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Abstract
An important research topic in computer science is the verification, i.e., the analysis of
systems towards their correctness. This analysis consists of two parts: first we have to
formalize the system and the desired properties. Afterwards we have to find algorithms to
check whether the properties hold in the system. In many cases we can model the system as a
finite automaton with a suitable storage mechanism, e.g., functional programs with recursive
calls can be modeled as automata with a stack (or pushdown).

Here, we consider automata with two variations of stacks and queues:

(1) Partially lossy queues and stacks, which are allowed to forget some specified parts of
their contents at any time. We are able to model unreliable systems with such memories.

(2) Distributed queues and stacks, i.e., multiple such memories with a special synchroniza-
tion in between.

Often we can check the properties of ourmodels by solving the reachability and recurrent
reachability problems in our automata models. It is well-known that the decidability of these
problems highly depends on the concrete data type of our automata’s memory. Both problems
can be solved in polynomial time for automata with one stack. In contrast, these problems
are undecidable if we attach a queue or at least two stacks to our automata.

In some special cases we are still able to verify such systems. So, we will consider only
special automata with multiple stacks - so-called asynchronous pushdown automata. These
are multiple (local) automata each having one stack. Whenever these automata try to write
something into at least one stack, we require a read action on these stacks right before
these actions. We will see that the (recurrent) reachability problem is decidable for such
asynchronous pushdown automata in polynomial time.

We can also semi-decide the reachability problem of our queue automata by exploration
of the configration space. To this end, we can join multiple consecutive transitions to
so-called meta-transformations and simulate them at once. Here, we study meta-transforma-
tions alternating between writing words from a given regular language into the queues
and reading words from another regular language from the queues. We will see that such
meta-transformations can be applied in polynomial time.

We will prove the aforementioned results with the help of several algebraic properties of
the storage mechanisms. To this end, we will first study the monoid of all action sequences
which can be applied on such memories. This monoid is also known as the transformation
monoid or action monoid. So, we will see for each of our considered storage mechanisms
that for each sequence of basic actions we can construct in any case another action sequence
which is somewhat “simple” and has the same effect as the original sequence. Furthermore,
we will characterize several classes of languages in these transformation monoids and analyze
their algorithmic properties.
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Zusammenfassung
Ein wichtiges Forschungsthema in der Informatik ist die Verifikation, d.h., die Analyse von
Systemen bezüglich ihrer Korrektheit. Diese Analyse erfolgt in zwei Schritten: Zuerst müssen
wir das System und die gewünschten Eigenschaften formalisieren. Anschließend benötigen
wir Algorithmen zum Testen, ob das System die Eigenschaften erfüllt. Oftmals können wir
das Systemals endlichen Automaten mit geeignetem Speichermechanismus modellieren, z.B.
rekursive Programme sind imWesentlichen Automaten mit einem Stack.

Hier betrachten wir Automaten mit zwei Varianten von Stacks und Queues:

(1) Partiell vergessliche Stacks und Queues, welche bestimmte Teile ihrer Inhalte jederzeit
vergessen können. Diese können für unzuverlässige Systeme verwendet werden.

(2) Verteilte Stacks und Queues, d.h., mehrere Stacks und Queues mit vordefinierter Syn-
chronisierung.

Häufig lassen sich die Eigenschaften unsererModelle mithilfe des (wiederholten) Erreich-
barkeitsproblems in unseren Automaten lösen. Dabei ist bekannt, dass die Entscheidbarkeit
dieser Probleme oftmals stark vom konkreten Datentyp des Speichers abhängt. Beide Proble-
me können für Automaten mit einem Stack in Polynomialzeit gelöst werden. Sie sind jedoch
unentscheidbar, wenn wir Automaten mit einer Queue oder zwei Stacks betrachten.

In bestimmten Spezialfällen sind aber dennoch in der Lage diese Systeme zu verifizieren.
So können wir beispielsweise bestimmte Automaten mit mehreren Stacks betrachten - so
genannte Asynchrone Kellerautomaten. Diese bestehen aus mehreren (lokalen) Automa-
ten mit jeweils einem Stack. Wann immer diese Automaten etwas in mind. einen Stack
schreiben, müssen sie unmittelbar zuvor von diesen Stacks etwas lesen. Das (wiederholte)
Erreichbarkeitsproblem ist in asynchronen Kellerautomaten in Polynomialzeit entscheidbar.

Wir können zudem das Erreichbarkeitsproblem vonQueueautomaten durch Exploration
des Konfigurationsraums semi-entscheiden. Hierzu können wir mehrere aufeinanderfol-
gende Transitionen zu so genannten Meta-Transformationen zusammenfassen und diese in
einem Schritt simulieren. Hier betrachten wir Meta-Transformationen, die zwischen dem
Lesen und Schreiben vonWörtern aus zwei gegebenen regulären Sprachen alternieren. Diese
Meta-Transformationen können in Polynomialzeit ausgeführt werden.

Wir verwenden hierfür verschiedene algebraische Eigenschaften, die wir zuvor in dieser
Arbeit erlangenwerden. Konkret, betrachten wir dasMonoid bestehend aus allen (verschiede-
nen) Aktionsfolgen auf einem gegebenen Datentyp - das sogenannte Transformationsmonoid.
Unter anderem werden wir sehen, dass in jedem unserer betrachteten Datentypen für jede
Aktionsfolge eine weitere solche Folge berechnet werden kann, die auf gewisse Art undWeise
„einfach“ ist und dabei denselben Effekt besitzt wie die ursprüngiche Aktionsfolge. Zudem
charakterisieren wir verschiedene Klassen von Teilmengen der Transformationsmonoide
und untersuchen deren algorithmische Eigenschaften.
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Chapter 1

Introduction

1.1 Motivation and Historical Context

One of the most important questions in computer science is whether a given program or
system is correct. In this connection, “correct” means that the program or system conforms
to a given specification. In automata theory one tackles this question as follows: first we
seek a mathematical model of such program or system. In many cases, an appropriate model
is a finite state machine (or automaton) with a suitable storage mechanism. For example,
with the help of a finite-state automaton with a finite memory we can model the principal
control-flow in imperative programs (with finite domains) or in distributed and concurrent
systems. Note that such automata are essentially (non-)deterministic finite automata (NFA
resp. DFA, for short). If we attach a stack we obtain so-called pushdown automata (PDA, for
short). With the help of such PDAs we can model functional programs with finite domains in
which we are allowed to call functions recursively. If we replace the stack by several queues,
we obtain (multi-)queue automata and can model finite computer networks communicating
through channels.

After modeling our system as an automaton with storage, we also have to formalize the
expected behavior of the system with the help of special logics, so-called temporal logics.
With the help of those logics we are able to reason about properties qualified in terms of
time. The most important of such logics are propositional or linear temporal logic (PTL or
LTL), computational tree logic (CTL), and their combination CTL∗.

Finally, we have to check whether our system conforms to the expected behavior. To
this end, we check whether the formula modeling the system’s behavior is satisfied by the
automaton modeling the system. In other words, we have to solve themodel checking problem
of temporal logics in automata with storagemechanisms. Inmany cases, this problem reduces
to the recurrent reachability problem of our automata model. This problem asks whether
a given automaton has an infinite run visiting one or more given configurations infinitely
often.

We already know that the decidability of the recurrent reachability problem (and even
the “simple” reachability problem) highly depends on the data type of the memory attached to
our automata. So, the reachability problem and the recurrent reachability problem in NFAs
both are decidable using nondeterministically logarithmic space, only. Additionally, the
model checking problem of LTL- and CTL∗-formulas is PSPACE-complete [Pnu77, VW86]
in this case while model checking of CTL-formulas is possible in polynomial time [CE82].

For pushdown automata, reachability and recurrent reachability are decidable in poly-
nomial time [BEM97, FWW97]. Their LTL- and CTL-model checking problem is complete
in the complexity class EXPTIME [BEM97,Wal00,Wal01] and their model checking for



2 Chapter 1. Introduction

CTL∗-formulas is 2EXPTIME-complete [Boz07]. Interestingly, a finite automaton with more
than one stack is as powerful as a Turing-machine resulting in the undecidability of any
non-trivial verification problem.

We can also consider automata with counters, so-called counter automata. Note that
there are multiple types of counters: a blind counter is essentially an integer which can be
increased or decreased. Partially blind counters are defined similarly, but their decrease
operation fails if the stored number falls below zero. A counter with zero-test is a partially
blind counter which can additionally check, whether its content is zero. Anyway, we can
model an automaton with a single counter as a pushdown automaton with some restrictions
to its stack. However, our automata are able to encode Turing-machines if we attach at least
two counters with zero-tests [Min67]. We also call such automataMinsky-machines. The
reachability problem is decidable if we replace the counters by partially blind ones [May84].
Unfortunately, this decision problem has an Ackermannian complexity as Czerwiński and
Orlikowski as well as Leroux independently proved recently in their papers [CO22, Ler22].
Note that in literature such automata are also known as vector addition systems (VAS or VASS,
for short) or Petri nets.

We also know that queue automata (even with only one queue) are as powerful as
Turing-machines (cf. [BZ83]). Hence, reachability and model checking of temporal logics
is undecidable. But if we allow the automaton’s queue(s) to forget some letters (in this case
we call them lossy queue automata), the reachability problem gets decidable [AJ96a]. Note
that this problem has a very high complexity [Sch02, CS08]. However, model checking of
temporal logics is undecidable [AJ96b]. The decidability of the reachability problem can also
be extended to so-called well-structured transition systems by [Abd+00, FS01].

Another variation of queues are so-called priority queues. Here, any queue entry has a
priority with the following semantics: entries with a high priority can supersede or overtake
entries with lower priority. Haase et al. proved in [HSS14] that reachability is decidable
for priority queue automata with superseding semantics, but undecidable for those with
overtaking semantics.

In this thesis we want to direct the focus on two further variations of queues and stacks.
The first considered variation are the so-called partially lossy queues and stacks. We can see
this as a kind of unification of classical reliable and lossy memories. Concretely, in this case
we specify two alphabets F and U where F (the forgettable letters) specifies the entries which
can be forgotten at any time and U (the unforgettable letters) specifies the entries which
cannot get lost. With the help of these special storage mechanisms we are able to prove our
contributions for reliable and lossy queues or stacks, respectively, at the same time. We will
see in this paper that automata having a partially lossy queue as their memory are still as
powerful as Turing-machines - at least if there is one or more unforgettable letter. In contrast,
automata with a partially lossy stack are just special pushdown automata.

The second considered variation are distributed queues and stacks. These consist of
a finite number of reliable queues or stacks with a special synchronization mechanism
between them. We can also see these storage mechanisms as queues and stacks contain-
ing (Mazurkiewicz) traces instead of words (for an overview on the trace theory see, e.g.,
[Maz77, DR95]). With the help of such memories we are able to model computer networks
where each computer is a queue or pushdown automaton. In the end, we can see distributed
queue or pushdown automata as a generalization of the classical multi-queue or multi-stack
automata as well as a generalization of communicating automata (cf. [KM21] for an overview
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on this topic). Anyway, distributed queue and pushdown automata are Turing-complete and,
hence, have an undecidable reachability problem.

As we have noted, in the most kinds of automata the reachability problem is either undecid-
able or very inefficient. Hence, the analysis of those automata requires approximations of
this problem. A first, very trivial approach is to under-approximate the set of reachable con-
figurations step-by-step. In other words, from the set of configurations which are reachable
via n ∈ N computation steps, we easily obtain the configurations reachable after n + 1 steps.
Even if we are able to semi-decide the reachability problem via this algorithm, it is not very
efficient. So, after n computation steps we have still explored only a finite extension of the
configuration space.

A more efficient under-approximation was introduced by Boigelot et al. in [Boi+97]
for reliable queue automata and was translated to lossy queue automata by Abdulla et al. in
[Abd+04]. Here, we combine multiple computation steps of the automaton to a so-called
meta-transformation. In particular, in the named papers the authors considered the set of
configurations reachable via looping through a finite sequence of basic queue actions. If one
starts from a regular language of configurations the set of reachable configurations is still
regular in this case. So, in the aforementioned algorithm, we additionally search for such
loops and apply them at once. With this modification of the trivial algorithm we are able
to explore an infinite extension of the set of considered initial configurations in just a small
amount of time.

Another possibility to partially solve the reachability problem is to restrict the finite-state
automata. One example of such automata are so-called flat automata. In these automata
any control state belongs to at most one loop, i.e., there are no nested or interleaving loops.
The reachability problem for such flat (lossy or reliable) queue automata is NP-complete
[FP20, Sch20]. We can prove this result by utilization of the approach from Boigelot et al.
respectively from Abdulla et al. This can be generalized to so-called input-bounded automata.
In this case, the write actions to be applied to the attached queue are finite products of
loops and words. Such queue automata reduce to multi-counter automata without zero-tests
by [BFS20]. Hence, this reduction yields an algorithm deciding the reachability problem
in non-primitive recursive complexity. However, it is unknown if it also shares the lower
complexity bound of reachability in multi-counter automata.

We will see in this thesis just another approach towards a decision procedure of the
reachability problem. So we will consider distributed pushdown automata in which we
restrict the actions the automaton can apply to its stacks. Concretely, we allow the application
of write actions only on those stacks from which we have read a letter right before the write
actions. Such behavior prevents that we are able to copy data from one stack to another one.
In this case, we will obtain an efficient algorithm deciding the reachability problem of those
restricted distributed pushdown automata. This also yields the decidability of a trace-like
variation of the temporal logic LTL.

1.2 Outline and Main Contributions
Themain part of this thesis is divided into two big parts. Roughly, in the first part we study
the action sequences a finite automaton is allowed to apply to its attached queue or stack. In
the second part we will use the knowledge we have learned before and analyze the reachability
problem and the model checking problem of temporal logics on those automata.
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Right before the first part, we define a few basic definitions in Chapter 2, which we use
across the whole thesis. Additionally, in Chapter 3 we formalize storage mechanisms with
the help of data types. We also present a couple of basic data types as well as the already
mentioned partially lossy and distributed variants of queues and stacks.

1.2.1 Properties of Transformation Monoids
In the first part of this thesis we study the transformations that can be applied in queue and
pushdown automata. These transformations form a special monoid, the so-called transforma-
tion monoid or action monoid. This monoid is a quotient of the free monoid on the sequences
of basic actions of the studied data type.

In Chapter 4 we study some basic properties of the transformation monoid of partially
lossy queues and stacks. Concretely, we define the so-called behavioral equivalence which
identifies the sequences of actions which always have the same effect on any content of the
considered data type. This equivalence is an important tool when studying the behavior of
a data type and verifying automata having a memory of such data type. In this chapter we
list several equations which fully characterize this behavioral equivalence and, therefore,
the transformation monoid. If we understand those equations as a semi-Thue system we
obtain for any sequence of actions a unique, irreducible word which also is in some sense
“simple”. Afterwards, we study the shape of the normal forms when concatenating two
transformation sequences. We also characterize Green’s relations and cancellation properties
of the considered monoids. Finally, we also recall the embedding properties which we stated
in [Köc16, KKP18].

In the succeeding chapter we consider the algorithmic properties of rational languages
in the transformation monoids. These are exactly those transformations an automaton is
allowed to apply to its attached memory. For the partially lossy queues we will see that the
rational membership problem is decidable using only nondeterministic logarithmic space,
but other problems like equivalence, universality, or intersection emptiness are undecidable.
We also show a characterization of the rational languages in the transformation monoid
of partially lossy stacks. Concretely, a language is rational in this monoid if, and only if,
the language of the contained normal forms (from the previous chapter) is regular. This
characterization is a generalization of a result by Render and Kambites [RK09]. From this
result we also obtain the decidability of almost all of the considered decision problems.

Due to the undecidability of the considered decision problems for the rational languages
in the transformation monoid of partially lossy queues, we also consider a proper subclass:
the recognizable languages. These are those regular languages of action sequences which are
closed under behavioral equivalence. Using the well-known algorithms from the automata
theory, we obtain the decidability of almost all of the considered problems. In Chapter 6 we
finally characterize in which cases a language of action sequences is recognizable. To this
end, we give a characterization in terms of Kleene’s Theorem [Kle51] and in terms of Büchi’s
Theorem [Büc60]. In other words, we define special rational expressions generating exactly
the recognizable languages and we define a monadic second-order logic describing this class
of languages. Afterwards, we also prove that partially lossy queues have (in most cases) only
trivial recognizable languages: the empty set and the transformation monoid itself.

In the last chapter of the first part, we finally consider the aperiodic languages in the
transformation monoid. These are those recognizable languages in which we cannot count
modulo any natural number. For partially lossy queues we give characterizations in the
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style of Schützenberger [Sch65] and McNaughton-Papert [MP71]. In other words, we give
a restriction to the star-free expressions generating the aperiodic languages. Similarly, the
first-order fragment of our specialMSO-logic describing the recognizable languages, also
describes the aperiodic languages in this monoid.

1.2.2 Reachability Problems and Verification
In the second part we will finally utilize our knowledge about the transformation monoid
when verifying finite automata with our special variations of stacks and queues.

First, in Chapter 8 we recall some basic definitions and results we need for verification
of queues and stacks. Concretely, we define several reachability problems as well as several
temporal logics like LTL,CTL, andCTL∗. We also recall the approach fromVardi andWolper
to prove the decidability of the model checking problem of formulas from several of the
considered logics [VW86].

In Chapter 9 we study the reachability and model checking problem for the aforemen-
tioned variations of stacks. We start with recalling the constructions from [BEM97, FWW97]
considering the reachability and recurrent reachability problem of classical pushdown auto-
mata. We can also transfer this result to partially lossy stacks. In this case we show that a
partially lossy PDA is essentially a classical one with some additional loops on any control
state. Finally, we consider distributed stacks. Since automata having at least two stacks are
already Turing-powerful, we restrict the transitions of the considered automata as we have
mentioned before. In those restricted, distributed PDAs (so-called asynchronous PDAs),
we show that the set of backwards reachable configurations are efficiently recognizable if
we start from given recognizable set of configurations. This construction is close to the
one from Bouajjani et al. in [BEM97], but even more sophisticated. This result also yields
efficient algorithms deciding the reachability and the recurrent reachability problem. We
have also considered the forwards reachable configurations in an asynchronous pushdown
automaton. We will see that the set of configurations forwards reachable from a given rational
set of configurations always is rational. To this end, we will see that each forwards reachable
configuration also is reachable via a special, “short” run of our asynchronous automaton. For
a fixed underlying alphabet our construction requires only polynomial time.

Finally, in Chapter 10 we consider the reachability problem of reliable, partially lossy,
and distributed queues. Concretely, we want to extend the approach from Boigelot et al.
and Abdulla et al. in [Boi+97, Abd+04]. To this end, we introduce several further kinds
of meta-transformations. We will see that we reach a regular set of configurations from
another one by application of recognizable languages in the transformation monoid (see
Chapter 6). Additionally, we introduce so-called read-write independent sets. These are
essentially languages alternating between a regular language of write action sequences and
a regular language of read action sequences. For these sets we also prove that the set of
reachable configurations is regular if we start from another regular set of configurations. We
prove this result by a tricky reduction to the reachability problem of a classical pushdown
automaton (or actually a 1-counter automaton without zero-tests). We also see that all of our
constructions are possible in polynomial time (at least for a fixed underlying alphabet).





Chapter 2

Preliminaries

In this chapter we recall some basic definitions and notions which we require all across this
thesis.

2.1 Functions and Relations

Let f ∶ I → O be a function with pre-image I and image O. For i ∈ I and o ∈ O we write
f [i ↦ o] for the function д∶ I → O with д(i) = o and д(x) = f (x) for each x ∈ I ∖ {i}. In
other words, f [i ↦ o] is f in which we replace the image of i by o.

Let R ⊆ S × T be a binary relation on S and T . For s ∈ S and t ∈ T we also write s R t
instead of (s, t) ∈ R. We also define the sets s R ∶= {t ∈ T ∣ s R t} and R t ∶= {s ∈ S ∣ s R t}. We
can also extend these notions to subsets of S and T : S′ R ∶= ⋃s∈S′ s R and R T ′ ∶= ⋃t∈T′ R t.

Now, let R =∏n
i=1 Si be a finite product of sets. For I ⊆ {1, . . . , n} we write R↾I ∶=∏i∈I Si

for the projection (or restriction) of R to components with indices in I. Similarly, for s⃗ =
(si)1≤i≤n ∈ R we write s⃗↾I = (si)i∈I . Let I, J ⊆ {1, . . . , n} be two disjoint sets of indices and
s⃗ ∈ R↾I and t⃗ ∈ R↾J be two elements. Then by (s⃗, t⃗) we denote the joint tuple r⃗ ∈ R↾I∪J with
r⃗↾I = s⃗ and r⃗↾J = t⃗.

Let ≤ be a quasi ordering on a set S and T ⊆ S. The downwards and upwards closure of T
wrt. ≤ are the sets

↓≤T ∶= {s ∈ S ∣ ∃t ∈ T ∶ s ≤ t} and ↑≤T ∶= {s ∈ S ∣ ∃t ∈ T ∶ t ≤ s} .

The set T is downwards closed (upwards closed) wrt. ≤ if we have T = ↓≤T (T = ↑≤T , resp.).
Now, let ≡ be an equivalence relation on S and T ⊆ S. Then the closure of T wrt. ≡ is

the set
[T]≡ ∶= {s ∈ S ∣ ∃t ∈ T ∶ s ≡ t} .

A set T is closed under ≡ if we have T = [T]≡.

2.2 Monoids

Amonoid is a tuple (M, ⋅, e) whereM is a set, ⋅∶M2 →M is an associative operation onM,
and e ∈M is the identity satisfying m ⋅ e = e ⋅m = m for each m ∈M. Note that a monoid
contains exactly one element satisfying this equation. Whenever the situation is clear, we
writeM instead of (M, ⋅, e). Let m, n ∈M with mn = e. Then m is called a left-inverse of n
while n is called a right-inverse of m. Note that in general not all elements of a monoid have
a left- or right-inverse. Additionally, there may be elements having more than one left- resp.
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right-inverses. A monoid is called a group if all elements have a unique left- and right-inverse.
In this case the left- and right-inverse element of any m ∈M coincide. We call this element
the inverse element of m and denote it by m−1 (or in some contexts −m).

Example 2.2.1. (1) The natural numbers N ∶= {0, 1, 2, . . . } with addition + is a monoid
with identity 0. If we extend the natural numbers by the negative numbers, we obtain
the set of integers Z ∶= {. . . ,−2,−1} ∪N. This set with addition is even a group.

(2) Let Γ be an alphabet, i.e., Γ is a finite, non-empty set. Then the set Γ∗ ∶= {a1a2 . . . an ∣
n ∈ N, a1, a2, . . . , an ∈ Γ} with the concatenation ⋅ is a monoid - the so-called free
monoid over Γ. Its identity ε is the word of length 0 (or the empty word). Elements
w ∈ Γ∗ are also called words and subsets L ⊆ Γ∗ are called (word) languages. ⌟

A monoidM is left-cancellative if for each k,m, n ∈M the following implication holds:

km = kn Ô⇒ m = n .

Similarly,M is right-cancellative if for each k,m, n ∈M the following implication holds:

mk = nk Ô⇒ m = n .

M is cancellative if it is both, left- and right-cancellative. For example, Γ∗, N, and Z are
cancellative. We call m ∈M a prefix (suffix) of k ∈M if we have k = mn (k = nm, resp.) for
an n ∈M. IfM is left-cancellative (right-cancellative, resp.) the element n is uniquely defined
and is called the complementary suffix (prefix, resp.) of k wrt. m. In literature, the element m
is also called a left- or right-divisor of k and n is the left- or right-quotient of k wrt. m. The
element m is an infix (or factor) of k if there are elements ℓ, n ∈M with k = ℓmn.

Now, let Γ be an alphabet. Forw = α1 . . . αn (with α1, . . . , αn ∈ Γ), 1 ≤ i ≤ n, and 0 ≤ j ≤ n
we denotew[i , j] ∶= αi . . . α j the infix ofw from position i to j. We assumew[i , j] = ε if i > j
holds.

In algebra, Green’s relations are an important concept. These are defined as follows: let
M be a monoid and m, n ∈M. We write

m L n ⇐⇒ Mm =Mn,
mR n ⇐⇒ mM = nM,
m J n ⇐⇒ MmM =MnM,
mH n ⇐⇒ m L n and mR n,
mD n ⇐⇒ ∃k ∈M∶m L k and kR n .

Note that L, R,H, and D are contained in the relation J.

2.3 Graphs

A (directed) graph is a tuple G = (V , E) where V is a set of vertices or nodes and E ⊆ V 2 is
a set of edges. For two nodes u, v ∈ V we write u →G v if (u, v) ∈ E. For u, v ∈ V we write
u →∗G v if there is a sequence v0, v1, . . . , vn ∈ V with v0 = u, vi−1 →G vi for each 1 ≤ i ≤ n, and
vn = v. Such sequence is also called a path in G. Note that →∗G is a reflexive and transitive
relation. For I, F ⊆ V we write I →∗G F if there are ι ∈ I and f ∈ F with ι →∗G f . Additionally,
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we write I →∗G v and v →∗G F instead of I →∗G {v} resp. {v}→∗G F (where v ∈ V is a node). A
set U ⊆ V is (weakly) connected if for each u, v ∈ U we have u →∗

H
v whereH = (V , F) is the

symmetric closure of G, i.e., we have F = E ∪ {(u, v) ∈ V 2 ∣ (v , u) ∈ E}. A set U ⊆ V is a
connected component if it is connected and for each U ′ ⊋ U the set U ′ is not connected, i.e.,
U is a maximal connected set. The induced subgraph G↾U ∶= (U , E ∩U2) is the G restricted
to the nodes in U ⊆ V . The complementary graph of G is Gc ∶= (V ,V 2 ∖ E).

Now, let Γ be a non-empty set. A Γ-labeled graph is a tuple G = (V , E) where V is a set
of vertices and E ⊆ V × Γ ×V is a set of (labeled) edges. For α ∈ Γ, u, v ∈ V we write u α

Ð→G v

if (u, α, v) ∈ E. For a sequence γ ∈ Γ∗ and vertices u, v ∈ V we write u
γ
Ð→G v if there are

α1, . . . , αn ∈ Γ and v0, v1, . . . , vn ∈ V with γ = α1 . . . αn, v0 = u, vi−1
α i
Ð→G vi for each 1 ≤ i ≤ n,

and vn = v. In this case, we call the sequence v0, . . . , vn a γ-labeled path. For I, F ⊆ V and
γ ∈ Γ∗ we write I

γ
Ð→G F if there are ι ∈ I and f ∈ F with ι

γ
Ð→G f . Similarly, we drop the braces

if I or F is a singleton.

2.4 Automata and Languages

A nondeterministic finite automaton (NFA, for short) is a tuple A = (Q , Γ , I, ∆, F) where
Q is a finite set of states, Γ is an alphabet, I, F ⊆ Q are the sets of initial and final states,
respectively, and ∆ ⊆ Q × Γ × Q is a set of transitions. The configuration graph of A is the
Γ-labeled graph GA = (Q , ∆). For p, q ∈ Q and w ∈ Γ∗ we also write p w

Ð→A q instead of
p

w
Ð→GA

q. Aw-labeled path in GA is also called a run ofAwith labelw. The accepted language
of A is L(A) ∶= {w ∈ Γ∗ ∣ I w

Ð→A F}. A language L ⊆ Γ∗ is called regular if there is an NFA
A with L = L(A). For a pair P1, P2 ⊆ Q we write AP1→P2 for the NFA (Q , Γ , P1, ∆, P2), i.e.,
we modify the initial and final states of NFA to P1 and P2, respectively. Then we have the
following equation:

L(A) = ⋃
q∈Q

L(AI→q) ⋅ L(Aq→F) .

We can also extend the notion of NFAs as follows: an (extended) NFA is a quintuple
A = (Q , Γ , I, ∆, F) where Q, Γ, I, and F are defined as before and ∆ ⊆ Q × Γ∗ × Q is finitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinite.
We already know that, from a given extended NFA A, we can construct a (classical) NFA
accepting L(A).

An NFA A = (Q , Γ , I, ∆, F) is called deterministic (or a DFA) if we have ∣I∣ = 1 and for
each p ∈ Q and α ∈ Γ there is at most one q ∈ Q with (p, α, q) ∈ ∆. DFAs also accept exactly
the class of regular languages.

Let Γ be an alphabet and K , L ⊆ Γ∗ be two languages. The shuffle of K and L is the language

K� L ∶= {v1w1v2w2 . . . vnwn ∣
n ∈ N, v1, v2, . . . , vn ,w1,w2, . . . ,wn ∈ Γ∗,

v1v2 . . . vn ∈ K ,w1w2 . . .wn ∈ L
} .

Now, let Σ ⊆ Γ. The projection to Σ is the homomorphism πΣ∶ Γ∗ → Σ∗ with

πΣ(ε) = ε and πΣ(αw) =

⎧⎪⎪
⎨
⎪⎪⎩

απΣ(w) if α ∈ Σ
πΣ(w) if α ∉ Σ

for each α ∈ Γ and w ∈ Γ∗. The reversal of a word w = α1α2 . . . αn (with α1, α2, . . . , αn ∈ Γ) is
wR ∶= αn . . . α2α1. The reversal of a language L ⊆ Γ∗ is LR ∶= {wR ∣ w ∈ L}.
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Let v ,w ∈ Γ∗. We say that v is a subword of w (denoted by v ⊑w) if we have w ∈ v� Γ∗.
In this casew is a superword of v. Note that the induced binary relation ⊑ is a partial ordering
on Γ∗. We know that each infix, suffix, and infix is a subword but not vice versa.

The class of regular languages is effectively closed under Boolean operations, product,
iteration, homomorphisms and their inverses (including projections), shuffle, reversal, and
up- and downclosures wrt. the subword, prefix, suffix, and infix relation. Note that given
two NFAs, all of these operations are possible in polynomial time except for complement.
However, this operation is efficienti if the input is given by a DFA.

2.5 Structures and Logics

A (relational) signature is a tuple τ ∶= (R, ar)where R is a (not necessarily finite) set of relation
names, and ar∶R → N is the arity map. A τ-structure is a tuple S = (U , IS) where U is a set
(the universe) and IS is the interpretation of τ, which is a map with IS(P) ⊆ Uar(P) for each
P ∈ R. In later chapters we denote τ-structures S as a tuple consisting of its universe U and
the images of IS.

Now, let τ = (R, ar) be a signature andV0 andV1 be two countable sets of first-order
resp. second-order variables withV0∩V1 = ∅. For better readability we denote the first-order
variables by lowercase letters and the second-order variables by uppercase letters. We define
the set ofmonadic second-order τ-formulas (denoted byMSO[τ]) inductively. Simultaneously,
we define the set of free variables fv(ϕ) ⊆ V0 ∪V1 of a formula ϕ. First we consider the
so-called atomic formulas:

⊺ ∈MSO[τ] and fv(⊺) ∶= ∅,

(x = y) ∈MSO[τ] and fv(x = y) ∶= {x , y} where x , y ∈V0,

P(x1, . . . , xk) ∈ MSO[τ] and fv(P(x1, . . . , xk)) ∶= {x1, . . . , xk} where P ∈ R, k = ar(P),
and x1, . . . , xk ∈V0, and

X(x) ∈MSO[τ] and fv(X(x)) ∶= {X , x} where X ∈V1 and x ∈V0.

Now, let ϕ,ψ ∈MSO[τ] be two formulas. Then we also have:

¬ϕ ∈MSO[τ] and fv(¬ϕ) ∶= fv(ϕ),

ϕ ∨ ψ ∈MSO[τ] and fv(ϕ ∨ ψ) ∶= fv(ϕ) ∪ fv(ψ),

∃x∶ϕ ∈MSO[τ] and fv(∃x∶ϕ) ∶= fv(ϕ) ∖ {x} where x ∈V0, and

∃X∶ϕ ∈MSO[τ] and fv(∃X∶ϕ) ∶= fv(ϕ) ∖ {X} where X ∈V1.

We also write ϕ ∧ ψ instead of ¬(¬ϕ ∨ ¬ψ), ∀x∶ϕ instead of ¬∃x∶ ¬ϕ, and ∀X∶ϕ instead of
¬∃X∶ ¬ϕ. A formula ϕ is first-order if ϕ contains no occurrence of a second-order variable.
The set of all first-order τ-formulas is denoted by FO[τ]. We also denote the free variables
of a formula as its arguments. In other words, for a formula ϕ ∈ MSO[τ] with fv(ϕ) =
{X1, . . . , Xm , x1, . . . , xn} we also write ϕ(X1, . . . , Xm , x1, . . . , xn) instead of ϕ. A formula ϕ is
called a sentence if fv(ϕ) = ∅ holds.

iIn our context, a construction is efficient if it requires only polynomial time. In particular, we say that a
language is efficiently regular if there is an efficient construction of an NFA accepting this language.
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The semantics of monadic second-order formulas is defined as follows: let S = (U , IS)
be a τ-structure. An assignment of S is a map ϑ∶V0 ∪V1 → U ∪ 2U with ϑ(x) ∈ U and
ϑ(X) ⊆ U holds for each x ∈ V0 and X ∈ V1. Then we write for an assignment ϑ and
formulas ϕ,ψ ∈MSO[τ]:

(S, ϑ) ⊧ ⊺

(S, ϑ) ⊧ x = y iff ϑ(x) = ϑ(y),

(S, ϑ) ⊧ P(x1, . . . , xk) iff (ϑ(x1), . . . , ϑ(xk)) ∈ IS(P),

(S, ϑ) ⊧ X(x) iff ϑ(x) ∈ ϑ(X),

(S, ϑ) ⊧ ¬ϕ iff (S, ϑ) /⊧ ϕ,

(S, ϑ) ⊧ ϕ ∨ ψ iff (S, ϑ) ⊧ ϕ or (S, ϑ) ⊧ ψ,

(S, ϑ) ⊧ ∃x∶ϕ iff there is s ∈ U with (S, ϑ[x ↦ s]) ⊧ ϕ, and

(S, ϑ) ⊧ ∃X∶ϕ iff there is S ⊆ U with (S, ϑ[X ↦ S]) ⊧ ϕ.

For a τ-structure S and a formula ϕ(X⃗ , x⃗) ∈ MSO[τ], we also write (S, S⃗ , s⃗) ⊧ ϕ(X⃗ , x⃗)
if there is an assignment ϑ in S with ϑ(Xi) = Si and ϑ(xi) = si satisfying (S, ϑ) ⊧ ϕ. In
particular, if ϕ is a sentence, we also write S ⊧ ϕ in this case.

Example 2.5.1. Let τ = ({E}, ar) with ar(E) = 2 be a signature. Then a τ-structure G
(note that this is a directed graph) satisfies

∃x , y, z∶E(x , y) ∧ E(y, z) ∧ E(z, x)

if, and only if, G contains a cycle of length three. G satisfies

∃X∶ (∃x∶X(x) ∧ ∃y∶ ¬X(y) ∧ ∀x , y∶E(x , y)→ (x ∈ X ↔ y ∈ X))

if, and only if, G is not connected. It is well-known that there is no first-order formula
expressing this property (one can easily show this with the help of so-called Ehrenfeucht-
Fraïssé games [Ehr61, Fra54]). ⌟

Let ϕ ∈ MSO[τ] be a formula and y ∈ fv(ϕ) ∩V0 be a free first-order variable. Then
we write ϕ[y ← x] for the formula which is obtained from ϕ by replacement of any freefreefreefreefreefreefreefreefreefreefreefreefreefreefreefreefree
occurrence of y by x. Now, let ϕ, ξ ∈ MSO[τ] be two formulas and y ∈ fv(ξ) ∩V0 be a
distinguished free first-order variable of ξ. Then the restriction ϕ↾ξ of ϕ to ξ is defined by

ϕ↾ξ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ if ϕ is atomic
¬(ψ↾ξ) if ϕ = ¬ψ
ψ↾ξ ∨ χ↾ξ if ϕ = ψ ∨ χ

∃x∶ (ψ↾ξ ∧ ξ[y ← x]) if ϕ = ∃x∶ψ
∃X∶ (ψ↾ξ ∧ ∀x∶X(x)→ ξ[y ← x]) if ϕ = ∃X∶ψ .

In other words, we restrict the quantifiers in ϕ to the values satisfying ξ. Obviously, we have
ϕ∣ξ ∈ FO[τ] if ϕ, ξ ∈ FO[τ] holds.





Chapter 3

Automata and Storage Mechanisms

In this chapter we want to introduce finite automata having several mechanisms to store
data. A possible representation of such mechanism is a data structure. A data structure is
an object consisting of a (possibly infinite) set of states and a finite number of methods in
which we can modify the state of the structure. Famous data structures are linked lists, arrays,
strings, or bitmaps. However, our results in the following chapters do not depend on the
concrete implementation of such storage mechanism. So, we consider a more abstract model
to store data - so-called (abstract) data types (cf. [Cle86, Cor+09, SS20]). In our context a
data type consists of a (possibly infinite) set of states, a finite signature consisting of functions,
so-called actions, and the semantics of this signature (i.e., computable functions realizing the
actions). Then we can understand an action as the name f of a function f ∶U × I → U ×O
and their semantics as the concrete function where U is the set of states of our data type, I is
a set of inputs, and O is a set of outputs. In other words, depending on the current state of the
data type, an action takes an input i ∈ I, modifies its state, and returns an output o ∈ O. Note
that in literature, the semantics of an abstract data type is sometimes only implicitly given by
a system of axioms (cf. for example [SS20]). We will consider such axioms in Chapter 4 for
several data types.

Concretely, we focus on so-called transforming data types. The actions of these data
types do not have any additional in- and outputs. In other words, the result of the application
of such action only depends on the current state of the data type and only yields a new
state. We will see later that such data types are suitable for attaching them to finite automata.
Then, depending on the current state of the attached data type the automaton is able to do a
transition from one configuration to another one and to modify it accordingly. In fact such
data type represents an additional memory of the automaton.

First, we formally introduce transforming data types and automata using them as their
memory. Later we give some examples and extend the notion to lossy and distributed data
types.

3.1 Definitions
We fix the symbol � (the so-called error state). A (transforming) data type is a tripleD =
(U , Σ,Θ) whereU is a recursive set (the so-called universe) with � ∉ U , Σ is an alphabet (the
so-called signature), and Θ∶Σ × (U ∪ {�}) → (U ∪ {�}) is a recursive, total function with
Θ(α, �) = � for each α ∈ Σ (the semantics of the signature). An element α ∈ Σ is also called a
(basic) action.

Now, let t ∈ Σ∗ be a sequence of actions ofD. Then we define the map ⟦t⟧D∶ (U ∪{�})→
(U ∪ {�}) inductively as follows:
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⟦ε⟧D ∶= idU∪{�} is the identity map on U ∪ {�} and

if t = αs for α ∈ Σ and s ∈ Σ∗ we set ⟦t⟧D(x) ∶= ⟦s⟧D(Θ(α, x)) for each x ∈ U ∪ {�}.

In particular, we have ⟦α⟧D = Θ(α, .) for each α ∈ Σ. For t ∈ Σ∗ we call ⟦t⟧D the transfor-
mation induced by the action sequence t. We say that “⟦t⟧D(x) is undefined” whenever we
have ⟦t⟧D(x) = �. The set of all transformations ⟦t⟧D with composition forms a monoid
with identity ⟦ε⟧D. This monoid is called the transformation monoid (or action monoid) and
is denoted by T(D). Note that we write ⟦t⟧ instead of ⟦t⟧D whenever the situation is clear.

LetD = (U , Σ,Θ) be a data type. AD-automaton is a tuple A = (Q , Γ ,D, I, c, ∆, F)
where Q is a finite set of (control) states, Γ is an alphabet, I, F ⊆ Q are the sets of initial and
final states, respectively, c ∈ U is the initial content and ∆ ⊆ Q × (Γ ∪ {ε}) × Σ∗ ×Q is a finitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinite
set of transitions.

Now, let A = (Q , Γ ,D, I, c, ∆, F) be a D-automaton. The set of configurations of A
is the set ConfA ∶= Q × U . The initial and final configurations of A are InitA ∶= I × {c}
and FinalA ∶= F × U , respectively. The configuration graph of A is the (possibly infinite)
labeled graph GA = (ConfA, E) with (p, x)

a
Ð→GA

(q, y) if, and only if, there is a transition
(p, a, t, q) ∈ ∆ with ⟦t⟧(x) = y for any two configurations (p, x), (q, y) ∈ ConfA and for any
letter a ∈ Γ ∪ {ε}. In other words, a transition (p, a, t, q) ∈ ∆ applies the transition (p, a, q)
of the underlying NFA and applies the transformation ⟦t⟧ to its attached data type. Note that
the application of such transition requires ⟦t⟧(x) ≠ � since � ∉ U = Q ConfA. From now on
we write (p, x) a

Ð→A (q, y) instead of (p, x)
a
Ð→GA

(q, y). The accepted language of A is

L(A) ∶= {w ∈ Γ∗ ∣ InitA
w
Ð→A FinalA} .

Remark 3.1.1. Our data types only consist of their universe and some transforming
operations. However, there are data types like counters with zero-tests or sets which
contain additional tests. A test (or lookup) is a function t∶U ∪{�}→ {0, 1}with t(�) = 0.
Then aD-automaton is allowed to apply a transition labeled with such test t if, and only
if, the content c ∈ U of its data types satisfies t(c) = 1.

From the test t we also obtain a (basic) transformation ⟦t′⟧∶ (U ∪ {�})→ (U ∪ {�})
with the following semantics:

⟦t′⟧(c) =
⎧⎪⎪
⎨
⎪⎪⎩

c if t(c) = 1
� otherwise .

Then the automaton is able to apply a t′-labeled transition if, and only if, it could apply a
t-labeled transition. Hence, our data types are also able to simulate types with tests. ⌟

Remark 3.1.2. Let D be a data type. The D-automata defined above are not exactly
the same as the so-called valence automata (see, e.g., [Pău80, FS02]). In such automata
we require the universe ofD to be a monoid. Additionally, instead of accepting when
reaching a final state, valence automata only accept if their memory is empty (i.e., the
content is the monoid’s identity). So, for an accepting run from an initial configuration
(ι, c) to a final configuration ( f , e) we require the existence of a right-inverse element x
in the underlying monoid (i.e., we have cx = e).

For certain data types,D-automata are as powerful as valence automata with an
underlying monoidM. For example, this is possible for stacks or counters. In this case,
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we can simulate aD-automaton by a valence automaton having the memory T(D) and
vice versa. So, instead of applying ⟦t⟧ in any transition of theD-automaton we compute
the composition of the previously applied transformations with the label ⟦t⟧ ∈ T(D).

However, it is impossible to define, for example, a queue automaton as a valence
automaton in this way. This is due to the fact that the transformation monoid of a queue
has no non-trivial divisor of its identity (we will see this later in this thesis). ⌟

We are able to model the most important data types with our definitions. Some of them are
given in the following section. However, there are data types which cannot be modeled with
our definitions. For example, we are unable to define set-theoretical operations (like union,
intersection, or difference) of a (dynamic) set with an infinite universe.

3.2 Examples

3.2.1 Finite Memories
Consider a finite data type F = (U , Σ,Θ), i.e., the universe U is finite. A typical example
for such finite data type is a bounded queue (or bounded channel). A bounded queue stores
sequences of length at most k ∈ N of elements from a given alphabet A. In other words, the
content of a bounded queue is a word from A≤k. For each letter a ∈ A a bounded queue
has two possible basic actions. On the one hand, we can write the letter a at the end of the
bounded queue’s content (we denote this action by a). We do this by appending an a to the
content. Note that this action fails if we try to write a letter a into a full bounded queue (i.e.,
if the content already has length k). On the other hand, we can read a from the head position
of the queue (we denote this action by a). In this case, we remove a leading a from the queue’s
content. This action is undefined if there is no a at the head position of the bounded queue.
We assume that the alphabet of read actions A ∶= {a ∣ a ∈ A} is a disjoint copy of the alphabet
A.

Formally, a bounded queue is the data typeBQ k = (A
≤k , Σ,Θ) where k ∈ N, Σ = A∪ A,

⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

xa if ∣x∣ < k and x ≠ �
� otherwise,

and ⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

y if x = ay
� otherwise

holds for each a ∈ A and x ∈ A∗ ∪ {�}. Similarly, we may define bounded stacks (or bounded
pushdowns), which only differ in their write action a. In this case, one prependsprependsprependsprependsprependsprependsprependsprependsprependsprependsprependsprependsprependsprependsprependsprependsprepends the letter a
to the stack’s content instead of appendingappendingappendingappendingappendingappendingappendingappendingappendingappendingappendingappendingappendingappendingappendingappendingappending it.

a b b a
BQ 4

⟦a⟧
b b a

a

BQ 4

⟦b⟧
b b a b

b

BQ 4

Figure 3.1. A visualization of a (bounded) queue with content abba applying the transformation ⟦ab⟧.

It is well-known that automata having a finite data type as their storage mechanism
accept exactly the class of regular languages. To this end, let A = (Q , Γ ,F , I, c, ∆, F) be an
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F-automaton. Since U is finite, the set ConfA of configurations of A is finite as well. Hence,
we can construct an NFA with ε-transitions which simulates this finite configuration graph.
From A we can compute the NFAB = (Q′, Γ , I′, ∆′, F ′) with:

Q′ ∶= ConfA = Q ×U ,

I′ ∶= InitA = I × {c},

∆′ ∶= {((p, x), a, (q, y)) ∣ ∃(p, a, t, q) ∈ ∆∶ ⟦t⟧(x) = y}, and

F ′ ∶= FinalA = F ×U .

It is a simple exercise to prove that L(A) = L(B) holds.
Conversely, from any given NFABwe can construct anF-automatonA accepting L(B).

A possible idea is to construct A such that it does not modify the content of its memory. In
other words, each transition is labeled with the transformation ⟦ε⟧ = idU∪{�}.

All in all, we see that for any finite data type F the F-automata accept exactly the class
of regular languages. In particular, automata with a bounded queue or a bounded stack are
as powerful as NFAs (without additional memory).

3.2.2 Counters
A (partially blind) counter is a data type which has a natural number as its content and is
allowed to increase or decrease this number. Since the content is non-negative, the decrease
action on the content 0 is undefined. Formally, a counter is the data type C1 = (N, {i , d},Θ)
where

⟦i⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x + 1 if x ∈ N
� otherwise

and ⟦d⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x − 1 if x ∈ N ∖ {0}
� otherwise

for each x ∈ N∪{�}. In other words, i increments the counter and d decrements the counter.
It is easy to see that ⟦id⟧(x) = x = idN∪{�}(x) holds for each x ∈ N ∪ {�} and ⟦di⟧(0) =

� ≠ 0 = idN∪{�}(0). Hence, ⟦d⟧ is the right-inverse of ⟦i⟧ in the transformation monoid of
C1 but it is not the left-inverse of ⟦i⟧ implying that the transformation monoid T(C1) is not
a group. By [Lot02] this monoid is exactly the so-called bicyclic semigroup which was first
introduced by Lyapin [Lya53]. The C1-automata are exactly the (partially blind) one-counter
automata [Gre78].

For a positive integer k > 0, we can also model k (partially blind) counters, which consist
of a k-tuple of natural numbers and each number can be increased or decreased. This can be
formalized by the data type Ck = (Nk , {i j, d j ∣ 1 ≤ j ≤ k},Θ) where ⟦i j⟧ increases the counter
j and ⟦d j⟧ decreases this counter. In this case, Ck-automata are the (partially blind) k-counter
automata (in literature these are also known as vector addition systems [KM69] or Petri nets
[Pet62]).

Similarly, we can model k blind counters. The contents of this data type are k-tuples of
integersintegersintegersintegersintegersintegersintegersintegersintegersintegersintegersintegersintegersintegersintegersintegersintegers, i.e., their contents may also be negative. This can be formalized by the data type
Zk = (Zk , {i j, d j ∣ 1 ≤ j ≤ k},Θ). In this case, we have ⟦i jd j⟧ = idZk∪{�} = ⟦d j i j⟧. Hence, the
transformation monoid T(Zk) is isomorphic to the group Zk. The Zk-automata are exactly
the blind k-counter automata.

Counters with zero-tests are k partially blind counters which additionally are allowed to
check their contents for zero. This can be modeled by the data typeDk = (Nk , {i j, d j, z j ∣
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1 ≤ j ≤ k},Θ) where ⟦z j⟧(x1, . . . , xk) = (x1, . . . , xk) holds if x j = 0 and ⟦z j⟧(x1, . . . , xk) = �
holds otherwise. Note that the only difference to partially blind counters is the addition
of the tests z j. However, for k ≥ 2, Dk-automata (so-called Minsky-machines) are much
more powerful than Ck-automata. Concretely,Dk-automata accept exactly the recursively
enumerable languages [Min67].

3.2.3 Stacks
A very important basic data type is an unbounded (lifo-)stack (or pushdown). A stack stores
sequences of elements from a given alphabet A. In contrast to bounded queues or stacks,
these sequences can have arbitrary finite length. In other words, a content of a stack is a word
from A∗. For each letter a ∈ Awe have two possible basic actions: writing the letter a on top
of the stack (denoted by a) and reading the letter a from the stack’s top position (denoted by
a). In contrast to the bounded case, the write action is defined in any case. However, read
actions are still undefined if there is no a on top of the stack’s content.

In practice, a computer needs a stack to execute a programwith nested function calls. The
computer stores its context in this stack when calling a function. Also there are calculators
employing the reverse Polish notation (for example one writes 1 2+ instead of 1 + 2) with the
help of a stack in which one stores operands and intermediate values.

Formally, a stack is the data type PA = (A∗, Σ,Θ) where A is an alphabet, Σ = A∪ A,

⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ax if x ∈ A∗

� otherwise ,
and ⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

y if x = ay
� otherwise

holds for each a ∈ A and x ∈ A∗ ∪ {�}.

a
b
b
a

PA

⟦a⟧

a
b
b

a

PA

⟦b⟧

a
b
b
b

b

PA

Figure 3.2. A visualization of a stack with content abba applying the transformation ⟦ab⟧.

Remark 3.2.1. Our definition of a stack slightly differs from the definition of stacks in
literature. For example, in [SS20] a stack has only one read action which takes a stack’s
content and returns the top entry of the stack and the stack’s content without this top
entry. However, this data type is not transformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransformingtransforming. In contrast, the data type as defined
above has a read action a for each entry a ∈ A. Its corresponding the transformation ⟦a⟧
verifies that the top entry is actually a and returns afterwards the stack’s content without
this top entry. We use this variation due to technical reasons. ⌟

We assume that the alphabet of read actions A ∶= {a ∣ a ∈ A} is a disjoint copy of
the alphabet A. For a word t = a1a2 . . . an with a1, a2, . . . , an ∈ A we write t ∶= a1 a2 . . . an.
Additionally, for L ⊆ A∗ we write L ∶= {t ∣ t ∈ L}.
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Read and write actions of a stack are in some sense generalizations of the increase and
decrease actions of a single counter. So, if the underlying alphabet A of stack contents
is a singleton, the stack PA is essentially a single partially blind counter. Moreover, we
have T(PA) ≅ T(C1) in this case. If A is not a singleton, T(C1) is isomorphic to a proper
submonoid of T(PA). However, similar to situation in T(C1) the read transformation ⟦a⟧ is
the right-inverse element of the corresponding write transformation ⟦a⟧ (but not vice versa):
for a ∈ A we have ⟦aa⟧ = idA∗∪{�} and ⟦aa⟧(ε) = � ≠ ε = idA∗∪{�}(ε). Due to this fact, in
literature the transformation monoid T(PA) of a stack is also called the polycyclic semigroup
[NP70].

Note that we can also simulate a single counter with zero-testsD1 with the help of a
stack PA with a binary alphabet A = {a, #}. In this case, the letter #marks the bottom of the
stack. While increasing and decreasing of the counter correspond to writing and reading the
letter a, we can simulate a zero-test with the sequence ##.

In general, the PA-automata are essentially pushdown automata (PDA, for short). In
literature (like in [HMU01]) each transition of a PDA applies a transformation ⟦t⟧ with
t ∈ AA∗ to their stack. However, we are able (by splitting edges) to construct from a given
PA-automaton an equivalent classical PDA. Hence, our PA-automata accept exactly the
context-free languages and from now on we call them PDA, too.

It is also possible to simulate stacks storing entries from a countable universe U . To
this end, we use a uniquely decipherable function c∶U∗ → {0, 1}∗ (i.e., c is injective). Then
writing an x ∈ U corresponds to ⟦c(x)R⟧ in P{0,1} and reading x ∈ U corresponds to ⟦c(x)⟧.

We may also extend this data type to lossy or distributed (multi)-stacks. We will see the
definitions of these variations at a later point in this chapter.

3.2.4 Queues
The definition of an unbounded (fifo-)queue (or channel) is very similar to the ones of a
bounded queue and of an unbounded stack. So, the content of a queue is a finite sequence
of elements from an alphabet A. We can write and read an element a. However, we do not
prependprependprependprependprependprependprependprependprependprependprependprependprependprependprependprependprepend the a to the queue’s content. Instead we appendappendappendappendappendappendappendappendappendappendappendappendappendappendappendappendappend this letter. Anyway, the write action
is defined for each queue content.

In practice, a queue can be used to model a single communication channel between two
network instances. Also operating systems sometimes use a queue to buffer data for later
uses.

Formally, a queue is defined as the following data type: QA = (A∗, Σ,Θ) where A is an
alphabet, Σ = A∪ A,

⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

xa if x ∈ A∗

� otherwise ,
and ⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

y if x = ay
� otherwise

holds for each a ∈ A and x ∈ A∗ ∪ {�}. Note that we have ⟦a⟧(x) = xa and ⟦a⟧(ax) = x. By
induction on the length of an action sequence t ∈ Σ∗ we observe the following:

Observation 3.2.2. Let A be an alphabet, t ∈ Σ∗ be an action sequence, and x , y ∈ A∗
with ⟦t⟧(x) = y ≠ �. Then we have xw = r y where w = πA(t) and r = πA(t). ◂
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The transformation monoid T(QA) is the so-called queue monoid which was first intro-
duced by Huschenbett et al. in [HKZ17].

Note that if A is a singleton, the queue QA degenerates to a partially blind counter. Hence,
we have QA ≅ C1 in this case. Now, let A be at least binary. Recall that the read transformation
of the letter a is the right-inverse element of the corresponding write transformation in the
transformation monoid T(PA) of a stack with entries from A. This fact does not hold in the
queue monoid. For example, if a, b ∈ A are two distinct letters we have

⟦aa⟧(ab) = ⟦a⟧(aba) = ba ≠ ab = idA∗∪{�}(ab) ,

i.e., we have ⟦aa⟧ ≠ idA∗∪{�}. In fact, no transformation ⟦t⟧ ∈ T(QA) ∖ {⟦ε⟧} has a left- or
right-inverse element in this monoid (cf. [HKZ17, Theorem 5.3]).

It is well-known that QA-automata (so-called queue automata) with an at least binary
alphabet A of queue entries are much more powerful than pushdown automata. Concretely,
queue automata are able to simulate Turing-machines (cf. [BZ83]). Hence, these automata
accept exactly the class of recursively enumerable languages.

Note that againwe are able to simulate queues storing entries from a countable universeU .
Later we will see the definitions of lossy queues and distributed multi-queues.

3.2.5 Priority Queues
Now, we want to introduce priority queues. These are queues in which we annotate each
queue entry with a priority. Entries having a high priority are able to supersede or overtake
entries with lower priority. In other words, we are able to bypass the fifo-principle of the
queues with the help of these priorities. Similar to stacks and queues, a priority queue is a
very important basic data type. It is used by network routers for management of a limited
bandwidth or by operating systems for scheduling tasks.

Here, we model the priorities of the queue entries with the help of a quasi-ordering. To
this end, let A be an alphabet of queue entries and ≤ be a quasi-ordering on A. Then “a ≤ b”
means that b has a higher (or equal) priority than a. Then a priority queue with internal
superseding semantics is the data type PQ I

A,≤ = (A
∗, Σ,Θ) where

⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

xa if x ∈ A∗

� otherwise
and ⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

z if x = yaz, y ∈ {b ∈ A ∣ b ≤ a, b ≠ a}∗

� otherwise

holds for each a ∈ A and x ∈ A∗∪{�}. In other words, these queues are able to remove letters
with low priority to allow reading of letters having a higher priority.

We can also define priority queues with strict superseding semantics PQ S
A,≤ which only

differ in their read actions:

⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

z if x = yaz, y ∈ {b ∈ A ∣ b < a}∗

� otherwise .

Here, we are able to remove some letters of low priority to read a letter of strictly higher
priority.

A priority queue with overtaking semantics is the data type PQ O
A,≤ with the following

read actions:

⟦a⟧(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

yz if x = yaz, y ∈ {b ∈ A ∣ b < a}∗

� otherwise .
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In this case, we are able to read letters a with strictly higher priority but we do not remove
the letters with lower priority in front of a.

Haase et al. have shown in [HSS14] thatPQ S
A,≤- andPQ O

A,≤-automata aremuchmore pow-
erful than PQ I

A,≤-automata. Concretely, PQ S
A,≤- and PQ O

A,≤-automata are Turing-complete
and, hence, accept exactly the recursively enumerable languages.

3.2.6 Turing-Tapes
We can also model Turing-machines with the help of a data type. A Turing-tape is a data type
consisting of an infinite sequence of letters and a position of the machine’s head. We are able
to read or replace the letter at the head’s position. Additionally, we can move the head by
one position to the left or right. Since the machine’s head reaches only a finite number of
positions of its tape after a finite computation, we assume that almost all positions on its tape
are empty (represented by a blank symbol □).

We can model such Turing-tape by a data type of the form TA,□ = (U , Σ,Θ) where A is
an at least binary alphabet, □ ∈ A is the blank symbol,

U = { f ∶Z→ A ∣ ∃n− < 0 < n+∀i ∈ Z ∖ [n−, n+]∶ f (i) = □} ×Z ,

Σ = {a, a ∣ a ∈ A} ∪ {L,N , R} with

⟦a⟧(( f , n)) ∶= ( f [n ↦ a], n) , ⟦a⟧(( f , n)) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

( f , n) if f (n) = a
� otherwise ,

⟦L⟧(( f , n)) ∶= ( f , n − 1), ⟦N⟧(( f , n)) ∶= ( f , n), and ⟦R⟧(( f , n)) ∶= ( f , n + 1) for any
( f , n) ∈ U .

We call aTA,□-automaton a Turing-machine. Note that in literature any edge of a classical
Turing-machine is labeled by an action sequence from AA{L,N , R}. However, from a given
TA,□-automaton we obtain an equivalent classical Turing-machine by splitting the more
general transitions.

For a configuration (q, ( f , n)) of a Turing-machine we can also write vqw where vw is
a subsequence of the image of f containing all non-blank symbols such that the head is on
the position of w’s first letter.

It is well-known that Turing-machines accept exactly the class of recursively enumerable
languages.

3.3 Lossy Data Types
Until now, we have only considered memories which are reliable. Now, we want to consider
automata with storage mechanisms which are able to forget any part of their contents at any
time. Wemodel the loss of data with the help of a quasi ordering ≤ on the data type’s universe.
Wheneverwe perform an action of the data type, it is allowed to nondeterministically decrease
(wrt. ≤) its content before and after the application.

Formally, a lossy data type is a tupleD = (U , Σ,Θ, ≤) where (U , Σ,Θ) is a data type and
≤ is a recursive quasi ordering on U ∪ {�} with ≤ ⊆ U2 ∪ {(�, �)}.

Let t ∈ Σ be an action sequence. We define the transformation ⟦t⟧D∶ (U ∪ {�})→ 2U∪{�}
induced by t inductively as follows:
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⟦ε⟧D(x) ∶= ↓≤x,

⟦α⟧D(x) ∶= {y ∈ U ∪ {�} ∣ ∃x′ ≤ x∶ y ≤ Θ(α, x′)} for α ∈ Σ, and

if t = αs for α ∈ Σ and s ∈ Σ∗ we set

⟦t⟧D(x) ∶= ⋃
y∈⟦α⟧D(x)

⟦s⟧D(y) = ⟦s⟧D(⟦α⟧D(x))

for each x ∈ U ∪ {�}. In other words, the transformation ⟦α1 . . . αk⟧D is the application of
the basic actions α1, . . . , αk ∈ Σ with some intermediate loss of data. From now on we omit
the index of ⟦t⟧D and write ⟦t⟧ whenever the situation is clear.

For two sequences s, t ∈ Σ∗ we can define the following operation:

(⟦s⟧ ○ ⟦t⟧)(x) ∶= ⋃
y∈⟦s⟧(x)

⟦t⟧(y)

for each x ∈ U ∪ {�}. Then, we observe the following properties of ○:

Observation 3.3.1. LetD = (U , Σ,Θ, ≤) be a lossy data type. Then the following state-

ments hold:

(1) for each s, t ∈ Σ∗ we have ⟦st⟧ = ⟦s⟧ ○ ⟦t⟧.

(2) for each t ∈ Σ∗ we have ⟦t⟧ = ⟦ε⟧ ○ ⟦t⟧ = ⟦t⟧ ○ ⟦ε⟧. ◂

Hence, the set of all transformations ⟦t⟧ with ○ forms a monoid with identity ⟦ε⟧. We call
this monoid the transformation monoid T(D) ofD.

Finally, lossyD-automata A are defined similar to the non-lossy automata. The only
difference can be found in the definition of the configuration graph. So, for two configurations
(p, x), (q, y) ∈ ConfA and a ∈ Γ ∪ {ε} we write (p, x)

a
Ð→A (q, y) if there exists a transition

(p, a, t, q) ∈ ∆ with y ∈ ⟦t⟧(x). Additionally, we write (p, x) ε
Ð→A (q, y) if p = q and

y ∈ ⟦ε⟧(x) (i.e., y ≤ x) holds. Hence, the configuration graph GA contains more edges than
the configuration graph of a non-lossy automaton.

3.3.1 Partially Lossy Stacks
Partially lossy stacks are stacks which are allowed to forget some parts of their contents at
any time. With the help of such partially lossy stack we are able to model programs with
nested function calls which are allowed to raise and handle errors (in many programming
languages these errors are called exceptions). So, whenever a function raises such error, the
computer aborts its program flow and jumps to another function in the call stack which
is able to handle this error. In this case, the function call stack loses any function between
the one raising the error and the one handling this error. Hence, we can understand the
functions which are unable to handle errors as forgettable entries in the stack’s content and
the remaining ones as unforgettable entries.

This partial lossiness is specified with the help of a so-called lossiness alphabet which is
defined as follows:
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Definition 3.3.2. A lossiness alphabet is a tuple L = (F ,U) where F ∩U = ∅ and AL ∶=
F ∪ U is an alphabet. We also write A instead of AL. Here, we say that F is the set of
forgettable letters and U is the set of unforgettable letters.

Let L = (F ,U) be a lossiness alphabet and x , y ∈ A∗ be contents. We say that x is
an L-subword of y (denoted by x ⊑L y) if πU(y)⊑ x ⊑ y holds (where ⊑ is the subword
ordering on A). ⌟

Note that ⊑L is a partial ordering for any lossiness alphabet L. In particular, ⊑(∅,U) is the
equality relation on A∗ and ⊑(F ,∅) is the subword relation ⊑ on A∗.

Let L = (F ,U) be a lossiness alphabet. A partially lossy stack (or pls, for short) is the
lossy data type PLSL = (A∗, Σ,Θ, ⊑L) where (A∗, Σ,Θ) is the data type PA of a stack. In
other words, the only difference between a stack PA and a partially lossy stack PLSL is the
definition of ⟦.⟧.

If F = ∅, we see ⟦t⟧PLS
(∅,U)(x) = {⟦t⟧PA

(x)} for any action sequence t ∈ Σ∗ and any
stack content x ∈ A∗ ∪ {�}. Hence, PLS(∅,U) is fully reliable and coincides with a stack
PA as defined in Section 3.2.3. In contrast, if U = ∅ the structure PLS(F ,∅) models a fully
lossy stack. Anyway the transformation monoid T(PLSL) is called the partially lossy stack
monoid (or pls monoid, for short). Accordingly, PLSL-automata are called partially lossy
stack automata (or pls automata).

Next, we will see that, for any lossiness alphabet L = (F ,U), there is a (non-lossy) data
type having a transformation monoid isomorphic to T(PLSL). So, consider the data type
PL ∶= (A∗, Σ,Θ) where Σ = A∪ A,

⟦a⟧PL
(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ax if x ∈ A∗

� otherwise ,
and ⟦a⟧PL

(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

z if x = yaz, y ∈ (F ∖ {a})∗

� otherwise

for each a ∈ A and x ∈ A∗∪{�}. In other words, whenever we read a letter a from the content
we are allowed to forget some other letters from F which are in front of a. This means, such
stack forgets only those letters blocking the read action of another letter. We can call this
behavior the “read-lossy” semantics of a partially lossy stackii. We will show next that this
semantics is equivalent to the “default” semantics described by PLSL. Concretely, we will
prove T(PLSL) ≅ T(PL). To this end, we first prove that ⟦t⟧PL

is monotonic with respect
to ⊑L:

Lemma 3.3.3. LetL = (F ,U) be a lossiness alphabet, t ∈ Σ∗ be an action sequence, and
x , y ∈ A∗ be two words with x ⊑L y and ⟦t⟧PL

(x) ≠ �. Then ⟦t⟧PL
(x)⊑L⟦t⟧PL

(y) ≠ �
holds.

Proof. We prove the claim by induction on the length of the action sequence t ∈ Σ∗. If t = ε,
then we have

⟦ε⟧PL
(x) = x ⊑L y = ⟦ε⟧PL

(y) .
iiThis definition is according to the “read-lossy” semantics of a partially lossy queue as described in [KKP18]

(note that wewill recall this lossy data type in the next subsection). In a similar way, Chambart and Schnoebelen
presented the “write-lossy” semantics of a lossy queue in [CS08, Appendix A]. In this semantics the lossy
queue omits write actions whenever the corresponding letters will get lost in the succeeding computation.
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Let t = a ∈ A. Then we have ⟦a⟧PL
(x) = ax ⊑L ay = ⟦a⟧PL

(y).
Now, let t = a ∈ A. By ⟦a⟧PL

(x) ≠ � there is x′ ∈ (F ∖ {a})∗ with x = x′a ⋅ ⟦a⟧PL
(x).

Due to x ⊑L y there are words y′, y′′ ∈ A∗ with y = y′ay′′, x′ ⊑L y′, and ⟦a⟧PL
(x)⊑L y′′. Then

we have to consider two cases:

(1) y′ ∈ (F ∖ {a})∗ holds. Then we have ⟦a⟧PL
(y′ay′′) = y′′ and, therefore, we learn

⟦a⟧PL
(x)⊑L y

′′ = ⟦a⟧PL
(y) .

(2) y′ ∉ (F ∖ {a})∗ holds. From x′ ⊑L y′ and x′ ∈ F∗ we infer y′ ∈ F∗. Note that in this case
y′ ∉ (F ∖ {a})∗ implies a ∈ F. There are words z ∈ (F ∖ {a})∗ and z′ ∈ F∗ such that
y′ = zaz′, i.e., we have y = zaz′ay′′. Then we see ⟦a⟧PL

(y) = z′ay′′ implying

⟦a⟧PL
(x)⊑L y

′′ ⊑L z′ay′′ = ⟦a⟧PL
(y) .

Finally, let t = αs for a basic action α ∈ Σ and an action sequence s ∈ Σ+. Then by the
induction hypothesis we obtain ⟦α⟧PL

(x)⊑L⟦α⟧PL
(y). This implies the following:

⟦t⟧PL
(x) = ⟦s⟧PL

(⟦α⟧PL
(x))

⊑L⟦s⟧PL
(⟦α⟧PL

(y)) (by induction hypothesis)
= ⟦t⟧PL

(y) . ◂

Let x ∈ A∗ be a word and t ∈ Σ∗ be an action sequence with ⟦t⟧PL
(x) ≠ �. By definition

of PL we can see that ⟦t⟧PL
(x) ∈ ⟦t⟧PLSL(x) holds. In other words, the application of t to x

in PL is a possible way to apply t to x in a partially lossy stack PLSL. We will show next,
that this word is the maximal stack content (wrt. ⊑L) which is a possible result of PLSL on
application of t to x.

Proposition 3.3.4. Let L = (F ,U) be a lossiness alphabet, t ∈ Σ∗ be an action sequence,
and x ∈ A∗ be a word. Then we have

⟦t⟧PLSL(x) = ↓⊑L(⟦t⟧PL
(x)) .

In particular, for any s, t ∈ Σ∗ and x ∈ A∗ we have

⟦s⟧PLSL(x) = ⟦t⟧PLSL(x) ⇐⇒ ⟦s⟧PL
(x) = ⟦t⟧PL

(x) .

Proof. We prove that
y ∈ ⟦t⟧PLSL(x) ⇐⇒ y ⊑L⟦t⟧PL

(x)

holds for each x , y ∈ A∗ and t ∈ Σ∗.
First, we show the implication “⇒” by induction on the length of the word t. The case

t = ε is obvious since y ∈ ⟦ε⟧PLSL(x) implies y ⊑L x. Then we infer y ⊑L x = ⟦ε⟧PL
(x).

Now, let ∣t∣ ≥ 1, i.e., there are α ∈ Σ and s ∈ Σ∗ with t = αs. Let y ∈ ⟦t⟧PLSL(x). Then
there is z ∈ ⟦α⟧PLSL(x) with y ∈ ⟦s⟧PLSL(z). From z ∈ ⟦α⟧PLSL(x) we infer the existence of
x′, z′ ∈ A∗ with x′ ⊑L x,Θ(α, x′) = z′, and z ⊑L z′. From y ∈ ⟦s⟧PLSL(z)we infer by induction
hypothesis y ⊑L⟦s⟧PL

(z). Next we consider the following two cases:



24 Chapter 3. Automata and Storage Mechanisms

(1) α = a ∈ A. Then from Θ(a, x′) = z′ we obtain z′ = ax′ and therefore

y ⊑L⟦s⟧PL
(z)⊑L⟦s⟧PL

(z′) (by Lemma 3.3.3)
= ⟦s⟧PL

(ax′) = ⟦as⟧PL
(x′)

⊑L⟦t⟧PL
(x) . (by Lemma 3.3.3)

(2) α = a ∈ A. Then from Θ(a, x′) = z′ we obtain x′ = az′ and therefore

y ⊑L⟦s⟧PL
(z)⊑L⟦s⟧PL

(z′) (by Lemma 3.3.3)
= ⟦as⟧PL

(az′) = ⟦t⟧PL
(x′)

⊑L⟦t⟧PL
(x) . (by Lemma 3.3.3)

Towards the converse implication “⇐” let y ⊑L⟦t⟧PL
(x). We know for each a ∈ A and

z ∈ A∗ that the statements ⟦a⟧PL
(z) ∈ ⟦a⟧PLSL(z) and ⟦a⟧PL

(z) ∈ ⟦a⟧PLSL(z) hold. From
this we also infer ⟦t⟧PL

(z) ∈ ⟦t⟧PLSL(z) (one can verify this by induction on the length of
t). Since ⟦t⟧PLSL(x) also is downward closed under ⊑L, we finally infer that y ∈ ⟦t⟧PLSL(x)
holds. ◂

From this equivalence we finally obtain the isomorphism between the transformation
monoids of the partially lossy stack PLSL and their “read-lossy” semantics PL.

Theorem 3.3.5. Let L be a lossiness alphabet. Then we have T(PLSL) ≅ T(PL). ◂

Hence, from now on we are free to call PL a pls and its transformation monoid the pls
monoid, as well.

3.3.2 Partially Lossy Queues
Next, we want to introduce so-called partially lossy queues. These are queues which are
allowed to forget some of their entries specified by a lossiness alphabet. With the help of this
data type we are able to model a channel between two network instances with unreliable
transmission of the messages. Note that this is a more realistic view on a communication
channel than modeling with a reliable queue. Lossy queues (or channels) also received much
attention from researchers in the field of verification since the nineties of the last century.
This is due to the celebrated result from Abdulla and Jonsson stating that the reachability
problem in automata with one or more lossy queues is decidable [AJ96a] (however this
problem is not primitive recursive [Sch02, CS08]).

Let L = (F ,U) be a lossiness alphabet. A partially lossy queue (plq, for short) is the
lossy data type PLQ L = (A

∗, Σ,Θ, ⊑L) where (A, Σ,Θ) is the data type QA of a queue. The
transformationmonoidT(PLQ L) of a partially lossy queue is called the partially lossy queue
monoid (or plq monoid, for short). We also call the PLQ L-automata partially lossy queue
automata (or plq automata).

We can also define the “read-lossy” semantics of a plq as follows: consider the data type
QL = (A∗, Σ,Θ) where Σ = A∪ A,

⟦a⟧QL
(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

xa if x ∈ A∗

� otherwise ,
and ⟦a⟧QL

(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

z if x = yaz, y ∈ (F ∖ {a})∗

� otherwise
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for each a ∈ A and x ∈ A∗ ∪ {�}.
Similar to the argumentation in the previous subsection we are able to prove that the

“read-lossy” semantics and the “default” semantics of a partially lossy queue are equivalent.
In other words, we can prove that the transformation monoids of both data types, PLQ L

and QL, are isomorphic. Due to the similarity we will skip this proof here. However, a full
proof can also be found in the author’s Master’s thesis [Köc16] (for fully lossy queues, only)
and in [KKP18] (for arbitrary partially lossy queues).

Theorem 3.3.6. Let L be a lossiness alphabet. Then we have T(QL) ≅ T(PLQ L). ◂

Hence, from now on we may also call QL a plq and call its transformation monoid the
plq monoid.

While we already know that automata with a reliable queue (i.e., Q(∅,U)-automata) are
as powerful as Turing-machines (by [BZ83]), this fact does not hold for fully lossy queue
automata (i.e., Q(F ,∅)-automata). Note that this is a consequence of the decidable reachability
problem and Rice’s Theorem. In contrast, plq automata, which are not fully lossy (i.e., we
have U ≠ ∅) and have an at least binary alphabet of queue entries (i.e., we have ∣A∣ ≥ 2), are
able to simulate Turing-machines:

Theorem 3.3.7. Let L = (F ,U) be a lossiness alphabet with U ≠ ∅ and ∣A∣ ≥ 2. Then

QL-automata accept exactly the class of recursively enumerable languages.

Proof idea. From [BZ83] we know that queue automata are able to simulate Turing-machines.
Hence, we only have to simulate queue automata here. So, let B = {b1, . . . , bn} be an alphabet
and Q = (QQ, Γ ,QB , IQ, cQ, ∆Q, FQ) be a queue automaton on B. Additionally, let # ∈ U
and a ∈ A∖ {#} be two distinct letters. We consider the homomorphism f ∶B∗ → A∗ which
satisfies f (bi) ∶= #ia#n−i for each 1 ≤ i ≤ n. Then it is easy to see that f is injective.

We can construct a QL-automaton A = (QQ, Γ ,QL, IQ, cA, ∆A, FQ) with

cA ∶= f (cQ) and

∆A ∶= {(p, α, f (t), q) ∣ (p, α, t, q) ∈ ∆Q}.

Then (p, v) t
Ð→Q (q,w) holds if, and only if, (p, f (v))

f (t)
ÐÐ→A (q, f (w)) holds. Note that

whenever Q fails to read a letter bi from its queue, A also fails to read f (bi): due to the
encoding f , the automaton A is able to recognize any loss since each f (bi) contains exactly
n unforgettable #’s and one (possibly forgettable) a.

Hence, we obtain L(Q) = L(A). ◂

Remark 3.3.8. Besides the (partially) lossy queues, there are even more faulty variations
of queues. For example, instead of losing entries a faulty queue may also randomly insert
entries. In networks with a reliable communication protocol (like TCP) the sender keeps
re-sending its messages until it receives an acknowledgment from the receiver. This
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may result in undesired multiple copies of a message. Such situation can be modeled
by queues with insertion errors, which also have been considered in a few papers like
[CFP96, Bou+12]. However, in this thesis we will only focus on the (partially) lossy
variant of queues. ⌟

3.4 Distributed Data Types
Until now we have considered only single memories. Now, we want to consider systems
having multiple of such storage mechanisms which are distributed in a certain network and
which may have some synchronization of their data. Here we focus on data types having
only words as their content like queues and stacks.

So, consider a finite number of computers (or processes) each having a storagemechanism
represented by a data type. Each of these computers is instructed to do a few special tasks
according to their security clearance. For example, computer 1 treats only task a, computer 2
treats the tasks b and c, and computer 3 treats the tasks a and c. In this connection “treating
a task” means (e.g.) that the computer may create a new task or finalize a task. Additionally
to this, treating of a task α requires the consensus of each computer having the matching
security clearance (i.e., all computers which are allowed to treat α). We understand this
consensus as follows: we create such task on each computer which should execute a routine
on this task. A task can be finalized whenever each computer finished their routines on this
task.

Formally, we model our distributed networks of computers as following:

Definition 3.4.1. A distributed alphabet is a tripleA = (A, P,M) where A and P are two
alphabets (the tasks and processes, respectively) andM ⊆ A × P maps letters to sets of
processes such that aM ≠ ∅ andM i ≠ ∅ holds for each a ∈ A and i ∈ P. ⌟

In our situation P is the set of computers (or data types) in our system, A is the set of
tasks, andM describes which computers are allowed to treat tasks. Due to our definition,
each task a ∈ A can be treated by some computers and each computer i ∈ P is able to treat
some tasks.

For a word w = a1 . . . an with a1, . . . , an ∈ Awe write wM ∶= ⋃1≤k≤n ak M and for i ∈ P
we write Ai ∶=M i.

Recall that the single data types store finite sequences of entries. Then the content of
the whole distributed system is a tuple from∏i∈P A∗i . Whenever we write or read a letter
a ∈ A in our system, we execute this shared action on all processes in aM at the same
time. For example, writing an a ∈ A into distributed queues with content (wi)i∈P ∈∏i∈P A∗i
yields a new content (w′i)i∈P with w′i = wia for each i ∈ aM and w′i = wi otherwise. Note
that computations of our distributed system fails whenever the computation on at least one
process fails.

Remark 3.4.2. LetA = (A, P,M) be a distributed alphabet. There also exist contents of
our considered distributed storage which are in some sense inconsistent. For example,
consider a content (wi)i∈P ∈ ∏i∈P A∗i , two processes i , j ∈ P, and two distinct letters
a, b ∈ Ai ∩ A j such that wi = ab and w j = ba. Then a distributed system with queue
behavior is unable to read a since the process j is blocked by a b. Similarly, we are unable
to read b. However, in this case it is possible to write any letter or to read letters from
the processes P ∖ (aM∪ bM).
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Here, we only consider such contents which are “consistent” in the following sense:
a distributed content (wi)i∈P ∈ ∏i∈P A∗i is consistent if each pair i , j ∈ P of processes
share a common subsequence πA i

(w j) = πA j
(wi). The set of such consistent distributed

contents forms a monoid - the so-called trace monoid. We will recapitulate the formal
definition and some basic properties of this monoid in the following subsection. ⌟

3.4.1 Intermezzo: TraceTheory
In this subsection we want to define the so-called trace monoid and recapitulate a few basic
properties of this monoid. The trace monoid was first introduced to computer science by
Mazurkiewicz in [Maz77] for modeling concurrent programs and Petri nets. Researchers
developed a rich theory on this trace monoid since this publication. A fundamental survey
on this topic can be found in Diekert’s and Rozenberg’s “The Book of Traces” [DR95].

LetA = (A, P,M) be a distributed alphabet. We say that a ∈ A is independent of b ∈ A
(denoted by a ∥ b) if, and only if, aM∩ bM = ∅ holds. Similarly, for two words v ,w ∈ A∗
we write v ∥ w if, and only if, vM∩wM = ∅. Then we can construct the dependence graph
GA ∶= (A, EA) ofA where EA ∶= {(a, b) ∣ a ∦ b}. For each process i ∈ P the alphabet Ai is a
clique in GA.

Let ≈A be the least congruence on A∗ satisfying ab ≈A ba for each pair a, b ∈ A with
a ∥ b (i.e., (a, b) ∈ A2 ∖ EA). This congruence induces the quotient monoidM(A) ∶= A∗/≈A
which we call the trace monoid or the free partially commutative monoid. The identity of this
monoid is ε ∶= [ε]≈A . The elements fromM(A) are called traces and subsets ofM(A) are
called trace languages. The natural epimorphism is denoted by ζA∶A∗↠M(A)∶w ↦ [w]≈A .
Note that we write [w] instead of [w]≈A whenever the situation is clear. For a ∈ Awe have
[a] = {a}. Due to this fact, we sometimes also write a instead of [a].

Example 3.4.3. Let A = (A, P,M) be a distributed alphabet with A = {a, b, c}, P =
{1, 2, 3}, andM = {(a, 1), (a, 3), (b, 2), (c, 2), (c, 3)}. Note that this distributed alphabet
corresponds to the scenario described above. The dependence graph GA is the following:
a— c— b. We have, for example, abc ≈A bac but abc /≈A acb. ⌟

LetA = (A, P,M) be a distributed alphabet and B ⊆ A. The restriction ofA to B is the
new distributed alphabetA↾B ∶= (B, P,M∩ (B × P)). The projection πB∶M(A)→M(A↾B)
is the homomorphism induced by the equation

πB(a) =

⎧⎪⎪
⎨
⎪⎪⎩

a if a ∈ B
ε if a ∉ B

for each a ∈ A. Note that this homomorphism is well-defined since a ∥ b implies πB(a) ∥
πB(b) for each pair a, b ∈ A of letters. Additionally, for i ∈ P by πi we denote the projection
πA i

to all letters from process i. Note that for each i ∈ P the trace monoid M(A↾A i
) is

isomorphic to A∗i with isomorphism ζA↾Ai
. Hence, we can understand the projection πi

as a map into the free monoid A∗i . Then we have the following correspondence between
projections and commutations:

Theorem 3.4.4 (Projection-Lemma [CL84, CP85]). LetA = (A, P,M) and v ,w ∈ A∗.
Then we have v ≈A w if, and only if, πi(v) = πi(w) holds for each i ∈ P. ◂
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Remark 3.4.5. We consider the map π⃗∶A∗ → ∏i∈P A∗i ∶w ↦ (πi(w))i∈P. Then byTheo-
rem 3.4.4 we know that v ≈A w holds if, and only if, π⃗(v) = π⃗(w) holds. In other words,
for all traces λ ∈ M(A) each word w ∈ λ induces the same distributed content π⃗(w).
Hence, we can see w (resp. λ) as a serialization of the content π⃗(w) of the considered
distributed memory. Accordingly, we can see the equivalence class [w] of a word w ∈ A∗
also as its tuple of distributed contents π⃗(w). Note that the image of π⃗ is the set of all
consistent contents in∏i∈P A∗i . So the trace monoid is isomorphic to a submonoid of
∏i∈P A∗i - namely, the set of consistent contents. ⌟

From the projection-lemma we obtain several similarities between the trace monoidM(A)
and the free monoid A∗. For example, the trace monoid is cancellative. This means, for each
trace λ ∈M(A) and each prefix (or suffix, resp.) κ ∈M(A) of λ (i.e., we have κ ∈ λ ⋅M(A)
resp. κ ∈M(A)⋅λ), there exists a uniquely defined complementary suffix (or prefix) µ ∈M(A)
with λ = κµ (resp. λ = µκ).

However, even if the trace monoid is cancellative it is not equidivisible. So, in the free
monoid for all words u, v ,w , x ∈ A∗ the equation uv = wx is equivalent to the existence of
another word z ∈ A∗ with either uz = w and v = zx or u = wz and zv = x. In other words, u
is a prefix of w and x a suffix of v (or vice versa) and z is the corresponding complementary
suffix and prefix. This fact is also known as Levi’s lemma [Lev44]. This fact does not hold
in the general case in the trace monoid due to its commutations. For example, we consider
a distributed alphabetA = (A, P,M) inducing the dependence graph a— b— c. Then for
u = ba, v = cb, w = bc, and x = ab we have uv ≈A wx, but neither u is a prefix of w nor
vice versa. Indeed, there are words z1, z2, z3, z4 ∈ A∗ with u ≈A z1z2, v ≈A z3z4, w ≈A z1z3,
x ≈A z2z4, and z2 ∥ z3. In our example, this holds for z1 = z4 = b, z2 = a, and z3 = c. This
fact can also be generalized to equations consisting of an arbitrary number of factors. A
visualization of this “Levi’s lemma for traces” can be found in Figure 3.3.

Theorem 3.4.6 (Levi’s lemma for traces [Die90,DM97]). LetA = (A, P,M) be a dis-
tributed alphabet and λ1, λ2, . . . , λm , κ1, κ2, . . . , κn ∈ M(A) be traces. Then we have

λ1λ2 . . . λm = κ1κ2 . . . κn if, and only if, there are traces µi , j ∈M(A) for each 1 ≤ i ≤ m
and 1 ≤ j ≤ n such that the following properties hold:

(a) λi = µi ,1µi ,2 . . . µi ,n for each 1 ≤ i ≤ m,

(b) κ j = µ1, jµ2, j . . . µm, j for each 1 ≤ i ≤ n, and

(c) µi , j ∥ µk,ℓ for each 1 ≤ i < k ≤ m and 1 ≤ ℓ < j ≤ n (hence, µi , jµk,ℓ = µk,ℓµi , j). ◂

For w ∈ A∗ we write ∣[w]≈A ∣ ∶= ∣w∣ and ∣[w]≈A ∣B ∶= ∣πB([w]≈A)∣ = ∣w∣B for the number of
occurrences of letters from B in w.

By Isolated(A) ∶= {a ∈ A ∣ ∀b ∈ A∖ {a}∶ a ∥ b} = {a ∈ A ∣ a EA = {a}} we denote the
set of isolated nodes in GA. For a ∈ Isolated(A) it is easy to see that aM(A) =M(A)a holds.

