
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

5-10-2017

Discovery of Spatiotemporal Event Sequences
Berkay Aydin
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Aydin, Berkay, "Discovery of Spatiotemporal Event Sequences." Dissertation, Georgia State University, 2017.
https://scholarworks.gsu.edu/cs_diss/122

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

DISCOVERY OF SPATIOTEMPORAL EVENT SEQUENCES

by

BERKAY AYDIN

Under the Direction of Rafal Angryk, PhD

ABSTRACT
Finding frequent patterns plays a vital role in many analytics tasks such as finding

itemsets, associations, correlations, and sequences. In recent decades, spatiotemporal

frequent pattern mining has emerged with the main goal focused on developing data-

driven analysis frameworks for understanding underlying spatial and temporal charac-

teristics in massive datasets. In this thesis, we will focus on discovering spatiotempo-

ral event sequences from large-scale region trajectory datasetes with event annotations.

Spatiotemporal event sequences are the series of event types whose trajectory-based

instances follow each other in spatiotemporal context. We introduce new data models

for storing and processing evolving region trajectories, provide a novel framework for

modeling spatiotemporal follow relationships, and present novel spatiotemporal event

sequence mining algorithms.

INDEX WORDS: Spatiotemporal, Event, Sequence, Mining, Discovery

DISCOVERY OF SPATIOTEMPORAL EVENT SEQUENCES

by

BERKAY AYDIN

A Dissertation Submitted in Partial Fulfillment for the Degree of

Doctor of Philisopy

in the College of Arts and Sciences

Georgia State University

2017

Copyright by

Berkay Aydin

2017

DISCOVERY OF SPATIOTEMPORAL EVENT SEQUENCES

by

BERKAY AYDIN

Committee Chair: Rafal Angryk

Committee: Rajshekhar Sunderraman

Zhipeng Cai

Petrus Martens

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2017

DEDICATION

I dedicate this work to my beautiful wife and my beloved family.

For their love, encouragement, and endless support. . .

iv

ACKNOWLEDGEMENTS

This dissertation work would not have been possible without the support of many peo-

ple. I want to express my gratitude to my dear advisor Dr. Rafal Angryk, for believing

in me at first, staying behind me at difficult times, and guiding me with his expertise. I

would also like to thank each of my committee members - Dr. Rajshekhar Sunderraman,

Dr. Zhipeng Cai, and Dr. Piet Martens, for their guidance and encouragement.

I am grateful for all the help that my fellow lab mates - Karthik, Mike, Dustin, Ruizhe,

Vijay, Sajitha, Ahmet, Soukaina, and Hamdi, provided over the years. I want to thank

them for their great friendships, productive discussions, and well-appreciated support.

A special note of thanks to all my professors, back in Turkey at Bikent University, at

Montana State University and at Georgia State University who contributed to my growth,

both personally and professionally. Finally, I take this opportunity to thank all my good

friends, especially Ezgi, Can, Feyyaz, Semih, Akif, Aytek, Evrim, Yasin, Oner, Fatih, and

Deniz, who made my last five years more enjoyable.

v

TABLE OF CONTENTS

acknowledgements . v

list of figures . x

list of tables . xvi

1 introduction . 1

1.1 Motivation . 2

1.1.1 Solar Physics Application for Spatiotemporal Event Sequences . . 2

1.1.2 Biomedical Sciences – Embryo selection prediction 3

1.1.3 Epidemiology – Prediction of malaria epidemics 5

1.2 Challenges . 7

1.3 Contributions . 9

1.4 Outline . 10

2 literature review on spatial and spatiotemporal data mining . . 11

2.1 Types of Spatiotemporal Knowledge 11

2.2 Temporal Sequence Patterns . 12

2.3 Spatial Colocation and Spatiotemporal Co-occurrence Patterns 14

2.4 Spatiotemporal Sequence Patterns 17

3 preliminaries on spatiotemporal data 20

3.1 Moving Objects and Spatiotemporal Trajectories 21

3.2 Evolving Region Trajectories . 22

3.3 Modeling Spatiotemporal Event Instances and Examples 26

4 spatiotemporal co-occurrences and significance measurements . 28

4.1 Related Work on Spatiotemporal Data Mining 31

4.1.1 Spatial Co-locations . 31

4.1.2 Moving Cluster Analysis 32

4.1.3 Spatiotemporal Co-occurrences 33

4.1.4 Summary . 35

4.2 A Real-life Example . 36

4.3 Evolution of Spatiotemporal Jaccard Measure 40

4.3.1 Preliminaries . 40

4.3.2 Intermediate Form: J+ Measure 41

4.4 J∗ Measure . 45

4.4.1 Algorithms for J∗ Calculation 48

4.4.2 Key Properties of J∗ . 50

4.5 Algorithms for J, J+, OMAX and OMIN Calculations 54

4.5.1 J Calculation Algorithm 54

4.5.2 J+ Calculation Algorithm 55

4.5.3 OMIN and OMAX Calculation Algorithms 55

4.6 Experimental Evaluation of Significance Measures 57

4.6.1 Experimental Settings . 58

4.6.2 Relevancy Analysis . 58

4.6.3 Efficiency Analysis . 65

4.6.4 Suitability for STCOP Mining 71

4.7 Summary on Significance Measurements 73

5 spatiotemporal event sequence mining 75

5.1 Modeling Spatiotemporal Event Sequences 77

5.1.1 Head and Tail Window of an Instance 78

5.1.2 Generating Head and Tail Window 79

vii

5.1.3 Strategies for Head and Tail Window Generation 81

5.2 Spatiotemporal Follow Relationship and Measuring the Significance . . 85

5.2.1 Significance of the Instance Sequences 85

5.2.2 Prevalence of the Event Sequences 88

5.2.3 A Discussion on the Ambiguity of Allen’s Temporal Algebra and

How We Solve It . 88

5.3 Apriori-based Algorithms for Mining Spatiotemporal Event Sequences . 89

5.3.1 Initialization . 90

5.3.2 Naïve Apriori Algorithm 90

5.3.3 SequenceConnect Algorithm 94

5.4 A Pattern Growth-based Approach for Mining Spatiotemporal Event Se-

quences . 96

5.4.1 Event Sequences and Graph Representation 96

5.4.2 EsGrowth Algorithm . 101

5.5 Mining the Most Prevalent Spatiotemporal Event Sequences: Top-(R%,K)

Approach . 103

5.5.1 Naïve Approach . 104

5.5.2 Fast Top-(R%,K) Approach 105

5.6 Bootstrap Approach: Mining Spatiotemporal Event Sequences without

Thresholds . 107

6 experimental evaluation . 111

6.1 Experimental Settings and Solar Event Datasets 111

6.1.1 Lifecycle of Solar Event Data 111

6.1.2 Our Datasets . 115

6.1.3 Implementation Details and Experimental Settings 115

6.1.4 Agenda of Our Experiments 118

6.2 Initialization Times . 118

viii

6.3 Overview of Running Times . 120

6.4 Analysis of Threshold-based Approaches 121

6.5 Analysis of Top-(R%,K) Approach 125

6.5.1 Running Time Analysis of Top-(R%,K) Algorithms 125

6.5.2 Comparison of EsGrowth and Top-(R%, K) Approach 127

6.6 Analysis of Bootsrap Approach 129

7 conclusion . 138

7.1 Future Work . 138

7.1.1 Mixed Mining of Spatial, Temporal, and Image Data: 138

7.1.2 Creating a Solar Event Search Engine 138

7.1.3 From Knowledge to Wisdom - Utilizing Patterns for Prediction . . 139

7.2 Concluding Remarks . 139

references . 142

ix

LIST OF FIGURES

Figure 1.1 Polygon-based representations of two coronal holes reported to He-

liophysics Event Knowledgebase (HEK) [1] between ’23 January

2012 07:00’ and ’25 January 2012 07:00’. 3

Figure 1.2 In [2], Wong et al. illustrate their cell tracking results, and com-

pare its accuracy with manual image analysis performed by hu-

man experts. They argue that these two methods have excellent

agreement. The tracking software models the embryos as a col-

lection of ellipses with position, orientation, and overlap indices.

Images in top row show the frames from original time-lapse se-

quence. Images in bottom row show the overlaid ellipses found

after tracking. Wong et al. claims that with these models, the du-

ration of cytokinesis and time between mitoses can be identified.

(Image is copied from [2] – See Figure 1.a) 5

Figure 1.3 In [3], Conaghan et al. present the results of the tracking software

they used. The primary features tracked by the software are the

cell membranes. By using a data-driven probabilistic framework,

the software generates an embryo model that includes an estimate

of the number of blastomeres, as well as spatiotemporal attributes

such as size, location, and shape, as a function of time. (Image is

copied from [3] – See Figure 2.a) 5

Figure 1.4 In [4], Tonnang et al. present the spatial distribution map of

two important mosquito malaria vectors – A. arabiensis (a) and A.

gambiae (b) under current climate conditions. (Images are copied

from [4] – See Figures 1.A and 2.A) 6

Figure 1.5 In [5], Paaijmansa et al. discuss that malaria transmission is heav-

ily influenced by mean temperatures as well as the daily temper-

ature fluctuations. Maps on top row show the mean monthly

temperatures. Maps on the bottom row shows the diurnal tem-

perature range. The diurnal temperature range is the difference

between the daily maximum and minimum temperature. (Image

is copied from [5] – See Figure 1) 7

Figure 1.6 In a technical report from World Health Organization (WHO),

Kuhn et al. suggest that rainfall anomaly data can be combined

with epidemiology data to create predictive models [6]. Map

shows the near real-time rainfall anomaly zones using the infor-

mation provided by climate satellites. (Image is copied from [6] –

See Figure 3) . 8

Figure 2.1 Family tree of spatiotemporal event sequence mining 19

Figure 3.1 Raw trajectory (on the left) recorded as spatial locations of mov-

ing points object and the semantic trajectory (on the right), which

contains the application specific contextual information 22

Figure 3.2 Three-dimensional modeling of a spatiotemporal event instance

(insi) is illustrated with volume calculation from individual time-

geometry pairs. 25

Figure 4.1 Two example spatiotemporal co-occurrences among event instances

are shown in (a) and (b). In (a), insi co-occurs with insj. In (b),

three instances (insi, insj, and insk) co-occur. 29

xi

Figure 4.2 Two co-occurring solar event instances (an active region and a sunspot)

reported by Heliophysics Event Knowledgebase [1] between ’2012-

01-22 19:00’ and ’2012-01-24 07:00’. 36

Figure 4.3 Histograms of area, lifespan, and volume for seven different types

of solar event instances occurred between January 1, 2012 and De-

cember 31, 2012 . 37

Figure 4.4 The illustration of three possible scenarios for spatiotemporal co-

occurrences of instances that can occur among event instances

with unbalanced characteristics. 39

Figure 4.5 An example co-occurrence of three spatiotemporal instances with

the area values at particular timestamps. 44

Figure 4.6 The boxplots showing the distribution of J, J+, J∗, OMIN, and

OMAX values (in log scale) for size-2 and size-3 spatiotempo-

ral co-occurrences in the Q1 dataset. Each subfigure shows co-

occurrences between different event types. For size-2 co-occurrences

J+ and J∗ are joined as they are the same. J, J+,J∗, OMIN, and

OMAX values are represented with blue, yellow, red, white, and

green boxes respectively. 59

Figure 4.7 The value distributions of significance measures for EF-CH, AR-

FL, and AR-FI-FL co-occurrences. The boxplots showing the dis-

tribution of the values are demonstrated on the left. On the right,

the value comparison plots for individual co-occurrences are shown.

The value plots are sorted on the J∗ measure. 61

xii

Figure 4.8 The value distributions of significance measures for SS-FL, SS-AR,

and FI-CH co-occurrences. The boxplots showing the distribution

of the values are demonstrated on the left. On the right, the value

comparison plots for individual co-occurrences are shown. The

value plots are sorted on the J∗ measure. 63

Figure 4.9 The value distributions of significance measures for SS-SG, EF-FL,

and AR-FI-SG co-occurrences. The boxplots showing the distribu-

tion of the values are demonstrated on the left. On the right, the

value comparison plots for individual co-occurrences are shown.

The value plots are sorted on the J∗ measure. 64

Figure 4.10 The boxplots showing the running times (in milliseconds) for J,

J+, J∗, OMIN, and OMAX in size-2 co-occurrences in Q1 dataset. 66

Figure 4.11 The boxplots showing the running times (in milliseconds) for J,

J+, J∗, OMIN, and OMAX in size-2 co-occurrences in Q1 dataset. 67

Figure 4.12 The boxplots showing the running times for J, J+, J∗, OMIN, and

OMAX in artificial datasets. 69

Figure 4.13 Heatmaps of the J (in (a)) and J∗ (in (b)) values of size-2 co-

occurrences for the Q1 dataset. The heatmaps demonstrate the ra-

tio of the significant size-2 co-occurrences for different co-occurrence

coefficient (cce) thresholds and event types of co-occurring in-

stances, on x and y axes respectively. 71

Figure 4.14 Heatmaps of the J (in (a)) and J∗ (in (b)) values size-3 co-occurrences

for the Q1 dataset. The heatmaps demonstrate the ratio of the

significant size-3 co-occurrences for different co-occurrence coef-

ficient (cce) thresholds and event types of co-occurring instances,

on x and y axes respectively. 72

xiii

Figure 5.1 An example dataset of spatiotemporal instances I with 3 event

types A,B, and C. The spatiotemporal instances are evolving re-

gion trajectories. The timestamps are displayed on the geometries.

The dataset includes five instances of event type A (ins1, . . . ins5),

seven instances of event type B (ins6, . . . ins12), and four instances

of event type C (ins13, . . . ins16). The figure also illustrates spa-

tiotemporal follow relationships between the instances. 75

Figure 5.2 Creating the head and tail window of an instance. (Parameters:

hIn = 2days, tIn = 3days, and tv = 1day) 79

Figure 5.3 Strategies for generating head and tail of an instance 82

Figure 5.4 The graph representation of the spatiotemporal follow relation-

ships and the instances shown in Fig. 5.1. The vertices represent-

ing instances are ordered based on their start time. 100

Figure 6.1 Lifecycle of solar event data 112

Figure 6.2 The number of instances per event type in our datasets 116

Figure 6.3 Average initialization times (follow discovery and head and tail

window generation) for all of the algorithms, aligned on the major

Y-axis. The number of edges and the number of vertices for each

dataset are shown with bars aligned on the minor Y-axis. 119

Figure 6.4 Total running times of the algorithms, averaged over sixteen indi-

vidual runs of each algorithm for all the datasets 121

Figure 6.5 The running times of SequenceConnect and EsGrowth algorithms

for all datasets under various threshold parameters 123

Figure 6.6 The number of spatiotemporal event sequences discovered in the

threshold-based approaches with different cith and pith values.

