58 research outputs found

    Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights

    Full text link
    Reducing traffic accidents is an important public safety challenge, therefore, accident analysis and prediction has been a topic of much research over the past few decades. Using small-scale datasets with limited coverage, being dependent on extensive set of data, and being not applicable for real-time purposes are the important shortcomings of the existing studies. To address these challenges, we propose a new solution for real-time traffic accident prediction using easy-to-obtain, but sparse data. Our solution relies on a deep-neural-network model (which we have named DAP, for Deep Accident Prediction); which utilizes a variety of data attributes such as traffic events, weather data, points-of-interest, and time. DAP incorporates multiple components including a recurrent (for time-sensitive data), a fully connected (for time-insensitive data), and a trainable embedding component (to capture spatial heterogeneity). To fill the data gap, we have - through a comprehensive process of data collection, integration, and augmentation - created a large-scale publicly available database of accident information named US-Accidents. By employing the US-Accidents dataset and through an extensive set of experiments across several large cities, we have evaluated our proposal against several baselines. Our analysis and results show significant improvements to predict rare accident events. Further, we have shown the impact of traffic information, time, and points-of-interest data for real-time accident prediction.Comment: In Proceedings of the 27th ACM SIGSPATIAL, International Conference on Advances in Geographic Information Systems (2019). arXiv admin note: substantial text overlap with arXiv:1906.0540

    Points of Interest (POI): a commentary on the state of the art, challenges, and prospects for the future

    Full text link
    In this commentary, we describe the current state of the art of points of interest (POIs) as digital, spatial datasets, both in terms of their quality and affordings, and how they are used across research domains. We argue that good spatial coverage and high-quality POI features — especially POI category and temporality information — are key for creating reliable data. We list challenges in POI geolocation and spatial representation, data fidelity, and POI attributes, and address how these challenges may affect the results of geospatial analyses of the built environment for applications in public health, urban planning, sustainable development, mobility, community studies, and sociology. This commentary is intended to shed more light on the importance of POIs both as standalone spatial datasets and as input to geospatial analyses

    Data-intensive spatial pattern discovery based on generalized spatial point representations

    Get PDF
    Geospatial big data consisting of records at the individual level or with fine spatial resolutions, such as geo-referenced social media posts and movement records collected using GPS, provide tremendous opportunities to understand complex geographic phenomena and their space-time dynamics. Such data have been widely used in many real-world applications, such as event detection and population migration analyses. These applications require not only efficient data handling and processing capabilities, but also innovative data models and analytical approaches that satisfy application-specific requirements. The aim of this dissertation research is to establish a suite of innovative methods for analyzing geospatial big data that can be modeled as generalized spatial points while addressing the following key research questions: how to estimate the spatial and spatiotemporal patterns of geographic phenomena from geospatial big data based on spatial point models? How to compare these patterns to gain insights into complex geographic phenomena? How to estimate the computational intensity of the methods? How can cyberGIS be advanced to resolve the computational intensity? Specifically, novel methods are designed in this dissertation research to exploit spatial data characteristics, innovate spatial point pattern analytics, and resolve computational intensity through high-performance spatial algorithms. Such methods are evaluated in the context of several real-world applications, including event detection from social media data and spatial movement pattern detection. Experiment results demonstrated that fine-scale spatial patterns can be revealed from geospatial big data using the proposed approaches. Novel cyberGIS software capabilities are also created as a result of this dissertation research

    Methods for deriving and calibrating privacy-preserving heat maps from mobile sports tracking application data

    Get PDF
    AbstractUtilization of movement data from mobile sports tracking applications is affected by its inherent biases and sensitivity, which need to be understood when developing value-added services for, e.g., application users and city planners. We have developed a method for generating a privacy-preserving heat map with user diversity (ppDIV), in which the density of trajectories, as well as the diversity of users, is taken into account, thus preventing the bias effects caused by participation inequality. The method is applied to public cycling workouts and compared with privacy-preserving kernel density estimation (ppKDE) focusing only on the density of the recorded trajectories and privacy-preserving user count calculation (ppUCC), which is similar to the quadrat-count of individual application users. An awareness of privacy was introduced to all methods as a data pre-processing step following the principle of k-Anonymity. Calibration results for our heat maps using bicycle counting data gathered by the city of Helsinki are good (R2>0.7) and raise high expectations for utilizing heat maps in a city planning context. This is further supported by the diurnal distribution of the workouts indicating that, in addition to sports-oriented cyclists, many utilitarian cyclists are tracking their commutes. However, sports tracking data can only enrich official in-situ counts with its high spatio-temporal resolution and coverage, not replace them

    Weiterentwicklung analytischer Datenbanksysteme

    Get PDF
    This thesis contributes to the state of the art in analytical database systems. First, we identify and explore extensions to better support analytics on event streams. Second, we propose a novel polygon index to enable efficient geospatial data processing in main memory. Third, we contribute a new deep learning approach to cardinality estimation, which is the core problem in cost-based query optimization.Diese Arbeit trägt zum aktuellen Forschungsstand von analytischen Datenbanksystemen bei. Wir identifizieren und explorieren Erweiterungen um Analysen auf Eventströmen besser zu unterstützen. Wir stellen eine neue Indexstruktur für Polygone vor, die eine effiziente Verarbeitung von Geodaten im Hauptspeicher ermöglicht. Zudem präsentieren wir einen neuen Ansatz für Kardinalitätsschätzungen mittels maschinellen Lernens

    Discovery of Spatiotemporal Event Sequences

    Get PDF
    Finding frequent patterns plays a vital role in many analytics tasks such as finding itemsets, associations, correlations, and sequences. In recent decades, spatiotemporal frequent pattern mining has emerged with the main goal focused on developing data-driven analysis frameworks for understanding underlying spatial and temporal characteristics in massive datasets. In this thesis, we will focus on discovering spatiotemporal event sequences from large-scale region trajectory datasetes with event annotations. Spatiotemporal event sequences are the series of event types whose trajectory-based instances follow each other in spatiotemporal context. We introduce new data models for storing and processing evolving region trajectories, provide a novel framework for modeling spatiotemporal follow relationships, and present novel spatiotemporal event sequence mining algorithms

    SOCIAL MEDIA FOOTPRINTS OF PUBLIC PERCEPTION ON ENERGY ISSUES IN THE CONTERMINOUS UNITED STATES

    Get PDF
    Energy has been at the top of the national and global political agenda along with other concomitant challenges, such as poverty, disaster and climate change. Social perception on various energy issues, such as its availability, development and consumption deeply affect our energy future. This type of information is traditionally collected through structured energy surveys. However, these surveys are often subject to formidable costs and intensive labor, as well as a lack of temporal dimensions. Social media can provide a more cost-effective solution to collect massive amount of data on public opinions in a timely manner that may complement the survey. The purpose of this study is to use machine learning algorithms and social media conversations to characterize the spatiotemporal topics and social perception on different energy in terms of spatial and temporal dimensions. Text analysis algorithms, such as sentiment analysis and topic analysis, were employed to offer insights into the public attitudes and those prominent issues related to energy. The results show that the energy related public perceptions exhibited spatiotemporal dynamics. The study is expected to help inform decision making, formulate national energy policies, and update entrepreneurial energy development decisions
    • …
    corecore