Let λ ∈ M(A) be a trace. Then the induced alphabet of λ is Alph(λ) ∶= {a ∈ A ∣ λ ∈
M(A)aM(A)}, i.e., Alph(λ) is the set of all letters in λ. The trace λ is connected if Alph(λ)
is a connected set in GA. A trace language L ⊆ M(A) is connected if each trace λ ∈ L is
connected.
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κ1 ⋯ κ j−1 κ j κ j+1 ⋯ κn

λ1 µ1,1 ⋯ µ1, j−1 µ1, j µ1, j+1 ⋯ µ1,n
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋰ ⋮

λi−1 µi−1,1 ⋯ µi−1, j−1 µi−1, j µi−1, j+1 ⋯ µi−1,n
λi µi ,1 ⋯ µi , j−1 µi, j µi , j+1 ⋯ µi ,n
λi+1 µi+1,1 ⋯ µi+1, j−1 µi+1, j µi+1, j+1 ⋯ µi+1,n
⋮ ⋮ ⋰ ⋮ ⋮ ⋮ ⋱ ⋮

λm µm,1 ⋯ µm, j−1 µm, j µm, j+1 ⋯ µm,n

Figure 3.3. Visualization of Levi’s lemma for traces. Row-wise concatenation of the µ i , j results in λ i (this is
property (a)) and concatenating them column-wise yields κ j (this is property (b)). Additionally, the entries in
the red-shaded cells are independent of µ i , j (this is property (c)).

Finally, a distributed data type over the distributed alphabet A is a data type D =
(U , Σ,Θ) with U =M(A).

3.4.2 Distributed Stacks
Distributed stacks are the distributed version of (reliable) stacks. According to our interpre-
tation of distributed data types, we consider systems consisting of multiple instances of a
stack. Between those stacks we have a special synchronization mechanism in the following
sense: any entry a ∈ A is associated to a subset aM ⊆ P of the stacks (or processes). When-
ever we write or read a letter a we do this action at the same time on each stack i ∈ aM.
With the help of such distributed stacks we are able to model concurrent programs with
recursive function calls. Such systems have received an increased attention in recent years
[Heu+10, LN11, CGK12, BKM17].

LetA = (A, P,M) be a distributed alphabet. A distributed stack (or distributed pushdown)
is the distributed data type PA ∶= (M(A), Σ,Θ) where Σ = A∪ A,

⟦a⟧(λ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

aλ if λ ∈M(A)
� otherwise,

and ⟦a⟧(λ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

κ if λ = aκ
� otherwise

holds for each a ∈ A and λ ∈M(A)∪ {�}. Note that all transformations are well-defined due
to the cancellation property of the trace monoidM(A). One can observe that the definitions
of distributed stacks PA and (reliable) stacks PA only differ in their concrete universe. So,
distributed stacks have a trace monoid as their universeM(A) instead of the free monoid
A∗. Due to this observation, a distributed stack consists of ∣P∣many reliable stacks on the
alphabets Ai (where i ∈ P) which are synchronized according to the underlying distributed
alphabet.

Let A = (A, P,M) be a distributed alphabet. A distributed pushdown automaton is a
PA-automaton. Note that if GA is the disjoint union of cliques then a distributed pushdown
automaton overA is essentially a multi-pushdown automaton. It is well-known that these
pushdown automata with at least two stacks are as powerful as Turing-machines and, hence,
accept exactly the recursively enumerable languages (cf. [HMU01, Section 8.5.2]).

IfGA is a complete graph then we haveM(A) ≅ A∗ and, hence,PA ≅ PA. In this case the
distributed pushdown automata overA are essentially (non-distributed) pushdown automata.
Therefore, those automata accept exactly the class of context-free languages.
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Figure 3.4. A visualization of a distributed stack with content [acbbd] applying the transformation ⟦ad⟧.

3.4.3 Distributed Queues

Similar to the distributed stacks we can also define distributed queues. These are multiple
(reliable) queues with the synchronization between the single queues as described in the
previous subsection. Such systems had been considered for example by Hutagalung et al. in
[Hut+18]. Note that this is a generalization of multiple queues. With the help of such multi-
queues we are able to model systems consisting of a finite number of network instances and
some (reliable) communication channels between those instances. Automata with multiple
queues are called multi-queue automata or communicating automata and were studied in
many papers in the field of verification, for example in [Boi+97, Bol06, KM21].
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Figure 3.5. A visualization of a distributed queue with content [acbbd] applying the transformation ⟦ad⟧.

Formally, a distributed queue is the distributed data type QA ∶= (M(A), Σ,Θ) for a
distributed alphabetA = (A, P,M) where Σ = A∪ A,

⟦a⟧(λ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

λa if λ ∈M(A)
� otherwise,

and ⟦a⟧(λ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

κ if λ = aκ
� otherwise

holds for each a ∈ A and λ ∈ M(A) ∪ {�}. Note that all transformations of QA are well-
defined due to the cancellation property of the trace monoid. Again, we can observe that the
only difference of the definitions of a distributed queue QA and a reliable queue QA is their
universe. We can understand a distributed queue as ∣P∣many reliable queues with alphabets
Ai (for i ∈ P). Therefore, we can also observe the following:



3.4. Distributed Data Types 31

Observation 3.4.7. Let A = (A, P,M) be a dependence alphabet, t ∈ Σ∗ be an action
sequence, and κ, λ ∈M(A) with ⟦t⟧(κ) = λ ≠ �. Then we have κ ⋅ [w] = [r] ⋅ λ where
w = πA(t) and r = πA(t). ◂

Note that if GA is the disjoint union of cliques then QA essentially consists of multiple
independent queues. If GA is a complete graph then we have M(A) ≅ A∗ and, hence,
QA ≅ QA in this case. Anyway, distributed queue automata (these are the QA-automata) are
Turing-complete and, therefore, accept exactly the recursively enumerable languages.
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Chapter 4

Behavioral Equivalence

4.1 Introduction

In Chapter 3 we have introduced the notion of data types and defined several examples with
the help of concrete semantics of the basic actions of these data types. So, for example the
write action a of a (reliable) stack corresponds to prepending the letter a to the content of the
stack while the same action on a queue corresponds to appending this letter to the queue’s
content. In literature, sometimes data types are also definedwith the help of several axioms. In
other words, we describe the semantics of a data type with the help of one or more equations.
For example, we can find such kind of equations for reliable stacks in (e.g.) [Kam09, RK09],
for reliable queues in [HKZ17], for (partially) lossy queues in [Köc16, KKP18], and for some
further, more complicated data types in [Zet16].

With the help of such axioms we are able to find out certain algebraic properties of
the transformation monoid T(D) of a data typeD. For example, these equations help to
understand the semantics of the composition of multiple transformations. The axioms also
help when analyzing the cancellation properties or Green’s relations of the transformation
monoid. The knowledge of these algebraic properties turns out to be very helpful later in
this thesis when studying the languages in the transformation monoid and the reachability
problems ofD-automata.

In this chapter we will study the algebraic properties of the transformation monoid of
reliable, partially lossy, and distributed stacks and queues. We do this with the help of a
special congruence on the sequences of basic actions - the so called behavioral equivalence.
In this connection, we say that two action sequences behave equivalent if, and only if, they
have the same semantics. We can see then that the transformation monoid T(D) of the
data typeD is essentially the quotient of the sequences of basic actions under the behavioral
equivalence. When investigating the properties of the transformation monoid and the
behavioral equivalence our proof strategy always is the same: we start with proving some
simple equations that hold in the transformation monoid. From these equations we gain a
confluent and terminating semi-Thue system on the sequences of basic actions. With the
help of this system we are able to represent the transformations of the considered data type by
unique, irreducible words over the alphabet Σ, which we call the normal forms. With the help
of these normal forms we will show that our equations are complete axiomatic descriptions
of our data types. Additionally, we will derive cancellation properties and characterizations
of Green’s relations from these normal forms.
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4.2 Definition

Let D = (U , Σ,Θ) be a data type. We say that two sequences of actions s, t ∈ Σ∗ behave
equivalently if, and only if, ⟦s⟧ = ⟦t⟧ holds. In other words, s and t behave equivalent, if the
application of s to any content x ∈ U leads to the same content as when applying t to x. We
write s ≡D t in this case. We obtain an equivalence relation ≡D which we call the behavioral
equivalence. Note that we write ≡ instead of ≡D whenever the situation is clear. We also
write [t] instead of [t]≡D for the equivalence class of an action sequence t ∈ Σ∗ whenever the
situation is clear.

The following properties of the behavioral equivalence are well-known:

Fact 4.2.1. LetD = (U , Σ,Θ) be a data type. The following statements hold:

(1) The relation ≡D is a congruence on the free monoid Σ∗.

(2) Σ∗/≡D ≅ T(D). ◂

The isomorphism from the second statement in Fact 4.2.1 is Σ∗/≡D → T(D)∶ [t] ↦ ⟦t⟧
for each t ∈ Σ∗. Hence, we can use the equivalence class [t] of t and its semantics ⟦t⟧
synonymously.

We denote the natural epimorphism on ≡D by ηD∶Σ∗↠ Σ∗/≡D ∶ t ↦ [t].

4.3 Recapitulation: Reliable Stacks
In this section we want to recall basic properties of the behavioral equivalence and of the
transformation monoid of a (reliable) stack. It is well-known that the transformation monoid
is the so-called polycyclic semigroup [NP70]. So the right-inverse element of the trans-
formation ⟦a⟧ is ⟦a⟧ for any a ∈ A. However, ⟦a⟧ is not the left-inverse element of ⟦a⟧.
Consequentially, we also obtain aa ≡ ε but not aa ≡ ε. Moreover, for two distinct letters
a, b ∈ Awe obtain

⟦ab⟧(x) = ⟦b⟧(ax) = � (4.1)

for each stack content x ∈ A∗. This means that ⟦ab⟧ is a constant function mapping any input
to the error state �. This also implies

⟦s ab t⟧(x) = ⟦t⟧(⟦ab⟧(⟦s⟧(x))) = ⟦t⟧(�) = �

for all action sequences s, t ∈ Σ∗ and each content x ∈ A∗ ∪ {�}. Hence, the transformation
⟦ab⟧ is an annihilating (or zero-)element of the transformation monoid T(PA) wrt. com-
position. For simplicity we introduce a new action name á ∉ Σ which is the name of this
annihilating element (i.e., we have ⟦á⟧(x) = � for any x ∈ A∗ ∪ {�}). We also extend our
alphabet of basic actions to Σá ∶= Σ ∪ {á}. Since á is just a synonym of the action sequence
ab we have Σ∗á/≡ ≅ Σ∗/≡ ≅ T(PA).

Note that this annihilating element exists only if our stack is able to store at least two
distinct entries. Whenever the stack is essentially a counter (i.e., we have ∣A∣ = 1), there is no
such annihilating element ⟦á⟧.
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All in all, we obtain the following simple equations that hold in the behavioral equivalence
of a stack.

Lemma 4.3.1. Let A be an alphabet, a, b ∈ A be two letters, and α ∈ Σá be an action.
Then the following equations hold:

(1) aa ≡ ε,

(2) ab ≡ á if a ≠ b, and

(3) αá ≡ áα ≡ á. ◂

Our next aim is to show that these equations fully describe the behavioral equivalence of
a stack. To this end, we consider the semi-Thue systemSA which arises from ordering the
equations in Lemma 4.3.1 from left to right:

(1) aa → ε,

(2) ab → á if a ≠ b, and

(3) αá → á and áα → á

for each a, b ∈ A and α ∈ Σá. This semi-Thue system is finite, monadiciii, and terminatingiv.
It is also locally confluentv: let a, b ∈ A. Then we have

á
(3)
⇐Ô

∗
SA

αá
(1)/(2)
⇐ÔÔSA

abá
(3)
Ô⇒SA

aá
(3)
Ô⇒SA

á and

á
(3)
⇐Ô

∗
SA
áα

(1)/(2)
⇐ÔÔSA

áab
(3)
Ô⇒SA

áb
(3)
Ô⇒SA

á

where α ∈ {ε,á} with ab → α. Since these are the only relevant overlaps of two rules from
SA, it is locally confluent. From the termination property we finally infer confluence. Hence,
for each action sequence t ∈ Σ∗á we obtain a uniquely defined and irreducible word nf (t)
(the so-called normal form of t) with t⇒∗SA

nf (t). We denote the set of all normal forms by
NFPA

. From the shape of the rules ofSA we obtain

NFPA
= A

∗
A∗ ∪ {á} . (4.2)

It is well-known that this normal form is unique in any equivalence class of ≡:

Theorem 4.3.2. Let A be an alphabet and s, t ∈ Σ∗á. Then we have s ≡ t if, and only if,
nf (s) = nf (t). ◂

Hence, the equations from Lemma 4.3.1 fully describe ≡. From this theorem we obtain that
the map T(PA) → NFPA

∶ ⟦t⟧ ↦ nf (t) is well-defined. So, from now on we can also write
iiiA semi-Thue system ismonadic if for each rule ℓ → r we have ∣ℓ∣ > ∣r∣.
ivA semi-Thue system is terminating (or noetherian) if it has no infinite derivations.
vA semi-Thue system over Γ is confluent if for each u, v ,w ∈ Γ∗ with u ⇐∗ v ⇒∗ w there is x ∈ Γ∗ with

u⇒∗ x ⇐∗ w. It is locally confluent if u⇐ v ⇒ w implies u⇒∗ x ⇐∗ w.
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nf (⟦t⟧) ∶= nf (t) for each action sequence t ∈ Σ∗á. Additionally, we obtain from this theorem
and from Equation (4.2) for each action sequence t ∈ Σ∗á a uniquely defined action sequence
nf (t) which is in some sense “simple” and behaves equivalently to t.

Finally, we want to give a characterization of the normal form of the composition of two
action sequences. To this end, let s, t ∈ Σ∗á be two action sequences. W.l.o.g., we can assume
that s and t are in normal form. Then if s = á or t = á holds, we also know that st ≡ á
holds. Otherwise we have s = r1w1 and t = r2w2 for words r1, r2,w1,w2 ∈ A∗. Then we can
possibly apply equation (1) of Lemma 4.3.1 to the subsequence w1r2. So, iterated application
of this equation removes read actions x ∈ A

∗
from r2 and the corresponding write actions

(in reverse order) from w1. When this iteration ends we obtain two words w′1 , r′2 ∈ A∗ with
st ≡ r1w′1r

′
2w2. If one of these two words is empty, the word r1w′1r′2w2 is in normal form and

we are done. Otherwise, there are two distinct letters a, b ∈ A∗ with w′1 ∈ A∗a and r′2 ∈ bA∗.
Then application of equations (2) and (3) of Lemma 4.3.1 yields st ≡ á. All in all, we obtain
the following characterization:

Theorem 4.3.3 ([Gil96, Lemma 7.1]). Let A be an alphabet, r1, r2,w1,w2 ∈ A∗, and
x ∈ A∗ is the longest prefix of r2 such that xR is a suffix of w1. Then the following

statements hold:

(1) if w1 = uxR and r2 = x then we have nf (r1w1r2w2) = r1uw2,

(2) if w1 = xR and r2 = xv then we have nf (r1w1r2w2) = r1vw2, and

(3) if w1 ≠ xR and r2 ≠ x then we have nf (r1w1r2w2) = á. ◂

4.4 Partially Lossy Stacks
Now we want to generalize the results from the previous section to partially lossy stacks.
Again, we want to find a semi-Thue system and define normal forms of the equivalence
classes with the help of this system.

Let L = (F ,U) be a lossiness alphabet. First, assume ∣A∣ = 1 then we know that PL is a
reliable stack with one stack symbol, i.e., it is essentially a single counter. Note that it does
not matter whether F = A or U = A holds in this case. Since we already considered the
transformation monoid of this data type in the previous section, we assume ∣A∣ ≥ 2 from now
on. So, let a, b ∈ A be two distinct letters. The transformation ⟦a⟧ is still the right-inverse of
⟦a⟧ but not its left-inverse. However, the effect of ⟦ab⟧ depends on whether we have a ∈ F
or a ∈ U . First, assume a ∈ F. Then we have for any x ∈ A∗

⟦ab⟧(x) = ⟦b⟧(ax) = ⟦b⟧(x) (4.3)

since we have a ∈ F ∖ {b}. In other words, we observe ab ≡ b in this case. Otherwise, if
a ∈ U holds, we know for any x ∈ A∗

⟦ab⟧(x) = ⟦b⟧(ax) = � . (4.4)

Note that this is similar to the situation in reliable stacks (cf. Equation (4.2)). Hence, ⟦ab⟧
is an annihilating or zero-element of T(PL). Again, we introduce the new action name
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á ∉ Σ with ⟦á⟧(x) = � (for each x ∈ A∗) and extend our alphabet of action names Σ to
Σá ∶= Σ ∪ {á}. Since we require a ∈ U for the existence of this annihilating element ⟦á⟧,
there is no such element in the transformation monoid of fully lossy stacks (i.e., whenever
U = ∅ holds). In this case we assume Σá = Σ.

4.4.1 Normal Forms
Again, we start our study of the pls monoid with a list of simple equations that hold in the be-
havioral equivalence. Later, inTheorem 4.4.2, we will see that this list is a full characterization
of this congruence.

Lemma 4.4.1. Let L = (F ,U) be a lossiness alphabet, a, b ∈ A, and α ∈ Σá. Then the

following equations hold:

(1) aa ≡ ε,

(2) ab ≡ b if a ∈ F ∖ {b},

(3) ab ≡ á if a ∈ U ∖ {b}, and

(4) αá ≡ áα ≡ á.

As we can see, equation (1) corresponds to the fact that ⟦a⟧ is the right-inverse of ⟦a⟧ for
each a ∈ A. The equations (2) and (3) correspond to the (partial) lossiness behavior of PL

and equation (4) states that ⟦á⟧ is annihilating.

Proof. First we prove statement (1). To this end, let a ∈ A and x ∈ A∗. Then we have:

⟦aa⟧(x) = ⟦a⟧(ax) = x = ⟦ε⟧(x) .

Hence, we have ⟦aa⟧ = ⟦ε⟧ implying aa ≡ ε.
Towards the proof of (2) let a ∈ F, b ∈ A∖ {a}, and x ∈ A∗. First, assume ⟦ab⟧(x) ≠ �.

Then there are y ∈ (F ∖ {b})∗ and z ∈ A∗ with ax = ybz. Since a ≠ b and a ∈ F, the word y
is not empty. Hence, there is y′ ∈ (F ∖ {b})∗ with y = ay′. Then we have x = y′bz and

⟦ab⟧(x) = ⟦b⟧(ax) = ⟦b⟧(ay′bz) = z = ⟦b⟧(y′bz) = ⟦b⟧(x) .

Conversely, if ⟦b⟧(x) ≠ � there are y ∈ (F ∖ {b})∗ and z ∈ A∗ with x = ybz. Then we have

⟦b⟧(x) = ⟦b⟧(ybz) = z = ⟦b⟧(aybz) = ⟦ab⟧(x) .

Statement (3) was already proved in Equation (4.4). Finally, item (4) holds since ⟦sát⟧(x) =
� = ⟦á⟧(x) holds for each x ∈ A∗ ∪ {�} and s, t ∈ Σ∗á. ◂

Next, we order the equations from Lemma 4.4.1 from left to right and obtain a semi-Thue
systemSL with the following rules:

(1) aa → ε,

(2) ab → b if a ∈ F ∖ {b},
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(3) ab → á if a ∈ U ∖ {b},

(4) αá → á, and áα → á

where a, b ∈ A are two letters and α ∈ Σá. Similar to the semi-Thue systemSA the systemSL

is finite, monadic, terminating, and confluent (the proofs of these properties are very similar
to the reliable case). Hence, for each word t ∈ Σ∗á there is a uniquely defined, irreducible word
which we call nf (t) (the so-called normal form) and which satisfies t⇒∗SL

nf (t). The set of
all words in normal form is denoted by NFPL

. Due to the rules of our semi-Thue systemSL

we obtain
NFPL

= A
∗
A∗ ∪ {á} .

We prove next, that the normal form is unique in any equivalence class. Hence, the
equations from Lemma 4.4.1 fully describe the behavioral equivalence.

Theorem 4.4.2. Let L = (F ,U) be a lossiness alphabet and s, t ∈ Σ∗á. Then we have

s ≡ t ⇐⇒ nf (s) = nf (t) .

Proof. First we prove the implication “⇒”. To this end, let s, t ∈ Σ∗á. If nf (s) ≠ á then there
are r1,w1 ∈ A∗ with nf (s) = r1w1. Then we have

⟦t⟧(r1) = ⟦s⟧(r1) = ⟦r1w1⟧(r1) = ⟦w1⟧(ε) = w1
R ≠ �

and, hence, t ≢ á implying the existence of r2,w2 ∈ A∗ with nf (t) = r2w2. We prove next
r1 = r2. By the calculation above we have � ≠ ⟦t⟧(r1) = ⟦r2w2⟧(r1). This implies ∣r2∣ ≤ ∣r1∣. By
symmetry, we have ∣r1∣ = ∣r2∣ implying r1 = r2 since ⟦r2⟧(r1) ≠ �.

Next, we have to prove w1 = w2. This equation holds since

w1
R = ⟦r1w1⟧(r1) = ⟦s⟧(r1) = ⟦t⟧(r1) = ⟦r1w2⟧(r1) = w2

R .

This implies á ≠ nf (s) = nf (t).
Note that by symmetry we obtain nf (s) ≠ á if, and only if, nf (t) ≠ á holds. Hence, if

nf (s) = á holds, we also obtain nf (t) = á = nf (s).
Finally, the converse implication “⇐” holds since s ≡ nf (s) = nf (t) ≡ t which holds due

to Lemma 4.4.1. ◂

Again, we obtain from this theorem that the map T(PL) → NFPL
∶ ⟦t⟧ ↦ nf (t) is well-

defined. We can also write nf (⟦t⟧) for the normal form nf (t) of the action sequence t ∈ Σ∗á.

4.4.2 Cancellation
Let L = (F ,U) be a lossiness alphabet. Then we can see that T(PL) is neither left- nor
right-cancellative: let a ∈ A be a letter then we have aaaa ≢ aa by the equations from
Lemma 4.4.1. Nevertheless, we obtain the following equations:

aaaa ⋅ aa ≡ aaaa ≡ aaaa ⋅ aaaa ≡ aa ⋅ aaaa .
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Note that this property is inherited from the bicyclic semigroup (resp. the transformation
monoid of a counter T(C1) ≅ T(P{a})).

However, the pls monoids are at least cancellative with the following restriction:

Corollary 4.4.3. Let L = (F ,U) be a lossiness alphabet, s, t ∈ Σ∗á, and x , y ∈ A∗. Then

xsy ≡ xty implies s ≡ t. ◂

4.4.3 Green’s Relations
Next, we consider Green’s relations in the pls monoid. So, let L = (F ,U) be a lossiness
alphabet. First, we consider the case ∣A∣ = 1. In other words, T(PL) is the bicyclic semigroup.
For this monoid the following results are well-known: we have ⟦akaℓ⟧ L ⟦aman⟧ if, and only
if, ℓ = n (where A = {a}). Similarly, we have ⟦akaℓ⟧ R ⟦aman⟧ if, and only if, k = m holds
[How95]. Now, let ∣A∣ ≥ 2. We will see in this subsection that Green’s relations of T(PL) have
similar properties. To this end, we prove the following properties of the principal idealsvi of
T(PL).

Lemma 4.4.4. LetL = (F ,U) be a lossiness alphabet and r,w ∈ A∗. Then the following

statements hold:

(1) T(PL) ⋅ ⟦rw⟧ = T(PL) ⋅ ⟦w⟧,

(2) ⟦rw⟧ ⋅T(PL) = ⟦r⟧ ⋅T(PL),

(3) T(PL) ⋅ ⟦rw⟧ ⋅T(PL) = T(PL), and

(4) T(PL) ⋅ ⟦á⟧ ⋅T(PL) = T(PL) ⋅ ⟦á⟧ = ⟦á⟧ ⋅T(PL) = {⟦á⟧}.

Proof. First, we prove statement (1). The inclusion “⊆” is trivial since

T(PL) ⋅ ⟦rw⟧ = T(PL) ⋅ ⟦r⟧ ⋅ ⟦w⟧ ⊆ T(PL) ⋅ ⟦w⟧ .

For the converse inclusion let ⟦t⟧ ∈ T(PL) ⋅ ⟦w⟧. Then there is an s ∈ Σ∗á with t ≡ sw. Set
s′ ∶= s ⋅ rR ∈ Σ∗á. Then we have

s′ ⋅ rw = s ⋅ rR ⋅ rw ≡ sw ≡ t

implying ⟦t⟧ ∈ T(PL) ⋅ ⟦rw⟧.
The proof of the second statement is very similar to the first one. Next, we prove (3).

This equation holds since:

T(PL) ⋅ ⟦rw⟧ ⋅T(PL) = (T(PL) ⋅ ⟦rw⟧) ⋅T(PL)
(1)
= (T(PL) ⋅ ⟦w⟧) ⋅T(PL)

= T(PL) ⋅ (⟦w⟧ ⋅T(PL))
(2)
= T(PL) ⋅ (⟦ε⟧ ⋅T(PL))

= T(PL) ⋅T(PL) = T(PL) .
viLetM be a monoid and m ∈M be an element. ThenM ⋅m is called a left principal ideal ofM. Similarly,

m ⋅M is a right principal ideal andM ⋅m ⋅M is a two-sided principal ideal.
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Finally, statement (4) is a direct consequence of Lemma 4.4.1(4). ◂

With the help of this lemma, we are able to fully describe Green’s relations in the partially
lossy stack monoid:

Proposition 4.4.5. Let L = (F ,U) be a lossiness alphabet and r1, r2,w1,w2 ∈ A∗. Then

the following statements hold:

(1) ⟦r1w1⟧ L ⟦r2w2⟧ if, and only if, w1 = w2.

(2) ⟦r1w1⟧ R ⟦r2w2⟧ if, and only if, r1 = r2.

(3) ⟦r1w1⟧ J ⟦r2w2⟧.

(4) ⟦r1w1⟧H ⟦r2w2⟧ if, and only if, r1w1 = r2w2.

(5) ⟦r1w1⟧D ⟦r2w2⟧.

Now, let t ∈ Σ∗á. Then we have:

(6) ⟦á⟧X ⟦t⟧ if, and only if, t ≡ á for each X ∈ {L,R, J,H,D}.

Proof. We start with the proof of (1). If w1 = w2 holds, then we have, by Lemma 4.4.4(1),

T(PL) ⋅ ⟦r1w1⟧ = T(PL) ⋅ ⟦w1⟧ = T(PL) ⋅ ⟦w2⟧ = T(PL) ⋅ ⟦r2w2⟧

implying ⟦r1w1⟧ L ⟦r2w2⟧. Conversely, if ⟦r1w1⟧ L ⟦r2w2⟧, we have

T(PL) ⋅ ⟦w1⟧ = T(PL) ⋅ ⟦r1w1⟧ = T(PL) ⋅ ⟦r2w2⟧ = T(PL) ⋅ ⟦w2⟧

by Lemma 4.4.4(1). Since ⟦w1⟧ ∈ T(PL) ⋅⟦w1⟧ = T(PL) ⋅⟦w2⟧ there is a t ∈ Σ∗á withw1 ≡ tw2.
Due toTheorem 4.4.2 we have

w1 = nf (w1) = nf (tw2) = nf (t)w2

implying nf (t) ∈ A∗ and w2 is a suffix of w1. By symmetry w1 also is a suffix of w2 implying
w1 = w2.

Statement (2) can be proven similarly using Lemma 4.4.4(2).
Statement (3) holds since

T(PL) ⋅ ⟦r1w1⟧ ⋅T(PL) = T(PL) = T(PL) ⋅ ⟦r2w2⟧ ⋅T(PL)

by Lemma 4.4.4(3).
The implication “⇐” of statement (4) is obvious. Towards the converse implication “⇒”

let ⟦r1w1⟧H ⟦r2w2⟧. Then we have ⟦r1w1⟧ L ⟦r2w2⟧ and ⟦r1w1⟧ R ⟦r2w2⟧. By statements (1)
and (2) we have w1 = w2 and r1 = r2 implying r1w1 = r2w2.

Next we prove (5). Set t ∶= r2w1. Then by the choice of t we have ⟦r1w1⟧ L ⟦t⟧ and
⟦t⟧ R ⟦r2w2⟧ implying ⟦r1w1⟧D ⟦r2w2⟧.

Finally, we can infer (6) directly from Lemma 4.4.4(4). ◂
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4.4.4 Composition
Finally, we characterize the normal form of the composition of two transformations. We
first specify the normal form of a special case, namely of action sequences from A∗A

∗
. To

this end, we first have to understand, in which cases an action sequence wa (for w ∈ A∗ and
a ∈ A) behaves equivalently to ε. In reliable stacks we have wa ≡ ε if, and only if, w = a
holds due to Lemma 4.3.1(1). In non-reliable stacks we additionally have equation (2) from
Lemma 4.4.1. This means, before we apply the equation aa ≡ ε to wa we can also remove
some forgettable letters other than a. Then we obtain wa ≡ ε if, and only if, w ∈ a(F ∖ {a})∗
holds. Now, let r ∈ A∗. Then by induction on the length of r we obtain wr ≡ ε if, and only if,
r = a1a2 . . . an and w ∈ an(F ∖ {an})∗ . . . a2(F ∖ {a2})∗a1(F ∖ {a1})∗. In this case, wR is an
L-superword of r with some restrictions:

Definition 4.4.6. Let L = (F ,U) be a lossiness alphabet, u, v ∈ A∗. We say that u is a
reducedL-superword of v if there are letters a1, a2, . . . , an ∈ A and words xi ∈ (F∖{ai})∗
such that v = a1a2 . . . an and u = x1a1x2a2 . . . xnan holds.

The set of all reduced L-superwords of v = a1a2 . . . an is denoted by

redsupL(v) ∶= {x1a1x2a2 . . . xnan ∣ ∀1 ≤ i ≤ n∶ xi ∈ (F ∖ {ai})
∗} . ⌟

Then we see that wr ≡ ε holds if, and only if, wR ∈ redsupL(r) for each pair r,w ∈ A∗.
Note that the relation “u ∈ redsupL(v)” is (in the general case) not transitive, i.e., this relation
is no partial order. Though, in the reliable case (i.e., L = (∅,U)) we have redsupL(v) = {v}.
In other words, the mentioned relation is the equality relation on the free monoid A∗.

All in all, we obtain the following three cases concerning the normal form of wr for
arbitrary r,w ∈ A∗:

Lemma 4.4.7. Let L = (F ,U) be a lossiness alphabet and w , r ∈ A∗. Let r1 ∈ A∗ be the
longest prefix of r such that there exists a suffix w2 ∈ A∗ of w with w2

R ∈ redsupL(r1).
Moreover, let r2 be the complementary suffix of r wrt. r1 and let w1 be the complementary

prefix of w wrt. w2. Then the following statements hold:

(1) if r2 = ε then we have nf (wr) = w1.

(2) if r2 ≠ ε and w1 ∈ F∗ then we have nf (wr) = r2.

(3) if r2 ≠ ε and w1 ∉ F∗ then we have nf (wr) = á.

Proof. There are letters a1, . . . , an ∈ A and xi ∈ (F ∖ {ai})∗ such that r1 = a1 . . . an and
w2 = anxn . . . a1x1. Then we can see the following:

wr = w1w2 r1 r2 = w1 anxn . . . a2x2a1x1 a1a2 . . . an r2
≡ w1 anxn . . . a2x2a1 a1a2 . . . an r2 (by Lemma 4.4.1(2))
≡ w1 anxn . . . a2x2 a2 . . . an r2 (by Lemma 4.4.1(1))
⋮

≡ w1 r2 .
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Then statement (1) is a simple consequence of these calculations.
Towards (2) let r2 = an+1r′2 with an+1 ∈ A. Due to the maximality of ∣r1∣ we have w1 ∈

(F ∖ {an+1})∗. Hence, using Lemma 4.4.1(2) we obtain wr ≡ w1r2 ≡ r2.
Finally, we prove (3). By the maximality of ∣r1∣ we obtainw2 ∉ A∗an+1(F ∖{an+1})∗. Then

Lemma 4.4.1(3) yields wr ≡ á. ◂

From this lemma we obtain our characterization of the composition of two arbitrary action
sequences:

Theorem 4.4.8. Let L = (F ,U) be a lossiness alphabet and s, t ∈ Σ∗á with nf (s) = r1w1
and nf (t) = r2w2 for words w1,w2, r1, r2 ∈ A∗. Set v ∶= nf (w1r2) (by Lemma 4.4.7 we

know v ∈ A∗ ∪ A
∗
∪ {á}). If v ≠ á then we have nf (st) = r1vw2. Otherwise we have

nf (st) = á. ◂

4.5 Distributed Stacks
In this section we want to generalize the results from Section 4.3 to systems having multiple
stacks. We first show that the behavioral equivalence is compatible with the partial com-
mutations defined by the underlying distributed alphabet A. So, we can also understand
our action sequences as traces. Afterwards, we will consider a trace rewriting systemvii from
which we obtain a normal form of the equivalence classes.

LetA = (A, P,M) be a distributed alphabet. For a letter a ∈ A the transformation ⟦a⟧
is the right-inverse element of ⟦a⟧ but not its left-inverse. Now, let a, b ∈ A be two distinct
letters. If a ∥ b (i.e., a and b affect different stacks) then actions α ∈ {a, a} and β ∈ {b, b}
commute. This does not hold if a ∦ b holds. In particular, we observe

⟦ab⟧(λ) = ⟦b⟧(aλ) = �

in this case for any trace λ ∈ M(A). Hence, the transformation ⟦ab⟧ is an annihilating
element ofT(PA). We introduce a new letterá ∉ Σwith ⟦á⟧(λ) = � for each λ ∈M(A)∪{�}.
The extended set of basic actions is then Σá ∶= Σ∪{á}. Note that there is no such annihilating
element ⟦á⟧ in T(PA) if we have a ∥ b for each pair of distinct letters a, b ∈ A (in this case,
PA consists of multiple independent counters).

First, we generalize the equations from Lemma 4.3.1 to the distributed case. These
equations are listed in the next lemma:

Lemma 4.5.1. LetA = (A, P,M) be a distributed alphabet, a, b ∈ A, and α ∈ Σá. Then

the following equations hold:

(1) aa ≡ ε,

viiTrace rewriting systems are a generalization of semi-Thue systems which handle traces instead of words.
Properties like termination or confluence are similarly defined. More information on such systems can be
found, e.g., in [Die90].
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(2) ab ≡ ba, ab ≡ ba, and ab ≡ ba if a ∥ b,

(3) ab ≡ á if a ≠ b and a ∦ b, and

(4) αá ≡ áα ≡ á.

Proof. We start with the proof of statement (1). To this end, let a ∈ A and λ ∈M(A). Then
we see

⟦aa⟧(λ) = ⟦a⟧(aλ) = λ = ⟦ε⟧(λ) .

This implies ⟦aa⟧ = ⟦ε⟧ and, therefore, aa ≡ ε.
Towards statement (2) assume that a ∥ b holds. First we prove ab ≡ ba. Then we have

for λ ∈M(A):

⟦ab⟧(λ) = ⟦b⟧(⟦a⟧(λ)) = baλ = abλ = ⟦a⟧(⟦b⟧(λ)) = ⟦ba⟧(λ) .

Next, we consider ab ≡ ba. Let λ ∈ M(A) with κ ∶= ⟦ab⟧(λ) ≠ �. Then we obtain
λ = abκ = baκ by a ∥ b. This implies

⟦ab⟧(λ) = κ = ⟦a⟧(aκ) = ⟦ba⟧(baκ) = ⟦ba⟧(λ) .

Conversely, let λ ∈M(A)with ⟦ba⟧(λ) ≠ �. Then by symmetry we infer ⟦ba⟧(λ) = ⟦ab⟧(λ).
Now, we prove the third equation ab ≡ ba. First, let λ ∈M(A) be a distributed stack’s

content with κ ∶= ⟦ab⟧(λ) ≠ �. Then we see aλ = bκ. Since a ∥ b holds, there is µ ∈M(A)
with bκ = aλ = abµ = baµ and, hence, κ = aµ and λ = bµ by the cancellation property of
M(A). Then we have

⟦ab⟧(λ) = κ = aµ = ⟦a⟧(µ) = ⟦ba⟧(bµ) = ⟦ba⟧(λ) .

Conversely, let λ ∈M(A) with κ ∶= ⟦ba⟧(λ) ≠ �. We obtain a trace µ ∈M(A) with λ = bµ
and κ = aµ. Then we have

⟦ba⟧(λ) = κ = aµ = ⟦b⟧(baµ) = ⟦b⟧(abµ) = ⟦ab⟧(bµ) = ⟦ab⟧(λ) .

Towards statement (3), let a, b ∈ A be two distinct letters with a ∦ b and let λ ∈M(A).
By the choice of a and b we know ab /≈A ba and, hence, aλ ≠ bκ for each κ ∈M(A). Then
we obtain

⟦ab⟧(λ) = ⟦b⟧(aλ) = � = ⟦á⟧(λ)

implying ab ≡ á.
Finally, we consider the last statement. So, let s, t ∈ Σ∗á and λ ∈M(A). Then we have

⟦sá t⟧(λ) = ⟦t⟧(⟦á⟧(⟦s⟧(λ))) = ⟦t⟧(�) = � = ⟦á⟧(λ) ,

which implies sát ≡ á. Since s and t are arbitrary action sequences, this equation also holds
for st = α with α ∈ Σá. ◂
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Consider the equations from Lemma 4.4.1(3). Then we can see that write and read
actions of two independent letters a ∥ b are commutable in the behavioral equivalence. In
other words, the behavioral equivalence preserves the partial commutations defined by an
extension of the distributed alphabetA to all basic actions of a distributed stack. This extended
distributed alphabet is Eá ∶= (Σá, P,M′) withM′ ∶= M∪{(a, i) ∣ (a, i) ∈ M} ∪ ({á} × P).
Finally, we observe that ≡ is a quotient of the partial commutations ≈Eá . For a trace τ ∈M(A)
we denote τ ∶= [w] for a word w ∈ τ. Additionally, for a trace language L ⊆M(A) we write
L ∶= {τ ∣ τ ∈ L}.

From now on we can also define the distributed stack’s semantics ⟦.⟧ for traces. So, we
write ⟦τ⟧ for the transformation ⟦t⟧ with t ∈ τ for each τ ∈M(Eá). This definition is well-
defined due to the argumentation above. Moreover, we extend our behavioral equivalence
to traces σ , τ ∈M(Eá). Then we write σ ≡ τ if, and only if, ⟦σ⟧ = ⟦τ⟧ holds. This is the case
whenever s ≡ t holds for s ∈ σ and t ∈ τ. Then with trace semantics Lemma 4.5.1 reduces to
the equations (1), (3), and (4). Note that these are essentially the equations from Lemma 4.3.1.

Now, we order these equations from left to right and obtain a trace rewriting systemSA

(on the distributed alphabet Eá) with the following rules:

(1) [aa]→ [ε],

(2) [ab]→ [á] if a ≠ b and a ∦ b,

(3) [αá]→ [á], and [áα]→ [á]

where a, b ∈ A are two letters and α ∈ Σá. Note that this trace rewriting system is finite
and monadic. It is also terminating since σ ⇒SA

τ implies ∣σ ∣ > ∣τ∣ for each pair of traces
σ , τ ∈M(Eá). Additionally, we can see that the system is confluent: to this end, we only have
to consider overlapping left-hand sides of the rules in SA. This is the case for [abá] and
[áab] (where a and b are not necessarily distinct). Due to symmetry we only consider the
former case:

[á]
(3)
⇐ÔSA

[aá]
(3)
⇐ÔSA

[a(aá)] = [(aa)á]
(1)
Ô⇒SA[á] or

[á]
(3)
⇐ÔSA

[aá]
(3)
⇐ÔSA

[a(bá)] = [(ab)á]
(2)
Ô⇒SA

[áá]
(3)
Ô⇒SA

[á] if a ≠ b and a ∦ b.

Since SA is terminating and confluent, for each trace τ ∈ M(Eá) there is a unique,
irreducible trace which we call nf (τ) (the so-called normal form) and which satisfies τ⇒∗SA

nf (τ). The set of all traces in normal form is denoted by NFPA
. Again, we can obtain the

following characterization of the normal forms from the rules ofSA:

NFPA
=M(A)M(A) ∪ {[á]} . (4.5)

We prove next, that the normal form is unique in any equivalence class of ≡. This implies
that the equations from Lemma 4.5.1 fully describe the behavioral equivalence:

Theorem 4.5.2. Let A = (A, P,M) be a distributed alphabet and σ , τ ∈M(Eá). Then

we have

σ ≡ τ ⇐⇒ nf (σ) = nf (τ)
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Proof. The proof of this theorem is very similar to the proof of Theorem 4.4.2. ◂

This finally implies that the map T(PA)→ NFPA
∶ ⟦τ⟧ ↦ nf (τ) is well-defined. We can

also write nf (⟦τ⟧) for the normal form nf (τ) of the trace of actions τ ∈M(Eá). Note that
due to Equation (4.5) andTheorem 4.5.2 for each trace τ ∈M(Eá) there is an equivalently
behaving trace σ ∈M(Eá) which is in some sense simple.

4.6 Recapitulation: Reliable Queues

In this section we want to recapitulate the results from [HKZ17] concerning the basic proper-
ties of the (reliable) queue monoid T(QA). The concrete structure of this section is similar
to the previous ones. So, we start with listing several equations that hold in the behavioral
equivalence of a reliable queue. From these equations we construct a semi-Thue systemRA.
We will see that each equivalence class has a unique, irreducible word - the so-called normal
form. So, we will infer that the equations fully describe the behavior of a reliable queue.
Finally, we describe the composition of two transformations in terms of normal forms.

Before we do this, we first consider a special dualism of write and read actions. To this
end, let a ∈ A and x ∈ A∗. Then we can observe that ⟦a⟧(x) = xa and ⟦a⟧(a xR) = xR holds.
So, we can see that ⟦a⟧ behaves as the inverse function of ⟦a⟧ if we reverse the direction of
our queue. This duality can be extended to the so-called duality map d∶Σ∗ → Σ∗ which is
defined as follows:

d(ε) = ε , d(at) = d(t)a , and d(at) = d(t)a

for each a ∈ A and t ∈ Σ∗. Note that d is a bijective antimorphism (i.e., we have d(st) =
d(t)d(s)) and an involution (i.e., we have d(d(t)) = t for each t ∈ Σ∗). Then we can show
that the behavioral equivalence is compatible with the duality map:

Proposition 4.6.1 ([HKZ17, Lemma 3.3 and Proposition 3.4]). Let A be an alphabet.
Then the following statements hold:

(1) Let t ∈ Σ∗ and x , y ∈ A∗ with ⟦t⟧(x) = y ≠ �. Then we have ⟦d(t)⟧(yR) = xR.

(2) Let s, t ∈ Σ∗. Then we have s ≡ t if, and only if, d(s) ≡ d(t) holds. ◂

Note that we will use this duality map and its properties multiple times in this thesis.

4.6.1 Normal Forms

Next, we want to list a finite number of (context-sensitive) commutations that hold in the
behavioral equivalence. Later we will state that these equations fully describe the equivalence
classes of ≡.
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Lemma 4.6.2 ([HKZ17, Lemma 3.5]). Let A be an alphabet and a, b ∈ A. Then the

following equations hold:

(1) ab ≡ ba if a ≠ b,

(2) aab ≡ aab, and

(3) baa ≡ baa. ◂

We can understand the first equation as follows: in order for ⟦ab⟧(x) to be defined, the
queue’s content x already has to start with the letter b. Then it does notmatter whether we first
write a and then read b or vice versa. We are in a similar situation in the case ⟦aab⟧(x) ≠ �.
This only holds if the queue’s content starts with an a. The third equation can be obtained
from the second one using the duality property (Proposition 4.6.1).

Now, we are able to construct a semi-Thue systemRA by ordering the equations from
Lemma 4.6.2 from left to right. In other words,RA consists of the following rules:

(1) ab → ba if a ≠ b,

(2) aab → aab, and

(3) baa → baa

for each a, b ∈ A. We observe that each rule inRA commutes a write and a read action. So,
if we apply these rules to an action sequence t ∈ Σ∗ we preserve the relative order of write
actions and the relative order of read actions. We denote the subsequences of write and read
actions of t by wrt(t) ∶= πA(t) and rd(t) ∶= πA(t) (note that rd suppresses the bars on top of
the read actions in t).

The semi-Thue system RA is finite, terminating, and confluent [HKZ17, Lemma 4.1].
Then, for each action sequence t ∈ Σ∗ we obtain a unique, irreducible word nf (t) (the so-
called normal form) with t ⇒∗RA

nf (t). The set of all action sequences in normal form is
denoted by NFQA

. Due to the shape of the rules ofRA we obtain

NFQA
= A

∗
{aa ∣ a ∈ A}∗A∗ .

For letters a1, a2, . . . , an ∈ A we write ⟨a1a2 . . . an⟩ ∶= a1a1a2a2 . . . anan ∈ Σ∗. Then, the
normal form of an action sequence t ∈ Σ∗ is nf (t) = w1⟨w2⟩w3 for three uniquely defined
wordsw1,w2,w3 ∈ A∗. We also name these words by rd1(t) ∶= w1, rd2(t) = wrt1(t) ∶= w2, and
wrt2(t) ∶= w3. Note that we have wrt(t) = wrt1(t)wrt2(t) and rd(t) = rd1(t)rd2(t).

Finally, we can prove that the equations from Lemma 4.6.2 fully describe the behavioral
equivalence. In other words, the normal forms are uniquely defined for equivalence classes
of ≡.

Theorem 4.6.3 ([HKZ17, Theorem 4.3]). Let A be an alphabet and s, t ∈ Σ∗. Then we

have s ≡ t if, and only if, nf (s) = nf (t). ◂
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So, we can also see the normal form nf (t) of an action sequence t ∈ Σ∗ as the normal
form nf (⟦t⟧) of the induced transformation ⟦t⟧. Similarly, we can define the maps rd, rdi ,
wrt, and wrti (for i = 1, 2) for transformations from T(QA). Additionally, the normal form
of t (resp. ⟦t⟧) is uniquely described by the words wrt(t), rd(t), and rd2(t) = wrt1(t). We
call the triple χ(t) ∶= (wrt(t), rd(t), rd2(t)) the characteristic of t (resp. ⟦t⟧).

4.6.2 Cancellation and Green’s Relations

From the equations in Lemma 4.6.2 and the fact that these equations fully describe the queue
monoid (cf. Theorem 4.6.3), we also obtain that T(QA) is not cancellative. For example, we
know ⟦aa⟧ ≠ ⟦aa⟧ but ⟦a⟧⟦aa⟧ = ⟦a⟧⟦aa⟧ and ⟦aa⟧⟦a⟧ = ⟦aa⟧⟦a⟧ for any a ∈ A. However,
the queue monoid is cancellative under the same restrictions as we have seen for the stack
monoids (cf. Corollary 4.4.3). We also learn that Green’s relations are trivial in the queue
monoid, i.e., all of these relations coincide with the identity relation.

Corollary 4.6.4 ([HKZ17, Corollaries 4.6 and 4.7]). Let A be an alphabet. Then the

following statements hold:

(1) T(QA) is neither left- nor right-cancellative.

(2) If s, t ∈ Σ∗ and x , y ∈ A∗ with xsy ≡ xty holds, then we have s ≡ t.

(3) For all s, t ∈ Σ∗ and X ∈ {L,R, J,H,D} we have ⟦s⟧X ⟦t⟧ if, and only if, s ≡ t. ◂

4.6.3 Composition

Finally, we can study the normal form of the composition of two action sequences. But
before we consider the general case, we consider a crucial special case. Concretely, we
compute the normal form of the action sequence wr where w , r ∈ A∗. We consider the
characteristic χ(wr) = (wrt(wr), rd(wr), rd2(wr)) (recall that χ(wr) fully describes the
normal form of wr). By the definition of the projections to write and read actions, we
have wrt(wr) = w and rd(wr) = r. So, we only have to determine rd2(wr). First, from
nf (wr) = rd1(wr)⟨rd2(wr)⟩wrt2(wr) we can learn that rd2(wr) = wrt1(wr) is a suffix of
rd(wr) = r and a prefix of wrt(wr) = w.

Example 4.6.5. Let a, b ∈ A be two disjoint letters. We consider the words w = r ∶=
ababa. Then there are the following four suffixes of r which also are prefixes of w: ε, a,
aba, and ababa. However, the application of the equations from Lemma 4.6.2 yields the
following:

ababaababa ≡ aabbaabbaa = ⟨ababa⟩ ∈ NFQA

implying rd2(ababaababa) = ababa. In other words, rd2(ababaababa) is the longest
of the four aforementioned candidates. ⌟

Finally, Huschenbett et al. proved that rd2(wr) always has maximal length:
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Lemma 4.6.6 ([HKZ17, Lemma 5.2]). Let A be an alphabet and w , r ∈ A∗. Set y to the
longest suffix of r which also is a prefix of w. Then we have rd2(wr) = y. In particular,
for x , z ∈ A∗ with r = xy and w = yz we have nf (wr) = x⟨y⟩z. ◂

From this result we also learn that each action sequence behaves equivalently to a somewhat
simple action sequence, namely a sequence from A

∗
A∗A

∗
:

Corollary 4.6.7. Let A be an alphabet and t ∈ Σ∗ be an action sequence. Then we have

t ≡ rd1(t)wrt(t)rd2(t). ◂

Note that there are action sequences t ∈ Σ∗ having multiple simple action sequences which
behave equivalently. To this end, let a, b ∈ A be two distinct letters. Then we have baaba ≡
ababa by Lemma 4.6.6. Now, consider the words r1, r2,w ∈ A∗ where r2 has minimal length
with t ≡ r1wr2. We can see that r1wr2 = rd1(t)wrt(t)rd2(t).

Using this corollary, we can also compute such simple equivalently behaving action
sequence from a given action sequence t ∈ Σ∗ (in polynomial time): first we compute nf (t)
using the semi-Thue systemRA. In this system, each derivation starting with t has length
O(∣t∣2) since each step commutes a read and write action of t. From nf (t) we can finally
extract rd1(t), wrt(t), and rd2(t).

Finally, we obtain the following general statement about the normal form of st where
s, t ∈ Σ∗ are arbitrary action sequences:

Theorem 4.6.8 ([HKZ17, Theorem 5.3]). Let A be an alphabet and s, t ∈ Σ∗. Set y to
the longest suffix of rd2(s)rd(t) which also is a prefix of wrt(s)rd2(t). Then we have

rd2(st) = y. In particular, for x , z ∈ A∗ with rd2(s)rd(t) = xy and wrt(s)rd2(t) = yz
we have nf (st) = x⟨y⟩z. ◂

4.7 Partially Lossy Queues
Now, wewant to generalize the results from the previous section to the behavioral equivalence
of the partially lossy queue monoid. Again, we will first define a semi-Thue system on Σ∗
which identifies equivalently behaving action sequences. With the help of this system we
obtain special normal forms of the equivalence classes. Additionally, we will characterize the
composition of two action sequences, cancellation properties, and Green’s relations. In this
connection we also recall the embedding properties into the plq monoid. Note that most of
the proofs and results of this section stem from [Köc16, KKP18].

The following example shows that most of the results in this section heavily depend on
the underlying lossiness alphabet of the partially lossy queue:
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Example 4.7.1. Let A be an alphabet and a, b ∈ A be two distinct letters. Then we have

⟦baa⟧Q
(A,∅)(ε) = ⟦a⟧Q(A,∅)(ba) = ε ≠ � = ⟦aa⟧Q(A,∅)(b) = ⟦baa⟧Q(A,∅)(ε)

implying baa /≡Q
(A,∅) baa. In contrast, we have ⟦.⟧Q(∅,A) = ⟦.⟧QA

implying baa ≡Q
(∅,A) baa

by Lemma 4.6.2. ⌟

Note that for a singleton A = {a} we have Q(A,∅) = Q(∅,A). Moreover, these partially lossy
queues are essentially counters as the following two equations prove:

⟦a⟧(an) = ana = an+1 and ⟦a⟧(an+1) = ⟦a⟧(aan) = an

for each n ∈ N. In other words, T(Q(A,∅)) = T(Q(∅,A)) ≅ T(C1) ≅ T(PA) is the bicyclic
semigroup. Some of the results in this section do not hold in these cases. However, we have
already seen some properties of the behavioral equivalence of these special plqs in Section 4.3.

4.7.1 Basic Properties
The following lemma lists some context-sensitive commutations that hold in the behavioral
equivalence. Later in this section (in Theorem 4.7.8) we will see that these equations fully
describe the behavioral equivalence.

Lemma 4.7.2. Let L = (F ,U) be a lossiness alphabet, a, b ∈ A, and t ∈ A∗. Then the

following equations hold:

(1) ba ≡ ab if a ≠ b,

(2) aab ≡ aab,

(3) btaa ≡ btaa if b ∈ U , and

(4) ataa ≡ ataa.

Before we prove this lemma, we want to take a look on these equations. We first consider
the equation (1). In order for a partially lossy queue with content x ∈ A∗ to be defined after
application of the transformation ⟦ab⟧, x already has to contain the letter a preceded by
forgettable letters, only. Hence, it does not matter whether we read a before or after we write
b ≠ a. Note that we also require such a in the content x (preceded by forgettable letters)
when applying the actions from the right-hand side of the equations (2) and (3). Finally, in
equation (4) the leading write action a ensures that the partially lossy queue contains an a
after application of ⟦a⟧. Then it does not matter whether we apply ⟦taa⟧ or ⟦taa⟧ to xa.

Now, consider the caseL = (∅,U) (i.e., we consider a reliable queue). Then the equations
(1) and (2) are similar to the ones from Lemma 4.6.2 concerning the behavioral equivalence
of a reliable queue. Additionally, (3) of Lemma 4.6.2 corresponds to the remaining two
equations. Note that Huschenbett et al. only have proven the special case t = ε. However,
this special case also follows from our more general case.

Finally, consider the case L = (F ,∅) (i.e., we consider a fully lossy queue). Since we do
not have any unforgettable letter b ∈ U , we also have no equation of type (3). In this case,
this lemma also generalizes [Köc16, Lemma 3.8].



52 Chapter 4. Behavioral Equivalence

Proof. Towards the proof of the first equation, let a, b ∈ A be two distinct letters and
x ∈ A∗ ∪ {�} be a queue content. First, we consider ⟦ab⟧(x) ≠ �. Then there are words
y ∈ (F ∖ {a})∗ and z ∈ A∗ such that x = yaz. Therefore, we obtain

⟦ab⟧(x) = ⟦ab⟧(yaz) = ⟦b⟧(z) = zb = ⟦a⟧(yazb) = ⟦a⟧(xb) = ⟦ba⟧(x) .

Now, assume ⟦ba⟧(x) ≠ �. Then there is a prefix ya of xb with y ∈ (F ∖ {a})∗. Since a ≠ b
this prefix is proper. Hence, there is a z ∈ A∗ with xb = yazb. Then similarly we obtain
⟦ba⟧(x) = ⟦ab⟧(x). This finally proves ⟦ba⟧ = ⟦ab⟧ and, hence, ba ≡ ab.

Next we prove (2). Let a, b ∈ A be two (not necessarily distinct) letters and x ∈ A∗. If
⟦aab⟧(x) ≠ �, then there are words y ∈ (F ∖ {a})∗ and z ∈ A∗ with x = yaz. In this case we
obtain

⟦aab⟧(x) = ⟦aab⟧(yaz) = ⟦b⟧(za) = ⟦ab⟧(yaza) = ⟦ab⟧(xa) = ⟦aab⟧(x) .

Conversely, if ⟦aab⟧(x) ≠ � holds, there are words y ∈ (F ∖ {a})∗ and z ∈ A∗ with xa = yaz.
From

� ≠ ⟦aab⟧(x) = ⟦ab⟧(xa) = ⟦ab⟧(yaz) = ⟦b⟧(z)

we infer that z ≠ ε, i.e., there is z′ ∈ A∗ with z = z′a. Hence, we have x = yaz′. We finally
obtain

⟦aab⟧(x) = ⟦b⟧(z) = ⟦b⟧(z′a) = ⟦ab⟧(z′) = ⟦aab⟧(yaz′) = ⟦aab⟧(x) .

Finally, we show (3) and (4). So, let a ∈ A, b ∈ U ∪ {a}, and t, x ∈ A∗. Again, we first
assume ⟦btaa⟧(x) ≠ �. Then we also have ⟦aa⟧(xbt) = ⟦btaa⟧(x) ≠ �. Hence, there are
y ∈ (F ∖ {a})∗ and z ∈ A∗ with xbt = yaz. Then we obtain

⟦btaa⟧(x) = ⟦aa⟧(xbt) = ⟦aa⟧(yaz) = ⟦a⟧(z) = za

= ⟦a⟧(yaza) = ⟦a⟧(xbta) = ⟦btaa⟧(x) .

Conversely, assume ⟦btaa⟧(x) ≠ �. Then there is a prefix ya of xbta with y ∈ (F ∖ {a})∗.
By b ∈ U ∪ {a}, the word ya is a prefix of xb. Then there is z ∈ A∗ with xb = yaz. We obtain

⟦btaa⟧(x) = ⟦a⟧(xbta) = ⟦a⟧(yazta) = zta

= ⟦a⟧(zt) = ⟦aa⟧(yazt) = ⟦aa⟧(xbt) = ⟦btaa⟧(x) .

This implies ⟦btaa⟧ = ⟦btaa⟧ and, therefore, our claims (3) and (4). ◂

Note that all of the equations from Lemma 4.7.2 preserve the relative order of the write
actions and of the read actions. Our next aim is to prove that this also holds for any pair
s, t ∈ Σ∗ with s ≡ t. To this end, we recall the projections wrt and rd to write resp. read
actions, i.e.,

wrt(t) = πA(t) and rd(t) = πA(t)

for each t ∈ Σ∗. For example, we have wrt(aaba) = aa and rd(aaba) = ab.
To prove that the behavioral equivalence preserves the values of these two projections, we

need the following lemma, which allows to de-shuffle the projections of an action sequence
t ∈ Σ∗ whenever ⟦t⟧(x) is defined.
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Lemma 4.7.3. Let L = (F ,U) be a lossiness alphabet, x ∈ A∗, and t ∈ Σ∗ with ⟦t⟧(x) ≠
�. Then ⟦t⟧(x) = ⟦wrt(t)rd(t)⟧(x).

Proof. Let a ∈ A be a letter with ⟦aa⟧(x) ≠ �. Then there are y ∈ (F ∖ {a})∗ and z ∈ A∗
with x = yaz. We have

⟦aa⟧(x) = ⟦aa⟧(yaz) = ⟦a⟧(z) = za = ⟦a⟧(yaza) = ⟦a⟧(xa) = ⟦aa⟧(x) ,

i.e., we can commute a and a in this case. Similarly, we can commute a and b for two distinct
letters a, b ∈ A due to Lemma 4.7.2(1). Induction on the (minimal) number of transpositions
needed to transform t into wrt(t)rd(t) finally yields the statement of our lemma. ◂

With this lemma we can prove the aforementioned preservation of the projections under
equivalence:

Proposition 4.7.4. LetL = (F ,U) be a lossiness alphabet with ∣F ∣+ ∣U ∣ ≥ 2 and s, t ∈ Σ∗
with s ≡ t. Then we have wrt(s) = wrt(t) and rd(s) = rd(t).

Proof. We first prove rd(s) = rd(t). By symmetry we can assume ∣rd(s)∣ ≤ ∣rd(t)∣. If
rd(t) = ε then this implies immediately rd(s) = rd(t). So, from now on we can assume that
rd(t) ≠ ε holds. Then there is a ∈ A with rd(t) ∈ A∗a. Since ∣A∣ = ∣F ∣ + ∣U ∣ ≥ 2, there is
another letter b ∈ A∖ {a}. We have

� ≠ b∣t∣wrt(s) = ⟦s⟧(rd(s)b∣t∣)
= ⟦t⟧(rd(s)b∣t∣) (since s ≡ t)

= ⟦wrt(t)rd(t)⟧(rd(s)b∣t∣) (by Lemma 4.7.3)

= ⟦rd(t)⟧(rd(s)b∣t∣wrt(t)) =∶ x .

Since ∣rd(s)∣ ≤ ∣rd(t)∣, the word x is a suffix of b∣t∣wrt(t). Suppose x is a proper suffix of
b∣t∣wrt(t). When reading rd(t) from the queue with content rd(s)b∣t∣wrt(t), the last letter
to read is a ≠ b. It follows that the result x is a proper suffix of wrt(t). But then we have

∣b∣t∣wrt(s)∣ = ∣x∣ < ∣wrt(t)∣ ≤ ∣t∣ ≤ ∣b∣t∣wrt(s)∣ ,

which is a contradiction. Hence, x is not a proper suffix, i.e., x = b∣t∣wrt(t). But then

⟦rd(t)⟧(rd(s)b∣t∣wrt(t)) = x = b∣t∣wrt(t)

implies ⟦rd(t)⟧(rd(s)) = ε ≠ �. Since ∣rd(s)∣ ≤ ∣rd(t)∣ holds, this is only possible if rd(s) =
rd(t).

Finally, the equation wrt(s) = wrt(t) follows easily:

wrt(s) = ⟦s⟧(rd(s))
= ⟦t⟧(rd(t)) (since rd(s) = rd(t) and s ≡ t)
= wrt(t) . ◂
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Note that the converse implication of Proposition 4.7.4 does not hold in general. In
Example 4.7.1 we have seen a counterexample. However, from the statements in the following
subsection we will obtain a third property such that any pair of action sequences behave
equivalently whenever they have the same projections and satisfy this third property.

4.7.2 Normal Forms
Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 (recall that plqs with underlying
lossiness alphabet with ∣F ∣ + ∣U ∣ = 1 are essentially counters or stacks, respectively). In this
subsection we prove that ≡ is the least congruence on the free monoid satisfying the equations
from Lemma 4.7.2. This is achieved by constructing a terminating and confluent semi-Thue
system from those equations and by showing that every equivalence class of ≡ contains a
unique, irreducible word (we call this word the normal form). Later we will often use this
normal form instead of the corresponding equivalence class wrt. ≡.

Ordering the equations from Lemma 4.7.2 from left to right, we obtain an infinite semi-
Thue systemRL consisting of the following rules for a, b ∈ A, and t ∈ A∗:

(1) ba → ab if a ≠ b,

(2) aab → aab,

(3) btaa → btaa if b ∈ U , and

(4) ataa → ataa.

Hence, the idea of this semi-Thue system is to pull read operations to the left as long as the
equations from Lemma 4.7.2 permit.

First, we prove thatRL is terminating and confluent:

Lemma 4.7.5. Let L be a lossiness alphabet. Then the semi-Thue systemRL is terminat-

ing and confluent.

Proof. To prove termination we order the alphabet Σ such that a < b holds for each a, b ∈ A.
Then we see that for any rule ℓ → r fromRL the word r is length-lexicographicallyviii properly
smaller than ℓ. Since this ordering is well-founded the semi-Thue system is terminating.

Due to termination ofRL it suffices to show that it is locally confluent. This is trivial
if the left-hand sides of the applied rules do not overlap. Hence, we only have to consider
the case of overlapping left-hand sides. To this end, let a, b ∈ A, c, d ∈ U ∪ {a}, and s, t ∈ A∗.
Then we see:

ct(aab)
(2)
⇐ÔRL

ct(aab) = (ctaa)b
(3)/(4)
ÔÔ⇒RL

(ctaa)b.

(csdtaa)
(3)/(4)
⇐ÔÔRL

(csdtaa) = cs(dtaa)
(3)/(4)
ÔÔ⇒RL

cs(dtaa).

Therefore,RL is confluent. ◂

viiiA word v ∈ Σ∗ is length-lexicographically properly smaller than w ∈ Σ∗ if ∣v∣ < ∣w∣ or ∣v∣ = ∣w∣ and there are
α, β ∈ Σ and a prefix p ∈ Σ∗ with v ∈ pαΣ∗, w ∈ pβΣ∗, and α < β.
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Let t ∈ Σ∗ be an action sequence. Since the semi-Thue system is terminating and
confluent, there is a unique irreducible word nf (t) ∈ Σ∗ with t ⇒∗RL

nf (t), the so-called
normal form of t. Note that we have t ≡ nf (t) due to the equations from Lemma 4.7.2.
According to the rules ofRL we obtain

NFQL
∶= A

∗
⋅ (⋃

a∈A
(F ∖ {a})∗aa)

∗
⋅ A∗

since these are precisely those words that do not contain any rule’s left-hand side as a factor.
Because of the shape of the irreducible word nf (t) there are k ∈ N, letters ai ∈ A, words

x , z ∈ A∗, and yi ∈ (F ∖ {ai})∗ (for 1 ≤ i ≤ k) such that

nf (t) = x ⋅ (y1a1a1)(y2a2a2) . . . (ykakak) ⋅ z

holds. Note that k, ai , x, yi , and z are uniquely defined. We define

rd1(t) ∶= x , rd2(t) ∶= a1 . . . ak , wrt1(t) ∶= y1a1 . . . ykak , and wrt2(t) ∶= z .

Then we see rd(t) = rd(nf (t)) = rd1(t)rd2(t) and wrt(t) = wrt(nf (t)) = wrt1(t)wrt2(t).
Note that in contrast to the reliable case, in general we do not have rd2(t) = wrt1(t). However,
we can see that rd2(t) is a special L-subword of wrt1(t). Concretely, we observe that wrt1(t)
is a reduced L-superword of rd2(t) (cf. Definition 4.4.6).

We can see that rd1(t) can be obtained from rd(t) and rd2(t) since rd1(t) is the com-
plementary prefix of rd(t) with respect to rd2(t). Moreover, we obtain wrt1(t) from wrt(t)
and rd2(t) since wrt1(t) is the only prefix of wrt(t) which also is a reduced L-superword of
rd2(t). Finally, we obtain wrt2(t) from wrt(t) and wrt1(t) since wrt2(t) is the complemen-
tary suffix of wrt(t) with respect to wrt1(t). So, the normal form of t is fully determined by
the triple

χ(t) ∶= (wrt(t), rd(t), rd2(t))

which we call the characteristic of t.
Towards better readability we also write ⟨⟨y1a1 . . . ykak , a1 . . . ak⟩⟩ instead of the shuffled

word y1a1a1 . . . ykakak. In this case the normal form of t can be written as follows:

nf (t) = rd1(t) ⟨⟨wrt1(t), rd2(t)⟩⟩wrt2(t) .

Note that for the words ab and a there is no such shuffled word ⟨⟨ab, a⟩⟩. Concretely, ⟨⟨w , r⟩⟩
is well-defined if, and only if, w ∈ redsupL(r) holds.

We can also see the shuffled word ⟨⟨wrt1(t), rd2(t)⟩⟩ as some kind of an overlap of the
write and read actions in this normal form nf (t). Since this overlap is completely described
by wrt(t) and rd2(t), we also call rd2(t) the overlap of t (cf. Figure 4.1).

nf (t) =
y1 a1

a1

y2 a2

a2

a3

a3

y4 a4

a4rd1(t)

wrt2(t)

Figure 4.1. Visualization of the normal form of t ∈ Σ∗. The blue boxes represent the overlap rd2(t) of t
while the red and blue boxes represent wrt1(t).

We can observe that for words w , r ∈ A∗ with w ∈ redsupL(r) the application of the
transformation ⟦⟨⟨w , r⟩⟩⟧ has no effect to the empty queue:
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Observation 4.7.6. Let L = (F ,U) be a lossiness alphabet and w , r ∈ A∗ with w ∈
redsupL(r). Then we have ⟦⟨⟨w , r⟩⟩⟧(ε) = ε.

Proof. Byw ∈ redsupL(r) there are a1, . . . , an ∈ A and yi ∈ (F∖{ai})∗ such that r = a1 . . . an
and w = y1a1 . . . ynan. Then we have

⟦⟨⟨w , r⟩⟩⟧(ε) = ⟦(y1a1a1)(y2a2a2) . . . (ynanan)⟧(ε)
= ⟦a1(y2a2a2) . . . (ynanan)⟧(y1a1)
= ⟦(y2a2a2) . . . (ynanan)⟧(ε) (since y1 ∈ (F ∖ {a1})∗)
⋮

= ⟦ε⟧(ε) = ε . ◂

Remark 4.7.7. While rd1(t) is defined using the semi-Thue system RL, it also has a
natural meaning in terms of ⟦t⟧: from the shape of the normal form nf (t) we can infer
that rd1(t) is the shortest word x ∈ A∗ such that ⟦nf (t)⟧(x) is defined. By Lemma 4.7.2
we have t ≡ nf (t). Hence, rd1(t) is also the shortest word x ∈ A∗ such that ⟦t⟧(x) is
defined. ⌟

Now, we show that the equations from Lemma 4.7.2 fully describe the equivalence classes
of the behavioral equivalence ≡:

Theorem 4.7.8. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and s, t ∈ Σ∗.
Then we have

s ≡ t ⇐⇒ nf (s) = nf (t) .

Proof. The implication “⇐” follows easily by two applications of Lemma 4.7.2:

s ≡ nf (s) = nf (t) ≡ t .

Now, we prove the converse implication “⇒”. So let s, t ∈ Σ∗ with s ≡ t. By Proposi-
tion 4.7.4 we have wrt(s) = wrt(t) and rd(s) = rd(t). Since the normal forms of s and t are
completely determined by their characteristics and since rd2(s) is determined by rd(s) and
rd1(s), it suffices to prove rd1(s) = rd1(t). For the following calculations let r,w , z ∈ A∗ such
that w ∈ redsupL(r) and

nf (s) = rd1(s)⟨⟨w , r⟩⟩z .
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Then we get

� ≠ z = ⟦z⟧(ε)

= ⟦⟨⟨w , r⟩⟩z⟧(ε) (by Observation 4.7.6)

= ⟦rd1(s)⟨⟨w , r⟩⟩z⟧(rd1(s))
= ⟦nf (s)⟧(rd1(s))
= ⟦s⟧(rd1(s)) (since s ≡ nf (s) by Lemma 4.7.2)
= ⟦t⟧(rd1(s)) (since s ≡ t)
= ⟦nf (t)⟧(rd1(s)) . (since t ≡ nf (t) by Lemma 4.7.2)

Since rd1(t) is a prefix of nf (t) this implies � ≠ ⟦rd1(t)⟧(rd1(s)). Since rd1(t) consists of
read actions, only, this implies ∣rd1(s)∣ ≥ ∣rd1(t)∣. Now, by symmetry, we also obtain ∣rd1(s)∣ ≤
∣rd1(t)∣ implying that these two words have the same length. But then � ≠ ⟦rd1(t)⟧(rd1(s))
implies rd1(s) = rd1(t) and therefore nf (s) = nf (t). ◂

Remark 4.7.9. As a consequence, all words from the equivalence class of t share the
same characteristic. Hence, this theorem allows us to speak of the characteristic of the
equivalence class [t] or transformation ⟦t⟧. With this characteristic in mind we can
also apply wrt, rd, wrti , and rdi (with i = 1, 2) to transformations from T(QL) instead of
words from Σ∗. ⌟

Now, consider an action sequence t ∈ Σ∗. SinceRL is terminating and confluent, we are
able to compute the normal form of t. We can also see that each derivation inRL starting
with the word t has length at most O(∣t∣2) since we commute each pair of basic actions in t
at most once. Hence, the computation of nf (t) is possible in polynomial time. From this
fact, we can also infer the following statement:

Corollary 4.7.10. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2. Then the

following word problem of T(QL) is decidable in polynomial time:

Input: Two action sequences s, t ∈ Σ∗
Question: Does s ≡ t hold? ◂

In Chapter 5 we will consider some further questions in this direction, e.g., the so-called
rational membership problem (does ⟦t⟧ ∈ L hold for a given action sequence t ∈ Σ∗ and
a rational language L ⊆ T(QL)?), the universality, inclusion, and emptiness of intersection
problem for rational languages in T(QL).

4.7.3 Cancellation
FromTheorem 4.7.8 we infer some statements about cancellation in the plq monoid. To this
end, let L = (F ,U) be a lossiness alphabet. From Lemma 4.7.2 we know that for a, b ∈ A and
c ∈ U ∪ {a} the equations

aab ≡ aab and caa ≡ caa
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hold. However, it is easy to see that aa ≢ aa holds since

⟦aa⟧(ε) = ⟦a⟧(a) = ε ≠ � = ⟦aa⟧(ε) .

Hence, T(QL) is neither left- nor right-cancellative. However, T(QL) is cancellative with
some restrictions according to the rules fromRL:

Corollary 4.7.11. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2, s, t ∈ Σ∗,
and x , y ∈ A∗. Then xsy ≡ xty implies s ≡ t.

Proof. From the rules of the semi-Thue system RL we infer nf (xsy) = x nf (s) y and
nf (xty) = x nf (t) y. Hence from xsy ≡ xty we infer withTheorem 4.7.8:

x nf (s) y = nf (xsy) = nf (xty) = x nf (t) y .

Since the free monoid Σ∗ is cancellative, we obtain nf (s) = nf (t). Again byTheorem 4.7.8
we infer s ≡ t. ◂

4.7.4 Green’s Relations
We also learn fromTheorem 4.7.8 that all of Green’s relations are trivial in the transformation
monoid T(QL). In other words, all of these relations coincide with the identity relation.

Corollary 4.7.12. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and let
s, t ∈ Σ∗ with ⟦s⟧ J ⟦t⟧. Then we have s ≡ t.

Proof. Since ⟦t⟧ ∈ T(QL)⋅⟦t⟧ ⋅T(QL) = T(QL)⋅⟦s⟧ ⋅T(QL) holds, there are action sequences
u, u′ ∈ Σ∗ such that ⟦u⟧ ⟦s⟧ ⟦u′⟧ = ⟦t⟧. Similarly, there are action sequences v , v′ ∈ Σ∗ with
⟦v⟧ ⟦t⟧ ⟦v′⟧ = ⟦s⟧. Hence, we have

⟦s⟧ = ⟦v⟧ ⟦t⟧ ⟦v′⟧ = ⟦vu⟧ ⟦s⟧ ⟦u′v′⟧ = ⟦vusu′v′⟧ .

ByTheorem 4.7.8 we have nf (s) = nf (vusu′v′) implying ∣s∣ = ∣vusu′v′∣ and, hence, vuu′v′ =
ε. ◂

Hence, the relation J is the equality relation in T(QL). Since the equivalence relations L, R,
H, and D are contained in the J-relation, all of these relations are trivial as well.

4.7.5 Composition
Next, we want to consider the normal form of the composition of two action sequences. With
the help of this knowledge we gain some insight into the composition of two transformations
from the plq monoid. Unfortunately, we still do not know a (simple) characterization of
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nf (st) for arbitrary lossiness alphabetsL = (F ,U) and for arbitrary action sequences s, t ∈ Σ∗.
Hence, we will only focus on the special case where s ∈ A∗ and t ∈ A

∗
holds.

First, let L = (∅,U) be a lossiness alphabet without forgettable letters. In the previous
section we have learned that the characteristic χ(wr) (where r,w ∈ A∗) consists ofwrt(wr) =
w, rd(wr) = r, and rd2(wr) which is the longest suffix of r that also is a prefix of w (cf. Lem-
ma 4.6.6). Recall that we have rd2(wr) = wrt1(wr) in this case.

Now, let L = (F ,U) be an arbitrary lossiness alphabet. Then in the general case we do
not have rd2(wr) = wrt1(wr). For example we have wrt1(abb) = ab and rd2(abb) = b if
a ∈ F ∖ {b} holds. However, we already know that wrt1(wr) ∈ redsupL(rd2(wr)). We claim
now that the characteristic χ(wr) consists of wrt(wr) = w, rd(wr) = r, and rd2(wr) which
is the longest suffix of r such that w starts with a reduced L-superword of this suffix. But
before we prove this claim, we want to give this special suffix of r a name:

Definition 4.7.13. Let L = (F ,U) be a lossiness alphabet and w , r ∈ A∗. The subword-
suffix sws(w , r) of w and r is the longest suffix r2 of r such that there is a prefix w1 of w
with w1 ∈ redsupL(r2). ⌟

For example, let a, b ∈ A be two distinct letters, w = abba, and r = ba. If a, b ∈ F holds,
then we have sws(w , r) = ba since abba ∈ redsupL(ba) holds in this case. Otherwise we
have sws(w , r) = a since w1 ∉ redsupL(ba) for any prefix w1 of w and a ∈ redsupL(a).

The following lemma proves that the word rd2(wr) is exactly the subword-suffix of w
and r.

Lemma 4.7.14. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and w , r ∈ A∗.
Then we have rd2(wr) = sws(w , r).

Proof. Since rd1(wr)rd2(wr) = rd(wr) = r, the word rd2(wr) is a suffix of r.
Let w = w1w2 and r = r1r2 be arbitrary factorizations with w1 ∈ redsupL(r2). Then

there are letters a1, . . . , ak ∈ A and words yi ∈ (F ∖ {ai})∗ with r2 = a1a2 . . . ak and w1 =
y1a1y2a2 . . . ykak. We obtain then

� ≠ w2 = ⟦a1a2 . . . ak⟧(y1a1y2a2 . . . ykak w2) (by Observation 4.7.6)
= ⟦r2⟧(w1w2) = ⟦r2⟧(w)

= ⟦r⟧(r1w)

= ⟦wr⟧(r1) = ⟦nf (wr)⟧(r1) .

Since rd1(wr) is a prefix of nf (wr) we learn ⟦rd1(wr)⟧(r1) ≠ � and therefore ∣rd1(wr)∣ ≤ ∣r1∣.
Then rd1(wr)rd2(wr) = r = r1r2 implies ∣r2∣ ≤ ∣rd2(wr)∣. In particular, we have ∣sws(w , r)∣ ≤
∣rd2(wr)∣. Finally, the maximal length of sws(w , r) implies rd2(wr) = sws(w , r). ◂

Let L = (∅,U) be a lossiness alphabet without forgettable letters. In this case we already
know redsupL(v) = {v} holds for all words v ∈ Σ∗. Hence, sws(w , r) is the longest suffix of
r which is a prefix of w. So, in this special case Lemma 4.7.14 coincides with Lemma 4.6.6.

From Lemma 4.7.14 we obtain that for any action sequence t ∈ Σ∗ there is another action
sequence s ∈ Σ∗ which behaves equivalently and is somewhat “simple”:
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Corollary 4.7.15. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and t ∈ Σ∗.
Then we have t ≡ rd1(t)wrt(t)rd2(t).

Proof. From the definition of nf (t) we know that wrt1(t) ∈ redsupL(rd2(t)) holds. Hence,
we have

rd2(t) = sws(wrt1(t), rd2(t)) = sws(wrt(t), rd2(t)) = rd2(wrt(t)rd2(t))

by Lemma 4.7.14. Therefore we have

χ(rd1(t)wrt(t)rd2(t)) = (wrt(t), rd1(t)rd2(t), rd2(t)) = (wrt(t), rd(t), rd2(t)) = χ(t)

which implies t ≡ rd1(t)wrt(t)rd2(t) byTheorem 4.7.8. ◂

We will use this result multiple times in the second part of this thesis when we consider
the reachability problem in partially lossy queue automata.

Now, we want to consider the normal form of the composition of arbitrary action se-
quences s, t ∈ Σ∗. As we have mentioned before, we still do not know a good characterization
for arbitrary lossiness alphabets. However, with Theorem 4.6.8 we have characterized nf (st)
for lossiness alphabets L = (∅,U) without forgettable letters. Additionally, the author pre-
sented a characterization of nf (st) for lossiness alphabets L = (F ,∅) without reliable letters
in his Master’s Thesis [Köc16]:

Theorem 4.7.16 ([Köc16]). Let L = (F ,∅) be a lossiness alphabet with ∣F ∣ ≥ 2. Let
s, t ∈ Σ∗ and r = sws(wrt(s), rd2(s)rd1(t)). Then we have

χ(st) = (wrt(st), rd(st), r rd2(t)) . ◂

4.7.6 Embeddings
Finally, we want to characterize which monoids embed into the plq monoid. Note that we
omit the proofs of the results in this subsection. These can be found in [KKP18].

The following proposition characterizes the embeddings of arbitrary monoids into the
plq monoid. This statement is also used in the proofs of all of the following theorems of this
subsection.

Proposition 4.7.17 ([KKP18]). LetL = (F ,U) be a lossiness alphabet with ∣F ∣+ ∣U ∣ ≥ 2,
M be a monoid, ϕ∶M↪T(QL) be an embedding, andm, n ∈M such thatwrt(ϕ(m)) =
wrt(ϕ(n)) and rd(ϕ(m)) = rd(ϕ(n)) hold. Then there is k ∈M with kmk = knk. ◂
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In other words, the images of two elements m, n ∈M with the same projections to write
and read actions can be equated with the help of another element k ∈M. From the proof in
[KKP18] we obtain that this element k is either mi or ni for a (large) integer i ∈ N.

From this proposition we infer (in a very complicated proof) a full characterization of
embeddability of two partially lossy queue monoids:

Theorem 4.7.18 ([KKP18]). LetL1 = (F1,U1) andL2 = (F2,U2) be two lossiness alpha-
bets. Then T(QL1) embeds into T(QL2) if, and only if, all of the following properties
hold:

(a) ∣F1∣ ≤ ∣F2∣, i.e., L2 has at least as many forgettable letters as L1.

(b) If ∣U2∣ = 0, then also ∣U1∣ = 0, i.e., if L2 consists of forgettable letters only, then so

does L1.

(c) If ∣U2∣ = 1, then ∣F1∣ < ∣F2∣ or ∣U1∣ ≤ 1, i.e., if L2 has exactly one unforgettable

letter and exactly as many forgettable letters as L1, then L1 contains at most one

non-forgettable letter. ◂

In Figure 4.2 we can find the complete picture of the embeddings stated inTheorem 4.7.18.
In this picture the node (k, ℓ) represents the monoidT(Q(Fk ,Uℓ))where (Fk ,Uℓ) is a lossiness
alphabet satisfying ∣Fk ∣ = k and ∣Uℓ∣ = ℓ (note that the plq monoids are isomorphic for two
lossiness alphabets having the same numbers of forgettable resp. unforgettable letters). There
is an edge from (k, ℓ) to (m, n) if, and only if, T(Q(Fk ,Uℓ)) embeds into T(Q(Fm ,Un)). Note
that we suppress those edges that follow from reflexivity and transitivity of the embedding
relation.

We can also consider the trace monoids which embed into the plq monoid. Surprisingly,
most of the partially lossy queue monoids embed the same set of trace monoids. These are
the following ones:

Theorem 4.7.19 ([KKP18]). Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + 2∣U ∣ ≥ 3
andA be a distributed alphabet. Then the following statements are equivalent:

(1) M(A) embeds into T(QL).

(2) M(A) embeds into {a, b}∗ × {c, d}∗.
(3) One of the following conditions holds:

(3.1) All nodes of Gc
A have degree ≤ 1.

(3.2) The only non-trivial connected component Gc
A is complete bipartite. ◂
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Figure 4.2. Visualization of Theorem 4.7.18.
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Theorem 4.7.20 ([KKP18]). Let L = (F ,∅) be a lossiness alphabet with ∣F ∣ = 2 andA
be a distributed alphabet. Then the following statements are equivalent:

(1) M(A) embeds into T(QL).

(2) One of the following conditions holds:

(2.1) All nodes of Gc
A have degree ≤ 1.

(2.2) The only non-trivial connected component Gc
A is a star graph. ◂

Note that in both theorems we have considered the complementary graph of the depen-
dence graph of a distributed alphabetA. We can see this graph as the independence graph of
A.

4.8 Distributed Queues

Finally, we consider the behavioral equivalence of distributed queues. We will characterize
this relation with the help of a finite number of equations. Similar to the distributed stacks
we will see that ≡QA

is closed under partial commutations. Hence, we can also understand
action sequences as traces. From the equations we will derive a trace rewriting system. This
trace rewriting system yields unique, irreducible traces - so-called normal forms. We also
characterize the composition of two transformations.

Distributed queues consist of a finite number of queues with a specified synchronization
mechanism and a finite number of counters without zero-tests (these correspond to the
isolated nodes in the dependence graph). Hence, it is no surprise that the following results
will be combinations of the statements from distributed stacks (cf. Section 4.5) and reliable
queues (cf. Section 4.6).

A first (trivial) approach to analyze the behavioral equivalence of a distributed queue
is to prove that ≡QA

is compatible with the projection lemma. In other words, two action
sequences s, t ∈ Σ∗ behave equivalent (i.e., s ≡QA

t) if, and only if, their projections to each
process behave equivalent (i.e., πi(s) ≡QAi

πi(t) where πi projects to the actions applicable to
process i). Unfortunately, this equivalence does not hold as we will see later in Lemma 4.8.4.
So, the analysis of ≡QA

is a bit more complicated as expected.

4.8.1 Basic Properties
First, we prove that the behavioral equivalence is compatible with partial commutations
described byA:

Lemma 4.8.1. LetA = (A, P,M) be a distributed alphabet, a, b ∈ Awith a ∥ b be two
independent letters, α ∈ {a, a}, and β ∈ {b, b}. Then we have αβ ≡ βα.
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Proof. The proof of this lemma is similar to the proof of Lemma 4.5.1(2). ◂

So, we can extend our underlying distributed alphabet A = (A, P,M) to another dis-
tributed alphabet E ∶= (Σ, P,M′) on the set of all basic actions where M′ ∶= M∪{(a, i) ∣
(a, i) ∈M}. For a trace τ ∈M(A) we denote τ ∶= [t] for a word t ∈ τ. For a trace language
L ⊆M(A) we also write L ∶= {τ ∣ τ ∈ L}.

We can observe that ≡ is a quotient of the partial commutations ≈E. So, we are able
to define the distributed queue’s semantics ⟦.⟧ for traces. We define ⟦τ⟧ ∶= ⟦t⟧ for a word
t ∈ τ and any action trace τ ∈M(E). Note that this definition is well-defined according to
Lemma 4.8.1. Moreover we write σ ≡QA

τ (or σ ≡ τ if the situation is clear) if, and only if,
⟦σ⟧ = ⟦τ⟧ holds for each pair of action traces σ , τ ∈M(E). Note that this is the case whenever
we have s ≡QA

t for action sequences s ∈ σ and t ∈ τ.
For action traces τ ∈M(E)we also introduce the projection πi to the actions applicable to

a process i ∈ P. Formally, in our situation this projection is the homomorphism πi ∶M(E)→
(Ai ∪ Ai)∗ satisfying [πi(τ)] = πA i∪A i

(τ). Note that this homomorphism is well-defined
sinceM(E↾A i∪A i

) is isomorphic to (Ai ∪ Ai)∗.
Now, recall the duality map d∶Σ∗ → Σ∗ which satisfies

d(ε) = ε , d(at) = d(t)a , and d(at) = d(t)a

for each t ∈ Σ∗ and a ∈ A. We want to lift this function to traces. To this end, let α, β ∈ Σ be
two basic actions with α ∥ β. Then we have d(α) ∥ d(β) implying

d(αβ) = d(β)d(α) ≈E d(α)d(β) = d(βα)

(recall that d is an antimorphism). Then the map d∶M(E)→M(E) with d([t]) = [d(t)] for
each t ∈ Σ∗ is well-defined. Additionally, this function is still a bijective antimorphism and
an involution.