As they are the same, we showed only one bar for each different

threshold. 124

xiv

Figure 6.7 Running times of Naïve and Fast Top-(R%, K)-EsMiner 125

Figure 6.8 The ci values corresponding to the R% most significant follow

relations . 126

Figure 6.9 (a) Running times of Naïve and Fast Top-(R%, K)-EsMiner com-

pared to EsGrowth (b) The number of STESs from Top-(R%, K)-

EsMiner and EsGrowth 128

Figure 6.10 Average running time of EsGrowth is compared with the average

running times of bootstrap trials 130

Figure 6.11 The total number of STESs discovered from our datasets with dif-

ferent bootstrap parameters in Btsp-EsMiner experiments 132

Figure 6.12 The number of STESs discovered with different bootstrap param-

eters in Btsp-EsMiner experiments 134

Figure 6.13 Length-2 STESs discovered from Btsp-EsMiner (with parameters

rR = 0.1 and ν = 50) to the results from EsGrowth runs with

different ci and pi thresholds 135

Figure 6.14 Length-2 STESs discovered from Btsp-EsMiner (with parameters

rR = 0.4 and ν = 200) to the results from EsGrowth runs with

different ci and pi thresholds 136

xv

LIST OF TABLES

Table 2.1 Types of spatiotemporal knowledge 13

Table 2.2 Temporal relationships in Allen’s interval algebra [7] 14

Table 4.1 Summary of related work on spatial and spatiotemporal data min-

ing . 35

Table 4.2 Auxiliary functions used in J∗ calculations 48

Table 4.3 Datasets used in the experiments 57

Table 6.1 Characteristics of the Solar Event Datasets 114

1 INTRODUCTION

Discovering interesting, but implicit spatiotemporal patterns from datasets is crucial

for many scientific domains such as astronomy [8, 9], ecology [10], meteorology [11],

geophysics [12], and criminology [13]. The ever-growing nature of data being generated

and collected from various scientific sources makes the data-driven knowledge discovery

process very challenging to the researchers in these fields. An important branch of

spatiotemporal pattern mining is the sequence (or sequential pattern) mining.

In traditional itemset mining, the frequent sequence (or sequential pattern) mining

refers to discovering a set of attributes persistently appearing over time among a large

number of objects [14]. A major category of sequences is event sequences. Event se-

quences represent the underlying sequential relationships among the categories of ob-

jects [15]. Event sequence mining can be useful for understanding the user behavior (by

mining sequences from weblogs or system traces) [16], shopping routines of customers

(by mining transaction sequences) [17], or the efficiency of business processes (by mining

time-ordered managerial and operational activities) [18].

The focus of this thesis is to create and explore novel models and patterns of spa-

tiotemporal event sequences from datasets with extended geometric representations. We

can briefly define spatiotemporal event sequence mining as follows: given a dataset

of spatiotemporal instances with associated event types, spatiotemporal event sequence

mining identifies the frequently appearing sequences of event types whose instances

spatially close-by and temporally follow each other. The spatiotemporal event sequence

models form a novel analysis framework to explore interesting, useful, and non-trivial

rules, and to facilitate their uses in descriptive and predictive tasks in various scientific

fields.

1.1 Motivation

The spatiotemporal event sequence mining can be useful for the verification and predic-

tion of scientific phenomena in a broad range of scientific fields including meteorology,

geophysics, epidemiology, and astronomy [19]. While our primary application context

is solar physics, the spatiotemporal event sequence mining is applicable to other scien-

tific fields where moving region objects are present. The spatiotemporal event sequences

can be used for modeling various scientific phenomena (e.g., tornadoes, propagation of

epidemics, clouds). The sequence patterns can be utilized for performing large-scale

verification of current knowledge, as well as the prediction of unknown spatiotemporal

relationships among different event types (e.g., predicting the spread of epidemics such

as cholera, malaria, and West Nile virus [6], verification of hurricane landfall precipita-

tion models [20], discovery of the patterns in wildlife migration [21], or prediction of

blastocyst formation [2]). We present three application domains where spatiotemporal

event sequence mining can be used for verifying, predicting, or potentially discovering

the spatiotemporal relationships and the characteristics of these relationships.

1.1.1 Solar Physics Application for Spatiotemporal Event Sequences

One important application area for spatiotemporal event sequence mining is the space

weather prediction. Solar physics researchers entered the big data era with the launch

of NASA’s Solar Dynamics Observatory (SDO) mission, which captures approximately

60,000 high resolution images every day, and generates 0.55 petabytes of raster data

each year. The big data trend in solar data is anticipated to be sustained by the ground-

based DKIST telescope, which is expected to generate three to five petabytes of data each

year [9]. In addition to image data, many software modules continuously work on SDO’s

image data, in order to detect instances of various solar event types. The detected solar

events can be considered as vector-based objects with spatial and temporal attributes [8].

2

Figure 1.1: Polygon-based representations of two coronal holes reported to Heliophysics Event
Knowledgebase (HEK) [1] between ’23 January 2012 07:00’ and ’25 January 2012

07:00’.

Recently, a large-scale solar image dataset with labeled regions was published in [22],

and a tracking algorithm was introduced in [23] (See Figure 1.1 for two tracked coronal

hole instances). The solar event tracking algorithm uses the locations and corresponding

image parameters [22] for linking the polygon-based evolving regions. Then, it creates

spatiotemporal trajectory objects with extended geometric representations. Additionally,

we introduced four spatiotemporal interpolation techniques for increasing the location

accuracy of the trajectories [24]. In essence, we can access and make use of vector-based

solar event data, which is in the form of spatiotemporal trajectories of continuously

evolving regions.

Spatiotemporal event sequences frequently transpire among solar events such as active

regions, flares, and sunspots. Identifying spatiotemporal event sequences appearing on

the Sun can help us better understand the implicit spatial and temporal relationships

among solar event types, and eventually lead to better modeling and forecasting of

important events such as coronal mass ejections and solar flares. Coronal mass ejections

and solar flares impact radiation in space, can reduce the safety of space and air travel,

disrupt intercontinental communication and GPS, and even damage power grids [25].

1.1.2 Biomedical Sciences – Embryo selection prediction

In vitro fertilization (IVF) is a complex series of procedures used to treat fertility or

genetic problems and assist with the conception of a child. IVF technology allowed

3

us to view and analyse the early events of human fertilization and embryogenesis [26].

Conventional embryo selection methods are still associated with a relatively low IVF

success rate with a clinical pregnancy rate of approximately 30% per transfer [27]. This

often leads to the transfer of more than one embryo at a time, which increases the

risk of multiple pregnancies, and the associated neonatal complications and maternal

pregnancy-related health problems [28]. Improvements in methods to select embryos

for transfer would potentially enable further increases in pregnancy rates, and facilitate

broader acceptance and adoption of single embryo transfer [29]. Nevertheless, the basic

pathways and events of early human embryo development and the factors aiding the

prediction of success and failure is not well-known [2].

Time-lapse imaging is an emerging tool that allows the identification of parameters

that can potentially help predict the developmental potential of an embryo with con-

tinuous monitoring [3]. Time-lapse observation presents an opportunity for optimizing

embryo selection based on morphological grading as well as providing novel kinetic

parameters, which may further improve accurate selection of viable embryos [30]. Time-

lapse imaging can also aid in transforming the early embryo images into spatiotemporal

vector data, which can be used in spatiotemporal frequent pattern mining. In Figure 1.2

and 1.3, two illustrations of embryo cells from [2] and [3], which are tracked with an

automated image analysis software.

In [29], Herrero and Meseguer present their findings on the predictive markers that

influence the success rate of IVF. Those markers include spatial characteristics of the early

embryo stages such as appearence (shape) of pronuclei (nucleus of sperm and egg), and

temporal characteristics such as duration of first cleavage, and time interval between

first and second mitotic division. Conaghan suggests that slower blastocyst formation

is associated with poorer embryo viabiliy [3]. The associated markers as well as the

embryo cells can be modeled as moving objects with evolving regions. The validity of

these markers and predictors can be tested with spatiotemporal event sequence mining

4

Figure 1.2: In [2], Wong et al. illustrate their cell tracking results, and compare its accuracy
with manual image analysis performed by human experts. They argue that these two
methods have excellent agreement. The tracking software models the embryos as a
collection of ellipses with position, orientation, and overlap indices. Images in top
row show the frames from original time-lapse sequence. Images in bottom row show
the overlaid ellipses found after tracking. Wong et al. claims that with these models,
the duration of cytokinesis and time between mitoses can be identified. (Image is
copied from [2] – See Figure 1.a)

Figure 1.3: In [3], Conaghan et al. present the results of the tracking software they used. The
primary features tracked by the software are the cell membranes. By using a data-
driven probabilistic framework, the software generates an embryo model that includes
an estimate of the number of blastomeres, as well as spatiotemporal attributes such
as size, location, and shape, as a function of time. (Image is copied from [3] – See
Figure 2.a)

with performing a verification task on a large scale dataset. Such data analyses can

aid the scientists better comprehend the relationships among different procedures in the

process of IVF.

1.1.3 Epidemiology – Prediction of malaria epidemics

It is commonly accepted that climate plays a role in the transmission of many infectious

diseases, some of which are among the most important causes of mortality and mor-

5

bidity in developing countries [6]. The early identification of an epidemic of infectious

disease is an important first step towards implementing effective interventions to con-

trol the disease and reduce the resulting mortality and morbidity in human populations.

However, the epidemics are usually well advanced before the authorities are notified

and epidemic control measures are prepared or deployed [31].

Malaria shows significant seasonal patterns by which the disease transmission is high-

est in the months of heavy rainfall and humidity [4]. The spatial distribution of disease-

transmitting insects are closely related with these phenomena, where a rise in temper-

ature accelerates the reproduction rate of insects, or humid weather conditions create

desirable reproduction habitats for insects [5, 32]. Malaria demonstrates its most catas-

trophic effects in sub-Saharan Africa, where it is one of the largest causes of morbidity

and mortality, creating a significant barrier to economic development [33].

Anopheles gambiaeAnopheles arabiensis

(a) (b)

Figure 1.4: In [4], Tonnang et al. present the spatial distribution map of two important mosquito
malaria vectors – A. arabiensis (a) and A. gambiae (b) under current climate conditions.
(Images are copied from [4] – See Figures 1.A and 2.A)

6

Figure 1.5: In [5], Paaijmansa et al. discuss that malaria transmission is heavily influenced by
mean temperatures as well as the daily temperature fluctuations. Maps on top row
show the mean monthly temperatures. Maps on the bottom row shows the diurnal
temperature range. The diurnal temperature range is the difference between the daily
maximum and minimum temperature. (Image is copied from [5] – See Figure 1)

Spatiotemporal event sequence mining can be helpful for prediction of epidemics by

demonstrating the associations between climatic risk factors and disease outbreaks. The

areas influenced by epidemics caused by mosquito vectors (See Figure 1.4), high and low

temperature areas (See Figure 1.5), and rainfall anomaly zones (See Figure 1.6) can be

modeled as spatiotemporal objects with extended geometric representations.

1.2 Challenges

The task of spatiotemporal event sequence discovery is challenging primarily because of

the difficulty of identifying sequence forming event instances. From a theoretical stand-

point, firstly, a consistent and flexible definition for spatiotemporal follow relationship

is vital for the correctness and relevancy of the mining algorithms. Secondly, a mean-

ingful significance measurement technique for the spatiotemporal follow relationship is

necessary. From a practical point of view, the computational operations required for

7

Figure 1.6: In a technical report from World Health Organization (WHO), Kuhn et al. suggest
that rainfall anomaly data can be combined with epidemiology data to create pre-
dictive models [6]. Map shows the near real-time rainfall anomaly zones using the
information provided by climate satellites. (Image is copied from [6] – See Figure 3)

identifying the sequence forming instances are computationally expensive due to the

nested joins with complex spatial and temporal predicates.

Unlike most of the moving point object datasets used in spatial and spatiotemporal

data mining literature [34], we are interested in spatiotemporal event sequence discov-

ery from event instances with polygon-based geometries. Therefore, mining knowledge

from these event datasets requires creating novel algorithms that can handle event in-

stances with polygon-based geometries. While it seems trivial, continuously evolving

and moving region objects necessitate developing new significance measures and spa-

tiotemporal structures for two reasons: (1) Polygon-based geometries have very rich

semantics (such as area, rotation, and shape) compared to the point-based ones; and (2)

8

storage and processing of polygon-based geometries are computationally more expen-

sive than their point-based counterparts.

1.3 Contributions

Our controbutions can be classified into three categories: (1) Modeling the spatiotempo-

ral event instances, (2) Creating a flexible and extensible framework for sequence gener-

ating behavior, i.e. designing the predicates of spatiotemporal follow relationship, and

(3) developing new algorithms and data structures for effectively and efficiently mining

the spatiotemporal event sequences.

The building blocks of the spatiotemporal event sequence mining are the data models

created for representing the trajectories of moving region objects whose regions continu-

ously change their location and shape. We created different models for representing the

trajectories in multiple different computing environments. We used the raw trajectory

data model for our event instances. It is also worth noting that our data models are

extensible with temporal or non-spatiotemporal attributes.

Secondly, we designed a flexible model for the spatiotemporal follow relationships.

Spatiotemporal follow relationships characterize the sequence forming behavior between

event instances. In a nutshell, the predicates of spatiotemporal follow relationship checks

whether an instance starts after another, and they are located close by. Our model uses

the simple interval algebra for temporal starts after relationships between instances. For

inspecting the closeness of locations, we use the spatiotemporal co-occurrence relation-

ships between the heads and tails of the instance’s trajectories. To understand the signifi-

cance of a spatiotemporal co-occurrence, we designed a new significance measure based

on the classical Jaccard measure.

Thirdly, we developed algorithms based on our spatiotemporal trajectory and fol-

low relationship models. We will present three categories of algorithms for mining

the spatiotemporal event sequences. First category of our algorithms are threshold-

9

based algorithms. We will present two Apriori-based and one pattern growth-based

algorithm. The NaïveApriori and SequenceConnect are Apriori-based and the ESGrowth

is the pattern growth-based algorithm. The second category of our algorithms are Top-

(R%, K) spatiotemporal event sequence mining algorithms. We will present two Top-(R%,

K) spatiotemporal event sequence mining algorithms that are: Naïve and Fast Top-(R%,

K) -EsMiner. The last category is the bootstrap-based algorithm for explorative analysis.

Our novel bootstrap-based algorithm (called Btsp-EsMiner) do not require any thresh-

olds for the mining process. In addition to the algorithmic developments, we conducted

an extended experimental evaluation. In our experimental evaluation, we check the

correctness of our algorithms, compare and analyse their running time performance in

different datasets, and provide a brief relevancy analysis.

