17, H-1111 Budapest, Hungary

Parallel communicating grammar systems, introduced in [5], are formal language theoretic
models of parallel and distributed computation. In these systems several grammars are working
on their own sentential forms in parallel and their work is organized in a communicating system
to generate a single language.

PC grammar systems have been the subject of detailed study over the past few years, see
[1],[4]. Here we report on new results from [3],[2] and [6], concerning the generative power of
PC grammar systems with context-free rules. We show that these systems generate all recursively
enumerable languages, by demonstrating how they can simulate two-counter machines, a restricted
but computationally complete class of Turing machines.
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