The following lemma proves that, if κ can be reached from λ via an action trace τ, then
we can reach λ from κ (both in reversed order) via d(τ).

Lemma 4.8.2. Let A = (A, P,M) be a distributed alphabet, λ, κ ∈ M(A), and τ ∈
M(E) with ⟦τ⟧(λ) = κ. Then we have ⟦d(τ)⟧(κR) = λR.

Proof. We prove this lemma by induction on the length of τ. First, let τ = ε. Then we have
λ = κ and ⟦d(τ)⟧(κR) = κR = λR.

Now, let τ = ασ for α ∈ Σ and σ ∈M(E). We distinguish the following two cases:

(1) α = a ∈ A. Then we have κ = ⟦aσ⟧(λ) = ⟦σ⟧(λa). By the induction hypothesis we infer
aλR = ⟦d(σ)⟧(κR) implying

λR = ⟦a⟧(aλR) = ⟦a⟧(⟦d(σ)⟧(κR)) = ⟦d(σ)a⟧(κR) = ⟦d(τ)⟧(κR) .

(2) α = a ∈ A. Since� ≠ κ = ⟦aσ⟧(λ) = ⟦σ⟧(⟦a⟧(λ)) there is µ ∈M(A)with λ = aµ. Hence,
we have κ = ⟦aσ⟧(λ) = ⟦σ⟧(µ). By the induction hypothesis we have µR = ⟦d(σ)⟧(κR)
which implies

λR = µRa = ⟦a⟧(µR) = ⟦a⟧(⟦d(σ)⟧(κR)) = ⟦d(σ)a⟧(κR) = ⟦d(τ)⟧(κR) . ◂
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From this lemma we obtain that d is compatible with the behavioral equivalence.

Corollary 4.8.3. Let A = (A, P,M) be a distributed alphabet and σ , τ ∈M(E). Then

we have σ ≡ τ if, and only if, d(σ) ≡ d(τ).

Proof. First suppose σ ≡ τ. Let κ ∈M(A). Assume ⟦d(σ)⟧(κ) ≠ �. Then there is λ ∈M(A)
with λ = ⟦d(σ)⟧(κ). By d(d(σ)) = σ and Lemma 4.8.2 we infer ⟦σ⟧(λR) = ⟦d(d(σ))⟧(λR) =
κR. From σ ≡ τ we know ⟦τ⟧(λR) = κR ≠ �. By Lemma 4.8.2 we obtain ⟦d(τ)⟧(κ) = λ =
⟦d(σ)⟧(κ).

Now suppose ⟦d(τ)⟧(κ) ≠ �. Similarly, we can prove ⟦d(σ)⟧(κ) = ⟦d(τ)⟧(κ). This
finally implies ⟦d(σ)⟧ = ⟦d(τ)⟧ and, hence, d(σ) ≡ d(τ).

Since d is an involution, this result also implies the converse implication. ◂

4.8.2 Normal Forms
Now, we are able to list a finite number of (context-sensitive) commutations that hold in the
behavioral equivalence. We will see later that these equations fully describe this relation.

Lemma 4.8.4. Let A = (A, P,M) be a distributed alphabet. Then the following state-

ments hold for a, b ∈ A:

(1) ab ≡ ba if a ≠ b,

(2) aab ≡ aab and baa ≡ baa if a ∦ b, and

(3) aa ≡ ε if a ∈ Isolated(A).

Note that the equations (1) and (2) are similar to the ones known from reliable queues (cf.
Lemma 4.6.2 resp. [HKZ17]) and (3) is similar to the equation known from counters (cf.
equation (1) from Lemma 4.4.1).

Proof. Towards the first equation, we assume a ≠ b. Let κ, λ ∈M(A) with ⟦ab⟧(λ) = κ ≠ �.
Then from the semantics of distributed queues we obtain λa = bκ. Since a ≠ b holds,
we obtain from Levi’s lemma for traces (cf. Theorem 3.4.6) another trace µ ∈ M(A) with
λa = bκ = bµa. Utilizing the cancellation property we get µa = κ and bµ = λ. Then we have

⟦ab⟧(λ) = ⟦ab⟧(bµ) = ⟦b⟧(bµa) = µa = ⟦a⟧(µ) = ⟦ba⟧(bµ) = ⟦ba⟧(λ) .

Conversely, let κ, λ ∈M(A) with ⟦ba⟧(λ) = κ. By definition there is µ ∈M(A) with λ = bµ
(and κ = µa). This implies

⟦ba⟧(λ) = ⟦ba⟧(bµ) = ⟦a⟧(µ) = µa = ⟦b⟧(bµa) = ⟦ab⟧(bµ) = ⟦ab⟧(λ) .

Hence, we infer ab ≡ ba.
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Next, we prove baa ≡ baa for a ∦ b. First, let λ ∈ M(A) with ⟦baa⟧(λ) ≠ �. Then
there is κ ∈ M(A) with λba = aκ. By the projection lemma (Theorem 3.4.4) we have
πi(λba) = πi(aκ) for each i ∈ P. Since a ∦ b there is i ∈ aM∩ bM ⊆ P. Then we have

πi(λ)ba = πi(λba) = πi(aκ) = aπi(κ)

implying the existence of a word w ∈ A∗i with πi(λ)ba = aπi(κ) = awa. Hence, there also is
a trace µ ∈M(A) with λba = aκ = aµa. By the cancellation property we also learn λb = aµ.
Then we see

⟦baa⟧(λ) = ⟦a⟧(λba) = ⟦a⟧(aµa) = µa = ⟦a⟧(µ) = ⟦aa⟧(aµ) = ⟦aa⟧(λb) = ⟦baa⟧(λ) .

Conversely, let λ ∈M(A) with ⟦baa⟧(λ) ≠ �. Then there is κ ∈M(A) with λb = aκ. We see

⟦baa⟧(λ) = ⟦aa⟧(λb) = ⟦aa⟧(aκ) = ⟦a⟧(κ) = κa = ⟦a⟧(aκa) = ⟦a⟧(λba) = ⟦baa⟧(λ) .

Hence, we obtain ⟦baa⟧ = ⟦baa⟧ implying baa ≡ baa. The equation aab ≡ aab is dual to
baa ≡ baa and holds due to Corollary 4.8.3.

Finally, we assume a ∈ Isolated(A). Let λ ∈M(A). Since a is an isolated vertex in the
dependence graph we have λa = aλ. This is due to πi(λa) = πi(aλ) for each i ∈ P (this is
the projection-lemmaTheorem 3.4.4). Hence, we infer

⟦aa⟧(λ) = ⟦a⟧(λa) = ⟦a⟧(aλ) = ⟦ε⟧(λ) . ◂

Our next aim is to prove that two equivalently behaving sequences σ and τ write and
read the same subsequences of letters into each queue, except for the queues with a singleton
alphabet (which are essentially counters). Before we do this, we first show that the application
of an action trace τ ∈M(E) to a content λ ∈M(A) does not end up in the error state � if,
and only if, this does not happen in any queue of our distributed data type QA:

Lemma 4.8.5. LetA = (A, P,M) be a distributed alphabet, λ ∈M(A), and τ ∈M(E).
Then we have ⟦τ⟧QA

(λ) ≠ � if, and only if, for each i ∈ P we have ⟦πi(τ)⟧QAi
(πi(λ)) ≠ �.

Proof. We prove this statement by induction on the length ∣τ∣ of τ. The case τ = ε is obvious
since we have ⟦ε⟧QA

(λ) = λ ≠ � and ⟦ε⟧QAi
(πi(λ)) = πi(λ) ≠ �.

Now let τ = ασ where α ∈ Σ and σ ∈M(E). We have to distinguish two cases:

(1) α = a ∈ A. Then we have ⟦aσ⟧QA
(λ) = ⟦σ⟧QA

(λa) and

⟦πi(aσ)⟧QAi
(πi(λ)) = ⟦πi(σ)⟧QAi

(πi(λa)) .

By induction hypothesis we have ⟦σ⟧QA
(λa) ≠ � if, and only if, ⟦πi(σ)⟧QAi

(πi(λa)) ≠ �
and we are done.

(2) α = a ∈ A. First, we assume ⟦aσ⟧QA
(λ) ≠ �. Then there is κ ∈M(A) with λ = aκ and

� ≠ ⟦aσ⟧QA
(λ) = ⟦σ⟧QA

(κ) .
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Now, let i ∈ P. Then, by the induction hypothesis, we have ⟦πi(σ)⟧QAi
(πi(κ)) ≠ �. We

also know πi(λ) = πi(a)πi(κ) (since πi is a homomorphism). This implies

⟦πi(τ)⟧QAi
(πi(λ)) = ⟦πi(aσ)⟧QAi

(πi(aκ)) = ⟦πi(σ)⟧QAi
(πi(κ)) ≠ � .

Conversely, let ⟦πi(aσ)⟧QAi
(πi(λ)) ≠ � for each i ∈ P. Then for each i ∈ P there

is wi ∈ A∗i with πi(λ) = πi(awi). Using the projection-lemma (Theorem 3.4.4) and
by the cancellation property of M(A) we obtain a trace κ ∈ M(A) with λ = aκ and
πi(κ) = wi . By definition of the semantics of a we learn � ≠ ⟦πi(aσ)⟧QAi

(πi(λ)) =
⟦πi(σ)⟧QAi

(πi(κ)) for each i ∈ P. Then from the induction hypothesis we infer

� ≠ ⟦σ⟧QA
(κ) = ⟦aσ⟧QA

(λ) . ◂

Now, we shall generalize the projections to write and read actions: wrt, rd∶M(E)→M(A)
with wrt(τ) = πA(τ) and rd(τ) = πA(τ). In other words, both projections are natural
extensions of the projections from Section 4.6 to traces of actions.

Before we show that two equivalently behaving action traces agree in their projections, we
first have to prove that any non-failing computation leads to the same result as a de-shuffled
one.

Lemma 4.8.6. LetA = (A, P,M) be a distributed alphabet, λ ∈M(A), and τ ∈M(E)
with ⟦τ⟧(λ) ≠ �. Then we have ⟦τ⟧(λ) = ⟦wrt(τ)rd(τ)⟧(λ).

Proof. First, let a, b ∈ A with ⟦ab⟧(λ) ≠ �. If a ≠ b we have ab ≡ ba by Lemma 4.8.4(1)
implying ⟦ab⟧(λ) = ⟦ba⟧(λ). So, assume a = b from now on. By ⟦aa⟧(λ) ≠ � we know that
there exists a κ ∈M(A) with λ = aκ. Then we obtain

⟦aa⟧(λ) = ⟦aa⟧(aκ) = ⟦a⟧(κ) = κa = ⟦a⟧(aκa) = ⟦aa⟧(aκ) = ⟦aa⟧(λ) .

By induction on the (minimal) number of transpositions needed to transform the action
trace τ into wrt(τ)rd(τ) we obtain our claim. ◂

With the help of the prior lemmata we will prove the aforementioned statement that the
behavioral equivalence preserves the relative order of read and write actions - at least for the
non-trivial processes. To simplify notations we introduce the projections to write and read
actions of a given process i ∈ P: wrti ∶= wrt ○πi = πA i

∶M(E)→ A∗i and rdi ∶= rd ○πi ∶M(E)→
A∗i (recall thatM(E↾A i

) is isomorphic to A∗i andM(E↾A i
) is isomorphic to Ai

∗
).

Proposition 4.8.7. Let A = (A, P,M) be a distributed alphabet, σ , τ ∈ M(E) with
σ ≡ τ, and i ∈ P such that Ai /⊆ Isolated(A). Then we have wrti(σ) = wrti(τ) and
rdi(σ) = rdi(τ).
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Note that σ ≡QA
τ does not imply πi(σ) ≡QAi

πi(τ) for each i ∈ P: for example, let A =
(A, P,M) with A = {a, b}, P = {1, 2}, and M = {(a, 1), (a, 2), (b, 2)}. Then from Lem-
ma 4.8.4 we learn aab ≡QA

aab. However, fromTheorem 4.6.3 we know aa /≡QA1
aa. Hence,

this proposition is no corollary of Theorem 4.6.3.

Proof. First, we prove that rdi(σ) is a prefix of rdi(τ) if ∣Ai ∣ ≥ 2. Towards a contradiction,
we suppose that rdi(σ) is not a prefix of rdi(τ). Since ∣Ai ∣ ≥ 2 holds, there is b ∈ Ai such that
rdi(σ) is no prefix of rdi(τ)bn where n ∶= ∣ rdi(σ)∣. Then we have:

� ≠ bnwrt(τ) = ⟦τ⟧QA
(rd(τ)bn)

= ⟦σ⟧QA
(rd(τ)bn) (since σ ≡ τ)

= ⟦wrt(σ)rd(σ)⟧QA
(rd(τ)bn) . (by Lemma 4.8.6)

Then due to Lemma 4.8.5 we also have ⟦wrti(σ)rdi(σ)⟧QAi
(rdi(τ)bn) ≠ �. This implies

� ≠ ⟦wrti(σ)rdi(σ)⟧QAi
(rdi(τ)b

n) = ⟦rdi(σ)⟧QAi
(rdi(τ)b

nwrti(σ)) .

Hence, there is w ∈ A∗i with rdi(σ)w = rdi(τ)bnwrti(σ). Since n = ∣ rdi(σ)∣ ≤ ∣ rdi(τ)∣ + n
we infer that rdi(σ) is a prefix of rdi(τ)bn. This is a contradiction to the choice of b ∈ Ai .
Hence, rdi(σ) is a prefix of rdi(τ). By symmetry, rdi(τ) also is a prefix of rdi(σ) implying
rdi(σ) = rdi(τ).

Now, let Ai = {a} with a ∉ Isolated(A). Then there is j ∈ P with Ai ⊊ A j. We already
know rd j(σ) = rd j(τ). Then we infer the following:

rdi(σ) = rdi(rd j(σ)) = rdi(rd j(τ)) = rdi(τ) .

Finally, we have to prove wrti(σ) = wrti(τ). By Corollary 4.8.3 we know d(σ) ≡ d(τ).
Then using the result from above yields

wrti(σ) = d(rdi(d(σ))) = d(rdi(d(τ))) = wrti(τ) . ◂

Note that Proposition 4.8.7 does not hold for all processes. Let a ∈ Isolated(A) be an
isolated vertex in the dependence graph ofA and let i ∈ aM. From Lemma 4.8.4(3) we know
aa ≡ ε, but we have

wrti(aa) = a ≠ ε = wrti(ε) and rdi(aa) = a ≠ ε = rdi(ε) .

Now, we want to find the announced normal form of the equivalence classes of ≡. To
this end, we can define a (finite) trace rewriting systemRA (on the distributed alphabet E)
which arises from the equations in Lemma 4.8.4 by ordering them from left to right. In other
words,RA consists of the following rules:

(1) [ab]→ [ba] if a ≠ b and a ∦ b,
(2) [aab]→ [aab] and [baa]→ [baa] if a ∦ b, and
(3) [aa]→ [ε] if a ∈ Isolated(A)

for each a, b ∈ A. Note that compared to Lemma 4.8.4 in (1) there is another restriction
a ∦ b. However, in the case a ∥ b we have [ab] = [ba] according to our definition of E. So,
in this case the left-hand side would coincide with the right-hand side of such rule.

Next, we want to find unique, irreducible traces for each equivalence class of ≡. To this
end, we show the following lemma:
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Lemma 4.8.8. LetA be a distributed alphabet. Then the trace rewriting systemRA is

terminating and confluent.

Proof. Termination can be proved with the help of a well-founded partial ordering. To this
end, let i ∈ P be a process and <i be a linear ordering of Ai ∪ Ai such that a <i b holds
for each a, b ∈ Ai . Then for each rule ℓ → r of RA there is a process i ∈ P where πi(r) is
length-lexicographically properly smaller than πi(ℓ). Now, let < be the product of the <i ’s.
Then < is still well-founded and we have r < ℓ for each rule ℓ → r. Hence,RA is terminating.

Now, we show thatRA is locally confluent. The only possible overlaps of left-hand sides
are the following (where a, b, c ∈ A):

[(baa)c]
(2)
⇐ÔRA

[(baa)c] = [b(aac)]
(2)
Ô⇒RA

[b(aac)] if a ∦ b, c

[a]
(3)
⇐ÔRA

[(aa)a] = [aaa]
(2)
Ô⇒RA

[aaa]
(3)
Ô⇒RA

[a] if a ∈ Isolated(A).

Therefore,RA is locally confluent and, due to the termination, it is also confluent. ◂

Hence, due to termination and confluence ofRL, for each action trace τ ∈M(E) there is
a uniquely defined, irreducible trace nf (τ) (the so-called normal form) with τ⇒∗RA

nf (τ).
Note that we have τ ≡ nf (τ) due to the equations from Lemma 4.8.4. From the shape of the
rules ofRA we learn that the set of all irreducible traces is the following trace language:

NFQA
∶=M(A) {aa ∣ a ∈ A∖ Isolated(A)}∗M(A) .

Note that isolated vertices are excluded from the “shuffled” part of the normal form since
aa ≡ ε holds for a ∈ Isolated(A) according to Lemma 4.8.4(3).

In other words, for τ ∈M(E) there are traces σ1, σ2 ∈M(A) and letters a1, a2, . . . , an ∈
A∖ Isolated(A) with

nf (τ) = σ1 a1a1a2a2 . . . anan σ2 .
For a better readability we will also write

⟨a1a2 . . . an⟩ ∶= a1a1a2a2 . . . anan .

Note that the map ⟨.⟩∶M(A) → M(E) is well-defined: let a, b ∈ A be distinct letters with
a ∥ b. Then we have

⟨ab⟩ = aabb = abab = baba = bbaa = ⟨ba⟩ .

Now, we are able to prove that there is a unique normal form for any equivalence class of
the behavioral equivalence. This implies that ≡ is the least congruence onM(E) satisfying
the equations from Lemma 4.8.4.

Theorem 4.8.9. Let A = (A, P,M) be a distributed alphabet and σ , τ ∈M(E) be two
traces of actions. Then we have

σ ≡ τ ⇐⇒ nf (σ) = nf (τ) .
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Proof. The implication “⇐” is obvious since

σ ≡ nf (σ) = nf (τ) ≡ τ

holds. Now, we prove the converse implication. To this end, let σ1, σ2, σ3, τ1, τ2, τ3 ∈M(A)
with nf (σ) = σ1⟨σ2⟩σ3 and nf (τ) = τ1⟨τ2⟩τ3. Note that Alph(σ2) and Alph(τ2) contain no
letter from Isolated(A). Towards a contradiction, we assume σ1 ≠ τ1. Then τ1 is not a prefix
of σ1 or vice versa. By symmetry it suffices to consider only the first case. Then we observe

⟦σ1⟨σ2⟩σ3⟧(σ1) = ⟦⟨σ2⟩σ3⟧(ε) = ⟦σ3⟧(ε) = σ3 ≠ �

and

⟦τ1⟨τ2⟩τ3⟧(σ1) = ⟦⟨τ2⟩τ3⟧(⟦τ1⟧(σ1))

= ⟦⟨τ2⟩τ3⟧(�) = � . (since τ1 is no prefix of σ1)

This implies σ ≡ σ1⟨σ2⟩σ3 ≢ τ1⟨τ2⟩τ3 ≡ τ which is a contradiction to our assumption σ ≡ τ.
Hence, we have σ1 = τ1.

By Proposition 4.8.7 we have

πi(σ1σ2) = rdi(σ) = rdi(τ) = πi(τ1τ2) = πi(σ1τ2)

for each i ∈ P with Ai ⊈ Isolated(A) implying πi(σ2) = πi(τ2). Additionally, we have
πi(σ2) = ε = πi(τ2) for each i ∈ P with Ai ⊆ Isolated(A). Then from the projection-lemma
(Theorem 3.4.4) we learn σ2 = τ2.

Finally, we have to show σ3 = τ3. Due to the definition of the duality map and due to
Corollary 4.8.3 we have

σ3R⟨σ2
R⟩σ1

R = d(nf (σ)) ≡ d(σ) ≡ d(τ) ≡ d(nf (τ)) = τ3R⟨τ2R⟩τ1R .

Since d(nf (σ)), d(nf (τ)) ∈ NFQA
holds, the proof from above yields σ3R = τ3R implying

σ3 = τ3. ◂

4.8.3 Composition
Next we consider the composition of two action sequences in terms of their normal form.
Similar to the partially lossy case, we only consider the special case στ for traces σ , τ ∈M(A).
The normal form of this trace is very close to the result from Lemma 4.6.6 (resp. Lemma 5.2
from [HKZ17]) in which we considered the normal form of wr where w , r ∈ A∗ in case of a
single reliable queue.

In this lemmawe have seen that nfQA
(wr) = x⟨y⟩z holds if y is the longest word satisfying

r = xy and w = yz. In the distributed case this is very similar: the shuffled infix ⟨ρ2⟩ of
nf (στ) = ρ1⟨ρ2⟩ρ3 arises from the longest trace ρ′2 satisfying τ = ρ1ρ

′
2 and σ = ρ′2ρ3 by

removing isolated vertices (recall that aa ≡ ε holds for such isolated vertices a ∈ Isolated(A)
by Lemma 4.8.4(3)).

Lemma 4.8.10. Let A = (A, P,M) be a distributed alphabet and σ , τ ∈ M(A). Let
ρ2 ∈ M(A) be the longest suffix of τ which also is a prefix of σ . Let ρ1, ρ3 ∈ M(A)
with τ = ρ1ρ2 and σ = ρ2ρ3 be the complementary prefix and suffix. Then we have

nf (στ) ≡ ρ1⟨ρ2⟩ρ3. In particular, we have nf (στ) = ρ1⟨πA∖Isolated(A)(ρ2)⟩ρ3.
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Proof. Let µ1, µ2, µ3 ∈ M(A) be the uniquely defined traces with nf (στ) = µ1⟨µ2⟩µ3. By
Proposition 4.8.7 we know for each process i ∈ P with Ai ⊈ Isolated(A):

πi(σ) = wrti(στ) = wrti(µ1⟨µ2⟩µ3) = πi(µ2µ3)

and, similarly, πi(τ) = πi(µ1µ2). Additionally, using Lemma 4.8.4(3) we can insert isolated
vertices into µ2 resulting in a trace µ′2 ∈M(A) with πA∖Isolated(A)(µ′2) = µ2, πi(σ) = πi(µ′2µ3)
and πi(τ) = πi(µ1µ′2) for all processes i ∈ P (including those processes associated to isolated
vertices). By the projection-lemma (Theorem 3.4.4) we learn σ = µ′2µ3 and τ = µ1µ′2. Note
that we have nf (στ) = µ1⟨µ2⟩µ3 ≡ µ1⟨µ′2⟩µ3.

Now, let ρ1, ρ2, ρ3 ∈M(A) be arbitrary with τ = ρ1ρ2 and σ = ρ2ρ3. Then we obtain the
following:

� ≠ ρ3 = ⟦ρ2⟧(ρ2ρ3) = ⟦ρ2⟧(σ) (since σ = ρ2ρ3)
= ⟦ρ1ρ2⟧(ρ1σ) = ⟦τ⟧(ρ1σ) (since τ = ρ1ρ2)
= ⟦στ⟧(ρ1) = ⟦nf (στ)⟧(ρ1) (since στ ≡ nf (στ))
= ⟦µ1⟨µ

′
2⟩µ3⟧(ρ1) . (since nf (στ) ≡ µ1⟨µ′2⟩µ3)

In particular, we have ⟦µ1⟧(ρ1) ≠ � implying that µ1 is a prefix of ρ1. Since we have µ1µ′2 =
τ = ρ1ρ2, Levi’s lemma for traces (Theorem 3.4.6) implies that ρ2 is a suffix of µ′2. Since
ρ1, ρ2, ρ3 ∈ M(A) were arbitrary with τ = ρ1ρ2 and σ = ρ2ρ3, µ′2 is the longest suffix of τ
which is a prefix of σ . ◂

Finally, with this characterization of the composition of two simple traces we can see
that each trace τ ∈M(E) has an equivalently behaving trace σ which is somewhat simple:

Corollary 4.8.11. Let A = (A, P,M) be a distributed alphabet and τ ∈ M(E). Then

there are traces σ1, σ2, σ3 ∈M(A) with τ ≡ σ1σ2σ3. These traces can be computed from τ

in polynomial time.

Proof. By Theorem 4.8.9 there are uniquely defined traces σ1, σ2, σ3 ∈ M(A) such that
nf (τ) = σ1⟨σ2⟩σ3. Then we learn the following:

τ ≡ σ1⟨σ2⟩σ3 (since τ ≡ nf (τ) = σ1⟨σ2⟩σ3)
= σ1 ⋅ (⟨πA∖Isolated(A)(σ2)⟩σ3) (since πIsolated(A)(σ2) = ε)
= σ1 ⋅ nf (σ2σ3σ2) (by Lemma 4.8.10)
≡ σ1σ2σ3σ2 . (since nf (σ2σ3σ2) ≡ σ2σ3σ2)

We obtain nf (τ) with the help of the rewriting systemRA. The number of rules in this
system is polynomial inA. Since any rule transposes letters a and b or removes infixes of
the form aa, we can apply the rules fromRA at most polynomial many times. ◂

We can also find traces ρ1, ρ2, ρ3 ∈ M(A) such that τ ≡ ρ1ρ2ρ3: by Corollary 4.8.11 there
are traces σ1, σ2, σ3 ∈M(A) with d(τ) ≡ σ1σ2σ3. Then by duality (Corollary 4.8.3) we infer
τ ≡ σ3Rσ2Rσ1R.

Later, we will see that Corollary 4.8.11 is a very helpful tool to prove results concerning
the reachability problem of distributed queue automata.
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4.9 Conclusion
We have considered the behavioral equivalence of partially lossy queues and stacks as well
as of distributed stacks and queues. In all of these cases we have found a special normal
form representing the equivalence class. We have seen that the normal forms stem from the
regular languages

NFQL
= A

∗
{waa ∣ a ∈ A,w ∈ (F ∖ {a})∗}∗ A∗ and NFPL

= A
∗
A∗ ∪ {á}

and from the trace languages

NFQA
=M(A) {[aa] ∣ a ∈ A∖ Isolated(A)}∗M(A) and NFPA

=M(A)M(A) ∪ {á} .

However, for any kind of queues and any action sequence t we have also found an even
simpler equivalently behaving sequence. Concretely, there are words (resp. traces) s1, s2, s3
such that t ≡ s1s2s3. This fact will help us to prove several results across this thesis.

Besides these simple equivalently behaving words or traces we have also studied algebraic
properties like cancellation or Green’s relations. For example, we found out that none of
the considered transformation monoids is cancellative. However, all of these monoids are
cancellative under certain circumstances. Additionally, while Green’s relations are trivial in
the plq monoid there are strong connections of these relations to the aforementioned normal
forms in the pls monoid. We also gave characterizations of the normal forms of compositions
of two transformations. Finally, we recalled the main result from [KKP18] characterizing
the embeddings into the partially lossy queue monoid. A complete picture of the relations
between the plq monoids can be found in Figure 4.2.



Chapter 5

Rational Languages

5.1 Introduction

In this chapter (and the following ones) we consider special subsets of the transformation
monoid of several data types. Concretely, we will study two well-known generalizations of
regular languages to arbitrary monoids: so-called rational and recognizable languages. While
the rational languages of a monoid are a generalization of regular expressions and the lan-
guages accepted by nondeterministic finite automata, the recognizable languages generalize
the languages accepted by deterministic finite automata. For example, the rational languages
of the transformation monoid of a data typeD correspond to the control components of the
D-automata. In this connection the control component of aD-automatonA is an (extended)
NFA consisting of the control states of A and transitions labeled with the action sequences
the automaton A is allowed to apply to its memory. In other words, the control component
is the automaton A without its input tape.

In text books on algebraic automata theory one can find a rich theory on these two classes
of monoid languages. For example, we refer to [Ber79, Pin10]. One famous result by Kleene
is the coincidence of the classes of rational and recognizable languages in the free monoid
[Kle51]. However, this equivalence does not hold in arbitrary monoids. For example, we will
see later that the classes of rational and recognizable languages in the partially lossy queue
monoid do not coincide. But at least in finitely generated monoids (like the transformation
monoid of any data type) each recognizable language also is rational by McKnight’s Theorem
[McK64] (but not necessarily vice versa).

Here and now, we want to study the algorithmic properties of the rational languages of
the partially lossy queue and stackmonoids. Such properties encountered increased attention
in recent years. For example, [Loh13] provides a survey on the membership problem for
rational group languages.

Towards the algorithmic properties of rational languages in the pls monoid we generalize
a result by Render and Kambites [RK09] to partially lossy stacks. In that paper the authors
state that the rational languages in polycyclic monoids (recall that such monoids are the
transformation monoids of reliable stacks) are exactly the homomorphic images of some
very simple regular languages. From this result we will learn that membership, intersection
emptiness, universality, and recognizability are decidable. We will also infer that the class of
rational pls languages is closed under Boolean operations.

Additionally, we will see that the membership problem of rational languages in the plq
monoid is decidable using nondeterministic logarithmic space, only. Moreover, we will learn
that the other aforementioned problems inherit the undecidability from their counterparts
in the direct product of N and a free monoid (cf. [CR86, GR86]). Note that we omit the
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distributed variants of queues and stacks here since the results are rather similar to the
partially lossy case.

Before diving into the algorithmic properties of rational languages in the pls and plq
monoid we first need several definitions.

5.2 Definitions
LetM be a monoid. Subsets ofM are also calledM-languages. AnM-language is called
rational if it can be constructed from the finiteM-languages using union, concatenation, and
(Kleene) iteration.

IfM = A∗ is the free monoid on the alphabet A the rational languages are exactly the
regular languages. Hence, this definition generalizes the semantics of regular expressions
from the free monoid to arbitrary monoids. Let ϕ∶L → M be a monoid homomorphism.
Then if S ⊆ L is rational in L theM-language ϕ(S) ⊆M also is rational. If ϕ is surjective and
T ⊆M is rational then there is a rational L-language S ⊆ L with ϕ(S) = T [Pin10].

Remark 5.2.1. Let D = (U , Σ,Θ) be a data type and A = (Q , Γ ,D, I, c, ∆, F) be a D-
automaton. Since we focus the transformations the automaton A tries to apply to its
memory in this chapter, we will remove the input tape from A. This results in an
(extended) NFAB = (Q , Σ, I, ∆′, F) where

∆′ = {(p, t, q) ∣ ∃a ∈ Γ ∪ {ε}∶ (p, a, t, q) ∈ ∆}

(recall that extended NFAs are labeled with words instead of single letters). The ac-
cepted language L(B) ⊆ Σ∗ is regular. Since ηD is an epimorphism (and, hence, a
homomorphism), the T(D)-language ηD(L(B)) ⊆ T(D) is rational. ⌟

There is also another generalization of regularity to arbitrary monoids using DFAs. These
are the so-called recognizable languages:

Definition 5.2.2. LetM be a monoid. AnM-language S ⊆ M is called recognizable if
there is a finite monoid F and a homomorphism ϕ∶M → F such that S = ϕ−1(ϕ(S))
holds. In this case, we say that S is recognized by F (via ϕ). ⌟

LetM be a monoid and S ⊆M be anM-language. The syntactic monoid of S is S(S) ∶=
M/∼ where ∼ is the following congruence onM: for two elementsm, n ∈M we have m ∼ n if,
and only if,

ℓmr ∈ S ⇐⇒ ℓnr ∈ S for all ℓ, r ∈M .

Then S is recognizable in M if, and only if, S(S) is finite. In particular, a recognizable
M-language S is recognized by its syntactic monoid S(S) via the natural epimorphism
ϕ∶m ↦ [m]∼.

In this case, we can see S(S) as a (deterministic) finite automaton accepting S. In this
connection the set of states is S(S), the initial state is ϕ(e) (where e is the identity ofM),
and the accepting states are ϕ(S). We have a transition from p to q labeled with m ∈M if,
and only if, p ⋅ ϕ(m) = q holds in S(S). Then the accepted language of this automaton is S.

LetM be a monoid. Then the class of recognizableM-languages is closed under Boolean
operations and quotients (cf., e.g., [Pin10]). If ϕ∶L→M is a monoid homomorphism and
S ⊆M is recognizable inM then its pre-image ϕ−1(S) is recognizable in L as well. Moreover,
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if ϕ is surjective then also the converse implication holds, i.e., if ϕ−1(S) is recognizable so is
S [Pin10].

If M is a finitely generated monoid then each recognizable M-language in M also is
rational [McK64]. For example, this holds for the transformation monoid of any data type
D since T(D) is generated by the finite set ηD(Σ). However, we will see in this chapter that
the classes of rational and recognizable languages in the plq and pls monoid do not coincide.
Nevertheless, in the free monoid A∗ the classes of recognizable and rational languages
coincide with the class of regular languages [Kle51].

We can also consider further subclasses of the rational and recognizable languages of a
monoid:

Definition 5.2.3. LetM be a monoid.

(1) AnM-language S ⊆M is star-free if it can be constructed from the finiteM-languages
using union, concatenation, and complementation, only.

(2) A recognizableM-language S ⊆M is aperiodic if there is n ∈ N such that for each
x , y, z ∈M we have

xynz ∈ S ⇐⇒ xyn+1z ∈ S . ⌟

A finite monoid F is called aperiodic if there is a number n ∈ N such that for each x ∈ F
we have xn = xn+1. In other words, F is aperiodic if it contains no non-trivial groups. We
can see that anM-language S ⊆M is aperiodic if, and only if, its syntactic monoid S(S) is
aperiodic.

In the free monoid A∗ the classes of aperiodic and star-free languages coincide by Schüt-
zenberger’sTheorem [Sch65]. By [MP71] these are exactly those languages which are accepted
by so-called counter-free NFAs.

We can also see that the class of star-free languages is closed under Boolean operations
and homomorphic images while the class of aperiodic languages is closed under Boolean
operations and homomorphic preimages.

5.3 Partially Lossy Stacks
First, we consider the languages in the partially lossy stack monoid. We also call these
languages partially lossy stack languages (or pls languages). One aim of this section is to
characterize the rational pls languages in terms of the normal forms of action sequences
which we have defined in the previous chapter. We also show that the class of rational partially
lossy stack languages is a Boolean algebra. Finally, we will see that several decision problems
on rational pls languages, like membership, intersection emptiness, or equality are decidable.
To this end, we follow the proof strategy from Render and Kambites in [RK09] which have
considered those properties for reliable stacks.

We start with a generalization of the characterization of the rational stack languages from
[RK09, Theorem 5.2]. From that paper we know that a (reliable) stack language T ⊆ T(PA)
is rational if, and only if, the normal forms nf (T) of the transformations in T form a regular
language. We will see now that we are in the same situation for arbitrary lossiness alphabets.
Note that the “if ”-implication of this equivalence holds due to the preservation of rationality
under homomorphisms (and the natural epimorphism η is such homomorphism mapping
Σ∗ to T(PL) ≅ NFPL

). The converse implication is the following theorem:
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Theorem 5.3.1. Let L = (F ,U) be a lossiness alphabet and T ⊆ T(PL) be a rational
language. Then there is an effectively regular language L ⊆ NFPL

with η(L) = T . The

construction of an NFA accepting this language L is possible in polynomial time.

Proof. Since T is rational there is a regular languageK ⊆ Σ∗ with η(K) = T . Recall thatSL is
a monadic semi-Thue system. Then by [BJW82] the set D(K) ∶= {w ∈ Σ∗ ∣ ∃v ∈ K∶ v ⇒∗SL

w}

of all descendants of words from K is an effectively regular set. Since NFPL
= A

∗
A∗ ∪ {á} is

regular, the set L ∶= D(K) ∩NFPL
is effectively regular as well.

Now, we have to prove that η(L) = T holds. Since the transitions of SL preserve
behavioral equivalence by Lemma 4.4.1 we have

η(L) ⊆ η(D(K)) = η(K) = T .

Conversely, let t ∈ T ⊆ T(PL) be a transformation. Then there is s ∈ K with η(s) = t. By
the definition ofSL andTheorem 4.4.2 we have nf (s) ∈ D(K). Since nf (s) ∈ NFPL

we also
have nf (s) ∈ L and, hence, t = η(s) = η(nf (s)) ∈ η(L). ◂

FromTheorem 5.3.1 we infer that the class of rational pls languages is a Boolean algebra.
Note that this statement generalizes Corollary 5.4 from [RK09].

Corollary 5.3.2. Let L = (F ,U) be a lossiness alphabet. The class of rational T(PL)-
languages is effectively closed under union, intersection, and complement.

Proof. The closure under union is obvious due to the definition of rational languages. Inter-
section can be described in terms of union and complement. Hence, it suffices to consider
the complement operation. To this end, let T ⊆ T(PL) be a rational language. Then by
Theorem 5.3.1 there is an effectively regular language L ⊆ NFPL

with η(L) = T . By closure
properties of the class of regular languages we can compute K ∶= NFPL

∖ L. Then

η(K) = η(NFPL
∖ L) = T(PL) ∖ η(L) = T(PL) ∖ T

is effectively rational as well. Note that we can compute a regular expression accepting K.
Finally, from this regular expression we obtain a rational expression in T(PL) using the
natural epimorphism η. ◂

Finally, we want to consider several basic decision problems having rational pls languages
as their input. Concretely, we consider the following problems:

Definition 5.3.3. LetM be a monoid. We define the following decision problems:

(1) Rational Membership(M): Given a rationalM-language T ⊆M and an element
x ∈M. Does x ∈ T hold?

(2) Rational Intersection Emptiness(M): Given two rationalM-languages S , T ⊆
M. Does S ∩ T = ∅ hold?
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(3) Rational Universality(M): Given a rationalM-language T ⊆M. Does T =M
hold?

(4) Rational Inclusion(M): Given rational M-languages S , T ⊆ M. Does S ⊆ T
hold?

(5) Rational Equality(M): Given rationalM-languages S , T ⊆M. Does S = T hold?
⌟

We should mention here, that the complexity of these problems may depend on the way we
represent the rationalM-languages in the inputs of these problems, i.e., whether the languages
are represented by an NFA (plus a suitable homomorphism from the free monoid intoM)
or by a rational expression. However, in all considered cases in this thesis the complexities
coincide for both representations.

Now, we can prove the decidability of all of these problems by reduction to their counter-
parts in the free monoid:

Corollary 5.3.4. Let L = (F ,U) be a lossiness alphabet. Then the following statements

hold:

(1) The problems Rational Membership(T(PL)) and Rational Intersection
Emptiness(T(PL)) are decidable in polynomial time.

(2) The problems Rational Universality(T(PL)), Rational Inclusion(T(PL)),
and Rational Equality(T(PL)) are PSPACE-complete.

Proof. All of the listed problems can be solved by polynomial time reduction to regular
languages using Theorem 5.3.1. The lower complexity bound of the last three problems is
inherited from their counterparts in the free monoid A∗ which embeds into T(PL). ◂

Consider a unary lossiness alphabetL = (F ,U) (i.e., we have ∣F ∣+ ∣U ∣ = 1). Then we can also
show that rational membership and intersection emptiness is in NL. We can do this with the
help of an on-the-fly construction of the automaton inTheorem 5.3.1 using nondeterministic
logarithmic space. Since both problems are NL-complete in A∗L, we also have this lower
complexity bound in T(PL).

If the lossiness alphabet L is at least binary, then both problems are also P-hard. This
can be infered by reduction from the reachability problem of PDAs which is P-completeix.

In the next section we will also consider the problem Unique Decipherability(M) and
show that it is undecidable in the plq monoid. This problem asks, whether the set T∗ is
a free submonoid ofM which is generated by a given finite number of monoid elements
T ⊆ M. Until now, we do not know whether this problem is decidable in the pls monoid.
However, we conjucture that it can be decided (in polynomial time?) with a variation of the
Sardinas-Patterson-algorithmx.

ixThe reachability problem is defined later in this thesis. It is in P due to [BEM97, FWW97] (cf. Section 9.2).
Its hardness is a well-known fact and can easily be obtained from the problemHornSat.

xThe Sardinas-Patterson-algorithm solves the unique decipherability problem in the free monoid [SP53].
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Additionally, we will consider the problem Rational Recognizability(M) in the
next section. This problem is defined as follows: Given a rationalM-language T ⊆ M, is
T recognizable inM? We will see in Chapter 6 that for almost all lossiness alphabets L a
language T ⊆ T(PL) is recognizable if, and only if, it is a trivial subset of T(PL) (i.e., if, and
only if, T = ∅ or T = T(PL) holds). Hence, it is easy to solve the recognizability problem in
the pls monoid.

5.4 Partially Lossy Queuesxi

Now, we consider the languages in the plq monoid - the so-called partially lossy queue
languages (or plq languages, for short). From [HKZ17, Section 8] we know that the classes of
rational and recognizable queue languages do not coincide. Especially, we know that it is
undecidable, whether a given rational queue language is recognizable. Additionally, [HKZ17]
proved that emptiness of intersection, unique decipherability, and universality of rational
queue languages are undecidable, while the rational membership problem is NL-complete in
the queue monoid. Here, we will show that all of these results also hold for partially lossy
queues with arbitrary underlying lossiness alphabet L containing at least two letters. First,
we show the positive results:

5.4.1 Decidable Problems
Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2. Towards the rational membership
problem we first construct an NFA accepting the equivalence class [t]≡ (recall that ≡ is the
behavioral equivalence) of an action sequence t ∈ Σ∗. The states of this automaton represent
the left-divisors of the transformation ⟦t⟧ inT(QL). Then a state representing the left-divisor
⟦s⟧ is reachable from the initial state (this one represents ⟦ε⟧) via some action sequence
s′ ∈ Σ∗ if we have s ≡ s′. This automaton will have O(∣t∣3)many states implying that ⟦t⟧ also
has O(∣t∣3)many left-divisors in T(QL). Its construction will require at most logarithmic
temporary space. Hence, we will be able to use this construction afterwards to decide the
membership problem in nondeterministic logarithmic space. Note that the proof of this
lemma is very close to the proof of [HKZ17, Lemma 8.1] which states this result for reliable
queues, only.

Lemma 5.4.1. LetL = (F ,U) be a lossiness alphabet with ∣F ∣+ ∣U ∣ ≥ 2. From t ∈ Σ∗ we
can construct an NFA accepting [t]≡ using logarithmic space, only.

Proof. Let t = α1 . . . αn and let 0 ≤ i , j, k ≤ n be natural numbers. For the triple q = (i , j, k)
we define the words q1, q2, q3 ∈ A∗ as follows:

q1 ∶= rd(t[1, i]) and q3 ∶= rd(t[i + 1, j]) as well as

q2 ∶= wrt(t[1, k]).

We say that a triple q = (i , j, k) is good if, and only if,
xiThe results of this section as well as the ones of Sections 6.4 and 7.3 are published in [Köc22].
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(i) there is a prefix q′2 of q2 with q′2 ∈ redsupL(q3),

(ii) i = 0 or αi ∈ A and similarly j = 0 or α j ∈ A, and

(iii) k = 0 or αk ∈ A.

We show first, that each good triple q describes an equivalence class [tq]≡ such that
wrt(tq) and rd(tq) are prefixes of wrt(t) and rd(t), respectively. We also show that for each
s ∈ Σ∗ satisfying these properties there is a good triple q with s ≡ tq.
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. Let q = (i , j, k) be a good triple. Then there is an action sequence tq ∈ Σ∗ with
characteristics χ(tq) = (q2, q1q3, q3).
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. By the definition of q1, q2, and q3 we know that q2 is a prefix of wrt(t) and q1q3
is a prefix of rd(t). Additionally, since q is good there exists a prefix q′2 of q2 with q′2 ∈
redsupL(q3). Let q4 be the complementary suffix of q2 wrt. q′2. Then tq ∶= q1⟨⟨q′2, q3⟩⟩q4
satisfies χ(tq) = (q′2q4, q1q3, q3) = (q2, q1q3, q3). ◁

▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. Let s ∈ Σ∗ where wrt(s) and rd(s) are prefixes of wrt(t) resp. rd(t). Then there is

a good triple q = (i , j, k) with s ≡ tq.
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Recall that rd(s) = rd1(s)rd2(s) holds, i.e., rd(t) starts with rd1(s)rd2(s). So, if
rd1(s) ≠ ε there is 0 < i ≤ n with rd(t[1, i]) = rd1(s) and αi ∈ A. Otherwise we set i ∶= 0. If
rd2(s) ≠ ε there is i < j ≤ n with rd(t[i + 1, j]) = rd2(s) and α j ∈ A. Otherwise we also set
j ∶= 0. Finally, if wrt(s) ≠ ε there is 1 < k ≤ n with wrt(t[1, k]) = wrt(s) and αk ∈ A since
wrt(s) is a prefix of wrt(t). Otherwise we set k ∶= 0. Then the tuple q ∶= (i , j, k) is good:
q′2 ∶= wrt1(s) is a prefix of q2 = wrt(s) and q′2 = wrt1(s) ∈ redsupL(rd2(s)) = redsupL(q3).
Additionally, we can see that χ(s) = χ(tq) holds implying s ≡ tq. ◁

Now, the set of states of our NFA consists of all good triples q = (i , j, k) and a unique
error state á.

The only initial state of the NFA is ι ∶= (0, 0, 0) (this ensures χ(tι) = (ε, ε, ε) and, hence,
tι ≡ ε). A state q = (i , j, k) is accepting if, and only if, tq ≡ t holds (i.e., iff χ(tq) = χ(t)).

Next, we want to define the transitions of the automaton such that, after reading of s ∈ Σ∗,
the automaton reaches a state q with tq ≡ s, provided that such state exists. Furthermore, we
want to make sure that such a state exists whenever ⟦s⟧ is a left-divisor of ⟦t⟧.

So, let q = (i , j, k) be a state (i.e., q is good) and a ∈ A. To define the state reached from
q after writing a, let k′ > k be the minimal write-position in t after k. In other words, we
have k′ > k, αk′ ∈ A, and t[k + 1, k′ − 1] ∈ A

∗
. If there is no such k′ or if αk′ ≠ a then the NFA

ends up in the error state á. Otherwise it moves to p ∶= (i , j, k′), which is a good triple and,
hence, a state of the automaton. Then we have

χ(tq ⋅ a) = (wrt(t[1, k]) a, rd(t[1, j]), rd(t[i + 1, j]))
= (wrt(t[1, k′]), rd(t[1, j]), rd(t[i + 1, j]))
= χ(tp) .

Now, we define which state is reached from q after executing a. Let j′ > j be the minimal
read-position in t after j. In other words, we have j′ > j, α j′ ∈ A, and t[ j + 1, j′ − 1] ∈ A∗. If
there is no such j′ or if α j′ ≠ a, then the NFA ends up in the error state á. So, assume that
such j′ exists and α j′ = a holds. Consider the word s = sws(wrt(t[1, k]), rd(t[i + 1, j])a).
Then we have rd2(tqa) = s by Lemma 4.7.14. Set i′ ≥ i such that i′ = 0 or αi′ ∈ A holds as well
as rd(t[i′ + 1, j′]) = s. Then q′2 ∈ redsupL(rd(t[i′ + 1, j′])) for a prefix q′2 of wrt(t[1, k]) by
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definition of s. Hence, p ∶= (i′, j′, k) is good and, therefore, a valid state of the NFA and we
put an a-labeled edge from q to p. We obtain

χ(tq ⋅ a) = (wrt(t[1, k]), rd(t[1, j]) a, s) (by Lemma 4.7.14)
= (wrt(t[1, k]), rd(t[1, j′]), rd(t[i′ + 1, j′]))
= χ(tp) .

This finishes the construction of the NFA.
Now, let s ∈ Σ∗. If there is an s-labeled path from ι = (0, 0, 0) to a non-error state q we

obtain χ(s) = χ(tq) by induction on ∣s∣ from the above calculations. In particular, if q is an
accepting state of our NFA, we know tq ≡ t implying s ∈ [t]≡.

Next, let ⟦s⟧ be a left-divisor of ⟦t⟧. Then wrt(s) and rd(s) are prefixes of wrt(t) and
rd(t), respectively, since wrt, rd∶Σ∗ → A∗ are homomorphisms. Then by induction on ∣s∣
we obtain an s-labeled path from ι to a non-error state q with χ(s) = χ(tq). In particular, if
s ∈ [t]≡ then we have χ(tq) = χ(s) = χ(t), i.e., q is accepting. Thus, the NFA accepts [t]≡.

By the construction of the NFA, it is clear that a Turing-machine with t on its input tape
can, using logarithmic space on its work tape, write the list of all transitions on its one-way
output tape. ◂

Note that the NFA we have constructed in the proof of Lemma 5.4.1 is actually deterministic.
However, we do not require determinism for the following statement. This theorem states
that the rational membership problem is decidable in the plq monoid:

Theorem 5.4.2. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2. Then the

problem Rational Membership(T(QL)) is NL-complete. This complexity result also

holds if the underlying lossiness alphabet L is part of the problem’s input.

Proof. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2, t ∈ Σ∗, and L ⊆ T(QL)
be rational. If L is given by a rational expression, we first have to construct an NFA from
this expression. This is possible using only logarithmic space with the help of an on-the-fly
construction: the states of the NFA are the positions in the rational expression and the
transitions are defined accordingly. So, from now on let A be given by an NFA over Σ. By
Lemma 5.4.1 there is also an NFAB accepting [t]≡ which can be constructed using only
logarithmic space.

Then there exists s ∈ L(A)with s ≡ t if, and only if, L(A)∩[t]≡ ≠ ∅ if, and only if, L(A)∩
L(B) ≠ ∅. Using an on-the-fly construction ofB, this can be decided nondeterministically
in logarithmic space. Hence, the problem is in NL.

Since the free monoid A∗ embeds into T(QL) and since the rational subset membership
problem for A∗ is NL-hard [Jon75], we also get NL-hardness for T(QL). ◂

5.4.2 Undecidable Problems
Next we will prove some negative algorithmic results on rational languages of the plq monoid.
Concretely, we will see that the remaining problems defined in the previous section are
undecidable for partially lossy queues.
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In [HKZ17, Section 8] these undecidabilities for reliable queues could be inferred from
an embedding of {a, b}∗ × {c, d}∗ into T(Q(∅,A)) for any at least binary alphabet A. Un-
fortunately, this does not work in arbitrary plq monoids since this direct product does not
embed into T(Q({a,b},∅)) by Theorem 4.7.20. Though, we can prove all the undecidability
results considered in [HKZ17] for any plq monoid with at least binary underlying alphabet
A = F ∪U .

Some of our results base on an embedding of the monoid {a}∗ × {b, c}∗ into T(QL).
Unfortunately, this does not help for unique decipherability and rational intersection empti-
ness since their counterparts in {a}∗ × {b, c}∗ are decidable. Hence, we have to prove them
directly.

First, we consider the problem Unique Decipherability(M) of a monoid M, i.e.,
the question whether a given finite set T ⊆ M freely generates T∗. In this context, a set
T ⊆M freely generates T∗ if for any sequences s1, . . . , sk ∈ T and t1, . . . , tℓ ∈ T the equation
s1 . . . sk = t1 . . . tℓ implies k = ℓ and si = ti for each 1 ≤ i ≤ k = ℓ. We also say that T∗ is
uniquely decipherable by T in this case.

We prove the undecidability of the Unique Decipherability(T(QL)) by reduction
from its counterpart in {a, b}∗ × {c, d}∗. We do this with the help of a special encoding of
the given elements and a further special item.

Theorem 5.4.3. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2. Then the

problem Unique Decipherability(T(QL)) is undecidable.

Proof. Weprove this theorem by reduction of UniqueDecipherability({a, b}∗×{c, d}∗),
which is undecidable by [CR86, Theorem 3.1]. So, let a, b ∈ A be distinct letters and

S ∶= {(x1, y1), . . . , (xk , yk)} ⊆ {a, b}∗ × {c, d}∗ .

▷ Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea. We will now encode these tuples as transformations t1, . . . , tk over {a, b} as follows:
the components x1, . . . , xk are mapped to sequences of write actions and the components
y1, . . . , yk are mapped to read action sequences. Unfortunately, while the xi ’s and the y j’s (for
1 ≤ i , j ≤ n) commute in {a, b}∗ × {c, d}∗, it is not necessarily the case that their encodings
also commute (recall that the commutations of write and read actions depend on some
special contexts). But we can simulate the full commutativity of these two components in our
encodings by appending a big number of read actions (this is according to Lemma 4.7.14).
This can be done by introduction of another transformation t0 containing more read than
write actions which we append to our encodings sufficiently often. ⌟

So, we first define the embeddings f ∶{a, b}∗ → A∗ and д∶{c, d}∗ → A∗ by f (a) =

д(c) = aa and f (b) = д(d) = ab. Set t0 ∶= ⟦bbbbb⟧, ti ∶= ⟦ f (xi)д(yi)⟧ for any 1 ≤ i ≤ k,
and

T ∶= {ti ∣ 0 ≤ i ≤ k} ⊆ T(QL) .

We show now that S∗ is freely generated by S if, and only if, T∗ is freely generated by T .
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. If T∗ is freely generated by T then S∗ is freely generated by S.
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Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We prove this claim by contraposition. So, assume that S∗ is not freely generated by S.
Then there are two different sequences of indices (i1, . . . , im) ≠ ( j1, . . . , jn) where m, n > 0
such that

(xi1 . . . xim , yi1 . . . yim) = (x j1 . . . x jn , y j1 . . . y jn) .

Let ℓ = ∣ f (xi1 . . . xim)∣. Set p ∶= ti1 . . . tim ⋅ tℓ0 and q ∶= t j1 . . . t jn ⋅ tℓ0. It is a simple exercise to
prove nf (tℓ0) = b

ℓ⟨⟨b2ℓ , b2ℓ⟩⟩. Additionally, by the choice of the two sequences of indices we
have

wrt(ti1 . . . tim) = f (xi1 . . . xim) = f (x j1 . . . x jn) = wrt(t j1 . . . t jn) and
rd(ti1 . . . tim) = д(yi1 . . . yim) = д(y j1 . . . y jn) = rd(t j1 . . . t jn) .

(5.1)

Since ∣wrt(ti1 . . . tim)∣b < ℓ holds (by the choice of ℓ and f ) we obtain a number 0 ≤ k < ℓ
with:

bk = sws(wrt(ti1 . . . tim), rd2(ti1 . . . tim) ⋅ bℓ)
= sws(wrt(ti1 . . . tim), bℓ)
= sws(wrt(t j1 . . . t jn), rd2(t j1 . . . t jn) ⋅ bℓ) .

Finally, by application of Lemma 4.7.14 and Corollary 4.7.15 we infer

p = ⟦rd1(ti1 . . . tim)wrt(ti1 . . . tim)rd2(ti1 . . . tim) ⋅ b
ℓ
⋅ ⟨⟨b2ℓ , b2ℓ⟩⟩⟧ (by Corollary 4.7.15)

= ⟦rd1(ti1 . . . tim)rd2(ti1 . . . tim)bℓ−kwrt(ti1 . . . tim)b
k
⋅ ⟨⟨b2ℓ , b2ℓ⟩⟩⟧ (by Lemma 4.7.14)

= ⟦rd1(t j1 . . . t jn)rd2(t j1 . . . t jn)bℓ−kwrt(t j1 . . . t jn)b
k
⋅ ⟨⟨b2ℓ , b2ℓ⟩⟩⟧ (by Equation (5.1))

= ⟦rd1(t j1 . . . t jn)wrt(t j1 . . . t jn)rd2(t j1 . . . t jn) ⋅ b
ℓ
⋅ ⟨⟨b2ℓ , b2ℓ⟩⟩⟧ (by Lemma 4.7.14)

= q . (by Corollary 4.7.15)

Accordingly T∗ is not freely generated by T . ◁

▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. If S∗ is freely generated by S then T∗ is freely generated by T .
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Again, we prove this implication by contraposition. Assume that T∗ is not freely gener-
ated by T . If ⟦ε⟧ ∈ T and, hence, (ε, ε) ∈ S holds, S∗ is obviously not freely generated by S. So,
we can assume that ⟦ε⟧ ∉ T holds and, hence, (ε, ε) ∉ S. Then there are indices (i1, . . . , im) ≠
( j1, . . . , jn) with m, n > 0 such that ti1 . . . tim = t j1 . . . t jn holds. Let (i′1 , . . . , i′m′), ( j′1, . . . , j′n′)
be the above sequences after deletion of all 0’s. Since t0 is the only element in T adding
bb into the projections of write and read actions and due to Proposition 4.7.4, t0 does not
commute with any ti where 1 ≤ i ≤ k. Hence, we still have (i′1 , . . . , i′m′) ≠ ( j′1, . . . , j′n′),
wrt(ti′1 . . . ti′m′) = wrt(t j′1 . . . t j′n′) and rd(ti′1 . . . ti′m′) = rd(t j′1 . . . t j′n′). Then we have

f (xi′1 . . . xi′m′) = wrt(ti′1 . . . ti′m′) = wrt(t j′1 . . . t j′n′) = f (x j′1
. . . x j′

n′
) ,

д(yi′1 . . . yi′m′) = rd(ti′1 . . . ti′m′) = rd(t j′1 . . . t j′n′) = д(y j′1 . . . y j′n′) .

By injectivity of f and д we infer that

(xi′1 . . . xi′m′ , yi′1 . . . yi′m′) = (x j′1
. . . x j′

n′
, y j′1 . . . y j′n′)

holds, i.e., S∗ is not freely generated by S. ◁
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Finally, we have seen that S∗ is freely generated by S if, and only if, T∗ is freely gener-
ated by T . So, we have reduced Unique Decipherability({a, b}∗ × {c, d}∗) to Unique
Decipherability(T(QL)). Since the former problem is undecidable by [CR86], the latter
one also is undecidable. ◂

The next problem to consider is the emptiness of intersections of two rational plq lan-
guages. Given two recognizable plq languages, this problem is decidable since the class of
recognizable languages is effectively closed under intersection. However, we will prove that
this decidability does not hold for arbitrary rational plq languages.

As a corollary we can infer that the class of rational plq languages is not effectively closed
under intersection and complement. Afterwards, we will prove the existence of two rational
languages whose intersection is not rational. In other words, the classes of rational and
recognizable plq languages do not coincide. Nevertheless, each recognizable language in
T(QL) is rational due to [McK64] since the plq monoid is finitely generated.

Theorem 5.4.4. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2. Then the

problem Rational Intersection Emptiness(T(QL)) is undecidable.

Proof. We prove this by reduction of Post’s Correspondence Problem (PCP) which is unde-
cidable by [Pos46]. So, let a, b ∈ A be two distinct letters and I = (xi , yi)1≤i≤k be an instance
of the PCP with xi , yi ∈ A∗.
▷ Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea. The reduction is similar to the proof ofTheorem 5.4.3. Here, for each tuple (xi , yi)we
introduce two transformations si and ti in which the write action sequences encode (unary)
the index i and the read actions coincide with xi resp. yi . We then obtain two rational
plq languages SI and TI consisting of non-empty sequences of si ’s resp. ti ’s and arbitrarily
many additional read actions. The additional read actions are necessarily to achieve the
commutativity of the write and read action sequences of the si ’s and ti ’s. ⌟

For 1 ≤ i ≤ k define the transformations si ∶= ⟦a ibxi⟧ and ti ∶= ⟦a ibyi⟧. Then we can
define rational plq languages as follows:

SI ∶= {si ∣ 1 ≤ i ≤ k}+⟦ab
∗
⟧ and TI ∶= {ti ∣ 1 ≤ i ≤ k}+⟦ab

∗
⟧ .

Now we show that SI ∩ TI ≠ ∅ holds if, and only if, I has a solution.
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. If SI ∩ TI ≠ ∅ holds, then I has a solution.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Let t ∈ SI ∩ TI . Then by definition of SI and TI there are ℓ ∈ N and indices i1, . . . , im
and j1, . . . , jn (where m, n > 0) such that si1 . . . sim⟦ab

ℓ
⟧ = t = t j1 . . . t jn⟦ab

ℓ
⟧ holds. Then we

have
xi1 . . . ximabℓ = rd(t) = y j1 . . . y jnabℓ

implying xi1 . . . xim = y j1 . . . y jn . By

a i1b . . . a imb = wrt(t) = a j1b . . . a jnb

we can infer (i1, . . . , im) = ( j1, . . . , jn) which is a solution of I. ◁

▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. If I has a solution, then we have SI ∩ TI ≠ ∅.
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Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Let (i1, . . . , im) with m > 0 be a solution of I, i.e., we have xi1 . . . xim = yi1 . . . yim . Set
s′ ∶= si1 . . . sim and t′ ∶= ti1 . . . tim and set s ∶= s′⟦ab

m+1
⟧ ∈ SI and t ∶= t′⟦ab

m+1
⟧ ∈ TI . Then we

have wrt(s) = wrt(t) and rd(s) = rd(t). Furthermore, by Corollary 4.7.15 we have

s = ⟦rd1(s′)wrt(s)rd2(s′) abm+1⟧ and t = ⟦rd1(t′)wrt(t)rd2(t′) abm+1⟧ .

Note that we have ∣wrt(s)∣b = ∣wrt(t)∣b = m. Hence, there exists a number 0 ≤ k ≤ m with

bk = sws(wrt(s), rd2(s′)abm+1) (since ∣wrt(s)∣b < m + 1)
= sws(wrt(s), bm+1) = sws(wrt(t), bm+1) (since wrt(s) = wrt(t))
= sws(wrt(t), rd2(t′)abm+1)

implying rd2(s) = bk = rd2(t). This finally implies χ(s) = χ(t), i.e., s = t ∈ SI ∩ TI ≠ ∅. ◁

Hence, we reduced PCP to Rational Intersection Emptiness(T(QL)) which is there-
fore undecidable. ◂

To prove that the rational plq languages are not closed under intersection and to prove
the undecidability of the next problems we use an embedding of {a}∗ × {b, c}∗ into the
plq monoid. Assume that a, b ∈ A holds and that a and b are distinct letters. Such an
embedding is ψ∶{a}∗ × {b, c}∗ ↪ T(QL) which is induced by ψ(a, ε) = ⟦a⟧, ψ(ε, b) = ⟦ab⟧
and ψ(ε, c) = ⟦abb⟧ (cf. Theorem 4.7.20 and [KKP18, Lemma 6.17]). Note that there are
some commutations in {a}∗ × {b, c}∗:

(a, ε) ⋅ (ε, b) = (a, b) = (ε, b) ⋅ (a, ε) and (a, ε) ⋅ (ε, c) = (a, c) = (ε, c) ⋅ (a, ε) .

Themap ψ preserves these commutations:

ψ(a, ε) ⋅ ψ(ε, b) = ⟦aab⟧ = ⟦aba⟧ = ψ(ε, b) ⋅ ψ(a, ε) and

ψ(a, ε) ⋅ ψ(ε, c) = ⟦aabb⟧ = ⟦abba⟧ = ψ(ε, c) ⋅ ψ(a, ε)
(5.2)

according to the equations from Lemma 4.7.2.

Theorem 5.4.5. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2. The class of

rational T(QL)-languages is not closed under intersection. In particular, the class of
recognizable T(QL)-languages is a proper subclass of the rational T(QL)-languages.

Proof. Consider the following rational relations in {a}∗ × {b, c}∗:

X ∶= {(am , bmcn) ∣ m, n ∈ N} and Y ∶= {(am , bncm) ∣ m, n ∈ N} .

Then ψ(X) and ψ(Y) are rational in T(QL). Suppose that ψ(X) ∩ ψ(Y) is rational. Then
there is a regular language L ⊆ Σ∗ with η(L) = ψ(X) ∩ ψ(Y). Since ψ is injective we have

ψ(X) ∩ ψ(Y) = ψ(X ∩ Y) = ψ({(an , bncn) ∣ n ∈ N})

Hence, by definition of ψ we have rd(L) = {(ab)n(abb)n ∣ n ∈ N} which would be regular
since rd is a homomorphism. But this is a contradiction to the Pumping Lemma.

Towards the second statement, recall that T(QL) is finitely generated. Then from
[McK64] we know that each recognizable plq language is rational. From the first state-
ment and from the fact that the class of recognizable languages is closed under intersection,
we infer that ψ(X) and ψ(Y) are rational but not recognizable. ◂
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From the previous theorem we also infer that the class of rational plq languages is not
closed under complement. Otherwise closure under complement and union would also
imply closure under intersection, contradicting our theorem above.

By IL ⊆ T(QL) we denote the image of ψ, i.e., ψ is an isomorphism from {a}∗ × {b, c}∗
into IL. It is easy to see that IL = {⟦a⟧, ⟦ab⟧, ⟦abb⟧}∗ holds. In the following lemma we
prove that recognizability in this submonoid implies recognizability in the whole plq monoid.

Lemma 5.4.6. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and T ⊆ IL be
recognizable in IL. Then T is recognizable in T(QL).

Proof. Let T ⊆ IL be recognizable in IL. Then ψ−1(T) ⊆ {a}∗ × {b, c}∗ is recognizable in
{a}∗ × {b, c}∗. Due to Mezei’s Theorem [Ber79, Theorem III.1.5] there are regular languages
Vi ⊆ {a}∗ andWi ⊆ {b, c}∗ with

ψ−1(T) = ⋃
1≤i≤k

Vi ×Wi .

Now we define two homomorphisms д∶{a}∗ → A∗ by д(a) = a and h∶{b, c}∗ → A∗

by h(b) = ab and h(c) = abb. Note that we have ⟦д(a)⟧ = ψ(a, ε), ⟦h(b)⟧ = ψ(ε, b), and
⟦h(c)⟧ = ψ(ε, c). Then д(Vi), h(Wi) ⊆ A∗ are regular as well. Hence, wrt−1(д(Vi)) and
rd−1(h(Wi)) are recognizable in T(QL) and therefore

⋃
1≤i≤k

wrt−1(д(Vi)) ∩ rd−1(h(Wi))

also is recognizable. Finally we have to prove that this language equals T :
▷ Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim. We have T = ⋃1≤i≤k wrt−1(д(Vi)) ∩ rd−1(h(Wi)).

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. First, let t ∈ T ⊆ IL. Then there is a tuple (v ,w) ∈ {a}∗ × {b, c}∗ with ψ(v ,w) = t.
Since (v ,w) ∈ ψ−1(t) ⊆ ψ−1(T) there is 1 ≤ i ≤ k with v ∈ Vi and w ∈Wi . Then we have

t = ψ(v ,w) = ψ(v , ε)ψ(ε,w) = ⟦д(v)h(w)⟧ (by Equation (5.2))
∈ wrt−1(д(v)) ∩ rd−1(h(w)) ⊆ wrt−1(д(Vi)) ∩ rd−1(h(Wi)) .

Conversely, let 1 ≤ i ≤ k and t ∈ wrt−1(д(Vi)) ∩ rd−1(h(Wi)). Then there are v ∈ Vi

and w ∈Wi with wrt(t) = д(v) and rd(t) = h(w). From the definition of д and h we infer
wrt(t) ∈ a∗ and rd(t) ∈ {ε} ∪ A∗b. Since a ≠ b holds, we learn that ε is the only suffix r2 of
rd(t) having a prefix w1 of wrt(t), which is a reduced L-superword of r2. Hence, we have
rd2(t) = ε and therefore t = ⟦h(w)д(v)⟧ = ψ(v ,w). Finally, from v ∈ Vi and w ∈ Wi we
learn (v ,w) ∈ ψ−1(T) implying t = ψ(v ,w) ∈ T . ◁

All in all, we have seen that T is recognizable in T(QL). ◂

To prove the undecidability of the rational universality and the recognizability problem
we use the embedding ψ and the results from Gibbons and Rytter [GR86] which state that
the counterparts of these problems in {a}∗ × {b, c}∗ are undecidable. Note that rational
universality can be reduced to rational inclusion and equality. Hence, these two problems
also are undecidable in the plq monoid.
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Theorem 5.4.7. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2. Then the

following statements hold:

(1) The problem Rational Universality(T(QL)) is undecidable. Consequently, the
problems Rational Inclusion(T(QL)) and Rational Equality(T(QL)) also
are undecidable.

(2) The problem Rational Recognizability(T(QL)) is undecidable.

Proof. Wefirst prove (1). To this end, let T ⊆ {a}∗×{b, c}∗ be rational. Thenψ(T) is rational
in T(QL). Due to Lemma 5.4.6 the language IL is recognizable in T(QL). Therefore T(QL)∖
IL is recognizable and, hence, rational in T(QL) since this monoid is finitely generated.
Consequently, ψ(T) ∪ (T(QL) ∖ IL) is rational as well. This plq language equals T(QL) if,
and only if, ψ(T) = IL, i.e., T = {a}∗ × {b, c}∗. But this latter question is undecidable by
[GR86, Theorem 2(Q4)].

Finally, we prove (2). Let T ⊆ {a}∗×{b, c}∗ be rational. Then ψ(T) is rational in T(QL).
By Lemma 5.4.6 ψ(T) is recognizable in T(QL) if, and only if, it is recognizable in IL. This
is the case if, and only if, T is recognizable in {a}∗ × {b, c}∗. But this latter question is
undecidable by [GR86, Theorem 2(Q6)]. ◂

This theorem states that it is undecidable whether η(L) is recognizable for a given regular
language L ⊆ Σ∗. This question is equivalent to ask whether the language η−1(η(L)) is regular
if L ⊆ Σ∗ is a regular language. However, we are able to decide a related problem in the
free monoid of basic queue actions. Concretely, we can decide whether, for a given regular
language L ⊆ Σ∗, the equation η−1(η(L)) = L holds. This is the case if, and only if, L is closed
under behavioral equivalence. So, we have to show that L is closed under each equation from
Lemma 4.7.2:

Theorem 5.4.8. Let L = (F ,U) be a lossiness alphabet. Then the following problem is

decidable:

Input: A regular language L ⊆ Σ∗

Question: Is L closed under behavioral equivalence?

Proof. We prove this with the help of a rational transduction (cf. [Ber79]). To this end, let τ
be the following rational transduction:

I∗Σ ∪ I
∗
Σ{(ℓ, r), (r, ℓ) ∣ ℓ ≡ r is an equation in Lemma 4.7.2}I

∗
Σ

where IΣ = {(α, α) ∣ α ∈ Σ} is the identity relation on Σ. Then byTheorem 4.7.8 a language
L ⊆ Σ∗ is closed under ≡ if, and only if, L = τ(L) holds. If L is a regular language then τ(L)
also is regular. Hence, we can finally check whether L = τ(L) holds. ◂

Note that for a regular language L ⊆ Σ∗ with L = η−1(η(L)) the plq language η(L) is
recognizable. Nevertheless the converse implication is not true in the general case: let
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a, b ∈ A be two distinct letters. Then the plq language η(a∗b
∗
) is recognizable but a∗b

∗
is

not closed under behavioral equivalence.

5.5 Conclusion
We have considered the rational languages of the partially lossy queue and stack monoid,
respectively. Concretely, we have studied several classical decision problems on this class of
languages, which are known to be decidable for regular languages.

First, we have generalized a result by Render and Kambites (cf. [RK09]) to partially lossy
stacks. In other words, we have seen that a language in the pls monoid is rational if, and
only if, the normal forms of the elements in this set build a regular language. Moreover,
we can compute this regular language in polynomial time. From this result we infer the
closure of the class of rational languages under Boolean operations and the decidability of
the rational membership, intersection emptiness, universality, inclusion, and equivalence
problem in polynomial time or space. However, until now it is still unknown whether also
unique decipherability is decidable.

For the rational plq languages we have shown that the membership problem is decidable
using only nondeterministic logarithmic space. We have also seen that all of the other
aforementioned problems are undecidable.





Chapter 6

Recognizable Languages

6.1 Introduction

In the previous chapter we have introduced the rational and recognizable languages of a given
monoid. Concretely, we have focused on the algorithmic aspects of rational languages in
the partially lossy queue and stack monoids. Unfortunately, most of the mentioned decision
problems (like intersection emptiness, universality, and recognizability) are undecidable in
the plqmonoid. However, we can also study the recognizable languages of this monoid (recall
that by [McK64] any recognizable language is rational). In this case, all of the aforementioned
problems get decidable by known constructions from automata theory. This is also another
indication that the rational plq languages are not effectively recognizable. In this chapter we
will see another evidence that the class of recognizable languages is a proper subclass of the
rational languages in the plq monoid: the class of recognizable plq languages is not closed
under product and iteration. We will also see that the classes of recognizable and rational
languages in the pls monoid do not coincide as well, since in most cases there are only the
two trivial recognizable languages: the monoid itself and the empty set.

Hence, since in all considered cases there are rational languages which are not recogniza-
ble, we may ask in which cases a rational language is recognizable. To this end, we will give
several characterizations of the recognizable languages. First, we consider those languages
in the pls monoid. As mentioned before, for partially lossy stacks with an at least binary
lossiness alphabet, there are only two recognizable languages. If the underlying lossiness
alphabet is unary, then the recognizable pls languages are recognized by finite, cyclic groups.

Afterwards, we consider the recognizable plq languages. We will first give some kind
of rational expressions which generate exactly the recognizable languages. To this end, we
need special restrictions to the monoid’s product and iteration, which results in the so-
called q-rational languages. Note that this approach is similar to Ochmański’s c-rational
trace languages [Och85] generating the recognizable trace languages in terms of rational
operations (in this case we restrict the iteration to connectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnected trace languages, only).

Additionally, we will present a characterization of the recognizable plq languages in
terms of a monadic second-order logic. This logic is derived from another logic introduced
by Büchi in [Büc60]. In that logic we understand words as linear orders of positions labeled
with the letters of the underlying alphabet. Büchi proved that the monadic second-order
logic on this interpretation of words describes exactly the class of regular languages. From
this result we obtain an even brighter understanding on how to formalize the behavior of
finite automata. A similar logic concerning recognizable trace languages was introduced by
Ebinger in [Ebi94, Ebi95]. In this chapter we will give another monadic second-order logic
describing the recognizable plq languages.
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6.2 Partially Lossy Stacks
First, we consider the recognizable pls languages. In the previous chapter we have learned
that a pls language T is rational if, and only if, the set of normal forms of T is a regular
language. In other words, we already know a simple characterization of the rational languages.
However, one may also ask for a characterization of the recognizable languages. We already
know that in the bicyclic monoid T(C1) (recall that this is the transformation monoid of
a pls PL with a unary lossiness alphabet L), a language is recognizable if, and only if, its
syntactic monoid is a finite cyclic group [CP61]. In this section we will give a proof of this
result. Additionally, we will show that for any other lossiness alphabet L = (F ,U) (i.e., we
have ∣F ∣ + ∣U ∣ ≥ 2) the pls monoid has only trivial recognizable languages.

To this end, we consider the natural homomorphism ϕ∶T(PL)→ S(T) into the syntactic
monoid of a pls language. This function is even surjective and, hence, an epimorphism. So,
let f be any epimorphism into a finite monoid F. We show in the next lemma that the images
of the write and read actions of a letter a ∈ A induce a subgroup in F.

Lemma 6.2.1. LetL = (F ,U) be a lossiness alphabet, F be a finite monoid, f ∶T(PL)↠
F be an epimorphism into F, and a ∈ A. Then f ({⟦a⟧, ⟦a⟧}∗) is a subgroup of F which

is generated by f (⟦a⟧). In particular, this subgroup is cyclic and has the identity f (⟦ε⟧).

Proof. Since F is a finite monoid, there are numbers 0 ≤ m < n with f (⟦am⟧) = f (⟦an⟧).
Then we observe the following:

f (⟦a⟧) = f (⟦amam a⟧) (since amam ≡ ε by Lemma 4.4.1(1))
= f (⟦anam a⟧) (since f (⟦am⟧) = f (⟦an⟧))
= f (⟦an−m a⟧) (since m < n and amam ≡ ε)
= f (⟦an−m−1⟧) . (since m < n)

Hence, f ({⟦a⟧, ⟦a⟧}∗) is generated by f (⟦a⟧). Moreover, from aa ≡ ε we know that f (⟦a⟧)
is the right-inverse of f (⟦a⟧). We finally have to prove that f (⟦a⟧) also is the left-inverse of
f (⟦a⟧). This can be shown with the following calculations:

f (⟦a⟧) ⋅ f (⟦a⟧) = f (⟦an−m−1⟧) ⋅ f (⟦a⟧)
= f (⟦an−m⟧)
= f (⟦a⟧) ⋅ f (⟦an−m−1⟧)
= f (⟦a⟧) ⋅ f (⟦a⟧) = f (⟦aa⟧)

= f (⟦ε⟧) .

Hence, f (⟦a⟧) has the inverse element f (⟦a⟧). Since f (⟦a⟧) generates f ({⟦a⟧, ⟦a⟧}∗), this
set is a cyclic group. ◂

From this statement we can finally infer the following characterization of the recognizable
counter languages, i.e., of the recognizable pls languages with underlying unary lossiness
alphabet L:
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Theorem 6.2.2. LetL = (F ,U) be a lossiness alphabet with ∣F ∣+∣U ∣ = 1 and T ⊆ T(PL).
Then the following statements are equivalent:

(1) T is recognizable in T(PL).

(2) The syntactic monoid S(T) of T is a finite cyclic group [CP61].

(3) T is a finite union of pls languages Sk,ℓ ∶= {⟦t⟧ ∈ T(PL) ∣ ∣t∣A − ∣t∣A mod k = ℓ}
where k, ℓ ∈ N with k > ℓ.

Proof. Let A = F ∪U = {a}. We prove these equivalences with the help of three implications.
First, we prove “(3)⇒(1)”. To this end, we show that Sk,ℓ is recognizable for k, ℓ ∈ N with
k > ℓ. There exists an epimorphism f ∶T(PL)↠ Zk satisfying f (⟦a⟧) = 1 and f (⟦a⟧) = k− 1
(in other words, each basic transformation ⟦a⟧ increases a number modulo k and each ⟦a⟧
decreases this number). Then we can see f −1(ℓ) = Sk,ℓ. Hence, Sk,ℓ is recognizable and,
therefore, the finite union T of such languages also is recognizable.

Next, let T be recognizable in T(PL). Then the syntactic monoid S(T) of T is finite
and T is recognized via the natural epimorhism ϕ∶T(PL)↠ S(T)∶ t ↦ [t]∼ (where ∼ is the
syntactic congruence on T(PL)). Then due to Lemma 6.2.1 ϕ(T(PL)) = ϕ({⟦a⟧, ⟦a⟧}∗) is
a cyclic group.

Finally, assume that S(T) is a finite cyclic group. In other words, we have S(T) ≅ Zk for
a number k ∈ N ∖ {0}. Then there is an epimorphism f ∶T(PL)↠ Zk. We can assume that
f (⟦a⟧) = 1 holds (where A = {a}) since Zk is generated by the element f (⟦a⟧) according to
Lemma 6.2.1. Since T is recognized by Zk via f there is a finite set X ⊆ Zk with f −1(X) = T .
But then we have

T = f −1(X) = ⋃
ℓ∈X

f −1(ℓ) = ⋃
ℓ∈X

Sk,ℓ .
◂

Next, we consider the non-unary case. In other words, we consider the recognizable
partially lossy stack languages with an underlying at least binary lossiness alphabet L. To
this end, we first show that the image of an epimorphism f ∶T(PL)↠ F into a finite monoid
F is the trivial subgroup:

Lemma 6.2.3. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2, F be a finite

monoid with identity e, f ∶T(PL)↠ F be an epimorphism into F, and a ∈ A. Then we

have f (⟦a⟧) = e.

Proof. Since ∣A∣ = ∣F ∣+ ∣U ∣ ≥ 2 there is a letter b ∈ A∖{a}. By Lemma 6.2.1 there is a positive
number n ∈ N ∖ {0} with f (⟦bn⟧) = f (⟦ε⟧). Since f (⟦b⟧) is the inverse element of f (⟦b⟧)
we also have f (⟦b

n
⟧) = f (⟦ε⟧).

Now, we have to distinguish two cases:
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(1) a ∈ F is a forgettable letter. Then we obtain the following:

f (⟦a⟧) = f (⟦a⟧) ⋅ f (⟦b
n
⟧) (since f (⟦b

n
⟧) = f (⟦ε⟧))

= f (⟦ab
n
⟧)

= f (⟦b
n
⟧) (since ab ≡ b by Lemma 4.4.1(3))

= f (⟦ε⟧) = e . (by the choice of n)

(2) a ∈ U is an unforgettable letter. Then we learn

f (⟦a⟧) = f (⟦a⟧) ⋅ f (⟦b
n
⟧) (since f (⟦b

n
⟧) = f (⟦ε⟧))

= f (⟦ab
n
⟧)

= f (⟦á⟧) . (since ab ≡ á by Lemma 4.4.1(2))

Since F is finite there is a number m ∈ N ∖ {0} with f (⟦am⟧) = f (⟦ε⟧). Then we finally
see

f (⟦a⟧) = f (⟦á⟧) = f (⟦ám⟧) = f (⟦am⟧) = f (⟦ε⟧) = e . ◂

This finally shows that the partially lossy stack monoids with an at least binary lossiness
alphabet have only trivial recognizable languages:

Theorem 6.2.4. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and let
T ⊆ T(PL) be a partially lossy stack language. Then T is recognizable if, and only if, the

syntactic monoid S(T) of T is a singleton. In particular, T is recognizable iff T = ∅ or

T = T(PL) holds.

Proof. Let T ⊆ T(PL) be recognizable. Then its syntactic monoid S(T) is finite and rec-
ognizes T via the natural epimorphism ϕ∶T(PL) ↠ S(T). By Lemma 6.2.3 we know
f (⟦t⟧) = e = [ε]∼ for each action sequence t ∈ Σ∗. Hence, by surjectivity of f we infer
S(T) = {[ε]∼}. Conversely, let T ⊆ T(PL) have a syntactic monoid with ∣S(T)∣ = 1. Then
this monoid is finite and, hence, T is recognizable. ◂

6.3 Intermezzo: Büchi’s Theorem
Next, we want to characterize the recognizable partially lossy queue languages. One of the
characterizations is a special logic on transformations of a partially lossy queue. This logic
will be in some sense a generalization of Büchi’s word logic. Hence, we should first recall this
special logic:

Let A be an alphabet. The signature λxii consists of the binary symbol < and the unary
symbol Λa for each a ∈ A.

Let w = a1 . . . an be a word with a1, . . . , an ∈ A. The word model of w is the relational
λ-structure

wwwwwwwwwwwwwwwww ∶= (dom(w), <w , (Λw
a )a∈A)

xiiThe name λ of this signature stems from the greek phrase “λέξη” which translates to “word”.
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where dom(w) ∶= {1, . . . , n} is the set of positions in w, <w is the natural (strict) ordering on
dom(w), and Λw

a ∶= {i ∈ dom(w) ∣ ai = a} is the set of all positions in w labeled with the
letter a ∈ A. Note that (Λw

a )a∈A is a partition of the set dom(w).

Example 6.3.1. Let w = abbacb. Then we have dom(w) = {1, . . . , 6}, Λw
a = {1, 4},

Λw
b
= {2, 3, 6}, and Λw

c = {5}. ⌟

Now, we are considering formulas over the signature λ. To simplify notation we also
write ΛB(x) instead of the formula ⋁a∈B Λa(x) for any non-empty B ⊆ A. Moreover, we
write x ≤ y instead of x < y ∨ x = y.

Let ϕ ∈ MSO[λ] be a sentence (i.e., ϕ contains no free variables). Then the language
defined by ϕ is L(ϕ) ∶= {w ∈ A∗ ∣ wwwwwwwwwwwwwwwww ⊧ ϕ}. A language L ⊆ A∗ isMSO[λ]-definable if there is
a sentence ϕ ∈MSO[λ] with L = L(ϕ). Similarly, L is FO[λ]-definable if there is a sentence
ϕ ∈ FO[λ] with L = L(ϕ).

Theorem 6.3.2. Let A be an alphabet and L ⊆ A∗ be a language. Then the following

statements hold:

(1) (Büchi’s Theorem) L is regular if, and only if, L isMSO[λ]-definable [Büc60].

(2) L is aperiodic if, and only if, L is FO[λ]-definable [MP71]. ◂

6.4 Partially Lossy Queues

We have already seen that it is undecidable whether a given rational language is recognizable
(cf. Theorem 5.4.7(2)). However, we want to characterize in which cases a rational language
is recognizable. Concretely, we give some rational-like expressions which are fully describing
the recognizable plq languages. To this end, we have to introduce some special restrictions
to the concatenation and iteration of recognizable languages. Additionally, we have to add a
non-monotonic operation to our expressions: the complement operation. We call languages
constructed via these restricted operations the q-rational languages in T(QL) (the definition
of this notion can be found at Page 104). With the help of this definition we will obtain a
characterization in the manner of Kleene [Kle51]. Additionally, we want to translate Büchi’s
Theorem [Büc60] to the plq monoid. We do this with the help of special modifications of
Büchi’s word logicMSO[λ] which we have defined in the previous section. Concretely, our
new logicMSO[o] still identifies an action sequence w ∈ Σ∗ as a set of positions labeled with
letters from Σ. But in contrast to the word logic we have to restrict comparisons between
write and read actions to ensure that our logic only describes recognizable plq languages.
The full definition of this logic can be found at Page 107.

Now, we state the main theorem of this section. As mentioned before, we will give
the concrete definitions of q-rational languages and the logicMSO[o] later in this section.
We prove this theorem with the help of three implications in Propositions 6.4.22, 6.4.28
and 6.4.31.
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Theorem 6.4.1. LetL = (F ,U) be a lossiness alphabet with ∣F ∣+∣U ∣ ≥ 2 and T ⊆ T(QL).
Then the following statements are effectively equivalent:

(A) T is recognizable.