1.4 Outline

This thesis is organized based on the above-mentioned contributions. In this section,

we have explained the focus of our thesis, provided motivation for our research with

various application areas, revealed the challanges and presented the contributions of

this work. The rest of this thesis is organized as follows. In Chapter 2, we reviewed the

spatial, temporal, and spatiotemporal frequent pattern mining literature on sequence

patterns. In Chapter 3, we will present the background information on spatiotemporal

trajectory data and provide our trajectory data models. Next, in Chapter 4, we will revisit

our works on measuring the significance of spatiotemporal co-occurrences, which is the

backbone of the spatiotemporal follow relationship. In Chapter 5, we will introduce the

spatiotemporal follow relationship, and, later, we will present our algorithms for mining

the spatiotemporal event sequences. In Chapter 6, we will present our experimental

evaluation, and, lastly, we will conclude this thesis and discuss future work in Chapter 7.

10

2 LITERATURE REVIEW ON SPATIAL AND SPATIOTEMPORAL DATA

MINING

Spatiotemporal data mining refers to the extraction of knowledge, regularly repeating re-

lationships, and interesting patterns from spatiotemporal data [35]. In recent years, many

spatiotemporal frequent pattern mining algorithms were developed for evolving region

objects [36–42]. These algorithms focus on the discovery of spatiotemporal co-occurrence

patterns by inspecting the spatiotemporal overlap (i.e., co-occurrence of instances in spa-

tial and temporal dimensions). We will investigate the sequences of event types whose

instances frequently follow each other in spatiotemporal context. Our discussion of the

current work on spatiotemporal frequent pattern mining literature starts with types of

spatiotemporal knowledge to be extracted from spatiotemporal data, primarily from tra-

jectories. Then, we will present the recent research work on temporal sequence patterns,

spatial colocation patterns, and spatiotemporal co-occurrence patterns. Lastly, we will

discuss the different types of spatiotemporal sequence patterns, and compare them with

our work.

2.1 Types of Spatiotemporal Knowledge

There are eight categories of the spatiotemporal knowledge discovery described by Abra-

ham et al. in [43], Roddick et al. in [44], and Shekhar et al. in [34] are: outlier, asso-

ciation (coupling), generalization (summarization), prediction, clustering (partitioning),

hotspot, evolution rule (change), and meta-rule. Table 2.1 shows the descriptions of

these knowledge types in detail with the example data mining applications in the liter-

ature. The tasks in frequent pattern discovery from spatiotemporal data require mining

of multiple types of knowledge from the above-mentioned categories [19]. The exam-

ples of frequently occurring spatiotemporal patterns can be seen in various scientific

fields such as material science, epidemiology, biology, meteorology, ecology, and astron-

omy [10–13, 45, 46]. For instance, identification of anomalous moving objects (outlier

detection) can be used in ecology for detecting outliers in bird migration. Another ex-

ample is the spatiotemporal hotspot detection, which can be used for understanding the

dynamics of epidemics in a geographic region.

Our pattern of interest is the spatiotemporal event sequences. The spatiotemporal

event sequences fall under the category of spatiotemporal associations (or couplings).

The patterns in our work (i.e., the event sequences) are formed by a series of event types

(feature types), whose instances frequently satisfy the spatiotemporal follow predicate.

The resulting sequence patterns (event sequences) signify the relationships among the

different event types and their strength in the datasets.

2.2 Temporal Sequence Patterns

Classical sequential pattern mining is concerned with discovering a set of attributes,

shared across time, among a large number of objects in a given sequence dataset [14].

The sequence data contain lists of time annotated transactions, where each transaction

contains a set of discrete attributes (in other words items). Notable algorithms for dis-

covering sequential patterns are: Srikant and Agrawal’s AprioriAll algorithm [17], Zaki’s

SPADE algorithm [14], and Pei et al.’s PrefixSpan algorithm [61]. These algorithms are

primarily concerned with the time point data, where the temporal aspects of the objects

in the datasets are represented as timestamps.

There is also a branch of sequential pattern mining, where researchers investigate the

time interval patterns. Allen introduced a set of algebraic operations for temporal inter-

vals [7]. These algebraic operations can be seen in Table 2.2. Allen’s interval algebra is

widely used in temporal data mining applications. In recent years, many algorithms

for the discovery of sequential patterns from time interval data has been proposed.

Papapetrou et al. used an enumeration tree to discover arrangements (sequences) of

12

Table 2.1: Types of spatiotemporal knowledge

Type Description Example

Outlier Spatiotemporal outliers refers to the objects
whose non-spatiotemporal attributes signifi-
cantly differs from those of other objects in
its spatiotemporal neighborhood

Identification of anomalous mov-
ing objects [47], discovering flow
anomalies in spatial networks [48]

Association
(Couplings

in [34])

Patterns and association rules formed by
feature types, where instances of participat-
ing types satisfies a complex or simple spa-
tiotemporal predicate [49]

Discovering STCOPs [37], mining
spatiotemporal sequential patterns
[50]

Generalization
(Summarization

in [34])

Similar to the classical data mining counter-
part [51], spatiotemporal generalization is
the process of data aggregation using con-
cept hierarchies to create a compact repre-
sentation of spatiotemporal data [34, 44]

Summarization of network trajecto-
ries in K-primary corridors [52]

Prediction Spatiotemporal prediction aims to learn a
model that can predict a target variable de-
pendent on spatiotemporal explanatory vari-
ables [34]. When the variable is categorical,
the task is also referred to as classification.

Dynamic spatiotemporal models
with Bayesian hierarchical frame-
work [53], spatiotemporal autore-
gressive regression [53]

Clustering
(Partitioning

in [34])

Spatiotemporal clustering is the task of
grouping similar data items based on their
spatial, temporal, or spatiotemporal at-
tributes [54]

Spatiotemporal event clustering
[55], trajectory data partitioning
based on their similarity [56]

Hotspots Hotspots are special clusters (or regions)
where an attribute or the number of spa-
tiotemporal objects are unexpectedly higher
within particular time intervals [34]

Discovery of emerging spatiotem-
poral hotspots for epidemic dis-
eases [57]

Evolution Rule
(Spatiotemporal
Change in [34])

Evolution rules refer to the explicit spa-
tiotemporal evolution actions (variations in
spatial and temporal footprints), which a
particular set of objects frequently performs
[58].

Identification of spatial changes be-
tween snapshots using raster-based
spatial footprints [59], spatiotempo-
ral volume change patterns [60]

Meta-rule Process of performing data mining on a set
of discovered knowledge instead of datasets
[44]

Tracking the differences between
spatiotemporal association rules
that change over different datasets
[44]

interval-based events using a hybrid depth-first and breadth-first search based (H-DFS)

method [62]. Winarko and Roddick introduced ARMADA, which is a projection-based

efficient time interval pattern mining algorithm that utilizes an iterative candidate gen-

13

Table 2.2: Temporal relationships in Allen’s interval algebra [7]

Relationship Symbol Illustration

A before B A < B
A

B

A meets B A m B
A

B

A overlaps B A o B B
A

A finished by B A fi B B
A

A contains B A di B B
A

A starts B A s B B
A

A equals B A = B B
A

A started by B A si B B
A

A during B A d B B
A

A finishes B A f B B
A

A overlapped-by B A oi B B
A

A met-by B A mi B B
A

A after B A > B B
A

eration and pruning approach [63]. Wu and Chen proposed TPrefixSpan, which is a

modified version of the PrefixSpan algorithm [61] for mining temporal patterns from

time interval events. Patel et al. introduced the IEMiner algorithm which extends H-

DFDS method [62] by extending the sequences during the discovery process. Moskovitch

and Sharar proposed KarmeLego for the discovery of frequent symbolic time intervals

related patterns [64]. KarmaLego uses a temporal abstraction process from raw times-

tamped data, and utilizes a data structure (enumeration tree) and exploits the transitivity

of Allen’s operations for efficient candidate sequence generation.

2.3 Spatial Colocation and Spatiotemporal Co-occurrence Patterns

Spatiotemporal co-occurrence pattern mining is conceptually similar to the classical fre-

quent pattern mining from transactional databases. However, the implicit spatial and

14

temporal semantics (specifically spatial and temporal overlap) are required to be identi-

fied, and the identification of these relationships dramatically increase the complexity of

the STCOP mining algorithms due to the expensive join operations with spatiotemporal

predicates. In spatiotemporal frequent pattern mining, the underlying spatiotemporal

semantic relationships (such as co-occurrence, sequence, or periodicity) are the main

subjects of discovery. The co-occurrence relationship is originated from the significance

of closeness in spatial and temporal dimensions, by asserting the instances located in

spatial and temporal proximity are more related than the others [65].

One pioneering advancement in spatial data mining is the discovery of spatial colo-

cation patterns [66]. The spatial closeness of the objects is introduced as the colocation

relationship. Given a set of boolean spatial features (events), spatial colocation mining

aims to discover the subsets of events whose instances are frequently colocated together.

As a matter of course, it is often very hard to observe point-based spatial objects shar-

ing exactly the same locations. Therefore, a neighborhood relationship (based on user

specified distance thresholds) is used for defining the colocations. The spatial colocation

mining algorithm in [66] uses an Apriori-based approach [67], which requires a spatial

join algorithm while generating and pruning the candidate patterns. Partial-join and

join-less approach for mining colocations were presented in [68] and [69]. Furthermore,

statistically significant colocation patterns (SSCP) represent subsets of event types whose

instances are colocated due to spatial dependency [70].

While colocation refers to purely spatial closeness of objects, the term co-occurrence

is more frequently used for spatiotemporal closeness. Mixed-drove spatiotemporal co-

occurrence patterns (MDCOP) are introduced in [71]. MDCOPs represent the subsets of

spatiotemporal event types whose point-based instances are frequently occurring in spa-

tial and temporal proximity. The aim of discovering MDCOPs is to find mixed groups

(i.e., of different event types) of spatiotemporal instances, which are spatially close-by

and temporally persistent in time. MDCOP-mining algorithms presented in [71] can be

15

interpreted as a temporal extension of spatial colocation mining algorithms to spatiotem-

poral context. The proposed MDCOP-Miner algorithms follow a similar Apriori-based

approach. Following MDCOPs, the sustained emerging (SECOP) [72], the partial (PA-

COP) [73], and the periodical (PECOP) [74] spatiotemporal co-occurrence patterns are

introduced. Fundamentally, emerging, partial, and periodical co-occurrence relation-

ships are quite similar to the MDCOPs. They include additional constraints for more

complex spatiotemporal relations, and require new interest measures tuned for these

constraints. SECOPs represent the subsets of event types whose instances are increas-

ingly colocated in space and time. PACOPs are concerned with the discovery of spa-

tiotemporal co-occurrences that are partially (not as frequently) present in the database.

PECOPs represent the subsets of event types that are periodically co-occurring.

Spread patterns of spatiotemporal co-occurrences over zones (SPCOZ) are introduced

in [75]. SPCOZs represent the subsets of event types whose instances are spreading

and co-occurring over particular zones. The main purpose of the mining SPCOZs is

discovering spreading structures that co-occur together both in space and time (meaning

correlations among the spreading structures are mined instead of trajectories). Another

instance of spatiotemporal co-occurrence pattern mining is composite spatiotemporal co-

occurrence (COSTCOP) [76], where a new composite prevalence measure (using spatial

and temporal dimensions together) is developed, and a pruning technique is developed

for improving the performance of the mining algorithm.

The aforementioned spatiotemporal co-occurrence or colocation models are designed

for event instances with point-based geometric representations. As point-based instances

exhibit nearly imperceptible spatial and temporal overlap relationships among each

other, the spatial and temporal neighborhoods are to be defined for characterizing co-

occur-rences or colocations. However, in spatiotemporal co-occurrence pattern mining

from evolving region trajectories (defined over polygon data type), it is highly likely

to observe spatial and temporal coincidences (namely spatiotemporal overlap relation-

16

ships). Mining spatiotemporal co-occurrence patterns from datasets with evolving re-

gions was introduced in [36]. The event instances, which are represented by poly-

gons evolving over time, are treated as three-dimensional continuous objects. To de-

cide whether an overlap among these three-dimensional structures form a significant

co-occurrence, a spatiotemporal version of Jaccard significance measure is used. Sim-

ilar to the other co-occurrence patterns, an Apriori-based algorithm (including a spa-

tiotemporal join over spatial and temporal overlap predicates) is used. In [37], a novel

filter-and-refine strategy for pruning the instances in the spatiotemporal join phase using

OMAX measure is proposed. We improved this algorithm further in [38] by utilizing spa-

tiotemporal indexing techniques for trajectory-based instances and in [41] by utilizing a

frequent pattern growth-based filter. Additionally, we provided a distributed STCOP

mining framework using columnar databases in [40].

2.4 Spatiotemporal Sequence Patterns

In the spatiotemporal frequent pattern mining literature, the term sequence (or its deriva-

tives such as sequence patterns, sequential patterns) is used for identifying different types

of knowledge from spatiotemporal data. These include sequences of locations frequently

visited by spatiotemporal objects [77], sequences of event types whose instances follow

each other [50], and sequences of spatiotemporal association rules [78].

Cao et al. describe the spatiotemporal sequential patterns as ’the routes which are

frequently followed by objects’ in [77]. Namely, a list of frequently visited locations is

discovered from a dataset of spatiotemporal trajectory segments. This work is related to

the movement patterns of spatiotemporal objects in the form of trajectory segments. Sim-

ilarly, Giannotti et al. introduce trajectory patterns, and present a mining algorithm for

mining trajectory patterns in [79]. Trajectory patterns represent a set of spatiotemporal

objects that frequently visit similar locations with similar visiting times. While Giannotti

et al.’s work is more focused on the behavioral aspect of spatiotemporal objects, the se-

17

quences refer to the ordered lists of visited locations. Verhein introduces the mining on

complex spatiotemporal sequence patterns in [78]. Complex spatiotemporal sequence

pattern mining focuses on the sequences of spatiotemporal association rules that repre-

sent frequently occurring movements of spatiotemporal objects appearing between two

regions during a particular time interval. Namely, the work is interested in discovering

the sequences of spatiotemporal meta-rules (movement patterns) for groups of objects.

Huang et al. presented a framework for mining sequential patterns from spatiotem-

poral event datasets in [50]. The sequential patterns, in [50], refer to a sequence of

event types from spatiotemporal objects with event type annotations. They formally de-

fine a follow relationship between the point-based event instances of two different event

types, present significance measures for sequences, and introduce two iterative pattern

growth algorithms for mining task. Their algorithms create a pattern tree and expand its

nodes with recursively calling the tree expansion procedures (namely, follow joins). It

should be noted that sequential pattern mining in [50] considers a totally ordered event

instances. In [80], a mining algorithm for partially ordered subsets of event types are

presented.

Similar to [50], we are interested in sequences of event types, and our work is not ap-

plicable for discovering sequences of locations or movement behaviors. We use the term

spatiotemporal event sequence to avoid confusion with other types of existing sequence

or sequence pattern definitions. Our work focuses on discovering frequently occurring

sequences of event types from the evolving region objects that are totally ordered.