(B) T is q-rational.

(C) T isMSO[o]-definable.

6.4.1 Some Helpful Characterizations
Before diving into the proof of Theorem 6.4.1 we prove two further characterizations of the
recognizable plq languages which turned out to be convenient for the simplification of our
proof. We already know these characterizations fromHuschenbett et al. [HKZ17] which were
given there for the transformation monoid T(Q(∅,A)) of a reliable queue. Here, we generalize
these equivalences to plq monoids T(QL) with arbitrary lossiness alphabet L = (F ,U).

Concretely, we prove the correspondence of recognizability in the plq monoid to regular-
ity in the underlying free monoid. We also describe the recognizable languages in terms of
Boolean combinations of plq languages wrt−1(R), rd−1(R), and some special languages Ωℓ

for regular languages R ⊆ A∗ and numbers ℓ ∈ N:
Definition 6.4.2. Let L = (F ,U) be a lossiness alphabet and t ∈ T(QL). Then the
overlap’s bounded width of t is

obw(t) ∶= inf{∣rd2(s)∣ ∣ s ∈ T(QL),wrt(s) = wrt(t), rd(s) = rd(t), ∣rd2(s)∣ > ∣rd2(t)∣} .

Similarly, for w ∈ Σ∗ we may define obw(w) ∶= obw(⟦w⟧). Furthermore, for ℓ ∈ N set

Ωℓ ∶= {t ∈ T(QL) ∣ obw(t) > ℓ} . ⌟

The overlap’s bounded width specifies the minimal length of the overlap of a transformation
having the same projections and a longer overlap. If no such word exists then we set this value
to∞. In particular, we have t ∈ Ωℓ for a transformation t ∈ T(QL) and a number ℓ ∈ N if,
and only if, any transformation s ∈ T(QL) having the same projections (i.e., wrt(s) = wrt(t)
and rd(s) = rd(t)) and a longer overlap (i.e., ∣rd2(s)∣ > ∣rd2(t)∣) also satisfies ∣rd2(s)∣ > ℓ.

Example 6.4.3. Let L = (∅, {a, b}) and t = ⟦ababaabbabab⟧. Then there are two
transformations with the same projections and longer overlaps:

s1 = ⟦abaabbaabbab⟧ and s2 = ⟦aabbaabbaabb⟧ .

We have ∣rd2(s1)∣ = 4 and ∣rd2(s2)∣ = 6. Therefore we obtain obw(t) = 4, obw(s1) = 6,
and obw(s2) =∞. Hence, t ∈ Ω3 ∖Ω4 holds. ⌟

From [HKZ17, Observation 9.1] we already know that the reliable queue languages
{t ∈ T(Q(∅,U)) ∣ ∣rd2(t)∣ > ℓ} are not recognizable for any number ℓ ∈ N. This means, there
is no non-trivial property of the overlap’s width ∣rd2(t)∣ which is recognizable in the reliable
queue monoid T(Q(∅,U)). An appropriate alternative for the generators of the Boolean
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algebra of recognizable plq languages has been found in such kind of “over-approximation”
of the overlap’s length (note that obw(t) > ∣rd2(t)∣ holds). Additionally, the following two
observations provide more motivation of this notion. First, we show that the characteristic
χ(t) of the transformation t ∈ T(QL) is fully described by wrt(t), rd(t), and obw(t).

Observation 6.4.4. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and
s, t ∈ T(QL). Then we have wrt(s) = wrt(t), rd(s) = rd(t), and obw(s) = obw(t) if,
and only if, s = t holds.

Proof. The implication “⇐” is obvious. So, we only have to prove the converse implication.
Let s, t ∈ T(QL) be two transformations with wrt(s) = wrt(t), rd(s) = rd(t), and obw(s) =
obw(t). Due toTheorem 4.7.8 it suffices to show rd2(s) = rd2(t).

By definition of obw(.) we know

∣rd2(s)∣ < obw(s) = obw(t) = inf {∣rd2(u)∣ ∣
u ∈ T(QL),wrt(u) = wrt(t), rd(u) = rd(t),

∣rd2(u)∣ > ∣rd2(t)∣
} .

Recall that wrt(s) = wrt(t) and rd(s) = rd(t) holds. Then ∣rd2(s)∣ > ∣rd2(t)∣ would imply
obw(t) ≤ ∣rd2(s)∣ < obw(s) = obw(t), which is impossible. Hence, we have ∣rd2(s)∣ ≤
∣rd2(t)∣. By symmetry we also obtain ∣rd2(s)∣ ≥ ∣rd2(t)∣. In other words, rd2(s) and rd2(t)
are suffixes of rd(s) = rd(t) having the same length, i.e., we have rd2(s) = rd2(t). This
implies χ(s) = χ(t) and, therefore, s = t. ◂

This means, similar to the characteristic χ(t), the triple (wrt(t), rd(t), obw(t)) is an-
other kind of characterization of the transformation t ∈ T(QL).

The following observation proves that from a transformation t ∈ T(QL) with small
overlap’s bounded width we obtain another transformation s ∈ T(QL) which has an overlap
rd2(s) of this bounded width. This knowledge is very helpful to prove Theorem 6.4.1 and the
succeedingTheorem 6.4.6.

Observation 6.4.5. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2, ℓ ∈ N,
and t ∈ T(QL). Then obw(t) ≤ ℓ if, and only if, there is r2 ∈ A≤ℓ with rd(t) ∈ A∗r2 and
w1 ∈ redsupL(r2) for a prefix w1 of wrt(t) such that ∣rd2(t)∣ < ∣r2∣.

Proof. Wefirst suppose obw(t) > ℓ. Let r2 ∈ A≤ℓ such that rd(t) ∈ A∗r2 andw1 ∈ redsupL(r2)
for a prefix w1 of wrt(t). Furthermore, let r1 ∈ A∗ with rd(t) = r1r2. Set s ∶= ⟦r1wrt(t)r2⟧.
Then we have wrt(s) = wrt(t), rd(s) = rd(t), and ∣rd2(s)∣ ≤ ∣r2∣ ≤ ℓ. Since w1 ∈ redsupL(r2)
and w1 is a prefix of wrt(t) = wrt(s), we have rd2(s) = r2 according to Corollary 4.7.15. Since
∣rd2(t)∣ < ∣rd2(s)∣ would imply obw(t) ≤ ∣rd2(s)∣ ≤ ℓ, we have ∣rd2(t)∣ ≥ ∣rd2(s)∣ = ∣r2∣.

Now assume obw(t) ≤ ℓ. Then there is s ∈ T(QL) with wrt(s) = wrt(t), rd(s) = rd(t),
and ∣rd2(t)∣ < ∣rd2(s)∣ ≤ ℓ. Consider r2 ∶= rd2(s). Then we have ∣r2∣ = ∣rd2(s)∣ ≤ ℓ, rd(t) =
rd(s) ∈ A∗r2, and w1 ∈ redsupL(r2) for a prefix w1 ∈ A∗ of wrt(s) = wrt(t). ◂
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With the help of the overlap’s bounded width and the knowledge from the previous
observations we are able to state the following equivalences:

Theorem 6.4.6. LetL = (F ,U) be a lossiness alphabet with ∣F ∣+∣U ∣ ≥ 2 andT ⊆ T(QL).
Then the following statements are effectively equivalent:

(i) T is recognizable.

(ii) η−1(T) ∩ A
∗
A∗A

∗
is regular.

(iii) T is a Boolean combination of plq languages of the form wrt−1(R), rd−1(R), and
Ωℓ for regular languages R ⊆ A∗ and numbers ℓ ∈ N.

Note that η−1(T) ⊆ Σ∗ is the union of the equivalence classes of the behavioral equiva-
lence in T . From Corollary 4.7.15 we also know that each such equivalence class contains a
word from A

∗
A∗A

∗
. Hence, the language η−1(T) ∩ A

∗
A∗A

∗
contains at least one representa-

tive from each equivalence class of the behavioral equivalence ≡ in T .

Remark 6.4.7. Let L = (∅,U) be a lossiness alphabet with ∣U ∣ ≥ 2 (i.e., we are con-
sidering a reliable queue). Huschenbett et al. proved in [HKZ17] that we can extend
Theorem 6.4.6 by the following item:

(iv) η−1(T) ∩ A∗A
∗
A∗ is regular.

However, this theorem cannot be expanded by the statement “η−1(T) ∩ L is regular”
where L is either A

∗
A∗, A∗A

∗
, or the union of both languages.

Moreover, this fourth item is not equivalent for other lossiness alphabets. So, let
L = (F ,U) with F ≠ ∅ and ∣F ∣ + ∣U ∣ ≥ 2. For two distinct letters a, b ∈ Awith a ∈ F the
language T ∶= {⟦ananbb⟧ ∣ n ∈ N} is not recognizable since

η−1(T) = {ananbb ∣ n ∈ N}

is no regular language. However, the language η−1(T) ∩ A∗A
∗
A∗ = {bb} is finite and,

therefore, regular. ⌟

The Implication “(i)⇒(ii)” inTheorem 6.4.6

The first implication inTheorem 6.4.6 that we want to prove is very simple:

Proposition 6.4.8. Let L = (F ,U) be a lossiness alphabet and T ⊆ T(QL) be recogni-

zable. Then η−1(T) ∩ A
∗
A∗A

∗
is regular.

Proof. Since T is recognizable, the language η−1(T) is recognizable and hence regular. Since
the class of regular languages is closed under intersection, η−1(T) ∩ A

∗
A∗A

∗
is regular. ◂
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The Implication “(ii)⇒(iii)” inTheorem 6.4.6

Towards the proof of the second implication inTheorem 6.4.6 we fix an arbitrary lossiness
alphabet L = (F ,U) with ∣F ∣ + ∣U ∣ ≥ 2. Let T ⊆ T(QL) be a plq language such that η−1(T) ∩
A
∗
A∗A

∗
is regular. Now, wewill partition T into two plq languages: T∩Ωℓ and T∩T(QL)∖Ωℓ

for an appropriate natural number ℓ ∈ N. We will show then that both plq languages satisfy
property (iii) ofTheorem 6.4.6. This means, both languages are a Boolean combination of plq
languages of the form wrt−1(R), rd−1(R), and Ωk for regular languages R ⊆ A∗ and numbers
k ∈ N. To prove this result, we first show that any transformation t ∈ Ωk with k ∈ N having at
least k read actions has the same behavior as another one ending with k read actions.

Lemma 6.4.9. Let t ∈ T(QL) and r1, r2 ∈ A∗ with rd(t) = r1r2 and ∣rd2(t)∣ ≤ ∣r2∣ <
obw(t). Then we have t = ⟦r1wrt(t)r2⟧.

Proof. If obw(t) <∞ holds, this number is the length of the shortest suffix s ∈ A∗ of rd(t)
which is longer than rd2(t) and satisfies p ∈ redsupL(s) for a prefix p ofwrt(t). Byminimality
of obw(t)we obtain sws(wrt(t), r2) = sws(wrt(t), rd2(t)) = rd2(t) for each suffix r2 of rd(t)
with ∣rd2(t)∣ ≤ ∣r2∣ < obw(t). Hence, application of Lemma 4.7.14 and Corollary 4.7.15 yields

t = ⟦rd1(t)wrt(t)rd2(t)⟧ = ⟦r1wrt(t)r2⟧

where r1 is the complementary prefix of rd(t) wrt. r2.
If otherwise obw(t) = ∞, we know w1 ∉ redsupL(r2) for any prefix w1 ∈ A∗ of wrt(t)

and for any suffix r2 ∈ A∗ of rd(t) which is longer than rd2(t). This implies sws(wrt(t), r2) =
rd2(t) in this case. Hence, utilization of Lemma 4.7.14 and Corollary 4.7.15 results in

t = ⟦rd1(t)wrt(t)rd2(t)⟧ = ⟦r1wrt(t)r2⟧

where r1 is the complementary prefix of rd(t) wrt. r2. ◂

Now, we prove that the aforementioned partitions of T ⊆ T(QL) coincide with Boolean
combinations of languages wrt−1(R), rd−1(R), and Ωk for regular languages R ⊆ A∗ and
numbers k ∈ N. Note that by swapping projections this lemma generalizes the proofs of
[HKZ17, Lemmas 9.9-9.11] which state these results for the reliable queue monoid, only.

Lemma 6.4.10. Let ℓ ∈ N and T ⊆ T(QL) such that η−1(T) ∩ A
∗
A∗A

∗
is recognized by

a monoid with ℓ elements. Then the following two plq languages satisfy property (iii) of

Theorem 6.4.6:

(1) T ∩Ωℓ and

(2) T ∩T(QL) ∖Ωℓ.

Proof. Let L = η−1(T) ∩ A∗A∗A∗ be recognized by the finite monoid F with ℓ ∶= ∣F∣ via the
homomorphism ϕ∶Σ∗ → F. Furthermore, define µ, µ∶A∗ → F such that µ(w) = ϕ(w) and
µ(w) = ϕ(w).
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(1) ▷ Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea. Wefirst consider those transformations t ∈ T(QL) satisfying obw(t) > ℓ. If t con-
tains only few read actions (i.e., ∣rd(t)∣ < ℓ), then Lemma 6.4.9 yields t = ⟦wrt(t)rd(t)⟧.
Hence, we have t ∈ T if, and only if,wrt(t)rd(t) ∈ L holds. Otherwise we have ∣rd(t)∣ ≥ ℓ.
In this case Lemma 6.4.9 yields the existence of words x , y, z, r2 ∈ A∗ with ∣r2∣ = ℓ and
t = ⟦xyzr2⟧. We will show in Claim 1 that in this case we have

t ∈ T ⇐⇒ xyzr2 ∈ L ⇐⇒ xzyr2 ∈ L .

In both cases the latter property can be expressed as described in property (iii) of
Theorem 6.4.6. ⌟

We will show the first statement by establishing the following equation:
T ∩Ωℓ = ⋃

r2∈A<ℓ ,β∈F∶
βµ(r2)∈ϕ(L)

rd−1(r2) ∩wrt−1(µ−1(β)) ∩Ωℓ

∪ ⋃
r2∈Aℓ ,α,β∈F∶
αβµ(r2)∈ϕ(L)

rd−1(µ−1(α)r2) ∩wrt−1(µ−1(β)) ∩Ωℓ .

We denote the left- and right-hand side of this equation by Y and Z, respectively.
Clearly, we have Y , Z ⊆ Ωℓ. Hence, it suffices to show, given t ∈ Ωℓ, that t ∈ Y holds if,
and only if, t ∈ Z holds. Towards this equivalence we first have to prove the following
claim:
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. Let t ∈ Ωℓ, r2 ∈ A∗ be the longest suffix of rd(t) with ∣r2∣ ≤ ℓ, and r1 ∈ A∗ be the
complementary prefix of rd(t) wrt. r2. Then we have t ∈ T if, and only if, ⟦r1wrt(t)r2⟧ ∈ T .
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. If ∣rd(t)∣ < ℓ holds, we have r2 = rd(t) and r1 = ε by the choice of r1 and r2.
Since obw(t) > ℓ > ∣rd(t)∣ holds, we have obw(t) = ∞ in this case. Then from Lem-
ma 6.4.9 we learn t = ⟦wrt(t)rd(t)⟧ = ⟦r1wrt(t)r2⟧ and we are done. So, from now on
we assume ∣rd(t)∣ ≥ ℓ. In this case, we have r2 ∈ Aℓ. Then there are words x , y, z ∈ A∗ with
t = ⟦xyzr2⟧ from Corollary 4.7.15 (if ∣rd2(t)∣ > ∣r2∣) resp. obw(t) > ℓ and Lemma 6.4.9
(if ∣rd2(t)∣ ≤ ∣r2∣). Note that r1 = xz and wrt(t) = y holds. Moreover, due to ∣F∣ = ℓ there
is y0 ∈ A≤ℓ with ϕ(y0) = ϕ(y). Then from ∣y0∣ ≤ ℓ = ∣r2∣ we obtain xy0zr2 ≡ xzy0r2
according to Lemma 4.7.14. We see:

t ∈ T ⇐⇒ ϕ(xyzr2) ∈ ϕ(L) (since t = ⟦xyzr2⟧)
⇐⇒ ϕ(xy0zr2) ∈ ϕ(L) (since ϕ(y) = ϕ(y0))
⇐⇒ ⟦xy0zr2⟧ ∈ T

⇐⇒ ⟦xzy0r2⟧ ∈ T (since xy0zr2 ≡ xzy0r2)
⇐⇒ ϕ(xzy0r2) ∈ ϕ(L)

⇐⇒ ϕ(xzyr2) ∈ ϕ(L) (since ϕ(y) = ϕ(y0))
⇐⇒ ⟦r1wrt(t) r2⟧ ∈ T . ◁

Now, let t ∈ Ωℓ, r2 ∈ A∗ be the longest suffix of rd(t) with ∣r2∣ ≤ ℓ, and r1 ∈ A∗ be the
complementary prefix of rd(t) wrt. r2. Then we have:

t ∈ Y ⇐⇒ t ∈ T

⇐⇒ ⟦r1wrt(t) r2⟧ ∈ T (by Claim 1)
⇐⇒ ϕ(r1wrt(t) r2) ∈ ϕ(L)
⇐⇒ µ(r1) µ(wrt(t)) µ(r2) ∈ ϕ(L)
⇐⇒ t ∈ Z .
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(2) ▷ Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea. Now, we consider transformations t ∈ T(QL)with obw(t) ≤ ℓ. Let k ∶= obw(t)−
1 < ℓ. Then Lemma 6.4.9 yields the existence of words x , y, r2 ∈ A∗ with ∣r2∣ = k and
t = ⟦xyr2⟧. Then we obtain t ∈ T if, and only if, xyr2 ∈ L. Again, the latter property is
expressible as described in property (iii) of Theorem 6.4.6. ⌟

Concretely, we show the second statement by establishing the following equation:

T ∩T(QL) ∖Ωℓ = ⋃
0≤k<ℓ

⋃
r2∈Ak ,α,β∈F∶
αβµ(r2)∈ϕ(L)

rd−1(µ−1(α)r2) ∩wrt−1(µ−1(β)) ∩Ωk ∖Ωk+1 .

We denote the left- and right-hand side of this equation by Y and Z. FromT(QL) = Ω0 ⊇
Ω1 ⊇ Ω2 ⊇ . . . we obtain thatΩk ∖Ωk+1 ⊆ Ω0∖Ωℓ = T(QL)∖Ωℓ holds for each 0 ≤ k < ℓ.
Hence, we have Y , Z ⊆ T(QL) ∖Ωℓ. Then it suffices to show, given t ∈ T(QL) ∖Ωℓ that
t ∈ Y holds if, and only if, t ∈ Z holds.

From t ∉ Ωℓ we obtain obw(t) ≤ ℓ. Then there is 0 ≤ k < ℓ with k + 1 = obw(t)
(i.e., we have t ∈ Ωk ∖Ωk+1). By Lemma 6.4.9 we obtain t = ⟦r1wr2⟧ where wrt(t) = w,
rd(t) = r1r2, and ∣r2∣ = k. Then we learn:

t ∈ Y ⇐⇒ ϕ(r1wr2) ∈ ϕ(L) ⇐⇒ µ(r1) µ(w) µ(r2) ∈ ϕ(L) ⇐⇒ t ∈ Z . ◂

Finally, we infer the implication “(ii)⇒(iii)” in Theorem 6.4.6:

Proposition 6.4.11. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and
T ⊆ T(QL) such that η−1(T) ∩ A

∗
A∗A

∗
is regular. Then T is a Boolean combination of

plq languages of the form wrt−1(R), rd−1(R), and Ωℓ for regular languages R ⊆ A∗ and
numbers ℓ ∈ N.

Proof. Let η−1(T)∩A∗A∗A∗ be recognized by a finite monoid with ℓ elements. By set theory
we have T = (T ∩Ωℓ)∪ (T ∩T(QL)∖Ωℓ). Due to Lemma 6.4.10 the right-hand side of this
equation is a finite union of plq languages satisfying property (iii) of Theorem 6.4.6. ◂

The Implication “(iii)⇒(i)” inTheorem 6.4.6

Again, fix a lossiness alphabetL = (F ,U)with ∣F ∣+ ∣U ∣ ≥ 2. We have to prove that T ⊆ T(QL)
is recognizable if it is a Boolean combination of plq languages of the form wrt−1(R), rd−1(R),
and Ωℓ for regular languages R ⊆ A∗ and numbers ℓ ∈ N. Since the projections wrt and rd
are homomorphisms, we obtain recognizability of wrt−1(R) and rd−1(R) if R ⊆ A∗ is regular.
Hence, we only have to show that Ωℓ is recognizable for any ℓ ∈ N. To this end, we prove
that η−1(Ωℓ) is FO[λ]-definable and therefore - due to McNaughton and Papert’s Theorem
[MP71] - even aperiodic.

We first define two FO[λ]-formulas embedℓ and overlapℓ for natural numbers ℓ ∈ N
which describe the following properties: the word model wwwwwwwwwwwwwwwww of a queue action sequence
w ∈ Σ∗ satisfies embedℓ if, and only if, there is a suffix r2 of rd(w) of length ℓ and a prefix
w1 of wrt(w) such that r2 is an L-subword of w1. In other words, there exists a word v ∈ Σ∗
with the same projections and an overlap of length ℓ.

The formula overlapℓ strengthens this as follows: wwwwwwwwwwwwwwwww satisfies overlapℓ if, and only if, there
is such word v ∈ Σ∗ with the same projections and overlap of length ℓ (i.e.,wwwwwwwwwwwwwwwww satisfies embedℓ)
and the overlap’s length of w is at least ℓ.
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We do this by assigning the last ℓ read actions of w to variables x1, . . . , xℓ (where x1 is
the position of the right-most read action in w and xℓ is the ℓth last read action) and the
corresponding write actions to variables y1, . . . , yℓ.

So, let ℓ ∈ N and x1, . . . , xℓ , y1, . . . , yℓ be variables. Thenwe define the following formulas:

(1) ϕ1 ∶= xℓ < xℓ−1 < ⋅ ⋅ ⋅ < x1 ∧ yℓ < yℓ−1 < ⋅ ⋅ ⋅ < y1 - This formula guarantees that the xi ’s are
mutually distinct and in descending order and the same holds for the yi ’s.

(2) ϕ2 ∶= ⋀
ℓ
i=1⋁a∈A(Λa(xi) ∧ Λa(yi)) - This formula ensures that xi reads the same letter

from the queue as yi writes into it.

(3) ϕ3 ∶= ∀z∶ ((xℓ ≤ z ∧ ΛA(z))→ ⋁
ℓ
i=1 xi = z) - Satisfaction of this formula requires the xi ’s

to be the last ℓ read actions in w.

(4) ϕ4 ∶= ⋀
ℓ−1
i=1 ⋀a∈A∀z∶ ((yi+1 < z < yi ∧ Λa(yi))→ ΛA∪(F∖{a})(z)) and

ϕ5 ∶= ⋀a∈A∀z∶ ((z < yℓ ∧ Λa(yℓ))→ ΛA∪(F∖{a})(z)) - These formulas assure that the
infix w[yi+1 + 1, yi − 1] contains neither the same letter as yi nor any unforgettable letter.
Hence, together with the formulas above, these ones enforce the last ℓ read actions to be
an L-subword of a prefix of the write actions.

(5) ϕ6 ∶= ⋀
ℓ
i=1 yi < xi - This formula guarantees that each xi appears right from yi .

By conjunction of the formulas from above we obtain the announced formulas:

embedℓ ∶= ∃x1, . . . , xℓ , y1, . . . , yℓ∶ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ,
overlapℓ ∶= ∃x1, . . . , xℓ , y1, . . . , yℓ∶ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 .

Example 6.4.12. Let w = abbaaba. If U = {a} then we have w ∈ L(overlap1) and
w ∈ L(overlap3), but w ∉ L(overlap2) since each assignment of y2 to b violates ϕ5
because of the leading a in w.

If U = {b} then we have w ∈ L(overlap1), w ∉ L(overlap2), and w ∉ L(overlap3)
since each assignment of y1 to a violates ϕ4 because of the b at the third position in w.

Now, consider w′ = abaabba. Then we have w′ ∈ L(embedℓ) if, and only if, w ∈
L(embedℓ) for any ℓ ∈ N. However, we have w′ ∈ L(overlap0) and w′ ∉ L(overlapℓ) for
each ℓ > 0. ⌟

In the following lemma we describe the words satisfying the formulas embedℓ and
overlapℓ for any ℓ ∈ N. As announced before, in the first case these are the words where
the last ℓ read actions are an L-subword of a prefix of their write actions. Furthermore, the
words satisfying overlapℓ also satisfy embedℓ and have an overlap of at least ℓ symbols.

Lemma 6.4.13. Let ℓ ∈ N and w ∈ Σ∗. Then the following statements hold:

(1) w ∈ L(embedℓ) if, and only if, there is r2 ∈ Aℓ with rd(w) ∈ A∗r2 and w1 ∈
redsupL(r2) for a prefix w1 of wrt(w).

(2) w ∈ L(overlapℓ) if, and only if, there is r2 ∈ A
ℓ with rd2(w) ∈ A∗r2 and w1 ∈

redsupL(r2) for a prefix w1 of wrt(w).
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Proof.

(1) First, let w ∈ L(embedℓ). Then there are letters a1, . . . , aℓ , b1, . . . , bℓ ∈ Σ contained in
w such that their positions p1, . . . , pℓ , q1, . . . , qℓ ∈ dom(w) satisfy ϕ1-ϕ5. By ϕ2 we have
aℓ . . . a1 = bℓ . . . b1. Due to ϕ1 and ϕ3 we have rd(w) ∈ A∗bℓ . . . b1 and bℓ . . . b1 ⊑wrt(w).
From ϕ4∧ϕ5 we infer thatw1 ∈ redsupL(bℓ . . . b1) holds for the prefixw1 = wrt(w[1, q1])
of wrt(w).

For the converse implication, let r2 = bℓ . . . b1 ∈ Aℓ such that rd(w) ∈ A∗r2 and
w1 ∈ redsupL(r2) holds for a prefix w1 of wrt(w). Since there is no restriction to the
order of xi and yi in embedℓ, the language L(embedℓ) contains a word if, and only if, it
contains all words with the same projections. Hence, we can assume that rd2(w) = r2
andw = nf (w) holds. Let p1, . . . , pℓ ∈ dom(w) be the positions of the last ℓ read actions
in w (in descending order) and let b1, . . . , bℓ ∈ A be the letters on these positions. Then
by definition of nf (w) the positions p1 − 1, . . . , pℓ − 1 are labeled with b1, . . . , bℓ. Then it
is easy to see, that

(wwwwwwwwwwwwwwwww , p1, . . . , pℓ , p1 − 1, . . . , pℓ − 1) ⊧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5(x1, . . . , xℓ , y1, . . . , yℓ)

holds, i.e., we have w ∈ L(embedℓ).

(2) Let w ∈ L(overlapℓ). Then by (1) there is r2 = bℓ . . . b1 ∈ Aℓ such that rd(w) ∈ A∗r2 and
w1 ∈ redsupL(r2) for a prefix w1 of wrt(w). By satisfaction of ϕ6 we obtain that each bi
is left of bi . By Theorem 4.7.8 we finally obtain rd2(w) ∈ A∗r2.

Conversely, let r2 = bℓ . . . b1 ∈ Aℓ such that rd2(w) ∈ A∗r2 and w1 ∈ redsupL(r2)
for a prefix w1 of wrt(w). Then by (1) we have w ∈ L(embedℓ). Hence, we only have
to check the satisfaction of ϕ6. We prove this by induction on the minimal length n of
a derivation w ⇒n

RL
nf (w) whereRL is the semi-Thue system defined in Section 4.7

which orders the equations from Lemma 4.7.2 from left to right.
If n = 0 then we have w = nf (w). Set k ∶= ∣rd2(w)∣ ≥ ℓ. Let p1, . . . , pk ∈ dom(w) be

the positions of the last k read actions (in descending order) inw and let b1, . . . , bk ∈ Abe
the letters at these positions. Due to wrt1(w) ∈ redsupL(rd2(w)) = redsupL(bk . . . b1)
there is a factorization vkbkvk−1bk−1 . . . v1b1v0 = wrt(w) with vi ∈ (F ∖ {bi})∗ for any
1 ≤ i ≤ k and v0 = wrt2(w) ∈ A∗. Then by w = nf (w) the positions qi ∶= pi − 1
are labeled with bi and, hence, we have wrt(w[qi+1 + 1, qi]) = vibi for each 1 ≤ i ≤ k
(where qk+1 ∶= 0). Since we also have w1 ∈ redsupL(bℓ . . . b1) for a prefix w1 of wrt(w)
there is another factorization v′ℓbℓ . . . v′1b1v′0 = wrt(w) with v′i ∈ (F ∖ {bi})∗ for any
1 ≤ i ≤ ℓ and v′0 ∈ A∗. Let q′ℓ , . . . , q′1 ∈ dom(w) be the positions of bℓ , . . . , b1 with
wrt(w[q′i+1 + 1, q′i]) = v′ibi for each 1 ≤ i ≤ ℓ (where q′ℓ+1 ∶= 0). Hence, by ℓ ≤ k we can
infer q′i ≤ qi = pi − 1 < pi for each 1 ≤ i ≤ ℓ. This finally implies

(wwwwwwwwwwwwwwwww , p1, . . . , pℓ , q′1, . . . , q′ℓ) ⊧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6(x1, . . . , xℓ , y1, . . . , yℓ)

i.e., we learn w ∈ L(overlapℓ).
Now, assume n > 0. Then there isw′ ∈ Σ∗ withw ⇒RL

w′⇒n−1
RL

nf (w). By induction
hypothesis we know w′ ∈ L(overlapℓ) and we have to show w ∈ L(overlapℓ). We know
that w′ satisfies embedℓ. Since the application of any rule of RL transposes only one
write action with another read action, we also have w ∈ L(embedℓ).

Let p1, . . . , pℓ , q1, . . . , qℓ ∈ dom(w′) = dom(w) be the positions in w′ satisfying ϕ1-
ϕ6. The transposition of the write and read action has two effects: the position of one read
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action increases by one, i.e., at most one pi increases. Additionally, the position of one
write action decreases by one, i.e., at most one qi decreases. This yields some positions
p′1, . . . , p′ℓ , q′1, . . . , q′ℓ ∈ dom(w) satisfying ϕ1-ϕ5 in wwwwwwwwwwwwwwwww and we have p′i ∈ {pi , pi + 1} and
q′i ∈ {qi , qi − 1} for each 1 ≤ i ≤ ℓ. However, we also have

q′i ≤ qi < pi ≤ p
′
i

for each 1 ≤ i ≤ ℓ. In other words, the chosen positions satisfy ϕ6 and, hence, we have
w ∈ L(overlapℓ). ◂

From this lemma we also obtain another characterization of the equivalence classes wrt.
the behavioral equivalence ≡. So, let w ∈ Σ∗ and ℓ ∈ N be maximal such that w ∈ L(overlapℓ).
Moreover, let k ∶= obw(w) <∞. Then we know that w ∈ L(embedk ∧ ¬overlapk) holds. This
implies, that a word v ∈ Σ∗ satisfies v ≡ w whenever the last ℓ read actions of v appear right
of their corresponding write actions and at least one of the last k read actions appears left of
its corresponding write action. We will use this observation multiple times across this thesis.
We can also infer the recognizability of the plq languages Ωℓ from this observation:

Lemma 6.4.14. Let ℓ ∈ N. Then Ωℓ is aperiodic and, hence, recognizable.

Proof. Since η is surjective, it suffices to show that η−1(Ωℓ) is aperiodic in Σ∗. By Observa-
tion 6.4.5 and Lemma 6.4.13 we have

η−1(Ωℓ) = L(
ℓ

⋀
k=1
(embedk → overlapk)) .

Then by [MP71] η−1(Ωℓ) is aperiodic since the given formula is contained in FO[λ]. ◂

Finally, this lemma implies the implication “(iii)⇒(i)” in Theorem 6.4.6 and, hence,
finishes the proof of Theorem 6.4.6.

Proposition 6.4.15. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and
T ⊆ T(QL) be a Boolean combination of plq languages of the form wrt−1(R), rd−1(R),
and Ωℓ for regular languages R ⊆ A∗ and numbers ℓ ∈ N. Then T is recognizable.

Proof. Since wrt−1(R) and rd−1(R) are recognizable for any regular language R ⊆ A∗ and
since Ωℓ is recognizable for any ℓ ∈ N due to Lemma 6.4.14, the language T is recognizable
by closure properties of the class of recognizable languages in T(QL). ◂

6.4.2 From Recognizability to Q-Rationality
Now, we are able to prove the equivalences from our main theorem in this section (Theo-
rem 6.4.1). In this subsection we prove that each recognizable language of the plq monoid is



6.4. Partially Lossy Queues 103

q-rational. To this end, we first have to define this notion which is a restriction to the classical
rational expressions. We need this restriction since the classes of rational and recognizable
plq languages do not coincide (cf. Theorem 5.4.5). Note that this is in contrast to Kleene’s
Theorem [Kle51] stating that the rational and recognizable word languages coincide. Though,
we can use Ochmański’s approach from [Och85] to generate the recognizable languages.
Concretely, we restrict the iteration and the concatenation of the plq monoid in an appro-
priate way. Unfortunately, we still cannot generate all recognizable plq languages by union,
restricted product, and restricted iteration (we will see an example later in this subsection).
Hence, we have to add another, non-monotonicxiii operation to our expressions: the com-
plement operation. We call the plq languages generated by those operations q-rational and
prove that these are exactly the recognizable languages in the plq monoid.

At first, we prove that the class of recognizable plq languages is neither closed under
iteration nor it is closed under concatenation:

Proposition 6.4.16. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2. Then the

following statements hold:

(1) There is a recognizable language T ⊆ T(QL) such that T∗ is not recognizable in
T(QL).

(2) There are recognizable languages S , T ⊆ T(QL) such that S ⋅ T is not recognizable in

T(QL).

Proof. Let a ∈ A be a letter.
Towards the former statement set T ∶= {⟦aa⟧} which is recognizable since η−1(T) is

finite. Then we have
η−1(T∗) ∩ A∗A

∗
= {anan ∣ n ∈ N}

due to equation (4) from Lemma 4.7.2. This language is not regular. Hence, by closure
properties of the class of regular languages η−1(T∗) is not recognizable and thus T∗ is not
recognizable.

Towards the latter statement set S ∶= {⟦a⟧}∗ and T ∶= {⟦a⟧}∗. Since η−1(S) = a∗ and
η−1(T) = a∗ holds, both plq languages are recognizable in T(QL). Then we have

η−1(S ⋅ T) ∩ AA∗A
∗
= {aaman ∣ m, n ∈ N,m ≤ n}

due to Lemma 4.7.2(4). This language is not regular and, hence, S ⋅ T is not recognizable. ◂

Note that Proposition 6.4.16(1) is a very similar situation as in trace monoids. Here,
Ochmański proved in [Och85] that there are recognizable trace languages such that their
iteration is not recognizable anymore. However, the iteration of connected, recognizable
trace languages always is recognizable. Hence, this led to the definition of the so-called
c-rational expressions.

In the plq monoid, we also have to restrict concatenation due to Proposition 6.4.16(2).
According to these restrictions we will define now the so-called q-rational languages in the

xiiiLet ≤ be a partial ordering on a set S. A function f ∶ S → S is monotonic if for each x ≤ y we also have
f (x) ≤ f (y).
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plq monoid. Afterwards we prove that this is a suitable restriction of rationality to describe
exactly the recognizable plq languages.

Let L = (F ,U) be a lossiness alphabet. At first, we say that a T(QL)-language is q+-
rational if it can be obtained by the following rules:

(1+) wrt−1(ε), wrt−1(∅) = ∅, and wrt−1(a) are q+-rational for any a ∈ A.

(2+) if S , T ⊆ T(QL) are q+-rational then S ∪ T , S ⋅ T , and S∗ are q+-rational.

Similarly, by replacing wrt−1 by rd−1 in the rules above, we obtain the class of q−-rational
languages in T(QL).

Observation 6.4.17. Let T ⊆ T(QL). Then the following statements hold:

(1) T is q+-rational if, and only if, there is a regular language R ⊆ A∗ with T = wrt−1(R).

(2) T is q−-rational if, and only if, there is a regular language R ⊆ A∗ with T = rd−1(R).

Proof idea. Both equivalences hold sincewrt−1, rd−1∶ 2A∗ → 2T(QL) are homomorphisms with
respect to union, concatenation, and iteration. ◂

Finally, a T(QL)-language is q-rational if it can be constructed by the following rules:

(1) if T ⊆ T(QL) is q+- or q−-rational then it is also q-rational

(2) if S , T ⊆ T(QL) are q-rational then S ∪ T and T(QL) ∖ S are q-rational

(3) if S ⊆ T(QL) is q+-rational and T ⊆ T(QL) is q−-rational such that rd(T) is finite (i.e.,
T is obtained without usage of the ∗-operator) then S ⋅T(QL) ⋅ T is q-rational.

Example 6.4.18. Let T = {t ∈ T(QL) ∣ wrt(t) ∈ (ab)∗, rd(t) = b}. Then T is q-rational
since we have

T = rd−1(b) ∩ (wrt−1(a) ⋅wrt−1(b))∗ .

Note that the class of q-rational languages also is closed under intersection due to Rule
(2), i.e., this class is a Boolean algebra. The plq language T also is recognizable since
η−1(T) = (ab)∗� b

∗
is regular. However, we cannot construct T from the rules above

without usage of complement (or intersection). ⌟

Remark 6.4.19. Recall the classical definition of rational languages. The class of these
languages is the closure of the finite languages under union, concatenation, and iteration.
All of these operations are monotonic. For q-rationality we additionally need the closure
under complement which is notmonotonic. Until now it is still an open question whether
there is another characterization of the recognizable plq languages using monotonic
operations, only. ⌟

At first sight, the choice of Rule (3) seems to be some kind of random. The following
example shows that we can remove neither the factor “T(QL)”, which appears as separator
in this product, nor the finiteness of rd(T). Additionally, we cannot simply remove this rule
since the recognizable language {⟦aa⟧} cannot be built by application of the Rules (1) and
(2), only.
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Example 6.4.20. Let a, b ∈ A be distinct letters. Then the language wrt−1((ab)∗a) ⋅
rd−1(ε) is not recognizable since

η−1 (wrt−1((ab)∗a) ⋅ rd−1(ε)) ∩ (ab)∗(ab)∗

contains exactly those words (ab)m(ab)n with m > n, which is not regular.
Now, let a, b, c ∈ A be distinct letters with a, c ∈ U . Then the plq language

wrt−1(aA∗c) ⋅T(QL) ⋅ rd−1(aA∗c)

is not recognizable since

L ∶= η−1 (wrt−1(aA∗c) ⋅T(QL) ⋅ rd−1(aA∗c)) ∩ ab∗cab∗c

contains exactly those words abmcabnc satisfying m ≠ n if b ∈ U or m > n if b ∈ F holds.
In both cases L is not regular. ⌟

Now we can prove the implication “(A)⇒(B)” inTheorem 6.4.1. To do this, we utilize
Theorem 6.4.6(iii). Concretely, we understand a recognizable plq language as a Boolean
combination of languages of the formwrt−1(R), rd−1(R), andΩℓ for regular languages R ⊆ A∗
and numbers ℓ ∈ N. Then we prove q-rationality by induction on the syntax tree of such
expression. The most complicated case in this proof is to show that Ωℓ is q-rational. For this
proof we need the following lemma:

Lemma 6.4.21. Let ℓ ∈ N, t ∈ T(QL), and r2 = a1 . . . aℓ with a1, . . . , aℓ ∈ A. Then we

have rd2(t) ∈ A∗r2 and w1 ∈ redsupL(r2) for a prefix w1 of wrt(t) if, and only if,

t ∈ wrt−1(
ℓ

∏
i=1
F∗ai) ⋅T(QL) ⋅ rd−1(r2) .

Proof. First, assume rd2(t) ∈ A∗r2 and w1 ∈ redsupL(r2) for a prefix w1 of wrt(t). From
Corollary 4.7.15 we know t = ⟦rd1(t)wrt(t)rd2(t)⟧. Then by assumption we obtain

t = ⟦rd1(t)wrt(t)rd2(t)⟧ ∈ wrt−1(
ℓ

∏
i=1
F∗ai) ⋅T(QL) ⋅ rd−1(r2) .

Now, assume t ∈ wrt−1(∏ℓ
i=1 F∗ai) ⋅ T(QL) ⋅ rd−1(r2). Then we have w1 ∈ redsupL(r2)

for a prefix w1 of wrt(t) and rd(t) ∈ A∗r2. Furthermore, there are w1,w2,w3 ∈ Σ∗ with
t = ⟦w1w2w3⟧, wrt(w1) ∈ ∏

ℓ
i=1 F∗ai , and rd(w3) = r2. Then the letters a1, . . . , aℓ appear to

the right of a1, . . . , aℓ in w1w2w3, i.e., w1w2w3 ∈ L(overlapℓ). Hence, by Lemma 6.4.13(2) we
obtain rd2(t) = rd2(w1w2w3) ∈ A∗r2. ◂

Finally, we can state the following implication:
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Proposition 6.4.22. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and
T ⊆ T(QL) be recognizable. Then T is q-rational.

Proof. By Theorem 6.4.6(iii) T is a Boolean combination of plq languages of the form
wrt−1(R), rd−1(R), and Ωℓ for regular languages R ⊆ A∗ and numbers ℓ ∈ N. We prove the
claim by induction on the syntax tree.

At first, assume T = wrt−1(R) for a regular language R ⊆ A∗. Then T is q+-rational
by Observation 6.4.17(1) and, hence, q-rational. Similarly, T = rd−1(R) is q−-rational and,
therefore, q-rational for any regular language R ⊆ A∗.

Next, suppose T = Ωℓ for a number ℓ ∈ N. Then by Observation 6.4.5 and Lemma 6.4.21
we have

Ωℓ = ⋂
r2∈A≤ℓ
(T(QL) ∖ (wrt−1(Wr2A

∗) ∩ rd−1(A∗r2)) ∪wrt−1(Wr2) ⋅T(QL) ⋅ rd−1(r2)) ,

whereWr2 =∏
k
i=1 F∗ai with r2 = a1 . . . ak . Since the plq languages wrt−1(Wr2A

∗), rd−1(A∗r2),
wrt−1(Wr2), and rd

−1(r2) are q-rational by the first case of this proof, Ωℓ is q-rational due to
Rules (2) and (3).

Finally, assume T = S1∪S2, T = S1∩S2, or T = T(QL)∖S1. Then by induction hypothesis
S1 and S2 are q-rational. Hence, using Rule (2) T is q-rational as well. ◂

6.4.3 From Q-Rationality to Logical Definability
The second implication fromTheorem 6.4.1 states that each q-rational plq language is de-
finable in a special monadic second-order logic which we callMSO[o]. So, the aim of this
subsection is to derive such signature fromBüchi’s word-logic λ and corresponding structures
S(w) for each word w ∈ Σ∗ such that we have the following properties:

(1) For two action sequences v ,w ∈ Σ∗ we have S(v) ≅ S(w) if, and only if, v ≡ w holds. By
definition of ≡ this is the case if, and only if, v and w induce the same transformation
⟦v⟧ = ⟦w⟧.

(2) The monadic second-order logic on these structures describes exactly the recognizable
properties in the plq monoid. To this end, we have to exhibit the knowledge from the
preceding subsections.

To this end, we have to revisit the rules from the semi-Thue systemRL. First, we can observe
that the application of any rule ofRL to the word w does not change the projections wrt(w)
and rd(w). For example, if the ith read action in w is right of the jth read action (i.e., i < j),
then this also holds for any action sequence satisfying v ≡ w. In particular, the ith read action
in w agrees with the ith read action in v in this case.

So, similar to the word models wwwwwwwwwwwwwwwww, the universe of our new structure S(w) is the set of
positions dom(w) in w. Additionally, we need a partial ordering R satisfying the following
property: p R q if, and only if: (1) p is the position of the ith write or read action, (2) q is the
position of the jth write or read action, and (3) for each v ≡ w the ith write / read action in v
appears to the left of the jth write / read action in v. Unfortunately,MSO-formulas over these
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new structures are able to describe non-recognizable properties as the following remark
shows:

Remark 6.4.23. Consider the FO-formula ψ ∶= ∃x∶ΛA(x) ∧ ∀y∶ΛA(y) → x R y, i.e.,
⟦w⟧ satisfies ψ if, and only if, for each v ≡ w there is a write action appearing left of all
read actions. In other words, this is the language of all words w ∈ Σ∗ with rd1(w) = ε.
Then we can see

{w ∈ Σ∗ ∣ S(w) ⊧ ψ} ∩ a∗a∗a∗ = {aman ∣ m ≥ n}

which is no regular language. Hence, the language of all transformations t ∈ T(QL)
satisfying ψ is not recognizable. ⌟

So, we have to weaken our structures S(w). A possible approach is to split R into the following
relations: <+ which is the restriction of R to the positions of write actions, <− which is the
restriction to the positions of read actions, and Rrw which is the restriction of R to pairs
(p, q) where p is the position of a readreadreadreadreadreadreadreadreadreadreadreadreadreadreadreadread action and q is the position of a writewritewritewritewritewritewritewritewritewritewritewritewritewritewritewritewrite action. In other
words, we remove those pairs (p, q) from R where p is the position of a write action and q is
one of a read action. Unfortunately, those weakened structures are still too expressive:

Remark 6.4.24. Consider the FO-formula

ϕ ∶= ∃x , y∶( ΛA(x) ∧ ∀z∶ (ΛA(z)→ z ≤+ x)∧
ΛA(y) ∧ ∀z∶ (ΛA(z)→ y ≤− z) ∧ ¬y Rrw x

) ,

i.e., ⟦w⟧ satisfies ϕ if, and only if, there is v ≡ w in which the first read action appears to
the right of the last write action. Then we have

{w ∈ Σ∗ ∣ S(w) ⊧ ϕ} ∩ a∗a∗a∗ = {akaℓam ∣ k = 0 or m ≥ ℓ} .

Since the right-hand side of the equation is not regular, the language of all transformations
t ∈ T(QL) satisfying ϕ is not recognizable either. ⌟

Another way to weaken the expressiveness of these structures is the following: we split Rrw
into relations Rrw,ℓ where ℓ > 0 is a positive integer. This relation Rrw,ℓ contains exactly those
tuples (p, q) from Rrw where p is the position of the ℓth last read action. Note that we have

Rrw =⋃
ℓ>0
Rrw,ℓ .

We can see that for a given word w ∈ Σ∗ and a number ℓ > 0 all tuples in the relation Rrw,ℓ
agree in their first component. Hence, we are able to project these relations to their second
component yielding the sets Pℓ ∶= {q ∈ dom(w) ∣ ∃p ∈ dom(w)∶ p Rrw,ℓ q}.

All in all, we can define the (infinite) signature oxiv consisting of the binary symbols <+
and <− and the unary symbols Pℓ and Λα for each ℓ > 0 and α ∈ Σ. Let w = α1 . . . αn with
α1, . . . , αn ∈ Σ. The queue model of w is the relational o-structure

w̃ ∶= (dom(w), <w+ , <w− , (Pw
ℓ )ℓ>0, (Λ

w
α )α∈Σ)

xivThe name of the signature “o” stems from the greek phrase “oυρά” which translates to “queue”.



108 Chapter 6. Recognizable Languages

where dom(w) ∶= {1, . . . , n} is the set of positions in w, Λw
α ∶= {p ∈ dom(w) ∣ αp = α} are

the labelings of the positions, <w+ and <w− are the natural orderings on Λw
A ∶= ⋃a∈A Λw

a and Λw
A
,

respectively, and

Pw
ℓ ∶= {p ∈ Λw

A ∣ ∀v1, v2 ∈ Σ∗∶w ≡ v1v2,wrt(v1) = wrt(w[1, p])⇒ ∣rd(v2)∣ < ℓ} .

In other words, we have p ∈ Pw
ℓ if, and only if, αp ∈ A and the ℓth last read action in w is to

the left of αp in any equivalently behaving word v ≡ w. This is conform to the approaches
known from [Büc60, Ebi95] since the relations <w+ , <w− , and Pw

ℓ specify which letter have to
appear to the left of another one in any word equivalent to w.

Before we show that the MSO[o]-formulas describe exactly the recognizable plq lan-
guages, we first show several basic properties of the queue model w̃ of an action sequence
w ∈ Σ∗. First, we show that w̃ identifies the equivalence class [w]≡:

Lemma 6.4.25. Let v ,w ∈ Σ∗. Then we have v ≡ w if, and only if, ṽ ≅ w̃.

Proof. At first, we assume v ≡ w. Then by Theorem 4.7.8 there is a permutation σ of
dom(v) = dom(w) such that σ is compatible with <+, <−, and Λα for any α ∈ Σ. Additionally,
by definition σ is compatible with Pℓ for any ℓ > 0. Hence, σ is an isomorphism from ṽ into
w̃, i.e., ṽ ≅ w̃.

Now assume v ≢ w. If wrt(v) ≠ wrt(w) or rd(v) ≠ rd(w) then we know wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v)wrt(v) /≅
wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w)wrt(w) or rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v)rd(v) /≅ rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w)rd(w). Note that these word models are substructures of the queue
models ṽ resp. w̃. Hence, any possible bijection from dom(v) into dom(w) (if there is any)
cannot be compatible with <+, <−, and Λα at the same time. This implies ṽ /≅ w̃. So, we can
assumewrt(v) = wrt(w) and rd(v) = rd(w) from now on. Let σ be the uniquely determined
permutation of dom(v) = dom(w) which is compatible to <+, <−, and Λα for any α ∈ Σ.

By Theorem 4.7.8 we infer from v ≢ w that rd2(v) ≠ rd2(w) holds. Since both words
are suffixes of rd(v) = rd(w) we may assume that rd2(w) is a proper suffix of rd2(v), i.e.,
∣rd2(v)∣ > ∣rd2(w)∣. Note that we have wrt(v) = wrt(w) ≠ ε, since otherwise we would have
rd2(v) = rd2(w) = ε by definition of redsupL.

Let p ∈ dom(v) be the position of the last write action in v. FromCorollary 4.7.15 we know
v ≡ rd1(v)wrt(v)rd2(v) and, hence, p ∉ Pv

∣rd2(v)∣. Now, let w1,w2 ∈ Σ∗ with w ≡ w1w2 and
wrt(w1) = wrt(w[1, σ(p)]) = wrt(w) (note that σ(p) is the position of the last write action
in w). Suppose ∣rd(w2)∣ ≥ ∣rd2(v)∣. Then we have w1w2 ∈ L(overlap∣rd2(v)∣) (note that x ∈
redsupL(rd2(v)) holds for a prefix x of wrt(w) = wrt(v)) implying ∣rd2(w)∣ = ∣rd2(w1w2)∣ ≥
∣rd2(v)∣ by Lemma 6.4.13(2) - contracting to our assumption ∣rd2(w)∣ < ∣rd2(v)∣. Hence, we
infer ∣rd(w2)∣ < ∣rd2(v)∣. Then we have σ(p) ∈ Pw

∣rd2(v)∣ and thus σ is no isomorphism from ṽ

into w̃. Since σ is unique, we have ṽ /≅ w̃. ◂

Due to Lemma 6.4.25 we are able to define the queue model of a transformation t ∈ T(QL) by
t̃ ∶= nf (t)̃.

By definition, the signature o is infinite. However, we can represent these structures
finitely, since we can split N ∖ {0} into at most three intervals I1, I2, and I3 such that the sets
Pw
ℓ and Pw

k
coincide if, and only if, ℓ and k belong to the same interval Ii . These intervals are
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closely related to rd(w), wrt(w), and obw(w): if ∣wrt(w)∣ = 0 we have w ∈ A
∗
and, hence,

Pw
ℓ = ∅ for each ℓ > 0. The case ∣wrt(w)∣ > 0 is considered in the following observation:

Observation 6.4.26. Let w ∈ Σ∗ with ∣wrt(w)∣ > 0. Then the following statements hold:

(1) For each 1 ≤ ℓ <min{obw(w), ∣rd(w)∣ + 1} we have Pw
ℓ = ∅.

(2) For each obw(w) ≤ ℓ ≤ ∣rd(w)∣ we have Pw
ℓ = P

w
obw(w) ≠ ∅.

(3) For each ℓ > ∣rd(w)∣ we have Pw
ℓ = Λ

w
A.

Proof. (1) Since ℓ < obw(w) holds, we have ⟦w⟧ ∈ Ωℓ. Let r1, r2 ∈ A∗ with rd(w) = r1r2 and
∣r2∣ = ℓ. Then, by Lemma 6.4.9 there is v ∈ Σ∗ such that w ≡ vr2 holds. Consequently,
any write action in w can be followed by ≥ ℓ read actions, i.e., Pw

ℓ = ∅.
(2) First, we show p ∶=maxΛw

A ∈ P
w
obw(w) ≠ ∅ (i.e., the last write position in w is in this set).

Let v1, v2 ∈ Σ∗ with w ≡ v1v2 and wrt(v1) = wrt(w[1, p]) = wrt(w). We show ∣rd(v2)∣ <
obw(w). Since we have ∣rd2(w)∣ < obw(w) ≤ ∣rd(w)∣ we obtain w ∈ L(embedobw(w))
and w ∉ L(overlapobw(w)). From Lemma 6.4.13, w ≡ v1v2, and w ∉ L(overlapobw(w)) we
also obtain v1v2 ∉ L(overlapobw(w)). Hence, the satisfaction of ϕ6 implies that ∣rd(v2)∣ <
obw(w) and, therefore, p ∈ Pw

obw(w).
Next, we prove Pw

ℓ = P
w
obw(w). By definition, the inclusion “⊇” is trivial. We prove

the converse inclusion “⊆” by induction on ℓ. If ℓ = obw(w), we are done. So, assume
ℓ > obw(w). Let p ∈ Λw

A ∖ P
w
ℓ−1 = Λ

w
A ∖ P

w
obw(w). Then there are v1, v2 ∈ Σ∗ with w = v1v2,

wrt(v1) = wrt(w[1, p]), and ∣rd(v2)∣ ≥ ℓ − 1. We are done if ∣rd(v2)∣ ≥ ℓ holds. Hence,
we assume ∣rd(v2)∣ = ℓ − 1 from now on.

Set r1 ∶= rd(v1) and r2 ∶= rd(v2), i.e., rd(w) = rd(v1v2) = r1r2. Additionally, let
r1 = r′1a with a ∈ A and let v′1 ∈ Σ∗ be the word arising from v1 by removing the right-
most occurrence of a.

Suppose w1 ∉ redsupL(ar2) for any prefix w1 of wrt(w). Using the rules from the
semi-Thue systemRL, we can move the letter a in v1v2 to the right-hand side of the write
action on position p in w. Then we have v′1av2 ≡ v1v2 ≡ w (since rd2(v′1av2) = rd2(v1v2)).
Additionally, we know wrt(v′1) = wrt(v1) = wrt(w[1, p]) and ∣rd(av2)∣ = ℓ. This finally
implies p ∈ Λw

A ∖ P
w
ℓ .

Now, assume w1 ∈ redsupL(ar2) for a prefix w1 of wrt(w). We know

∣rd2(v1v2)∣ = ∣rd2(w)∣ < obw(w) < ℓ .

By definition of obw(w), there is u ∈ Aobw(w) with rd(v1v2) = rd(w) ∈ A∗u, w′1 ∈
redsupL(u) for a prefixw′1 ofwrt(w), and ∣rd2(v1v2)∣ < ∣u∣ = obw(w). Let r2 = bℓ−1 . . . b1
where b1, . . . , bℓ−1 ∈ A are letters and let p1, . . . , pobw(w) ∈ dom(w) = dom(v1v2) be the
positions of b1, . . . , bobw(w) in v1v2. Additionally, let q1, . . . , qobw(w) ∈ dom(w) be the
positions of the corresponding write actions bi in v1v2, i.e., wrt(v1v2[qi+1 + 1, qi − 1]) ∈
(F ∖{bi})∗ holds for each 1 ≤ i ≤ obw(w) (where qobw(w)+1 ∶= 0). By Lemma 6.4.13 there
is 1 ≤ i ≤ obw(w) such that qi > pi .

Consider the positions p′1, . . . , p′ℓ ∈ dom(w) of the ℓ right-most read actions (in
descending order) and their corresponding write actions q′1, . . . , q′ℓ ∈ dom(w) in v1v2.
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Then we have q′i ≥ qi > pi = p′i implying, by application of Lemma 6.4.13, ∣rd2(v′1av2)∣ <
ℓ = ∣ar2∣. Hence, we can infer rd2(v1v2) = rd2(v′1av2). But this finally implies w ≡ v1v2 ≡
v′1av2 and, therefore, p ∈ Λw

A ∖ P
w
ℓ .

(3) Since w contains < ℓ read actions, no write action can ever be followed by ℓ read actions.
Consequently, we have Pw

ℓ = Λ
w
A. ◂

Let ϕ ∈MSO[o] be a sentence. The language of transformations defined by ϕ is T(ϕ) ∶=
{t ∈ T(QL) ∣ t̃ ⊧ ϕ}. We say that T ⊆ T(QL) isMSO[o]-definable (FO[o]-definable) if there
is a sentence ϕ ∈MSO[o] (ϕ ∈ FO[o], respectively) with T = T(ϕ).

Remark 6.4.27. The sets Pw
ℓ also conform with the special product in the definition of

q-rational languages. In particular, we have

T(∃x∶ ¬Pℓ(x) ∧ ΛA(x)) = wrt−1(A+) ⋅T(QL) ⋅ rd−1(Aℓ) . ⌟

Finally, we can state the following implication:

Proposition 6.4.28. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and
T ⊆ T(QL) be q-rational. Then T isMSO[o]-definable.

Proof. We prove this by induction on the syntax tree of a q-rational expression generating
the plq language T .

If T is q+-rational then we have T = wrt−1(R) for a regular R ⊆ A∗ by Observation 6.4.17.
By [Büc60] there is anMSO[λ]-formula ϕ with L(ϕ) = R. Then by replacing all occurrences
of < in ϕ by <+ we obtain anMSO[o]-formula ϕ′ with T(ϕ′↾ΛA(x)) = wrt−1(L(ϕ)) = T (recall
that ψ↾ξ restricts the quantifiers of ψ to the elements satisfying ξ).

Similarly, we can prove that T isMSO[o]-definable if T is q−-rational (here, we replace
< by <− and restrict the quantifiers to ΛA).

If T = S1 ∪ S2 or T = T(QL) ∖ S1 where S1, S2 are q-rational, there are ϕ1, ϕ2 ∈ MSO[o]
with T(ϕ1) = S1 and T(ϕ2) = S2 by induction hypothesis. Then we have T = T(ϕ1 ∨ ϕ2) and
T = T(¬ϕ1), respectively.

Finally, let T = wrt−1(R1) ⋅ T(QL) ⋅ rd−1(R2) where R1 ⊆ A∗ is regular and R2 ⊆ A∗ is
finite. W.l.o.g. we can assume that R2 = {w} holds. Then there areMSO[o]-formulas ϕ1 and
ϕ2 defining wrt−1(R1) and rd−1(R2), respectively. Set

ϕ ∶= ∃x1, x2∶ϕ1↾x≤+x1 ∧ ϕ2↾x2≤−x ∧ ¬P∣w∣(x1) .

Then we have T = T(ϕ). ◂

6.4.4 From Logical Definability To Recognizability
Finally, we have to prove that eachMSO[o]-definable plq language is recognizable. Concretely,
we do this by translation of a formula ϕ ∈ MSO[o] to a formula ψ ∈ MSO[λ] such that
η−1(T(ϕ)) = L(ψ) holds. In this case, the right-hand side of this equation is regular by
[Büc60] implying that T(ϕ) is recognizable in T(QL) since η is an epimorphism.
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The most complicated case in our construction is the translation of the atomic formula
Pℓ(x) since write and read actions are commutative in certain contexts (cf. Lemma 4.7.2).
For this translation we will utilize the connection between Pw

ℓ and obw(w) as described in
Observation 6.4.26.

So, let w ∈ Σ∗ be a word, p ∈ dom(w) be a position in w (which will be represented by x
in our formula), and ℓ ∈ N ∖ {0}. Then we express p ∈ Pw

ℓ as follows:
By definition we have Pw

ℓ ⊆ Λ
w
A. Consequently, we have (wwwwwwwwwwwwwwwww , p) ⊧ ΛA(x). Additionally,

fromObservation 6.4.26 we can infer two cases: if ∣rd(w)∣ < ℓ then we are done. This property
can be expressed with the help of an appropriate FO[λ]-formula shortℓ satisfying L(shortℓ) =
η−1(rd−1(A<ℓ)). So, we can assume ∣rd(w)∣ ≥ ℓ from now on. Then, by Observation 6.4.26 we
have obw(w) ≤ ℓ, i.e., ⟦w⟧ ∈ T(QL) ∖Ωℓ. By Lemma 6.4.14 the plq language Ωℓ is aperiodic
implying the existence of an FO[λ]-formula Omegaℓ satisfying η−1(Ωℓ) = L(Omegaℓ).

Next, we want to determine the values k ∶= obw(w) and m ∶= ∣rd2(w)∣ as well as the
positions of the last k respectivelym read actions and their corresponding write actions in w.
To this end, we utilize Lemma 6.4.13 with some small modifications to the formulas embedi
and overlapi :

embed′i(x⃗ , y⃗) ∶= ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 and
overlap′i(x⃗ , y⃗) ∶= ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 .

Then we have (wwwwwwwwwwwwwwwww , p⃗, q⃗) ⊧ embed′i(x⃗ , y⃗) if, and only if, there is r2 ∈ Ai with rd(w) ∈ A∗r2,
w1 ∈ redsupL(r2) for a prefixw1 ofwrt(w), where p1, . . . , pi are the positions of the last i read
actions in w (in descending order), and q1, . . . , qi are the positions of their corresponding
write actions in w. Moreover, we have (wwwwwwwwwwwwwwwww , p⃗, q⃗) ⊧ overlap′i(x⃗ , y⃗) if, and only if, in addition
to the conditions above we have rd2(w) ∈ A∗r2. Hence, we can express “k = obw(w)” as
follows:

obwk(x⃗ , y⃗) ∶= embed′k(x⃗ , y⃗) ∧ ¬overlap
′
k(x⃗ , y⃗) ∧

k−1
⋀
i=1

embedi → overlapi .

Additionally, the property “m = ∣rd2(w)∣ < k” can be expressed by the following FO[λ]-
formula:

shufflem,k(x⃗ , z⃗) ∶= overlap′m(x⃗ , z⃗) ∧
k

⋀
i=m+1

¬overlapi .

We should note here, that the property “m = ∣rd2(w)∣” cannot be expressed by anMSO[λ]-
formula since this property is not recognizable according to [HKZ17, Observation 9.1] (at
least in the case F = ∅). In contrast, satisfaction of shufflem,k(x⃗ , z⃗) by w requires further
assumptions on the overlap’s bounded width ofw: we require that k = obw(w) <∞ is a fixed
upper bound of ∣rd2(w)∣.

Now, let p⃗, q⃗, s⃗ ∈ dom(w)ℓ be positions in w with (wwwwwwwwwwwwwwwww , p⃗, q⃗) ⊧ shufflem,k(x⃗ , y⃗) and
(wwwwwwwwwwwwwwwww , p⃗, s⃗) ⊧ obwk(x⃗ , z⃗). It is easy to see that qi ≤ si holds for each 1 ≤ i ≤ m. In particular,
if qi = si holds then we have q j = s j for each 1 ≤ j < i. So, let 1 ≤ i ≤ m be minimal such
that qi+1 < si+1 holds (where qm+1 ∶= 0). This value can be determined with the help of the
following formula:

diff i(y⃗, z⃗) ⊧
i

⋀
j=1
y j = z j ∧ yi+1 < zi+1 ,

where “ym+1 < zm+1” means “true”. Then by utilization of the equations from Lemma 4.7.2
we can move the read actions on positions pi+1, . . . , pk in w to the direct left-hand side
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of the write action on position si+1. But it is impossible to transpose the read action on
position pi+1 with its corresponding write action on position si+1. In other words, we have
Pw
ℓ = P

w
k
= {p′ ∈ Λw

A ∣ si+1 ≤ p′}.
All in all, we set:

Pℓ(x) ∶= (ΛA(x) ∧ shortℓ) ∨ (ΛA(x) ∧ ¬Omegaℓ ∧

∀x⃗ , y⃗, z⃗∶ ⋀
0≤i≤m<k≤ℓ

(shufflem,k(x⃗ , y⃗) ∧ obwk(x⃗ , z⃗) ∧ diff i(y⃗, z⃗))→ zi+1 ≤ x) .

a1a1a iaiai+1a i+1ai+1amamakakaℓ

p1
q1

s1
pi

qi

sisi+1
pi+1

qi+1
pm

qm

sk
pk

a1a1a iaiai+1a i+1amakaℓai+1amak

Figure 6.1. Visualization of a possible movement of read and write actions. In both words, we have q j < p j

for all 1 ≤ j ≤ m and s i+1 ≥ p i+1. Hence, both words have an overlap of length m. The write actions on the
left-hand side of the bold line are contained in Pw

ℓ , the ones on the right-hand side are not contained in Pw
ℓ .

The next two lemmas prove the correctness and completeness of this formula Pℓ(x):

Lemma 6.4.29. Let ℓ ∈ N ∖ {0}, w ∈ Σ∗, and p ∈ Pw
ℓ . Then we have (wwwwwwwwwwwwwwwww , p) ⊧ Pℓ(x).

Proof. We prove the contraposition of this statement. So, let p ∈ dom(w) with (wwwwwwwwwwwwwwwww , p) ⊭
Pℓ(x). We show that p ∉ Pw

ℓ holds in this case.
If we have p ∉ Λw

A we are done since Pw
ℓ ⊆ Λ

w
A. So we can assume p ∈ Λw

A from now on.
Then, we have wwwwwwwwwwwwwwwww ⊭ shortℓ implying ∣rd(w)∣ ≥ ℓ.

If wwwwwwwwwwwwwwwww ⊧ Omegaℓ we have obw(w) > ℓ and, hence, Pw
ℓ = ∅ by Observation 6.4.26. In

this case, we are done. Now, we assume wwwwwwwwwwwwwwwww ⊧ ¬Omegaℓ, i.e., obw(w) ≤ ℓ. Then there are
p⃗, q⃗, s⃗ ∈ dom(w)ℓ and 0 ≤ i ≤ m < k ≤ ℓ such that

(wwwwwwwwwwwwwwwww , p⃗, q⃗, s⃗) ⊧ shufflem,k(x⃗ , y⃗) ∧ obwk(x⃗ , z⃗) ∧ diff i(y⃗, z⃗) and

(wwwwwwwwwwwwwwwww , p, s⃗) ⊭ zi+1 ≤ x.

As we have argued above, we have m = ∣rd2(w)∣ and k = obw(w). Additionally, we have:

p1, . . . , pk are the positions of the last k read actions in w (in descending order),

q1, . . . , qm are the write positions corresponding to the read actions on p1, . . . , pm, and

s1, . . . , sk are the write positions corresponding to the read actions on p1, . . . , pk.
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By definition of diff i the number i is the minimal index such that qi+1 < si+1 holds (where
qm+1 ∶= 0). We have to prove that p < si+1 implies p ∉ Pw

ℓ . To this end, let r1, r2,w1,w2 ∈ A∗

such that rd(w) = r1r2, ∣r2∣ = i, wrt(w) = w1w2, and w1 = wrt(w[1, si+1 − 1]). We first show
w ≡ w1r1w2r2. By Theorem 4.7.8 it suffices to prove ∣rd2(w)∣ = ∣rd2(w1r1w2r2)∣. We have

the last i read actions are on the right-hand side of each write action and, hence, on the
right-hand side of their corresponding write actions and

the read actions on positions pi+1, . . . , pk are on the right-hand side of their correspond-
ing write actions since qi+1 < si+1, i.e., the write actions on positions qi+1, . . . , qk in w are
contained in w1 which is on the left-hand side of all read actions.

Hence, we have w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2 ⊧ overlapm implying ∣rd2(w)∣ = m ≤ ∣rd2(w1r1w2r2)∣. However, we
have w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2w1r1w2r2 ⊭ overlapk since the read action on position pi+1 in w (which is the last letter
in r1) is on the left-hand side of its corresponding write action on position si+1 (which is the
first letter in w2). Hence, we have ∣rd2(w1r1w2r2)∣ < k = obw(w). By minimality of obw(w)
we can infer that ∣rd2(w)∣ ≥ ∣rd2(w1r1w2r2)∣ holds. Therefore, we have w ≡ w1r1w2r2.

By p < si+1 we can split w1r1w2r2 as follows: let v1, v2 ∈ A∗ with v1 = wrt(w[1, p]), i.e.,
v1 is a prefix of w1, and v2 is the complementary suffix of w1r1w2r2 wrt. v1. Then we have
w ≡ w1r1w2r2 = v1v2 and ∣rd(v2)∣ = ∣rd(w)∣ ≥ ℓ implying p ∉ Pw

ℓ . ◂

Lemma 6.4.30. Let ℓ ∈ N ∖ {0}, w ∈ Σ∗, and p ∈ dom(w) ∖ Pw
ℓ . Then we have

(wwwwwwwwwwwwwwwww , p) ⊭ Pℓ(x).

Proof. If we have p ∉ Λw
A we have obviously (wwwwwwwwwwwwwwwww , p) ⊭ Pℓ(x). So, from now on, we assume

p ∈ Λw
A.
By p ∈ dom(w) ∖ Pw

ℓ there are v1, v2 ∈ Σ∗ with w ≡ v1v2, wrt(v1) = wrt(w[1, p]), and
∣rd(v2)∣ ≥ ℓ. Hence, we have ∣rd(w)∣ ≥ ∣rd(v2)∣ ≥ ℓ implying wwwwwwwwwwwwwwwww ⊭ shortℓ.

Next, we consider the value of obw(w). If obw(w) > ℓ, we have ⟦w⟧ ∈ Ωℓ implying
wwwwwwwwwwwwwwwww ⊧ Omegaℓ. Hence, we are done in this case. Now, assume obw(w) ≤ ℓ. Then there are
0 ≤ m < k ≤ ℓ with obw(w) = k and ∣rd2(w)∣ = m. Let p⃗, q⃗, s⃗ ∈ dom(w)ℓ be the following
positions:

p1, . . . , pk are the positions of the last k read actions in w (in descending order),

q1, . . . , qm are the write positions corresponding to the read actions on p1, . . . , pm, and

s1, . . . , sk are the write positions corresponding to the read actions on p1, . . . , pk.

Since we have qi ≤ si for each 1 ≤ i ≤ m, there is an index 0 ≤ i ≤ m such that qi+1 < si+1 holds
(where qm+1 ∶= 0). Let 0 ≤ i ≤ m be minimal with qi+1 < si+1. Then we have

(wwwwwwwwwwwwwwwww , p⃗, q⃗, s⃗) ⊧ shufflem,k(x⃗ , y⃗) ∧ obwk(x⃗ , z⃗) ∧ diff i(y⃗, z⃗) .

Now, we prove that (wwwwwwwwwwwwwwwww , p, s⃗) ⊭ zi+1 ≤ x, i.e., we prove si+1 > p. Towards a contradiction,
suppose that si+1 ≤ p holds.

Recall that v1, v2 ∈ Σ∗ are defined such that w ≡ v1v2, wrt(v1) = wrt(w[1, p]), and
∣rd(v2)∣ ≥ ℓ. Consider the positions in v1v2 of the letters on positions p, p⃗, q⃗, and s⃗ in w.
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To this end, let σ be the permutation of dom(w)mapping the positions in wwwwwwwwwwwwwwwww to the ones in
v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2. Then we have σ(q j) < σ(p j) for each 1 ≤ j ≤ m since rd2(w) = rd2(v1v2) and, therefore,
v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2 ⊧ overlapm holds.

By wrt(v1) = wrt(w[1, p]) we have σ(p) ≤ ∣v1∣ and, by ∣rd(v2)∣ ≥ ℓ ≥ k we have ∣v1∣ <
σ(p j) for each 1 ≤ j ≤ k. From w ≡ v1v2 we know that wrt(w) = wrt(v1v2) and rd(w) =
rd(v1v2) hold byTheorem 4.7.8 implying

σ(sk) < ⋅ ⋅ ⋅ < σ(si+1) (since sk <+ sk−1 <+ ⋅ ⋅ ⋅ <+ si+1)
≤ σ(p) (since si+1 ≤ p, si+1, p ∈ Λw

A, and, therefore, si+1 ≤+ p)
≤ ∣v1∣ (since wrt(v1) = wrt(w[1, p]))
< σ(pk) < ⋅ ⋅ ⋅ < σ(p1) . (since ∣rd(v2)∣ ≥ k and pk <− pk−1 <− ⋅ ⋅ ⋅ <− p1)

Recall that we also have σ(s j) = σ(q j) < σ(p j) for each 1 ≤ j ≤ i by the minimality of
i ≤ m and due to v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2 ⊧ overlapm. Then we also obtain σ(s j) < σ(p j) for each 1 ≤ j ≤ k, i.e.,
v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2v1v2 ⊧ overlapk . From Lemma 6.4.13 we infer that ∣rd2(v1v2)∣ ≥ k > m = ∣rd2(w)∣ holds. This
is a contradiction to rd2(v1v2) = rd2(w) by w ≡ v1v2 according toTheorem 4.7.8. Hence, we
have p < si+1 implying (wwwwwwwwwwwwwwwww , p) ⊭ Pℓ(x). ◂

Finally, with the help of the formulaPℓ we can prove the last implication ofTheorem 6.4.1:

Proposition 6.4.31. Let L = (F ,U) be a lossiness alphabet with ∣F ∣ + ∣U ∣ ≥ 2 and
T ⊆ T(QL) beMSO[o]-definable. Then T is recognizable.

Proof. Let T ⊆ T(QL) beMSO[o]-definable. Then there is ϕ ∈MSO[o] with T = T(ϕ). We
construct a formula ϕ′ ∈ MSO[λ] such that for each w ∈ Σ∗ we have w̃ ⊧ ϕ if, and only if,
wwwwwwwwwwwwwwwww ⊧ ϕ′.

Concretely, we obtain ϕ′ from ϕ as follows:

(1) replace any occurrence of x <+ y by x < y ∧ ΛA(x) ∧ ΛA(y),

(2) replace any occurrence of x <− y by x < y ∧ ΛA(x) ∧ ΛA(y), and

(3) replace any occurrence of Pℓ(x) by the FO[λ]-formula Pℓ(x).

Then by Lemmata 6.4.29 and 6.4.30 we have w̃ ⊧ ϕ if, and only if, wwwwwwwwwwwwwwwww ⊧ ϕ′ for any w ∈ Σ∗.
Hence, by Büchi’s Theorem [Büc60] η−1(T) is regular. Since η is surjective this implies
recognizability of T = T(ϕ). ◂

6.4.5 The Complexity of the Constructions inTheorem 6.4.1
Finally, we want to analyze the complexities of the constructions in this section. Recall that
we have seen the following circular chain of implications: “(A)/(i)⇒ (ii)⇒ (iii)⇒ (B)⇒
(C)⇒ (A)”.

Towards the first implication, let T ⊆ T(QL) be recognized by a finite monoid F via
the homomorphism ϕ∶T(QL) → F. Then η−1(T) ⊆ Σ∗ is regular and recognized by F via
η ○ ϕ (recall that we can understand F as a DFA accepting η−1(T)). We can obtain another
finite monoid G recognizing η−1(T) ∩ A

∗
A∗A

∗
in polynomial time with the help of the
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cross-product construction known from automata theory. Note that ∣G∣ ∈ O(∣F∣) holds in
this case.

Now, consider the second implication. So, let η−1(T)∩A
∗
A∗A

∗
be recognized by a finite

monoid F. By the proof of Lemma 6.4.10, the set T is a union of O(2∣F∣) many languages
which can be expressed by a constant number of plq languages of the formwrt−1(R), rd−1(R),
and Ωℓ for regular languages R ⊆ A∗ and numbers ℓ ∈ N. In other words, the constructed
Boolean combination has exponential size.

Next, let T ⊆ T(QL) be given by a Boolean combination as in property (iii) of Theo-
rem 6.4.6. If a set wrt−1(R) or rd−1(R) is given by a finite automaton accepting R ⊆ A∗ then
a q-rational expression describing such language has exponential size [EZ74]. Otherwise if
such set is given by a regular expression, an equivalent q-rational expression has linear size.
Additionally, the plq language Ωℓ is equivalent to a q-rational expression of size exponential
in the number ℓ (cf. Proposition 6.4.22).

Towards the implication “(B)⇒(C)”, let T ⊆ T(QL) be given by a q-rational expression.
The translation of q+- and q−-rational expressions into anMSO[o]-formula is similar to the
translation of a regular expression into anMSO[λ]-formula. This is possible in polynomial
time when translating the given regular expression into an NFA (this uses the efficient closure
properties of regular languages) and then into anMSO[λ]-formula as described (e.g.) in
[Lib04, Theorem 7.21]. Finally, formulas for unions, complements, and products can be
constructed in polynomial time. All in all, we obtain anMSO[o]-formula from a q-rational
expression in polynomial time.

Finally, let T ⊆ T(QL) be given by anMSO[o]-formula. In Proposition 6.4.31 we trans-
lated this formula into anMSO[λ]-formula. Themost complicated case is the atomic formula
Pℓ(x). Its translation Pℓ(x) can be obtained from Pℓ(x) in time exponential in the num-
ber ℓ. The remaining translations are possible in linear time. Finally, the translation of an
MSO[λ]-formula into a DFA is not elementary [SM73].

6.5 Conclusion

We have characterized the recognizable languages of the plq and pls monoid. First, we have
proved that most pls monoids have only the trivial recognizable languages: the empty set and
the monoid itself. Only the partially lossy stack monoids with a unary underlying lossiness
alphabet have an infinite number of recognizable languages. These sets are recognized by
finite cyclic groups.

We have also seen that - in contrast to the free monoid [Kle51] - the classes of rational
and recognizable languages in the plq monoid do not coincide. This holds since the class of
recognizable plq languages is not closed under product and iteration. But we have introduced
a modification on the rational expressions - so-called q-rational expressions: starting from
the sets having read or write action sequences from a regular language, we build the closure
under Boolean operations and restricted versions of the product and iteration. We have seen
that the class of recognizable languages in the partially lossy queue monoid is exactly the
class of q-rational languages. However, it is still unknown whether there also is such kind
of expressions with monotonic operations, only (i.e., without the usage of complement and
intersection).

Moreover, we have defined a Büchi-like monadic second-order logic on the positions of
actions (cf. [Büc60]). This logic describes exactly the recognizable plq languages. Unfortu-



116 Chapter 6. Recognizable Languages

nately, the signature of this logic is infinite, but elements of the plq monoid are at least finitely
presentable. Until now we do not know whether there also is a monadic second-order logic
with just a finite number of relations.



Chapter 7

Aperiodic and Star-Free Languages

7.1 Introduction
Probably the most famous proper subclass of the regular languages is the class of aperiodic
languages (seeDefinition 5.2.3). This class shares a bunch of properties with the class of regular
languages. So it is closed under Boolean operations, concatenation, and homomorphic
preimages. Though, it is not closed under iteration. One of the most important results
in automata theory is Schützenberger’s Theorem [Sch65] stating that a word language is
aperiodic if, and only if, it is star-free. However, there are even more characterizations of
the aperiodic word languages. The aperiodic languages are the languages: (1) which have
an aperiodic syntactic monoid, (2) which are accepted by a so-called counter-free finite
automaton (these are NFAs which are unable to count modulo any positive integer) [MP71],
(3) which are described by the first-order fragment of Büchi’s logic on words [MP71], and
(4) which are definable in linear temporal logic [Kam68]. From [GRS91] we also know that
the classes of star-free and aperiodic trace languages coincide. Hence, it is worth to study the
class of aperiodic languages in the transformation monoid of a partially lossy queue or stack.

In the previous chapter we have learned that the class of recognizable languages in the plq
monoid is not closed under the monoid’s product. Since this non-closure property also holds
for the aperiodic plq languages, this class also is not closed under product. Hence, the classes
of aperiodic and star-free languages do not coincide in the partially lossy queue monoid. But
we will see that we can generate the aperiodic plq languages by star-free expressions with
the same restriction to the monoid’s product as in our previous result regarding rational
expressions. Additionally, we learn that the class of aperiodic plq languages can be described
by first-order formulas of our special queue logic.

But before, we will see that the aperiodic subsets of the partially lossy stack monoid are
only the trivial ones and this time this statement holds in any case.

7.2 Partially Lossy Stacks
Recall that the partially lossy stack monoid with an at least binary underlying lossiness
alphabet has exactly two recognizable pls languages: the monoid itself and the empty set.
Since any aperiodic language also is recognizable (recall that this is an explicit requirement in
the definition), it is no surprise that in this case there also are only these two trivial aperiodic
pls languages.

Now, consider a unary lossiness alphabet. Then fromTheorem 6.2.2 we know that a pls
language is in this case recognizable if, and only if, it is recognized by a finite cyclic group.
Hence, there is an infinite number of recognizable pls languages. However, with recognizable
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pls languages we are able to count modulo a positive integer in a finite, cyclic group. Since
counting is not possible in aperiodic languages, we will see that almost all recognizable pls
languages are not aperiodic - only the two trivial pls languages are aperiodic. This is the
following theorem:

Theorem 7.2.1. Let L = (F ,U) be a lossiness alphabet and T ⊆ T(PL). Then T is

aperiodic if, and only if, T = ∅ or T = T(PL).

Proof. This claim is trivial if A = F ∪U is an at least binary alphabet byTheorem 6.2.4. So,
from now on, we consider the case ∣A∣ = 1.

Obviously the languages ∅ and T(PL) are aperiodic. Now, let ∅ ⊊ T ⊊ T(PL) be
aperiodic. Since T also is recognizable its syntactic monoid S(T) is a finite, cyclic group,
i.e., S(T) ≅ Zk for a positive integer k > 0 due to Theorem 6.2.2. Additionally, since T is
aperiodic, S(T) ≅ Zk is an aperiodic monoid, i.e., there is a number n ∈ N such that for each
ℓ ∈ Zk we have ℓn = ℓn+1. This is only possible for k = 1 and ℓ = 0. Hence, ∣S(T)∣ = 1 holds
implying T = ∅ or T = T(PL). ◂

We have seen that in any case the pls monoid has exactly two aperiodic languages. We may
also ask for a characterization of the star-free pls languages. So, we conjecture that this class
of pls languages can be characterized similar to the rational languages (cf. Theorem 5.3.1).
In other words, possibly a language T ⊆ T(PL) is star-free if, and only if there is a star-free
word language L ⊆ NFPL

= A
∗
A∗ ∪ {á} with T = η(L).

7.3 Partially Lossy Queues
Now, we consider the aperiodic and star-free languages in the partially lossy queue monoid.
To this end, we recall the proof of Proposition 6.4.16. We have seen in that proof that
⟦a⟧∗ ⋅ ⟦a⟧∗ is no recognizable plq language. Since ⟦a⟧∗ and ⟦a⟧∗ are even aperiodic, we learn
that the class of aperiodic plq languages is not closed under product and, hence, does not
coincide with the class of star-free plq languages. To describe the aperiodic plq languages
in terms of star-free expressions, we have to adopt our special restriction to the monoid’s
product from rational expressions. With this restriction we obtain the so-called q-star-free
expressions which are formally defined as follows:

Let L = (F ,U) be a lossiness alphabet. A T(QL)-language is q+-star-free if it can be
constructed by the following rules:

(1+) wrt−1(ε), wrt−1(∅) = ∅, and wrt−1(a) for any a ∈ A are q+-star-free and

(2+) if S , T ⊆ T(QL) are q+-star-free then S ∪ T , S ⋅ T , and T(QL) ∖ S are q+-star-free.

Similarly, by replacing wrt−1 by rd−1 in the rules above, we define the class of q−-star-free
T(QL)-languages. Finally, a language in T(QL) is q-star-free if it can be constructed from
the following rules:

(1) if T ⊆ T(QL) is q+- or q−-star-free it also is q-star-free,
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(2) if S , T ⊆ T(QL) are q-star-free then S ∪ T and T(QL) ∖ S are q-star-free, and

(3) if S ⊆ T(QL) is q+-star-free and T ⊆ T(QL) is q−-star-free such that rd(T) is finite (i.e,
T is obtained without usage of the ∖-operator) then S ⋅T(QL) ⋅ T is q-star-free.

Hence, the only difference of the rules above in comparison to the ones constructing the
q-rational plq languages is the replacement of the iteration by complement in the definition
of q+-star-free languages. Therefore, T ⊆ T(QL) is q+-star-free (q−-star-free) if, and only if,
there is an aperiodic language R ⊆ A∗ with T = wrt−1(R) (respectively T = rd−1(R)).

Similarly to Theorems 6.4.1 and 6.4.6, we can state the following result:

Theorem 7.3.1. Let L = (F ,U) be a lossiness alphabet and T ⊆ T(QL). Then the

following statements are equivalent:

(A) T is aperiodic.

(B) η−1(T) ∩ A
∗
A∗A

∗
is aperiodic.

(C) T is a Boolean combination of plq languages of the form wrt−1(R), rd−1(R), and
Ωℓ for aperiodic languages R ⊆ A∗ and numbers ℓ ∈ N.

(D) T is q-star-free.

(E) T is FO[o]-definable.

Proof. To prove this theorem we recall the proofs of Theorems 6.4.1 and 6.4.6.
At first we show the implication “(A)⇒(B)”. So, let T ⊆ T(QL) be aperiodic. Then η−1(T)

is aperiodic. Since A
∗
A∗A

∗
is aperiodic and the class of aperiodic languages is closed under

intersection we can infer that η−1(T) ∩ A
∗
A∗A

∗
also is aperiodic.

Next, we prove “(B)⇒(C)”. We recall the proof of Lemma 6.4.10 and assume that the
recognizing monoid F is aperiodic. All of the arguments of the inverse projections wrt−1 and
rd−1 are either single words, µ−1(x), µ−1(x) for any x ∈ F, or products of those languages.
Anyway these plq languages are aperiodic since aperiodicity is preserved under inverse ho-
momorphisms (note that the class of aperiodic word languages is closed under concatenation
according to Schützenberger’s Theorem [Sch65]). Hence, T is a Boolean combination of
plq languages of the form wrt−1(R), rd−1(R), and Ωℓ for aperiodic languages R ⊆ A∗ and
numbers ℓ ∈ N.

In the proof of Proposition 6.4.22 we see that Ωℓ is even q-star-free and, hence, the
implication “(C)⇒(D)” holds.

In the construction of the proof of Proposition 6.4.28 each of the used formulas can be
expressed in first-order logic. Therefore, we have “(D)⇒(E)”.

Finally, we have to prove “(E)⇒(A)”. Each translation of an FO[o]-formula as seen in
Proposition 6.4.31 results in a formula in FO[λ]. Therefore, by [MP71] each FO[o]-definable
plq language is aperiodic. ◂

There are still several open questions concerning aperiodic and star-free plq languages.
For example, one may ask for a temporal logic describing the aperiodic languages similar to
Kamp’s Theorem [Kam68] stating that the logic LTL describes exactly the aperiodic word
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languages. One could also study subclasses of the star-free and aperiodic plq languages.
For example, one may consider the dot-depth hierarchy or the Straubing-Thérien hierarchy.
Thomas proved in [Tho82] that in the free monoid the nth level of the former hierarchy
corresponds to theBΣn-fragment of Büchi’s logic on words and that the (n − 1⁄2)th level cor-
responds to the Σn-fragment. It is an open question whether there exists also a modification
on this hierarchy such that the named correspondence holds for our queue logic FO[o].

Moreover, it is openwhether aperiodicity or star-freeness of a given rational, recognizable,
or star-free language in T(QL) is decidable. One may also check whether the undecidable
problems from Section 5.4 still are undecidable if their inputs are star-free plq languages.

7.4 Conclusion
All in all, we have characterized the aperiodic languages in the pls and plq monoids. Con-
cretely, we have seen that the partially lossy stack monoid has no non-trivial aperiodic
languages. Towards the aperiodic plq languages we revisited the proofs of Theorems 6.4.1
and 6.4.6 and found some small modifications such that these theorems also hold for aperi-
odic plq languages.
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Reachability Problems and Verification





Chapter 8

Reachability Problems and Temporal
Logics

In this chapter we recall some basic definitions and knowledge about verification of finite- and
infinite-state systems. We will start with simplifying our automata with storage mechanisms.
Concretely, we will remove their input tape and their initial and final states. Afterwards
we introduce multiple reachability problems and some temporal logics like LTL and CTL
on these systems. Finally, we give an idea of the decidability proofs of the model checking
problem for various temporal logics. In the succeeding chapters we will finally show various
decidability results on the named problems.

8.1 Kripke-Structures
First, we introduce so-called Kripke-structures. These are essentially directed graphs with
labels on their nodes. We use them later to define the semantics of the temporal logics.

Definition 8.1.1. Let AP be a finite set of atomic propositions. A Kripke-structure is a
tripleM = (V , E , Λ) where V is a (not necessarily finite) set of nodes, E ⊆ V 2 is a set of
edges, and Λ∶V → 2AP is a labeling. ⌟

Now, letM = (V , E , Λ) be a Kripke-structure. An (infinite) path inM is a sequence (vi)i∈N
with vi →M vi+1 for each i ∈ N. For a path ρ = (vi)i∈N inM and n ∈ N, we denote the subpath
of ρ starting after n steps by ρn ∶= (vi)i≥n.

Next, we want to obtain Kripke-structures from finite automata having a memory mod-
eled by the data typeD. To this end, we have to simplify these automata:

Definition 8.1.2. LetD = (U , Σ,Θ) be a data type andAP be a set of atomic propositions.
AD-system is a tupleS = (Q ,D, ∆, Λ) where Q is a finitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinite set of states, ∆ ⊆ Q × Σ∗ ×Q
is a finite set of transitions, and Λ∶Q → 2AP is a labeling. ⌟

In other words, aD-system is aD-automaton without input tape, initial states, and final
states. Instead of that, systems have an additional labeling of their control states. Later we
will use such labeling to define the semantics of temporal logics.

From these systems we can obtain a Kripke-structure as follows:

Definition 8.1.3. LetD = (U , Σ,Θ) be a data type andS = (Q ,D, ∆, Λ) be aD-system.
The systemS induces a (possibly infinite) Kripke-structureM(S) ∶= (V , E , Λ′) where

V = ConfS ∶= Q ×U ,

((p, x), (q, y)) ∈ E if, and only if, there is (p, t, q) ∈ ∆ with ⟦t⟧(x) = y, and
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Λ′((q, x)) ∶= Λ(q). ⌟

Hence, the Kripke-structureM(S) induced by aD-systemS is essentially the configuration
graph ofS. In other words, from a givenD-automaton A we obtain this Kripke-structure
by removing the edge-labels from its configuration graph GA.

Similarly, we can define the Kripke-structure induced by a lossyD-system (whereD is
a lossy data type). In this case, we have an edge ((p, x), (q, y)) ∈ E if, and only if, there is
either a transition (p, t, q) with y ∈ ⟦t⟧(x) or p = q and y ≤ x holds.

8.2 Reachability Problems
Now, we want to introduce several verification problems. Some of the most important
questions in verification are listed below. We will see afterwards, that all of these problems
are related to the reachability problem.

So, letM = (V , E , Λ) be a Kripke-structure.

(1) Reachability Problem. Given two sets I, F ⊆ V of nodes. Can we reach F from I inM?
(2) Safety Problem. Given two sets I, F ⊆ V of nodes. Can we onlyonlyonlyonlyonlyonlyonlyonlyonlyonlyonlyonlyonlyonlyonlyonlyonly reach F from I inM?
(3) Liveness Problem. Given two sets I, F ⊆ V of nodes. Can we reach F infinitely often on

an infinite path inM starting in I?
(4) Inevitability Problem. Given two sets I, F ⊆ V of nodes. Do all (infinite) paths inM

starting in I stay in I until they eventually reach F once?

A possible approach to solve the aforementioned problems is to compute the set of for-
wards and backwards reachable nodes in our given Kripke-structure and to check afterwards,
whether the respective properties hold. To this end, we first define these sets as follows:

Definition 8.2.1. Let M = (V , E , Λ) be a Kripke-structure and U ⊆ V be a set of
nodes inM . We inductively define the functions posti

M
(U) and prei

M
(U) as follows:

post0
M
(U) = pre0

M
(U) ∶= U . For i ≥ 0 we set

posti+1M (U) ∶= {v ∈ V ∣ post
i
M(U)→M v} and

prei+1M (U) ∶= {v ∈ V ∣ v →M preiM(U)} .

The set of forwards and backwards reachable nodes ofM wrt. U are

post∗M(U) ∶=⋃
i∈N

postiM(U) and pre∗M ∶=⋃
i∈N

preiM(U) . ⌟

LetS be aD-system. To simplify notations we write postS and preS instead of postM(S) or
preM(S).

By definition post∗
M
(U) and pre∗

M
(U) are infinite unions. However, we could also write

these sets as follows:

post∗M(U) = {v ∈ V ∣ U →
∗
M v} and pre∗M(U) = {v ∈ V ∣ v →

∗
M U} .

Similarly, we may define post+
M
(U) and pre+

M
(U) which are the nodes in M which are

forwards or backwards reachable in at least one step.
Some of the problems listed above can be directly solved by computation of the forwards

or backwards reachable nodes in our Kripke-structureM . Concretely, possible strategies are
the following:
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(1) To solve the reachability problem, we can compute the set post∗
M
(I) and decide whether

post∗
M
(I) ∩ F ≠ ∅ holds. Similarly, we could check, whether pre∗

M
(F) ∩ I ≠ ∅ holds. In

both cases, we require that the emptiness problem for intersections of sets is decidable.

(2) We can check safety by deciding whether post∗
M
(I) ⊆ F holds. Here, we need the

decidability of the inclusion problem in V .

However, solving liveness and inevitability are a bit more involved. But we can express these
properties in LTL which we will introduce in the next section.

Before we do this, we want to give an alternative definition of the forwards and backwards
reachable configurations in aD-systemS. In this definition we remove the control states of
S and focus only on the contents of the attached data typeD. These are the following sets:

Definition 8.2.2. LetD = (U , Σ,Θ) be a data type, L ⊆ U be a set of contents of the
data type, and T ⊆ Σ∗ be a language of action sequences. The set of forwards reachable
contents ofD wrt. L is

ReachD(L, T) = ⟦T⟧(L) ∖ {�}

and the set of backwards reachable contents ofD wrt. L is

BackReachD(L, T) = {x ∈ U ∣ ⟦T⟧(x) ∩ L ≠ ∅} . ⌟

Using the definition ofD’s semantics ⟦.⟧ we can show that Reach and BackReach are
compatible with the composition of action sequences:

Observation 8.2.3. LetD = (U , Σ,Θ) be a data type, L ⊆ U , and S , T ⊆ Σ∗. Then we

have the following statements:

(1) Reach(L, ST) = Reach(Reach(L, S), T).

(2) BackReach(L, ST) = BackReach(BackReach(L, T), S).

Proof. We first prove (1). Let x ∈ Reach(L, ST). Then there are y ∈ L, s ∈ S, and t ∈ T with
� ≠ x = ⟦st⟧(y). Set z ∶= ⟦s⟧(y) ≠ �. Then we have z ∈ Reach(L, S) and ⟦t⟧(z) = ⟦st⟧(y) =
x. This implies x ∈ Reach({z}, T) ⊆ Reach(Reach(L, S), T).

Conversely, let x ∈ Reach(Reach(L, S), T). Then there are z ∈ Reach(L, S) and t ∈ T
with � ≠ x = ⟦t⟧(z). Additionally, there are y ∈ L and s ∈ S with � ≠ z = ⟦s⟧(y) implying
� ≠ x = ⟦t⟧(z) = ⟦t⟧(⟦s⟧(y)) = ⟦st⟧(y). Hence, we infer x ∈ Reach(L, ST).

Now, we prove (2). To this end, let x ∈ BackReach(L, ST). Then we have ⟦ST⟧(x) ∩
L ≠ ∅, i.e., there are s ∈ S, t ∈ T , and y ∈ L with � ≠ y = ⟦st⟧(x). Then there is z ∈
U ∖ {�} with ⟦s⟧(x) = z and ⟦t⟧(z) = y. Hence, we infer z ∈ BackReach(L, T) and
x ∈ BackReach({z}, S) ⊆ BackReach(BackReach(L, T), S).

Towards the converse inclusion, let x ∈ BackReach(BackReach(L, T), S). Then there
are s ∈ S and z ∈ BackReach(L, T) with ⟦s⟧(x) = z ≠ �. Additionally, there are y ∈ L
and t ∈ T with ⟦t⟧(z) = y ≠ �. This implies � ≠ y = ⟦t⟧(z) = ⟦t⟧(⟦s⟧(x)) = ⟦st⟧(x), i.e.,
x ∈ BackReach(L, ST). ◂
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We can also find the following connection between post∗S and Reach as well as between
pre∗S andBackReach: we obtain post

∗
S and pre

∗
S fromReach andBackReach, respectively,

by application of all action sequences which lead from an initial control state to a final control
state. Note that the set of action sequences inS is regular. We can see this by understanding
the transition relation of S as one of an extended NFA (recall that this is an NFA having
edges labeled with words from Σ∗).

Observation 8.2.4. LetD be a data type,S = (Q ,D, ∆, Λ) be aD-system, and C ⊆
ConfS = Q ×U be a set of configurations ofS. Let A = (Q , Σ,Q , ∆,Q) be an extended
NFA derived fromS (note that ∆ is the transition relation fromS). Then we have:

(1) post∗S(C) = ⋃ι, f ∈Q{ f } × Reach(ι C , L(Aι→ f )).

(2) pre∗S(C) = ⋃ι, f ∈Q{ι} × BackReach( f C , L(Aι→ f )). ◂

8.3 Temporal Logics
Now, we want to recall some temporal logics on our Kripke-structures. With the help of these
logics we are able to formalize properties of paths in our Kripke-structures. In verification
this is used to specify the expected behavior of a given system. So, these logics help to check
whether a system (or at least its formal model) satisfies a set of requirements specified by
formulas from an adequate temporal logic. Possibly the most famous temporal logics are the
linear temporal logic (LTL, for short, in some papers also called propositional temporal logic
or PTL), the computation tree logic (CTL, for short), and their combination CTL∗. The main
difference between these logics is the set of allowed temporal operators. So, in the following
we want to recall the definitions of some important operators. To this end, letM = (V , E , Λ)
be a Kripke-structure on the atomic propositions AP. Additionally, let ρ = (vi)i∈N be a path
inM and ϕ and ψ be two formulas. Then we define:

(M , ρ) ⊧ ⊺,
(M , ρ) ⊧ p ∈ AP if, and only if, p ∈ Λ(v0),
(M , ρ) ⊧ ¬ϕ if, and only if, (M , ρ) ⊭ ϕ,
(M , ρ) ⊧ ϕ ∨ ψ if, and only if, (M , ρ) ⊧ ϕ or (M , ρ) ⊧ ψ,
(M , ρ) ⊧ Xϕ if, and only if, (M , ρ1) ⊧ ϕ,
(M , ρ) ⊧ ϕUψ if, and only if, there is k ∈ N with (M , ρk) ⊧ ψ and (M , ρℓ) ⊧ ϕ for
each 0 ≤ ℓ < k, and
(M , ρ) ⊧ Eϕ if, and only if, there is a path σ = (wi)i∈N inM withw0 = v0 and (M , σ) ⊧
ϕ.

In this connection we can read the formula “Xϕ” as “ϕ holds in the neXt step”, “ϕUψ” as “ϕ
holds Until ψ holds”, and “Eϕ” as “there Exists a path satisfying ϕ”.

The definitions of a few more temporal operators can be found in the literature (see, e.g.,
[GK07]). However, from the operators listed above we also obtain the following well-known
operators:
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Fϕ ∶= ⊺Uϕ which reads as “Eventually (or Finally) ϕ holds.”

Gϕ ∶= ¬F¬ϕ which reads as “Globally the formula ϕ holds.”

Aϕ ∶= ¬E¬ϕ which reads as “ϕ holds on All paths.”

Then LTL consists of all of those formulas generated by Boolean operators and the temporal
operators X and U (including F and G). The logic CTL consists of the Boolean operators
and the combinations EX, EG, and EU of temporal operators. Finally, CTL∗ is the set of all
formulas generated by all of the operators listed above.

Themodel checking problem of these logics is defined as follows:

Input: A Kripke-structureM = (V , E , Λ), a node v ∈ V , and a formula ϕ
Question: Does (M , ρ) ⊧ ϕ hold for a path ρ = (vi)i∈N inM with v0 = v?

Note that in the literature the model checking problem of LTL often is the following question:
does (M , ρ) ⊧ ϕ hold for allallallallallallallallallallallallallallallallall paths ρ in M starting in node v? This is essentially the
complementary problem of the problem defined above since (M , ρ) ⊧ ϕ holds for all paths
ρ if, and only if, there is no path ρ with (M , ρ) ⊧ ¬ϕ.

Now, recall the four problems introduced in the previous section. We can see that all
questions correspond to instances of the model checking of LTL:

(1) To solve the reachability problem, we can check whether Fϕ holds for a suitable formula
ϕ.

(2) The safety problem asks whether Gϕ holds for a formula ϕ.

(3) We can decide the liveness problem with the help of the formula GFϕ where ϕ is an
eligible formula.

(4) We can solve the inevitability problem by checking for satisfaction of ϕUψ for two
formulas ϕ and ψ.

In the next chapter we want to verify Kripke-structures induced by pushdown automata
with one or more stacks. In other words, our aim is to prove that model checking for Kripke-
structuresM(S) is decidable for some (multi-)pushdown systemsS. The classical proof
strategy to show the decidability of the model checking problem for LTL-like temporal logics
(see, e.g., [VW86]) is as follows: let ϕ be a formula from a temporal logic,M(S) = (V , E , Λ)
be a Kripke-structure induced by aD-systemS, and v ∈ V be a node. We construct a Büchi-
automaton (this is an NFA with different semantics) A = (Q , Γ , I, ∆, F) with the following
properties:

Γ ∶= 2cl(ϕ) where cl(ϕ) is the set of all subformulas of ϕ,

Q = F ⊆ 2cl(ϕ) contains exactly the consistent sets of subformulas of ϕ,

I ⊆ 2cl(ϕ) contains exactly the consistent sets of subformulas of ϕ which also contain ϕ,
and

∆ is a transition relation according to the semantics of the considered logic. Concretely,
we have (p, a, q) ∈ ∆ if p = a and some further properties holds, e.g., if Xψ ∈ p ⇐⇒
ψ ∈ q holds for any Xψ ∈ cl(ϕ).



128 Chapter 8. Reachability Problems and Temporal Logics

Then we know ϕ is satisfiable by at least one Kripke-structure if the accepted ω-language of
A is not empty (note that A does not depend onM), i.e., if

Lω(A) ∶= {α0α1α2 . . . ∈ Γω ∣ ∃(vi)i∈N∶ v0 ∈ I,∀i ∈ N∶ vi
α i
Ð→A vi+1, ∃∞ j ∈ N∶ v j ∈ F} ≠ ∅

holds. Finally, we construct a (Büchi-)D-automatonB which simulates A andS in parallel.
This means, the resulting automaton’s states are tuples (p, q) of states fromA andS, in which
the labeling Λ(q) of q coincides with the atomic propositions p ∩AP in p ⊆ cl(ϕ). We have
an edge from one tuple to another one if, and only if, there are such edges in A and inS.
Then the formula ϕ holds inM(S) on configuration v if, and only if,B accepts at least one
ω-word, i.e., if the following ω-language is not empty:

Lω(B) ∶= {α0α1α2 . . . ∈ Γω ∣ ∃(ci)i∈N∶ c0 ∈ InitB,∀i ∈ N∶ ci
α i
Ð→B ci+1, ∃∞ j ∈ N∶ c j ∈ FinalB}.

We also call the emptiness problem of Büchi-D-automata the recurrent reachability problem
(since such automaton accepts an ω-word iff it reaches an accepting state infinitely often).

Theorem 8.3.1 ([VW86]). LetD be a data type. Themodel checking problem for several

temporal logics (like LTL) on Kripke-structures induced fromD-systems can be reduced

to the emptiness problem of Büchi-D-automata. In this reduction we construct a Büchi-

D-automaton in time exponential in the size of ϕ and which has exponentially many

states. ◂

In other words, to decide the model checking problem for LTL and other temporal logics,
we only have to prove that the emptiness problem in Büchi-D-automata is decidable. For
example, the emptiness in Büchi-automata isNL-complete. Hence, we obtain the decidability
of the model checking problem for finite Kripke-structures:

Corollary 8.3.2 ([Pnu77, VW86]). The model checking problem of LTL is PSPACE-
complete for finitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinitefinite Kripke-structures. ◂

Note that we can also show that the model checking problem of CTL for finite Kripke-
structures is in P (however this result does not use the aforementioned reduction [CE82])
and the model checking problem of CTL∗ also is PSPACE-complete [EH83]. In the next
chapter we will use this reduction to prove the decidability of the model checking problem
for Kripke-structures induced by pushdown automata with one or more stacks.



Chapter 9

Verifying Pushdown Automata

9.1 Introduction

In this chapter we want to verify pushdown systems and automata having one or more stacks.
Such systems are often used to model programs in functional programming languages (like
Erlang, Haskell, or Scala), in which one recursively calls a finite number of functions with
finite domains.

It is well-known that the reachability problem in pushdown systems with one such
stack is decidable in polynomial time [BEM97]. Moreover, in such systems the model
checking problems of several temporal logics are decidable. For example, Bouajjani et
al. proved in [BEM97] the EXPTIME-completeness of the model checking problem for
LTL. Walukiewicz showed that additionally model checking for CTL and the so-called
propositional µ-calculus areEXPTIME-complete whilemodel checking of the EF-fragment of
CTL is PSPACE-complete [Wal00,Wal01]. Moreover, we know that CTL∗-model checking
is 2EXPTIME-complete [Boz07]. Hence, with these results we are able to analyze such
aforementioned functional programs with finite domains towards their correctness and other
interesting properties.

We can also consider pushdown systems having at least two stacks. With the help of
such systems we can model functional programs with finite domains within concurrent or
distributed systems. Indeed, such systems are known to be as powerful as Turing-machines.
Hence, the reachability problem and the model checking problem for any temporal logic
gets undecidable in such pushdown systems. Here, we will consider a special restriction of
such multi-pushdown systems and prove the decidability of the reachability and recurrent
reachability problem implying the decidability of the model checking problem of LTL and
other temporal logics.

But first, we recall the results and constructions for pushdown systems with one stack.

9.2 Reliable Stacks

In this section we consider the reachability problem in pushdown automata having one stack.
It is a very famous result that this problem is decidable in polynomial time. However, we
want to recall some constructions proving this result. Later in this chapter we will generalize
two of these constructions to automata having multiple reliable stacks.

First, we need an appropriate method to store sets of configurations of a PDA. To this
end, letS = (Q ,PA, ∆, Λ) be a PA-system (we also call these systems pushdown systems).
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An S-NFA is an NFA A = (S ,A,Q , δ, F) with Q ⊆ S. The accepted configurations of the
S-NFA A = (S ,A,Q , δ, F) are

C(A) ∶= {(q,w) ∣ q ∈ Q , q w
Ð→A F} .

A set of configurations C ⊆ ConfS is called regular if there is anS-NFA A with C(A) = C.
Note that we can see the set of accepted configurations of anS-NFA A as a collection

of a finite number of regular languages, each starting from a state ofS. In other words, for
S = (Q ,PA, ∆, Λ) and A = (S ,A,Q , δ, F) we have the following equation:

C(A) = ⋃
q∈Q
{q} × L(Aq→F) .

Hence, the term “regular set of configurations” is eligible.

9.2.1 Reachability
Now, we are able to state the main theorem of this section: the decidability of the reachability
problem in pushdown systems:

Theorem 9.2.1 ([BEM97, FWW97, Esp+00]). Let A be an alphabet,S be aPA-system,

C ⊆ ConfS be regular. Then post∗S(C) and pre
∗
S(C) are regular. In particular, we can

computeS-NFAs accepting post∗S(C) and pre
∗
S(C) fromS and anS-NFA accepting

C in polynomial time.

We recall multiple constructions proving this result. We also want to visualize the proof
ideas with the help of an example. To this end, consider the following pushdown systemS
andS-NFA A:

S∶ A∶p0 p1
ba

a

p0 p1

Figure 9.1

The first construction we consider is the one introduced by Bouajjani, Esparza, and
Maler [BEM97]. In this construction we only consider classical pushdown systems having
transitions labeled with actions sequences from AA∗, only, i.e., on each step the PDA reads
one letter and afterwards writes a word into the stack. However, as we stated earlier in this
thesis, any pushdown system can be translated into such classical pushdown system.

Proof idea. Let S = (Q ,PA, ∆, Λ) where for each (p, t, q) ∈ ∆ we have t ∈ AA∗ and let
C be accepted by A = (S ,A,Q , δ, F). We iteratively add some edges to A simulating the
application of a single transition ofS. Since A is finite, this construction terminates after
several iterations. The number of these iterations is polynomial in the size of A.

To this end, we defineS-NFAs A(i) ∶= (S ,A,Q , δ(i), F) for numbers i ∈ N as follows:
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Set δ(0) ∶= δ, i.e., we have A(0) = A. W.l.o.g., we assume that δ(0) ⊆ S × A× S ∖Q holds,
i.e., the initial states of A(0) have no in-edges.

q p p s

q

f
at tR

a

S∶ A(i)∶

Figure 9.2. Visualization of the construction. The dashed a-edge is added in step i + 1.

δ(i+1) ∶= δ(i) ∪ {(q, a, s) ∈ Q × A × S ∣ ∃(q, at, p) ∈ ∆∶ p tR

Ð→A(i) s}. In other words,
whenever there is a transition (q, at, p) in S and a configuration (p, tRw) ∈ C(A(i))
we also have (q, aw) ∈ pre1S(C(A(i))) ⊆ pre

∗
S(C(A)). Hence, we add an a-labeled edge

from q in A(i+1) (cf. Figure 9.2).

Let A(∞) = (S ,A,Q , δ(∞), F) be the “limit” of the sequence (A(i))i∈N, i.e., δ(∞) =
⋃i∈N δ(i). Then we can show pre∗S(C(A)) = C(A(∞)). Since we have δ(0) ⊆ δ(1) ⊆ ⋅ ⋅ ⋅ ⊆
δ(∞) ⊆ S × A × S and since the latter set is finite, we have δ(k) = δ(k+1) for k ∶= ∣S∣2∣A∣ and,
therefore δ(k) = δ(∞). Hence, A(∞) also is constructible fromS and A in polynomial time.◂

Example 9.2.2. Consider S and A as visualized in Figure 9.1. Then we have C(A) =
{(p1, ε)} and we want to compute pre∗S(C(A)). In the first approach we compute an
S-NFA as depicted in Figure 9.3.

p0 p1 p0 p1 p0 p1

a

b

a

Figure 9.3.TheS-NFAs A(0), A(1), and A(2) (from left to right). The sequence (A(i))i∈N stabilizes after
the second step. Hence, we have A(∞) = A(2).

Hence, we have pre∗S(C(A)) = C(A(2)) = ({p0} × ba∗) ∪ ({p1} × a∗). ⌟

Now, we take a closer look at the complexity of this first construction. We see that the
resulting S-NFA A(∞) has still as many states as A, but more transitions. However, the
number of transitions is bounded by O(∣A∣2 ⋅ ∣A∣). To add a new transition to A, we have to
find for any pair of states inS a path of bounded length ℓ ∶=max{∣t∣ ∣ (q, at, p) ∈ ∆} in A.
Hence, each round is possible in time O(ℓ ⋅ ∣Q∣2) implying a total running time bounded by
O(∣S∣3 ⋅ ∣A∣2 ⋅ ∣A∣) (since ℓ, ∣Q∣ ∈ O(∣S∣)).

However, this approach is not convenient for computing the succeeding configurations
of C(A). This is due to the restriction that each transition ofS is labeled with a word from
AA∗. Computing the forwards reachable configurations would require to add some states to
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A. Since wemay add new states in each round, the construction will possibly never terminate.
Though, it is possible to modify this construction as follows:

(1) We can translate the pushdown system into a reversible one in which each transition is
labeled with an action sequence of the form a (decrease the stack), ab (modify the top
symbol), or aab (push another symbol onto the stack). This can be done by splitting
transitions as described by Schellmann in [Sch19]: a transition labeled with ab1b2 . . . bn
(for n ≥ 2) ofS can be split into multiple transitions labeled with ab1 and bibibi+1 for
each 1 ≤ i < n.

For such reversible pushdown system S we can construct the reverse pushdown
system T as follows: replace (p, ab, q) by (q, ba, p), (p, aab, q) is replaced by (q, b, p),
and (p, a, q) is replaced by (q, bba, p). Thenwe have c →∗S d if, and only if, d →∗T c holds
for any two configurations c, d ∈ ConfS = ConfT. Finally, we can apply the construction
from [BEM97] as described above to compute the forwards reachable configurations (cf.
[Sch19]).

(2) An alternative algorithm is described in [Esp+00]. In that paper the authors added a
fixed number of states to A representing the long tail w of a transition labeled with abw.
Afterwards, we obtain an algorithm which is very similar to the one from [BEM97].

Another construction suitable for computing the sets of forwards and backwards reach-
able configurations was presented by Finkel, Willems, and Wolper in [FWW97]:

Proof idea. Let S = (Q ,PA, ∆, Λ) be a pushdown system such that (p, t, q) ∈ ∆ implies
t ∈ AA∗ (i.e., S is a classical pushdown system). Suppose there are the following two
transitions (p, atb, q), (q, b, r) ∈ ∆ implying (p, aw) →S (q, btRw) →S (r, tRw) for any
wordw ∈ A∗. If we add the transition (p, at, r) to ∆ that allows to go from (p, aw) to (r, tRw)
directly, the reachability relation does not change. We keep adding such “shortcuts” and call
the resulting pushdown systemS(∞) saturated. Then, any run of the original systemS can
be simulated by a run of the saturated system S(∞) that first shortens the stack and then
writes onto the stack. It follows that for such saturated pushdown systems the mappings
post∗S and pre∗S preserve regularity effectively.

The crucial point of this construction is that any run of the systemS(∞) can be brought
into such “simple form” using the shortcuts. Here, “simple form” means that a run consists
of two phases: the pushdown decreases properly in every step of the first phase and does not
decrease in any step of the second phase.

Note that this result agrees with the fact that any action sequence t ∈ Σ∗ of a pushdown
behaves equivalently to an action sequence from A

∗
A∗ (or á), cf. Theorem 4.3.2. ◂

Example 9.2.3. Again, we consider the pushdown systemS andS-NFA A as displayed
in Figure 9.1. Since we have (p0, ba, p1), (p1, a, p1) ∈ ∆, the equivalent saturated push-
down systemS(∞) also has a transition (p0, b, p1).

Then we see that pre∗S(C(A)) is the following set:

({p0} × ba
∗) ∪ ({p1} × a∗) ,

which is in fact regular (however, the proof idea from above does not describe, how to
construct an accepting A-NFA). ⌟

Finally, we have to consider the complexity of this sketched construction. First, consider
the construction of the equivalent saturated pushdown systemS(∞). We can compute this
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p0 p1
ba, b

a

Figure 9.4.The saturated pushdown systemS(∞).

system iteratively by adding new transitions having a label shorter than the previously existing
ones. Hence, our algorithm requires at mostO(∣Q∣2 ⋅ ∣t∣)where t ∈ A∗ is the longest word with
(p, at, q) ∈ ∆. According to [FWW97] it is also possible to compute anS-NFA accepting
pre∗S(C(A)) in cubic time.

FromTheorem 9.2.1 we finally obtain the following decidability result:

Corollary 9.2.4. The following reachability problem is decidable in polynomial time:

Input: An alphabet A, a PA-systemS, and twoS-NFAs A andB.

Question: Does C(A)→∗S C(B) hold? ◂

9.2.2 Recurrent Reachability
Using the decidability of the reachability problem in pushdown systems, we can also prove
that repeated reachability is decidable. This repeated reachability problem corresponds to
the emptiness problem of ω-languages accepted by Büchi-pushdown automata. Applying
the reduction in Theorem 8.3.1 we obtain the decidability of the model checking problem for
several temporal logics in pushdown systems.

Lemma 9.2.5 ([BEM97]). Let A be an alphabet, A = (Q , Γ ,PA, I, c, ∆, F) be a push-
down automaton. Then we have Lω(A) ≠ ∅ if, and only if, there are q ∈ Q and a ∈ A
with

(1) pre∗A({q} × aA∗) ∩ InitA ≠ ∅ and

(2) (q, a) ∈ pre+A(FinalA ∩ pre+A({q} × aA∗)). ◂

Note that both conditions in Lemma 9.2.5 are decidable in polynomial time due to Corol-
lary 9.2.4. Hence, we can see that the emptiness problem for ω-languages accepted by
Büchi-PDAs is decidable in polynomial time.

Now, we may consider the model checking problem of LTL and other temporal logics.
We are able to reduce model checking for LTL-like temporal logics to the emptiness problem
of Büchi-automata. Hence, from Lemma 9.2.5 we obtain that the model checking problem is
decidable for Kripke-structures induced by pushdown systems in this case. Concretely, we
know that model checking of LTL is EXPTIME-complete for this kind of Kripke-structures
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[BEM97]. We also know that CTL-model checking is EXPTIME-complete [Wal00,Wal01]
and CTL∗-model checking is 2EXPTIME-complete [Boz07].

9.3 Partially Lossy Stacks
Next, we want to transfer the results from the previous section to automata having one
partially lossy stack. Recall that we have learned two different semantics of partially lossy
stacks which both have the same computational power. However, in the context of forwards
and backwards reachable configurations we have to differentiate between these two types.
We first show that we obtain the configurations reachable in a partially lossy stack system
with default semantics from one with read-lossy semantics. To this end, we have to extend
the notion of L-subwords from words to configurations. So, let S = (Q ,PL, ∆, Λ) be a
PL-system and (p, v), (q,w) ∈ ConfS be two configurations. We write (p, v)⊑L(q,w) if,
and only if, p = q and v ⊑Lw holds. In other words, we have c ⊑L d for two configurations
c, d ∈ ConfS if c and d agree in their control state and the content in c is an L-subword of
the one in d. Obviously, the relation ⊑L is a partial ordering on ConfS.

Now, letS = (Q ,PLSL, ∆, Λ) be a partially lossy stack system with default semantics.
From this system we obtain a pls system T = (Q ,PL, ∆, Λ) with read-lossy semantics simply
by replacing the underlying data type. Note that this system is still well-defined. Since PL

is only a determinization of PLSL, the Kripke-structure M(T) is a subgraph of M(S).
Hence, each run of T is also a run inS. Conversely, there may be runs inS which are not
allowed in T. However, for each run c →∗S d inS we can find another run in T ending in a
configuration d′ with d ⊑L d′, i.e., in which its stack content is an L-superword of the one in
d. This is the following lemma:

Lemma 9.3.1. Let L = (F ,U) be a lossiness alphabet, S = (Q ,PLSL, ∆, Λ) be a
PLSL-system, and T = (Q ,PL, ∆, Λ) be its read-lossy version. For any pair c, d ∈
ConfS = ConfT the following equivalence holds:

c →∗S d ⇐⇒ there is d′ ∈ ConfT∶ d ⊑L d′ and c →∗T d
′ .

Proof. First we prove the implication “⇐”. It is easy to see that M(T) is a subgraph of
M(S). Hence, from c →∗T d

′ we also obtain c →∗S d′. Additionally, from d ⊑L d′ we also
obtain an ε-edge inM(S) implying c →∗S d′ →S d.

Now, we prove the converse implication. To this end, we prove by induction on the
length n ∈ N of a run c →n

S d that there is d′ ∈ ConfT with d ⊑L d′ and c →∗T d′ (note that
this run has not necessarily length n). If n = 0 holds, we have c = d and d ⊑L d (recall that ⊑L
is a partial ordering). Hence, setting d′ ∶= d yields our claim in this case. Next, let n ≥ 1. Then
there is e ∈ ConfS with c →n−1

S e →S d. By induction hypothesis there is a configuration
e′ ∈ ConfT with e ⊑L e′ and c →∗T e′. Let e ∶= (p, v), e′ ∶= (p, v′), and d ∶= (q,w). We have
to distinguish two cases:

(1) p = q and w ⊑L v (i.e., e →S d only forgets some letters). Then we have d ⊑L e ⊑L e′. By
transitivity of ⊑L we are done with d′ ∶= e′.
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(2) There is (p, t, q) ∈ ∆ with w ∈ ⟦t⟧PLSL(v). By Proposition 3.3.4 we have w ⊑L⟦t⟧PL
(v)

and from Lemma 3.3.3 we learn ⟦t⟧PL
(v)⊑L⟦t⟧PL

(v′). Set d′ ∶= (q, ⟦t⟧PL
(v′)). Then

we have d ⊑L d′ by transitivity of ⊑L. We also have e′ →T d′ implying c →∗T e′ →T d′. ◂

c e′ = (p, v′)

e = (p, v)

(p, ⟦t⟧(v′)) =∶ d′

(p, ⟦t⟧(v))

(p,w) = d

∗
T T

T

∗
S

S

⊑
L

⊑
L

⊑
L

Figure 9.5. Visualization of the proof of Lemma 9.3.1.

From this result we learn the following connection between forwards resp. backwards
reachable configurations in a partially lossy stack system with default and read-lossy seman-
tics.

Proposition 9.3.2. Let L = (F ,U) be a lossiness alphabet,S = (Q ,PLSL, ∆, Λ) be a
PLSL-system, T = (Q ,PL, ∆, Λ) be its read-lossy version, and C ⊆ ConfS be a set of

configurations. Then the following statements hold:

(1) post∗S(C) = ↓⊑Lpost
∗
T(C) and

(2) pre∗S(C) = pre
∗
T(↑⊑LC).

Proof. First we prove (1). Let d ∈ post∗S(C). Then there is c ∈ C with c →∗S d. By Lemma 9.3.1
there is d′ ∈ ConfT with d ⊑L d′ and c →∗T d′. Hence, we have d′ ∈ post

∗
T(C) and, therefore,

d ∈ ↓⊑Lpost
∗
T(C).

Conversely, let d ∈ ↓⊑Lpost
∗
T(C). Then there are c ∈ C and d′ ∈ ConfT with d ⊑L d′ and

c →∗T d
′. According to Lemma 9.3.1 we learn c →∗S d implying d ∈ post∗S(C).

Now, we show the second statement. So, let c ∈ pre∗S(C). Then there is d ∈ C with
c →∗S d. We find a configuration d′ ∈ ConfT with d ⊑L d′ and c →∗T d′ by Lemma 9.3.1. In
other words, we have d′ ∈ ↑⊑LC implying c ∈ pre∗T(↑⊑LC).

Finally, let c ∈ pre∗T(↑⊑LC). Then there is d′ ∈ ↑⊑LC with c →∗T d′. Additionally, there is
d ∈ C with d ⊑L d′. Then by Lemma 9.3.1 we obtain c →∗S d and, hence, c ∈ pre∗S(C). ◂

Let C ⊆ ConfS be a regular set of configurations. Then we can computeS-NFAs accept-
ing ↑⊑LC and ↓⊑LC, respectively, in polynomial time and linear space. The constructions are
similar to the ones from Haines [Hai69]. In other words, if we restrict Proposition 9.3.2 to
regular sets of configurations, we obtain the forwards and backwards reachable configura-
tions of a pls system with default semantics from one with read-lossy semantics using these
closure properties, only.

Next, we want to reduce the reachability problem of a partially lossy stack system to one
of a reliable pushdown system. To this end, we construct from a PL-systemS a PA-system
T which reaches the same configurations (and some further configurations not in ConfS).
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Proposition 9.3.3. Let L = (F ,U) be a lossiness alphabet andS be aPL-system. Then

we can compute a PA-system T in polynomial time with ConfS ⊆ ConfT such that we
have for each C ⊆ ConfS:

post∗S(C) = post
∗
T(C) ∩ConfS and pre∗S(C) = pre

∗
T(C) ∩ConfS .

Proof idea. LetS = (QS,PL, ∆S, ΛS). Without loss of generality, we can assume that each
transition (p, t, q) ∈ ∆S applies at most one basic action (i.e., ∣t∣ ≤ 1 holds). Otherwise, we
are able to split transitions inS.

We construct a pushdown system T which simulates the behavior ofS. But whenever
S tries to read a letter, T guesses this letter a ∈ A (and stores its guess in its global state). In
this new state we can read some other forgettable letters from F ∖ {a}. Finally, we read a
and continue the simulation ofS. Then T = (QT,PA, ∆T, ΛT) is defined as follows:

QT ∶= QS ∪ (QS × A),
ΛT(q) = ΛS(q) and ΛT((q, a)) = ΛS(q) for each q ∈ QS and a ∈ A, and
∆T consists of the following transitions:
– (p, a, q) ∈ ∆T for each a ∈ A∪ {ε} and (p, a, q) ∈ ∆S (i.e., T inherits the write and

ε-transitions ofS) and
– (p, ε, (p, a)), ((p, a), b, (p, a)), ((p, a), a, q) ∈ ∆T for each (p, a, q) ∈ ∆S and

b ∈ F ∖ {a} (i.e., T simulates read actions fromS in three steps).

Then we can show
c →∗S d ⇐⇒ c →∗T d

for each pair of configurations c, d ∈ ConfS ofS. This finally implies our claim. ◂

Combining Propositions 9.3.2 and 9.3.3 with the results concerning (reliable) pushdown
systems from the previous section, we can also compute the forwards and backwards reachable
configurations of a regular set of configurations of a partially lossy stack system with default
or read-lossy semantics. Additionally, we obtain the decidability of the recurrent reachability
problem in these cases:

Theorem 9.3.4. Let L = (F ,U) be a lossiness alphabet. Then the following statements

hold:

(1) LetS be a PLSL- or PL-system and C ⊆ ConfS be a regular set of configurations.

Then we can compute S-NFAs accepting post∗S(C) and pre∗S(C) in polynomial
time.

(2) Let A be a PLSL- or PL-automaton. We can decide in polynomial time, whether

Lω(A) ≠ ∅ holds. ◂

As a corollary we also obtain the decidability of the model checking problem of temporal
logics like LTL in such systems.
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9.4 Intermezzo: Asynchronous Automata

Before verifying the distributed version of pushdown systems, we have to introduce some
acceptors of rational and recognizable trace languages. To this end, we introduce the so-called
asynchronous automata.

LetA = (A, P,M) be a distributed alphabet and let A = (Q ,A, I, ∆, F) be an NFA. The
accepted trace language of A is

T(A) ∶= {[w] ∣ I
w
Ð→A F} = ζA(L(A))

Note that by T(A) = ζA(L(A)) we infer that the accepted trace language of A is ratio-
nal. Moreover, since ζA is an epimorphism, NFAs accept exactly the class of rational trace
languages.

Until now, NFAs accept a trace λ ∈M(A) if there is at least one accepting run labeled
with a serializationw ∈ λ. Next, we want to introduce restricted NFAsA which accept a trace
λ ∈ M(A) if they accept allallallallallallallallallallallallallallallallall words w ∈ λ. In this case, we obtain L(A) = ζ−1A (ζA(L(A)))
implying that the accepted trace language T(A) is recognizable. This special restriction is
the following one:

Definition 9.4.1. Let A = (A, P,M) be a distributed alphabet. An asynchronous auto-
maton is an NFA A = (Q⃗ ,A, I, ∆, F) where Q⃗ = ∏i∈P Qi is the product of some finite
sets Qi of local states and where for each transition (p⃗, a, q⃗) ∈ ∆ we have the following
restrictions:

(1) p⃗↾P∖aM = q⃗↾P∖aM and

(2) for each r⃗ ∈ Q⃗↾P∖aM we have ((p⃗↾aM, r⃗), a, (q⃗↾aM, r⃗)) ∈ ∆. ⌟

The first restriction in the definition above ensures that any a-edge of A only modifies the
processes from aM while the other processes are left untouched. The second restriction
guarantees that a-edges are independent of the states of the other components in P ∖ aM. In
this case we can also see ∆ as a collection of (local) transition relations ∆a (for a ∈ A) where
∆a ⊆ Q⃗↾aM × Q⃗↾aM. From now on, it suffices to specify the sets ∆a for any a ∈ Awhenever
we want to describe the transitions of such asynchronous automaton.

We can see an asynchronous automaton A as a collection of ∣P∣many local NFAs Ai (for
i ∈ P) with synchronizations in between according to the underlying distributed alphabetA.

Consequently, we can also see a run p⃗ w
Ð→A q⃗ as a finite collection of local runs pi

π i(w)
ÐÐÐ→Ai

qi
(for i ∈ P). We call such collection an asynchronous run of A from p⃗ to q⃗ labeled with the
trace [w]. In this case we also write p⃗

[w]
Ð→A q⃗. For example, we can visualize an asynchronous

run p⃗
[acba]
ÐÐÐ→A q⃗ (if the dependence graph GA ofA is a— b— c) as in Figure 9.6.

We can find in this figure two possible serializations of this run:

(1) (p1, p2, p3)
a
Ð→A (r1, r2,1, p3)

c
Ð→A (r1, r2,1, 23)

b
Ð→A (r1, r2,2, q3)

a
Ð→A (q1, q2, q3) and

(2) (p1, p2, p3)
c
Ð→A (p1, p2, r3)

a
Ð→A (r1, r2,1, 23)

b
Ð→A (r1, r2,2, q3)

a
Ð→A (q1, q2, q3).

In other words, the words acba and caba induce the same asynchronous run. Note that this
also holds for arbitrary pairs of independent letters:
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p1

p2

p3

r1

r2,1

r3

r2,2

q3

q1

q2

a a

a b a

c b

Figure 9.6. Visualization of an asynchronous run Π in an asynchronous automaton.

Observation 9.4.2. Let A = (A, P,M) be a distributed alphabet, A = (Q⃗ ,A, I, ∆, F)
be an asynchronous automaton, a, b ∈ Awith a ∥ b, and p⃗, q⃗, r⃗ ∈ Q⃗ with p⃗ a

Ð→A q⃗ b
Ð→A r⃗.

Set q⃗′ ∶= (r⃗↾bM, p⃗↾P∖bM) ∈ Q⃗. Then we have p⃗ b
Ð→A q⃗′ a

Ð→A r⃗. ◂

By induction on the number of commutations we also learn that if p⃗ λ
Ð→A q⃗ is an asyn-

chronous run, we find a serialization p⃗ w
Ð→A q⃗ for each word w ∈ λ. This also implies

L(A) = ζ−1A (ζA(L(A))). Hence, we infer that the accepted trace language T(A) of an asyn-
chronous automaton A is recognizable. We can also show that each recognizable trace
language can be accepted by a (deterministic) asynchronous automaton (cf. [Zie87]).

Now, assume that there is an asynchronous run p⃗ λ
Ð→A q⃗ of an asynchronous automaton

A labeled with λ ∈M(A) from p⃗ to q⃗. We fix one such asynchronous run Π (we also write
Π = (p⃗ λ

Ð→A q⃗) in this case). Let κ ∈M(A) be a prefix of λ, i.e., λ = κµ for a trace µ ∈M(A).
Then there is a uniquely defined state Πκ on this run with Π = (p⃗

κ
Ð→A Πκ

µ
Ð→A q⃗). Note that

Πκ consists of the states ri reachable via πi(κ) on the local run pi
π i(λ)
ÐÐ→A qi . In particular,

we have Πε = p⃗ and Πλ = q⃗. For example, in Figure 9.6 we have Π[ac] = (r1, r2,1, r3).
It is well-known that the class of recognizable trace languages is closed under Boolean

operations, concatenation, shuffle, and reversal. Additionally, if L ⊆M(A) is recognizable
and connected then its iteration L∗ is recognizable as well (cf. [DR95]). This statement also
holds if we generalize the Kleene closure as follows: let L ⊆ M(A) be recognizable and
connected and let S ⊆ N be recognizable in Nxv. Then LS = ⋃n∈S Ln is recognizable. Note
that we have L∗ = LN. All of the closure properties listed above are effective and for a fixed
distributed alphabetA even efficient (cf. Appendix A).

9.5 Distributed Stacksxvi

Now, we want to study the reachability problem and the model checking problem of several
temporal logics in Kripke-structures induced by specialPA-systems whereA is a distributed
alphabet (in the following we call these systems distributed pushdown systems). As we have
already mentioned in Section 3.4.2 we know that in the general case distributed pushdown

xvNote that S ⊆ N is recognizable in N iff S is semi-linear, i.e., iff the word language {an ∣ n ∈ S} is regular.
xviThe results in this section stem from an unpublished joint work with Dietrich Kuske [KK22].
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systems having at least two stacks are as powerful as Turing-machines. In the following we
will recall a proof of this statement:

Lemma 9.5.1. Let Γ be an alphabet and L ⊆ Γ∗ be a recursively enumerable language.
There is a distributed alphabetA = (A, P,M) with Γ ⊆ A and ∣P∣ = 2 and a distributed
pushdown systemS overA such that

L = {w ∈ Γ∗ ∣ c →∗S (q, [wx])}

holds for a configuration c ∈ ConfS, a state q ofS, and x ∈ (A∖ Γ)∗.

Proof. Since L is a recursively enumerable language, there is a grammarG = (N , Γ , R, S) of
Chomsky-type 0 with L(G) = L. We setA = (A, P,M) as follows:

A ∶= N ∪Γ∪N ′∪Γ′∪{#, #′}where N ′ and Γ′ are disjoint copies of N and Γ, respectively,
and # and #′ are new letters - we denote the corresponding copy of any letter α ∈
N ∪ Γ ∪ {#} by α′ ∈ N ′ ∪ Γ′ ∪ {#′},

P ∶= {1, 2}, and

M ∶= ((N ′ ∪ Γ′ ∪ {#′}) × {1}) ∪ ((N ∪ Γ ∪ {#}) × {2}).

Now, let k ∈ N be the maximal length of all words ℓ, r ∈ Γ∗ with (ℓ, r) ∈ R. We construct
S = (Q ,PA, ∆, Λ) as follows:

Q ∶= {qv ∣ v ∈ (N ∪ Γ)∗, ∣v∣ ≤ k},

Λ is arbitrary, and

∆ consists of the following transitions:

(1) (qv , α′, qαv) and (qv , α, qvα) for any v ∈ (N ∪ Γ)∗ with ∣v∣ < k and α ∈ N ∪ Γ,
(2) (qαv , β′β′α′, qv) and (qvα , ββα, qv) for any v ∈ (N ∪ Γ)∗ with ∣v∣ < k, α ∈ N ∪ Γ,

and β ∈ N ∪ Γ ∪ {#}, and
(3) (qℓ , α′α′, qr) and (qℓ , αα, qr) for any production (ℓ, r) ∈ R and α ∈ N ∪ Γ ∪ {#}.

Then for all words u,w ∈ (N ∪ Γ∗) and states qv ∈ Q we have

(qε , [#′ S#])→∗S (qv , [u
′R#′ w#]) ⇐⇒ S ⇒∗G uvw

where u′ ∈ (N ′ ∪ Γ′)∗ is the copy of u. In particular, we infer w ∈ L if, and only if,
(qε , [#′ S#])→∗S (qε , [#′ w#]) holds for any word w ∈ Γ∗. ◂

In other words, the constructed distributed pushdown system is able to copy data from
one stack to the other one with the help of the transitions of types (1) and (2). Additionally,
the system can do a derivation step ofG whenever the left-hand side of a rule inG is in the
bounded memory in the control state. Hence, we can see the contents of the stacks as a prefix
and suffix of the non-empty part of a Turing-tape with an infix of bounded length in between
(which is stored in the control state). Note that in the constructed system each transition
modifies only one stack at once.
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Hence, to translate the results from single-pushdown systems to systems having more
than one stack as their memory, we have to weaken the expressiveness of these systems. A
first approach is to consider systems which are asynchronous in the sense of Definition 9.4.1.
This means, for each stack we have an independent “local” control component. Write and
read actions of a letter modify exactly the local control components of the processes which
are able to handle those letters. Additionally, those actions are independent of the local
control components which are unable to handle the associated letter. Unfortunately, such
distributed pushdown systems are still Turing-complete:

Remark 9.5.2. LetM = (Q ,TB,□, ∆, Λ) be a Turing-system with blank symbol □ (note
that this is a system with a Turing-tape, cf. Section 3.2.6). We can assume that any
transition is labeled by BB{L, R,N}. Then we can construct a distributed pushdown
systemS as follows: we have two stacks where stack 1 contains the Turing-tape’s (non-
empty) contents, which are left of the head position, and stack 2 contains the remaining
(non-empty) contents such that the head position is the top of stack 2. To this end,
we have two copies a1 and a2 of each letter a ∈ B where ai can be handled by stack i.
Then the transitions of our system simulate the Turing-tape’s transformations. Since we
simulate our transitions only on stack 2, the head-movements to the left-hand side are a
bit more tricky since we cannot move stack 1’s top element in just one step. So, we do
this as follows: if stack 2 is in state q it moves into a copy q′ of this state indicating that
this stack waits for a letter from stack 1. Then the first stack reads its top element c1 and
pushes a marked copy c′2 to stack 2 (note that c′2 indicates that it is new on this stack).
Finally, stack 2moves from the waiting state q′ to q and converts the marked copy c′2
into c2.

All in all, we construct the following distributed alphabetA = (A, P,M):

A ∶= {a1, a2, a′2 ∣ a ∈ B} ∪ {#1, #2} where a1, a2, a′2 are three distinct copies of a,

P ∶= {1, 2}, and

M ∶= {(a1, 1), (a2, 2), (a′2, 2) ∣ a ∈ B} ∪ {(#1, 1), (#2, 2)}.

The described distributed pushdown systemS = (Q⃗ ,PA, ∆′, Λ′) is the following:

Q⃗ ∶= Q1 × Q2 where Q1 ∶= {⊺} and Q2 ∶= {q, q′ ∣ q ∈ Q} where q′ is a distinct copy
of q,

Λ′(⊺, q) = Λ′(⊺, q′) ∶= Λ(q) where q ∈ Q, and

∆′ consists of the following transitions:

(1) ((⊺, p), a2b2, (⊺, q)) for each (p, abN , q) ∈ ∆,
(2) ((⊺, p), a2b1, (⊺, q)) for each (p, abR, q) ∈ ∆,
(3) ((⊺, p), a2b2, (⊺, q′)), ((⊺, s), c1c′2, (⊺, s)), and ((⊺, q′), c′2c2, (⊺, q)) for each

(p, abL, q) ∈ ∆, c ∈ B, and s ∈ Q2, and
(4) ((⊺, s), #i#i□i , (⊺, s)) for each i ∈ {1, 2} and s ∈ Q2.

Then we have the following equivalence:

pu →∗M vqw ⇐⇒ ∃i , j ∈ N∶ ((⊺, p), [#1 u2#2])→∗S ((⊺, q), [v1R□i
1#1 w2□

j
2#2])
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for each u, v ,w ∈ B∗ and p, q ∈ Q. Note thatwi means the ith copy ofw for each i ∈ {1, 2}.
Hence, if we assume ι, f ∈ Q to be an initial resp. final state ofM the language

{w ∈ B∗ ∣ ∃i , j ∈ N∶ ((⊺, ι), [#1 w2#2])→∗S ((⊺, f ), [□
i
1#1 □

j
2#2])}

is exactly the set of words the Turing-machine obtained fromM with initial state ι and
final state f would accept. ⌟

In Lemma 9.5.1 we have seen that distributed pushdown systems are as powerful as
Turing-machines if each transition writes letters at most into those stacks from which we
have read a letter right before. Additionally, Remark 9.5.2 shows that distributed pushdown
systems are Turing-complete if their control components are composed of local components
for each process. Note that in this case we have transitions writing letters into stacks from
which we have not read a letter before (these are the transitions ((⊺, p), a2b1, (⊺, q)) and
((⊺, s), c1c′2, (⊺, s)) in the constructed distributed pushdown system). Now, we want to
consider the combination of both restrictions to distributed pushdown systems. This means,
each process has its own local control component and we write only letters into those stacks
from which we have read another one right before. These special systems are given in the
following definition. Afterwards, we will consider the reachability problems of such systems.

Definition 9.5.3. Let A = (A, P,M) be a distributed alphabet. An asynchronous push-
down system is a distributed pushdown systemS = (Q⃗ ,PA, ∆, Λ) where Q⃗ =∏i∈P Qi is
a finite product of finite sets Qi (for any i ∈ P) and where each transition (p⃗, t, q⃗) ∈ ∆
satisfies the following properties:

(1) t = as with a ∈ A and s ∈ A∗ such that sM ⊆ aM,

(2) p⃗↾P∖aM = q⃗↾P∖aM, and
(3) for each r⃗ ∈ Q⃗↾P∖aM we have ((p⃗↾aM, r⃗), t, (q⃗↾aM, r⃗)) ∈ ∆. ⌟

We can also define asynchronous pushdown automata with the same restrictions.
The first condition ensures that we write letters only into those stacks from which we

have read a letter before. The second and third condition in this definition ensure that a
transition (p⃗, at, q⃗) ∈ ∆ ofS is independent of the processes in P ∖ aM. Hence, we can see
∆ as the union of finitely many finite sets

∆a ⊆ Q⃗↾aM × A∗ × Q⃗↾aM

where a ∈ A. From now on, we may also define ∆ with the help of these sets ∆a.
Recall the constructed systems from the proof of Lemma 9.5.1 and in Remark 9.5.2. The

system in Lemma 9.5.1 only satisfies the first condition in Definition 9.5.3. The system in
Remark 9.5.2 violates this condition, but satisfies the second and third one. Hence, none of
these two constructed systems is asynchronous in the sense of this definition.

To simplify notations, we will introduce a quasi-ordering ≤ on the alphabet A. Concretely,
for a, b ∈ Awe write a ≤ b if, and only if, aM ⊆ bM. From this quasi-ordering we also obtain
the following subalphabets of A for any letter a ∈ A:

A≤a ∶= {b ∈ A ∣ b ≤ a} and A=a ∶= {b ∈ A ∣ a ≤ b, b ≤ a} .

Hence, the alphabets A=a are exactly the equivalence classes induced by ≤ and, therefore, form
a partition of A. The alphabets A≤a also have a natural meaning in terms of asynchronous
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pushdown systems: whenever we read a letter a ∈ A from the stack’s top, we can only write
letters at most on the processes from aM. In other words, for a transition (p⃗, at, q⃗) of an
asynchronous pushdown system we know that t ∈ A∗≤a holds. We can also extend the quasi-
ordering ≤ to words on A. So, we write v ≤ w if, and only if, vM ⊆ wM holds. Consequently,
we also have t ≤ a for any transition (p⃗, at, q⃗) of an asynchronous pushdown system.

Example 9.5.4. LetA = ({a, b, c}, {1, 2}, {(a, 1), (a, 2), (b, 1), (c, 2)}) be a distributed
alphabet. Then we have b, c ≤ a. Now, consider the distributed pushdown system S
from Figure 9.7. The set of control states ofS is the product {0, 1} × {0, 1}. Additionally,
b-edges depend only on process 1 and c-edges depend on process 2. Since b, c ≤ a holds,
we finally see thatS is asynchronous. ⌟

S∶

(0, 0)

(1, 0)

(0, 1)

(1, 1)

aba

c

aba, b

a, c

c

b, c

Figure 9.7.The asynchronous pushdown systemS.

Now, letA = (A, P,M) be a distributed alphabet. If P is a singleton, then any distributed
pushdown system overA is obviously asynchronous. In this case, a distributed pushdown
system is a reliable (single-)pushdown system as considered in Section 9.2.

Next, let P be an arbitrary set of processes. Consider an asynchronous pushdown system
S over A with a configuration (p⃗, [v]) ∈ ConfS. If S is in this configuration, we can
only read the top letters from the stacks in vM and write letters to at most these stacks.
Additionally, the local states of the processes in P ∖ vM remain untouched. After multiple
transitions we have still touched at most the stacks from vM. This is formalized in the
following observation:

Observation 9.5.5. LetA = (A, P,M) be a distributed alphabet,S = (Q⃗ ,PA, ∆, Λ) be
an asynchronous pushdown system, and (p⃗, [v]), (q⃗, [w]) ∈ ConfS with (p⃗, [v])→∗S
(q⃗, [w]). Then we have

(1) w ≤ v and

(2) p⃗↾P∖vM = q⃗↾P∖vM.

Proof. We prove this by induction on the length k ∈ N of the path (p⃗, [v]) →k
S (q⃗, [w]).

The case k = 0 is obvious since (p⃗, [v]) = (q⃗, [w]) holds.
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Now, let k ≥ 0. From (p⃗, [v]) →k+1
S (q⃗, [w]) we infer the existence of (r⃗, [u]) ∈ ConfS

with
(p⃗, [v])→k

S (r⃗, [u])→S (q⃗, [w]) .

By induction hypothesis we have u ≤ v and p⃗↾P∖vM = r⃗↾P∖vM. Additionally, by definition
of →S there are a ∈ A and t, x ∈ A∗ with (r⃗, at, q⃗) ∈ ∆, u ≈A ax, and w ≈A tRx (i.e.,
⟦at⟧([u]) = [w]). SinceS is asynchronous, we have t ≤ a implying

wM = tM∪ xM ⊆ aM∪ xM = uM ⊆ vM ,

i.e., w ≤ v. Additionally, from the asynchronism of S we have r⃗↾P∖aM = q⃗↾P∖aM. Due to
aM ⊆ uM ⊆ vM we finally infer

p⃗↾P∖vM = r⃗↾P∖vM = q⃗↾P∖vM . ◂

LetA = (A, P,M) be a distributed alphabet andS = (Q⃗ ,PA, ∆, Λ) be an asynchronous
pushdown system. For an edge (p⃗, κ)→S (q⃗, λ) in the configuration graphM(S) we can
also specify the action sequence t ∈ Σ∗ we have executed in the corresponding transition.
Concretely, we write (p⃗, κ) t

Ð→S (q⃗, λ) if we have (p⃗, t, q⃗) ∈ ∆ with ⟦t⟧(κ) = λ. We can also
extend this notion to arbitrary sequences of actions. In other words, we write (p⃗, κ) s

Ð→S

(q⃗, λ) if there is an s-labeled path from (p⃗, κ) to (q⃗, λ) in the configuration graph.
Recall that in asynchronous automata we are able to commute independent letters

according to Observation 9.4.2. We are in a similar situation in asynchronous pushdown
systems: for example, consider the transitions ((1, 0), b, (1, 0)) and ((1, 0), c, (1, 1)) of the
asynchronous pushdown systemS in Figure 9.7. Note that we have b ∥ c in this case. Since
the former transition only modifies process 1 and the latter one modifies only process 2, it
does not matter whether we first read b and then c or vice versa. In both cases, we end up in
the same configuration. This is depicted in Figure 9.8.

((1, 0), [bbc])

((1, 0), [bc])

((1, 1), [bb])

((1, 1), [b])

b

c

c

b

Figure 9.8. Two possible computations of the asynchronous pushdown systemS in Figure 9.7.

This fact can also be generalized to arbitrary transition sequences s, t ∈ Σ∗ in any asyn-
chronous pushdown system:

Observation 9.5.6. LetA = (A, P,M) be a distributed alphabet,S be an asynchronous

pushdown system, s, t ∈ Σ∗, and c, d , e ∈ ConfS with s ∥ t and c
s
Ð→S d

t
Ð→S e. Then

there is d′ ∈ ConfS with c
t
Ð→S d′

s
Ð→S e. ◂
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Next, we need an automaton model which accepts sets of configurations of distributed
pushdown systems. For non-distributed pushdown systemsS we used NFAs A having the
states fromS as their initial states and we have (q,w) ∈ C(A) if there is an accepting run in
A starting in q and labeled with w. Since C(A) can be seen as a finite collection of regular
languages we also called C(A) regular.

Now, letS be a distributed pushdown system. Then we represent the distributed stack’s
contents by traces. Recall that the class of rational trace languages does not coincide with the
class of recognizable ones in most trace monoids. For example, the trace language (ab)∗ is
rational but not recognizable if a, b ∈ A are two independent letters (i.e., if we have a ∥ b).
Those two classes are accepted by two different automaton models. So, the rational trace
languages are accepted by NFAs while the recognizable ones are accepted by restricted NFAs
- the so-called asynchronous automata. Accordingly, to translateS-NFAs to the distributed
case we also have two automaton models with different expressibility:

Definition 9.5.7. Let A = (A, P,M) be a distributed alphabet and S = (Q⃗ ,PA, ∆, Λ)
be an asynchronous pushdown system. AnS-NFA is an NFA A = (S ,A, Q⃗ , δ, F) with
Q⃗ ⊆ S. A is called anS-asynchronous automaton if it is asynchronous.

TheS-NFA A accepts the following set of configurations ofS

C(A) ∶= {(q⃗, λ) ∣ q⃗ ∈ Q⃗ , q⃗ λ
Ð→A F} .

A set of configurations C ⊆ ConfS is called rational if there is anS-NFAA with C(A) =
C. It is called recognizable if there is anS-asynchronous automaton with C(A) = C. ⌟

Wecan see the transition relation δ of anS-asynchronous automatonA = (S⃗ ,A, Q⃗ , δ, F)
as a finite collection of sets δa ⊆ S⃗↾aM × S⃗↾aM where a ∈ A is a letter.

Note that the notion of anS-NFA is similar to the one-stack case. The only difference is
the underlying system which is now asynchronous and the accepted configurations which
contain traces instead of words. Again, we can understand C(A) of an S-NFA A as a
collection of a finite number of rational trace languages. Similarly, if A is asynchronous,
C(A) is a finite collection of recognizable trace languages. This is formalized in the following
fact:

Fact 9.5.8. LetA = (A, P,M) be a distributed alphabet andS = (Q⃗ ,PA, ∆, Λ) be an
asynchronous pushdown system. Then the following statements hold:

(1) Let A be anS-NFA and q⃗ ∈ Q⃗. Then q⃗C(A) is rational inM(A). If A is asynchro-

nous then q⃗C(A) is even recognizable.

(2) Let L ⊆M(A) be rational. Then there is anS-NFA A and q⃗ ∈ Q⃗ with L = q⃗C(A).

(3) Let L ⊆M(A) be recognizable. Then there is anS-asynchronous automaton A and

q⃗ ∈ Q⃗ with L = q⃗C(A). ◂

Now, we want to consider the sets of forwards and backwards reachable configurations
of a given asynchronous pushdown system. In contrast to the non-distributed case, we have
to consider backwards reachability and forwards reachability separately. Concretely, we
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will see that the map pre∗S∶ 2ConfS → 2ConfS preserves recognizability effectively and even
efficiently. We will see, that our construction is a generalization of the already mentioned
construction from [BEM97], where we computed pre∗S in the non-distributed case. On
the other hand, we will show that forwards reachability does not preserve recognizability.
Concretely, for any rational trace language L ⊆M(A)wewill find an asynchronous pushdown
system S, a configuration c ∈ ConfS, and a control state q⃗ of S such that L is the set of
all configurations with control state q⃗ which are (forwards) reachable from c (i.e., we have
L = q⃗ post∗S(c)). However, we can prove that for any asynchronous pushdown systemS the
map post∗S∶ 2ConfS → 2ConfS preserves rationality effectively.

9.5.1 Backwards Reachability
First, we consider backwards reachability in asynchronous pushdown automata. We will
prove now that pre∗ efficiently preserves recognizability:

Theorem 9.5.9. LetA = (A, P,M) be a distributed alphabet,S be an asynchronousPA-

system, and C ⊆ ConfS be recognizable. Then pre∗S(C) is recognizable. We can compute

an S-asynchronous automaton accepting pre∗S(C) from S and an S-asynchronous
automaton accepting C in polynomial time.

We generalize the construction from [BEM97] to S-asynchronous automata. So, let
S = (Q⃗ ,PA, ∆, Λ) andA(0) = (S⃗ ,A, Q⃗ , δ(0), F) be anS-asynchronous automaton accepting
C. We can assume that δ(0)a ⊆ S⃗↾aM × T⃗↾aM holds for each a ∈ A where T⃗ ∶= ∏i∈P Si ∖ Qi .
In other words, no local state qi ∈ Qi has an in-edge in A(0). This is no restriction since we
can construct such restrictedS-asynchronous automaton in polynomial time: for each local
state qi ∈ Qi (where i ∈ P) we can add a copy q′i to Si ∖Qi . Then q′i has the same out-edges
as qi and each in-edge of qi is replaced by one pointing to q′i instead.

We inductively computeS-asynchronous automata A(k) = (S⃗ ,A, Q⃗ , δ(k), F) as follows:
for k ∈ N and a ∈ Awe set

δ
(k+1)
a ∶= δ

(k)
a ∪ {(p⃗↾aM, s⃗↾aM) ∣ p⃗ ∈ Q⃗ , s⃗ ∈ S⃗ , ∃q⃗ ∈ Q⃗∶ (p⃗↾aM, t, q⃗↾aM) ∈ ∆a & q⃗

[tR]
ÐÐ→A(k) s⃗} .

We can understand this construction as follows: whenever we have a transition (p⃗, at, q⃗)
in S and a configuration (q⃗, [tRw]) ∈ pre∗S(C) we also have (p⃗, [aw]) ∈ pre∗S(C) since
⟦at⟧([aw]) = [tRw] holds. This construction is depicted in Figure 9.9. Note that the

transition (p⃗, at, q⃗) ∈ ∆ as well as the run q⃗
[tR]
ÐÐ→A(k) s⃗ operates on components from

aM ⊇ tM, only. Additionally, both do not depend on the components from P ∖ aM.
Therefore, the same applies to the new transition (p⃗, a, s⃗) ∈ δ(k+1) ensuring thatA(k+1) also is
asynchronous. We should also note that this argument requires t ≤ a and would therefore
not work for arbitrary distributed pushdown systems.

LetA(∞) = (S⃗ ,PA, Q⃗ , δ(∞), F) be the “limit” of the sequence (A(k))k∈N satisfying δ(∞) =
⋃k∈N δ(k). Since all A(k) are asynchronous, A(∞) also is asynchronous. Our next aim is, to
prove that C(A(∞)) = pre∗S(C(A(0))) holds. Afterwards we will also show thatA(∞) can also
be constructed from theS-asynchronous automaton A(0) in polynomial time. But before,
we want to visualize the algorithm with the help of the following example:
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p⃗ q⃗ q⃗ s⃗

p⃗

f⃗
at [tR]

a

S∶ A(k)∶

Figure 9.9. Visualization of the construction of δ(k+1). We add the dashed a-edge in step k + 1.

Example 9.5.10. Recall the asynchronous pushdown systemS from Example 9.5.4. In
Figure 9.10 we depict our algorithm on input S and the configuration ((1, 1), ε). We
obtain anS-asynchronous automaton A(∞) accepting

({(0, 0)} × a{b, c}∗) ∪ ({(1, 0)} × b∗{a, c}{b, c}∗) ∪ ({(1, 1)} × {b, c}∗)

which is exactly pre∗S({((1, 1), ε)}). ⌟

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(0, 0)

(1, 0)

(0, 1)

(1, 1)

c

c

b

a, c

b, c

c

a

c

b

a, c

b, c

Figure 9.10.TheS-asynchronous automata A(0), A(1), and A(2) (from left to right). We can show that
A(2) = A(3) = A(4) = . . . holds. Hence, we have A(∞) = A(2).
In the first step we only copy edges fromS which do not write any letter, since A(0) has no edges (i.e., the
stacks are empty at this point). In the second step we are able to add the a-edge from (0, 0) to (1, 1) due to the
thick, red-colored path and the transition ((0, 0), aba, (1, 0)). Note that every node in this figure is initial -
we omitted the corresponding arrows for better readability.

Now, we show C(A(∞)) = pre∗S(C(A(0))) with the help of the following two lemmas
each stating one inclusion. Note that the proofs of these lemmas are close to (but a bit more
involved than) the ones known from [BEM97].

Lemma 9.5.11. Let k ∈ N. Then we have prekS(C(A(0))) ⊆ C(A(k)). In particular, we
have pre∗S(C(A(0))) ⊆ C(A(∞)).

Proof. We prove the first statement by induction on k ∈ N. The case k = 0 is obvious by
definition of pre0S. Now, let k ≥ 0 and (q⃗, [v]) ∈ pre

k+1
S (C(A

(0))). Then there is (p⃗, [u]) ∈
prekS(C(A(0))) with (q⃗, [v]) →S (p⃗, [u]). There exists (p⃗, at, q⃗) ∈ ∆ and x ∈ A∗ with
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v ≈A ax and u ≈A tRx (i.e., we have ⟦at⟧([v]) = [u]). By the induction hypothesis we have
(p⃗, [tRx]) = (p⃗, [u]) ∈ C(A(k)). Hence, there are s⃗ ∈ S⃗ and f⃗ ∈ F with

p⃗
[tR]
ÐÐ→A(k) s⃗

[x]
Ð→A(k) f⃗ .

By (p⃗, at, q⃗) ∈ ∆ and p⃗
[tR]
ÐÐ→A(k) s⃗ we obtain (q⃗, a, s⃗) ∈ δ(k+1) and, hence,

q⃗
[a]
Ð→A(k+1) s⃗

[x]
Ð→A(k) f⃗ .

Since δ(k) ⊆ δ(k+1) we finally obtain (q⃗, [ax]) = (q⃗, [v]) ∈ C(A(k+1)).
Towards the second statement recall that we have δ(0) ⊆ δ(1) ⊆ δ(2) ⊆ ⋅ ⋅ ⋅ ⊆ δ(∞) implying

C(A(0)) ⊆ C(A(1)) ⊆ C(A(2)) ⊆ ⋅ ⋅ ⋅ ⊆ C(A(∞)) .

Then we have

pre∗S(C(A
(0))) = ⋃

k∈N
prekS(C(A

(0))) ⊆ ⋃
k∈N

C(A(k)) ⊆ C(A(∞)) .
◂

Lemma 9.5.12. We have C(A(∞)) ⊆ pre∗S(C(A(0))).

Proof. We prove this lemma with the help of the following statement:
▷ Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim. Let k ∈ N, w ∈ A∗, q⃗ ∈ Q⃗, and s⃗ ∈ S⃗ with q⃗

[w]
Ð→A(k) s⃗. There are a state p⃗ ∈ Q⃗ and a

word v ∈ A∗ with the following properties:

(1) (q⃗, [w])→∗S (p⃗, [v]) and

(2) p⃗
[v]
Ð→A(0) s⃗.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. From q⃗
[w]
Ð→A(k) s⃗ we infer the existence of a1, a2, . . . , an ∈ A and s⃗0, s⃗1, . . . , s⃗n ∈ S⃗ with

q⃗ = s⃗0
a1
Ð→A(k) s⃗1

a2
Ð→A(k) . . .

an
Ð→A(k) s⃗n = s⃗

andw = a1a2 . . . an. We prove the properties (1) and (2) by induction on k ∈ N and the size of

I ∶= {1 ≤ j ≤ n ∣ ( ⃗s j−1, a j, s⃗ j) ∈ δ(k) ∖ δ(k−1)} .

Let k = 0. Then we obtain our claim with (p⃗, [v]) ∶= (q⃗, [w]). So, from now on assume k ≥ 1.

If I = ∅ we have q⃗
[w]
Ð→A(k−1) s⃗. Then by application of the induction hypothesis we are done.

We now assume ∣I∣ ≥ 1. Then there are w1,w2 ∈ A∗, a ∈ A, and p⃗, r⃗ ∈ S⃗ with

w = w1aw2 , (9.1)

(p⃗, a, r⃗) ∈ δ(k) ∖ δ(k−1), and q⃗
[w1]
ÐÐ→A(k) p⃗

a
Ð→A(k) r⃗

[w2]
ÐÐ→A(k−1) s⃗. By induction hypothesis there

are q⃗′ ∈ Q⃗ and v ∈ A∗ with
(q⃗, [w1])→

∗
S (q⃗′, [v]) (9.2)
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q⃗ p⃗ r⃗ s⃗

q⃗′

q⃗′′

t⃗

q⃗′′′

(Induction hypothesis)

(Definition of δ(k))

(Induction hypothesis)

[w1] a [w2]

[v
]

a

[u
R ]

[u
R vw 2]
[v
]

[x
]

Figure 9.11. Visualization of the induction step of the claim’s proof. Here, red-colored (thick) edges
represent paths in A(k), blue (thin) ones represent paths in A(k−1), and orange (dashed) ones represent paths
in A(0).

and q⃗′
[v]
Ð→A(0) p⃗.

Additionally, by (p⃗, a, r⃗) ∈ δ(k)∖δ(k−1) and the definition of δ(k) we know p⃗↾aM ∈ Q⃗↾aM.
Since δ(0)a ⊆ S⃗↾aM × T⃗↾aM (recall T⃗ = ∏i∈P Si ∖ Qi) we obtain πi(v) = ε for each i ∈ aM.
Hence, we have q⃗′↾aM = p⃗↾aM and va ≈A av. This also implies vaw2 ≈A avw2. Using
p⃗ a
Ð→A(k) r⃗ we infer the following:

q⃗′ = (p⃗↾aM, q⃗′↾P∖aM)
a
Ð→A(k) (r⃗↾aM, q⃗′↾P∖aM)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶t⃗

[v]
Ð→A(0) (r⃗↾aM, p⃗↾P∖aM) = r⃗

(note that t⃗ and this av-labeled run from q⃗′ to r⃗ exist since A(k) is asynchronous). Due to
p⃗↾aM = q⃗′↾aM and t⃗↾aM = r⃗↾aM we have (q⃗′, a, t⃗) ∈ δ(k). Hence, there is q⃗′′ ∈ S⃗ with

(q⃗′↾aM, u, q⃗′′↾aM) ∈ ∆a , (9.3)

q⃗′′
[uR]
ÐÐ→A(k−1) t⃗, and q⃗′′↾aM ∈ Q⃗↾aM. By asynchronismofS and byObservation 9.5.5 we obtain

also u ≤ a and q⃗′′↾P∖aM = q⃗′↾P∖aM. Hence, we know q⃗′′ ∈ Q⃗. Since we have q⃗′′
[uRvw2]
ÐÐÐÐ→A(k−1) s⃗

we can apply our induction hypothesis yielding a state q⃗′′′ ∈ Q⃗ and a word x ∈ A∗ with

(q⃗′′′, [uRvw2])→
∗
S (s⃗, [x]) (9.4)

and q⃗′′′
[x]
Ð→A(0) s⃗. Then we finally infer

(q⃗, [w]) (9.1)= (q⃗, [w1aw2])
(9.2)
ÐÐ→∗S (q⃗′, [vaw2]) = (q⃗′, [avw2])

(9.3)
ÐÐ→S (q⃗′′, [uRvw2])

(9.4)
ÐÐ→∗S (q⃗′′′, [x]) .

Due to q⃗′′′
[x]
Ð→A(0) s⃗ we are done. ◁

Now, let (q⃗, [w]) ∈ C(A(∞)). By C(A(∞)) = ⋃k∈N C(A(k)) there is k ∈ Nwith (q⃗, [w]) ∈
C(A(k)). Then we have q⃗

[w]
Ð→A(k) f⃗ for a final state f⃗ ∈ F. By the claim from above there

are p⃗ ∈ Q⃗ and v ∈ A∗ with (q⃗, [w]) →∗S (p⃗, [v]) and p⃗
[v]
Ð→A(0) f⃗ . In other words, we

have (q⃗, [w]) ∈ pre∗S({(p⃗, [v])}) and (p⃗, [v]) ∈ C(A(0)). This finally implies (q⃗, [w]) ∈
pre∗S(C(A(0))). ◂
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All in all, we have seen that C(A(∞)) = pre∗S(C(A(0))) holds, i.e., this set of configu-
rations is recognizable. So, we only have to show that A(∞) can be constructed from A(0).
To this end, recall that δ(0) ⊆ δ(1) ⊆ δ(2) ⊆ ⋅ ⋅ ⋅ ⊆ δ(∞) ⊆ S⃗ × A × S⃗ holds. Since S⃗ × A × S⃗
is a finite set, the sequence (δ(k))k∈N stabilizes after at most ℓ ∶= ∣S⃗∣2 ⋅ ∣A∣ steps. Hence, we
have A(ℓ) = A(∞) which can be constructed as described above. This construction takes
time O(∣S∣2 ⋅ ∣A(0)∣2 ⋅ ∣A∣) (similar to the construction from [BEM97]) and results in an
S-asynchronous automaton having the same set of states asA(0) (however, there are possibly
more transitions).

Remark 9.5.13. The inductive construction of A(∞) as described above is not possible
if A(0) is not asynchronous. To this end, let (q⃗, at, p⃗) ∈ ∆ be a transition of S and
b ∈ Awith a ∥ b. Now, assume that (p⃗, [tRbw]) is accepted by anS-NFAB. Then we
have (q⃗, [abw]) ∈ pre∗S(C(B)). Suppose that the only [tRbw] accepting run ofB is the
following one:

p⃗
[b]
Ð→B s⃗′

[tR]
ÐÐ→B s⃗

[w]
Ð→B F .

Then we have to add a new path from q⃗ to s⃗ labeled with ab. To this end, we have to
introduce one new state. Hence, the number of states ofBmay increase in each iteration
and, therefore, the aforementioned termination criterion is invalid.

In contrast, runs starting with some independent letters are not a problem ifB is
asynchronous: since b-edges only modify the processes in bM and the [tR]-labeled run

only affects the processes in tM ⊆ aM, there would be another run p⃗
[tR]
ÐÐ→B s⃗′′

[b]
Ð→B

s⃗
[w]
Ð→B F starting with [tR]. ⌟

Finally, fromTheorem 9.5.9 we obtain the following decidability result:

Corollary 9.5.14. The following reachability problem is decidable in polynomial time:

Input: A distributed alphabet A, an asynchronous pushdown system S over A,

and twoS-asynchronous automata A andB.

Question: Does C(A)→∗S C(B) hold? ◂

9.5.2 Forwards Reachability

Next, we consider the sets of forwards reachable configurations in an asynchronous pushdown
system. In the non-distributed case we know that, whenever we start from a regular set of
configurations, we always reach another regular set of configurations (cf. Theorem 9.2.1).
Unfortunately, this does not hold for systems having at least two (independent) processes.
Actually, any rationalrationalrationalrationalrationalrationalrationalrationalrationalrationalrationalrationalrationalrationalrationalrationalrational trace language is forwards reachable in an asynchronous pushdown
system starting from a very simple set of configurations. We prove this result in the following
proposition:
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Proposition 9.5.15. Let A = (A, P,M) be a distributed alphabet and L ⊆ M(A) be
rational. Then there are a distributed alphabetB = (B, P,N)with A ⊆ B andN∩A×P =
M, an asynchronous pushdown systemS = (Q⃗ ,PB, ∆, Λ) overB, c ∈ ConfS, and q⃗ ∈ Q⃗
such that q⃗ post∗S({c}) ∩M(A) = L.

Proof. Since L is rational there is an NFAA = (S ,A, I, δ, F) with T(A) = L. W.l.o.g., we can
assume that S ∩ A = ∅ holds. We want to simulate the runs of A with the help of a (stateless)
asynchronous pushdown system S in inverse direction. To this end, our system initially
writes a final state f ∈ F on top of each stack ofS. Then we simulate an edge (p, a, q) ∈ δ
by reading the state q from all stacks and pushing an a to each stack i ∈ aM associated to a.
Afterwards, we also push a p to all stacks. We are done, if A is in an initial state. In this case,
we simply remove such state ι ∈ I from all stacks.

For this construction we first have to extend our distributed alphabetA toB = (B, P,N)
as follows:

B ∶= A∪ S ∪ {#} where # ∉ A∪ S and

N ∶=M∪ ((Q ∪ {#}) × P).

Then we construct an asynchronous pushdown systemS = (Q⃗ ,PB, ∆, Λ) with:

Q⃗ ∶= {⊺⃗},

Λ∶ Q⃗ → 2AP is arbitrary, and

∆ consists of the following transitions:

– (⊺⃗, # f , ⊺⃗) for each f ∈ F,

– (⊺⃗, qap, ⊺⃗) for each transition (p, a, q) ∈ δ, and

– (⊺⃗, ι, ⊺⃗) for each ι ∈ I.

As mentioned before,S simulates backwards computations ofA. Underneath the top symbol
q ∈ S of our stacks, we find a trace λ such that A has a w-labeled run (with w ∈ λ) from q to
F. Formally, we have (⊺⃗, [p])→∗S (⊺⃗, [qw]) if, and only if, we have q

w
Ð→A p for each p, q ∈ S

and w ∈ A∗. This implies

(⊺⃗, [#])→∗S (⊺⃗, [w]) ⇐⇒ [w] ∈ T(A)

for each w ∈ A∗. Hence, we have ⊺⃗post∗S({(⊺⃗, [#])}) ∩M(A) = T(A) = L. ◂

LetA = (A, P,M) be a distributed alphabet with two distinct letters a, b ∈ A satisfying
a ∥ b, i.e., a and b are independent. Then the trace language L ∶= (ab)∗ is rational, but
not recognizable. Due to Proposition 9.5.15 we can find an asynchronous pushdown system
S, a configuration c ∈ ConfS, and a state q⃗ ∈ Q⃗ such that the set of configurations with
control state q⃗ which are reachable from c have exactly the stack contents from L. Hence,
the mapping post∗S does not preserve recognizability. So, a natural question is to ask, to
which class of configurations post∗S(C) belongs for any recognizable set of configurations
C ⊆ ConfS.
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We can see that the membership problem of post∗S(C) is decidable in polynomial time
for any recognizable set C: let c ∈ ConfS. To check, whether c ∈ post∗S(C) holds, we can
compute anS-asynchronous automaton A accepting pre∗S({c}). Finally, we only have to
check whether C(A) ∩ C is not empty. This is decidable in polynomial time due to the
efficient closure properties of the class of recognizable trace languages. In other words, the
membership problem of post∗S(C) is in P.

We will see now that P is no optimal characterization of post∗S(C). Concretely, we will
see in the following theorem that the mapping post∗S∶ 2ConfS → 2ConfS effectively preserves
rationality. Note that this is an even stronger result thanTheorem 9.5.9 since we also char-
acterize the reachable configurations from a proper superclass of the recognizable trace
languages.

Theorem 9.5.16. LetA = (A, P,M) be a distributed alphabet,S be an asynchronous

pushdown system, and C ⊆ ConfS be rational. Then post∗S(C) is rational. In particular,
we can compute anS-NFA accepting post∗S(C) fromS and anS-NFA accepting C. If

A is fixed, this construction is possible in polynomial time.

LetS = (Q⃗ ,PA, ∆, Λ) be an asynchronous pushdown system and C ⊆ ConfS be rational.
Our construction of anS-NFA accepting post∗S(C) is inspired by the one by Finkel et al.
[FWW97]. Concretely, the construction consists of the following three steps:

1. First, we construct fromS an equivalent saturated asynchronous pushdown systemS(∞).
Such system satisfies the following condition: if (p⃗, at, q⃗), (q⃗, b, r⃗) ∈ ∆ with t ≈A t′b, then
we also have (q⃗, as, r⃗) ∈ ∆ for some s ≈A t′. This means, whenever we have a transition
writing a letter b on top and another transition reading this letter afterwards, we can also
apply both transitions at once.

Now, consider a run ofS from p⃗ to q⃗ removing the letter a from the stacks’ tops in
a finite number of steps (i.e., (p⃗, [a])→∗S (q⃗, [ε])). Then with the help of the described
“shortcut” transitions we infer the existence of a transition (p⃗, a, q⃗) ∈ ∆.

From such saturated asynchronous pushdown systemwe also obtain an asynchronous

automaton E simulating the read-only transitionsxvii. Hence, we obtain p⃗
[w]
Ð→E q⃗ if, and

only if, (q⃗, [ε]) ∈ post∗S({(p⃗, [w])}).
2. Next, we consider an arbitrary run of our saturated systemS. Then this run alternates
between phases in which we decrease the distributed stack’s height and phases in which
we increase this height. Concretely, an increasing phase consists of transitions applying at
least one write action while the decreasing phases consist of read-only transitions. We
will prove that the effect of each such phase preserves rationality of the considered set of
configurations efficiently.