Apart from those, Zhang et al. proposed the Splitter algorithm, which discovers fine-

grained sequential patterns from semantic trajectories [81]. The algorithm firstly re-

trieves spatially coarse patterns and later reduces them to fine-grained patterns. The

discovered patterns are sequences of categorized locations (deduced from semantic tra-

jectories). Another example of spatiotemporal sequences, called spatio-sequences, are

presented by Salas et al. in [82]. The spatio-sequence mining discovers temporal se-

18

quences of ordered spatial itemsets that are used for coupling geographically neighbor-

ing phenomena.

Frequent
Pattern
Mining

Sequential
Pattern
Mining

Co-location
Pattern
Mining

Spatiotemporal
Event Sequence

Mining

Co-occurrence
Pattern Mining

Event
Sequence

Mining

C T

S ST

C

T T

S ST

ST

Spatiotemporal

Temporal

Spatial

Classical

Figure 2.1: Family tree of spatiotemporal event sequence mining

Spatiotemporal event sequence (STES) mining has its roots in both spatial and tempo-

ral patterns mentioned here. In Figure 2.1, we depict an overview of the evolution of the

spatiotemporal event sequences from the perspective of pattern mining. Firstly, similar

to the temporal sequence patterns (i.e., temporal event sequences) we are interested in

finding event types whose instances temporally follow one another. In addition to that,

STES mining is also interested in the spatial proximity of the instances that temporally

follow each other. Unlike the earlier approaches, we created a spatiotemporal follow

relationship that is based on the spatiotemporal co-occurrence relationships. We will

throughly explain the follow relationship in Chapter 5–Section 5.1.

19

3 PRELIMINARIES ON SPATIOTEMPORAL DATA

The rapid advancements in satellite imagery technology (MODIS Terra and Aqua [83],

NOAA GOES [84], NASA’s SDO [85]), GPS enabled devices (mobile phones, vehicles,

smartwatches), location-based web services (Google Maps, Uber, Lyft), and social net-

works (Facebook, Twitter, Swarm) caused a proliferation of massive spatiotemporal data

sets in the last two decades. Many consumer-oriented applications from social networks

to mobile services including routing and taxi services consume and generate spatiotem-

poral location data [86]. Furthermore, there are many massive spatiotemporal data repos-

itories generated by scientific resources that are monitoring the moving objects. These

include solar events [22], animal migrations [87], and meteorological phenomena [88].

The explosive growth in spatiotemporal data as well as the emergence of new technolo-

gies emphasize the need for automated discovery of spatiotemporal knowledge. One of

the most interesting data mining applications is spatiotemporal data mining from tra-

jectory data. Some examples of trajectory mining include destination and future route

prediction based on trajectory mining [89], real-time monitoring of water quality using

temporal trajectories of live fish [90], analyzing the trajectories of bird migrations [91],

searching for similar trajectories in spatial networks [92], and traffic mining [93].

In this chapter, we will focus on the spatiotemporal object modeling with a focus on

the moving objects with extended geometric representations. Our spatiotemporal event

sequence mining algorithms primarily make use of region trajectories whose polygon-

based region representations continiously evolve over time. In the rest of this chapter, we

will firstly introduce the conceptual modeling of spatiotemporal trajectories and moving

objects. Then, we will present the evolving region trajectories and spatiotemporal event

instances which are the base data types in our mining schema.

3.1 Moving Objects and Spatiotemporal Trajectories

Spatial objects that move or change their shape over time are often referred to as moving

objects. Mainly, there are two important abstractions of moving objects: moving point

objects and moving region objects [94]. In [95], Guting et al. presented an abstract

and a discrete data model for storing and processing moving objects. In the abstract

model, geometric objects are modeled as point sets. For continuous objects such as

regions, the set of points are infinite. Conceptually, the abstract model is simple, however

implementation cannot be performed without transformation. Guting et al.’s discrete

model is conceptually more complex, but it can be implemented practically in real-life

applications.

Spatiotemporal trajectories are essentially the paths followed by the moving objects.

In other words, trajectories describe the physical movement of moving objects that are

changing their locations over time. For the simple case of moving point objects, the

trajectories can be represented as line segments or curves that pass from the recorded

locations of the moving point objects. On the other hand, for moving region objects, tra-

jectories create a three-dimensional1 path which can be depicted as a three-dimensional

volume.

The data modeling for spatiotemporal trajectories is studied in many recent studies on

spatiotemporal databases [79, 91, 95–99]. Most notably, in [91], Spaccapietra et al. state

that there are two facets of a trajectory that are: geometric facet and semantic facet (See

Figure 3.1). The geometric facet considers the geometric representation of the object in

space over time and can be implemented using the raw trajectory data model. The raw

location data of moving objects are recorded and create the trajectory. The semantic

facet, on the other hand, gives a meaning or context to the movement of the object. The

semantics of the trajectory refers to the application oriented meaning of the movement,

1 In this case, the space is considered as two-dimensional. For the case of three dimensional space, trajecto-
ries create a four-dimensional hyper volume path.

21

t0

t1

t2

t3 t4

t5

t6

t7

t8

t9

t0 - Home

t2 - Workplace

t4 - Lunch at restaurant

t7 - Movies

t9 - Training at gym

Raw trajectory
recorded as spatial
points from a
moving object

Semantic trajectory
recorded as points
with contextual
information

Figure 3.1: Raw trajectory (on the left) recorded as spatial locations of moving points object and
the semantic trajectory (on the right), which contains the application specific contex-
tual information

and it is linked or mapped to the real-life geographical knowledge. Semantic trajectories

can be represented with structured (also referred to as symbolic in [99]) or semantic [98]

trajectory data models. Adding the contextual information to the trajectories not only

enriches the trajectory data model, but also help us understand the activity, and may

reduce the storage requirements of the model. In Figure 3.1, we illustrate the geometric

and semantic facet of a moving object using the raw trajectory data model (on the left)

and the semantic trajectory data model (on the right).

3.2 Evolving Region Trajectories

Moving objects is one of the most prominent data types in spatiotemporal database

research. The spatial aspect of a moving object is represented with geometric objects

(such as points, lines, or polygons) that show its locations. As the name suggests, the

locations of the moving objects change over time. A moving object is an abstraction

representing the movement of a spatial object whose location change over time.

22

A category of moving objects is moving region objects. The locations of moving region

objects are represented using polygon-based spatial data types. Thus, apart from the

mere location, moving region objects also encapsulate time-dependent spatial change

information such as shape, rotation, and areal evolution. It is also fair to state that

not all the real-life phenomena designed as moving region objects have all the spatial

evolution characteristics. In some cases, the change never happens or these evolution

characteristics are not relevant to the domain. We can give the following examples:

• Per capita income of U.S. counties in quantiles as moving region objects: Each

quantile of county per capita income can be represented as a complex moving

region object (of multipolygons) that changes its complex locations over time as

the per capita income ranks (its quantile) of counties change. The location and

area of these regions are important for socio-economists. For instance, they can

be used for showing that the wealth is concentrated on densely populated urban

areas. However, the shape of these regions are primarily based on the shape of the

counties, and it is not particularly interesting. Similarly, the rotation attribute is not

applicable for such a model, since the fixed boundaries of counties do not rotate.

• Epidemics as moving region objects: The regions affected by epidemics can be

represented as moving regions whose shapes change over time as the epidemics

spread. The quantification of the area of affected regions, as well as the rate of

spread are important factors for the epidemiologists. However, the rotation of the

infected regions is not. The shape of the infected region is also not important. For

instance, knowing that the epidemic region is sigmoidal or elliptic does not provide

any relevant information.

• Naval ships as moving region objects: While in many applications ships are de-

signed as moving point objects, the large warships such as aircraft carriers, cruisers,

or destroyers can be modeled as moving regions. Unlike earlier examples, their

23

shape does not change and the area covered by them is not variable. However,

their movement and rotation can be of great importance.

• Tropical cyclones as moving region objects: Tropical cyclones are very intense

low-pressure wind systems, forming over tropical oceans with winds of hurricane

force. A tropical cyclone can be modeled as a moving region object, and unlike

the previous examples its location, area, shape, and, rotation evolve over time.

Depending on the application context, all of these evolution characteristics can be

important for the model.

Our algorithms for the discovery of spatiotemporal event sequences are designed for

trajectories of moving objects. However, they are primarily formulated for moving re-

gion objects whose location, area, shape, and rotation continiously change over time. We

model our simple trajectory data type as evolving region trajectory. Evolving region trajec-

tory is the trajectory of a moving region object whose spatiotemporal characterstics such

as location, area, shape, and rotation continiously evolve over time.

To model the evolving region trajectories, we use the raw trajectory data model [100],

which captures the recorded locations (as polygon-based geometries) of objects over time.

We model the evolving region trajectories as a list of times and locations. The basic

spatiotemporal data abstraction we use is the time-geometry pairs. A time-geometry

pair is denoted as tgi, and consists of a time object (denoted as ti) and a geometry object

representing the spatial location (denoted as gi).

tgi = 〈ti,gi〉 (3.1)

The time object can either be a timestamp or a time interval. A timestamp is a single

point in time dimension, which can be represented as a scalar value. On the other hand,

a time interval is a time range represented with a start time and end time such that

24

ti = [ti.start, ti.end), which is a halp-open time interval that does not include its end

time.

Then, the evolving region trajectories (denoted as erti in Eq. 3.2) are represented as a

list of chronologically ordered time-geometry pairs.

erti = {〈ti1 ,gi1〉, 〈ti2 ,gi2〉, . . . , 〈tik ,gik〉} (3.2)

where ti1 < ti2 < . . . < tik . For the case where the time object is represented as a

timestamp, the aforementioned inequality is trivial. For the time interval case, tij < tij+1

translates to tij .end 6 tij+1
.start as the time intervals are half-open. Time-geometry pair

annotation is a discretized trajectory representation, and we consider that the object’s

location persists (stays the same) during the time interval shown in a particular time-

geometry pair.

Figure 3.2: Three-dimensional modeling of a spatiotemporal event instance (insi) is illustrated
with volume calculation from individual time-geometry pairs.

25

3.3 Modeling Spatiotemporal Event Instances and Examples

The spatiotemporal event instances (denoted as insi) are objects of a particular event

type, which are the primary subjects of STES mining. An event type is the category,

class, or group of the event instances. We model the instances using the evolving re-

gion trajectories. A spatiotemporal event instance consists of three attributes: a unique

identifier, an event type, and an evolving region trajectory.

insi = (id, ei, erti)

insi = (id, ei, {〈ti1 ,gi1〉, 〈ti2 ,gi2〉, . . . , 〈tik ,gik〉})
(3.3)

The instance is an abstraction of an evolving region trajectory with a unique identifier

and an event type. Apart from the raw spatiotemporal data associated with the instances,

we also have the lifespan and the minimum bounding rectangle of the instances. These two

show the temporal and spatial boundaries of the instances. The lifespan of an instance

is the time interval between the start time and end time of the instance.

lifespan(insi) = [ti1 , tik) // Following Eq. 3.3 (3.4)

The minimum bounding rectangle (MBR) of an instance is the minimum orthogonal

rectangle that encloses all the geometries of the instance’s trajectory. We can find the

MBR by spatially unioning all the geometries of the instance’s evolving region trajectory.

MBR(insi) =
⋃

j={1,2,...,k}

gij // Following Eq. 3.3, where
⋃

is spatial union operator (3.5)

In Figure 3.2, we demonstrate the three-dimensional modeling and spatiotemporal

volume transformation of a spatiotemporal event instance. The spatiotemporal volume

26

of an instance is calculated by summing the volumes of time-geometry pairs during its

lifespan (as shown in Eq. 3.6).

V(insi) =

[ts,te)∑
∆ti=(ti+1−ti)

Area[ti,ti+1)×∆ti (3.6)

The volume of an individual time-geometry pair is found by multiplying the area of

the region geometry by the duration (the length of the time interval) as shown in Eq. 3.7.

Note that, for each time-geometry pair, the volume is calculated in a discrete fashion.

V[ti,ti+1)(insi) = Area[ti,ti+1) × (ti+1 − ti) (3.7)

Note that the Area[ti,ti+1) function returns the area of the geometry, gi (the geometry

at time interval [ti, ti+1)).

27

4 SPATIOTEMPORAL CO-OCCURRENCES AND SIGNIFICANCE

MEASUREMENTS

An important aspect of data mining research is the determination of the interestingness

of patterns. In classical frequent pattern mining tasks (e.g. shopping basket analysis),

the main goal is to identify items frequently appearing together in an itemset. While

it seems trivial, such analyses require an appropriate interestingness measure to assess

the strength of relationships among different types of items. Measures, such as support,

confidence, correlation, and entropy, have been extensively used in frequent pattern

mining [101], [102].

Spatial and spatiotemporal extensions of frequent pattern mining presents a similar

challenge, where the choice of objective measure may lead to the discovery of inadvis-

able or uninteresting information depending on the context. Unlike classical frequent

pattern mining from binary features, in both spatial and spatiotemporal pattern mining

tasks, the spatial or spatiotemporal relationships among items (or instances) are not ex-

plicit. Therefore, it is considered necessary to initially transform the implicit spatial and

temporal information to a transaction-like embodiment. We will mention the examples

of such transformations in the literature in Section 4.1.

There has been extensive research on understanding and assessing the quality, inter-

estingness, and appropriateness of objective measures for different tasks and domains.

However, there is no prevalent agreement on selecting the right measure [103]. Selection

of the interestingness measure is of great importance, because many measures create

conflicting information due to their significantly different properties [104]. Many have

agreed there is no universal solution for interestingness measure selection, because the

appropriateness of the measures is dependent on the domain and data mining task [105].

In this chapter, we focus on measuring the strength of spatiotemporal co-occurrences

in the context of spatiotemporal frequent pattern mining from evolving region trajec-

tories. The spatiotemporal co-occurrence relationship is one of the two predicates of

spatiotemporal follow relationship that characterizes the sequence generating behavior

in spatiotemporal event sequence mining. We will explain the follow relationship and its

relation to the spatiotemporal follow relationship in Chapter 5. The co-occurrence rela-

tionship among the event instances is characterized by spatial and temporal overlap. The

significance of a co-occurrence indicates the strength of the overlap, and it is primarily

utilized for filtering the spurious co-occurrences from the genuine ones.

As shown in Chapter 3, the spatiotemporal event instances (denoted as ins) are rep-

resented with evolving region trajectories, and every instance has an event type that

represents the class of the instance. Evolving region trajectories are moving region ob-

jects whose spatial representations continuously evolve over time. An evolving region

trajectory is comprised of a chronologically ordered collection of time-geometry pairs

(tgi = 〈ti,gi〉). Each time-geometry pair represents the region-based location (gi) of the

instance at a particular time (ti). In Figure 4.1.a and Figure 4.1.b, we illustrate two ex-

ample spatiotemporal co-occurrences. In Figure 4.1.a, we demonstrate the co-occurrence

between two instances – insi and insj, where their regions spatiotemporally overlap dur-

ing their entire lifespans. In Figure 4.1.b, we display three co-occurring instances – insi,

2-D
Space

Timet0 t1 t2 t3 t4 t5 t6 t7

ins

i

ins

j

Timet0 t1 t2 t3 t4 t5 t6 t7

ins

i

ins

k

2-D
Space

ins

l

(a) (b)

Figure 4.1: Two example spatiotemporal co-occurrences among event instances are shown in (a)
and (b). In (a), insi co-occurs with insj. In (b), three instances (insi, insj, and insk)
co-occur.

29

insk, and insl. Note that, in Figure 4.1.b, all three instances spatially overlap between t4

and t5.

The instances are considered as three-dimensional objects (with one temporal and two

spatial dimensions) associated with a spatiotemporal volume. The strength (i.e., signif-

icance) of a co-occurrence is measured using the co-occurrence coefficient (denoted as

cce), and the co-occurrences are considered as significant, only if they pass the user-

determined co-occurrence coefficient threshold (cceth) . In the earlier spatiotemporal

co-occurrence pattern mining studies [37], [38], the co-occurrence coefficient is calcu-

lated using a spatiotemporal version of Jaccard (J) or OMAX measures. Both of these

measures utilize the three-dimensional volumes of the co-occurring trajectories when

assessing the significance of co-occurrences. However, using the J or OMAX measure

leads to unfair assessments in certain cases, which can cause the exclusion of the impor-

tant co-occurrences and the inclusion of spurious ones. In this chapter, we will develop

a novel and more relevant technique for significance measurement of spatiotemporal

co-occurrences, which can potentially alleviate these issues.

Although, we highlight the solar event data in our examples, the disproportions of

spatiotemporal data are common in nature. For instance, the proliferation and growth

of cancer stem cells differs significantly based on the micro-environment in which they

reside [106]. Another example is the drastic change of sizes in midget, normal, large,

and giant hurricanes and the tropical storms associated with them [107].

The rest of this chapter is organized as follows. We review the related work on spatial

close-by and spatiotemporal co-occurrence relationships in literature in Section 4.1. We

continue our discussion with STCOP mining and a real life example from solar event

data in Section 4.2. In Section 4.3 and 4.4, we explain the J+ and J∗ measures, in detail,

with algorithms and their important properties. We present our experimental evaluation

in Section 4.6. Finally, in Section 4.7, we will present a brief summary and present our

remarks.

30

4.1 Related Work on Spatiotemporal Data Mining

Below, we will present the related spatial and spatiotemporal data mining studies. In

these studies, the implicit spatial and temporal close by relationships are translated into

composite transaction-like structures (e.g., co-locations, flocks, episodes, co-occurrences).

While the mining subject of these studies are usually distinct for each study, all of them

focuses on the spatial or spatiotemporal closeness of objects. We will primarily explore

how they formalize the generic close by relationships in their respective studies.

4.1.1 Spatial Co-locations

Spatial association rules are association rules involving spatial relations among spatial

objects [108]. Kopersky and Han introduced a reference feature centric model for discov-

ering spatial association rules. In reference feature centric model, one or more user-

specified reference features are selected and transactions are created based on the spatial

proximity of the instances to the reference points. The spatial proximity is defined as

the generic close to (g_close_to) relationship, which conceptually includes topological

relations such as intersection, inside, or close by.

The spatial co-location patterns (or neighboring class sets) represent the subsets of

features whose instances are frequently located together [109], [110], [111], [112]. To find

the co-located objects, Morimoto introduced a space-driven partitioning strategy [109].

In this strategy, the space is divided into disjoint partitions and spatial instances are con-

sidered as a co-location only if they are located in the same space partition. Later, Huang

et al. presented an event-centric neighborhooding strategy for co-location pattern min-

ing [110]. The neighborhooding strategy can capture the spatial neighborhoods without

specifically determining the reference features or partitioning the space. The possible

criteria for forming neighborhoods include spatial (or spatiotemporal) relationships (ad-

jacency, overlap), metric relationships (distance-based approaches), or a combination of

31

these two. Xiong et al. used a buffer-based event-centric neighborhooding approach

for identifying the co-locations of spatial instances with extended geometric representa-

tions [111]. In the buffer-based model, given a distance d for forming a buffer, the spatial

instances are considered as co-located when their buffers spatially overlap.

Yoo et al. introduced the discovery of co-evolving spatial event sets in [113]. Co-

evolving spatial event sets represent the co-location patterns whose prevalence values

similarly evolve over time. In this work, the distance-based event centric neighborhood-

ing strategy (from [110]) is used to find co-location patterns. The prevalence of the

spatial co-location patterns are measured by the participation index. Participation index

is the minimum relative frequency of the participating event types in a pattern. Then,

a spatial prevalence time sequence, which is comprised of a sequence of participation

index values, is generated for each co-location pattern. To find the similarity between

two spatial prevalence time sequences, normalized Euclidean distance is used.

Mining collocation episodes is introduced in [114]. A collocation episode is defined

for point-based objects, and it is a sequence of spatial co-location relationships, each

describing which pairs of object types are close to each other over a significant time

window. The closeness of the co-location sequences are determined using an aggregate

distance function defined as either maximum or average pairwise distances between the

point-based objects.

4.1.2 Moving Cluster Analysis

The Relative Motion (REMO) framework was developed by Laube and Imfeld to dis-

cover the motion patterns in groups of spatiotemporal trajectories [115]. The framework

builds a REMO analysis matrix from the point-based spatiotemporal trajectories using

motion attributes (i.e., speed, change of speed, and motion azimuth). Later, the REMO

analysis matrix is analyzed to find the motion patterns such as constance, concurrence,

32

and propagation. For example, the concurrence pattern represents a group of objects

showing synchronous motion at a time interval.

This work was extended to to include the motion patterns using the spatial neighbor-

hood information in [116] and [117]. In other words, the motion patterns are spatially

constrained based on their proximity to generate more complex spatiotemporal patterns

that are track, flock, leadership, encounter, and convergence. Gudmundsson et al. for-

malized the spatial proximity using a circular impact range [116]. For example, the flock

pattern is the spatially constrained version of concurrence pattern. Namely, a set of ob-

jects is considered to form a flock, if they are within a circular region (of radius r) and

they move in the same direction. Apart from the impact range approach, Laube et al.

listed three more alternative approaches for spatial proximity constraints: (1) Maximal

length of cumulated distances to the mean or median center of the objects. (2) Average

length of the Delaunay edges of a group forming a relative motion pattern (3) Maximal

border length of the convex hull formed by a group of objects.

Kalnis et al. defined the problem of discovering moving clusters, and proposed

clustering-based methods to identify moving clusters [118]. For finding spatial clus-

ters (i.e., objects that are spatially close-by at a particular time) in each spatial snapshot,

they use the density-based spatial clustering algorithm, DBSCAN [56]. If there is a large

enough number of common spatial objects between two clusters in consecutive time slots,

such clusters are called moving clusters. The portion of common objects between two

consecutive clusters is measured by a Jaccard-like integrity measure – |ct∩ct+1|

|ct∪ct+1|
, where ct

and ct+1 denote two consecutive clusters (set oj objects) at times t and t+ 1.

4.1.3 Spatiotemporal Co-occurrences

Celik et al. introduced the mixed-drove spatiotemporal co-occurrence patterns (MD-

COPs) in [119]. Similar to Huang et al.’s work on co-location patterns [110], Celik et

al. used the distance-based event-centric neighborhooding approach to generate spa-

33

tiotemporal neighborhoods when mining MDCOPs [119]. In MDCOP mining, the time

frames are collapsed, meaning temporal framework is divided into disjoint time frames.

For each time frame (1) the event instances are considered to be in temporal neighbor-

hood and (2) the prevalent spatial co-locations, which occur during the same time frame

are found. Then, MDCOPs, which can be interpreted as temporally persistent spatial

co-location patterns, are determined by checking their temporal persistence (time preva-

lence). In [119], the time prevalence is measured as the ratio of time frames where a

co-location pattern is present to the total number of time frames. In Celik’s succeeding

work [120], the discovery of partial spatiotemporal co-occurrence patterns (PACOPs) are

inspected. PACOPs are very similar to MDCOPs. These two works differ in finding

the time prevalence of co-occurrence patterns. When finding PACOPs, the algorithm

considers the partially present (i.e., less frequently occurring) object types, and uses tem-

poral participation index when determining the time prevalence. MDCOP mining uses

a support-like time prevalence measure, which is based on the frequency, while PACOP

mining uses temporal participation index, which is based on the relative participation

(frequency).

Pillai et al. introduced spatiotemporal co-occurrence patterns (STCOP) and spatiotem-

poral co-occurrence rules (STCOR) from datasets with evolving regions [37] and [121].

Similar to the approach in [111], event instances are considered to form a spatiotemporal

co-occurrence, if there exists a spatiotemporal overlap among these instances. In con-

trast to Xiong’s approach, a buffer is not used and a spatiotemporal version of Jaccard (J)

measure is employed for measuring the significance of the co-occurrences. In addition

to the J measure, overlap measures OMIN (Overlap Minimum) and OMAX (Overlap

Maximum) and spatiotemporal versions of Dice, Cosine measures are also used as a filter

to the J measure.

34

Table 4.1: Summary of related work on spatial and spatiotemporal data mining

Pattern Type Spatial Temporal Strategy Data Type References

Spatial Association Rules 3 7
Reference feature selection

with a generic close to relation Point or Region [108]

Neighboring Class Sets 3 7 Disjoint spatial partitions Point [109]

Spatial Co-locations - 1 3 7
Event-centric approach

based on distance
Point [110], [112]

Spatial Co-locations - 2 3 7
Event-centric approach

based on buffer
Point or Region [111]

Co-evolving spatial event
sets

3 3
Event-centric approach based
on distance and normalized

Euclidean for time sequences
Point [113]

Collocation Episodes 3 3
Aggregate distance function

(avg. or max. pairwise
distance between points)

Point [114]

Relative Motion Patterns
(Flock, Convergence,

Leadership etc.)
3 3

Relative motion parameters
based on the pattern type and
spatial proximity constraints

(impact range, cumulated
distance, Delaunay edges,

length of convex hull)

Point [115], [116], [117]

Moving Clusters 3 3
Density based spatial

clustering and integrity
threshold

Point [118]

Mixed-drove
spatiotemporal

co-occurrence patterns
3 3

Spatial participation index in
collapsed time frames and

time prevalence (support-like)
Point [119]

Partial spatiotemporal
co-occurrence patterns 3 3

Spatial participation index in
collapsed time frames and

temporal participation index
based on relative frequency

Point [120]

Spatiotemporal
co-occurrence patterns

and rules
(STCOP/STCOR) from

evolving regions

3 3
Measure the strength of

spatiotemporal overlap using
the Jaccard measure

Region [37], [121]

4.1.4 Summary

While our work is related to spatial co-location mining and discovery of moving clusters,

it is primarily associated with STCOP mining. We demonstrate a summary of related

studies on spatial and spatiotemporal data mining in Table 4.1. Previous works in spa-

tiotemporal co-occurrence pattern mining can be classified into two categories based on

the data types: (1) Patterns discovered from point-based spatiotemporal event instances

such as MDCOPs or PACOPs [119] [120]; (2) Patterns discovered from region-based

spatiotemporal event instances such as STCOPs or STCORs [37] [121]. Our proposed sig-

35

Figure 4.2: Two co-occurring solar event instances (an active region and a sunspot) reported by
Heliophysics Event Knowledgebase [1] between ’2012-01-22 19:00’ and ’2012-01-24

07:00’.

nificance measures are designated for region-based spatiotemporal event instances that

form trajectories over time.

4.2 A Real-life Example

Spatiotemporal co-occurrences commonly occur among various types of solar events

(or features) such as Active Regions (AR), Coronal Holes (CH), Emerging Flux (EF), Fila-

ments (FI), Flares (FL), Sigmoids (SG), and Sunspots (SS) [122]. The spatial characteristics

such as location, shape, and size of solar event instances continuously evolve over time.

Figure4.2 demonstrates the spatiotemporal evolution of two co-occurring solar events

(one AR and one SS). The regions covered by these solar events are represented as poly-

gons evolving over time. Therefore, the solar events can be modeled as event instances

formed by evolving region trajectories.

As mentioned earlier, spatiotemporal co-occurrences appear when there is a spatiotem-

poral overlap (being at the same location and at the same time) of two or more event

instances, and their significance is calculated using the co-occurrence coefficient (cce).

The cce is calculated as the J, OMIN, and OMAX measures [37] [121]. The J measure

(shown in Eq. 4.1) is the ratio of intersection volume to the union volume of two or more

overlapping instances.

J(ins1, . . . , insn) =
V(ins1 ∩ . . .∩ insn)
V(ins1 ∪ . . .∪ insn)

(4.1)

36

Active
Regions

(AR)

Coronal
Holes
(CH)

Emerging
Flux
(EF)

Filaments
(FI)

Flares
(FL)

Sigmoids
(SG)

Sunspots
(SS)

Figure 4.3: Histograms of area, lifespan, and volume for seven different types of solar event
instances occurred between January 1, 2012 and December 31, 2012

The intersection volume is calculated from the areas of intersecting regions at times

where they spatiotemporally overlap, while the union volume is calculated by spatially

unioning the region geometries for all valid time intervals.

The overlap measures OMIN and OMAX (shown in Eq. 4.2 and Eq. 4.3) are calcu-

lated as the ratio of intersection volume to the maximum and minimum volume of the

instances.

OMAX(ins1, . . . , insn) =
V(ins1 ∩ . . .∩ insn)
max(ins1, . . . , insn)

(4.2)

37

OMIN(ins1, . . . , insn) =
V(ins1 ∩ . . .∩ insn)
min(ins1, . . . , insn)

(4.3)

The OMIN, OMAX, and J measures output a value on [0, 1] range. The value 0 means

there is no co-occurrence, and 1 means the co-occurring trajectories are equal1 2.

Figure 4.3 demonstrates the histograms of area, lifespan, and volume of seven differ-

ent solar event types registered by NASA’s Solar Dynamic Observatory telescope, and

reported by the Heliophysics Event Knowledgebase [123]. The area refers to the region’s

area for individual time-geometry pairs, while the lifespan refers to the time duration

between start and end times of the instances.

It can be observed from Figure 4.3 that lifespans, volumes, and areas of the instances

exhibit drastic variability. In Figure 4.3, the horizontal axes are in logarithmic scale and

shared across the rows in the same column. Events such as sunspots and filaments have

very long lifespans, while flares, sigmoids, and emerging flux events have very short

ones. On the other hand, the volumes of coronal holes and active regions are very large

compared to flares and emerging flux events. The spatiotemporal co-occurrence of large

volume event instances with smaller ones leads to very large union volumes. However,

the intersection volume is limited to the volume of the smaller event (See the J and

OMAX measure in Eq. 4.1). Furthermore, the events with longer lifespans and larger

areas have higher chances of co-occurring with other events. These situations breed

anomalies when assessing the strength of spatiotemporal co-occurrences.