3. Finally, we prove that the number of such phases of a run can be uniformly bounded. Note
that in contrast to the non-distributed case this number is not necessarily 2. However,
it only depends on the size of A. Hence, we obtain an S-NFA accepting post∗S(C) in
polynomial time (if we considerA to be fixed).

xviiThe letter E indicates that this automaton accepts those traces which we are able to EEEEEEEEEEEEEEEEErase from the top of
S’s stacks.
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Step 1. Saturate the SystemS

First, we want to saturate the asynchronous pushdown systemS by addition of several special
“shortcut” transitions. For a non-distributed pushdown system, the idea was very simple: if
there are two transitions (p, atb, q) and (q, b, r) we simply add a new transition (p, at, r).
The addition of this new transition does not change the behavior of the pushdown system
and transforms the system closer to a saturated one. In asynchronous pushdown systems, the
technicalities are a bit more involved: suppose we have the two transitions (p⃗, atbc, q⃗) and
(q⃗, b, r⃗) with b ∥ c. Then we have tbc ≈A tcb, i.e., after doing the first transition the stacks
from bM have the letter b on top and, hence, we can apply the second transition (eliminating
b) immediately. Therefore, also in this situation, the addition of the transition (p⃗, atc, r⃗)
helps to get closer to a saturated one.

Unfortunately, iterated elimination of letters from a transitionmay lead to an exponential
blowup of our system. For example, let a, b ∈ Abe two independent letters (i.e., we have a ∥ b)
and λn ∶= [(ab)n] for n ∈ N. The set of word suffixes of λn is {w ∈ {a, b}∗∶ ∣w∣a , ∣w∣b ≤ n}. This
language has size exponential in n. In contrast, the set of trace suffixes is {[akbℓ] ∣ k, ℓ ≤ n}
which has only quadratic size. In the general case, a trace λ ∈ M(A) has at most O(∣λ∣α)
many trace suffixes where α is the size of the maximal independent set in the dependence
graph GA [BMS82].

Hence, for a transition (p⃗, at, q⃗) we should ensure to include for each trace suffix of [t]
at most one new transition. This can be done with the lexicographic normal form of the
trace [t]:

Definition 9.5.17. LetD = (A, P,M) be a distributed alphabet, ≤lex be a lexicographic
ordering on A∗, and u ∈ A∗ be a word. Then the lexicographic normal form lnf(u) is the
minimal word v ∈ [u] wrt. ≤lex. ⌟

So, in the following we always ensure that for each transition (p⃗, at, q⃗)we have t = lnf(t).
Concretely, we will now construct asynchronous pushdown systemsS(k) ∶= (Q⃗ ,PA, ∆(k), Λ)
for any k ∈ N as follows:

we set ∆(0) ∶= {(p⃗, a lnf(u), q⃗) ∣ (p⃗, au, q⃗) ∈ ∆}.

to obtain ∆(k+1), we add to the set ∆(k) all transitions (p⃗, a lnf(uv), r⃗) for which there
are a letter b ∈ A and a state r⃗ ∈ Q⃗ with (p⃗, aubv , r⃗), (r⃗, b, q⃗) ∈ ∆(k) and b ∥ v (i.e., we
have ubv ≈A uvb and, therefore, after application of the former transition there is a b on
top of all stacks from bM).

First, we want to check whether S(k) is really asynchronous. This can be done by
induction on k ∈ N. Let k = 0. For a transition (p⃗, av , q⃗) ∈ ∆(0) there is another transition
(p⃗, au, q⃗) ∈ ∆ with v = lnf(u), i.e., u ≈A v. SinceS is asynchronous, we have aM ⊇ uM =
vM, i.e., v ≤ a. Therefore,S(0) also is asynchronous.

Now, assume thatS(k) is asynchronous. Let (p⃗, aubv , r⃗), (r⃗, b, q⃗) ∈ ∆(k) be two tran-
sitions with b ∥ v. Then from asynchronism of S(k) we know ubv ≤ a (recall that x ≤ y
holds iff xM ⊆ yM). Additionally, we know uv ≤ ubv implying uv ≤ a by transitivity of the
quasi-ordering ≤. Hence, auv is a legal labeling of a transition. Since uv ≈A lnf(uv) and,
hence, ⟦uv⟧ = ⟦lnf(uv)⟧ holds, also auv is a legal labeling of a transition. Additionally, since
the former transitions are independent of the processes from P ∖ aM, the constructed ones
are also independent of P ∖ aM. Hence,S(k+1) also is asynchronous.
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LetS(∞) = (Q⃗ ,PA,Q(∞), Λ) be the “limit” of our construction with ∆(∞) = ⋃k∈N ∆(k).
ThenS(∞) is saturated and still asynchronous. By construction we have ∆(0) ⊆ ∆(1) ⊆ ∆(2) ⊆
⋅ ⋅ ⋅ ⊆ ∆(∞). Since each ∆(k) is finite (by finiteness of ∣∆∣ = ∣∆(0)∣) and since we only add
transitions having a smaller number of write actions, this monotonically increasing sequence
stabilizes. Hence, there is a number k̂ ∈ N withS(k̂) = S(∞). This number is O(∣u∣α ⋅ ∣∆∣)
where u ∈ A∗ is the longest word with (p⃗, au, q⃗) ∈ ∆ (for p⃗, q⃗ ∈ Q⃗ and a ∈ A) and α is the
maximal size of an independent set in the dependence graph GA (by [BMS82]). Hence, the
number k̂ is polynomial in the size ofS, but exponential in the size ofD. Therefore, ifD is
fixed, we can compute A(k̂) = A(∞) in polynomial time.

Example 9.5.18. Recall the asynchronous pushdown systemS from Example 9.5.4. In
Figure 9.12 we depict our construction ofS(∞). ⌟
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Figure 9.12.The asynchronous pushdown automataS = S(0),S(1), andS(2) (from left to right). The
construction terminates after the second step. Hence, we obtainS(2) =S(∞) in this case.

Now, we want to show that the original asynchronous pushdown system S and the
constructed saturated system agree in their reachability relation. In other words, we prove
that post∗S(D) = post

∗
S(∞)
(D) holds for any set D ⊆ ConfS = ConfS(∞) of configurations.

In particular, we will see that we have a read-only transition (p⃗, a, q⃗) in ∆(∞) whenever we
are able to remove an a from the top of the distributed stack on a run from p⃗ to q⃗.

Lemma 9.5.19. Let p⃗, q⃗ ∈ Q⃗, a ∈ A, t ∈ A∗≤a, and k ∈ N. Then the following two

statements hold:

(1) If (p⃗, at, q⃗) ∈ ∆(k) holds, we also have (p⃗, [a])→∗S (q⃗, [tR]).

(2) If (p⃗, [a])→∗S (q⃗, [ε]) holds, we also have (p⃗, a, q⃗) ∈ ∆(∞).

Proof.

(1) We prove this statement by induction on k ∈ N. First, let k = 0. Assume (p⃗, at, q⃗) ∈ ∆(0).
Then by definition of∆(0) there is s ∈ A∗ with t = lnf(s) (i.e., ⟦s⟧ = ⟦t⟧) and (p⃗, as, q⃗) ∈ ∆.
Therefore, by definition ofM(S), we infer (p⃗, [a])→S (q⃗, [sR]) = (q⃗, [tR]).
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Now, let k > 0. We know ∆(k−1) ⊆ ∆(k). So, if (p⃗, at, q⃗) ∈ ∆(k−1) holds, we are done
by the induction hypothesis. We assume now that (p⃗, at, q⃗) ∈ ∆(k) ∖ ∆(k−1) holds. Then
there are (p⃗, aubv , r⃗), (r⃗, b, q⃗) ∈ ∆(k−1) with b ∥ v and t = lnf(uv) (i.e., ⟦t⟧ = ⟦uv⟧).
By induction hypothesis we know (p⃗, [a])→∗S (r⃗, [(ubv)

R
]) and (r⃗, [b])→∗S (q⃗, [ε]).

Then we infer

(pR, [a])→∗S (r⃗, [(ubv)
R
]) = (r⃗, [b(uv)R])→∗S (q⃗, [(uv)

R
]) = (q⃗, [tR]) .

(2) For each transition (p⃗, at, q⃗) ∈ ∆ there is another transition (p⃗, as, q⃗) ∈ ∆(0) of S(0)
with s = lnf(t) and, hence, ⟦s⟧ = ⟦t⟧. Therefore, from (p⃗, [a]) →∗S (q⃗, [ε]) we
learn (p⃗, [a]) →∗

S(0)
(q⃗, [ε]). Since additionally ∆(0) ⊆ ∆(∞) holds, we also have

(p⃗, [a]) →∗
S(∞)

(q⃗, [ε]). Hence, there is a run in S(∞) from (p⃗, [a]) to (q⃗, [ε]). We
consider a shortest run Π in S(∞) from (p⃗, [a]) to (q⃗, [ε]). We show next that this
shortest run has length 1 implying (p⃗, a, q⃗) ∈ ∆(∞).

Towards a contradiction, suppose the run Π has length at least 2. Then we apply at
least one transition of the form (r⃗1, bs, r⃗2) with s ≠ ε (i.e., we write at least one letter).
We consider now the application of the last such transition writing at least one letter in
Π. So, Π is the following run:

(p⃗, [a])→∗
S(∞)
(r⃗1, [w1])

bs
Ð→S(∞) (r⃗2, [w2])

t
Ð→S(∞) (q⃗, [ε])

where b ∈ A, s, t ∈ A+, and (r⃗1, bs, r⃗2) ∈ ∆(∞). Since s ≠ ε there is c ∈ A and s′ ∈ A∗ with
s = s′c. Then there is v ∈ A∗ with [w1] = [bv] and [w2] = [sRv] = [c s′R v]. Additionally,

by (r⃗2, [w2])
t
Ð→S(∞) (q⃗, [ε]) we know t ∈ [w2] = [cs′Rv]. Hence, there are t1, t2 ∈ A∗

with t = t1ct2 (in the free monoid A∗) and ∣t1∣c = 0 such that Π contains the following
subrun

(r⃗2, [w2])
t1
Ð→S(∞) (r⃗3, [w3])

c
Ð→S(∞) (r⃗4, [w4])

t2
Ð→S(∞) (q⃗, [ε]) .

Since t1ct2 = t ≈A w2 ≈A c s′R v and ∣t1∣c = 0 we have t1 ∥ c in this case. Then, due to
asynchronism ofS(∞) there is also a run labeled as follows

(r⃗2, [w2])
c
Ð→S(∞) (r⃗′3, [w

′
3])

t1
Ð→S(∞) (r⃗4, [w4])

t2
Ð→S(∞) (q⃗, [ε])

and this modified run has the same length as Π. Hence, we have (r⃗2, c, r⃗′3) ∈ ∆
(∞). By

(r⃗1, bs, r⃗2) ∈ ∆(∞), s = s′c, and by construction ofS(∞) we also know (r⃗1, b lnf(s′), r⃗′3) ∈
∆(∞). In other words, we can shorten Π by one edge as follows:

(p⃗, [a])→∗
S(∞)
(r⃗1, [w1])→S(∞) (r⃗′3, [w

′
3])→

∗
S(∞)
(q⃗, [ε]) .

However, this is impossible since Π was a shortest run inS(∞). Hence, Π has length 1
implying (p⃗, a, q⃗) ∈ ∆(∞). ◂

Assumption 9.5.20. From now on, we assume thatS is saturated, i.e., thatS =S(∞)
holds (and, hence, ∆ = ∆(∞)). This is possible by post∗S(D) = post

∗
S(∞)
(D) for each D ⊆

ConfS (by Lemma 9.5.19) and since our construction is efficient (for a fixed distributed
alphabetA). ⌟
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From this assumption and from Lemma 9.5.19 we also learn thatS is able to remove a
letter a from the top of its stack on a run from p⃗ to q⃗ if, and only if,S can do this in exactly
one step. From this fact we obtain an asynchronous automaton E which simulates exactly the
read-only transitions ofS. Concretely, this asynchronous automaton is E = (Q⃗ ,A, Q⃗ , δε , Q⃗)
with

δε ∶= {(p⃗, a, q⃗) ∣ (p⃗, a, q⃗) ∈ ∆} .

Hence, we learn that the sequences of read-only transitions form a recognizable trace lan-
guage.

The following statement sums up the semantics of the asynchronous automaton E:

Corollary 9.5.21. Let p⃗, q⃗ ∈ Q⃗ and w ∈ A∗. Then we have p⃗
[w]
Ð→E q⃗ if, and only if, we

have (p⃗, [w])→∗S (q⃗, [ε]). ◂

Example 9.5.22. Recall Example 9.5.4. Then the asynchronous automaton E of all read-
only transitions inS is depicted in Figure 9.13. For example, we see that ((0, 0), [w])→∗S
((1, 1), [ε]) holds if, and only if, w ∈ a{b, c}∗ holds. ⌟
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Figure 9.13.The asynchronous automaton E derived fromS.

Step 2. Analyzing the Phases of Runs inS

As previously announced we want to find an alternation of two types of phases in each run in
the saturated asynchronous pushdown systemS. Concretely, eitherS decreases the height
of its distributed stack or it increases this height. We consider these two kinds of phases
separately.

To this end, wewill partition the transition relation ∆ ofS intomultiple sets of transitions
resulting in some “homogeneous” asynchronous pushdown subsystems ofS:

∆ε ∶= ∆ ∩ (Q⃗ × A× Q⃗). SetSε = (Q⃗ ,PA, ∆ε , Λ).

∆=a ∶= ∆ ∩ (Q⃗ × A=aA+ × Q⃗) for a ∈ A. SetS=a = (Q⃗ ,PA, ∆=a , Λ).
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First we consider the effect ofSε which simulates the decreasing phases of the runs in
S. So, for a set D ⊆ ConfS = ConfSε of configurations we first define the following set of
configurations with decreased stack heights:

R(D) ∶= {c ∈ ConfS ∣ D →∗Sε
c} = post∗Sε

(D) .

We should note here, that the asynchronous pushdown systemSε corresponds to our
asynchronous automaton E which we have constructed in the previous step. Concretely,

we have p⃗
[w]
Ð→E q⃗ if, and only if, (p⃗, [w])→∗Sε

(q⃗, [ε]) holds. Hence, when computing the
reachable configurations viaSε, we will use E instead. Since E is asynchronous, its accepted
trace language is recognizable inM(A). Therefore, we obtain the rationality of R(D) from a
rational set D ⊆ ConfS of configurations using the efficient closure properties of rational
and recognizable trace languages (cf. Appendix A).

Lemma 9.5.23. Let D ⊆ ConfS be a rational set of configurations. Then the set R(D)
is rational. In particular, we can compute anS-NFA accepting R(D) fromS and an

S-NFA accepting D. IfA is fixed, this construction is possible in polynomial time.

Proof. Let A = (S ,A, Q⃗ , δ, F) be an S-NFA with C(A) = D. We show that R(D) is es-
sentially a left-quotient of D wrt. recognizable trace languages of read action sequences.
Concretely, we show that

R(D) = ⋃
p⃗,q⃗∈Q⃗
{q⃗} × T(E p⃗→q⃗)/T(Ap⃗→F)

holds. Since the class of rational trace languages is efficiently closed under union and left-quo-
tients wrt. recognizable trace languages (cf. Theorem A.2, recall that E is an asynchronous
automaton), the right-hand side of this equation is efficiently rational (for a fixedA). For
better readability we denote this big union by X.

First, we prove the inclusion “⊆”. To this end, let (q⃗, λ) ∈ R(D). Then by definition
there are (p⃗, κ) ∈ D (i.e., κ ∈ T(Ap⃗→F)) and r ∈ A∗ with (p⃗, κ)

r
Ð→Sε (q⃗, λ). We know, by

the semantics of r, that κ = [r] ⋅ λ holds. In particular, we have (p⃗, [r]) r
Ð→Sε (q⃗, [ε]). By

Corollary 9.5.21 we obtain p⃗
[r]
Ð→E q⃗, i.e., [r] ∈ T(Ep⃗→q⃗). This implies

(q⃗, λ) = (q⃗, [r]/κ) ∈ {q⃗} × T(E p⃗→q⃗)/T(Ap⃗→F) ⊆ X .

Towards the converse inclusion, let (q⃗, λ) ∈ X. Then there exists a control state p⃗ ∈ Q⃗
with λ ∈ T(E p⃗→q⃗)/T(Ap⃗→F). There are [r] ∈ T(Ep⃗→q⃗) and κ ∈ T(Ap⃗→F) (i.e., (p⃗, κ) ∈ D) with

λ = [r]/κ, i.e., κ = [r] ⋅ λ. From Corollary 9.5.21 we infer (p⃗, [r]) r
Ð→Sε (q⃗, [ε]). Hence,

D ∋ (p⃗, κ) = (p⃗, [r] ⋅ λ) r
Ð→Sε (q⃗, [ε] ⋅ λ) = (q⃗, λ)

holds implying (q⃗, λ) ∈ R(D). ◂
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Next, we consider the effect of the asynchronous pushdown systemsS=a where a ∈ A.
These systems simulate the increasing phases of the runs in S. For a set D ⊆ ConfS of
configurations we define the set of configurations with increased stack heights as follows:

W(D) ∶= {c ∈ ConfS ∣ ∃a ∈ A∶D →∗S=a c} = ⋃
a∈A

post∗S=a(D) .

Now, we want to proof that the W-operation preserves rationality efficiently. Since
the class of rational trace languages is closed under finite union, it suffices to show that
post∗S=a(D) is rational for any a ∈ A. So, let a ∈ A. By definition all transitions of S=a
read only letters from A=a, i.e., letters associated to exactly the processes aM. So, we can
understand these read actions as some kind of synchronization of the involved processes.
Therefore, we can also seeS=a as a (non-distributed) single-pushdown system. Additionally,
by definition no transition ofS=a ever decreases the height of the distributed stack (since we
require that each transitionwrites at least one letter). Hence, to compute post∗S=a(D) it suffices
to consider only the case where the distributed stack contains exactly one letter b ∈ A=a. By
Theorem 9.2.1 we already know for such systems how to compute post∗S=a({(p⃗, b)}) (where
the stack contents are seen as words). Then we obtainW(D) by removing the top letter b
(this corresponds to taking a left quotient) and prepending η(post∗S=a({(p⃗, b)})).

Lemma 9.5.24. Let D ⊆ ConfS be a rational set of configurations. Then the setW(D) is
rational. We can construct anS-NFA acceptingW(D) fromS and anS-NFA accepting

D. In particular, this construction is possible in polynomial time.

Proof. Let A = (S ,A, Q⃗ , δ, F) be an S-NFA with C(A) = D. Let a ∈ A be an arbitrary
letter. We can understand the asynchronous pushdown systemS=a = (Q⃗ ,PA, ∆=a , Λ) as a
(non-distributed) single-pushdown system T=a = (Q⃗ ,PA, ∆=a , Λ) (note thatS=a and T=a
only differ in their underlying data type). Then from a state p⃗ ∈ Q⃗, and T=a we can compute
a T=a-NFABp⃗,a = (S p⃗,a ,A, Q⃗ , δ p⃗,a , F p⃗,a) accepting post∗T=a({(p⃗, a)}) ⊆ Q⃗ × A∗ according
to Theorem 9.2.1. Note that for any q⃗ ∈ Q⃗ the language L(Bp⃗,a

q⃗→F p⃗ ,a) is regular and, hence,

T(Bp⃗,a
q⃗→F p⃗ ,a) = η(L(B

p⃗,a
q⃗→F p⃗ ,a)) is rational inM(A).

We prove next that the following equation holds:

W(D) = ⋃
a∈A
⋃

p⃗,q⃗∈Q⃗
{q⃗} × (T(Bp⃗,a

q⃗→F p⃗ ,a) ⋅ a/T(Ap⃗→F)) .

Since the rational trace languages are efficiently closed under union, concatenation, and left-
quotients wrt. recognizable trace languages, the right-hand side of this equation is efficiently
rational. For better readability we denote this big union by X.

First, we assume that (q⃗, λ) ∈ W(D) holds. Then there is a ∈ A and (p⃗, κ) ∈ D with
(p⃗, κ) →∗S=a (q⃗, λ) and κ = [a] ⋅ κ

′ ∈ T(Ap⃗→F) (where κ′ ∈ M(A)). Since S=a only reads
letters from A=a and never decreases the stack’s height, it will never touch a letter below the a
on top. Hence, κ′ also is a suffix of λ. So, there is a trace µ ∈M(A) with (p⃗, [a])→∗S=a (q⃗, µ)
and λ = µκ′. Then there also is a word w ∈ µ with (p⃗, a) →∗T=a (q⃗,w) implying (q⃗,w) ∈
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post∗T=a({(p⃗, a)}) = C(B
p⃗,a) andw ∈ L(Bp⃗,a

q⃗→F p⃗,a). Then we infer µ = [w] ∈ T(Bp⃗,a
q⃗→F p⃗,a) and,

finally,

λ = µκ′ = µ ⋅ a/κ ∈ T(B
p⃗,a
q⃗→F p⃗ ,a) ⋅ a/T(Ap⃗→F) ,

i.e., (q⃗, λ) ∈ X.
Towards the converse inclusion, let (q⃗, λ) ∈ X. Then there is a ∈ A and p⃗ ∈ Q⃗ with λ ∈

T(Bp⃗,a
q⃗→F p⃗ ,a) ⋅ a/T(Ap⃗→F). So, we can factorize λ as follows: λ = λ1λ2 where λ1 ∈ T(B

p⃗,a
q⃗→F p⃗ ,a)

and [a] ⋅ λ2 ∈ T(Ap⃗→F). From the latter statement we learn (p⃗, [a]λ2) ∈ D. From the former
one we obtain a word w ∈ λ1 with w ∈ L(B

p⃗,a
q⃗→F p⃗ ,a) implying

(q⃗,w) ∈ C(Bp⃗,a) = post∗T=a({(p⃗, a)}) .

Hence, we also have (q⃗, λ1) = (q⃗, [w]) ∈ post∗S=a({(p⃗, [a])}). But this also implies

D ∋ (p⃗, [a] ⋅ λ2)→∗S=a (q⃗, λ1 ⋅ λ2) = (q⃗, λ)

and, therefore, (q⃗, λ) ∈ post∗S=a(D) ⊆W(D). ◂

It is a simple task to prove that any run ofS only consists of a finite number of phases in
which we either decrease or increase the distributed stack’s height. Moreover, since we allow
these phases to be empty, we can assume that each run alternates between these two phases.
Hence, we obtain post∗S(C) by any number of alternations of the R- andW-operations:

Proposition 9.5.25. Let D ⊆ ConfS be a set of configurations. Then the following

statements hold:

(1) For each c ∈ post∗S(D) there exists ℓ ∈ N with c ∈ (RW)ℓ(D).

(2) For each ℓ ∈ N we have (RW)ℓ(D) ⊆ post∗S(D).

In particular, we have post∗S(D) = (RW)∗(D). ◂

Step 3. Uniformly Bounding the Number of Phases

By Proposition 9.5.25 we know that each run ofS can be split into a finite number of phases
alternating between decreasing and increasing the stack’s height. If our systemS has only one
pushdown, we know that each reachable configuration can be reached via a run having atmost
two of such phases [FWW97]. However, as the following example shows, formulti-pushdown
systems we cannot bound the number of phases to two:

Example 9.5.26. LetA = (A, P,M) be the distributed alphabet with A = {a, b, c, d , e}
and P = {1, 2, 3} where aM = P, bM = {1, 2}, cM = {3}, dM = {1}, and eM = {2}.
Further letS = (Q⃗ ,PA, ∆, Λ) be the asynchronous pushdown system from Figure 9.14.
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(0, 0, 0) (1, 0, 0) (2, 0, 0) (3, 0, 0)

acba

ac

b

b

bedb

be

d

Figure 9.14.The asynchronous pushdown system from Example 9.5.26.

One can check thatS is saturated. The following is the only run from the configuration
((0, 0, 0), [a]) to ((3, 0, 0), [c4e4]):

((0, 0, 0), [a])→3
S ((0, 0, 0), [ab

3c3])→S ((1, 0, 0), [b3c4])
→2

S ((2, 0, 0), [bc
4])

→3
S ((2, 0, 0), [bc

4d3e3])→S ((3, 0, 0), [c4d3e4])

→3
S ((3, 0, 0), [c

4e4]) .

Note that this run splits into four phases (that correspond to the four lines above). It
increases its pushdowns in the first and third and decreases them in the second and
fourth line. ⌟

However, we will prove now that there is still a uniform bound of the number of alter-
nations between decreasing and increasing phases for any run of a saturated asynchronous
pushdown systemS. This means, there is a number ℓ (which is linear in the size ofA) such
that for any given forwards reachable configuration there is a run inS from C alternating at
most ℓ times between decreasing and increasing phases.

For technical reasons we have to introduce the following notations:

(1) Let D ⊆ ConfS be a set of configurations and a ∈ A be a letter. We write RW=a(D) for
the set of configurations post+S=a(post

∗
Sε
(D)). Note that we require the phase increasing

the distributed stack’s height to be non-empty.
(2) Let D ⊆ ConfS be a set of configurations, w ∈ A∗ be a word, and a ∈ A be a letter. Then

we inductively define the following sets of configurations:

RW=ε(D) ∶= D and RW=aw ∶= RW=w(RW=a(D)) .

It is easy to see that the following two equations hold:

RW(D) = R(D) ∪⋃
a∈A

RW=a(D) and (RW)∗(D) = ⋃
w∈A∗

RW=w R(D)

for any D ⊆ ConfS. Until now post∗S(D) = (RW)∗(D) is still an infinite union of rational
sets of configurations. However, the next lemma states that the sets RW=w(D) for long words
w ∈ A∗ are also included in sets RW=v(D) for shorter words v ∈ A∗.

Lemma 9.5.27. Let D ⊆ ConfS be a set of configurations and a1, . . . , an , an+1 ∈ A be

some letters with the following properties a1 ≤ an+1 and ak ≰ an+1 for each 1 < k ≤ n.
Then we have:

RW=a1a2 ...anan+1(D) ⊆ RW=a2 ...anan+1(D) .
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Proof. Let c, d ∈ ConfS be two configurations with d ∈ RW=a1a2 ...anan+1(c). Consider a run
from c to d ofS which can be split into such phases as described by RW=a1a2 ...anan+1 . We first
show that the number of S=a1-transitions in this run can be reduced by one. Afterwards,
induction on the number ofS=a1-transition yields our claim.
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. Let a ∈ A=a1 , x ∈ A∗, and t ∈ ∏

n+1
k=2 A

∗
(A=akA

+)+ with (p⃗, [u]) ax
Ð→S (q⃗, [v])

t
Ð→S

(r⃗, [w]). Then there is another action sequence s ∈ ∏
n+1
k=2 A

∗
(A=akA

+)+ with (p⃗, [u]) s
Ð→S

(r⃗, [w]).
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We show this statement by induction on the length ∣x∣ of x (the word we push onto the
distributed stack in the first transition). If x = ε holds, we can set s ∶= at ∈∏n+1

k=2 A
∗
(A=akA

+)+.
Then we are done since (p⃗, [u]) s

Ð→S (r⃗, [w]) holds by assumption. Now, let x = x′b for
a word x′ ∈ A∗ and b ∈ A, i.e., we have an b on top of the stacks with indices in bM after
application of the first transition. Note that b ≤ a and, therefore, b ≤ a ≤ a1 ≤ an+1 by
asynchronism ofS.

Let q⃗k ∈ Q⃗, ck ∈ A, yk , zk ∈ A∗ (for 0 ≤ k ≤ ℓ) such that

(q⃗, [v]) = (q⃗0, [c0z0]),
(q⃗k , ck yk , ⃗qk+1) ∈ ∆ implying (q⃗k , [ckzk])→S ( ⃗qk+1, [ykRzk]) for each 0 ≤ k < ℓ,

[yk−1Rzk−1] = [ckzk] for each 1 ≤ k ≤ ℓ,

(r⃗, [w]) = (q⃗ℓ , [yℓRzℓ]), and

t = c0y0c1y1 . . . cℓyℓ.

In particular, we have cℓ ∈ A=an+1 by the definition of t. Hence, we learn

bM ⊆ xM ⊆ aM = a1M ⊆ an+1M = cℓM .

Consequently, there is 0 ≤ k < ℓ with b ≤ ck . We choose this number k minimal with b ≤ ck .
Next, we show the following two properties:

(1) b = ck.
From b ≤ ck we obtain bM∩ ck M ≠ ∅ implying the existence of 0 ≤ j ≤ k with
bM∩ c jM ≠ ∅. We choose jminimal with this property. Then (q⃗ j, c jy j, ⃗q j+1) ∈ ∆ is the
first transition of this run touching any of the stacks with index in bM. Hence, the stacks
from bM in configuration (q⃗ j, [c jz j]) coincide with those in (q⃗, [v]) = (q⃗0, [c0z0]) and,
therefore, still have the letter b on their top position. On the other hand, all stacks from
a jM have the letter a j on top since the transition (q⃗ j, c jy j, ⃗q j+1) ∈ ∆ can be applied.
Then from bM∩ c jM ≠ ∅ we learn b = c j implying in particular b ≤ c j. Since 0 ≤ k < ℓ
was minimal with b ≤ ck we get j = k and, hence, b = ck.

(2) b ∥ c j for each 0 ≤ j < k.
The choice of j above implies that, for all 0 ≤ j < k, we have∅ = bM∩ c jM and, therefore,
b ∥ c j.

Now, we have to distinguish two cases, namely whether the word yk is empty or not.
First, suppose yk = ε. By asynchronism we know y j ≤ c j implying b ∥ y j for each 0 ≤ j < k.
Therefore, we learn ck = b ∥ c0y0c1y1 . . . ck−1yk−1. So, according to Observation 9.5.6 we are
able to reorder the transitions of our run from (p⃗, [u]) to (r⃗, [w]) as follows:

first apply the global transition (p⃗, ax , q⃗),
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then do the local transition (q⃗k↾ck M, ck , ⃗qk+1↾ck M),

then follow the local transitions (q⃗ j↾c j M, c jy j ⃗q j+1↾c j M) for each 0 ≤ j < k, and

finally follow the original run from ( ⃗qk+1, [ck+1zk+1]) to (r⃗, [w]).

Hence, we have reordered the run from (p⃗, [u]) to (r⃗, [w]) such that the second local
transition (starting in (q⃗, [v])) is (q⃗k↾bM, b, ⃗qk+1↾bM). Note that this reordered run still has
the same properties as the original path labeled with axt. So, without loss of generality, we
can assume that k = 0 holds. Then we have the following two consecutive transitions:

(p⃗, ax , q⃗) and (q⃗, b, q⃗1)

in the saturated systemS. Then saturation implies the existence of the transition (p⃗, ax′, q⃗1) ∈
∆. Hence, we have

(p⃗, [v]) ax′

Ð→S (q⃗1, [c1z1])
c1 y1 ...ck−1 yk−1ck+1 yk+1 ...cℓ yℓ
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→S (q⃗ℓ , [yℓzℓ]) = (r⃗, [w])

which is a run omitting the configuration (q⃗, [v]) = (q⃗0, [c0z0]). Note that the first transition
of this run replaces a by x′ which is shorter than x. Hence, the induction hypothesis yields
an action sequence s ∈∏n+1

k=2 A
∗
(A=akA

+)+ with (p⃗, [u]) s
Ð→S (r⃗, [w]).

Now, suppose yk ≠ ε. Since this transition writes at least one letter, there must be an
1 ≤ m ≤ n + 1 with ck M = amM. If we have m ≤ n, we get

amM = ck M = bM ⊆ a0M ⊆ an+1M ,

i.e., am ≤ an+1 which contradicts am ≰ an+1. Hence, we have m = n + 1, i.e.,

bM ⊆ a0M ⊆ an+1M = bM .

In other words, we have b, a0 ∈ A=an+1 . Since b ∥ c j for each 0 ≤ j < k we can again reorder
our transitions as follows:

first apply the local transitions (q⃗ j↾c j M, c jy j, ⃗c j+1M ↾c j M) for each 0 ≤ j < k,
then apply the local transition (p⃗↾a0 M, a0x , q⃗↾a0 M), and
finally follow the original run from (q⃗k , [ckzk]) to (r⃗, [w]).

Note that the transitions of the third part of this run always read letters from A=an+1 . Hence,
we infer

s ∶= c0y0c1y1 . . . ck−1yk−1 a0x ck yk . . . cℓyℓ ∈
n+1
∏
k=2

A
∗
(A=akA

+)+

and (p⃗, [u]) s
Ð→S (r⃗, [w]) which proves our claim for the second case. ◁

Finally, by iterated application of our claim we can reduce the number of transitions in the
first increase phase to 0. Since R is idempotent, we infer the statement of this lemma. ◂

From Lemma 9.5.27 we infer the existence of a bound n̂ ∈ N such that for each w ∈ A>n̂
there is a word f (w) ∈ A≤n̂ with RW=w(D) ⊆ RW= f (w)(D) for any set D ⊆ ConfS of
configurations. This finally implies

post∗S(D) = (RW)
∗(D) = ⋃

w∈A≤n̂
RW=w(D) .
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Hence, if D is rational, then post∗S(D) is a finite union of rational sets implying the rationality
of post∗S(D). The following proposition summarizes this observation and shows that the
bound n̂ equals ∣A∣ + 1.

Proposition 9.5.28. Let D ⊆ ConfS be a set of configurations. Then we have

(RW)∗(D) = (RW)∣A∣+1(D) .

Proof. The inclusion “⊇” is obvious. So, we only have to show the converse inclusion “⊆”.
To this end, let c ∈ (RW)∗(D) = ⋃w∈A∗ RW=w R(D). Hence, there is a word w ∈ A∗ with
c ∈ RW=w R(D). We choose such word w ∈ A∗ with minimal length. If ∣w∣ ≤ ∣A∣ holds, we
are done. So, assume ∣w∣ > ∣A∣. Let w = a1a2 . . . ak with a1, a2, . . . , ak ∈ A and k > ∣A∣.

Since the number of equivalence classes induced by the quasi ordering ≤ is at most ∣A∣,
there are two indices 1 ≤ m < n ≤ k with am ≤ an according to the pigeon hole principle.
We choose m and n with this property such that the distance n −m is minimal. Hence, we
obtain am+1, am+2, . . . , an−1 ≰ an. Then by Lemma 9.5.27 we learn

c ∈ RW=w R(D) = RW=a1 ...am−1amam+1 ...an ...ak R(D) = RW=a1 ...am−1am+1 ...an ...ak R(D) .

However, the word w′ ∶= a1 . . . am−1am+1 . . . an . . . ak is shorter than w and satisfies the prop-
erty c ∈ RWw′ R(D). This is a contradiction to the choice of w being a word of minimal
length. ◂

According to Proposition 9.5.28we find for any run of the saturated systemS another run,
which alternates at most ∣A∣ + 1 times between increase and decrease phases. From the proof
of this statement we obtain a possibly tighter upper bound for the number of alternations:
N + 1 where N is the number of equivalence classes induced by the quasi-ordering ≤. For
example, if A = {a, b} = A=a (i.e.,S is a single-pushdown system), Proposition 9.5.28 yields
3 alternations while we have only one equivalence class implying that 2 is a tighter bound
(note that according to [FWW97] 1 is also an upper bound in this case).

Finally, we can proveTheorem 9.5.16 by bringing together all of the previously described
steps:

Proof (ofTheorem 9.5.16). FromS we compute the asynchronous pushdown systemS(∞)

by adding shortcuts as described in Step 1. Then we know post∗S(C) = post∗
S(∞)
(C) by

Lemma 9.5.19. From Propositions 9.5.25 and 9.5.28 we learn that

post∗S(C) = post
∗
S(∞)
(C) = (RW)∗(C) = (RW)∣A∣+1(C)

holds. Finally, iterated application of Lemmata 9.5.23 and 9.5.24 yields anS-NFA accepting
(RW)∣A∣+1(C) = post∗S(C). If we assume thatA is fixed, this automaton can be computed in
time polynomial in the size ofS and anS-NFA accepting C. ◂

Now, letA be a distributed alphabet andS be an asynchronous pushdown system over
A. A relation R ⊆ ConfS ×ConfS is called rational if for each pair of control states p⃗ and q⃗
ofS the relation

{(λ, κ) ∣ (p⃗, λ)R (q⃗, κ)} (9.5)
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is rational inM(A)2. Note that the relation in (9.5) is a projection to the distributed stack’s
contents of the configurations in R with control states p⃗ and q⃗.

As a corollary of Theorem 9.5.16 we infer that the relation of all configurations c, d ∈
ConfS ofS satisfying c →∗S d is efficiently rational:

Theorem 9.5.29. Let A = (A, P,M) be a distributed alphabet, S = (Q⃗ ,PA, ∆, Λ) be
an asynchronous pushdown system. Then the relation

{(c, d) ∈ ConfS ×ConfS ∣ c →∗S d}

is rational. In particular, fromS we can compute a representation of this relation. IfA

is fixed, this construction is possible in polynomial time.

Proof. Before we show the correctness of this theorem we want to sketch the idea of the
proof. To this end, recall that tuples of traces fromM(A) are essentially traces from another
trace monoidM(A′) whereA′ consists of two independent copies ofA. In other words, we
can see the relation R ∶= {(c, d) ∣ c →∗S d} as a set of configurations of another asynchronous
pushdown systemS′ over the modified distributed alphabetA′. This system simulatesS
on one component of the tuples from R and leaves the other one untouched. Then starting
from the identity relation on ConfS (this is a rational set of configurations ofS′) the set of
forwards reachable configurations inS′ is R. Finally, we can compute anS′-NFA accepting
R according toTheorem 9.5.16.

First, our modified distributed alphabetA′ = (A′, P′,M′) is the following one:

A′ ∶= Â∪ Awhere Â ∶= {â ∣ a ∈ A} is a disjoint copy of A,
P′ ∶= P̂ ∪ P where P̂ ∶= {î ∣ i ∈ P} is a disjoint copy of P, and
M′ ∶= {(â, î) ∣ aM i} ∪M.

Then we construct an asynchronous pushdown system S′ = (Q⃗′,PA′ , ∆′, Λ′) over the
modified distributed alphabetA′ as follows:

Q⃗′ ∶= Q⃗ × Q⃗ (we assume that the first copy of Q⃗ represents the processes P̂ and the
second one represents P),
∆′ ∶= {((p⃗1, p⃗2), at, (p⃗1, q⃗)) ∣ (p⃗2, at, q⃗) ∈ ∆}, and
λ′ is arbitrary.

Note thatS′ is asynchronous since we only simulate the transitions ofS and do not touch
the processes from P̂. Finally, we set

C ∶= {(q⃗, q⃗) ∣ q⃗ ∈ Q⃗} × {[âa] ∣ a ∈ A}∗ ⊆ ConfS′ .

In other words, the set of initial configurations is essentially the identity relation on ConfS.
Note that this set of configurations ofS′ is efficiently rational.

ByTheorem 9.5.16 we can construct anS′-NFA A accepting the set post∗S′(C) in time
polynomial in the size ofS′ and anS′-NFA accepting C. Then for p⃗, q⃗ ∈ Q⃗ the set

L p⃗,q⃗ ∶= {λ ∈M(A′) ∣ {((p⃗, q⃗), λ)} ∈ C(A)}
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is rational inM(A′). Note that this set contains exactly those traces λ ∈M(A′) satisfying
(p⃗, ϕ(λ))→∗S (q⃗, πA(λ)) where ϕ∶M(A′)→M(A) first projects a trace to the alphabet Â
and afterwards suppresses the hats from each letter.

Finally, using the homomorphism ψ∶M(A′) →M(A)2 induced by ψ(a) = (ε, a) and
ψ(â) = (a, ε) for each a ∈ A (note that this homomorphism is well-defined), we obtain the
efficient rationality of

ψ(L p⃗,q⃗) = {(κ, λ) ∣ (p⃗, κ)→∗S (q⃗, λ)}

implying that {(c, d) ∈ ConfS ×ConfS ∣ c →∗S d} is efficiently rational. ◂

Note that it is decidable whether a given rational trace language is contained in a given
recognizable trace language. Hence, our results,Theorems 9.5.9 and 9.5.16, allow to decide the
following problems for a given asynchronous pushdown systemS, a rational set C ⊆ ConfS
of configurations, and a recognizable set D ⊆ ConfS of configurations:

(1) Reachability Problem. Can we reach D from C, or equivalently, does post∗S(C) ∩ D ≠ ∅
(resp. C ∩ pre∗S(D) ≠ ∅) hold?

(2) Safety Problem. Can we only reach D from C, or equivalently, does post∗S(C) ⊆ D hold?

(3) Liveness Problem. Can we reach D from any reachable configuration of C, or equivalently,
does post∗S(C) ⊆ pre

∗
S(D) hold?

Note that until now we cannot decide the Inevitability Problem (do we stay in C until we
eventually reach D?). To solve this problem we should first decide the Recurrent Reachability
Problem of asynchronous pushdown systems.

9.5.3 Recurrent Reachability
Towards the recurrent reachability problem we should recall that this problem is equiva-
lent to asking whether an asynchronous Büchi-pushdown automaton accepts at least one
infinite word. With the help of Theorem 9.5.9 we will see that this problem is decidable in
polynomial time. We will use the recurrent reachability problem to prove the decidability of
special temporal logics. Concretely, we will obtain that the model checking problem of an
LTL-like logic for traces is decidable in exponential time for Kripke-structures induced by
asynchronous pushdown systems.

Lemma 9.5.30. Let A = (A, P,M) be a distributed alphabet and let A =
(Q⃗ , Γ ,PA, I, c, ∆, F) be an asynchronous pushdown automaton (without ε-transitions).
Then we have Lω(A) ≠ ∅ if, and only if, there are q⃗ ∈ Q⃗ and a ∈ Awith

(1) pre∗A({q⃗} × ([a] ⋅M(A))) ∩ InitA ≠ ∅ and

(2) (q⃗, [a]) ∈ pre+A(FinalA ∩ pre+A({q⃗} × ([a] ⋅M(A)))).

Proof. First, we assume that (1) and (2) hold. Then, there are u ∈ Γ∗, v ,w ∈ Γ+, x , y, z ∈ A∗,
(ι⃗, c) ∈ InitA, and ( f⃗ , [x]) ∈ FinalA with
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(ι⃗, c) u
Ð→A (q⃗, [az]) and

(q⃗, [a]) v
Ð→A ( f⃗ , [x])

w
Ð→A (q⃗, [ay]).

From these properties we obtain the following infinite run:

(ι⃗, c) u
Ð→A (q⃗, [az])

v
Ð→A ( f⃗ , [xz])

w
Ð→A (q⃗, [ayz])

v
Ð→A ( f⃗ , [xyz])

w
Ð→A (q⃗, [ay2z])

v
Ð→A . . .

This run visits infinitely often f⃗ ∈ F, i.e., we have u(vw)ω ∈ Lω(A) ≠ ∅.
Conversely, we assume Lω(A) ≠ ∅. Then there are α0, α1, ⋅ ⋅ ⋅ ∈ Γ, q⃗0, q⃗1, ⋅ ⋅ ⋅ ∈ Q⃗, and

x0, x1, ⋅ ⋅ ⋅ ∈ A∗ with α0α1α2 ⋅ ⋅ ⋅ ∈ Lω(A), (q⃗0, [x0]) ∈ InitA,

(q⃗0, [x0])
α0
Ð→A (q⃗1, [x1])

α1
Ð→A (q⃗2, [x2])

α2
Ð→A . . . ,

and infinitelymany j ∈ Nwith (q⃗ j, [x j]) ∈ FinalA. Since this is a run ofA, there are transitions
(q⃗ j, α j, a jt j, ⃗q j+1) ∈ ∆ with ⟦a jt j⟧([x j]) = [x j+1] for each j ∈ N.
▷ Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea. Since the run (q⃗k , [xk])k∈N does not necessarily satisfy the two conditions of our
lemma, we will construct another accepting run ofAwhich actually satisfies these conditions.
To this end, we want to find a letter a ∈ Awhich is read infinitely often from the stacks. We
choose this letter maximal with this property wrt. the well-quasi-ordering ≤. We show then
that each infinitely often occurring letter is either independent or smaller than a wrt. ≤.

Now, we obtain our new run from the original one as follows: both runs agree in
their (sufficiently long) beginning. Afterwards, we remove all transitions reading letters
independent of a. So, after this long beginning the run acts like a single-pushdown system
on the processes aM. Hence, the rest of this proof will generalize the idea known from
[BEM97]. ⌟

For k ∈ N we set Ak ∶= {a j ∣ j ≥ k} ⊆ A, i.e., Ak is the set of all letters we read on our
infinite run starting from the kth step. By definition we have A ⊇ A0 ⊇ A1 ⊇ . . . , i.e., the
sequence (Ak)k∈N is monotonically decreasing. Since ⊆ is well-quasi-ordered on finite sets,
there is an integer k ∈ N such that Ak = Aℓ for each ℓ ≥ k holds. It is easy to see that each
letter a ∈ Ak is read infinitely often on our run. Note that our run also visits infinitely often
an accepting state after the kth step. In particular, by the pigeon hole principle there is a state
f⃗ ∈ F which appears infinitely often on our run. W.l.o.g., we can assume that q⃗k = f⃗ holds.

Recall the quasi-ordering ≤ on Awith a ≤ b iff aM ⊆ bM. Since A is finite, ≤ is even a
well-quasi-ordering. We choose a letter a ∈ Ak which is maximal wrt. ≤. Then we can show
that each letter b ∈ Ak is either smaller than a wrt. ≤ or is independent of a.
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. Let b ∈ Ak. Then we have either b ≤ a or b ∥ a.

Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea.Proof idea. Towards a contradiction, assume there is b ∈ Ak with b ≰ a and b ∦ a. W.l.o.g., b
also is maximal wrt. ≤. Let i ∈ aM∩ bM be a common process. Note that due to maximality
of a and b we have aM∖bM ≠ ∅ and bM∖aM ≠ ∅, i.e., by asynchronism of A it is
impossible that we read a (resp., b) and write b (resp., a) in the same transition.

Now let j1 ≥ k with πi(x j1) ∈ aA
∗
i (this index j1 exists since we read a ∈ Ak infinitely

often). Since we have b ∈ Ak there is another computation step k2 > j1 in which we read b,
i.e., we have πi(xk2) ∈ bA

∗
i .

Then, in order to reach the content πi(xk2) after step j1, we first have to remove the letter
a and any other letter from A≤a ∩ Ai which we have pushed onto stack i between the jth1 and
kth2 step. This is due to the restriction of asynchronous pushdown automata writing at most
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letters onto stacks from which we have read a letter before (cf. Observation 9.5.5). In other
words, there is a step j1 < i2 ≤ k2 with πi(x j1) = aπi(xi2).

Since we have the letter b ∈ Ak on top of stack i in the kth2 computation step, there was
a letter c ∈ A=b in stack i’s content at step i2 which is either exactly this b we read in step
k2 or which (transitively) writes b onto stack i. This means, we have πi(xi2) ∈ A

∗
i cA

∗
i and

πi(x j1) ∈ aA
∗
i cA

∗
i . Hence, there is a computation step i2 ≤ j2 ≤ k2 with πi(x j2) ∈ cA

∗
i and,

therefore
∣πi(x j1)∣ > ∣πi(xi2)∣ ≥ ∣πi(x j2)∣ .

By exchanging the roles of a and b we similarly find computation steps k2 < i3 ≤ j3 ≤ k3
with the following properties:

πi(x j2) = aπi(xi3),

πi(xk3) ∈ cA
∗
i , and

πi(x j3) ∈ dA
∗
i for a letter d ∈ A=a with πi(x j2) ∈ cA

∗
i dA

∗
i .

We could similarly infer ∣πi(x j2)∣ < ∣πi(x j3)∣.
By induction we finally obtain an infinite sequence j1 < j2 < j3 < j4 < . . . with

∣πi(x j1)∣ > ∣πi(x j2)∣ > ∣πi(x j3)∣ > ∣πi(x j4)∣ > . . . ,

i.e., stack i’s height is monotonically decreasing. However, this is impossible since (N, ≤) is a
well-quasi-ordering. ◁

a

c

d

j1

c

d

i2

c

d

j2

b

d

k2

d

i3

d

j3

a

k3

A≤a

A≤b A≤b

A≤a

Figure 9.15.The proof of Claim 1. We visualize the contents of stack i over time. In this connection, the
red (thick) line marks the height of stack i. The gray shaded areas mark the letters (transitively) written by a, c,
resp. d.

Now we want to construct another infinite run of A which only reads letters from A≤a
after the kth computation step. We do this by deletion of all other transitions.
▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. There are p⃗0, p⃗1, p⃗2, ⋅ ⋅ ⋅ ∈ Q⃗, y0, y1, y2, ⋅ ⋅ ⋅ ∈ A∗, and β0, β1, ⋅ ⋅ ⋅ ∈ Γ such that the
following properties hold:

(i) (q⃗k , [xk]) = (p⃗0, [y0]),

(ii) for each j ∈ N there is b ∈ A≤a ∩ Ak and t ∈ A∗ such that (p⃗ j, β j, bt, ⃗p j+1) ∈ ∆ and

⟦bt⟧([y j]) = [y j+1], and

(iii) there are infinitely many j ∈ N with (p⃗ j, [y j]) ∈ FinalA.
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Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We inductively construct global states q⃗′k ,
⃗q′k+1, ⋅ ⋅ ⋅ ∈ Q⃗, stack contents x′k , x′k+1, ⋅ ⋅ ⋅ ∈ A∗,

and letters α′
k
, α′

k+1, ⋅ ⋅ ⋅ ∈ Γ ∪ {ε} as follows: we set q⃗
′
k ∶= q⃗k and x′k ∶= xk . Now let j ≥ k. Then

we distinguish two cases:

if a j ∉ A≤a we set α′j ∶= ε, ⃗q′j+1 ∶= q⃗′j, and x′j+1 ∶= x′j.
if a j ∈ A≤a we set α′j ∶= α j, ⃗q′j+1 ∶= ( ⃗q j+1↾aM, q⃗k↾P∖aM) and x′j+1 ∈ A∗ with [x′j+1] =
⟦a jt j⟧([x′j]). Note that x′j+1 arises from x j+1 and xk by combining the stacks in aM of
x j+1 with the stacks in P ∖ aM of xk. Hence, x′j+1 is well-defined.

In other words, whenever we read a letter b ∈ Awhich is independent from a in the original
run, we remove the effect of this step in our new run. Whenever we read a letter b ∈ A≤a, we
also apply this transition in our new run. Note that this is possible due to the asynchronism
of A. Since q⃗′k = q⃗k = f⃗ ∈ F holds and since f⃗ occurs infinitely often in our original run, f⃗
also occurs infinitely often in our new run.

Finally, removing ⃗q′j+1, x′j+1, and α′j from these sequences whenever a j ∉ A≤a holds and
re-indexing yields the sought run. ◁

Next, we consider a subsequence of our new run where the height of our stacks is not
decreasing. To this end, we set I ∶= { j ≥ k ∣ ∀ℓ ≥ j∶ ∣y j∣ ≤ ∣yℓ∣}. Since the natural ordering
on N is a well-ordering, this sequence is infinite. Using the pigeon hole principle we can
restrict this subsequence to those configurations having the same control state and the same
top of our stacks. Formally, there are p⃗ ∈ Q⃗ and b ∈ Ak ∩ A≤a such that J ∶= { j ∈ I ∣ p⃗ =
p⃗ j, [y j] ∈ [b] ⋅M(A)} is infinite. We can also assume that b ∈ A=a holds, i.e., b is on top of
all considered stacks i ∈ aM in infinitely many configurations with minimal stack heights.
Finally, we can prove that (1) and (2) hold:

Let j ∈ J. Then by definition we have (q⃗0, [x0]) ∈ pre∗A({(p⃗ j, [y j])}) ∩ InitA (recall that
[y j] ∈ [b] ⋅M(A) holds). Towards the second property, let ℓ > j with p⃗ℓ = f⃗ ∈ F. This
number exists, since we visit f⃗ infinitely often. Additionally, since J is infinite, there is m ∈ J
with m > ℓ > j, i.e., we have p⃗m = p⃗ and [ym] ∈ [b] ⋅M(A). Since j ∈ J ⊆ I we have ∣y j∣ ≤ ∣yn∣
for each n ≥ j. Since b ∈ A=a affects all processes from aM and since we do not touch the
other processes anymore, we also have ∣y j∣A i

≤ ∣yn∣A i
for each n ≥ j and i ∈ P. Hence, for

[y j] = [bz] (where z ∈ A∗) we also have [yn] ∈M(A) ⋅ [z]. This finally implies

(p⃗, [b]) ∈ pre+A(FinalA ∩ pre+A({p⃗} × ([b] ⋅M(A)))) . ◂

From Lemma 9.5.30 we learn that the recurrent reachability problem resp. the emptiness
problem of asynchronous Büchi-pushdown automata is decidable. However, we cannot
apply the reduction from Theorem 8.3.1 to solve the model checking problem of LTL for
the Kripke-structures induced by asynchronous pushdown systems. This is due to the fact
that the constructed Büchi-automaton A for an LTL-formula ϕ (as described in the previous
chapter) is not necessarily asynchronous. Therefore, the Büchi-pushdown automaton B
simulating A and the given asynchronous pushdown systemS in parallel is not necessarily
asynchronous.

We can circumvent this problem with a more specialized version of LTL. Concretely, we
replace the temporal operators X and U by local ones. So, we introduce two local operators
Xi andUi for any process i ∈ P. In this connection, “Xi ϕ” means “ϕ holds on the next step of
process i” and “ϕUi ψ” means “ϕ holds on process i untilψ holds”. This is essentially the logic
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TrPTL (PTL resp. LTL for traces) introduced byThiagaranjan in [Thi94]. We also require
that the labeling Λ of an asynchronous pushdown system S = (Q⃗ ,PA, ∆, Λ) consists of
local labelings Λi . In other words, we have pairwise disjoint sets APi of atomic propositions
and functions Λi ∶Qi → 2APi such that Λ((qi)i∈P) = ⋃i∈P Λi(qi) for each i ∈ P holds. In this
case, we callS an asynchronous pushdown system with local labeling.

Now consider the formula ϕ = Gi Fi a ∧ G j F j b where a ∥ b, aM i, and bM j holds.
Then ϕ states that on a run of a given asynchronous pushdown systemS (with local labeling)
we read a and b infinitely often. In other words, ϕ states a special fairness property of the
processes i and j. Unfortunately, we cannot check whether ϕ holds using Lemma 9.5.30. This
is due to the fact that our proof of Lemma 9.5.30 considers runs only affecting a connected
set of processes ofS.

Hence, towards the proof strategy sketched in Section 8.3 we also require a local accepting
condition of asynchronous Büchi-pushdown automata. Such conditions were introduced by
Muscholl in [Mus94]: concretely, we require the Büchi-automata on traces to visit all states
of a given set of local states infinitely often for any process i ∈ P. To this end, we first have to
determine the local states an automaton visits infinitely often on a given run:

Let A = (Q⃗ , Γ ,PA, I, c, ∆, F) be an asynchronous pushdown automaton with Q⃗ =
∏i∈P Qi and ρ = ((qi , j)i∈P , [w j]) j∈N be an infinite run of A reading the letters a1, a2, ⋅ ⋅ ⋅ ∈ A
from its distributed stack. For a process i ∈ P we denote the set of all local states from Qi

occurring infinitely often in ρ by inf i(ρ) ∶= {q ∈ Qi ∣ ∃∞ j ∈ N∶ qi , j = q} if there are infinitely
many j ∈ N with a jM i. Otherwise we set inf i(ρ) ∶= ∅ (in this case the run on process i is
finite). A table is a set T ⊆∏i∈P 2Q i . Then the accepted ω-language of A wrt. a table T is the
following one:

Lω
T(A) ∶= {α0α1 ⋅ ⋅ ⋅ ∈ Γ

ω ∣
∃ infinite run ρ labeled with α0α1 . . . in A, (Ti)i∈P ∈ T ∶

∀i ∈ P∶Ti ⊆ inf i(ρ)
} .

Next, wewant to prove the decidability of the emptiness problem ofω-languages accepted
by asynchronous Büchi-pushdown automata with local accepting conditions. We will see
that the proof of this statement is close to the proof of Lemma 9.5.30, but a bit more involved.
We should also note that we only consider tables T of cardinality 1. However, we obtain the
general case easily by splitting T into ∣T ∣ singletons.

Lemma 9.5.31. LetA = (A, P,M) be a distributed alphabet, A = (Q⃗ , Γ ,PA, I, c, ∆, F)
be an asynchronous pushdown automaton (without ε-transitions), and let Ti =
{ fi ,1, . . . , fi ,n i

} ⊆ Qi for each i ∈ P. Set T = {(Ti)i∈P}. Then we have Lω
T(A) ≠ ∅

if, and only if, there are q⃗ ∈ Q⃗ and w ∈ A≤∣P∣ with

(1) pre∗A({q⃗} × ([w] ⋅M(A))) ∩ InitA ≠ ∅ and

(2) for each i ∈ P and 1 ≤ j ≤ ni we have

(q⃗, [w]) ∈ pre+A((Q⃗↾P∖{i}, { fi , j}) ×M(A) ∩ pre+A({q⃗} × ([w] ⋅M(A)))) .

Proof. This proof is similar to the proof of Lemma 9.5.30 with some generalizations.
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Again, we first assume that the properties (1) and (2) hold. Then there are (finite) words
u ∈ Γ∗, vi , j,wi , j ∈ Γ+ and x , yi , j, zi , j ∈ A∗, ι⃗ ∈ I, and p⃗i, j ∈ (Q⃗↾P∖{i}, { fi , j}) (for each i ∈ P and
1 ≤ j ≤ ni) with

(ι⃗, c) u
Ð→A (q⃗, [wx]) and

(q⃗, [wx])
v i , j
Ð→A (p⃗i, j, [yi , j])

w i , j
Ð→ (q⃗, [wzi , j]).

With the help of these properties we obtain an infinite run with the following labeling:

γ ∶= u
⎛

⎝
∏
i∈P
∏

1≤ j≤n i

vi , jwi , j
⎞

⎠

ω

,

which satisfies the accepting conditions of the table T in A, i.e., we have γ ∈ Lω
T(A) ≠ ∅.

Conversely, let Lω
T(A) ≠ ∅. Hence, there are α0, α1, α2, ⋅ ⋅ ⋅ ∈ Γ, q⃗0, q⃗1, ⋅ ⋅ ⋅ ∈ Q⃗, and

x0, x1, ⋅ ⋅ ⋅ ∈ A∗ with α0α1α2 ⋅ ⋅ ⋅ ∈ Lω
T(A), (q⃗0, [x0]) ∈ InitA,

(q⃗0, [x0])
α0
Ð→A (q⃗1, [x1])

α1
Ð→A (q⃗2, [x2])

α2
Ð→A . . . ,

and for each i ∈ P and 1 ≤ j ≤ ni there are infinitely many h ∈ N with q⃗h↾i = fi , j. Since this is
a run of A, there are transitions (q⃗h , αh , ahth , ⃗qh+1) ∈ ∆ with ⟦ahth⟧([xh]) = [xh+1] for each
h ∈ N.
▷ Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea.Idea. To prove that the two conditions of our lemma hold, we first construct multiple new
runs of A as described in the proof of Lemma 9.5.30. Concretely, here we take all maximal
letters a ∈ Awrt. ≤ from the set of all letters occurring infinitely often in this run. For each of
these maximal letters a we repeat the construction from above. Afterwards we merge these
new runs together. This is possible since all of our new runs only modify the local states from
aM after some steps. For this merged run, we can show the conditions as in the proof of
Lemma 9.5.30. ⌟

Again, we define Ak = {ah ∣ h ≥ k} ⊆ A as the set of letters we read after the kth step (for
k ∈ N). Then there is a number k ∈ N, such that each letter a ∈ Ak is read infinitely often
on the infinite run from above. Due to the pigeon hole principle we can also choose k such
that the subrun starting from the kth step visits each state q⃗h infinitely often (for h ≥ k). We
already know that for each pair a, b ∈ Ak of distinct letters, where a is maximal wrt. the
well-quasi-ordering ≤, we have b ≤ a or a ∥ b. Hence, we can partition A into alphabets
B(0), B(1), . . . , B(m) ⊆ A such that B(0) ∶= A∖ Ak and for each 1 ≤ n ≤ m there is a maximal
a ∈ Ak such that B(n) ∶= Ak ∩ A≤a. Note that this definition implies a ∥ b for each a ∈ B(n1)
and b ∈ B(n2) with 1 ≤ n1 < n2 ≤ m.

Now, let 1 ≤ n ≤ m and a ∈ B(n) be maximal wrt. ≤. Similar to the proof of Lemma 9.5.30
we can construct a new run ρ(n) ∶= ( ⃗p(n)h , [y(n)

h
])h∈N inAwhich starts in (q⃗k , [xk]), simulates

A’s computations on the stacks in aM and leaves the stacks from P ∖ aM untouched. Then
there is an infinite sequence I(n) ∶= {h ≥ k ∣ ∀ℓ ≥ h, i ∈ aM∶ ∣y

(n)
h
∣A i
≤ ∣y

(n)
ℓ ∣A i

} of steps
having minimal stack heights in ρ(n). We also find ⃗p(n) ∈ Q⃗ and b(n) ∈ B(n) = Ak ∩ A≤a ⊆ A

such that J(n) ∶= {h ∈ I(n) ∣ ⃗p(n) = ⃗p(n)h , [y(n)
h
] ∈ [b(n)] ⋅M(A)} is infinite. Let h1 ∈ J(n)

be arbitrary. Additionally, let i ∈ aM and 1 ≤ j ≤ ni . Since the path (q⃗h , [xh])h∈N visits fi , j
infinitely often and by construction of ρ(n), there are also infinitely many h ∈ N such that
the ith component of ⃗p(n)h is fi , j. Hence, there is h2 > h1 where

⃗p(n)h2
∈ (Q⃗↾P∖{i}, { fi , j}). Since
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J(n) is infinite, there is h3 ∈ J(n) with h3 > h2. Then we can prove (similar to the proof of
Lemma 9.5.30)

pre∗A({
⃗p(n)} × ([b(n)] ⋅M(A))) ∩ InitA ≠ ∅ (9.6)

and

( ⃗p(n), [b(n)]) ∈ pre+A((Q⃗↾P∖{i}, { fi , j}) ×M(A) ∩ pre+A({
⃗p(n)} × ([b(n)] ⋅M(A)))) . (9.7)

Note that these equations also hold if we replace ⃗p(n) by any global state q⃗ ∈ Q⃗ with q⃗↾aM =⃗p(n)↾aM and q⃗↾P∖aM = q⃗h↾P∖aM with h ≥ k.
Finally, we set q⃗ ∈ Q⃗ such that q⃗↾B(0) = q⃗k↾B(0) and q⃗↾B(n) = ⃗p(n)↾B(n) for each 1 ≤ n ≤ m.

Additionally, we set w ∶= b(1)b(2) . . . b(m). Then we obtain our claim by combining the
equations (9.6) and (9.7) since A is asynchronous and B(n1) and B(n2) are independent for
each 1 ≤ n1 < n2 ≤ m. ◂

Now, we want to take a closer look at the complexity of the emptiness problem: to
solve this problem we can check for each state q⃗ ∈ Q⃗ and each word w ∈ A≤∣P∣ whether the
properties of Lemma 9.5.31 hold. If we consider the underlying alphabetA as fixed, there are
only a constant number of such words in A≤∣P∣. Hence, we have to check a constant number
of properties linearly often. Any of these properties is decidable in polynomial time due to
Theorem 9.5.9. This means that the emptiness problem is decidable in polynomial time in
this case.

Next, we assume that the distributed alphabetA is part of the input of our considered
emptiness problem. Then A≤∣P∣ contains exponentially many words of length polynomial in
the size ofA. In this case our algorithm needs exponential time. However, due to the proof
of Lemma 9.5.31 we do not have to check the properties of this lemma for all words from
A≤∣P∣. It suffices to consider those words w ∈ A≤∣P∣ containing at most one letter from each
process, i.e., those words with ∣w∣A i

≤ 1 for each i ∈ P. Though, in the worst case we still have
to check ∣2P ∣many words implying an exponential running time.

Theorem 9.5.32. The emptiness problem for ω-languages accepted by asynchronous

Büchi-pushdown automata with global or local accepting conditions is decidable in

polynomial time (if the underlying distributed alphabet is fixed). ◂

Now, let ϕ be a TrPTL-formula and S be an asynchronous pushdown system with
local labeling. Then the constructed Büchi-automaton A accepting all runs satisfying ϕ
(cf. Chapter 8) is asynchronous. Therefore, the resulting Büchi-pushdown automatonB
simulatingA andS in parallel also is asynchronous. If the underlying distributed alphabetA
is fixed, we can check in polynomial time whetherB accepts at least one ω-word according to
Theorem 9.5.32. Since the computation ofA takes exponential time, we can checkM(S) ⊧ ϕ
in exponential time. Hence, themodel checking problem ofTrPTL is decidable in EXPTIME.

Note that with TrPTL we can only state local properties of a run in an asynchronous
pushdown system. One may also ask for global properties of such a run. It is well-known that
global LTL for traces is decidable, but has non-elementary complexity [Wal98]. However,
until now it is still an open problem, whether this result can be generalized to runs of
asynchronous pushdown systems. Also the decidability of the model checking problem of
the various temporal logics presented in [GK07] is unknown.
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9.6 Conclusion
In this chapter we considered the reachability problem of pushdown automata having one
or more stacks as their memory. We started with recalling the results from Bouajjani et al.
[BEM97] and Finkel et al. [FWW97] proving that the reachability problem and the recurrent
reachability problem is decidable in polynomial time in pushdown automata having one stack.
Afterwards we considered automata having at least two stacks as their memory. Since these
automata are known to be as powerful as Turing-machines, we considered a special kind of
multi-pushdown automata, so-called asynchronous pushdown automata. We have translated
the construction from [BEM97] from single-pushdown automata to the asynchronous ones
and proved that in this case the reachability problem is still efficiently decidable. Additionally,
we have presented a new construction considering the forwards reachable configurations.
We have also seen that recurrent reachability with local or global restrictions is decidable in
polynomial time (at least for a fixed underlying distributed alphabet). This finally implies the
decidability of the model checking problem of a local LTL for traces in Kripke-structures
induced by such asynchronous pushdown automata. So, we obtain that model checking of
LTL-formulas for such Kripke-structures with local properties is in EXPTIME. For Kripke-
structures with global properties it is still open whether the model checking problem is
decidable.





Chapter 10

Verifying Queue Automata

10.1 Introduction

Our aim in this chapter is to verify automata having one or more queues as their memory.
We can use such systems to model finite computer networks communicating through several
channels. Unfortunately, an automaton having at least one reliable, unbounded queue is
as powerful as a Turing-machine (cf. [BZ83]). This also holds for any partially lossy queue
except for the fully lossy ones (cf. Theorem 3.3.7). This implies the undecidability of all
non-trivial questions on verification like reachability or LTLmodel checking. In contrast,
the reachability problem in lossy queue automata is decidable, but of very bad complexity.
Concretely, given regular languages K , L ⊆ A∗ and T ⊆ Σ∗, we can decide whether we can
reach from an initial queue content in L another queue content in K after application of T ,
i.e., whether Reach(L, T) ∩ K ≠ ∅ holds. Since Reach(L, T) is downwards-closed under
the subword relation, we know that this language is regular [Hai69]. However, in general we
cannot compute an NFA accepting Reach(L, T) from L and T [May03]. Surprisingly, from
L and T we can compute an NFA accepting BackReach(L, T) [AJ96a], even though this
construction is not primitive recursive [Sch02, CS08]. Note that the recurrent reachability
problem and the LTLmodel checking problem still are undecidable for lossy queue automata
[AJ96b].

Due to the undecidability or inefficiency of the reachability problem in automata having
at least one partially lossy queue, it is worth to approximate this problem. A first, very trivial
approach is to simulate the computation of a queue automaton step-by-step. This means,
starting with L, we iteratively compute the set of all queue contents which are reachable from
L after application of at most n transitions. Formally, for the set Tn ⊆ Σ∗ of prefixes of length
at most n of T we compute Ln = Reach(L, Tn) for increasing numbers n ∈ N. This can be
done by applying single basic actions α ∈ Σ to Ln−1 which corresponds to concatenation
or taking a left-quotient. So, if L is accepted by a finite automaton (in literature these are
often called queue decision diagrams or QDDs, for short, cf. [Boi+97, BG99, KM21]), all
languages Ln ⊆ A∗ are regular and automata accepting these languages can be computed
in polynomial time using the classical constructions from automata theory. However, this
algorithm is not very efficient: consider L = {ε} and T = a∗ for an a ∈ A. Then we obtain
Ln = Reach(L, a≤n) = a≤n which is still finite for each n ∈ N. In other words, after a finite
number of steps we can only explore a finite extension of the state space L.

Boigelot et al. [Boi+97, BG99] and Abdulla et al. [Abd+04] improved this trivial approx-
imation by the introduction of so-called meta-transformations. These are certain regular
languages S ⊆ Σ∗ such that the sets Reach(L, S) are effectively regular for any regular lan-
guage L ⊆ A∗. Then the trivial approximation can be modified as follows: whenever we
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compute Ln+1 from Ln we search for such meta-transformation in the queue automaton’s con-
trol component starting from Tn and apply them to Ln. In [Boi+97] the authors considered
meta-transformations of the form S = {t} and S = {t}∗ where t ∈ Σ∗. In fact, this approach
is more efficient than the trivial one, since we can explore an infinite state space in just one
step of the algorithm.

From these results we obtain the decidability of the reachability problem in so-called
flat (or flattable) queue automata. These are plq automata where each control state belongs
to at most one loop. In this case, the algorithm from Boigelot et al. terminates after a
finite number of steps and Reach(L, T) is regular whenever L and T are regular languages.
Moreover, due to [FP20, Sch20] the membership problem of Reach(L, T) is NP-complete
in flat reliable and lossy queue automata. Bollig et al. proposed to extend this class to so-
called input-boundable queue automata [BFS20]. A regular language T ⊆ Σ∗ of queue action
sequences is input-bounded if wrt(T) ⊆ w∗1 w∗2 . . .w∗n and rd(T) contains only prefixes of
w∗1 w

∗
2 . . .w∗n where w1, . . . ,wn ∈ A+ are non-empty words. In that paper, the authors reduced

the reachability problem to reachability in n-counter automata. The result is that membership
of Reach({ε}, T) is decidable, but it is not known whether there is a primitive recursive
algorithm solving this problem (recall that the reachability problem of n-counter automata
has non-primitive recursive complexity [CO22, Ler22]). Note that this decidability is still
true for automata having more than one queue.

In the next section we present some more meta-transformations in reliable queue auto-
mata having exactly one queue. Afterwards, we translate these results to arbitrary partially
lossy queue automata and to distributed queue automata.

10.2 Reliable Queuesxviii

In this section we want to consider the reachability problem of automata having only one
reliable and unbounded queue as their memory. First, we show that themappingsReach and
BackReach are dual. Due to this duality it will suffice later in this section to only consider
forwards reachability. Using this duality will finally yield similar results for the backwards
reachability problem. Before we state this duality, we first should recall the duality function
d∶Σ∗ → Σ∗. This function is defined as follows:

d(ε) = ε, d(at) = d(t)a, and d(at) = d(t)a

for each a ∈ A and t ∈ Σ∗. We already know that ⟦t⟧(v) = w holds if, and only if,
⟦d(t)⟧(wR) = vR holds for each v ,w ∈ A∗ and t ∈ Σ∗ according to Proposition 4.6.1. This
equivalence turns out to be very helpful when proving the duality of the forwards and
backwards reachability in queue systems:

Theorem 10.2.1. Let A be an alphabet, L ⊆ A∗, and T ⊆ Σ∗. Then we have

BackReach(L, T) = Reach(LR, d(T))R .

xviiiThe results of this section are published in [Köc19, Köc21].
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Proof. First, let w ∈ BackReach(L, T). By definition there are t ∈ T and v ∈ L with
v = ⟦t⟧(w). By Proposition 4.6.1(1) we infer that ⟦d(t)⟧(vR) = wR holds. This implies
wR ∈ Reach(LR, d(T)) and, hence, w ∈ Reach(LR, d(T))R.

Conversely, let w ∈ Reach(LR, d(T))R, i.e., wR ∈ Reach(LR, d(T)). Then there are
v ∈ L and t ∈ T with ⟦d(t)⟧(vR) = wR. Due to Proposition 4.6.1(1) we have ⟦t⟧(w) = v ∈ L.
By definition we have w ∈ BackReach(L, T). ◂

In the following we always consider sets of queue contents which are forwards or back-
wards reachable from a given regular language of queue contents via a regular language
of action sequences. Since the regular languages are closed under reversal and duality d
and since forwards and backwards reachability are dual, it suffices to consider the forwards
reachable queue contents, only.

Now, let L ⊆ A∗ be a recursively enumerable language of queue contents and T ⊆ Σ∗ be
a regular language of queue action sequences. Then the language Reach(L, T) is effectively
recursively enumerable. However, since queue systems can simulate Turing-machines, the
language Reach(L, T) can be any recursively enumerable language - even if L and T are
somewhat “simple” languages:

Remark 10.2.2. Let K ⊆ Γ∗ be a recursively enumerable language. Then there is a (type-
0) grammarG = (N , Γ , P, S) with K = L(G). Let # ∉ N ∪ Γ be a new letter. We set our
alphabet A ∶= N ∪ Γ ∪ {#} (this will be the set of possible entries in our queue). We
construct the set of action sequences T ⊆ Σ∗ as follows:

T ∶= ({ℓr ∣ (ℓ, r) ∈ P} ∪ {aa ∣ a ∈ A})
∗
⋅ # ,

i.e., the queue system can apply any rule fromG and move any letter from the head to
its tail. Then we have

Reach({S#}, T) ∩ Γ∗ = L(G) = K . ⌟

In other words, Reach(L, T) can be any recursively enumerable language K even if L is a
singleton and T is essentially the Kleene-closure of a finite set of action sequences. Hence,
Reach(L, T) can be undecidable even for such simple languages L and T . Therefore, we
need the approximation of Reach(L, T) using meta-transformations as mentioned above.

In the following proposition we consider a first class of simple meta-transformations.
Concretely, we consider the case that T contains only sequences of write actions or only
sequences of read actions:

Proposition 10.2.3. Let A be an alphabet and L, T ⊆ A∗. Then the following statements

hold:

(1) Reach(L, T) = LT and

(2) Reach(L, T) = T/L.

Note that this proposition is a generalization of Theorems 1 and 2 in [BG99]. Con-
cretely, in these two theorems Boigelot and Godefroid have proven the effective regularity of
Reach(L, t) and Reach(L, t) where L ⊆ A∗ is regular and t ∈ A∗ is a single action sequence.
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Proof. First, consider equation (1): let w ∈ Reach(L, T) = ⟦T⟧(L) ∖ {�}. Then there
are v ∈ L and t ∈ T with ⟦t⟧(v) = w. Since t ∈ T ⊆ A∗ we have, by Observation 3.2.2,
w = ⟦t⟧(v) = vt ∈ LT . Conversely, let w ∈ LT . Then there is v ∈ L and t ∈ T with vt = w. By
iterated application of the definition of ⟦a⟧ (for a ∈ A) we obtain w = vt = ⟦t⟧(v) ∈ ⟦T⟧(L).
Since L, T ⊆ A∗ and w ≠ � we obtain w ∈ ⟦T⟧(L) ∖ {�} = Reach(L, T).

Similarly, we can prove equation (2) using the definition of ⟦a⟧ for a ∈ A. ◂

CombiningTheorem 10.2.1 and Proposition 10.2.3 we obtain the following two equations:

BackReach(L, T) = Reach(LR, T
R
)
R
= (TR/LR)

R
= L/T and

BackReach(L, T) = Reach(LR, TR)
R
= (LRTR)

R
= TL

for each pair of languages L, T ⊆ A∗.
Now, let L, T ⊆ A∗ be two regular languages accepted by the NFAs L and T, respectively.

Then, using the classical constructions, we can construct an NFA accepting Reach(L, T) =
LT in quadratic time. An NFA accepting Reach(L, T) = T/L can be constructed in cubic
time. The number of states of these two NFAs is linear in the number of states in L and T.

If we require these languages to be accepted by DFAs, then we additionally need to deter-
minize the given NFAs resulting in exponential time and size. The complexities regarding
BackReach are similar to the ones regarding Reach. Though, if L is a DFA, we still can
compute a DFA accepting BackReach(L, T) = L/T in cubic time having a linear number of
states (in this case we only modify the accepting states of L).

Next, we consider some more complicated types of meta-transformations T having map-
pings L ↦ Reach(L, T) and L ↦ BackReach(L, T) which preserve regularity efficiently.

10.2.1 Recognizability
The first type of meta-transformations we want to consider are languages that are regular
and closed under the behavioral equivalence ≡. In other words, we consider pre-images of
recognizable languages in the queue monoid.

Let t ∈ Σ∗ be an action sequence. From Corollary 4.7.15 we know that there is a “simple”
sequence s ∈ A

∗
A∗A

∗
with s ≡ t. In particular, we have t ≡ rd1(t)wrt(t)rd2(t). Hence,

we can compute this “simple” action sequence in polynomial time. To this end, we have
to compute the normal form nf (t) of t. From this normal form we finally can extract the
words rd1(t), wrt(t), and rd2(t). Note that, even if this algorithm computes a unique simple
word from its input t, there are action sequences having multiple such simple, equivalently
behaving action sequences s ∈ A

∗
A∗A

∗
as the following example shows:

Example 10.2.4. Let a, b ∈ A be two distinct letters and t = aaba. Then from Corol-
lary 4.7.15 we obtain abaa ≡ t, but we also have aaab ≡ aaab ≡ t. ⌟

Now, let L ⊆ A∗ and T ⊆ Σ∗ be two regular languages such that T is closed under
behavioral equivalence. In other words, we have T = η−1(S) for a recognizable queue
language (for characterizations of these languages see Section 6.4). As we have mentioned,
for each t ∈ T there is another action sequence s ∈ T which is “simple” (i.e., s ∈ A

∗
A∗A

∗
) and

behaves equivalently to t. Since T is closed under ≡ we also have s ∈ T in this case. Hence, to
compute Reach(L, T) it suffices to consider the simple action sequences, only. Therefore,
we obtain the following result:
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Theorem 10.2.5. Let A be an alphabet, L ⊆ A∗, and T ⊆ Σ∗ be regular languages
where T is closed under ≡ (i.e., we have T = η−1(S) for a recognizable queue language
S ⊆ T(QA)). Then Reach(L, T) and BackReach(L, T) are regular. In particular, we
can construct NFAs accepting Reach(L, T) and BackReach(L, T), respectively, from
NFAs accepting L and T in polynomial time.

Proof. First, we prove the following equation:
▷ Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim. We have Reach(L, T) = Reach(L, T ∩ A

∗
A∗A

∗
).

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. The inclusion “⊇” is trivial since T ∩ A
∗
A∗A

∗
⊆ T and Reach(L, .) is monotonic.

Towards the converse inclusion, let w ∈ Reach(L, T). Then there are v ∈ L and t ∈ T with
⟦t⟧(v) = w. Due to Corollary 4.7.15 there is s ∈ A

∗
A∗A

∗
with s ≡ t, i.e., we have s ∈ T . Since

s ∈ T ∩ A
∗
A∗A

∗
we obtain w = ⟦t⟧(v) = ⟦s⟧(v) ∈ Reach(L, T ∩ A

∗
A∗A

∗
) by the definition

of ≡. ◁

Next, we compute Reach(L, T ∩ A
∗
A∗A

∗
). To this end, let T = (Q , Σ, I, ∆, F) be an

NFA with L(T) = T . We partition T ∩ A
∗
A∗A

∗
as follows: let p, q ∈ Q be any pair of states

of T. Then we can compute the following three regular languages in polynomial time:

(1) K p,q
1 ∶= L(TI→p) ∩ A

∗
,

(2) K p,q
2 ∶= L(Tp→q) ∩ A∗, and

(3) K p,q
3 ∶= L(Tq→F) ∩ A

∗
.

It is easy to see that T ∩ A
∗
A∗A

∗
= ⋃p,q∈Q K

p,q
1 K

p,q
2 K

p,q
3 holds. Hence, we have

Reach(L, T) = Reach(L, ⋃
p,q∈Q

K
p,q
1 K

p,q
2 K

p,q
3 ) = ⋃

p,q∈Q
Reach(L,K p,q

1 K
p,q
2 K

p,q
3 ) .

So, let p, q ∈ Q. By Proposition 10.2.3 reading from the queue corresponds to taking the
left-quotient and writing into the queue corresponds to concatenation. Therefore, we have:

Reach(L,K p,q
1 K

p,q
2 K

p,q
3 ) = K

p,q
3
/((K p,q

1
/L) ⋅ K

p,q
2 ) .

Hence, due to the closure properties of the class of regular languages, Reach(L, T) is ef-
fectively regular. Since all of the needed closure properties are also efficient and since we
are considering only O(∣Q∣2)many languages K p,q

i , an NFA accepting Reach(L, T) can be
computed in polynomial time. This NFA has a cubic number of states.

Finally, we have to show that BackReach(L, T) is efficiently regular. Recall that, byThe-
orem 10.2.1, we have BackReach(L, T) = Reach(LR, d(T))R. Due to Proposition 4.6.1(2)
the language d(T) is still closed under behavioral equivalence. Additionally, d(T) is effec-
tively regular since we only have to replace a by a and vice versa and to invert the edges of
the NFA accepting T . Since the class of regular languages is efficiently closed under reversal,
we can compute an NFA accepting BackReach(L, T) in polynomial time which has a cubic
number of states. ◂
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Note that for a given regular language T ⊆ Σ∗ it is decidable, whether T is closed under
behavioral equivalence (cf.Theorem 5.4.8). However, there are regular languages T ⊆ Σ∗ such
that the closure under behavioral equivalence is not regular. According to Theorem 5.4.7(2)
it is not even decidable whether the closure under behavioral equivalence of a given regular
language T ⊆ Σ∗ is regular again.

Example 10.2.6. Let a ∈ A. Then the closure T of (aa)∗ under behavioral equivalence
is not regular since

T ∩ A
∗
A∗A

∗
= {anan ∣ n ∈ N}

is no regular language. ⌟

Due to the proof of Theorem 10.2.5 the map L ↦ Reach(L, T) preserves regularity also
for each regular language T ⊆ A

∗
A∗A

∗
. It is also possible to extend the result to context-free

languages of queue contents:

Theorem 10.2.7. Let A be an alphabet, L ⊆ A∗ be context-free, and T ⊆ Σ∗ be regular
and closed under ≡. Then Reach(L, T) and BackReach(L, T) are context-free. In
particular, we can construct PDAs accepting Reach(L, T) and BackReach(L, T),
respectively, from a PDA accepting L and an NFA accepting T in polynomial time.

Proof idea. This is similar to the proof of Theorem 10.2.5 due to the efficient closure proper-
ties of context-free languages (recall that the left or right quotient of a context-free language
wrt. a regular language is context-free, again). ◂

10.2.2 Alternations
Now, we want to consider another kind of meta-transformations: cyclic regular languages.
In other words, given two regular languages L ⊆ A∗ and T ⊆ Σ∗, we want to compute an NFA
accepting Reach(L, T∗). The case, where T is a singleton, was first considered by Boigelot
et al. in [Boi+97, BG99] (and similarly by Abdulla et al. in [Abd+04] for lossy queues). In
those papers the authors proved that Reach(L, T∗) is effectively regular in this case. So, a
natural question would be to ask, whether this result also holds if T contains more than only
one action sequence. In practice, this is relevant for transactional systems consisting of a
single database server and multiple clients. Then the set T ⊆ Σ∗ consists of finite sequences
of tasks a client sends to the server (this corresponds to write actions into the server’s task
queue) and finite sequences of tasks the server executes (these are read actions from its task
queue).

Unfortunately, we have seen in Remark 10.2.2 that Reach(L, T∗) can be undecidable
even if T is a finite language. The following example proves that Reach(L, T∗) is not
necessarily regular anymore even if T consists of only two action sequences:

Example 10.2.8. Let A be an alphabet and a, b ∈ A be two distinct letters. Then we have

Reach({a}, {abb, ba}∗) ∩ a∗ = {a2n ∣ n ∈ N}

which is not even context-free. ⌟
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In both cases, Remark 10.2.2 and Example 10.2.8, the write actions of any sequence t ∈ T
depend on the read actions in t. So, we are able to copy data from the head of the queue into
its tail. Then we can see the queue as a Turing-tape and we are able to move the head on
this tape in any direction. Hence, to find languages T ⊆ Σ∗ such that L ↦ Reach(L, T∗)
preserves regularity, we should consider those regular languages T ⊆ Σ∗ of action sequences
in which the write actions do not depend on the read actions. This means, we have for any
pair s, t ∈ T another action sequence r ∈ T consisting of the write actions from s and the
read actions from t. Then, independently of the word from wrt(T) we write into the queue,
we can read any word from rd(T). Formally, we are considering the following sets of action
sequences:

Definition 10.2.9. Let A be an alphabet. A language T ⊆ Σ∗ is read-write independent if,
for each s, t ∈ T , we have wrt(s)rd(t) ∈ T . In other words, T is read-write independent
if, and only if, wrt(T)rd(T) ⊆ T holds. ⌟

Wemay see a read-write independent language T as some kind of a Cartesian product of a
set of sequences of write actionsW ⊆ A∗ with a set of read action sequences R ⊆ A

∗
where

for each pair (w , r) ∈W × R we have the action sequence wr ∈ T . Some simple read-write
independent languages are given in the following example:

Example 10.2.10. LetW , R ⊆ A∗. ThenWR andW � R are read-write independent. ⌟

Since the class of regular languages is closed under projections and concatenation and due to
the decidability of the inclusion problem, we can decide whether a given regular language
T ⊆ Σ∗ is read-write independent.

For our further considerations of read-write independent languages we need the follow-
ing lemma. It states that we can “de-shuffle” those languages:

Lemma 10.2.11. Let A be an alphabet, L ⊆ A∗, and T ⊆ Σ∗ be read-write independent.
Then we have

Reach(L, T) = Reach(L,wrt(T)rd(T)) .