Consider the following example scenarios to see the need for a different approach

when calculating the co-occurrence coefficient in spatiotemporal co-occurrence mining.

Example 1 – Coverage anomaly: In Figure 4.4.a, two event instances (insA and insB)

are demonstrated. insA has small area and shorter lifespan, and insB has larger area

1 The equality of trajectories means that all of the time-geometry pairs in trajectories are equal.
2 If an instance is completely covered by another one the OMIN outputs 1

38

Time

t1 t2 t3 t4 t5 t6 t7 t8

2D
Space

(a)

insA insB

Time

t1 t2 t3 t4 t5 t6 t7 t8

2D
Space

insC

(b)

insD

Time

t1 t2 t3 t4 t5 t6 t7 t8

2D
Space

insF

(c)

insGinsE

Figure 4.4: The illustration of three possible scenarios for spatiotemporal co-occurrences of in-
stances that can occur among event instances with unbalanced characteristics.

and longer lifespan. Since insA completely covers insB, we cannot have a stronger

spatiotemporal overlap given the state of those two instances. However, the J or OMAX

values for insA and insB are unfairly affected by the large union volume caused by insB,

even though insA strongly overlaps with insB throughout its entire lifespan.

Example 2 – Large volume bias: In Figure4.4.b, two event instances (insC and insD) are

depicted. insC and insD have both large areas and long lifespans. Their region geome-

tries slightly overlap only at three timestamps, which is a weaker co-occurrence when

compared to the examples in Fig 4.4.a and Fig 4.4.c. Even though their spatiotemporal

co-occurrence is limited to a small portion of their longer lifespan, the J or OMAX val-

ues for these two instances will tend to be larger because of two reasons: (1) in a fixed

spatial and temporal window, instances with larger areas or longer lifespans have higher

chances of spatiotemporal overlap, and (2) J and OMAX values tend to go higher as the

intersection volume of these two instances is likely higher.

Example 3 – Favoring the similar: In Figure4.4.c, three event instances (insE, insF and

insG) are demonstrated. insE and insF have both small areas and relatively shorter

lifespans. On the other hand, insG has moderate area but longer lifespan. For the

co-occurrence of insE and insF, the J value is higher as their union volume is not high.

However, for the co-occurrence of insE, insF, and insG, the J value stays small because of

larger union volume caused by insG. Similarly, the OMAX value is also small because of

the large volume of insG. Nevertheless, both insE and insF strongly co-occur with insG.

39

A similar problem is also present for Example 2, the instances with similar spatiotemporal

characteristics are unfairly favored by the J or OMAX measures especially when a fixed

threshold is used for pruning supposedly unimportant co-occurrences.

It can be seen that the J and OMAX measures tend to favor the event instances with

similar characteristics. Small volume instances have higher chances of having a strong co-

occurrence with each other. Similarly, large volume instances will have higher chances of

having a strong co-occurrence with large volume instances. Given the unbalanced nature

of solar data (or more generally, scientific data) and possibly disregarded but important

co-occurrences among these instances, it is necessary to develop novel techniques for the

significance assessment of co-occurrences.

4.3 Evolution of Spatiotemporal Jaccard Measure

4.3.1 Preliminaries

The support (denoted as supp in Eq. 4.4) measure for an association rule in classical

frequent itemset mining is the fraction of transactions that includes all the participating

item types (denoted as Ii) in the entire database [124]. Support is usually used for

assessing the significance of a pattern or an association rule and it represents the joint

probability of two or more item types in a sample dataset.

supp(I1, I2, . . . , In) = P(I1 ∩ I2 ∩ . . .∩ In) (4.4)

The Jaccard similarity coefficient has been extensively used for measuring the simi-

larity among item types (in shopping basket analysis) [125], documents (in text min-

ing) [126] [127], or spatial feature types and objects [128] [36], [37], [38]. Following the

40

item type representation in Eq. 4.4, the Jaccard similarity coefficient (Jaccard) for item-

sets is calculated as follows:

Jaccard(I1, I2, . . . , In) =
P(I1 ∩ I2 ∩ . . .∩ In)
P(I1 ∪ I2 ∪ . . .∪ In)

(4.5)

The generalized version of Jaccard similarity coefficient (in Eq. 4.5) can be expressed

as Steinhaus index [129]. Given a measurable space, and a measurement function µ,

Steinhaus index is defined as follows:

Steinhaus(I1, I2, . . . , In) =
µ(I1 ∩ I2 ∩ . . .∩ In)
µ(I1 ∪ I2 ∪ . . .∪ In)

(4.6)

For the case of classical Jaccard similarity coefficient (in Eq. 4.5), the cardinality of a

given sample set is the measurement function. In STCOP mining [37], a spatiotemporal

version of Jaccard measure (i.e., the J measure) is used for assessing the strength of a spa-

tiotemporal co-occurrence. The J is a version of Steinhaus index, where the measurement

function (µ) is the volume function (V) presented in Eq. 3.6. In Eq. 4.1, the measurement

function, V , calculates the intersection and union volumes of trajectory-based event in-

stances.

4.3.2 Intermediate Form: J+ Measure

Three problems associated with the J measure are mentioned in Section 4.2 with exam-

ple scenarios. One intuitive solution for alleviating the problems addressed in Section

4.2 is to modify the measurement function (µ) to eliminate the segments of trajectories

when calculating the cce. The criterion for elimination that we employ is the existence

of spatiotemporal co-occurrence (i.e., spatiotemporal overlap relationship) among the in-

stances. Using the overlap-based criterion can help us focus on segments of trajectories,

where co-occurrences appear.

41

Let J+ be an extended version of Jaccard measure. We define J+ as follows:

J+(ins1, . . . , insn) =
Vtilco(ins1 ∩ . . .∩ insn)
Vtilco(ins1 ∪ . . .∪ insn)

(4.7)

Here, the measurement function of J (that is V in Eq. 4.1), is replaced by an interval

volume function – Vtilco . Vtilco measures the volume of intersection and union at times

where there exists a spatiotemporal overlap among all the instances.

Definition 1. Interval volume function, Vtil, calculates the volume of given trajectory-

based geometries only for the time intervals given in a time interval list, denoted as

til.

For a given trajectory-based instance insi, interval volume function is calculated using

Vtil (Eq. 4.8). It calculates the volume of the trajectory-based instance only for the

intervals specified in the time interval list (til).

Vtil(insi) =
∑

[τk,τk+1)∈til
Areaτk(insi)× (τk+1 − τk) (4.8)

Definition 2. Time interval list (til) is a list of ordered time intervals. Each time interval

is defined by a pair of timestamp values (ti, tj), where ti < tj; for each i, j; 1 6 i < j 6 n

til = {(t1, t2), (t3, t4), . . . , (tn−1, tn)} (4.9)

Definition 3. For a given set of event instances S (where S = {ins1, . . . , insn} and n > 2),

the co-occurrence time interval list (denoted as tilco) contains time intervals where there

exists a spatiotemporal overlap among all the instances in S.

In Figure 4.4, we illustrated three example co-occurrences. To better explain the con-

cept, we will present the co-occurrence time intervals for each of these co-occurrences.

42

• In Figure 4.4.a, the tilco for insA and insB is [t2, t4] as these two instances overlap

between these time intervals.

• Similarly, in Figure 4.4.b, the tilco for insC and insD is [t3, t5].

• In Figure 4.4.c,

– tilco for insE and insF is [t4, t5].

– tilco for insE and insG is [t3, t5].

– tilco for insF and insG is [t4, t7].

– tilco for insE, insF, and insG is [t4, t5] as between t4 and t5 all three of insE,

insF, and insG spatiotemporally overlap. This is essentially the intersection of

tilco’s of (insE, insF), (insE,insG), and (insF, insG).

For the J+ measure, the amount of geometric calculations (i.e., determining the union

and intersection of instances, calculating the areas and volume) is limited to the co-

occurrence time intervals. Space requirement is also reduced, because for each co-

occurrence the intersection and union geometries are included only if there exists a

spatiotemporal overlap among all participating instances. However, the J+ measure has

potential drawbacks regarding the filtering mechanism (i.e., elimination of particular

segments of spatiotemporal instances).

For a spatiotemporal co-occurrence which has three or more participating instances,

co-occurrence time interval list only includes the time intervals in which trajectories of

all participating instances overlap. Nevertheless, any event of co-occurrence between two

instances is a region of interest, and should be considered. These regions can be disre-

garded when calculating the J+. Another problem stemming from the same issue is the

antimonotonic property of J+. STCOP mining algorithms efficiently employ downward

closure property, and require the significance measures to carry antimonotonic property.

Lemma 1. J+ measure is not antimonotonic.

43

ins1
ins2

ins3

t1 t2 t3 t4t1 t2 t3 t4

Area t1 t2 t3 t4

ins1 75 80 70 70

ins2 80 90 85 95

ins3 100 120 60 N/A
(ins1 ∩ ins2) 10 80 70 0

(ins1 ∩ ins3) 0 80 0 N/A
(ins2 ∩ ins3) 0 90 0 N/A
(ins1 ∪ ins2) 145 90 85 165

(ins1 ∪ ins3) 175 120 130 N/A
(ins2 ∪ ins3) 180 120 145 N/A

(ins1 ∩ ins2 ∩ ins3) 0 80 0 N/A
(ins1 ∪ ins2 ∪ ins3) 245 120 145 N/A

Figure 4.5: An example co-occurrence of three spatiotemporal instances with the area values at
particular timestamps.

Proof. We will present a proof by contradiction. Assume that J+ measure is antimono-

tonic. In Figure4.5, the locations of three spatiotemporal instances for four different

timestamps are demonstrated, as well as the corresponding area values of instances,

their intersections, and unions for each timestamp. Let the time difference between

each timestamp be (τ=ti−ti−1). Then, the J+ value of any spatiotemporal co-occurrence

of two instances (i.e., J+(ins1, ins2), J+(ins1, ins3), J+(ins2, ins3)) must be greater than

or equal to the J+ value of any spatiotemporal co-occurrence of three instances (i.e.,

J+(ins1, ins2, ins3)).

J+(ins1, ins2) =
τ(10+ 80+ 70)

τ(145+ 90+ 85)
= 0.5

J+(ins1, ins2, ins3) =
τ(80)

τ(120)
=̃0.66

J+(ins1, ins2) < J+(ins1, ins2, ins3)

44

This contradicts with the earlier assumption of J+ measure being antimonotonic as the

value of the measure for this particular example increased as the cardinality of the co-

occurrence increase. Therefore, the J+ is not an antimonotonic measure.

4.4 J∗ Measure

A problem with the J+ is that it does not consider the spatiotemporal co-occurrences

appearing in the subsets of participating instances, but only considers the intervals that

all participating instances spatiotemporally overlap. For the example shown in Figure 4.5,

the J measure would incorporate all the geometries (from t1 to t4) for all instances when

calculating the union volumes (whether there exists a co-occurrence or not). On the

other end of spectrum, the J+ measure only calculates the union volume for the co-

occurrence among all the participating instances, but does not reflect any information

about the co-occurrences among the subsets of the participating instances. Accordingly,

to eradicate the problems regarding the J measure and avoid the neglect of the subset co-

occurrences, we introduce the concept of cross co-occurrences, which provides foundation

for the antimonotonic J∗ measure.

Definition 4. A set of cross co-occurrences (xco) in a spatiotemporal co-occurrence is the

spatiotemporal overlap relationships, which occurred among the 2-subsets of participat-

ing instances.

Definition 5. For a given set of event instances S (where S = {ins1, . . . , insn} and n > 2),

cross co-occurrence time interval list (denoted as tilxco) contains time intervals where

there exists a spatiotemporal overlap among at least two instances in S. Alternatively, let

SubS be a 2-subset of S such that SubS={insi1 , insi2}, where 1 6 i1 < i2 6 n. Then,

45

cross co-occurrence time interval list for S is the temporal union of the co-occurrence

time interval lists of each 2-subset of P.

tilxco =
⋃

SubS⊆S
tilco(SubS) (4.10)

where tilco(SubS) denotes the co-occurrence time interval list of instances in SubS.

Let J∗ be a significance measure for spatiotemporal co-occurrences. We define the J∗

measure using the interval volume function (in Def. 1) and the cross co-occurrence time

interval list (in Def. 5) as follows:

J∗(ins1, . . . , insn) =
Vtilxco(ins1 ∩ . . .∩ insn)
Vtilxco(ins1 ∪ . . .∪ insn)

(4.11)

While the J, J+ and J∗ measures might seem similar in notation, they are considerably

different because of the variations stemming from the interpretations of co-occurrence and

cross co-occurrence time interval lists in their respective volume functions. For clarification,

we present an example following the instances shown in Figure 4.5. The J∗ and J+ values

are equal for size-2 co-occurrences because cross co-occurrence time intervals are the

same with co-occurrence time intervals. However, the J∗ for size-3 spatiotemporal co-

occurrence of ins1, ins2, and ins3 is different from J+ and thus, calculated as follows.

Firstly, the co-occurrence time intervals (tilco) for each 2-subset are determined.

• For ins1 and ins2 – tilco(ins1, ins2) = [t1, t4)

• For ins1 and ins3 – tilco(ins1, ins3) = [t2, t3)

• For ins2 and ins3 – tilco(ins2, ins3) = [t2, t3)

Then, the cross co-occurrence time interval list tilxco(ins1, ins2, ins3) is

tilxco(ins1, ins2, ins3) = tilco(ins1, ins2)∪ tilco(ins1, ins3)∪ tilco(ins2, ins3) = [t1, t4)

46

For the cross co-occurrence time interval, [t1, t4),

• The intersection volume is V{[t1,t4)}(ins1 ∩ ins2 ∩ ins3) = τ(0+ 80+ 0)

• The union volume is V{[t1,t4)}(ins1 ∪ ins2 ∪ ins3) = τ(245+ 120+ 145).

• Then, the J∗ value is J∗(ins1, ins2, ins3) =
V{[t1,t4)}(ins1 ∩ ins2 ∩ ins3)
V{[t1,t4)}(ins1 ∪ ins2 ∪ ins3)

=
80τ

510τ
=̃0.16

Earlier, we calculated the J+ value for the same instances as 0.66. The intersection

volume remains unchanged; however, as co-occurrence time interval is [t2, t3), the union

volume for J+ is calculated as 120τ, which is different from 510τ for J∗.

The J∗ measure, unlike the J measure, does not particularly favor the instances, which

carry similar volume characteristics. It acknowledges the spatiotemporal co-occurrence

of all participating instances as the main event of interest, while also considering the

cross co-occurrences appearing among the subsets of participating instances. Regard-

less of unbalanced characteristics instances may have, the regions of interest for J∗ mea-

sure is only limited to co-occurrence and cross co-occurrences. Therefore, the J∗ can be

considered less biased when handling the coverage anomalies and bias created in the

co-occurrences by small or large volume instances.

Another important aspect of the problem is the storage requirements and computa-

tional complexity. For all measures derived from Jaccard (J, J+, J∗), the numerator in

the ratio is the volume of the spatiotemporal intersection of all instances. However, the

denominator, which calculates union volume, changes drastically. Especially, for long-

lasting events, storage of the union volumes may create huge storage overhead. From

a practical point of view, storing only cross co-occurrences can greatly reduce storage

requirements. The geometric calculations for determining unions and intersections are

typically very expensive operations. Theoretically, the upper bound of geometric calcu-

lations for the J, J+, and J∗ measures are the same (Consider the case where all instances

overlap at all time intervals).

47

4.4.1 Algorithms for J∗ Calculation

We introduce two algorithms for calculating the J∗ measure. Our first algorithm (shown

in Algorithm1) is designed for calculating J∗ measure for two event instances. The sec-

ond one is the generalized algorithm (shown in Algorithm2). It calculates the J∗ measure

for two or more event instances. In both of our algorithms, we consider instances are

modeled as a list of timestamp-geometry pairs [100]. The list of auxiliary functions used

in J∗ calculation algorithms are listed, and their descriptions are demonstrated in Table

4.2.

Table 4.2: Auxiliary functions used in J∗ calculations

Function Description

FindCoexistence(ins1,ins2) The function returns a coexistence time interval list
(tilce) that contains intervals where the lifespans of
two given instances (ins1, ins2) temporally overlap.

FindCrossCooccurrence(instances) The function returns the cross co-occurrence time in-
terval list (tilxco - See Def. 5) of a set of instances.

〈ins〉.GetGeometryAt(ivl) This function is applied to a spatiotemporal instance
(ins). It returns the region geometry of the instance at
the given time interval (ivl).

〈ins〉.GetTimeIntervals() The function returns the set of uniformly sampled
time intervals of the instance (ins).

〈Collection〉.Insert(item) The function inserts an item to a collection.

Intersection(geometries) The function returns the spatial intersection geometry
of a given collection of geometries.

Union(geometries) The function returns the spatial union geometry of a
given collection of geometries.

Intersects(g1, g2) The function returns true if two given geometries (g1,
g2) spatially intersects; otherwise, returns false.

Area(geometry) The function returns the area of the given geometry.

In Algorithm 1, two spatiotemporal instances are given as input. Initially, intervals

where the lifespans of two instances overlap are discovered (i.e., coexistence time interval

list – tilce). Then, for each interval in tilce, we find the intersection area. If the geometries

intersect (iArea > 0) at a given time interval, we calculate the union area. Later, we

48

increase the intersection and union volumes using the intersection and union areas. If

there is no spatiotemporal intersection between two instances, the algorithm returns 0;

else, it returns the ratio between intersection and union volumes.

Algorithm 1: J∗ calculation for two spatiotemporal instances
Input: Two spatiotemporal instances – insi, insj (Instances are assumed to have the

same sampling intervals and phases.)
Output: J∗ value for insi and insj – J∗(insi, insj)

1 Algorithm J∗2(insi, insj)
2 iVolume← 0 ; uVolume← 0 ;
3 tilce ← FindCoexistence(insi, insj)
4 foreach ivl in tilce do
5 gi ← insi.GetGeometryAt(ivl) ;
6 gj ← insj.GetGeometryAt(ivl) ;
7 iGeom← Intersection(gi, gj) ;
8 iArea← Area(iGeom);
9 if iArea > 0 then // calculate union volume if geometries intersect

10 uGeom← Union(gi, gj);
11 uArea← Area(uGeom);

// calculate and add intersection and union volumes
12 iVolume = iVolume+ iArea ∗ ivl.length;
13 uVolume = uVolume+ uArea ∗ ivl.length;

14 if iVolume = 0 then
15 return 0

16 else
17 return iVolume/uVolume

18 Procedure FindCoexistence(insi, insj)
// tili and tilj are the valid time interval sets of insi and insj

19 tili ← insi.GetTimeIntervals();
20 tilj ← insj.GetTimeIntervals();
21 return tili ∩ tilj

In Algorithm2, an initial cross co-occurrence time interval list (tilxco) is found using

the procedure, FindCrossCooccurrence. This procedure iterates over each 2-subsets of

given instances. Firstly, for every possible pair, the procedure finds the coexistence time

intervals, and later discovers the co-occurrence time intervals by checking the spatial

overlap (See Def. 3 - tilxco). The union of all co-occurrence time intervals gives the

49

cross co-occurrence time intervals. After discovering tilxco, the algorithm iterates over

the intervals in tilxco for volume calculations. In each iteration, intersection and union

areas are found, and intersection and union volumes are increased accordingly. If there

is no spatiotemporal intersection among the instances, the algorithm returns 0; else, it

returns the ratio between intersection and union volumes.

In a nutshell, our algorithms initially determine the temporal co-existence, and later

check for the spatial overlap between individual geometries. Therefore, we eliminate

the computationally expensive spatial intersection and union operation when they are

not necessary. Both of our algorithms effectively calculate the intersection and union

volumes at cross co-occurrence time intervals. In Algorithm 1, for two instances, co-

occurrence and cross co-occurrence time intervals are the same, and the volumes are

simultaneously discovered. In Algorithm 2, the cross co-occurrence time intervals are

discovered in advance. Later, the intersection and union volumes are calculated.

4.4.2 Key Properties of J∗

In this section, two key properties of J∗, which are related to spatiotemporal frequent

pattern mining, will be discussed. The first one is the antimonotonic property, which is

vital for efficiency and correctness of STCOP mining. The second one is the containment

property, which shows the relation between the J, J+, and J∗ measures.

Antimonotonic Property

Downward closure property (i.e. antimonotonicity) is the fundamental aspect of many

objective measures used in frequent pattern mining. Similar to the seminal frequent

pattern mining approaches [130] [131], in STCOP mining (which are based on the Apriori

algorithm [130]) the antimonotonicity plays a significant role for efficiently and correctly

mining the co-occurrences.

Lemma 2. J∗ is an antimonotonic measure.

50

Algorithm 2: Generalized J∗ Calculation
Input: A collection of k event instances – I = {ins1, ins2, . . . insk}
Output: J∗ value for instances in I – J∗(ins1, ins2, . . . insk)

1 Algorithm J∗(I)
2 iVolume← 0 ; uVolume← 0 ;
3 tilxco ← FindCrossCooccurrence(I);
4 foreach ivl in tilxco do
5 geometries← {};
6 foreach ins in I do
7 geometries.Insert(ins.GetGeometryAt(ivl)) ;

8 iGeom← Intersection(geometries) uGeom← Union(geometries);
9 iArea← Area(iGeom) uArea← Area(uGeom)

iVolume = iVolume+ iArea ∗ ivl.length;
10 uVolume = uVolume+ uArea ∗ ivl.length;

11 if iVolume = 0 then
12 return 0

13 else
14 return iVolume/uVolume

15 Procedure FindCrossCooccurrence(I)
16 tilxco ← {} ;

// For any instance pair combination (i.e. 2-subset) (insi, insj) of I

// find co-occurrence time intervals (See Def. 3)
17 foreach (insi, insj) in I do
18 til← FindCoexistence(insi, insj) ;
19 foreach ivl in til do
20 gi ← insi.GetGeometryAt(ivl) ;
21 gj ← insj.GetGeometryAt(ivl) ;
22 if Intersects(gi, gj) then // if spatially intersects, then add

interval
23 tilxco ← tilxco ∪ ivl ;

24 return tilxco

Proof. Let S be the set of participating instances of a spatiotemporal co-occurrence (S =

{ins1, . . . , insn}). Let insn+1 be another instance that forms a co-occurrence with all the

instances in S. Then S ′ = {ins1, . . . , insn, insn+1} and S⊂S ′. Then, J∗(S) > J∗(S ′), because

51

1. Vtilxco(ins1 ∩ . . . ∩ insn ∩ insn+1) 6 Vtilxco(ins1 ∩ . . . ∩ insn). The intersection vol-

ume can only decrease or stay the same with the addition of a new instance to the

participating instance set.

2. Vtilxco(ins1∪ . . .∪ insn∪ insn+1) > Vtilxco(ins1∪ . . .∪ insn). The union volume can

only increase or stay the same with the addition of a new instance to the participat-

ing instance set. Note that, the cross co-occurrence time interval list of S ′ includes

at least the cross co-occurrence time interval list of S, and it can potentially in-

clude cross co-occurrences between insn and the instances in S (S.tilxco ⊆ S ′.tilxco).

Therefore, the union volume for S ′ is greater than or equal to the union volume of

S.

J∗ value for a co-occurrence decreases or stays the same with the addition of a new

spatiotemporal instance, as the intersection volume can only decrease or stay the same

and the union volume can only increase or stay the same. Hence, J∗ is an antimonotonic

measure.

Containment Property

The interestingness of discovered patterns is an important aspect of the data mining

research. The concept of interestingness for a pattern includes characteristics such as

conciseness, generality, surprisingness and novelty [103]. The J measure can be consid-

ered to provide generality as a large fraction of discovered knowledge matches the well-

known patterns. However, its ability to discover unexpected or obscure co-occurrences

is limited due to the shortcomings we have addressed in Section 4.2. With the J+ and J∗

measures, we aim to achieve novelty and possible surprisingness (meaning not known

before, or contradicting the existing knowledge), while preserving generality.

The containment relationship between the J, J∗, and J+ measures dictates that for any

spatiotemporal co-occurrence, the value of the J is always less than or equal to the value

of J∗ and the value of the J∗ is always less than or equal to the value of J+. The con-

52

tainment relationship is important, as it helps to maintain the desired generality related

characteristics of J measure. The property can be described as follows: Given a particu-

lar co-occurrence coefficient threshold, if a spatiotemporal co-occurrence is assessed as

significant based on J value, it is also significant based on J∗ value. Similarly, if a spa-

tiotemporal co-occurrence is assessed as significant based on J∗ value, it is also significant

based on J+ value

Lemma 3. J+ measure contains J∗ measure, and J∗ measure contains J measure.

Proof. Let S be the set of participating instances of a spatiotemporal co-occurrence (S =

{ins1, . . . , insn}). The J value for a particular co-occurrence can never be greater than J∗

value, and the J∗ value can never be greater than J+ value (J+(S) > J∗(S) > J(S)) and ,

because:

1. Vtilco(ins1 ∩ . . .∩ insn) = Vtilxco(ins1 ∩ . . .∩ insn) = V(ins1 ∩ . . .∩ insn). Intersec-

tion volumes calculated for both measures are equal, as tilco and tilxco include the

interval of the co-occurrence of all the participating instances.

2. Vtilxco(ins1 ∪ . . . ∪ insn) 6 V(ins1 ∪ . . . ∪ insn). Union volume calculated for J∗ is

less than or equal to the union volume calculated for the Jmeasure, since the Vtilxco

function only calculates the union volume for the time intervals specified in tilxco,

and the intervals in tilxco is a subset of the intervals specified by the lifespans of

all participating instances.

3. Similarly, Vtilco(ins1 ∪ . . . ∪ insn) 6 Vtilco(ins1 ∪ . . . ∪ insn). Union volume calcu-

lated for J+ is less than or equal to the union volume calculated for the J∗ measure,

since the tilxco is a superset of tilco.

For any spatiotemporal co-occurrence, the J+ > J∗ > J because intersection volumes are

the same for all the measures and the union volumes have the following relationship

Vtilco 6 Vtilxco 6 V . Hence, J is contained by J∗ and J∗ is contained by J.

53

4.5 Algorithms for J, J+, OMAX and OMIN Calculations

In this section, we will present the algorithms for J, J+, OMAX and OMIN. The pre-

sented algorithms are for the generalized version of the measures, which is suited for k

instances (k > 2).

4.5.1 J Calculation Algorithm

We present the generalized J calculation algorithm (for k instances) in Algorithm 4.1.

The algorithm initially determines the union time interval list (tilunion) (union of the

time intervals for all the instances) and coexistence time intervals. Then, for each inter-

val in tilunion, the geometries of all the instances are collected in geometries list. Then,

union and intersection area and volumes are found for a particular interval. The total

intersection and union volume is increased accordingly. Note that the intersection vol-

ume calculation is filtered using the coexistence time intervals to create a more efficient

algorithm.

Algorithm 4.1 Generalized J Calculation
Input: A collection of k spatiotemporal instances – I = {ins1, ins2, . . . insk} (Instances are as-

sumed to have the same sampling intervals and phases.)
Output: J value for instances in I – J(ins1, ins2, . . . insk)

25 Algorithm J(I)

26 iVolume← 0 ; uVolume← 0 ; tilunion ← {} foreach insi in I do
27 tilunion ← TimeIntervalUnion(tilunion, insi.GetTimeIntervals())

28 tilce ← FindCoexistence(I)

29 foreach ivl in tilunion do
30 geometries = [] foreach insi in I do
31 geometries.Insert(insi.GetGeometryAt(ivl))

32 if ivl in tilce then
33 iVolume← iVolume+ Area(Intersection(geometries)) ∗ ivl.length
34 uVolume← uVolume+ Area(Union(geometries)) ∗ ivl.length
35 if iVolume = 0 then
36 return 0

37 else
38 return iVolume/uVolume

54

Algorithm 4.2 Generalized J+ Calculation
Input: A collection of k spatiotemporal instances – I = {ins1, ins2, . . . insk}
Output: J+ value for instances in I – J+(ins1, ins2, . . . insk)

39 Algorithm J+(I)

40 iVolume← 0 ; uVolume← 0 tilce ← FindCoexistence(I)

41 foreach ivl in tilce do
42 geometries← [] foreach insi in I do
43 geometries.Insert(insi.GetGeometryAt(ivl))

/* Check spatial overlap for finding co-occurrence time intervals */

44 if Intersects(geometries) then
45 iVolume← iVolume+ Area(Intersection(geometries)) ∗ivl.length uVolume←

uVolume+ Area(Union(geometries)) ∗ ivl.length

46 if iVolume = 0 then
47 return 0

48 else
49 return iVolume/uVolume

4.5.2 J+ Calculation Algorithm

We present the generalized J+ calculation algorithm (for k instances) in Algorithm 4.2.

The algorithm initially determines the coexistence time intervals tilce (temporally over-

lapping time intervals) for all the instances. Then, for each interval in tilce, spatial

overlap is among the geometries are checked to determine the co-occurrence time inter-

vals. If the geometries of all participating instances at a particular time interval spatially

overlaps, then we calculate intersection and union volumes for that interval, and add

them to the total intersection and union volumes. Lastly, the ratio between the total

intersection and union volume is returned.