Proof. The inclusion “⊇” is obvious since wrt(T)rd(T) ⊆ T and Reach(L, .) is monotonic.
Towards the converse inclusion, let w ∈ Reach(L, T) = ⟦T⟧(L) ∖ {�}. Then there are t ∈ T
and v ∈ L with ⟦t⟧(v) = w ≠ �. By Lemma 4.7.3 we have � ≠ w = ⟦t⟧(v) = ⟦wrt(t)rd(t)⟧(v)
implying w ∈ Reach(L,wrt(T)rd(T)). ◂

Note that Lemma 10.2.11 does not hold for arbitrary languages T ⊆ Σ∗. For example,
consider L = {ε} and T = {aa}. Then we know ⟦aa⟧(ε) = � and ⟦aa⟧(ε) = ε resulting
in Reach({ε}, {aa}) = ∅ ⊊ {ε} = Reach({ε}, {aa}). However, due to Lemma 4.7.3 the
following inequation holds for any language T ⊆ Σ∗ - even if T is not read-write independent:

Reach(L, T) ⊆ Reach(L,wrt(T)rd(T)) .

Now, consider the language T ∶= wrt(t)� rd(t) for an action sequence t ∈ Σ∗. This
language is read-write independent. Due to Theorem 4.7.8 T is also closed under behav-
ioral equivalence, i.e., we can compute Reach(L, T) in polynomial time byTheorem 10.2.5.
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However, T∗ is not necessarily closed under ≡. Hence, we cannot applyTheorem 10.2.5 to
compute Reach(L, T∗). But from Lemma 10.2.11, wrt(T) = wrt(t), and rd(T) = rd(t) we
learn

Reach(L, T∗) = Reach(L, (wrt(T)rd(T))∗) = Reach(L, (wrt(t)rd(t))∗) .

Since wrt(t)rd(t) ∈ Σ∗ holds, the map L ↦ Reach(L, T∗) preserves regularity effectively
by [Boi+97].

In the following, we will prove that, provided T is any regular and read-write independent
language, themapping L ↦ Reach(L, T∗) preserves regularity effectively and even efficiently
(cf. Theorem 10.2.18). By Lemma 10.2.11 it suffices to consider languages of the form T =WR

whereW , R ⊆ A∗ are two regular languages. But before we show this general case, we make
some additional assumptions on these languagesW and R. Afterwards we derive the general
case from this particular case. Concretely, we consider regular languagesWR ⊆ A∗A

∗
where

A is an alphabet having a distinguished letter $ which marks the beginning of each word
fromW and is used for synchronization between write and read actions. In this connection,
we have to ensure that the $ can be read whenever it occurs on the queue’s head position. We
do this by insertion of arbitrarily many $′s at any position in T . In other words, we require
R = $∗� R.

Theorem 10.2.12. Let A be an alphabet and $ ∈ A be a letter. Additionally, let L ⊆
(A∖ {$})∗,W ⊆ $(A∖ {$})∗, and R ⊆ A∗ be regular languages such that R = $∗� R

holds. Then Reach(L, (WR)∗) is regular. In particular, we can construct an NFA
accepting Reach(L, (WR)∗) from NFAs accepting L,W , and R in polynomial time.

The correctness proof of this theorem is based on two ideas:

(1) We delay decisions: instead of deciding which word w ∈W we write into the queue in
each round, we just keep one token per round meaning that we have written a word.
This token is represented by the letter $ at the first position of the wordw. When reading
a word r ∈ R, we remove such tokens and decide in this moment, which word we have
written into the queue before.

(2) Since we keep only tokens (of which we have only one type $), our queue alphabet
consists of only one letter. As we already know, such unary queue is equivalent to a
counter or a unary pushdown. For technical reasons we see this storage mechanism as a
unary pushdown.

Hence, our queue system applying (WR)∗ to its queue contents L can be simulated by a
pushdown automaton P. For such automata the map post∗P∶ConfP → ConfP effectively
preserves regularity (in polynomial time) according to Theorem 9.2.1. This will finally yield
the efficient regularity of Reach(L, (WR)∗).

In the following we first describe the construction of the pushdown automaton. After-
wards, on Page 183, we prove the correctness of this theorem.
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The Reduction to Pushdown Automata

Towards the simulation of our queue system with the help of a (unary) pushdown automaton,
we first need an abstract presentation of the queue system’s configurations. To this end, we
consider a non-failing computation t ∈ (WR)∗ of the queue system with initial content
v ∈ L, i.e., ⟦t⟧(v) ≠ �. So, there are intermediate queue contents v0, . . . , vm ∈ A∗ and
basic actions α1, . . . , αm ∈ Σ with v0 = v, vi+1 = ⟦αi+1⟧(vi) ≠ � for each 0 ≤ i < m, and
α1 . . . αm = t ∈ (WR)∗. By vi+1 = ⟦αi+1⟧(vi) we obtain vi wrt(αi+1) = rd(αi+1) vi+1 for each
0 ≤ i < m (by Observation 3.2.2). Hence, we have

v0wrt(t) = rd(t) vm .

Since t ∈ (WR)∗ holds, we have wrt(t) ∈ W∗ and, therefore, v0wrt(t) ∈ LW∗. Let Cxix be
an NFA accepting the regular language LW∗. Then there is an accepting run p0, . . . , pℓ in C
labeled with v0wrt(t).

Due to closure properties, the language (WR)∗ is regular. Let Txx be an NFA accepting
this language. Then there is an accepting run s0, . . . , sm in T labeled with t = α1 . . . αm.

Now, we want to abstract the configurations (si , vi) of our queue system with the help of
the following information:

(1) the state si from T which is the control state of our queue system,

(2) two states px i and py i from C such that px i , . . . , py i is a run of C labeled with vi , and

(3) the natural number ∣vi ∣$ representing the number of words fromW to be contained
in vi .

Initially, we abstract (s0, v0) by (s0, p0, p∣v∣, 0) since p0, . . . , p∣v∣ is a run in C labeled with
v0 = v and ∣v0∣$ = ∣v∣$ = 0 by v ∈ L ⊆ (A ∖ {$})∗. Next, we can obtain the abstraction of
(si+1, vi+1) from (si , vi) as follows: let (si , px i , py i , ni) be the abstraction of (si , vi). By the
choice of our run in T we have an edge si

α i+1
ÐÐ→T si+1. Additionally, we have to distinguish the

following two cases:

(1) If αi+1 = a ∈ A is a write action, there is an edge py i
a
Ð→C py i+1. Since the run px i , . . . , py i is

labeled by vi , we can extend it to an via = vi+1-labeled run px i , . . . , py i , py i+1. Additionally,
if a = $ then the number of $’s in vi will be increased. Hence, we abstract (si+1, vi+1) by
(si+1, px i , py i+1, ni + ∣a∣$).

(2) If αi+1 = a ∈ A is a read action, we have vi = avi+1 implying that the run px i , . . . , py i
labeled with vi starts with the edge px i

a
Ð→C px i+1. Hence, px i+1, . . . , py i is a vi+1-labeled

run of C. If a = $ then the number of $’s in vi decreases. The resulting abstraction of
(si+1, vi+1) in this case is (si+1, px i+1, py i , ni − ∣a∣$).

All in all, (si , px i , py i , ni) is an abstraction of the queue system’s configuration (si , vi).
These information can be simulated with the help of a pushdown automatonP. In this case,
the control states of P are composed of the states si , px i , and py i and the stack contains
$n i . Note that this PDA is essentially a (partially blind) one-counter automaton, but due to
technical reasons we will utilize this more powerful automata model.

xixThe letter C indicates that this NFA accepts all possible queue CCCCCCCCCCCCCCCCContents.
xxThe letter T indicates that this NFA accepts all possible TTTTTTTTTTTTTTTTTransformations our queue system can apply.
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px i px i+1 py i py i+1

suffix of L ∪W prefix ofW

∈W

a b

$
$

Figure 10.1. A run labeled with v i from px i to py i in C.

Now, let C = (QC,A, IC, ∆C, FC) be an NFA accepting LW∗ and T = (QT, Σ, IT, ∆T, FT)
be an NFA accepting (WR)∗. W.l.o.g., we can assume that both NFAs, C and T, are trim
in the sense that each state is reachable from their initial states and can reach a final state.
Additionally, we assume thatC andT have exactly one final state called fC and fT, respectively.
Note that we can compute these two automata in polynomial time from NFAs accepting L,
W , and R.

Recall that the queue system’s configurations are abstracted by states from C and T and
by a natural number. This can be simulated by the PDA P = (QP, Σ,P{$}, IP, ε, ∆P, FP)
which is defined as follows:

QP ∶= QT ×QC ×QC. Here, the first component represents the control state of the queue
system. The second and third component represent two states characterizing the queue’s
content as described above.

IP ∶= IT × IC ×QL where QL ∶= {q ∈ QC ∣ ∃v ∈ L∶ IC
v
Ð→C q}.

FP ∶= FT ×QC × FC.

∆P consists of the following transitions for a ∈ A, s, s′ ∈ QT, and p, p′, q, q′ ∈ QC:

(W) Simulate writing of the letter a into the queue:
((s, p, q), a, π$(a), (s′, p, q′)) ∈ ∆P if (s, a, s′) ∈ ∆T and (q, a, q′) ∈ ∆C.

(R) Simulate reading of the letter a from the queue:
((s, p, q), a, π$(a), (s′, p′, q)) ∈ ∆P if (s, a, s′) ∈ ∆T and (p, a, p′) ∈ ∆C.

In other words, we have the following four cases:

(1) ((s, p, q), $n) a
Ð→P ((s′, p, q′), $n) if, and only if, a ∈ A∖ {$}, s

a
Ð→T s′, and q

a
Ð→C q′.

(2) ((s, p, q), $n) $
Ð→P ((s′, p, q′), $n+1) if, and only if, s

$
Ð→T s′ and q

$
Ð→C q′.

(3) ((s, p, q), $n) a
Ð→P ((s′, p′, q), $n) if, and only if, a ∈ A∖ {$}, s

a
Ð→T s′, and p

a
Ð→C p′.

(4) ((s, p, q), $n) $
Ð→P ((s′, p′, q), $n−1) if, and only if, n > 0, s

$
Ð→T s′, and p

$
Ð→C p′.

Now, we assign to the configuration ((s, p, q), $n) the set of all words being the labeling of
a run from p to q inC and containing n appearances of the letter $ (whichmarks the beginning
of each word fromW). Formally, our assignment is the mapping ⟦.⟧P∶ConfP → 2A∗ with

⟦((s, p, q), $n)⟧P ∶= L(Cp→q) ∩ π
−1
$ ($n)
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for each s ∈ QT, p, q ∈ QC, and n ∈ N. This language represents the contents of all configura-
tions (s, v) whose abstraction (as explained above) is (s, p, q, n).

Next, we state that the set of reachable queue contents coincides with the semantics of
the reachable, accepting configurations of the PDAP.

Proposition 10.2.13. We have Reach(L, (WR)∗) = ⋃σ∈post∗
P
(InitP)∩FinalP⟦σ⟧P.

With the help of Proposition 10.2.13 we are able to proveTheorem 10.2.12. So, we will first
prove this theorem and afterwards we show the correctness of the PDAP and its semantics.

Proof (ofTheorem 10.2.12). Due toTheorem 9.2.1 we can compute aP-NFA accepting the
configurations from post∗P(InitP) in polynomial time. Let A = (QA, {$}, IA, ∆A, FA) be
this P-NFA with C(A) = post∗P(InitP). Then, we have $n ∈ L(A(s,p,q)→FA) if, and only if,
((s, p, q), $n) ∈ ConfP is reachable from an initial configuration ofP.

The following language is regular as well:

K ∶= ⋃
(s,p,q)∈FP

(L(Cp→q) ∩ π
−1
$ (L(A(s,p,q)→FA))) .

Later we will see K = Reach(L, (WR)∗). But before, we want to give an intuition of the
definition of K. This language contains all words v ∈ A∗ such that:

v is the label of a run in C from p to q, where q is accepting in C (note that p is not
necessarily initial) and
there is a number n ∈ N such that v contains n $’s and $n ∈ L(A(s,p,q)→FA) holds. This
implies that the (accepting) configuration ((s, p, q), $n) is reachable inP from an initial
configuration.

▷ Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim.Claim. We have K = Reach(L, (WR)∗).
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Due to Proposition 10.2.13 it suffices to show K = ⋃σ∈post∗

P
(InitP)∩FinalP⟦σ⟧P.

First, let v ∈ ⟦σ⟧P for a configuration σ = ((s, p, q), $n) ∈ post∗P(InitP) ∩ FinalP. Then
we have (s, p, q) ∈ FP and $n ∈ L(A(s,p,q)→FA). Hence, we have

v ∈ ⟦σ⟧P = L(Cp→q) ∩ π
−1
$ ($n)

⊆ L(Cp→q) ∩ π
−1
$ (L(A(s,p,q)→FA)) (since $n ∈ L(A(s,p,q)→FA))

⊆ K . (since (s, p, q) ∈ FP)

Conversely, let v ∈ K. Then there is (s, p, q) ∈ FP with

v ∈ L(Cp→q) ∩ π
−1
$ (L(A(s,p,q)→FA)) .

Set n ∶= ∣v∣$. Then we have for σ ∶= ((s, p, q), $n) ∈ ConfA:

v ∈ L(Cp→q) ∩ π
−1
$ ($n) = ⟦σ⟧P .

Nowwe have to show that σ ∈ post∗P(InitP)∩FinalP holds. First, we know $n ∈ L(A(s,p,q)→FA)
implying that σ is reachable from an initial configuration ofP. Additionally, this configu-
ration is final since (s, p, q) ∈ FP holds. In other words, we have σ ∈ post∗P(InitP) ∩ FinalP.
This finishes the inclusion “⊆”. ◁
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Since each intermediate step of our computation is possible in polynomial time, we can
compute an NFA accepting K in polynomial time as well. ◂

The Correctness of Proposition 10.2.13

Next, we want to prove the correctness of Proposition 10.2.13. We prove this with the help of
two lemmas each proving one inclusion. First, we show that each reachable queue content
belongs to the semantics of a reachable configuration of P. To this end, we consider an
initial queue content v ∈ L and an action sequence t ∈ (WR)∗ with ⟦t⟧(v) ≠ �. We construct
a t-labeled run of P such that the ith intermediate result vi on computation of ⟦t⟧(v) is
covered by the semantics of the ith configuration in our constructed run.

Concretely, we have runs p0, . . . , pℓ and s0, . . . , sm in C and T labeled with vwrt(t) and
t, respectively, from an initial state to an accepting state. The ith configuration σi on our run
P consists of si , two states px i and py i (where 0 ≤ xi ≤ yi ≤ ℓ), and the number of $’s on
the subrun px i , . . . , py i in C. Then we will see that vi ∈ ⟦σi⟧P holds, which finally implies
⟦t⟧(v) = vm ∈ ⟦σm⟧P.

Example 10.2.14. Consider L ∶= {ε},W ∶= {$a, $b}, and R ∶= $∗� b = $∗b$∗. Then the
languages LW∗ and (WR)∗ are accepted by the NFAs C and T depicted in Figure 10.2.
Let t = $b$b ∈ (WR)∗. Then we have

⟦$b$b⟧(ε) = ⟦b$b⟧($) = ⟦$b⟧($b) = ⟦b⟧(b) = ε ≠ � .

Consider the accepting runs p1
$
Ð→C p2

b
Ð→C p1 and s1

$
Ð→T s2

b
Ð→T s3

$
Ð→T s3

b
Ð→T s4 in C and

T labeled with εwrt(t) = $b and t, respectively. Then we construct the following run in
P:

InitP ∋ ((s1, p1, p1), 0)
$
Ð→P ((s2, p1, p2), 1)

b
Ð→P ((s3, p1, p1), 1)

$
Ð→P ((s3, p2, p1), 0)

b
Ð→P ((s4, p1, p1), 0) ∈ FinalP .

Then we can see ⟦t⟧(ε) = ε ∈ ⟦((s4, p1, p1), 0)⟧P. ⌟

C∶ T∶p1 p2

$

a, b

s1 s2

s3s4

$

a, b

$
b

$

$

Figure 10.2. NFAs C and T accepting LW∗ and (WR)∗, respectively, from Example 10.2.14.

Lemma 10.2.15. Let t ∈ (WR)∗ and v ∈ Lwith ⟦t⟧(v) ≠ �. Then there is a configuration

σ ∈ post∗P(InitP) ∩ FinalP with ⟦t⟧(v) ∈ ⟦σ⟧P.
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Proof. Let t = w1r1 . . .wkrk with w1, . . . ,wk ∈ W and r1, . . . , rk ∈ R. We have vw1 . . .wk ∈
LW∗ = L(C). Hence, there is a run p0, . . . , pℓ labeled with vw1 . . .wk in C from p0 ∈ IC to
pℓ ∈ FC. Additionally, we have t ∈ (WR)∗ = L(T) and therefore a run s0, . . . , sm in T labeled
with t from s0 ∈ IT to sm ∈ FT.

By t ∈ Σm there are basic actions α1, . . . , αm ∈ Σ with t = α1 . . . αm. Since ⟦t⟧(v) ≠ � there
are intermediate queue contents v0, . . . , vm ∈ A∗ with v0 = v and vi+1 = ⟦αi+1⟧(vi) for each
0 ≤ i < m. This implies vi = ⟦α1 . . . αi⟧(v0) and, hence, vwrt(α1 . . . αi) = rd(α1 . . . αi) vi by
Observation 3.2.2. Since vwrt(α1 . . . αi) is a prefix of vwrt(α1 . . . αm) = vw1 . . .wk we infer
that vi is a factor of the word vw1 . . .wk . Therefore, vi is the labeling of a fragment of the run
p0, . . . , pℓ in C.

Now, we want to construct a run σ0, . . . , σm inP from an initial configuration to a final
configuration with labeling t. To this end, we define

xi ∶= ∣rd(α1 . . . αi)∣ = ∣α1 . . . αi ∣A,

yi ∶= ∣v∣ + ∣wrt(α1 . . . αi)∣ = ∣v∣ + ∣α1 . . . αi ∣A, and

ni ∶= ∣vi ∣$ ≥ 0.

By definition we have 0 ≤ xi ≤ ∣rd(t)∣ ≤ m and ∣v∣ ≤ yi ≤ ∣vwrt(t)∣ = ℓ for each 0 ≤ i ≤ m.
Set σi ∶= ((si , px i , py i), $n i) ∈ ConfP for each 0 ≤ i ≤ m. We will prove later that σ0, . . . , σm
is a run ofP with labeling t from InitP to FinalP. But first, we have to show the following
statement:
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. For each 0 ≤ i ≤ m we have ni = ∣α1 . . . αi ∣$ − ∣α1 . . . αi ∣$.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We show this by induction on i. The case i = 0 is obvious since n0 = 0 by v0 = v ∈ L ⊆
(A ∖ {$})∗ and α1 . . . α0 = ε. Now, let i ≥ 0. The induction hypothesis holds for i and we
prove the equation for i + 1. Then we have to distinguish two cases:

(1) αi+1 = a ∈ A. Then we have vi+1 = ⟦a⟧(vi) = via and therefore

ni+1 = ∣vi+1∣$ = ∣vi ∣$ + ∣a∣$ = ni + ∣a∣$
i.h.
= ∣α1 . . . αi ∣$ − ∣α1 . . . αi ∣$ + ∣a∣$

= ∣α1 . . . αia∣$ − ∣α1 . . . αia∣$ = ∣α1 . . . αi+1∣$ − ∣α1 . . . αi+1∣$ .

(2) αi+1 = a ∈ A. Then by ⟦a⟧(vi) = vi+1 ≠ � we have vi = avi+1. Hence, we have

ni+1 = ∣vi+1∣$ = ∣vi ∣$ − ∣a∣$ = ni − ∣a∣$
i.h.
= ∣α1 . . . αi ∣$ − ∣α1 . . . αi ∣$ − ∣a∣$

= ∣α1 . . . αia∣$ − ∣α1 . . . αia∣$ = ∣α1 . . . αi+1∣$ − ∣α1 . . . αi+1∣$ . ◁

Next, we prove that our run inP starts in an initial configuration:
▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. We have σ0 ∈ InitP and v = v0 ∈ ⟦σ0⟧P.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We have x0 = n0 = 0 and y0 = ∣v∣. Due to the choice of the run p0, . . . , pℓ we have
p0 ∈ IC and p0

v
Ð→C p∣v∣ and therefore p∣v∣ ∈ {q ∈ QC ∣ ∃u ∈ L∶ IC

u
Ð→C q} = QL. Additionally,

by the choice of s0, . . . , sm we have s0 ∈ IT. Hence, we have σ0 = ((s0, p0, p∣v∣), ε) ∈ InitP. By
v ∈ L ⊆ (A∖ {$})∗ we can also infer v ∈ L(Cp0→p

∣v∣
) ∩ π−1$ ($0) = ⟦σ0⟧P. ◁

Now, we show that σ0, . . . , σm is a run inP labeled with t such that the semantics of σi
contains vi :
▷ Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3. For each 0 ≤ i < m we have σi

α i+1
ÐÐ→P σi+1 and vi+1 ∈ ⟦σi+1⟧P.
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Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We prove this statement by induction on i. By Claim 2 we know that v0 ∈ ⟦σ0⟧P.
Hence, we only have to prove the induction step. To this end, let i ≥ 0. By the choice of the
run s0, . . . , sm in T we have (si , αi+1, si+1) ∈ ∆T. Now, we have to distinguish two cases:

(W) αi+1 = a ∈ A. Then we have xi+1 = xi , yi+1 = yi + 1, and ni+1 = ni + ∣a∣$ (by Claim 1). By
the choice of the run p0, . . . , pℓ there is an edge (py i , a, py i+1) ∈ ∆C. Hence, there is a
transition

((si , px i , py i), a, π$(a), (si+1, px i , py i+1)) ∈ ∆P

and, therefore, σi
a
Ð→P σi+1. Furthermore, we have by induction hypothesis vi ∈ ⟦σi⟧P

implying

vi+1 = ⟦vi⟧(a) = via ∈ ⟦σi⟧P ⋅ a

= (L(Cpxi→pyi
) ∩ π−1$ ($n i)) ⋅ a

⊆ (L(Cpxi→pyi
) ∩ π−1$ ($n i)) ⋅ (L(Cpyi→pyi+1

) ∩ π−1$ ($∣a∣$))

⊆ (L(Cpxi→pyi
)L(Cpyi→pyi+1

)) ∩ π−1$ ($n i$∣a∣$)

⊆ L(Cpxi→pyi+1
) ∩ π−1$ ($n i+∣a∣$) = ⟦σi+1⟧P .

(R) αi+1 = a ∈ A. Here, we have xi+1 = xi + 1, yi+1 = yi , and ni+1 = ni − ∣a∣$ ≥ 0 (by Claim 1).
Due to � ≠ vi+1 = ⟦a⟧(vi) we have vi = avi+1. Since px i , . . . , py i is a run labeled with vi
and a is a prefix of vi , this run begins with an a-edge. Hence, we have (px i , a, px i+1) ∈ ∆C

and, therefore,
((si , px i , py i), a, π$(a), (si+1, px i+1 , py i)) ∈ ∆P

implying σi
a
Ð→P σi+1. By the induction hypothesis we have vi ∈ ⟦σi⟧P = L(Cpxi→pyi

) ∩
π−1$ ($n i). Since vi = avi+1 and (px i , a, px i+1) ∈ ∆C we know that

avi+1 = vi ∈ a ⋅ (L(Cpxi+1→pyi
) ∩ π−1$ ($n i−∣a∣$)) = a ⋅ ⟦σi+1⟧P

which implies vi+1 = a/vi ∈ ⟦σi+1⟧P. ◁

Finally, we have to show that our run inP ends up in an accepting configuration:
▷ Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4. We have σm ∈ FinalP.
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Wehave yℓ = ∣v∣+∣wrt(α1 . . . αℓ)∣ = ∣vwrt(t)∣ = ℓ implying pym = pℓ ∈ FC. Additionally,
by the choice of our run in T we have sm ∈ FT. Hence, σm = ((sm , pxm , pℓ), $nm) ∈ FinalP. ◁

All in all, from the Claims 2 to 4 we obtain ⟦t⟧(v) = vm ∈ ⟦σm⟧P and σm is an accepting
configuration which is reachable from an initial configuration. ◂

From Lemma 10.2.15 we learn the inclusion “⊆” of Proposition 10.2.13, i.e.,

Reach(L, (WR)∗) ⊆⋃σ∈post∗
P
(InitP)∩FinalP⟦σ⟧P .

Recall thatwe have proven this by combining a run inC labeledwith vwrt(t)with another run
in T labeled with t. The result was a new run ofP labeled with t simulating the computation
⟦t⟧(v) ≠ �.

Now, we want to prove the converse implication. A first approach to prove this statement
would be the following: let σ ∈ post∗P(InitP)∩FinalP andw ∈ ⟦σ⟧P. Then there is a run inP
from InitP to σ labeled with t ∈ L(T) = (WR)∗. Unfortunately, it is possible that ⟦t⟧(v) ≠ w
holds for any initial queue content v ∈ L as the following example proves:
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Example 10.2.16. We continue Example 10.2.14. Consider the following accepting run
ofP:

InitP ∋ ((s1, p1, p1), 0)
$
Ð→P ((s2, p1, p2), 1)

a
Ð→P ((s3, p1, p1), 1)

$
Ð→P ((s3, p2, p1), 0)

b
Ð→P ((s4, p1, p1), 0) =∶ σ ∈ FinalP .

Then we have ⟦σ⟧P = {ε} and, indeed, ε ∈ Reach(L, (WR)∗). However, t = $a$b is no
valid computation of our queue system since

⟦$a$b⟧(ε) = ⟦a$b⟧($) = ⟦$b⟧($a) = ⟦b⟧(a) = � . ⌟

The reason of this problem is the lack of memory of our pushdown automatonP caused
by the abstraction of the configurations. Recall that the PDA P stores neither the whole
content of the queue nor the applied action sequence - it only stores three states and the
number of $’s. This allows that the subsequences of write and read actions the PDA applies
do not match (recall that, if ⟦t⟧(v) ≠ � holds, rd(t) is a prefix of vwrt(t) according to
Observation 3.2.2). However, we can avoid this problem by amodification of the write actions
in our run labeled with t. Since the application of a read action inP always requires a step
in C, we can obtain an action sequence t′ ∈ (WR)∗ in which we write the letters that will be
read from the queue afterwards. This will finally result in w = ⟦t′⟧(v) ∈ Reach(L, (WR)∗).

Lemma 10.2.17. Let σ ∈ post∗P(InitP) ∩ FinalP. Then we have

⟦σ⟧P ⊆ Reach(L, (WR)∗) .

Proof. Let σ = ((s, p, q), $n) ∈ post∗P(InitP) ∩ FinalP and v ∈ ⟦σ⟧P. Since v ∈ ⟦σ⟧P =
L(Cp→q) ∩ π−1$ ($n), L(C) = LW∗, and q ∈ FC there are a suffix y of a word from L ∪W and
$z1, . . . , $zn ∈ W such that v = y$z1$z2 . . . $zn. Hence, we have y ∈ L(Cp→ fC) ∩ (A ∖ {$})∗.
Furthermore, there is a word t ∈ Σ∗ which is the labeling of a run from InitP to σ in
P. Since every transition of the PDA P simulates a transition of the NFA T, we obtain
t ∈ L(T) = (WR)∗. Hence, there are k ≥ 0, $w1, . . . , $wk ∈ W , and r1, . . . , rk ∈ R with
t = $w1r1$w2r2 . . . $wkrk.

The PDAP lacks a memory of the concrete runs in C and T and, hence, lacks a memory
of the letters that our queue system has written into the queue before. Therefore, it is
possible that the transformation ⟦t⟧ cannot be applied to any initial queue content in L (i.e.,
⟦t⟧(L) = {�}). But due to this lack of memory we can obtain another run ofP from InitP to
σ which is labeled by t from which we have replaced the infixes $w1, . . . , $wk by other write
sequences fromW . In other words, we construct a new action sequence t′ ∈ L(T) = (WR)∗

with rd(t′) = rd(t). This sequence t′ is the labeling of another run in P from InitP to σ
which corresponds to a valid computation of the queue system resulting in v (i.e., we have
v ∈ ⟦t′⟧(L)).

Recall that $-transitions inP push another $ to the stack (i.e., the number of $’s increases)
and $-transitions inP remove one from the stack (i.e., the number of $’s decreases). Therefore,
since t is the labeling of a run inP starting with an empty stack, each prefix of t contains at
least as many $’s as $’s. Hence, we have ∣r1 . . . ri ∣$ ≤ ∣$w1 . . . $wi ∣$ = i for each 1 ≤ i ≤ k.
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Due to r1, . . . , rk ∈ R ⊆ A∗ there are a number ℓ ∈ N and words x0, . . . , xℓ ∈ (A∖ {$})∗
with r1 . . . rk = x0$x1$ . . . $xℓ. Hence, since ∣r1 . . . ri ∣$ ≤ i we know that r1 . . . ri is a prefix of
x0$ . . . $xi for each 1 ≤ i ≤ ℓ. In particular, we have k = ∣t∣$ and ℓ = ∣t∣$ implying n = k − ℓ
(recall that n is the number of $’s in v ∈ ⟦σ⟧P).

Now, we have to distinguish two cases: ℓ = 0 and ℓ > 0. We consider these two cases in
the following two claims.
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. ℓ = 0 implies v = y$z1$z2 . . . $zn = ⟦$z1r1$ . . . $znrn⟧(x0y) ∈ Reach(L, (WR)∗).

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. From ℓ = 0 we infer k = n and r1 . . . rk = x0 ∈ (A∖ {$})∗. Therefore, a run inP with
labeling t from InitP to σ requires a $-free run in C labeled with r1 . . . rk from IC to p ∈ QC

(this path is represented in the second component ofP’s control states). Due to L(C) = LW∗,
L ⊆ (A∖ {$})∗, andW ⊆ $(A∖ {$})∗, the word r1 . . . rk is a prefix of a word from L. Hence,
we have x0 = r1 . . . rk ∈ L(CIC→p) ∩ (A ∖ {$})∗ and y ∈ L(Cp→ fC) ∩ (A ∖ {$})∗ implying
x0y ∈ LW∗ ∩ (A∖ {$})∗ = L. Then we obtain the following equations:

⟦$z1r1$z2r2 . . . $zkrk⟧(x0y) = ⟦$z1r1$z2r2 . . . $zkrk⟧(r1r2 . . . rk y)
= ⟦$z2r2 . . . $zkrk⟧(r2 . . . rk y$z1)
⋮

= ⟦$zi+1ri+1 . . . $zkrk⟧(ri+1 . . . rk y$z1$z2 . . . $zi)
⋮

= y$z1$z2 . . . $zk = v .

Since $z1, . . . , $zk ∈W and r1, . . . , rk ∈ R we have $z1r1 . . . $zkrk ∈ (WR)∗. Then from x0y ∈ L
we can infer v ∈ Reach(L, (WR)∗). ◁

▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. If ℓ > 0 we have

v = y$z1$z2 . . . $zn = ⟦$x1r1$x2r2 . . . $xℓyrℓ$z1rℓ+1 . . . $znrk⟧(x0) ∈ Reach(L, (WR)∗) .

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Since t is the labeling of a run from InitP to σ inP we can prove (by observing the
second component of P’s control state) that there is a run in C from IC to p labeled with
r1 . . . rk = x0$ . . . $xℓ. By definition of L(C) = LW∗, L ⊆ (A∖ {$})∗, andW ⊆ $(A∖ {$})∗
we have x0 ∈ L, $x1, . . . , $xℓ−1 ∈W , and $xℓ is a prefix of a word inW .

Since x0$ . . . $xℓ ∈ L(CIC→p) and v = y$z1$z2 . . . $zn ∈ L(Cp→FC) ⊆ ⟦σ⟧P we have

x0$ . . . $xℓy$z1$ . . . $zn ∈ L(C) = LW∗

implying $xℓy ∈W . From $x1, . . . , $xℓ−1, $xℓy, $z1, . . . , $zn ∈W , r1, . . . , rk ∈ R, and n = k − ℓ
we can also infer

$x1r1$x2r2 . . . $xℓyrℓ$z1rℓ+1 . . . $znrk ∈ (WR)∗ .

Now, we prove v = ⟦$x1r1$x2r2 . . . $xℓyrℓ$z1rℓ+1 . . . $znrk⟧(x0). This will finish our proof
since x0 ∈ L holds. We verify this equation in two steps. First, we prove by induction on
1 ≤ i < ℓ that

⟦$x1r1$x2r2 . . . $xiri⟧(x0) = r1r2 ...r i/(x0$x1$x2 . . . $xi) (10.1)

holds. To this end, let i = 1. Then we have

⟦$x1r1⟧(x0) = ⟦r1⟧(x0$x1) = r1/(x0$x1)
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which is defined since r1 is a prefix of x0$x1 as mentioned above. Now, let 1 < i < ℓ. Then we
have

⟦$x1r1$x2r2 . . . $xiri⟧(x0) = ⟦$xiri⟧(r1r2 ...r i−1/(x0$x1$x2 . . . $xi−1)) (by i.h.)

= ⟦ri⟧(r1r2 ...r i−1/(x0$x1$x2 . . . $xi−1) ⋅ $xi)

= ⟦ri⟧(r1r2 ...r i−1/(x0$x1$x2 . . . $xi−1$xi))

= r i/(r1r2 ...r i−1/(x0$x1$x2 . . . $xi))
= r1r2 ...r i/(x0$x1$x2 . . . $xi) .

The last two equations hold since r1 . . . ri is a prefix of x0$ . . . $xi as we have mentioned above.
Next, we can prove the following equations:

⟦$x1r1$x2r2 . . . $xℓyrℓ$z1rℓ+1 . . . $znrk⟧(x0)
= ⟦$xℓyrℓ$z1rℓ+1 . . . $znrk⟧(r1r2 ...rℓ−1/(x0$x1$x2 . . . $xℓ−1)) (by Equation (10.1))

= ⟦rℓ$z1rℓ+1 . . . $znrk⟧(r1r2 ...rℓ−1/(x0$x1$x2 . . . $xℓ−1$xℓy))

= ⟦rℓ$z1rℓ+1 . . . $znrk⟧(r1r2 ...rℓ−1/(r1 . . . rk y))
= ⟦rℓ$z1rℓ+1 . . . $znrk⟧(rℓrℓ+1 . . . rk y)
= ⟦$z1rℓ+1 . . . $znrk⟧(rℓ+1 . . . rk y)
= ⟦$z2rℓ+2 . . . $znrk⟧(rℓ+2 . . . rk y$z1)
⋮

= y$z1$ . . . $zn = v . ◁

Hence, v ∈ Reach(L, (WR)∗) holds in any case. Since v ∈ ⟦σ⟧P was arbitrary, we obtain
⟦σ⟧P ⊆ Reach(L, (WR)∗). ◂

TheMain Result

Until now we have seen the effective preservation of regularity if the read-write independent
language T ⊆ Σ∗ satisfies a special condition, namely, T =WR whereW ⊆ $(A∖ {$})∗ and
R = $∗� R. We will use this very special case to obtain our main theorem: the map L ↦
Reach(L, T∗) effectively preserves regularity for arbitrary regular, read-write independent
languages T ⊆ Σ∗.

Theorem 10.2.18. Let A be an alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗ be read-write
independent and regular. Then Reach(L, T∗) and BackReach(L, T∗) are regular. In
particular, we can compute NFAs accepting Reach(L, T∗) and BackReach(L, T∗),
respectively, from NFAs accepting L and T in polynomial time.

We first consider the effective and even efficient regularity of Reach(L, T∗). Recall that we
are able to de-shuffle T by Lemma 10.2.11, i.e., we have

Reach(L, T) = Reach(L,wrt(T)rd(T)) .
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By induction on the number of iterations we can also prove

Reach(L, T∗) = Reach(L, (wrt(T)rd(T))∗) .

So, when computing Reach(L, T∗) it suffices to only consider the de-shuffled words in T .
Now, we will insert the begin marker $ ∉ A into the de-shuffled words. Then we compute the
reachable contents of our modified queue system. Finally, using a projection we remove the
$’s and obtain the reachable queue contents of the original queue system.

We first show that the last step of this construction is valid, i.e., that the insertion of the
begin marker $ at the appropriate positions into the de-shuffled action sequences does not
change the behavior of the queue system.

Lemma 10.2.19. Let A be an alphabet, $ ∉ A be another symbol, and L,W , R ⊆ A∗. Set
W ′ ∶= $W and R′ ∶= $∗� R. Then we have

Reach(L,WR) = πA(Reach(L,W ′R′)) .

Proof. First, let x ∈ Reach(L,WR). Then there are v ∈ L,w ∈W , and r ∈ R with ⟦wr⟧(v) =
x ≠ �. Then byObservation 3.2.2 we have rx = vw. We can construct r′ ∈ $∗�r ⊆ $∗�R = R′

and x′ ∈ $∗� x satisfying r′x′ = v$w, i.e., we have x′ = r′/v$w. Hence, the following holds:

� ≠ x′ = r′/v$w = ⟦r′⟧(v$w) = ⟦$wr′⟧(v) ∈ Reach(L,W ′R′)

implying x = πA(x′) ∈ πA(Reach(L,W ′R′)).
Now, let x ∈ πA(Reach(L,W ′R′)). Then there is x′ ∈ Reach(L,W ′R′)with x = πA(x′),

i.e., we find v ∈ L, w′ ∈ W ′, and r′ ∈ R′ with ⟦w′r′⟧(v) = x′ ≠ �. Again, application of
Observation 3.2.2 yields r′x′ = vw′. Since πA is a homomorphism, we can infer

πA(r
′)x = πA(r

′)πA(x
′) = πA(r

′x′) = πA(vw
′) = πA(v)πA(w

′) = vπA(w
′) .

Therefore, we obtain x = πA(r)/vπA(w′) implying

� ≠ x = πA(r′)/vπA(w
′) = ⟦πA(w

′)πA(r′)⟧(v) .

Since we know πA(w) ∈ πA(W ′) = W and πA(r′) ∈ πA(R′) = R, we can finally infer
x ∈ Reach(L,WR). ◂

By iterated application of Lemma 10.2.19 we can also infer the following equation:

Reach(L, (WR)∗) = πA(Reach(L, (W ′R′)∗)) .

Hence, we are now able to prove our main theorem in this section:

Proof (ofTheorem 10.2.18). LetW ∶= wrt(T) and R ∶= rd(T) which are both regular lan-
guages by the closure properties of the class of regular languages. We introduce a beginmarker
$ ∉ A for words inW . Then we can compute NFAs acceptingW ′ ∶= $W and R′ ∶= $∗�R. By
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Theorem 10.2.12 we know that Reach(L, (W ′R′)∗) is effectively and even efficiently regular
as well. Then by iterated application of the Lemmata 10.2.11 and 10.2.19 we can infer that

Reach(L, T∗) = Reach(L, (WR)∗) = πA(Reach(L, (W ′R′)∗))

holds. Hence, due to the closure properties of regular languages, Reach(L, T∗) is effectively
regular. Note that the modifications ofW and R as well as the projection to A are possible
in linear time and space. Hence, an NFA accepting Reach(L, T∗) can be computed still in
polynomial time.

Finally, we have to consider BackReach(L, T∗). Due to Lemma 10.2.11 and Theo-
rem 10.2.1 we have

BackReach(L, T∗) = BackReach(L, (WR)∗) = Reach(LR, (RRWR)∗)
R
.

By the closure properties and the statement above we obtain the effective and even efficient
regularity of BackReach(L, T∗). ◂

We can useTheorem 10.2.18 to prove the effective preservation of regularity of several
further language classes. The following corollary lists some of them. In particular, we can see
that the main result from Boigelot et al. in [Boi+97] follows fromTheorem 10.2.18. Concretely,
we will see that L ↦ Reach(L, t∗) preserves regularity for any action sequence t ∈ Σ∗.

Corollary 10.2.20. Let A be an alphabet and L ⊆ A∗ and T ⊆ Σ∗ be two regular lan-
guages. Then Reach(L, T∗) and BackReach(L, T∗) are regular if

(1) T = R1WR2 for three regular languagesW , R1, R2 ⊆ A∗,

(2) T =W1RW2 for three regular languagesW1,W2, R ⊆ A∗,

(3) T = {t} for an action sequence t ∈ Σ∗ (cf. [Boi+97]), or

(4) T ⊆ A∗ ∪ A
∗
.

In all of these cases the computation of NFAs accepting Reach(L, T∗) and

BackReach(L, T∗), respectively, fromNFAs accepting L and T is possible in polynomial

time.

Proof. First, we prove (1). Then we have

(R1WR2)
∗ = {ε} ∪ R1(WR2R1)

∗WR2 .

Then due to Proposition 10.2.3 and Theorem 10.2.18 Reach(L, (R1WR2)∗) is efficiently
regular. The proof of (2) is very similar to the first one.

Next, we consider (3). Due to Corollary 4.7.15 we can compute a “simple” action sequence
s ∈ A

∗
A∗A

∗
with s ≡ t (in polynomial time). Statement (1) implies the efficient regularity of

Reach(L, s∗). Hence, Reach(L, t∗) has this property as well.
Finally, we consider (4). LetW , R ⊆ A∗ with T =W ∪R (note that we can compute NFAs

acceptingW and R from T). Then we have T∗ = (W∗R
∗
)∗. Hence, due toTheorem 10.2.18

Reach(L, T∗) is effectively regular. ◂
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As we have seen, Theorem 10.2.18 implies the efficient preservation of regularity for a
large class of languages of action sequences. However, we think our result can be generalized
to an even larger class of languages. Recall that T ⊆ Σ∗ is read-write independent if for each
pair s, t of action sequences from T there is a particular de-shuffled combinationwrt(s)rd(t)
of these sequences in T . A possible generalization is to drop the requirement that this
combination is de-shuffled:

Conjecture 10.2.21. Let A be an alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗ be regular such
that for each s, t ∈ T there is r ∈ T with wrt(r) = wrt(s) and rd(r) = rd(t). We conjecture

that in this case Reach(L, T∗) is effectively regular.

The proof of Theorem 10.2.18 does not work in this case. At least the utilization of
Lemma 10.2.11 where we de-shuffle the words from T , is impossible in certain cases. For
example, we have

Reach(ε, (aaa)∗) = {ε} ≠ a∗ = Reach(ε, (aaa)∗) .

However, possibly the construction of our PDAP in the proof of Theorem 10.2.12 can be
slightly modified to match this more general case.

10.3 Partially Lossy Queues

Until now we have only considered the reachability problem of reliable queues. Now, we also
want to consider (partially) lossy queues. We know that the reachability problem of automata
with a partially lossy queue is either undecidable (if the underlying alphabet is at least binary
and contains at least one unforgettable letter, cf. Theorem 3.3.7) or very inefficient (if the
underlying alphabet is at least binary and contains only forgettable letters, cf. [Sch02, CS08]).
Hence, it is also reasonable to under-approximate the reachability problem in partially
lossy queue systems with the help of meta-transformations as in [Boi+97, Abd+04]. In this
section we want to study several types of such meta-transformations. Concretely, we want to
generalize the results from the previous section to partially lossy queue systems.

Note that we have to distinguish the two semantics of partial lossiness in this case: the
default semantics (represented by the lossy data type PLQ L) and the read-lossy semantics
(represented by the data type QL). However, we can see the following connection between
these two semantics:

Theorem 10.3.1. Let L = (F ,U) be a lossiness alphabet, L ⊆ A∗, and T ⊆ Σ∗. Then we

have the following statements:

(1) ReachPLQ L
(L, T) = ↓⊑LReachQL

(L, T)

(2) BackReachPLQ L
(L, T) = BackReachQL

(↑⊑LL, T)

Note that this statement is very similar to Proposition 9.3.2 stating the connection of pre and
post in partially lossy stack systems with default and read-lossy semantics.
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Proof. Similar to Proposition 3.3.4 we can show the following equivalence:

w ∈ ⟦t⟧PLQ L
(v) ⇐⇒ w ⊑L⟦t⟧QL

(v) (10.2)

(for a proof cf. [KKP18, Theorem 3.5]). We use this equivalence multiple times across this
proof.

We first prove statement (1). Let w ∈ ReachPLQ L
(L, T). Then there are v ∈ L and

t ∈ T with w ∈ ⟦t⟧PLQ L
(v). By (10.2) we know that w ⊑L⟦t⟧QL

(v) holds implying w ∈
↓⊑L ReachQL

(L, T).
Conversely, letw ∈ ↓⊑L ReachQL

(L, T). Then there are v ∈ L and t ∈ T withw ⊑L⟦t⟧QL
(v)

implying w ∈ ⟦t⟧PLQ L
(v) according to (10.2). Hence, we infer w ∈ ReachPLQ L

(L, T).
Now, we prove (2). Let v ∈ BackReachPLQ L

(L, T). Then there are w ∈ L and t ∈ T
such that w ∈ ⟦t⟧PLQ L

(v). Due to (10.2) we know w ⊑L⟦t⟧QL
(v). Hence, we have ⟦t⟧QL

(v) ∈
↑⊑Lw ⊆ ↑⊑LL resulting in v ∈ BackReachQL

(↑⊑LL, T).
Towards the converse inclusion, let v ∈ BackReachQL

(↑⊑LL, T), i.e., we have ⟦T⟧QL
(v)∩

↑⊑LL ≠ ∅. There is t ∈ T with ⟦t⟧QL
(v) ∈ ↑⊑LL implying the existence of w ∈ L with

w ⊑L⟦t⟧QL
(v). Then the application of (10.2) yields w ∈ ⟦t⟧PLQ L

(v) which finally implies
v ∈ BackReachPLQ L

(L, T). ◂

Let L = (F ,U) be a lossiness alphabet and L ⊆ A∗ be regular. Then the languages ↓⊑LL and
↑⊑LL are effectively and even efficiently regular. So, we are able to compute the forwards and
backwards reachable sets of queue contents of a partially lossy queue with default semantics
from their correspondences of partially lossy queues with read-lossy semantics. Hence,
whenever we consider the reachability problem of a partially lossy queue system we only
consider their read-lossy semantics. So from now on in this section, we use the data type QL

and omit the index QL whenever the situation is clear.
Now, let L = (∅,U) be a lossiness alphabet. Then we know QL ≅ QA, i.e., a partially

lossy queue with lossiness alphabet L is reliable. Hence, we know ReachQL
= ReachQA

and BackReachQL
= BackReachQA

. Due to Theorem 10.2.1 we have a strong duality
between forwards and backwards reachability in this reliable case. However, this duality
does not hold for arbitrary lossiness alphabets: if L = (F ,U) is a lossiness alphabet with
a ∈ A and F ≠ ∅, we have ReachQL

({ε}, {a}) = {a}, which cannot be transformed into
BackReachQL

({ε}, {a}) = (F ∖ {a})∗a using the reversal operation, only. Hence, we have
to consider forwards and backwards reachability separately in this case. Anyway, we will see
later in this section that we can reduce forwards and backwards reachability for arbitrary
partially lossy queues to the reachability problems in reliable queues.

Before we consider several meta-transformations, we have to analyze the effect of lossy
reading of some letters. To this end, we recall that

redsupL(w) = {w1a1w2a2 . . .wnan ∣ ∀1 ≤ i ≤ n∶wi ∈ (F ∖ {ai})
∗}

is the set of all reduced L-superwords of w = a1a2 . . . an with a1, a2, . . . , an ∈ A. For a
language L ⊆ A∗ we set redsupL(L) ∶= ⋃w∈L redsupL(w).

The following lemma proves that the map redsupL∶ 2A
∗

→ 2A∗ efficiently preserves
regularity:
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Lemma 10.3.2. Let L = (F ,U) be a lossiness alphabet and L ⊆ A∗ be regular. Then the

language redsupL(L) is regular. An NFA accepting redsupL(L) can be computed from
an NFA accepting L in polynomial time.

Proof idea. We construct an NFAB accepting redsupL(L)
R from an NFA A accepting LR.

Since the class of regular languages is closed under reversal, we also obtain regularity of
redsupL(L).

LetA = (QA,A, IA, ∆A, FA) be anNFA accepting LR. OurNFAB accepting redsupL(L)
R

does the following: whileB simulates the computation of the NFA A, it always stores the
letter it has read on the previous step ofA. After such simulation transition,B is able to read
some other forgettable letters.

Formally, we compute the following NFAB = (QB,A, IB, ∆B, FB):

QB ∶= QA × (A∪ {ε}),

IB ∶= IA × {ε},

FB ∶= FA × (A∪ {ε}), and

∆B ∶= {((p, a), b, (q, b)) ∣ (p, a, q) ∈ ∆A} ∪ {((p, a), b, (p, a)) ∣ a ≠ ε, b ∈ F ∖ {a}}.

Finally, we can prove L(B) = redsupL(L)
R. ◂

Now we can state the connection between partially lossy computations ⟦t⟧ and reduced
L-superwords:

Lemma 10.3.3. Let L = (F ,U) be a lossiness alphabet and v ,w , t ∈ A∗. Then we have

⟦t⟧(v) = w if, and only if, there is s ∈ redsupL(t) with v = sw.

Proof. We prove this by induction on the length of t. First, assume t = ε. Then we have
v = ⟦ε⟧(v) = w, ε ∈ redsupL(ε), and v = εw = w.

Next, let t = at′ for an a ∈ A and t′ ∈ A∗. Assume ⟦t⟧(v) = w. Then we have w =
⟦t′⟧(⟦a⟧(v)). By definition of ⟦a⟧ there are v1 ∈ (F ∖ {a})∗ and v2 ∈ A∗ with v = v1av2,
⟦a⟧(v) = v2, and ⟦t′⟧(v2) = w. By induction hypothesis there is s′ ∈ redsupL(t′) with v2 =
s′w. Set s ∶= v1as′. Then we have s ∈ redsupL(at′) = redsupL(t) and v = v1av2 = v1as′w = sw.

Conversely, let s ∈ redsupL(t) with v = sw. Then by definition there is s1 ∈ (F ∖ {a})∗,
s2 ∈ A∗ with s = s1as2 and s2 ∈ redsupL(t′). By v = sw there is v2 ∈ A∗ with v = sw = s1as2w =
s1av2, i.e., v2 = s2w. By induction hypothesis we have ⟦t′⟧(v2) = w. We also have ⟦a⟧(v) = v2
implying

w = ⟦t′⟧(v2) = ⟦t′⟧(⟦a⟧(v)) = ⟦t⟧(v) . ◂

Let L = (∅,U) be a lossiness alphabet without forgettable letters, t ∈ Σ∗, and v ,w ∈ A∗
with ⟦t⟧QA

(v) = w ≠ �. According to Observation 3.2.2 vwrt(t) = rd(t)w holds. With the
help of Lemma 10.3.3 we can generalize this observation to arbitrary lossiness alphabets.
To this end, let L = (F ,U) now be an arbitrary lossiness alphabet, t ∈ Σ∗, and v ,w ∈ A∗
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with ⟦t⟧QL
(v) = w ≠ �. By Lemma 4.7.3 we can de-shuffle t in this case implying w =

⟦t⟧QL
(v) = ⟦wrt(t)rd(t)⟧QL

(v). Then by Lemma 10.3.3 there is a word r ∈ redsupL(rd(t))
with vwrt(t) = rw.

Additionally, with the help of Lemma 10.3.3 we can also prove the following reductions
from reachability in plq automata to their correspondences in reliable queue systems:

Proposition 10.3.4. Let L = (F ,U) be a lossiness alphabet and L, T ⊆ A∗. Then the

following statements hold:

(1) ReachQL
(L, T) = ReachQA

(L, T)

(2) ReachQL
(L, T) = ReachQA

(L, redsupL(T))

(3) BackReachQL
(L, T) = BackReachQA

(L, T)

(4) BackReachQL
(L, T) = BackReachQA

(L, redsupL(T))

Proof. First, we prove (1). By definition we know ⟦t⟧QL
= ⟦t⟧QA

for each t ∈ A∗. This implies

ReachQL
(L, T) = ⟦T⟧QL

(L) ∖ {�} = ⟦T⟧QA
(L) ∖ {�} = ReachQA

(L, T) .

To prove (2), let w ∈ ReachQL
(L, T). Then there are v ∈ L and t ∈ T with ⟦t⟧QL

(v) = w.
By Lemma 10.3.3 there is s ∈ redsupL(t) ⊆ redsupL(T) with v = sw. Then we have w =
⟦s⟧QA

(v) ∈ ⟦redsupL(T)⟧QA
(L) implying w ∈ ReachQA

(L, redsupL(T)).
Now, let w ∈ ReachQA

(L, redsupL(T)). Then there are v ∈ L and s ∈ redsupL(T) with
⟦s⟧QA

(v) = w and, therefore, v = sw. By s ∈ redsupL(T) there is t ∈ T with s ∈ redsupL(t).
By Lemma 10.3.3 we obtain w = ⟦t⟧QL

(v) ∈ ⟦T⟧QL
(L) implying w ∈ ReachQL

(L, T).
Equation (3) holds due to the following equations:

BackReachQL
(L, T) = {x ∈ A∗ ∣ ⟦T⟧QL

(x) ∩ L ≠ ∅}

= {x ∈ A∗ ∣ ⟦T⟧QA
(x) ∩ L ≠ ∅} = BackReachQA

(L, T) .

We can prove (4) similar to (2). ◂

As a corollary of Proposition 10.3.4 we can obtain that the results from the previous
section also hold for arbitrary partially lossy queue systems:

Theorem 10.3.5. Let L = (F ,U) be a lossiness alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗
be regular and closed under ≡ (i.e., T = η−1(S) for a recognizable plq language S ⊆
T(QL)). Then ReachQL

(L, T) and BackReachQL
(L, T) are efficiently regular. ◂
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Theorem 10.3.6. Let L = (F ,U) be a lossiness alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗
be regular. Then ReachQL

(L, T∗) and BackReachQL
(L, T∗) are efficiently regular if

(1) T is read-write independent,

(2) T = R1WR2 for three regular languagesW , R1, R2 ⊆ A∗,

(3) T =W1RW2 for three regular languagesW1,W2, R ⊆ A∗,

(4) T = {t} for an action sequence t ∈ Σ∗ (cf. [Abd+04, Boi+97]), or

(5) T ⊆ A∗ ∪ A
∗
. ◂

10.4 Distributed Queues

Finally, we want to consider the reachability problem of automata having multiple reliable
queues. With the help of such systems we are able to model distributed systems commu-
nicating through several reliable channels. Since such systems contain at least one queue,
multi-queue systems are still as powerful as Turing-machines. Hence, their reachability
problem is undecidable. Similar to the single-queue case, we can under-approximate this
problem with the help of meta-transformations. To this end, we want to generalize the results
from Section 10.2 in which we considered the reachability problem in reliable single-queue
systems. Concretely, we check whether it is possible to compute asynchronous automata
accepting forwards resp. backwards reachable configurations starting from a recognizable
trace language L ⊆M(A) of initial queue contents via certain languages T ⊆M(E) of action
traces (recall that we can understand the action sequences of a distributed queue system as
traces, cf. Lemma 4.8.1). Concretely, we want to compute asynchronous automata accepting
Reach(L, T) and BackReach(L, T), respectively, whenever L ⊆M(A) is recognizable and
T ⊆M(E) is one of the following trace languages:

(1) T ⊆M(A) ∪M(A) is recognizable,

(2) T is recognizable and closed under behavioral equivalence ≡ (i.e., T = η−1(S) for a
recognizable distributed queue language S ⊆ T(QA)),

(3) T = (WR)∗ for two recognizable languagesW , R ⊆M(A), or

(4) T = τ∗ for a trace τ ∈M(E).

We will see in this section that the computation is possible if the first or second case holds.
But in general, the computation in the other cases is impossible as the following example
states:

Example 10.4.1. Let A = (A, P,M) be a distributed alphabet and a, b ∈ A be distinct
letters with a ∥ b. Then we have Reach({ε}, (ab)∗) = (ab)∗ which is not recognizable
inM(A). ⌟

To circumvent this problem, we will introduce later some further restrictions to the third
and fourth case listed above such that Reach(L, T) preserves recognizability effectively. But
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first, we will see that forwards and backwards reachability in distributed queue systems are
dual:

Theorem 10.4.2. Let A = (A, P,M) be a distributed alphabet, L ⊆ M(A), and T ⊆
M(E). Then we have

BackReach(L, T) = Reach(LR, d(T))R .

Proof. This proof is essentially the same as inTheorem 10.2.1. ◂

We can use Theorem 10.4.2 to derive knowledge about BackReach from our results
about Reach. However, we will also see some differences between forwards and backwards
reachable trace languages later in this section.

Similar to the single-queue systems, distributed queue systems are Turing-complete and,
hence, Reach(L, T) can be any recursively enumerable trace language - even if L and T are
somewhat simple trace languages. Thus, we have to approximate the set Reach(L, T), for
example with the help of meta-transformations.

We start to consider simple meta-transformations consisting of action traces only writing
or only reading letters. The result and proof is similar to Proposition 10.2.3:

Proposition 10.4.3. Let A = (A, P,M) be a distributed alphabet and L, T ⊆ M(A).
Then the following statements hold:

(1) Reach(L, T) = LT and

(2) Reach(L, T) = T/L. ◂

Now, let A = (A, P,M) be a distributed alphabet and L, T ⊆ M(A) be accepted by
the asynchronous automata L and T, respectively. Then we can compute asynchronous
automata accepting Reach(L, T) and Reach(L, T). Due to Appendix A it is possible to
compute an asynchronous automaton accepting Reach(L, T) which only differs from L in
its initial states. This construction is possible in cubic time. An asynchronous automaton for
Reach(L, T) can be computed having O(∣L∣3 ⋅ ∣T∣3)many states in polynomial time.

If the trace languages L and T are accepted by NFAsL andTwhich are not asynchronous,
i.e., if L and T are rational in M(A), Reach(L, T) also is efficiently rational. This trace
language is accepted by an NFA having linearly many states in the number of states of L and
T. However, there are rational trace languages L and T such that Reach(L, T) is not even
recursive:

Remark 10.4.4. Let B = {a, b} be an alphabet and I = (x j, y j)1≤ j≤k be an instance of the
PCP over the alphabet B. We define the following distributed alphabetA = (A, P,M):

A ∶= {a, b, c, d},

P ∶= {1, 2}, and
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M ∶= {(a, 1), (b, 1), (c, 2), (d , 2)}.

Additionally, we define the rational trace languages L and T as follows:

L ∶= {[x j cd
j] ∣ 1 ≤ j ≤ k}+ and T ∶= {[y j cd

j] ∣ 1 ≤ j ≤ k}∗ .

Then we have ε ∈ Reach(L, T) = T/L if, and only if, I has a solution of the PCP, which
is an undecidable problem. ⌟

Note that this negative result requires L and T to be non-recognizable. So, if L is recognizable
and T is rational inM(A), the language Reach(L, T) = T/L is efficiently recognizable. If L
is rational and T is recognizable, then Reach(L, T) is effectively rational. The construction
of an NFA accepting this language is possible in polynomial time if we assume that the
underlying distributed alphabetA is fixed (cf. Appendix A). A summary of these results can
be found in Figure 10.3.

L ⊆M(A) T ⊆M(E) Reach(L, T) Reach(L, T)
recognizable recognizable recognizable recognizable
recognizable rational rational recognizable
rational recognizable rational rational
rational rational rational semi-decidable

Figure 10.3.This table lists to which language classes Reach(L, T) and Reach(L, T) belong.

Next, we consider the other aforementioned types of meta-transformations.

10.4.1 Recognizability
We start with considering meta-transformations which are closed under the behavioral equiv-
alence ≡. In other words, we study the effects of recognizable languages in the transformation
monoid of a distributed queue.

From Corollary 4.8.11 we already know that for each action trace τ ∈ M(E) there is a
somewhat simple action trace σ ∈M(A)M(A)M(A) behaving equivalently to τ. We can
also compute such trace σ in polynomial time. We will use this fact to prove the following
theorem:

Theorem 10.4.5. Let A = (A, P,M) be a distributed alphabet, L ⊆ M(A) be recog-
nizable, and T ⊆ M(E) be recognizable and closed under behavioral equivalence ≡,
i.e., we have T = η−1(S) for a recognizable distributed queue language S ⊆ T(QA).
Then Reach(L, T) and BackReach(L, T) are recognizable. In particular, we can con-
struct asynchronous automata accepting Reach(L, T) and BackReach(L, T) from
asynchronous automata accepting L and T in polynomial time.

Proof idea. This proof is very similar to the proof of Theorem 10.2.5. Note that by Corol-
lary 4.8.11 we have Reach(L, T) = Reach(L, T ∩M(A)M(A)M(A)). Since the alphabets
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A and A are disjoint sets, we know that T ∩M(A)M(A)M(A) is a union of polynomially
many trace languages K1K2K3 where K1,K2,K3 ⊆M(A) are (efficiently) recognizable. From
the efficient closure properties (cf. Appendix A) we infer the efficient recognizability of the
trace languages Reach(L, T) and BackReach(L, T). ◂

Let A = (A, P,M) be a distributed alphabet. For a given recognizable trace language
T ⊆M(E) it is decidable whether T is closed under behavioral equivalence: to this end, we
only have to check whether πi(T) is closed under the equations from Lemma 4.7.2 resp. Lem-
ma 4.4.1 (if Ai is a singleton). SinceM(E↾A i∪A i

) is isomorphic to the free monoid (Ai ∪Ai)∗,
we can decide these properties as described inTheorem 5.4.8.

Theorem 10.4.5 similarly holds if we replace the given recognizable trace language L ⊆
M(A) of queue contents by a rational one:

Theorem 10.4.6. Let A = (A, P,M) be a distributed alphabet, L ⊆ M(A) be ratio-
nal, and T ⊆M(E) be recognizable and closed under behavioral equivalence ≡. Then

Reach(L, T) and BackReach(L, T) are rational. In particular, we can compute NFAs
accepting Reach(L, T) and BackReach(L, T) from an NFA accepting L and an asyn-

chronous automaton accepting T . IfA is fixed, this construction is possible in polynomial

time.

Proof idea. Recall the proofs ofTheorems 10.2.5 and 10.4.5. Thenwe see that the computation
of Reach(L, T) requires the efficient closure properties of recognizable trace languages (cf.
Appendix A) as well as the following ones:

the union of two rational trace languages is efficiently rational,

the left- and right-quotient of a rational trace language wrt. a recognizable trace language
is efficiently rational (for a fixed distributed alphabetA), and

the concatenation of two rational trace languages is efficiently rational.

Hence, Reach(L, T) and BackReach(L, T) are efficiently rational. ◂

10.4.2 Intermezzo: A Variation of Levi’s Lemma
In the next subsection we want to consider meta-transformations looping through special
languages of action sequences. In our proofs we will use Levi’s lemma for traces multiple
times. Concretely, we will utilize a special modification of this statement which is more
suitable to our situation of an iterating distributed queue system.

So, let κ, λ, σ1, σ2, ρ1, ρ2 ∈M(A) be traces satisfying ⟦σ1ρ1σ2ρ2⟧(λ) = κ ≠ �. According
to Observation 3.4.7 we know that the trace equation λσ1σ2 = ρ1ρ2κ holds. Then Levi’s
lemma for traces (cf. Theorem 3.4.6) implies the existence of nine traces µi , j ∈M(A) with
the following properties: (1) λ = µ1,1µ1,2µ1,3, (2) σi = µi+1,1µi+1,2µi+1,3, (3) ρ j = µ1, jµ2, jµ3, j,
(4) κ = µ1,3µ2,3µ3,3, and (5) µ,h ∥ µi , j if д < i and j < h. Additionally, due to the definition of
distributed queues, we cannot read letters from the queue before we have written them into
the queue. Hence, there is no overlap of σ2 and ρ1 in the equation λσ1σ2 = ρ1ρ2κ, i.e., we have
µ3,1 = ε. We can also extend this observation to an arbitrary alternation σ1ρ1σ2ρ2 . . . σkρk
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of action traces. In this case we observe that the lower-left triangle of our visualization (cf.
Figure 3.3) is empty. Concretely, we obtain the following result:

Corollary 10.4.7. Let A = (A, P,M) be a distributed alphabet and let

λ, κ, σ1, . . . , σk , ρ1, . . . , ρk ∈ M(A) be traces. We have ⟦σ1ρ1 . . . σkρk⟧(λ) = κ ≠ � if,
and only if, there are traces µi , j ∈M(A) for 1 ≤ i , j ≤ k + 1 with the following properties:

(1) λ = µ1,1µ1,2 . . . µ1,k+1,

(2) σi = µi+1,1µi+1,2 . . . µi+1,k+1 for each 1 ≤ i ≤ k,

(3) ρ j = µ1, jµ2, j . . . µk+1, j for each 1 ≤ j ≤ k,

(4) κ = µ1,k+1µ2,k+1 . . . µk+1,k+1,

(5) µ,h ∥ µi , j if д < i and j < h, and

(6) µi , j = ε if i > j + 1.

ρ1 ρ2 ⋯ ρk−1 ρk κ

λ µ1,1 µ1,2 ⋯ µ1,k−1 µ1,k µ1,k+1
σ1 µ2,1 µ2,2 ⋯ µ2,k−1 µ2,k µ2,k+1
σ2 ε µ3,2 ⋯ µ3,k−1 µ3,k µ3,k+1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

σk−1 ε ε ⋯ µk,k−1 µk,k µk,k+1
σk ε ε ⋯ ε µk+1,k µk+1,k+1

Figure 10.4. A visualization of the properties in Corollary 10.4.7. The properties inTheorem 3.4.6 hold.
Additionally, the lower-left triangle (red) is empty.

Proof. First, assume ⟦σ1ρ1 . . . σkρk⟧(λ) = κ ≠ �. Then there are κ0, . . . , κk ∈ M(A) with
⟦σ1ρ1 . . . σ jρ j⟧(λ) = κ j for each 0 ≤ j ≤ k. In particular, we have κ0 = λ and κk = κ. We
infer ⟦σ jρ j⟧(κ j−1) = κ j implying ρ jκ j = κ j−1σ j for each 1 ≤ j ≤ k (by Observation 3.4.7). We
construct the traces µi , j ∈M(A) by induction on j (i.e., column-wise in Figure 10.4). We
do this with the help of iterated applications of Levi’s Lemma for traces which yields traces
ν
( j)
i ,1 , ν

( j)
i ,2 ∈M(A) (for 1 ≤ i ≤ j + 1) where κ j = ν

( j)
1,2 . . . ν

( j)
j+1,2 holds.

For j = 0 we set ν(0)1,2 ∶= κ0 = λ.
Now, let 1 ≤ j ≤ k. Then we have κ j−1 = ν

( j−1)
1,2 . . . ν( j−1)j,2 implying

ν
( j−1)
1,2 . . . ν( j−1)j,2 σ j = κ j−1σ j = ρ jκ j .

By Levi’s lemma (cf. Theorem 3.4.6) there are traces ν( j)i ,1 , ν
( j)
i ,2 ∈M(A) (for 1 ≤ i ≤ j + 1) with

the following properties:

(a) ν( j−1)i ,2 = ν
( j)
i ,1 ν

( j)
i ,2 for 1 ≤ i ≤ j + 1,

(b) σ j = ν
( j)
j+1,1ν

( j)
j+1,2,
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(c) ρ j = ν
( j)
1,1 . . . ν

( j)
j+1,1,

(d) κ j = ν
( j)
1,2 . . . ν

( j)
j+1,2, and

(e) ν( j),1 ∥ ν
( j)
h,2 for each д > h.

We set µi , j ∶= ν
( j)
i ,1 for 1 ≤ i ≤ j + 1 and µi , j ∶= ε for each j + 1 < i ≤ k + 1. Finally, we set

µi ,k+1 ∶= ν
(k)
i ,2 .

By definition of the traces µi , j we already obtain the satisfaction of property (6). Now,
we will prove the remaining properties:

(1) λ = ν(0)i ,2 = ν
(1)
1,1 ν

(1)
1,2 = ν

(1)
1,1 ν

(2)
1,1 ν

(2)
1,2 = ⋅ ⋅ ⋅ = ν

(1)
1,1 . . . ν

(k)
1,1 ν

(k)
1,2 = µ1,1 . . . µ1,kµ1,k+1

(2) σi = ν
(i)
i+1,1ν

( j)
i+1,2 = ⋅ ⋅ ⋅ = ν

(i)
i+1,1 . . . ν

(k)
i+1,1ν

(k)
i+1,2 = µi+1,i . . . µi+1,k+1 = µi+1,1 . . . µi+1,k+1

(3) ρ j = ν
( j)
1,1 . . . ν

( j)
j+1,1 = µ1, j . . . µ j+1, j = µ1, j . . . µk+1, j

(4) κ = κk = ν
(k)
1,2 . . . ν(k)

k+1,2 = µ1,k+1 . . . µk+1,k+1

(5) If д > h + 1 we have µ,h = ε which obviously implies our claim. Similarly, the claim
is trivial if i > j + 1. Hence, we assume д ≤ h + 1 and i ≤ j + 1. In this case we have
µ,h = ν

(h)
,1 (or µ,h = ν

(k)
,2 if h = k + 1) and µi , j = ν

( j)
i ,1 . We can prove that µ,h is an infix

of ν( j),2:

ν
( j)
,2 = ν

( j+1)
,1 ν

( j+1)
,2 = ⋅ ⋅ ⋅ = ν

( j+1)
,1 . . . ν(h),1 ν

(h)
,2 .

Hence, we have either ν( j),2 = µ, j+1 . . . µ,hν
(h)
,2 (if h ≤ k) or ν( j),2 = µ, j+1 . . . µ,h (if

h = k + 1). We infer (Alph(µ,h)M) ⊆ (Alph(ν
( j)
,2)M) and, therefore,

(Alph(µ,h)M) ∩ (Alph(µi , j)M) ⊆ (Alph(ν
( j)
,2)M) ∩ (Alph(ν

( j)
i ,1 ))

(e)
= ∅

by i > д. This finally implies µ,h ∥ µi , j.

Towards the converse implication, assume that the properties (1)-(6) hold. Then, by
Levi’s lemma for traces (cf. Theorem 3.4.6) we have λσ1 . . . σk = ρ1 . . . ρkκ. We have to prove
now that ⟦σ1ρ1 . . . σkρk⟧(λ) = κ holds (note that we cannot apply Observation 3.4.7 here,
since it only states the converse implication). To this end, we prove by induction on 0 ≤ i ≤ k
that

⟦σ1ρ1 . . . σiρi⟧(λ) =
i+1
∏
=1
(µ,i+1 . . . µ,k+1)

holds. So, let i = 0. Then we have ⟦ε⟧(λ) = λ = µ1,1 . . . µ1,k+1 by (1). Next, let 1 ≤ i ≤ k. Then
we obtain
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⟦σ1ρ1 . . . σiρi⟧(λ)
= ⟦σiρi⟧(⟦σ1ρ1 . . . σi−1ρi−1⟧(λ))

= ⟦µi+1,1 . . . µi+1,k+1µ1,i . . . µk+1,i⟧
⎛

⎝

i

∏
=1
(µ,i . . . µ,k+1)

⎞

⎠
(by (2), (3), and i.h.)

= ⟦µi+1,i . . . µi+1,k+1µ1,i . . . µk+1,i⟧
⎛

⎝

i

∏
=1
(µ,i . . . µ,k+1)

⎞

⎠
(by (6))

= ⟦µ1,i . . . µk+1,i⟧
⎛

⎝

i+1
∏
=1
(µ,i . . . µ,k+1)

⎞

⎠

=
i+1
∏
=1
(µ,i+1 . . . µ,k+1) . (by (5))

Hence, we have ⟦σ1ρ1 . . . σkρk⟧(λ) =∏k+1
=1 µ,k+1 = κ by (4). ◂

10.4.3 Alternations

In this subsection we want to consider meta-transformations alternating between two given
languages of action traces. To this end, consider a distributed system consisting of three
processes 1, 2, and 3. The process 1 can handle requests of type a and b, process 2 handles a and
c, and process 3 handles requests of type c. In other words, the underlying distributed alphabet
A has the dependence graph b— a— c. Now, assume that users can send several sequences
of requests. For example, sequences ab, ac, and c are send to the system in an arbitrary
order. The processes execute several of their requests one after another - in order of incoming.
Then we may ask for the set of reachable configurations of our system. In this concrete
situation we have to compute Reach({ε}, ({ab, ac, c}{a, b, c}∗)∗). Using the approach
from Boigelot et al., we will never obtain the result Reach({ε}, ({ab, ac, c}{a, b, c}∗)∗) =
{[b], ε} ⋅ {[ab], [ac], [c]}∗, since we consider multiple interlaced loops here.

Hence, the aim of this section is to generalize our result fromTheorem 10.2.12 stating that
Reach(L, (WR)∗) (in single-queue systems) is efficiently regular whenever L,W , R ⊆ A∗ are
regular languages. Here, we consider in which cases Reach(L, (WR)∗) effectively preserves
the recognizability of the queue contents L ⊆ M(A) for arbitrary distributed alphabets
A = (A, P,M) (note that the aforementioned result was stated for distributed alphabets
having a complete dependence graph).

In the general case recognizability of the trace languages L,W , R ⊆ M(A) does not
necessarily imply recognizability of Reach(L, (WR)∗)´. This is due to the fact that the class
of recognizable trace languages is not closed under iteration. For example, let a, b ∈ Awith
a ∥ b, L = R ∶= {ε}, andW ∶= {[ab]}. Then we obtain Reach(L, (WR)∗) = W∗ = [ab]∗

which is not recognizable inM(A) since [ab] is not connected. However, if the recognizable
trace languageW to be iterated also is connected thenW∗ is efficiently recognizable as well
(at least for a fixed distributed alphabetA, cf. Appendix A). Hence, in our generalization of
Theorem 10.2.12 we also require this restriction toW ⊆M(A). Note that we do not require
connectivity for the trace languages L and R.

Concretely, we will prove the following statement:
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Theorem 10.4.8. Let A = (A, P,M) be a distributed alphabet, and L,W , R ⊆ M(A)
be recognizable such thatW is connected. Then Reach(L, (WR)∗) is recognizable. In
particular, we can construct an asynchronous automaton accepting Reach(L, (WR)∗)
from asynchronous automata accepting L,W , and R. IfA is fixed, this construction is

possible in polynomial time.

Similar to the single-queue case, the proof is based on the following ideas:

(1) Instead of deciding which trace σ ∈W we write into the queues per round, we just keep
one token. To this end, we prepend each trace σ ∈ W with a new letter to mark its
beginning. In contrast to the single-queue case, we need (for technical reasons) more
than just one such begin marker, but each σ ∈W will be prepended by just one of them.
However, independent of the concrete begin marker we always keep the same type of
token. When reading letters, we remove such tokens and decide at this moment, which
trace we have written into our distributed queue.

(2) Sincewe only count tokens representing the number of traces from σ ∈W to be contained
in our distributed queue, we can simulate this with the help of a counter, a unary queue,
or a unary pushdown.

Hence, our distributed queue system can be simulated by a pushdown automatonP. Since
the map post∗P∶ConfP → ConfP efficiently preserves regularity (byTheorem 9.2.1), we will
finally obtain the efficient recognizability of Reach(L, (WR)∗).

We start our proof by describing the construction of the pushdown automaton. After-
wards, we prove the correctness of this theorem on Page 216.

The Reduction to Pushdown Automata

Towards the construction of the pushdown automaton simulating our alternating distributed
queue system, we should first recall the abstraction of the single-queue system’s configurations.
Concretely, we have abstracted the content w of a single queue with the help of two states
marking the begin and end of a run labeled with w in an NFA accepting LW∗ (note that
all reachable contents are infixes of LW∗ in this case). We stored this information in the
control states of the constructed PDA. Moreover, in the PDA’s stack we counted the number
of words fromW to be contained in the queue’s content. We simplified this counting process
by introducing a special begin marker $ ∉ A which we prepended to each word fromW .
Since the constructed PDA uses only one stack symbol, it is essentially a counter automaton
without zero-tests.

Here, we want to construct a pushdown automaton with similar semantics of its config-
urations. First, we want to introduce begin markers of the traces inW . Unfortunately, the
situation is way more complicated than for single queues. This is due to the partial commuta-
tions induced by the distributed alphabetA. For example, consider a distributed alphabet
A with dependence graph a— b— c, L = {[ε]}, W = {[a], [b], [c]}, and R = M(A). A
possible computation of a distributed queue is the following one:

[ε]
a
Ð→Q [a]

ε
Ð→Q [a]

c
Ð→Q [ac]

c
Ð→Q [a]

b
Ð→Q [ab]

a
Ð→Q [b] .
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In other words, even if we have first written a and then c we are able to first read c and then
a. So, a possible begin marker of a has to be independent of the one of c. However, the
begin markers of a and b (or c and b) have to be dependent since we cannot read b from a
distributed queue with content [ab].

We will see later in the correctness proof that a good set of begin markers consists of
letters $C ,i where C ⊆ A is a connected set of letters and i ∈ P. Concretely, we will prepend
a trace σ ∈ W with the letter $C ,i if C is exactly the (connected) set of letters occurring in
σ and if σ start with a letter in Ai . So, we first construct a modified distributed alphabet
A′ = (A′, P′,M′) with

A′ ∶= A∪ B where B ∶= {$C ,i ∣ C ⊆ A connected, i ∈ CM} ∪ {$∅,0} is disjoint from A,

P′ ∶= {i , î ∣ i ∈ P} ∪ {0} where P̂ ∶= {î ∣ i ∈ P} is a disjoint copy of P and 0 ∉ P ∪ P̂, and

M′ ∶=M∪{($C ,i , i), ($C ,i , ĵ) ∣ $C ,i ∈ B, j ∈ CM} (i.e., we add $C ,i to process i and to the
copy ĵ of any j ∈ CM).

This distributed alphabetA′ also induces a distributed alphabet E′ ∶= (Σ′, P′,M′) extended
by read actions where we have Σ′ = Σ ∪ B ∪ B = A′ ∪ A′. We can understand $C ,i ∈ B as
follows: in C we store the letters occurring in a trace σ which starts with this begin marker
$C ,i . Additionally, the pushdown automatonP (to be constructed) guesses a process i ∈ P.
When it starts reading σ from the distributed queue’s content it first reads $C ,i and afterwards
a letter from process i.

Accordingly, we next introduce trace languages WC ,i where ∅ ⊊ C ⊆ A is connected
and i ∈ CM. Concretely,WC ,i contains all traces σ ∈W with Alph(σ) = C (i.e., σ contains
exactly the letters from C) and σ ∈ ζA′(Ai) ⋅M(A) (i.e., σ starts with a letter in Ai) which
we prepend with the letter $C ,i . Formally, we set

WC ,i ∶= $C ,i ⋅ (W ∩ ζA′(Ai) ⋅M(A) ∩⋂
a∈C

M(A↾C) ⋅ a ⋅M(A↾C)) .

Note that due to the closure properties of the class of recognizable trace languages, we can
compute an asynchronous automaton accepting WC ,i in polynomial time from an asyn-
chronous automaton accepting W , the connected set C ⊆ A, and i ∈ CM. Additionally,
by the definition of our modified distributed alphabet,WC ,i is still connected. We also set
W∅,0 ∶= {$∅,0} if ε ∈W andW∅,0 ∶= ∅ otherwise. In other words, we also prepend a special
begin marker to the empty trace (iff it exists inW). Finally, we setW ′ ∶= ⋃$C , i∈BWC ,i . This
language is still recognizable inM(A′) and connected. We can compute this trace language
in time polynomial in the size of an asynchronous automaton acceptingW (and in time
exponential in the size ofA).

Example 10.4.9. LetA = ({a, b}, {1, 2}, {(a, 1), (b, 2)}) be a distributed alphabet and
W = {[aa], [b]}. Then we have B = {${a},1, ${b},2, $∅,0},W∅,0 = ∅,W{a},1 = {[${a},1aa]},
andW{b},2 = {[${b},2b]}. ⌟

Additionally, we set R′ ∶= π−1A (R), i.e., we insert letters from B into the traces from
R at arbitrary positions. Since the class of recognizable languages is closed under inverse
homomorphisms, the trace language R′ also is efficiently recognizable. By the choice ofA′,
W ′, and R′ we can claim the following equation:

Reach(L, (WR)∗) = πA(Reach(L, (W ′R′)∗)) .
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In other words, the insertion of the letters from B intoW and R does not change the behavior
of our distributed queue system. We will see the correctness of this equation later in this
proof.

Now, we want to deduce an abstraction of the contents of our distributed queue. To this
end, we consider a non-failing computation τ ∈ (W ′R′)∗ of the modified distributed queue
system with initial content λ ∈ L, i.e., ⟦τ⟧(λ) ≠ �. Let κ ∶= ⟦τ⟧(λ). Then by Observation 3.4.7
we obtain λ ⋅wrt(τ) = rd(τ) ⋅ κ where wrt(τ) ∈W ′∗ and rd(τ) ∈ R′∗ holds. Hence, κ is an
infix of the trace λ ⋅wrt(τ) ∈ LW ′∗ (note that this also holds for any intermediate result on
the computation of ⟦τ⟧(λ)). Since LW ′∗ is efficiently recognizable, there is an asynchronous
automaton C = (Q⃗C,A′, IC, ∆C, FC) accepting LW ′∗. W.l.o.g. we can assume that each initial
state ι⃗ ∈ IC reaches a final state f⃗ ∈ FC and each final state can be reached from an initial

statexxi. Since λ ⋅wrt(τ) ∈ T(C) there is an asynchronous runΠ = (ι⃗
λ⋅wrt(τ)
ÐÐÐÐ→C f⃗ ) in C labeled

with λ ⋅wrt(τ) from an initial state ι⃗ ∈ IC to an accepting state f⃗ ∈ FC.
Recall that τ ∈ (W ′R′)∗ holds. Since this trace language is efficiently rational, there is an

NFA T = (QT, Σ′, IT, ∆T, FT) accepting (W ′R′)∗. For technical reasons we assume that T
is constructed from asynchronous automata acceptingW ′ and R′, resp., using the classical
constructions for concatenation and iteration of regular languages (cf. Figure 10.5).

W R

FW

IW

IR

FR

a b a a

a c b

a, b

a

a, c

b

Figure 10.5. A visualization of the construction of the NFA T from asynchronous automataW and R
acceptingW ′ and R′, resp. Note that the final states ofW are not accepting and the initial states ofR are not
initial anymore.

Due to our construction we can observe the following properties of T:

(a) For [w1] ∈W ′ and s1, s2 ∈ QT with s1
w1
Ð→T s2 we also have s1

w2
Ð→T s2 for each w2 ≈A′ w1.

(b) For [r1] ∈ R′ and s1, s2 ∈ QT with s1
r1
Ð→T s2 we also have s1

r2
Ð→T s2 for each r2 ≈A′ r1.

(c) For w1, . . .wk , r1, . . . , rk ∈ A′∗ with IT
w1r1 ...wk rk
ÐÐÐÐÐ→T FT we have [w1], . . . , [wk] ∈ W ′ and

[r1], . . . , [rk] ∈ R′.

In other words, the sequences of write actions and read actions, resp., are closed under partial
commutations ≈A. Additionally, the action sequences fromW ′ and R′ are strictly separated
in T.

xxiRecall that the NFA C in the proof of Theorem 10.4.8 was trim in the sense that each state is reachable
from an initial state and reaches a final state. Now, we only require that the initial and accepting states have
this property.
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Since τ ∈ T(T) there are letters α1, . . . , αm ∈ Σ′ with [α1 . . . αm] = τ and and accepting
run ι

α1 ...αm
ÐÐÐ→T f of τ in T from an initial state ι ∈ IT to an accepting state f ∈ FT. Let

ι = s0, s1, . . . , sm = f be the intermediate states of this run. Additionally, since α1 . . . αm = [τ]
there are intermediate queue contents λ0, λ1, . . . , λm ∈M(A′) with λ0 = λ, λ j+1 = ⟦α j+1⟧(λ j)
for each 0 ≤ j < m (implying λ jwrt(α j+1) = rd(α j+1)λ j+1), and λm = κ. Then we want
to abstract the intermediate configuration (s j, λ j) of our distributed queue system (for
0 ≤ j ≤ m) with the following information:

(1) the control state s j of our automaton,

(2) two intermediate states Πµ j
and Πν j marking the begin and end of a subrun labeled with

λ j of our asynchronous run Π, and

(3) the number c j ∶= ∣λ j∣B of traces fromW ′ to be contained in λ j.

Initially, we abstract the configuration (s0, λ0) by (s0,Πε ,Πλ , 0) since there is a run in C
labeled with λ from Πε to Πλ and since ∣λ0∣B = ∣λ∣B = 0 by λ ∈ L ⊆M(A). Next, we construct
the abstraction of (s j+1, λ j+1) from (s j, λ j) as follows: let (s j,Πµ j

,Πν j , c j) be the abstraction

of (s j, λ j). By the choice of our run in T we have an edge s j
α j+1
ÐÐ→T s j+1. Additionally, we

distinguish the following cases:

(1) If α j+1 = a ∈ A′, there is an edge Πν j

a
Ð→C Πν ja. Since the asynchronous run from Πµ j

to
Πν j is labeled by λ j, we can extend this run with this a-edge to a run from Πµ j

to Πν ja

labeled by λ ja = λ j+1. Additionally, if a ∈ B holds, the number of B-letters in λ j increases.
Hence, we can abstract (s j+1, λ j+1) by (s j+1,Πµ j

,Πν ja , c j + ∣a∣B).

(2) If α j+1 = a ∈ A′, the asynchronous run from Πµ j
to Πν j starts with the a-edge Πµ j

a
Ð→C

Πµ ja since λ j = aλ j+1 (note that our computation does not end up in the error state �).
Hence, there is a run from Πµ ja to Πν j labeled with λ j+1. If a ∈ B holds, the number
of B-letters in λ j decreases. Therefore, the appropriate abstraction of (s j+1, λ j+1) is
(s j+1,Πµ ja ,Πν j , c j − ∣a∣B) in this case.

All in all, (s j,Πµ j
,Πν j , c j) is a suitable abstraction of the distributed queue system’s

configuration (s j, λ j). These information can be simulated with the help of a pushdown
automatonP. In this case, the control states ofP are composed of the states s j, Πµ j

, and Πν j

while the stack contains c j many letters (for a better differentiation the stack’s content is #c j
in this case). Note that this PDA is essentially a (partially blind) one-counter automaton.

We define the pushdown automatonP ∶= (QP, Σ′,P{#}, IP, ε, ∆P, FP) as follows:

QP ∶= QT × Q⃗C × Q⃗C,

IP ∶= IT × IC ×QL where QL ∶= {q⃗ ∈ Q⃗C ∣ ∃λ ∈ L∶ IC
λ
Ð→C q⃗},

FP ∶= FT × Q⃗C × FC, and

∆P: we first introduce the homomorphism ϑ∶M(A′)→ #∗ induced by ϑ(a) = ε if a ∈ A
and ϑ(a) = # if a ∈ B holds (in other words, ϑ projects A′ to B and renames the letters
from B to # afterwards). Then ∆P consists of the following transitions:

(W) Simulate writing of the letter a ∈ A′ into the distributed queue:
((s, p⃗, q⃗), a, ϑ(a), (s′, p⃗, q⃗′)) ∈ ∆P if, and only if, (s, a, s′) ∈ ∆T and (q⃗, a, q⃗′) ∈
∆C
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(R) Simulate reading of the letter a ∈ A′ from the distributed queue:

((s, p⃗, q⃗), a, ϑ(a), (s′, p⃗′, q⃗)) ∈ ∆P if, and only if, (s, a, s′) ∈ ∆C, (p⃗, a, p⃗′) ∈ ∆C,
and T(Cp⃗′→FC

) ∩M(A) ≠ ∅.

Note that the condition “T(Cp⃗′→FC
)∩M(A) ≠ ∅” in transition (R) is required in the correct-

ness proof of our construction. It ensures that the first letter the simulated distributed queue
system reads from any trace σ ∈W ′ is its begin marker $C ,i ∈ B.

The Semantics of the Pushdown Automaton

Now, we assign to the configuration ((s, p⃗, q⃗), #c) ∈ ConfP the set of all traces having the
abstraction (s, p⃗, q⃗, c). These are all traces being the labeling of an asynchronous run from p⃗
to q⃗ in C and containing c appearances of letters from B (recall that these letters mark the
beginning of any trace fromW ′). Formally, our assignment is the mapping ⟦.⟧P∶ConfP →
2M(A′) with

⟦((s, p⃗, q⃗), #c)⟧P ∶= T(Cp⃗→q⃗) ∩ ϑ
−1(#c)

for each s ∈ QT, p⃗, q⃗ ∈ Q⃗C, and c ∈ N where ϑ is the homomorphism mapping letters from A

to ε and letters from B to #.
Our next aim is to prove that the semantics of all reachable accepting configurations of our

constructed pushdown automatonP agrees with the setReach(L, (W ′R′)∗). Concretely, we
prove the equality of the projections to the primary alphabet A of these two trace languages.
This is the following statement:

Proposition 10.4.10. Reach(L, (WR)∗) = ⋃γ∈post∗
P
(InitP)∩FinalP πA(⟦γ⟧P).

Later this proposition will turn out to be a key component of the correctness proof of
Theorem 10.4.8. We prove this proposition with the help of two lemmas each stating one
inclusion.

We start with proving that any reachable queue content is associated to the semantics of
a reachable accepting configuration ofP. The proof of this inclusion proceeds very similar
to the proof of Lemma 10.2.15 but is a bit more involved. So, let τ ∈ (WR)∗ and λ ∈ L with
⟦τ⟧(λ) ≠ �. First, we have to insert begin markers $C ,i ∈ B and their corresponding read
actions $C ,i ∈ B at the appropriate positions in τ such that the resulting trace τ′ belongs to
(W ′R′)∗ and πA(⟦τ′⟧(λ)) = ⟦τ⟧(λ) ≠ � holds. Afterwards we construct an accepting run of
the PDAP such that the jth intermediate result on computation of ⟦τ′⟧(λ) belongs to the
semantics of the jth configuration of the constructed run of our PDA. Note that especially the
consideration of read actions is way more complicated than in the single-queue case, since
we also have to show the property “T(Cp⃗′→FC

) ∩M(A) ≠ ∅”.

Lemma 10.4.11. Let τ ∈ (WR)∗ and λ ∈ L with ⟦τ⟧(λ) ≠ �. Then there is a configura-

tion γ ∈ post∗P(InitP) ∩ FinalP with ⟦τ⟧(λ) ∈ πA(⟦γ⟧P).
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Proof. Let τ = σ1ρ1σ2ρ2 . . . σkρk with σ1, σ2, . . . , σk ∈W and ρ1, ρ2, . . . , ρk ∈ R. Additionally,
let κ ∶= ⟦τ⟧(λ) ≠ �. By Corollary 10.4.7 we can factorize λ, σ1, . . . , σk , ρ1, . . . , ρk , κ ∈M(A)
into traces [wi , j] ∈M(A) with the properties (1)-(6). Now, we insert $C ,x ∈ B into the wi , j
resulting in the following words w′i , j ∈ Σ′∗:

w′i , j ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

$C ,xwi , j if i > 1,wi ,1 . . .wi , j−1 = ε,C = Alph(wi , j . . .wi ,k+1), x ∈ CM,wi , j ∈ AxA∗

$∅,0 if i > 1, j = k + 1,wi ,1 . . .wi ,k+1 = ε
wi , j otherwise .

ρ1 ρ2 ρ3 ⋯ ρk−1 ρk κ

λ w1,1 w1,2 w1,3 ⋯ w1,k−1 w1,k w1,k+1
σ1 $C1 ,i1w2,1 w2,2 w2,3 ⋯ w2,k−1 w2,k w2,k+1
σ2 ε ε ε ⋯ ε ε $∅,0ε
σ3 ε ε $C3 ,i3w4,3 ⋯ w4,k−1 w4,k w4,k+1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

σk−1 ε ε ε ⋯ ε ε $Ck−1 ,ik−1wk,k+1
σk ε ε ε ⋯ ε $Ck ,ikwk+1,k wk+1,k+1

Figure 10.6. Visualization of the construction of the w′i , j ’s, the σ ′i ’s, the ρ′j ’s, and κ′.

In other words, as depicted in Figure 10.6 we prepend a letter $C ,x ∈ B to each σi (i.e., we
prepend this letter to each row except for the first one). Thenwe define σ ′i ∶= [w′i+1,1 . . .w′i+1,k+1]
for each 1 ≤ i ≤ k, ρ′j ∶= [w′1, j . . .w′k+1, j] for each 1 ≤ j ≤ k, and κ′ ∶= [w′1,k+1 . . .w

′
k+1,k+1]. We

obtain the following properties:
σ ′i = [w

′
i+1,1 . . .w′i+1,k+1] = [$C ,xwi+1,1 . . .wi+1,k+1] ∈WC ,x ⊆W ′ for appropriate C ⊆ A and

x ∈ P ∪ {0}.
πA(ρ′j) = πA([w′1, j . . .w′k+1, j]) = [w1, j . . .wk+1, j] ∈ R implying ρ′j ∈ π−1A (R) = R′.

λ = [w1,1 . . .w1,k+1] = [w′1,1 . . .w′1,k+1] (note that wi , j ≠ w′i , j requires i > 1).

Then the traces [w′i , j] still satisfy the properties from Corollary 10.4.7 implying the equation
κ′ = ⟦σ ′1 ρ

′
1 . . . σ ′kρ

′
k
⟧(λ) ≠ �. Now, we will prove that κ′ ∈ ⟦γ⟧P holds for a configuration

γ ∈ post∗P(InitP) ∩ FinalP. This will finally imply κ = πA(κ′) ∈ πA(⟦γ⟧P).

Since λσ ′1 . . . σ ′k ∈ LW ′∗ = T(C) there is an asynchronous run Π = (ι⃗
λσ ′1 ...σ

′

k
ÐÐÐ→C f⃗ ) in C

from an initial state Πε = ι⃗ ∈ IC to a final state Πλσ ′1 ...σ
′

k
= f⃗ ∈ FC with labeling λσ ′1 . . . σ ′k.

Additionally, since σ ′1 ρ′1 . . . σ ′kρ
′
k
∈ (W ′R′)∗ = T(T) holds, there are letters α1, . . . , αn ∈ Σ′

with [α1 . . . αn] = σ ′1 ρ
′
1 . . . σ ′kρ

′
k
and a run s0, . . . , sn in T from an initial state s0 ∈ IT to an

accepting state sn ∈ FT with s j−1
α j

Ð→T s j for each 1 ≤ j ≤ n. We can assume that

rd(α1 . . . αn) = w
′
1,1 . . .w′k+1,1 . . .w

′
1,k . . .w

′
k+1,k

holds in the free monoid A′∗xxii, i.e., we read the letters column-wise in Figure 10.6 (except
for the last column). This ensures that the first letter we read from any σ ′j (where 1 ≤ j ≤ k) is
its begin marker $C j ,i j ∈ B.
xxiiNote that we are able to choose the letters α1 , . . . , αn ∈ Σ

′ and the run s0 , . . . , sn such that this equation
holds. This is possible due to property (b) of the NFA T.
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From � ≠ κ′ = ⟦σ ′1 ρ
′
1 . . . σ ′kρ

′
k
⟧(λ) = ⟦α0 . . . αn⟧(λ) we also obtain traces λ0, . . . , λn ∈

M(A′) with λ0 = λ, ⟦α j+1⟧(λ j) = λ j+1 ≠ � for each 0 ≤ j < n, and λn = κ′.
Now, we want to construct a run γ0, . . . , γn inP from an initial configuration γ0 to a

final configuration γn which is labeled with [α1 . . . αn] = σ ′1 ρ
′
1 . . . σ ′kρ

′
k
. To this end, we define

p⃗ j ∶= Πrd(α1 ...α j),

q⃗ j ∶= Πλwrt(α1 ...α j), and

c j ∶= ∣λ j∣B ≥ 0

Set γ j ∶= ((s j, p⃗ j, q⃗ j), #c j) ∈ ConfP. We want to prove now that γ0, . . . , γn is such run in
P. However, we first note that c j is the difference of operations from B and B in the action
sequence α1 . . . α j:
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. For each 0 ≤ j ≤ n we have c j = ∣α1 . . . α j∣B − ∣α1 . . . α j∣B.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. This proof is very similar to Claim 1 in the proof of Lemma 10.2.15. ◁

The following three statements prove that γ0, . . . , γn is a run inP from an initial state to
an accepting state and the jth intermediate content λ j of the distributed queue is covered by
the semantics of the configuration γ j for any 0 ≤ j ≤ n.
▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. We have γ0 ∈ InitP and λ = λ0 ∈ ⟦γ0⟧P.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We have s0 ∈ IT by the choice of the run in T. Additionally, we have p⃗0 = Πε = ι⃗ ∈ IC
and q⃗0 = Πλ ∈ QL since we have ι⃗ = p⃗0

λ
Ð→C q⃗0 and λ ∈ L. We also observe c0 = ∣λ0∣B = ∣λ∣B = 0

since λ ∈ L ⊆ M(A). Hence, we infer γ0 = ((s0, p⃗0, q⃗0), #0) ∈ InitP and λ ∈ T(Cp⃗0→q⃗0) ∩
ϑ−1(#0) = ⟦γ0⟧P. ◁

▷ Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3.Claim 3. For each 0 ≤ j < m we have γ j

α j+1
ÐÐ→P γ j+1 and λ j+1 ∈ ⟦γ j+1⟧P.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We prove this by induction on j. By Claim 2 we already know λ0 ∈ ⟦γ0⟧P. Hence,
we only prove the induction step. To this end, let j ≥ 0. By the choice of our run in T we
know (s j, α j+1, s j+1) ∈ ∆T. Now, we have to take a closer look at ⃗p j+1 and ⃗q j+1. To this end, we
distinguish the following two cases:

(W) α j+1 = a ∈ A′. Then we have ⃗p j+1 = p⃗ j and c j+1 = c j + ∣a∣B. Additionally, we have
q⃗ j = Πλwrt(α1 ...α j) and ⃗q j+1 = Πλwrt(α1 ...α j)a. Hence, since Π is an asynchronous run in C
labeled with λσ ′1 . . . σ ′k = λwrt(α1 . . . αn), there is a transition (q⃗ j, a, ⃗q j+1) ∈ ∆C. Then
by definition our pushdown automatonP has the following transition:

((s j, p⃗ j, q⃗ j), a, ϑ(a), (s j+1, ⃗p j+1, ⃗q j+1)) ∈ ∆P

(recall that ϑ(a) = ε if a ∈ A or ϑ(a) = # if a ∈ B holds). This implies γ j
a
Ð→P γ j+1. By

induction hypothesis we know λ j ∈ ⟦γ j⟧P. Then we learn

λ j+1 = ⟦a⟧(λ j) = λ j ⋅ a ∈ ⟦γ j⟧P ⋅ a

= (T(Cp⃗ j→q⃗ j) ∩ ϑ
−1(#c j)) ⋅ a

⊆ (T(Cp⃗ j→q⃗ j) ∩ ϑ
−1(#c j)) ⋅ (T(Cq⃗ j→ ⃗q j+1) ∩ ϑ

−1(#∣a∣B))

⊆ (T(Cp⃗ j→q⃗ j) ⋅ T(Cq⃗ j→ ⃗q j+1)) ∩ ϑ
−1(#c j+∣a∣B)

⊆ T(C ⃗p j+1→ ⃗q j+1) ∩ ϑ
−1(#c j+1) = ⟦γ j+1⟧P .
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(R) α j+1 = a ∈ A′. Then we have ⃗q j+1 = q⃗ j and c j+1 = c j− ∣a∣B ≥ 1. SinceΠ is an asynchronous
run in C labeled with λσ ′1 . . . σ ′k = λwrt(α1 . . . αn), λ j = aλ j+1 holds (by ⟦a⟧(λ j) = λ j+1),

and since p⃗ j
λ j

Ð→C q⃗ j there is a unique state Πrd(α1 ...α j)a with

(p⃗ j
λ j

Ð→C q⃗ j) = (p⃗ j = Πrd(α1 ...α j)
a
Ð→C Πrd(α1 ...α j)a

λ j+1
ÐÐ→C q⃗ j = ⃗q j+1) .

Note that we have ⃗p j+1 = Πrd(α1 ...α j)a by definition. Hence, we learn (p⃗ j, a, ⃗p j+1) ∈ ∆C.
To prove the existence of the transition

((s j, p⃗ j, q⃗ j), a, ϑ(a), (s j+1, ⃗p j+1, ⃗q j+1)) ∈ ∆P (10.3)

we still have to show T(C ⃗p j+1→FC) ∩M(A) ≠ ∅.
Recall that the read actions we apply on our run s0, . . . , sn are the following se-

quence:
rd(α1 . . . αn) = w

′
1,1 . . .w′k+1,1 . . .w

′
1,k . . .w

′
k+1,k .

Hence, there are two indices 1 ≤ д ≤ k + 1 and 1 ≤ h ≤ k and two words u, v ∈ A′∗
satisfying the following properties (in the free monoid A′∗):

(i) w′
,h = uav (recall that α j+1 = a holds),

(ii) rd(α1 . . . α j) = w′1,1 . . .w′−1,hu, and
(iii) rd(α j+2 . . . αn) = vw′+1,h . . .w

′
k+1,k.

In other words, before applying α j+1 to λ j we already read u fromw′
,h, now we read this

particular letter a, and afterwards we will read v and the remaining w′x ,y’s. The trace

[rd(α j+2 . . . αn)] ⋅ κ
′ = [vw′+1,h . . .w

′
k+1,k w

′
1,k+1 . . .w

′
k+1,k+1]

is the complementary suffix of λσ ′1 . . . σ ′k wrt. rd(α1 . . . α j+1) (in the trace monoid

M(A′)) implying p⃗ j
[vw′

+1,h ...w
′

k+1,k+1]
ÐÐÐÐÐÐÐÐÐ→C FC. We now want to find another run in C

from p⃗ j to FC which is labeled by a trace containing no begin markers. To this end, we
will prune someW ′-factors of vw′

+1,h . . .w
′
k+1,k+1 (recall that each of theseW ′-factors

start with a letter from B). First, with the help of our special variation of Levi’s lemma
(Corollary 10.4.7(5)) we can see that the following equation holds (cf. Figure 10.7):

vw′+1,h . . .w
′
k+1,k+1 ≈A′ v ⋅ ∏

1≤y≤
(w′y,h+1 . . .w

′
y,k+1) ⋅ ∏

<y≤k+1
(w′y,h . . .w

′
y,k+1) . (10.4)

Let 1 ≤ x ≤ k + 1 be an index such that w′
x ,h+1 . . .w

′
x ,k+1 (or w

′
x ,h . . .w

′
x ,k+1 if x > д)

contains a begin marker $Cx ,ix ∈ B. Since each row starts with its begin marker $Cx ,ix
according to our construction of the words w′y,z, we obtain w′x ,h+1 . . .w

′
x ,k+1 ∈WCx ,ix ⊆

W ′. Then we see that the word

ux ∶= v ⋅ ∏
1≤y≤
y≠x

(w′y,h+1 . . .w
′
y,k+1) ⋅ ∏

<y≤k+1
y≠x

(w′y,h . . .w
′
y,k+1)

is still the complementary suffix of rdi(α1 . . . α j) wrt. a trace in LW ′∗. Hence, we learn
[ux] ∈ T(Cp⃗ j→FC) and has one occurrence of B fewer than the trace [vw

′
+1,h . . .w

′
k+1,k+1].

We can iterate this pruning of factors w′
x ,h+1 . . .w

′
x ,k+1 which results in a trace from
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ρ1 ⋯ ρh ρh+1 . . . κ

λ w′1,1 ⋯ w′1,h w′1,h+1 ⋯ w′1,k+1
σ1 w′2,1 ⋯ w′2,h w′2,h+1 ⋯ w′2,k+1
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

σ w′,1 ⋯ uav w′
,h+1 ⋯ w′

,k+1
σ+1 w′+1,1 ⋯ w′

+1,h w′
+1,h+1 ⋯ w′

+1,k+1
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

σk w′
k+1,1 ⋯ w′

k+1,h w′
k+1,h+1 ⋯ w′

k+1,k+1

Figure 10.7. Visualization of Equation (10.4): The left-hand side of this equation can be read column-wise
from starting from the cell containing uav. The right-hand side of this equation can be read row-wise as
depicted by the arrows.

T(C ⃗p j+1→FC) containing letters from A, only. In other words, we have T(C ⃗p j+1→FC) ∩
M(A) ≠ ∅.

We infer the existence of the transition in Equation (10.3) implying γ j
a
Ð→P γ j+1.

Furthermore, by the induction hypothesis we know

aλ j+1 = λ j ∈ ⟦γ j⟧P = T(Cp⃗ j→q⃗ j) ∩ ϑ
−1(#c j) .

We learn λ j+1 ∈ T(C ⃗p j+1→ ⃗q j+1) and λ j+1 ∈ ϑ−1(#c j−∣a∣B) = ϑ−1(#c j+1). This implies λ j+1 ∈
⟦γ j+1⟧P. ◁

▷ Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4.Claim 4. We have γn ∈ FinalP.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. We know q⃗n = Πλwrt(α1 ...αn) = Πλσ ′1 ...σ
′

k
= f⃗ ∈ FC and sn ∈ FT. We infer (sn , p⃗n , q⃗n) ∈ FP

and, hence, γn ∈ FinalP. ◁

All in all, we obtain κ′ = ⟦σ ′1 ρ′1 . . . σ ′kρ
′
k
⟧(λ) = λn ∈ ⟦γn⟧P and, hence, ⟦τ⟧(λ) = κ =

πA(κ′) ∈ πA(⟦γn⟧P). Additionally, we know γn ∈ post∗P(InitP)∩ FinalP which finally proves
our lemma. ◂

Now, we prove the converse inclusion of Proposition 10.4.10. The proof of this inclusion
proceeds similar to the proof of Lemma 10.2.17. So, we consider a τ-labeled, accepting run
in P to a final configuration γ ∈ ConfP and a κ ∈ ⟦γ⟧P. Similar to the single-queue case
our constructed pushdown automatonP lacks a memory of letters we have written before.
Hence, it is possible that there is no λ ∈ L with ⟦τ⟧(λ) = κ. However, we can exploit that
lack of memory and construct another action trace τ′ ∈ (W ′R′)∗ from λ and τ such that
⟦τ′⟧(λ) = κ. We do so by replacing the write actions in τ by the letters we read in τ. This
ensures that we always read only those letters from the distributed queue’s contents after we
have written them into its content.

Lemma 10.4.12. Let γ ∈ post∗P(InitP) ∩ FinalP be a reachable, accepting configuration.

Then we have πA(⟦γ⟧P) ⊆ Reach(L, (WR)∗).
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Proof. Since γ ∈ post∗P(InitP) ∩ FinalP there is a run (γ j)0≤ j≤n = ((s j, p⃗ j, q⃗ j), #c j)0≤ j≤n inP
with γ0 ∈ InitP = (IT × IC ×QL)× {ε} and γn = γ ∈ FinalP = (FT × Q⃗C × FC)× #∗. Then there
are basic queue actions α1, . . . , αn ∈ Σ′ with γ j

α j+1
ÐÐ→P γ j+1 for each 0 ≤ j < n. By the definition

ofP we know the following for 0 ≤ j < n:

(i) (s j, α j+1, s j+1) ∈ ∆T. Hence we observe [α1 . . . αn] ∈ T(T)∗ = (W ′R′)∗. Then there are
traces σ1, . . . , σk ∈W ′ and ρ1, . . . , ρk ∈ R′ with [α1 . . . αn] = σ1ρ1 . . . σkρk.

(ii) (p⃗ j, a, ⃗p j+1) ∈ ∆C if α j+1 = a ∈ A′ or p⃗ j = ⃗p j+1 if α j+1 ∈ A′. Therefore, we have

ρ1 . . . ρk = [rd(α1 . . . αn)] ∈ T(CIC→p⃗n) .

Additionally, we have T(C ⃗p j+1→FC) ∩M(A) ≠ ∅ by the definition ofP.

(iii) (q⃗ j, a, ⃗q j+1) ∈ ∆C if α j+1 = a ∈ A′ or q⃗ j = ⃗q j+1 if α j+1 ∈ A′. From γ0 ∈ InitP we learn
q⃗0 ∈ QL implying

σ1 . . . σk = [wrt(α1 . . . αn)] ∈ T(Cq⃗0→q⃗n) ⊆ T(CQL→FC) =W
′∗ .

Now, let κ ∈ ⟦γn⟧P = T(Cp⃗n→q⃗n) ∩ ϑ
−1(#cn). Then we have

ρ1 . . . ρk ⋅ κ ∈ T(CIC→p⃗n) ⋅ T(Cp⃗n→q⃗n)

⊆ T(C) = LW ′∗ . (by γn ∈ FinalP and q⃗n ∈ FC)

Hence, there are λ ∈ L and σ ′1 , . . . , σ ′x ∈W ′ with ρ1 . . . ρkκ = λσ ′1 . . . σ ′x .
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. We have k = x.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. First, we obtain the following equation:

∣ρ1 . . . ρk ∣B + ∣κ∣B = ∣ρ1 . . . ρkκ∣B = ∣λσ ′1 . . . σ ′x ∣B = x (10.5)

since ∣λ∣B = 0 and ∣σ ′j ∣B = 1 for each 1 ≤ j ≤ x. Additionally, since the stack of P always
contains the difference of letters from B and B seen before, we have

∣κ∣B = cn = ∣σ1 . . . σk ∣B − ∣ρ1 . . . ρk ∣B = k − ∣ρ1 . . . ρk ∣B . (10.6)

Combining the Equations (10.5) and (10.6) results in k = x. ◁

For 1 ≤ j ≤ k let C j ⊆ A and i j ∈ P ∪ {0} with σ ′j ∈ WC j ,i j . Let 1 ≤ i < j ≤ k with
$C i ,i i$C j ,i j ≈A′ $C j ,i j$C i ,i i . Then we obtain Ci ∥ C j. We also know Ci = Alph(σ ′i )∖{$C i ,i i} and
C j = Alph(σ ′j) ∖ {$C j ,i j} implying σ ′i ∥ σ ′j . We infer

σ ′i σ
′
j = σ

′
jσ
′
i (10.7)

in this case. Hence, we can assume that $C1 ,i1 . . . $Ck ,ik = πB(α1 . . . αn) holds (in the free
monoid B

∗
).

We also have to determine the number of letters from B in each trace ρ1 . . . ρ j (where
1 ≤ j ≤ k). Similar to Equation (10.6) we know ci = ∣α1 . . . αi ∣B − ∣α1 . . . αi ∣B ≥ 0 for each
1 ≤ i ≤ n. This implies for 1 ≤ j ≤ k

∣ρ1 . . . ρ j∣B ≤ ∣σ1 . . . σ j∣B = j = ∣σ ′1 . . . σ ′j ∣B . (10.8)
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Next, we want to construct traces µi , j ∈M(A′) with 1 ≤ i , j ≤ k + 1 satisfying the proper-
ties (1)-(6) of our special variation of Levi’s lemma (Corollary 10.4.7). Application of this
corollary will finally yield κ = ⟦σ ′1 ρ1 . . . σ ′kρk⟧(λ) and, hence, πA(κ) ∈ Reach(L, (WR)∗).
The construction of the µi , j is done inductively. So, we construct traces ν

( j)
i ,1 and ν

( j)
i ,2 satisfying

the original Levi’s lemma (cf. Theorem 3.4.6) for an increasing number j. Intuitively, we fill
the table in Figure 3.3 column-wise, where ν( j)i ,1 corresponds to the cell (i , j) and ν

( j)
i ,2 is the

concatenation of all columns to the right of the jth column (cf. Figure 10.8).

ρ1 ρ2 ⋯ ρ j ρ j+1⋯ρkκ

λ ν
(1)
1,1 ν

(2)
1,1 ⋯ ν

( j)
1,1 ν

( j)
1,2

σ ′1 ν
(1)
2,1 ν

(2)
2,1 ⋯ ν

( j)
2,1 ν

( j)
2,2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

σ ′
k

ν
(1)
k+1,1 ν

(2)
k+1,1 ⋯ ν

( j)
k+1,1 ν

( j)
k+1,2

Figure 10.8

First, we set ν(0)1,2 ∶= λ and ν(0)i+1,2 ∶= σ
′
i for each 1 ≤ i ≤ k. Then we know

ν
(0)
1,2 ν

(0)
2,2 . . . ν

(0)
k+1,2 = λσ

′
1 . . . σ ′k = ρ1 . . . ρkκ .

The induction step proceeds as follows: for 1 ≤ j ≤ k we know ν( j−1)i ,2 . . . ν( j−1)
k+1,2 = ρ j ⋅(ρ j+1 ⋅ ρkκ)

by induction hypothesis. By Levi’s lemma (Theorem 3.4.6) there are traces ν( j)i ,1 , ν
( j)
i ,2 ∈M(A′)

with the following properties:

(1) ν( j−1)i ,2 = ν
( j)
i ,1 ν

( j)
i ,2 for each 1 ≤ i ≤ k + 1,

(2) ρ j = ν
( j)
1,1 . . . ν

( j)
k+1,1,

(3) ρ j+1 ⋅ ρkκ = ν
( j)
1,2 . . . ν

( j)
k+1,2, and

(4) ν( j),1 ∥ ν
( j)
h,2 for each д > h.

Now, that we have constructed the traces ν( j)i ,1 and ν
( j)
i ,2 , we have to prove that the lower-left

triangle of the table in Figure 10.8 is empty:
▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. We have ν

( j)
i ,1 = ε for all i > j + 1.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Set ℓ ∶= ∣σ1ρ1 . . . σ jρ j∣ (i.e., our pushdown automaton is in configuration γℓ after
application of the jth alternation). Recall that we have T(Cp⃗ℓ→FC) ∩M(A) ≠ ∅ by property
(ii). Hence, there is another trace ξ ∈ T(Cp⃗ℓ→FC)∩M(A). By ρ1 . . . ρ j ∈ T(CIC→p⃗ℓ) we obtain

ρ1 . . . ρ j ⋅ ξ ∈ T(CIC→p⃗ℓ) ⋅ T(Cp⃗ℓ→FC) ⊆ T(C) = LW
′∗ .

Additionally, we already know ∣ρ1 . . . ρ j∣B ≤ j from Equation (10.8) implying the existence of
a number д ≤ j such that ρ1 . . . ρ jξ ∈ LW ′ holds, i.e., there are traces λ′ ∈ L and σ ′′1 , . . . , σ ′′ ∈
W ′ with ρ1 . . . ρ jξ = λ′σ ′′1 . . . σ ′′ . Again, we can apply Levi’s lemma (Theorem 3.4.6) which
results in the table in Figure 10.9.
In other words, we replace the column “ρ j+1 . . . ρkκ” in Figure 10.8 by ξ. Additionally, since
д ≤ j ≤ k holds, at most the first and д further rows are non-empty. Concretely, we observe
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ρ1 ⋯ ρ j ρ j+1 . . . ρkκ ↝ ξ

λ ↝ λ′ ν
(1)
1,1 ⋯ ν

( j)
1,1

ξ

σ ′1 ↝ σ ′′1 ν
(1)
2,1 ⋯ ν

( j)
2,1

⋮ ⋮ ⋱ ⋮

σ ′ ↝ σ ′′ ν
(1)
,1 ⋯ ν

( j)
,1

σ ′+1 ↝ ε ν
(1)
+1,1 ⋯ ν

( j)
+1,1

⋮ ⋮ ⋱ ⋮

σ ′
k
↝ ε ν

(1)
k+1,1 ⋯ ν

( j)
k+1,1

Figure 10.9. Visualization of the equation ρ1 . . . ρ jξ = λ
′σ ′′1 . . . σ ′′ in terms of the traces ν

( j)
i ,1 .

that λ and λ′ have the common prefix ν(1)1,1 . . . ν
( j)
1,1 . We can also assume that σ ′i and σ ′′i have

the common prefix ν(1)i+1,1 . . . ν
( j)
i+1,1 for each 1 ≤ i ≤ д. Note that in the other case we could

observe $Cx ,ix$Cy ,iy ≈A′ $Cy ,iy$Cx ,ix implying σ ′xσ ′y = σ ′yσ ′x according to Equation (10.7). This
implies that the remaining rows д < i ≤ k remain empty, i.e., we have ν( j)i+1,1 = ε for each
д < j + 1 ≤ i ≤ k. ◁

Now, we set µi , j ∶= ν
( j)
i ,1 for each 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k. Additionally, we set

µi ,k+1 ∶= ν
(k)
i ,2 for each 1 ≤ i ≤ k + 1. Then we already know that the traces µi , j satisfy

property (6) of Corollary 10.4.7. Similar to the proof of Corollary 10.4.7 we may also show
the correctness of the remaining properties (1)-(5).

Finally, the application of Corollary 10.4.7 results in κ = ⟦σ ′1 ρ1 . . . σ ′kρk⟧(λ), i.e., we
have κ ∈ Reach(L, (W ′R′)∗). Due to our construction of A′, W ′, and R′ we also have
πA(κ) ∈ Reach(L, (WR)∗). Since κ ∈ ⟦γn⟧P was arbitrary, we learn

πA(⟦γn⟧P) ⊆ Reach(L, (WR)∗) . ◂

Finally, Lemmata 10.4.11 and 10.4.12 prove Proposition 10.4.10.

Correctness of the Construction

Before we prove the correctness of our construction, we need another lemma. This one proves
that we can factorize the semantics of any reachable accepting configuration γ = ((s, p⃗, q⃗), #c)
of P into three recognizable languages: (1) some letters from A which belong to traces
σ ∈ L ∪W ′ from which we have already read several letters (especially we have already read
the begin markers of the traces σ), (2) c − 1 traces fromW ′ (i.e.,W ′c−1), and (3) one further
trace fromW ′ which has a run in C ending in q⃗ ∈ FC (note that in contrast to the single-queue
case we could not assume ∣FC∣ = 1 in this case).

Lemma 10.4.13. Let γ = ((s, p⃗, q⃗), #c) ∈ post∗P(InitP) ∩ FinalP with c > 0 and let

G ∶= {r⃗ ∈ Q⃗C ∣ ∃λ ∈ LW ′∗∶ IC
λ
Ð→C r⃗} (note that FC ⊆ G holds). Then we have

⟦γ⟧P = (T(Cp⃗→FC) ∩M(A)) ⋅W ′c−1 ⋅ (T(CG→q⃗) ∩W
′) .
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With the help of this lemma we can also prove the recognizability of the semantics of a regular
set of configurations ofP. To do this, we only have to replace the second factor “W ′c−1” by
“W ′N” where N ⊆ N is recognizable in N. Note thatW ′N also is efficiently recognizable in
M(A′) by the efficient closure properties (cf. Appendix A).
Proof. First, let κ ∈ ⟦γ⟧P. By Proposition 10.4.10 there are λ ∈ L, σ1, . . . , σk ∈ W ′, and
ρ1, . . . , ρk ∈ R′ with ⟦σ1ρ1 . . . σkρk⟧(λ) = κ ≠ �. Our modified version of Levi’s lemma
(Corollary 10.4.7) yields traces µi , j ∈M(A′) for 1 ≤ i , j ≤ k+ 1 satisfying the properties (1)-(6).
We set X ∶= {1 ≤ j ≤ k ∣ µ j+1,k+1 ≠ σ j}, i.e., X is the set of indices j of σ j from which we have
read at least one letter and, hence, which are not fully contained in κ.

In our first claim we consider a trace σ j from which we have read at least one letter. We
will show that we have particularly read its begin marker. Formally, the complementary
prefix of σ j wrt. µ j+1,k+1 starts with a letter from B.
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. Let j ∈ X. Then we have µ j+1,1 . . . µ j+1,k ∈ ζA′(BA∗).
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Towards a contradiction, we suppose µ j+1,1 . . . µ j+1,k ∉ ζA′(BA∗), i.e., this trace does not
contain a letter from B. However, by j ∈ X we know µ j+1,k+1 ≠ σ j implying µ j+1,1 . . . µ j+1,k ≠ ε.

From γ ∈ post∗P(InitP) we know T(Cp⃗→FC) ∩M(A) ≠ ∅. Hence, there is a trace ξ ∈
T(Cp⃗→FC)∩M(A). We also know ρ1 . . . ρk ∈ T(CIC→p⃗) by the construction of our pushdown
systemP. We infer

ρ1 . . . ρk ⋅ ξ ∈ T(CIC→p⃗) ⋅ T(Cp⃗→FC) ⊆ T(C) = LW
′∗ .

Now, we replace the last row of the table in Figure 10.4 by ξ. In other words, we find traces
νx ,k+1 ∈M(A) with the following properties: (1) ν1,k+1 . . . νk+1,k+1 = ξ, (2) µ1,1 . . . µ1,kν1,k+1 ∈ L,
and (3) µx+1,1 . . . µx+1,kνx+1,k+1 ∈W ′ ∪ {ε} for each 1 ≤ x ≤ k.

Though, from our assumption µ j+1,1 . . . µ j+1,k ∉ ζA′(BA∗) and ν j+1,k+1 ∈M(A) we learn

ε ≠ µ j+1,1 . . . µ j+1,kν j+1,k+1 ∈W ′ ∩M(A) = ∅ ,

but this is impossible. Hence, we have µ j+1,1 . . . µ j+1,k ∈ ζA′(BA∗). ◁

From this claim we learn that µ j+1,k+1 ∈M(A) holds if, and only if, j ∈ X. This implies

c = ∣σ1 . . . σk ∣B − ∣ρ1 . . . ρk ∣B = k − ∣µ1,1 . . . µk+1,1 . . . µ1,k . . . µk+1,k ∣B = k − ∣X∣ .

▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. Let i ∈ X and 1 ≤ j < i with j ∉ X. Then we have σiσ j = σ jσi .

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Let Ci ,C j ⊆ A and ii , i j ∈ P ∪ {0} with σi ∈WC i ,i i and σ j ∈WC j ,i j . By j ∉ X we know
µ j+1,1 . . . µ j+1,k = ε and µ j+1,k+1 = σ j. From i ∈ X we also infer µi+1,1 . . . µi+1,k ∈ ζA′($C i ,i iA

∗).
Since j < i the automatonP has written σ j before σi , but it has read $C i ,i i before σ j. Hence,
we obtain $C i ,i i$C j ,i j ≈A′ $C j ,i j$C i ,i i . This equation implies one of the following two cases:

(1) $C i ,i i = $C j ,i j . From property (5) of Corollary 10.4.7 we infer µi+1,1 . . . µi+1,k ∥ µ j+1,k+1. But
this is impossible since $C i ,i i ∈ Alph(µi+1,1 . . . µi+1,k) ∩Alph(µ j+1,k+1) and, by definition
of distributed alphabets, we have $C i ,i i M

′ ≠ ∅. Hence, this case will not occur.
(2) $C i ,i i ∥ $C j ,i j . By the construction of A′ we also have Ci ∥ C j in this case. Since Ci =

Alph(σi) ∖ {$C i ,i i} and C j = Alph(σ j) ∖ {$C j ,i j} holds, we finally obtain σiσ j = σ jσi . ◁

In particular, from this claim we infer µi+1,k+1µ j+1,k+1 = µ j+1,k+1µi+1,k+1 for i ∈ X and j ∉ X
with 1 ≤ j < i ≤ k. Therefore we obtain

κ = ∏
j∈X∪{0}

µ j+1,k+1 ⋅ ∏
j∉X∪{0}

µ j+1,k+1 = ∏
j∈X∪{0}

µ j+1,k+1 ⋅ ∏
j∉X∪{0}

σ j .
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By the definition ofP and by γ ∈ post∗P(InitP) we know

∏
j∈X∪{0}

µ j+1,1 . . . µ j+1,k ∈ T(CIC→p⃗) and ∏
j∈X∪{0}

µ j+1,k+1 ∈ T(Cp⃗→FC) ∩M(A) .

Additionally, we have∏ j∉X∪{0} µ j+1,k+1 ∈W ′c. Since κ ∈ T(Cp⃗→q⃗) holds, we finally infer

κ ∈ (T(Cp⃗→FC) ∩M(A)) ⋅W ′c−1 ⋅ (T(CG→q⃗) ∩W
′) .

Next, we prove the converse inclusion. To this end, let κ ∈ (T(Cp⃗→FC) ∩M(A)) ⋅W ′c−1 ⋅
(T(CG→q⃗)∩W ′). We see then that κ ∈ π−1B (Bc) = ϑ−1(#c) holds. Additionally, we know from
FC ⊆ G thatW ′ = T(CG→G) ∩ ζA′(BA∗) holds. Hence, there are states f⃗1, . . . , f⃗c ∈ G with

κ ∈ T(Cp⃗→ f⃗1)T(C f⃗1→ f⃗2) . . . T(C ⃗fc−1→ f⃗c)T(C f⃗c→q⃗) ⊆ T(Cp⃗→q⃗)

implying κ ∈ T(Cp⃗→q⃗) ∩ ϑ−1(#c) = ⟦γ⟧P. ◂

Now, we are able to prove Theorem 10.4.8. To this end, we consider the reachable ac-
cepting configurations ofP. SinceP is a pushdown automaton, this set of configurations
is efficiently regular. Now, let f ∈ FP be any final state of P. Then application of Theo-
rem 9.2.1 yields the effective (and even efficient) regularity of the language of stack contents
in configurations ( f , #c) reachable from InitP. From this language we obtain a semi-linear
N-language

N f ∶= {c ∈ N ∣ ( f , #c) ∈ post∗P(InitP) ∩ FinalP} ⊆ N .

Finally, we can replace the second factor of the product in Lemma 10.4.13 byWN f−1 (where
N f −1 ∶= {n−1 ∣ n ∈ N f ∖{0}} = 1/N f ), which is efficiently recognizable. We will see then that
Reach(L, (WR)∗) is a finite union of such products and, hence, is efficiently recognizable
inM(A).
Proof (ofTheorem 10.4.8). UsingTheorem 9.2.1 we can compute fromP and the finite (and,
therefore, regular) set InitP of configurations aP-NFAA = (QA, {#},QP, ∆A, FA) accepting
C(A) = post∗P(InitP). Since FinalP also is a regular set of configurations, the set

post∗P(InitP) ∩ FinalP = ⋃
f ∈FP
{ f } × L(A f→FA)

is regular as well. Note that for any state f ∈ FP the language L(A f→FA) is semi-linear. In
other words, the set N f ∶= {c ∈ N ∣ #c ∈ L(A f→FA)} is effectively recognizable in N.

Now, for f = (s, p⃗, q⃗) ∈ FP we want to compute an asynchronous automaton M f

accepting
T(M f ) = ⋃

#c∈L(A f→FA
)
πA(⟦( f , #c)⟧P) = ⋃

c∈N f

πA(⟦( f , #c)⟧P) .

In other words, this automaton accepts exactly those traces having an abstraction ( f , #c)
with c ∈ N f , i.e., with ( f , #c) ∈ post∗P(InitP) ∩ FinalP.

To this end, we need the following effectively regular language:

Z f ∶=

⎧⎪⎪
⎨
⎪⎪⎩

T(Cp⃗→q⃗) if ε ∈ L(A f→FA) (resp. 0 ∈ N f )
∅ otherwise .
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Then we have the following equations due to Lemma 10.4.13:

T(M f ) = ⋃
c∈N f

πA(⟦( f , #c)⟧P)

= Z f ∪ ⋃
c∈N f∖{0}

(T(Cp⃗→FC) ∩M(A)) ⋅W c−1 ⋅ B/(T(CG→q⃗) ∩W
′)

= Z f ∪ ((T(Cp⃗→FC) ∩M(A)) ⋅W 1/N f ⋅ B/(T(CG→q⃗) ∩W
′))

where G = {r⃗ ∈ QC ∣ ∃λ ∈ LW ′∗∶ IC
λ
Ð→C r⃗}. This trace language is effectively recognizable in

M(A) by the closure properties of recognizable trace languages (cf. Appendix A) and can
be computed in polynomial time for a fixed distributed alphabetA. Finally, we obtain the
following equation:

Reach(L, (WR)∗) = ⋃
γ∈post∗

P
(InitP)∩FinalP

πA(⟦γ⟧P) (by Proposition 10.4.10)

= ⋃
f ∈FP
⋃
c∈N f

πA(⟦( f , #c)⟧P)

= ⋃
f ∈FP

T(M f ) .

Since there are only polynomial many states in FP, Reach(L, (WR)∗) is a union of polyno-
mial many recognizable trace languages. Hence, Reach(L, (WR)∗) is efficiently recogniza-
ble inM(A). ◂

Further Results

In Theorem 10.4.8 we have only considered forwards reachability in special alternating
distributed queue systems. Since the restrictions on read and write actions do not coincide
in these meta-transformations we have to consider backwards reachability separately. In
this case, utilization of Theorem 10.4.2 yields that BackReach(L, (WR)∗) is efficiently
recognizable whenever L,W , R ⊆ M(A) are recognizable trace languages such that R is
connected. However, we can also consider backwards reachability in alternating distributed
queue systems with exactly the restrictions fromTheorem 10.4.8. This is considered in the
following corollary:

Corollary 10.4.14. Let A = (A, P,M) be a distributed alphabet and L,W , R ⊆
M(A) be recognizable such that W is connected. Then the membership problem of

BackReach(L, (WR)∗) is effectively decidable. For a fixed distributed alphabet A
this membership problem is in P. However, there are recognizable trace languages
L,W , R ⊆M(A) whereW is connected such that BackReach(L, (WR)∗) is not even
rational.

Proof. Let τ ∈M(A) be a trace. To decide τ ∈ BackReach(L, (WR)∗) we first compute an
asynchronous automatonAτ accepting Reach({τ}, (WR)∗) as described inTheorem 10.4.8.
Finally, we can check in polynomial time whether T(Aτ) ∩ L is not empty.
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Towards the second statement, recall that

BackReach(L, (WR)∗) = Reach(LR, (RRWR)∗)
R

holds by Theorem 10.4.2 and by d((WR)∗) = (RRWR)∗. Hence, we have to show that for
some recognizable trace languages L,W , R ⊆M(A) where R is connected that the language
Reach(L, (WR)∗) is not rational.

Let A = (A, P,M) be a distributed alphabet with the dependency graph a— b— c.
Additionally, we set L ∶= {ε},W ∶= {acc, b}, and R ∶= {c} (note thatW is not connected).
Then we have

Reach(L, (WR)∗) ∩ ζA(a∗b∗) = {[anbn] ∣ n ∈ N} .
Since there is no regular language K ⊆ A∗ satisfying ζA(K) = {[anbn] ∣ n ∈ N}, this
trace language is not rational (recall that a trace language is rational if it is the image of
a regular language since ζA is an epimorphism). Due to the recognizability of the trace
language ζA(a∗b∗) and due to the fact that the intersection of a rational trace language with
a recognizable one always is rational again, the language Reach(L, (WR)∗) is not rational.◂

The first statement of Corollary 10.4.14 also is true if we replace the language of queue
contents L ⊆M(A) by a rational trace language. This is true, since Reach({τ}, (WR)∗) is
effectively recognizable (where τ ∈M(A)) and L is rational and, therefore, the intersection
of these two trace languages also is effectively rational. Finally, we can check in polynomial
time whether this intersection is not empty.

Interestingly, we cannot translate this extension to forwards reachability as the following
lemma shows:

Lemma 10.4.15. There are a distributed alphabet A = (A, P,M), a rational trace lan-
guage L ⊆M(A), and recognizable trace languagesW , R ⊆M(A)whereW is connected

such that Reach(L, (WR)∗) is an undecidable trace language.

Proof. We recall Remark 10.4.4. In this lemma, we have given two rational trace languages
L, T ⊆M(A) such that Reach(L, T) is undecidable. We only have to adjust our definitions
of L,W , and R. Concretely, we set L as given in this remark,W ∶= {ε}, and R ∶= {[y j cd j] ∣

1 ≤ j ≤ k}. Then we have T = (WR)∗ and, hence, ε ∈ Reach(L, (WR)∗) = Reach(L, T) if,
and only if, the underlying instance of the PCP has a solution. ◂

In other words, we cannot extend Theorem 10.4.8 to trace languages L ⊆ M(A) of
initial queue contents which are not recognizable. The following lemma considers another
restriction toTheorem 10.4.8. Concretely, we will see that we really require the language of
write tracesW ⊆M(A) to be connected:

Lemma 10.4.16. There are a distributed alphabetA = (A, P,M) and recognizable trace
languages L,W , R ⊆M(A) whereW is not connected such that Reach(L, (WR)∗) is
an undecidable trace language.
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Proof. Let B = {a, b} be a binary alphabet and I = (x j, y j)1≤ j≤k be an instance of the PCP
over the alphabet B. Again, we want to construct L,W , and R with the given restrictions
such that ε ∈ Reach(L, (WR)∗) holds if, and only if, I has a solution. To this end, let
A = (A, P,M) be the distributed alphabet from Remark 10.4.4. Then we set

W ∶= {[x jcd
j] ∣ 1 ≤ j ≤ k} ∪ {ε} , R ∶= {[y jcd

j] ∣ 1 ≤ j ≤ k} ∪ {ε} ,

and L ∶=W ∖{ε}. Then L,W , and R are finite and, therefore, recognizable. We finally obtain
the aforementioned equivalence. ◂

In Section 10.2 we have conjectured that Reach(L, T∗) is regular if L and T are regular
and for each two words s, t ∈ T there is r ∈ T with wrt(r) = wrt(s) and rd(r) = rd(t). The
lemma from above has shown that this conjecture is not true for distributed queue systems
having at least two processes. However, we may conjecture another related problem:

Conjecture 10.4.17. Let A = (A, P,M) be a distributed alphabet, L,W1, . . . ,Wk , R ⊆
M(A) are recognizable whereW1, . . . ,Wk are connected and one of the following prop-

erties holds:

(1) Wi ∥Wj for each 1 ≤ i < j ≤ k or

(2) Wi is mono-alphabetic for each 1 ≤ i ≤ k, i.e., there is Ci ⊆ A such that for each

σ ∈Wi we have Alph(σ) = Ci .

Then Reach(L, (W1W2 . . .WkR)∗) is decidable.

A possible idea to proof this conjecture may be a reduction to the reachability problem of k-
counter automata similar to our construction inTheorem 10.4.8. This problem is decidable by
[May84] but its complexity is not primitive recursive for unbounded numbers k [CO22, Ler22]
and is primitive recursive for fixed k [LS19].

10.4.4 Single Loops
Finally, we want to consider loops of single action traces. Concretely, we want to compute
the language Reach(L, τ∗) for a recognizable trace language L ⊆M(A) and an action trace
τ ∈ M(E). To compute this trace language we want to utilize our main result from the
previous subsection (Theorem 10.4.8). To this end, we should recall that - according to
Corollary 4.8.11 - there are three traces σ1, σ2, σ3 ∈M(A) satisfying τ ≡ σ1σ2σ3. This implies
Reach(L, τ∗) = Reach(L, (σ1σ2σ3)∗). However, until now this does not match the form
Reach(L, (WR)∗) fromTheorem 10.4.8. But we know the following equation:

(σ1σ2σ3)
∗ = {ε} ∪ σ1(σ2σ3σ1)∗σ2σ3 .

Hence, we can compute Reach(L, τ∗) by application of Proposition 10.4.3 and computation
of Reach(K , (σ2σ3σ1)∗) for an appropriate trace language K ⊆M(A). Therefore, it suffices
from now on to consider the case Reach(L, (σρ)∗) where L ⊆M(A) is recognizable and
σ , ρ ∈M(A).
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Unfortunately, Reach(L, (σρ)∗) is not recognizable for any recognizable trace language
L ⊆M(A) and traces σ , ρ ∈M(A). In this connection, recall that (ab)∗ is not recognizable
if a ∥ b holds. Hence, the map L ↦ Reach(L, (ab)∗) does not preserve recognizability in
this case.

For distributed queue systems having a finite number of independent queues (i.e., the
dependence graph GA is the disjoint union of some cliques), Boigelot et al. specified in
[Boi+97] in which cases the map L ↦ Reach(L, τ∗) preserves recognizability. In the context
of this paper the authors introduced the notion of a “counter” in an action trace τ ∈M(E).
Such a counter corresponds to a queue which actually writes letters in τ. Then for certain
queue inputs we can observe a queue content of the form w j after j iterations of τ (i.e., we
count the number of iterations in this case).

Here, we want to generalize this result to arbitrary distributed alphabetsA. To this end,
we first need a generalization of counters in an action trace:

Definition 10.4.18. Let A = (A, P,M) be a distributed alphabet and σ , ρ ∈ M(A). A
subset of lettersC ⊆ A is a counter in σρ ifC is a connected component of the dependence
graph GA↾Alph(σ)

xxiii andandandandandandandandandandandandandandandandand one of the following conditions holds:

(1) C consists of one isolated vertex inA and ∣σ ∣C > ∣ρ∣C or
(2) C contains no isolated vertex inA and ∣σ ∣C > 0. ⌟

Before we characterize the action traces σρ where L ↦ Reach(L, (σρ)∗) preserves recogni-
zability, we want to give an intuition on the notion of a counter. So, let σ , ρ ∈M(A) be two
traces and C ⊆ A be a counter in σρ. First we assume that C ⊆ Isolated(A) consists of one
isolated vertex. Then there are a ∈ A and i ∈ P with C = {a} and aM i. Since C is a counter
there are two numbers m > n ∈ N with πi(σρ) = ama

n. According to Lemma 4.8.4(3) we
have aa ≡ a implying that aman ≡ am−n ≠ ε. Then j iterations of ⟦σρ⟧ to an eligible queue
content λ results in the content a j⋅(m−n) in queue i. Hence, queue i counts the iterations.

Now, let C ∩ Isolated(A) = ∅ contain no isolated vertex. Then there is a ∈ C with
πC(σ) ∈ aM(A), another letter b ∈ A∖ {a} with a ∦ b, and a process i ∈ aM∩ bM. Again,
j iterations of ⟦σρ⟧ to an eligible queue content λ results in the content b ⋅ πi(σ) j in queue i.
Therefore, queue i also counts the number of iterations, i.e., the name “counter” is reasonable.

Example 10.4.19. Let A = (A, P,M) be a distributed alphabet with the dependence
graph a— b— c d. Then the trace [acda] has the counters {a} (note that a is not
isolated inA), {c}, and {d}. The trace [acdd] has the counters {a} and {c}. Moreover,
the trace [abcdd] only has one counter {a, b, c}. ⌟

Finally, we can prove the following characterization of the traces σ , ρ ∈M(A) preserving
the recognizability in L ↦ Reach(L, (σρ)∗):

Theorem 10.4.20. LetA = (A, P,M) be a distributed alphabet and σ , ρ ∈M(A). Then

the following statements are equivalent:

(1) For each recognizable trace language L ⊆M(A) the set Reach(L, (σρ)∗) is (effec-
tively) recognizable.

(2) σρ contains at most one counter.

xxiiiNote that this is the dependence graph ofA restricted to the write actions occurring in σρ.
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Proof. First, we assume that σρ contains at most one counter. Our aim is to apply The-
orem 10.4.8 to prove the recognizability of Reach(L, (σρ)∗). However, until now this is
impossible since σ is not necessarily connected since there may be some write actions of an
isolated vertex which are superseded by read actions of the same letter. So, let a ∈ Isolated(A)
be an isolated vertex in the dependence graph ofA with ∣σ ∣a ≥ 1, which is not a counter in
σρ. Since a is not a counter we have πi(σρ) = ama

n for two numbers m ≤ n ∈ N. However,
from Lemma 4.8.4(3) we know aa ≡ ε. Hence, we can compute two traces σ ′, ρ′ ∈ M(A)
with σρ ≡ σ ′ρ′, ∣σ ′∣a = 0, and ∣ρ′∣a = n −m. Finally, iteration of this step yields two traces
σ ′′, ρ′′ ∈M(A) with σρ ≡ σ ′′ρ′′ and σ ′′ is connected. Then fromTheorem 10.4.8 we obtain
the recognizability of Reach(L, (σρ)∗) = Reach(L, (σ ′′ρ′′)∗) for any recognizable trace
language L ⊆M(A).

For the converse implication, let σρ contain at least two counters C1,C2 ⊆ A. By the
definition of a counter we have C1 ∥ C2. Let B1, . . . , Bk ⊆ A be the connected components of
GA↾Alph(ρ)

xxiv. We can assume that the Bi ’s are pairwise disjoint. We set ρi ∶= πB i
(ρ) for each

1 ≤ i ≤ k. Since Bi is connected, the trace ρi also is connected. We have to distinguish the
following cases:

(1) C1 and C2 consist of isolated vertices in A. Then there are a1, a2 ∈ A with Ci = {ai}.
Since aiai ≡ ε holds by Lemma 4.8.4(3), we can assume that ∣ρ∣C i

> 0 holds. W.l.o.g. we
can assume Ci = Bi (for i = 1, 2).

Due to the connectivity of the ρi ’s, the trace language L ∶= ρ∗3 ρ∗4 . . . ρ∗k is recognizable
inM(A). Then we have

π{a1 ,a2}(ζ
−1
A (Reach(L, (σρ)∗))) ∩ a∗1 a∗2 = {a

d1 ⋅n
1 ad2 ⋅n2 ∣ n ∈ N}

where di ∶= ∣σ ∣a i − ∣ρ∣a i ≥ 1 for i = 1, 2. This language is not regular. Hence, the word
language ζ−1A (Reach(L, (σρ)∗)) is not regular andReach(L, (σρ)∗) is not recognizable
inM(A).

(2) C1 and C2 are no isolated vertices in A. For i = 1, 2 we set ai ∈ A ∪ {ε} as follows: if
Ci ∩ B j = ∅ for any 1 ≤ j ≤ k (in this case we do not read any letter from Ci in ρ) we set
ai = ε. Otherwise we can assume that Ci ∩Bi ≠ ∅ holds. Since the connected component
in GA containing Ci and Bi has at least two letters, there are two disjoint letters ai , bi ∈ A
with ρi ∈ biM(A), ai ∈ Ci , and ai ∦ bi . In this case we observe that ρi ∉ aiM(A).

Independently of ai = ε or ai ∈ A, we set L ∶= ρ∗1 ρ∗2 . . . ρ∗ka1a2. This is a recognizable
trace language due to the closure properties of recognizable trace languages. Then we
observe

πC1∪C2(ζ
−1
A (Reach(L, (σρ)∗))) ∩ a1a2w∗1 w∗2 = {a1a2wn

1 w
n
2 ∣ n ∈ N}

where wi ∶= πC i
(σ) for i = 1, 2. Again, this word language is not regular and, therefore,

Reach(L, (σρ)∗) is not recognizable.

(3) C1 is isolated and C2 is not isolated inA. This is a simple combination of the two cases
from above. ◂

One may also check whether the characterization in this theorem generalizes to languages of
action traces. However, at least the implication “(1)⇒(2)” is not valid for all pairsW , R ⊆
xxivThis is the dependence graph ofA restricted to the read actions occurring in σρ.
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M(A) of recognizable trace languages. For example, let A = (A, P,M) be a distributed
alphabet and a, b ∈ A with a ∥ b. Moreover, we consider W = R ∶= M(A). Then
Reach(L, (WR)∗) = M(A) holds for any trace language L ⊆ M(A). In this case, (1) is
satisfied, but there are traces inWR having more than one counter (e.g., [ab] ∈WR).

Until now it is unclear, whether the converse implication is true for any pairW , R ⊆
M(A) of recognizable trace languages. We conjecture that the language Reach(L, (WR)∗)
is (effectively) recognizable for any recognizable L ⊆M(A) if any trace σρ ∈WR contains at
most one counter. Possibly this could be proven by some modifications of our construction
inTheorem 10.4.8 like bounded counters for isolated vertices which are “counting down”xxv.

10.5 Conclusion
In this chapter we have considered the reachability problem of reliable queue automata having
one or more queues as well as the reachability problem of partially lossy queue automata.
Since this problem is either undecidable or inefficient for all of the mentioned automata
models, we have considered an under-approximation which was first introduced by Boigelot
et al. in [Boi+97]. So, we approximated the set of reachable queue contents step-by-step where
each step consists of a so-calledmeta-transformation. This is a language of action sequences
from which we can easily compute the set of reachable queue contents. While Boigelot et al.
as well as Abdulla et al. in [Abd+04] considered only single sequences of actions and loops
of action sequences, we have considered some further kinds of meta-transformations:

(1) We considered regular (or recognizable) languages which are closed under behavioral
equivalence, i.e., under a set of (context-sensitive) commutations of the basic actions.

(2) We also studied multiple loops. Concretely, we considered automata alternating between
write and read sequences from two specified regular languages.

In both cases we could prove that, starting from a regular language of queue contents, the
queue automaton reaches another regular language of new contents. The constructions
proving these results all are possible in polynomial time.

In the light of these kinds of meta-transformations we may also consider a generalization
of the so-called flat queue automata to automata having a graph consisting of simple paths
and single loops as well as components closed under behavioral equivalence or alternating
between write and read sequences. Possibly one can prove the decidability (or even NP-
completeness) of the reachability problem in such “semi-flat” queue automata similar to the
NP-completeness of reachability in flat (lossy) queue automata [FP20, Sch20].

xxvAn isolated vertex a ∈ A is a countdown in σρ if it occurs in σ and satisfies ∣σ ∣C ≤ ∣ρ∣C . Then for a queue
content λ the iterated application of σρ reduces the number of a’s in λ (i.e., the distributed queue system
counts down).
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Conclusion

We have investigated the behavior of multiple data types and of automata having a storage
mechanism of one of these types. Our studies focused on partially lossy and distributed
variations of queues and stacks. Partially lossy queues and stacks are similarly defined as
classical queues and stacks. However, these data types are allowed to forget some specified
parts of their contents at any time. So, we can see this as a unification of lossy and reliable
data types. Automata having a distributed queue or stack as their memory can be seen as a
network of finitely many computers each having a queue or stack, respectively, with a special
synchronization mechanism between them.

In the first part of this thesis we have considered the transformation monoid of those
data types. We have seen that for any sequences of basic actions there is another sequence
which is somewhat simple and has the same effect on any content - we call these sequences
normal forms. This fact turned out to be a helpful tool when verifying automata with those
data types. We have also considered some further algebraic properties of the transformation
monoid. For example, we have seen that Green’s relations are trivial for partially lossy queues
but not for partially lossy stacks. In this case there is a strong connection of Green’s relations
to the aforementioned normal forms.

We have also considered several classes of languages in the transformation monoid of
partially lossy queues and stacks. So, the membership problem of rational languages in
the transformation monoid of partially lossy queues is NL-complete, while other important
problems like equivalence or intersection emptiness inherit their undecidability from Post’s
correspondence problem [Pos46]. In contrast, we have seen the decidability of almost all of
these considered decision problems for partially lossy stacks. For this case we have proven a
generalization of a result from Render and Kambites [RK09]. Concretely, we have learned
that a language in the transformationmonoid of a partially lossy stack is rational if, and only if,
the set of its normal forms is regular. With this result we learn that the membership problem
and intersection emptiness problem are in P while equivalence is PSPACE-complete.

Another important class we have considered is the class of recognizable languages in the
transformation monoid. For partially lossy queues we have proven two characterizations in
the style of Kleene’s and Büchi’s Theorem [Kle51, Büc60]. In other words, we have introduced
special rational expressions and a monadic second-order logic describing the recognizable
languages. In contrast, for the most partially lossy stacks there are only trivial recogniza-
ble languages in their transformation monoid. Only, for counters we have seen that their
recognizable languages have a strong connection to finite cyclic groups.

In the second part of this thesis we have studied the reachability problem and the model
checking problem of several temporal logics, like LTL and CTL, for automata with partially
lossy and distributed stacks and queues. These problems are well-known to be decidable for
classical pushdown automata [BEM97, FWW97]. Automata with the other considered data
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types are as powerful as Turing-machines. Hence, we have considered special restrictions on
these automata.

First, we considered distributed pushdown automata consisting of a local pushdown
automaton for each process and in which each transition writes letters only into those local
stacks from which we have read a letter right before. For those automata the reachability
problem is still decidable in polynomial time - the proof of this decidability is inspired by the
constructions from [BEM97, FWW97]. Also recurrent reachability is decidable in polynomial
time implying the decidability of the model checking problem of LTL with local properties.

For partially lossy and distributed queue automata we have chosen another restriction.
Here, we have extended the under-approximation of the reachability problem which was
introduced by Boigelot et al. in [Boi+97]. In this paper the authors approximated the reacha-
bility problem step-by-step by merging loops to so-calledmeta-transformations. Concretely,
we have studied queue automata applying exactly the action sequences from a recogniza-
ble language in their transformation monoid. Additionally, we have considered automata
alternating between writing letters from a given regular language of write sequences and
reading letters from another regular language of read action sequences. In both cases we
have seen that the reachability problem is decidable in polynomial time for those restricted
queue automata. Using the aforementioned simple action sequences having the same effect
to any queue content, we also obtain the result from Boigelot et al. as a corollary.



Appendix A

Efficient Constructions on Asynchronous
Automata

In this chapter we recall the closure properties of the class of recognizable trace languages.
All of these closure properties are already known (cf. e.g. [Och85, Die90, DR95]). However,
these constructions require a deterministic automata model accepting the recognizable trace
languages. Due to this requirement, the constructions for the product or the iteration require
in some cases at least exponential time. Here, we present some alternative constructions
using the (nondeterministic) asynchronous automata (cf. Definition 9.4.1). In the end, our
constructions are possible in polynomial time - at least if we fix the underlying distributed
alphabet.

Theorem A.1. LetA = (A, P,M) be a distributed alphabet and A andB be two asyn-

chronous automata. Then from A andB we can compute in polynomial time asynchro-

nous automata accepting

(1) T(A) ∪ T(B),

(2) T(A) ∩ T(B),

(3) T(A)
R
, and

(4) T(A)� T(B).

Proof idea. These are essentially the constructions for arbitrary NFAs. ◂

Theorem A.2. LetA = (A, P,M) be a distributed alphabet, A be an NFA, andB be an

asynchronous automaton. Then the following statements hold:

(1) We can compute asynchronous automata accepting T(A)/T(B) and T(B)/T(A),
resp., from A andB in polynomial time.

(2) We can compute NFAs accepting T(B)/T(A) and T(A)/T(B), resp., from A andB.

IfA is fixed, these constructions are possible in polynomial time.
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Proof idea. The first statement of this theorem is essentially the construction for quotients
of regular word languages using NFAs.

Now, we consider the second statement. We first prove the efficient rationality of
T(B)/T(A). To this end, let A = (QA,A, IA, ∆A, FA) and B = (Q⃗B ,A, IB , ∆B , FB). We
construct an NFA C (with ε-transitions) which first simulatesBwith the help of ε-transitions
and then A with normal transitions. Due to the partial commutations according to the
distributed alphabet A, these two simulations can also interleave. This means, even if the
simulation ofB is not finished yet, we can start the simulation of A on those processesB
has already finished. To this end, we have to store the current states of A andB as well as
the set of processes on which the simulation ofB is already finished.

All in all, the described NFA (with ε-transitions) is C = (QC ,A, IC , ∆C , FC) where:

QC ∶= QA × Q⃗B × 2P,

IC ∶= IA × IB × {∅},

FC ∶= FA × FB × 2P, and

∆C consists of exactly the following transitions:

– if there are p, q ∈ QA, r⃗ ∈ Q⃗B, a ∈ A, and X ⊆ P with (p, a, q) ∈ ∆A then we have
((p, r⃗, X), a, (q, r⃗, X ∪ aM)) ∈ ∆C .

– if there are p, q ∈ QA, r⃗, s⃗ ∈ Q⃗B, a ∈ A, and X ⊆ P with aM∩X = ∅, (p, a, q) ∈ ∆A,
and (r⃗, a, s⃗) ∈ ∆B then we have ((p, r⃗, X), ε, (q, s⃗, X)) ∈ ∆C .

We can see then T(C) = T(B)/T(A).
Finally, we know T(A)/T(B) = (T(B)R/T(A)

R
)
R
and, hence, we obtain the closure under

right-quotients using left-quotients and reversal, only. ◂

Theorem A.3. Let A = (A, P,M) be a distributed alphabet and A and B be two

asynchronous automata. Then we can compute an asynchronous automaton accept-

ing T(A) ⋅ T(B) from A andB in polynomial time.

Proof. Let A = (Q⃗A,A, IA, ∆A, FA) andB = (Q⃗B ,A, IB , ∆B , FB) with Q⃗A =∏i∈P QA
i , Q⃗B =

∏i∈P QB
i , and (w.l.o.g.) QA

i ∩Q
B
i = ∅ for each i ∈ P.

The construction of an asynchronous automaton accepting T(A) ⋅ T(B) follows the
idea of the classical construction for concatenation of two regular languages for each process
i ∈ P. However, it is a bit more involved since we have to ensure that the simulation of A
ends in a common final state of A and the simulation ofB starts in a common initial state of
B. Concretely, we will construct asynchronous automata accepting T(Aι⃗A→ f⃗ A) ⋅ T(Bι⃗B→ f⃗ B)

for all states ι⃗A ∈ IA, f⃗ A ∈ FA, ι⃗B ∈ IB, and f⃗ B ∈ FB. Then the product T(A) ⋅ T(B) is the
union of all combinations of initial and final states of A andB.

Now, let ι⃗A ∈ IA, f⃗ A ∈ FA, ι⃗B ∈ IB, and f⃗ B ∈ FB. We now construct the following
asynchronous automaton C = (Q⃗C ,A, IC , ∆C , FC) accepting T(Aι⃗A→ f⃗ A) ⋅ T(Bι⃗B→ f⃗ B):

Q⃗C ∶=∏i∈P QC
i with Q

C
i ∶= Q

A
i ∪Q

B
i ,
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IC ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(pi)i∈P
RRRRRRRRRRR

∀i ∈ P∶ pi ∈

⎧⎪⎪
⎨
⎪⎪⎩

{ιAi , ιBi } if ιAi = f Ai
{ιAi } otherwise

⎫⎪⎪
⎬
⎪⎪⎭

,

FC ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(pi)i∈P
RRRRRRRRRRR

∀i ∈ P∶ pi ∈

⎧⎪⎪
⎨
⎪⎪⎩

{ f Ai , f Bi } if ιBi = f Bi
{ f Bi } otherwise

⎫⎪⎪
⎬
⎪⎪⎭

, and

((pi)i∈aM, (qi)i∈aM) ∈ ∆C
a iff for each i ∈ aM there is ri ∈ QC

i such that

(1) ri = qi or
(2) ri = f Ai and qi = ιBi
and ((pi)i∈aM, (ri)i∈aM) ∈ ∆A

a ∪ ∆
B
a .

Finally, we obtain an asynchronous automaton accepting T(A) ⋅ T(B) by the union of all
these trace languages T(C) = T(Aι⃗A→ f⃗ A) ⋅ T(Bι⃗B→ f⃗ B). This is possible in polynomial time
since there are only polynomial many combinations of initial and final states and due to
Theorem A.1. ◂

Theorem A.4. LetA = (A, P,M) be a distributed alphabet and A be an asynchronous

automaton such that T(A) is connected. Then we can compute an asynchronous auto-

maton accepting T(A)∗ from A. IfA is fixed, this construction is possible in polynomial

time.

Proof. The idea of our construction is the following: first, we partition T(A) into recogni-
zable languages of traces having a “similar” run in A. Concretely, for each pair ι⃗ and f⃗ of
initial and final states in A and each connected subset C ⊆ Awe construct an asynchronous
automatonB accepting exactly those traces λ ∈M(A) which have a run from ι⃗ to f⃗ in A
and satisfy Alph(λ) = C. Additionally, we attach a label to each letter which can be read by
these automata. These labels consist of the set C and a small natural number. They turn out
to be very helpful later in our proof. Concretely, we have to distinguish in our proof to which
subtrace a letter belongs to in a sequence of multiple traces from T(A). Then such label is a
very important indicator for this mapping. After the construction of the described automata
accepting traces with similar runs, we utilize the classical construction for the Kleene-star
on the disjoint union of the aforementioned automata. Finally, we are able to remove the
labels and obtain the Kleene-closure of T(A).

First, we consider the case ε ∈ T(A). Then we have T(A)∗ = (T(A) ∖ {ε})∗. Hence,
from now on we can assume ε ∉ T(A).

Now, we define our labels: a label is a tuple L = (C , z) where C ⊆ A is a non-empty
connected set in A and 0 ≤ z ≤ 2∣P∣ is a (small) natural number. The flag z will help us to
distinguish consecutive traces having the same induced alphabet C. By Λ we denote the set
of all labels. We blow up our distributed alphabetA with labels as follows: A′ = (A′, P,M′)
is the distributed alphabet with

A′ ∶= {(a,L) ∣ L = (C , z) ∈ Λ, a ∈ C} and

M′ ∶= {((a,L), i) ∣ (a,L) ∈ A′, aM i}.
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We also define a transduction π∶A′ → A∶ (a,L) ↦ a. Since π preserves dependencies of
letters, the transduction π(L) of a recognizable trace language L ⊆M(A′) is recognizable as
well.

Let A = (Q⃗ ,A, I, ∆, F). Then π−1(T(A)) is effectively recognizable. Additionally, let
ι⃗ ∈ I, f⃗ ∈ F be a pair of initial and final states ofA andL = (C , z) be a label. We can construct

an asynchronous automaton Aι⃗, f⃗ ,L = (Q⃗
ι⃗, f⃗ ,L

,A′, I ι⃗, f⃗ ,L, ∆ ι⃗, f⃗ ,L, F ι⃗, f⃗ ,L) accepting

π−1(T(Aι⃗→ f⃗ )) ∩⋂
a∈C

M(A′↾C×{L}) ⋅ (a,L) ⋅M(A′↾C×{L}) .

In other words, Aι⃗, f⃗ ,L accepts exactly thoseL-labeled traces λ ∈M(A′) such that π(λ) has a
run from ι⃗ to f⃗ in A and Alph(λ) = C × {L}. Note that there is an asynchronous automaton
acceptingM(A′↾C×{L}) ⋅ (a,L) ⋅M(A′↾C×{L}) where each process i ∈ P has at most two
local states.

We also have to store a bounded part of the history of labels, our asynchronous automaton
has seen on each of its processes. These histories will prevent our automaton to read a shuffle
of two or more traces which is not serializable anymore. For example, Figure A.1 shows the
shuffle of two traces κ, λ ∈ T(A) which is neither equivalent to κλ nor to λκ.

1∶

2∶

3∶

4∶

a

a

d

d

b

b

c

c d

d

a

a

Figure A.1. A shuffle σ of κ = [abd] (circles) and λ = [dca] (rectangles). On each process i ∈ P we have
πA i (σ) = πA i (κλ) or πA i (σ) = πA i (λκ), i.e., κ and λ are sequential on each process. However, σ cannot be
serialized into κλ or λκ.

So, we have to implement a mechanism which prevents such situation. To this end, we
introduce a so-called history. Such history is a special trace on the distributed alphabet
H = (Λ, P,N) with N = {((C , z), i) ∣ i ∈ CM}. Concretely, a trace H ∈M(H) is a history if
each labelL ∈ Λ occurs in H at most once. We also have to merge multiple histories: H1 ⋎H2
for two histories H1 and H2 is constructed in three steps as follows:

1. Pruning. If there is a connected set C ⊆ A occurring more than ∣P∣ times inH1, we remove
all of the labels with alphabet C except for the ∣P∣ right-most occurrences of C. We also
do this operation on H2.

2. Joining. In this step we see H1 and H2 as two strict partial orderings on Λ: We have
(C , y) < j (D, z) if C ∦ D and H j ∈M(H) ⋅ (C , y) ⋅M(H) ⋅ (D, z) ⋅M(H) (for j = 1, 2).
Finally, by < we denote the transitive closure of <1 ∪ <2.

3. Checking. If < is a strict partial ordering, we obtain a joint history H. Otherwise, < is
not irreflexive or not anti-symmetric. In this case, < induces no trace and, therefore, our
merge operation fails.
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Note that we can see the letters of the histories H1 and H2 as the (interlocking) teeth of a
zipper. Then our merge-operation ⋎ can be visualized as the closing of this zipper.

▷ Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example. Consider the situation in Figure A.1. LetK and L be labels of the traces κ
resp. λ (noteK ≠ L). After reading b, the process 4 learns the historyLK. After reading
c, the process 3 storesKL. Finally, when reading the second d we have to merge the
histories LK and KL which is impossible. Hence, our automaton will block in this
moment. ⌟

Now, we apply the classical construction for the Kleene-star on the disjoint union of all
automata Aι⃗, f⃗ ,L with some special restrictions. So,B = (Q⃗B ,A′, IB , ∆B , FB) is the following
asynchronous automaton:

Q⃗B ∶=∏i∈P QB
i and QB

i ∶= {(q, ι⃗, f⃗ ,L,H,m) ∣ q ∈ Q
ι⃗, f⃗ ,L
i ,H is a history,

m∶ 2A → {0, . . . , 2∣P∣}
} ∪ {⊺i},

IB ∶= {(qi , ι⃗i , f⃗i ,Li ,Hi , 0⃗)i∈P ∣ qi ∈ I ι⃗i , f⃗i ,Li

i ,Hi = Li = (Ci , 0)} ∪ {(⊺i)i∈P}, where
0⃗∶ 2A → {0, . . . , 2∣P∣}∶C ↦ 0maps all C ⊆ A to 0,

FB ∶= {(qi , ι⃗i , f⃗i ,Li ,Hi ,mi)i∈P ∣ qi ∈ F
ι⃗i , f⃗i ,Li

i } ∪ {(⊺i)i∈P}, and

((pi , ι⃗, f⃗ ,L,Gi ,mi)i∈aM, (qi , ȷ⃗i , д⃗i ,Ki ,Hi , ni)i∈aM) ∈ ∆B
(a,L) iff H ∶= ⋎i∈aMGi is well-

defined and for each i ∈ aM there is ri ∈ Q
ι⃗, f⃗ ,L
i such that

(i) ri = qi and (ι⃗, f⃗ ,L,H,mi) = ( ȷ⃗i , д⃗i ,Ki ,Hi , ni) or

(ii) ri ∈ F
ι⃗, f⃗ ,L
i and qi ∈ I

ȷ⃗i , д⃗i ,Ki

i , Ki = (C , z) with z ∶= (mi(C) + 1)mod (2∣P∣ + 1),
Hi ∶= H ⋅Ki (i.e., we start reading aKi-labeled trace after this transition), and
ni arises from mi by increasing the value of C modulo 2∣P∣ + 1

andandandandandandandandandandandandandandandandand ((pi)i∈aM, (ri)i∈aM) ∈ ∆
ι⃗, f⃗ ,L
(a,L).

ThenB has size O(∣A∣ ⋅ ∣Q∣2 ⋅ (2∣A∣)! ⋅ 2∣A∣⋅∣P∣), i.e., ifA is fixed this construction is possible in
polynomial time (and in twofold exponential time ifA is not fixed). Now, we have to prove
π(T(B)) = T(A)∗.
▷ Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1.Claim 1. We have T(A)∗ ⊆ π(T(B)).
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Let λ ∈ T(A)∗. Then there are traces κ1, . . . , κk ∈ T(A)with λ = κ1 . . . κk . If k = 0 then
we have λ = ε. Since (⊺i)i∈P ∈ IB ∩ FB we also have ε ∈ π(T(B)). So, from now on, assume
k > 0. Then there are accepting runs in A labeled with κn for each 1 ≤ n ≤ k, i.e., there are
an,1, . . . , an,ℓn ∈ A and ⃗qn,0, . . . , ⃗qn,ℓn ∈ Q⃗ with κn = [an,1 . . . an,ℓn], ⃗qn,0 ∈ I, ⃗qn, j−1

an , j
ÐÐ→A ⃗qn, j

for each 1 ≤ j ≤ ℓn, and ⃗qn,ℓn ∈ F for each 1 ≤ n ≤ k.
For 1 ≤ n ≤ k let Ln = (Cn , zn) be a label such that the flag zn is - starting from 0 -

increasing monotonically (modulo 2∣P∣ + 1) for labels with the same connected alphabet
Cn ∶= Alph(κn).

We now construct a run p⃗1,0, . . . , ⃗p1,ℓ1 , . . . , ⃗pk,0, . . . , ⃗pk,ℓk ∈ Q⃗B labeled with

λ′ ∶= [(a1,1,L1) . . . (a1,ℓ1 ,L1) . . . (ak,1,Lk) . . . (ak,ℓk ,Lk)]

inB. We do this by induction on 1 ≤ n ≤ k and 0 ≤ j ≤ ℓn. We start with n = 1 and j = 0. We
set p⃗1,0 ∶= (px i ,0,i , ⃗qxi ,0, ⃗qxi ,ℓxi ,Lx i ,Hi , 0⃗)i∈P where

1 ≤ xi ≤ k is minimal with i ∈ Cx i M (or xi ∶= 1 if this minimum does not exist),
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px i ,0,i is the ith component of ⃗qxi ,0, and
Hi ∶= Lx i .

Then, by the choice of the components of p⃗1,0 we obtain p⃗1,0 ∈ IB.
Next, let 1 ≤ n ≤ k and 0 ≤ j ≤ ℓn. We set

⃗pn, j ∶= (pn, j,i , ⃗ιn, j,i , ⃗fn, j,i ,Ln, j,i ,Hn, j,i ,mn, j,i)i∈P

as follows:

(1) if n > 1 and j = 0 we set ⃗pn,0 = ⃗pn−1,ℓn−1 .
(2) otherwise we have to consider each i ∈ P separately. If i ∉ an, jM, we leave the ith

component of ⃗pn, j−1 untouched. Now, assume i ∈ an, jM. Then we have to distinguish
the following cases:
(2.1) i ∈ {an, j+1, . . . , an,ℓn}M (i.e., while reading the remaining letters of κn we will

also modify the ith component). Then we set pn, j,i to the ith component of ⃗qn, j,
Hn, j,i ∶= ⋎x∈an , j MHn, j−1,x (note that this is well-defined since we sequentially process
the κn’s), and the remaining components are copied from ⃗pn, j−1. In other words,
we apply a transition of type (i).

(2.2) i ∉ {an, j+1, . . . , an,ℓn}M and i ∉ ⋃n<x≤k Cx M (i.e., neither κn nor κn+1 . . . κk contain
any letter modifying the ith component). This case is similar to the first case, since
we will end up in a final state in the ith component and remain in this state until
the end of this computation.

(2.3) i ∉ {an, j+1, . . . , an,ℓn}M and i ∈ ⋃n<x≤k Cx M (i.e., the suffix of κn does not modify
the ith component, but κn+1 . . . κk will do). Then there is n < x ≤ k minimal with
i ∈ Cx M. We set:

pn, j,i is the ith component of ⃗qx ,0,
⃗ιn, j,i ∶= ⃗qx ,0,
⃗fn, j,i ∶= ⃗qx ,ℓx ,

Ln, j,i ∶= Lx ,
Hn, j,i ∶= (⋎y∈aMHn, j−1,y) ⋅Lx , and
mn, j,i ∶= mn, j−1,i[Cx ↦ (zx + 1)mod (2∣P∣ + 1)] where Lx = (Cx , zx).

In other words, we apply a transition of type (ii).

By our construction we obtain ⃗pn, j−1
(an , j ,Ln)
ÐÐÐÐ→B ⃗pn, j for each 1 ≤ n ≤ k and 0 ≤ j ≤ ℓn

as well as ⃗pk,ℓk ∈ F
B. Hence, p⃗1,0, . . . , ⃗p1,ℓ1 = ⃗p2,0, . . . , ⃗pk,ℓk is a run in B which starts in

p⃗1,0 ∈ IB, ends in ⃗pk,ℓk ∈ F
B, and is labeled with λ′. In other words, we have λ′ ∈ T(B)

implying λ = π(λ′) ∈ π(T(B)). ◁

▷ Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2.Claim 2. We have π(T(B)) ⊆ T(A)∗.
Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. Let λ ∈ π(T(B)). Then there is λ′ ∈ T(B) with λ = π(λ′). There are (labeled) letters

(a1,L1), . . . , (aℓ ,Lℓ) ∈ A′ and states p⃗0, . . . , p⃗ℓ ∈ Q⃗B with p⃗0 ∈ IB, p⃗ℓ ∈ FB, ⃗p j−1
(a j ,L j)
ÐÐÐ→B p⃗ j

for each 1 ≤ j ≤ ℓ, and λ′ = [(a1,L1) . . . (aℓ ,Lℓ)] (i.e., we have λ = [a1 . . . aℓ]). If p⃗0 = (⊺i)i∈P ,
we have ℓ = 0 and, hence, λ = ε ∈ T(A)∗. So, from now on we assume p⃗0 ≠ (⊺i)i∈P . Let

p⃗ j = (p j,i , ⃗ι j,i , f⃗ j,i ,L j,i ,H j,i ,m j,i)i∈P .

Now, let 1 ≤ j ≤ ℓ. Then there is a label L = (C , z) and a maximal sequence 1 ≤ n1 < n2 <
⋅ ⋅ ⋅ < nk ≤ ℓ such that the following properties hold:
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(1) j = nx for a 1 ≤ x ≤ k (i.e., j belongs to this sequence),
(2) Lnx = L (i.e., all letters with indexes nx are labeled with L), and
(3) for each n1 < y < nk with y ≠ nx for each 1 ≤ x ≤ k we have Ly = (C′, z′) with C′ ≠ C

(i.e., we do not see other labels with alphabet C in the range of this subsequence).

In other words, n1, . . . , nk is the maximal subsequence of “consecutive” (except for partial
commutations) indices of letters that are labeled with L. By definition ofB there are ι⃗ ∈
I and f⃗ ∈ F such that B simulates a run from I ι⃗, f⃗ ,L to F ι⃗, f⃗ ,L in Aι⃗, f⃗ ,L which is labeled
by (an1 ,L) . . . (ank ,L). Hence, we have (an1 ,L) . . . (ank ,L) ∈ T(Aι⃗, f⃗ ,L) and an1 . . . ank ∈
T(A).

Now, let κ1, . . . , κm ∈ T(A) be all traces we have constructed in this way. From the
histories constructed by the asynchronous automaton B (note that all of them are well-
defined traces), we obtain a topological ordering τ of {1, . . . ,m} such that κτ(1) . . . κτ(m) =
[a1 . . . aℓ] = λ. Hence, we obtain λ ∈ T(A)∗. ◁

Finally, since π(T(B)) is efficiently recognizable (we only replace letters (a,L) by a in
B), we are done. ◂

Corollary A.5. Let A = (A, P,M) be a distributed alphabet, A be an asynchronous

automaton such that T(A) is connected, and S ⊆ N be recognizable in N. Then we can

compute an asynchronous automaton accepting T(A)S = ⋃n∈S T(A)n from A and an

automaton accepting S. IfA is fixed, this construction is possible in polynomial time.

Proof idea. We know that S ⊆ N is recognizable in N if, and only if, S is semi-linear. Hence,
there are constants k1, . . . , kn , ℓ1, . . . , ℓn ∈ N such that

S = ⋃
1≤i≤n

ki ⋅N + ℓi ,

i.e., S is the union of finitely many linear progressions. Hence, we obtain the following
equation

T(A)S = ⋃
1≤i≤n
(T(A)k i)∗ ⋅ T(A)ℓ i .

To prove the recognizability of T(A)S it suffices to show that (T(A)k i)∗ is recognizable in
M(A). We prove this with the help of an extension of the construction inTheorem A.4 as
follows: to each state of the constructed automatonB we add yet another component, which
is a number 0 ≤ c < ki . In this component, we want to count (modulo ki) the number of
traces from T(A) we have seen on a run ofB.

However, it is not a good idea to count this number on each process since (for example)
some traces may affect two and others may affect three processes. In this case we would be
unable to decide whether to accept at the end of a run, or not.

Hence, we have to determine one of the processes associated to a trace λ ∈ T(A) which
counts its occurrences. We do this with the help of an arbitrary function ξ∶ 2A ∖ {∅} → P

with ξ(C) ∈ CM. Then, whenever we read a trace λ ∈ T(A), we only increase the counter
on the process with number ξ(Alph(λ)). Finally, the automaton accepts whenever we are in
an accepting state as inB (cf. Theorem A.4) and the sum of all counters is zero modulo ki .

By closure properties we obtain an asynchronous automaton accepting T(A)S . ◂
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