4.5.3 OMIN and OMAX Calculation Algorithms

We present the generalized OMIN and OMAX calculation algorithms (for k instances)

in Algorithm 4.3 and Algorithm 4.4. The algorithms initially determine the coexistence

time intervals tilce for all the instances and find the intersection volume. Then, for

OMAX, maximum volume (of participating instances) and for OMIN minimum volume

55

Algorithm 4.3 Generalized OMIN Calculation
Input: A collection of k spatiotemporal instances – I = {ins1, ins2, . . . insk}
Output: OMIN value for instances in I – OMIN(ins1, ins2, . . . insk)

50 Algorithm OMIN(I)

51 iVolume← 0 ; minVolume← 0 tilce ← FindCoexistence(I)

52 foreach ivl in tilce do
53 geometries← [] foreach insi in I do
54 geometries.Insert(insi.GetGeometryAt(ivl))

/* Check spatial overlap and calculate intersection volume */

55 if Intersects(geometries) then
56 iVolume← iVolume+ Area(Intersection(geometries)) ∗ivl.length

57 foreach insi in I do
58 minVolume← MinOf(minVolume, insi.GetVolume())

59 if iVolume = 0 then
60 return 0

61 else
62 return iVolume/uVolume

Algorithm 4.4 Generalized OMAX Calculation
Input: A collection of k spatiotemporal instances – I = {ins1, ins2, . . . insk}
Output: OMAX value for instances in I – OMAX(ins1, ins2, . . . insk)

63 Algorithm OMAX(I)

64 iVolume← 0 ; maxVolume← 0 tilce ← FindCoexistence(I)

65 foreach ivl in tilce do
66 geometries← [] foreach insi in I do
67 geometries.Insert(insi.GetGeometryAt(ivl))

/* Check spatial overlap and calculate intersection volume */

68 if Intersects(geometries) then
69 iVolume← iVolume+ Area(Intersection(geometries)) ∗ivl.length

70 foreach insi in I do
71 maxVolume← MaxOf(maxVolume, insi.GetVolume())

72 if iVolume = 0 then
73 return 0

74 else
75 return iVolume/uVolume

is determined. Lastly, the OMAX returns the ratio of intersection volume to maximum

volume and the OMIN returns the ratio of intersection volume to minimum volume.

56

4.6 Experimental Evaluation of Significance Measures

In this section, we will evaluate the relevancy and efficiency of the J, J+, J∗, OMIN, and

OMAX measures. The J, OMAX, and OMIN measures are previously used for STCOP

mining in [37], [121], [38].

We have conducted our experiments on for real-life solar event datasets and four ar-

tificial datasets with varying spatiotemporal characteristics. The artificial datasets are

generated using the random dataset generator [132]. The solar event data is partitioned

into four datasets, each corresponding to three-month periods (quarters) in 2012. For

relevancy analysis, we used the solar event datasets. For efficiency analysis, we used

both artificial and solar event datasets. In our experiments, we have enumerated all

the size-2 and size-3 spatiotemporal co-occurrences among the instances of all different

event types. We reported the J, J+, J∗, OMIN, and OMAX values and running times for

each spatiotemporal co-occurrence.

Table 4.3: Datasets used in the experiments

Solar

Event

Datasets

Dataset Tag Start Date End Date #of Polygons #of Instances

Quarter 1 - 2012 Q1 01/01/2012 03/31/2012 439,512 6,498

Quarter 2 - 2012 Q2 04/01/2012 06/30/2012 537,078 7,911

Quarter 3 - 2012 Q3 07/01/2012 09/30/2012 570,875 8,527

Quarter 4 - 2012 Q4 10/01/2012 12/31/2012 503,001 6,854

Artificial
Datasets

Dataset Tag # of Vertices
per Polygon

of tpgs
per Instance #of Polygons #of Instances

Low Vertex
Short Lifespan LVSL 20 20 20,000 1,000

Low Vertex
Long Lifespan LVLL 20 100 100,000 1,000

High Vertex
Short Lifespan HVSL 100 20 20,000 1,000

High Vertex
Long Lifespan HVLL 100 100 100,000 1,000

57

4.6.1 Experimental Settings

Our real-life solar event datasets are obtained from Heliophysics Event Knowledgebase

[123]. The individual recordings of the solar events are tracked and interpolated using

the algorithms in [133] and [24]. The solar event datasets include the instances of seven

solar event types that are: (1) Active Regions (AR), (2) Coronal Holes (CH), (3) Emerging

Flux (EF), (4) Filaments (FI), (5) Flares (FL), (6) Sigmoids (SG), and (7) Sunspots (SS).

The artificial datasets have two event types. The details of these datasets can be found in

Table 6.1. The significance measures are implemented in the Java programming language.

We used Algorithm 1 and Algorithm 2 for J∗ calculations. The algorithms for the J, J∗,

OMAX, and OMIN measures are shown in Algorithm 4.1, Algorithm 4.2, Algorithm 4.4,

and Algorithm 4.3, respectively.

4.6.2 Relevancy Analysis

In this part of our discussion, we will discuss the relevancy of our new measures, J+

and J∗. In Section 4.2, we have outlined the possible anomalies created due to unfair

assessments of the J measure. We will analyze each of the mentioned anomalies for

solar event data, compare the measures with OMAX and OMIN measures, and how the

J∗ measure addresses these particular problems.

In Figure4.6, we demonstrate boxplots showing the value distributions of J, J+, J∗,

OMIN, and OMAX measures for size-2 and size-3 co-occurrences in Q1 dataset. The

results from other solar event datasets can be found in [134]. The co-occurrences are

grouped by the event types of participating instances. In size-2 co-occurrences, the J+

and J∗ values are merged as we have observed that they were the same. Additionally,

the medians and means of each distribution are represented as red lines and magenta

dots.

58

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_ef

J
J

+
/J*

O
M

A
X

O
M

IN
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ef_ch

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_fi

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ef_sg

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_fl

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_sg

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
fi_sg

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_fi

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
fi_fl

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_fl

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ar

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_sg

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ef_fi

J
J

+
/J*

O
M

A
X

O
M

IN
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
fi_ch

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ef_fl

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
sg_fl

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ef

J
J

+
/J*

O
M

A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ch_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_fi_sg

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ef_sg

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_ef_fi

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_ef_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_ef_sg

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_fi_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ar_sg

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ef_fl

J J* J+
O

M
A
X

O
M

IN
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ar_ef

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_fi_sg

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ar_fi

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ef_fi_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_sg_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ar_fi_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ar_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ef_fi_sg

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
fi_sg_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ef_sg_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_sg_fl

J J* J+
O

M
A
X

O
M

IN

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
ss_ef_fi

Figure 4.6: The boxplots showing the distribution of J, J+, J∗, OMIN, and OMAX values (in log
scale) for size-2 and size-3 spatiotemporal co-occurrences in the Q1 dataset. Each sub-
figure shows co-occurrences between different event types. For size-2 co-occurrences
J+ and J∗ are joined as they are the same. J, J+,J∗, OMIN, and OMAX values are
represented with blue, yellow, red, white, and green boxes respectively.

59

From Figure 4.6, by analyzing the mean and median points and the confidence inter-

vals of the distributions, we can see the following:

• OMAX and J measures have similar distributions.

• J∗ values are generally higher than J and OMAX values, and lower than J+ and

OMIN measures.

• The OMIN and J+ measures have the highest values.

• The confidence interval for J+ measure is usually smaller than the others.

• When compared to the J∗ or J+ values, the J andOMAX values have higher chances

of being an outlier within their own data series. This situation is more noticeable

particularly for the co-occurrences that involves the event instances of Flare (FL).

• OMIN measure creates more outliers when spatiotemporal characteristics of the

event types are similar.

• The greater variations among the value distributions are from the co-occurrences

between the instances of event types with very different characteristics such as

EF-CH, SG-FL, or AR-SG-FL.

• There are no theoretical containment relationship between our new measures (J+

or J∗) and overlap measures (OMAX and OMIN). However, for both mean and

median values, we see the following trend J < OMAX < J∗ 6 J+ < OMIN.

In Figure 4.6, we can observe that the co-occurrences of EF-SG, SS-AR, AR-SG, SS-SG,

and SG-FL have relatively higher J and OMAX values. On the other hand, the co-

occurrences between AR-EF, EF-SG, AR-SG, AR-FL, EF-FL, and SG-FL have higher J∗

(or J+) and OMIN values. We can suggest that the significance assessments with J+, J∗,

or OMIN measures increase the likelihood of a small volume instance (such as EF or

FL) to be involved in a significant co-occurrence given a particular cce threshold value.

60

J J* J+ OMAX OMIN
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ef_ch

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

J J* J+ OMAX OMIN

J J* J+ OMAX OMIN
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ar_fl

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

J J* J+ OMAX OMIN
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ar_fi_fl

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Co-occurrences

Figure 4.7: The value distributions of significance measures for EF-CH, AR-FL, and AR-FI-FL co-
occurrences. The boxplots showing the distribution of the values are demonstrated
on the left. On the right, the value comparison plots for individual co-occurrences are
shown. The value plots are sorted on the J∗ measure.

Next, we will analyze the anomalies that we have mentioned in Section 4.2, and how the

J∗ addresses these anomalies.

Coverage Anomaly

In Figure 4.3, we have demonstrated the spatiotemporal characteristics of different event

types. Instances of event types such as AR and CH have relatively higher volumes. On

the other hand, instances of FL or EF event types have smaller volumes. Additionally,

instances of FI and SS event types have longer lifespans. The coverage anomaly refers to

the unfair significance assessments of co-occurrences between very large and very small

volume instances.

61

Figure 4.7 exhibits typical coverage anomaly problems between the large volume AR

and CH instances and small volume EF and FL instances. Flares can occur anywhere

on the Sun’s surface, from active regions to the the boundaries of the magnetic network

of the quiet Sun [135]. However, large area flares have preferred locations. They occur

inside the large active regions showing a complex geometry of the 3D magnetic field [136].

Similarly, flux tubes (i.e., emerging flux) are also observed to be emerging into coronal

holes [137]. The individual OMAX and J values for above-mentioned co-occurrences

in Figure 4.7 are very similar. We can suggest that small volume EF and FL instances

are mostly covered, because maximum volume (denominator in OMAX) and the union

volume (denominator in J) of co-occurring instances are very similar.

It is apparent that the large volumes of AR and CH instances unfairly decrease the J

and OMAX values. Mean J value for AR-FL is two orders of magnitude smaller than

the J∗ value. Likewise, mean J values for EF-CH and AR-FI-FL are more than one order

of magnitude smaller than the J∗ value.

Favoring the similar

In Figure 4.8, we demonstrate three different types of size-2 co-occurrences. In Figure 4.8,

the boxplots for measures and individual value comparisons for SS-FL, SS-AR and FI-CH

co-occurrences are shown.

The sunspot (SS) instances appear inside the active regions (AR), and a flare (FL) is

essentially an intense burst of radiation coming from the release of magnetic energy

associated with sunspots [138]. Sunspots can last as long as two months, while lifespan

of the flares are between mere minutes to several hours. Therefore, AR and SS instances

both have relatively longer lifespans, and their volumes are larger, while FL instances

have very short lifespans and small volumes. On the other hand, CH instances have

large areas, longer lifespans, and large volumes, and FI instances have medium areas,

but longer lifespans. To remind the readers, the J and OMAX values of co-occurrences

62

J J* J+ OMAX OMIN
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ss_fl

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

J J* J+ OMAX OMIN

J J* J+ OMAX OMIN
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ss_ar

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

J J* J+ OMAX OMIN
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

fi_ch

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Co-occurrences

Figure 4.8: The value distributions of significance measures for SS-FL, SS-AR, and FI-CH co-
occurrences. The boxplots showing the distribution of the values are demonstrated
on the left. On the right, the value comparison plots for individual co-occurrences are
shown. The value plots are sorted on the J∗ measure.

between instances with similar spatiotemporal characteristics tend to be higher, while

the co-occurrences of instances having highly different spatiotemporal characteristics

are more likely to have lower J values.

From Figure 4.8, we can observe that for event types with similar spatiotemporal char-

acteristics (in SS-AR or FI-CH) the J and OMAX values are not significantly increased

with J∗ or J+. However, the contrasting spatiotemporal characteristics carried by SS and

FL instances drastically affects the J values. A similar situation can be observed for AR

and FL instances from Figure 4.7. The J∗ significantly increases the co-occurrence coeffi-

cient values for instances with contrasting spatiotemporal characteristics such as AR-FL

or SS-FL. Therefore, it can be used for alleviating the favoring the similar problem caused

by the J measure.

63

J J* J+ OMAX OMIN
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ss_sg

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

J J* J+ OMAX OMIN

J J* J+ OMAX OMIN
10-6

10-5

10-4

10-3

10-2

10-1

100

ef_fl

10-6

10-5

10-4

10-3

10-2

10-1

100

J J* J+ OMAX OMIN
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ar_fi_sg

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Co-occurrences

Figure 4.9: The value distributions of significance measures for SS-SG, EF-FL, and AR-FI-SG co-
occurrences. The boxplots showing the distribution of the values are demonstrated
on the left. On the right, the value comparison plots for individual co-occurrences are
shown. The value plots are sorted on the J∗ measure.

Large volume bias

In Figure 4.8, we demonstrated the boxplots and value comparisons of J and J∗ for SS-

FL, SS-AR and FI-CH co-occurrences. In Figure 4.9, we show the boxplots and value

comparisons for SS-SG, EF-FL, and AR-FI-SG co-occurrences. AR, SS, and SG instances

have relatively larger volumes, while FI instances have moderate, and EF and FL in-

stances have relatively smaller volumes. SS and FI instances have long lifespans, while

SG and AR have larger areas. The large volume bias is created because instances with

larger volumes are more likely to have higher J values in a fixed spatial and temporal

framework.

64

From Figure 4.8 and Figure 4.9, we can observe that the J values for co-occurrences

between instances with large volumes are higher. For both SS-SG or AR-FI-SG co-

occurrences, J∗ does not significantly affect the co-occurrence coefficient. See the J∗

measure’s mean and medians for SS-SG and AR-FI-SG. Contrarily, for co-occurrences

involving smaller volume instances, the J values are lower, and the J∗ measure decidedly

increases the co-occurrence coefficients.

Flares are our solar system’s largest explosive events and they produce high energy

particles and radiation that are dangerous to living organisms. Empirical studies show

that flares are associated with emerging flux loops [139] [140] [141]. Using the J mea-

sure, many emerging flux and flare (EF-FL) co-occurrences can be unfairly assessed as

insignificant as they have small volumes. The J∗ measure can mitigate these problems,

and can help find more relevant spatiotemporal co-occurrences.

4.6.3 Efficiency Analysis

In this part of our evaluation, we discuss the running time requirements of the J, J∗, J+,

OMAX, and OMIN measures for different types of co-occurrences. In Figure 4.10 and

Figure 4.11, we demonstrate the boxplots of running times of the measures for individual

spatiotemporal co-occurrences among the instances of different event types. For brevity,

we show the results from the Q1 solar event dataset. The results from Q2, Q3, and Q4

datasets are presented in [134].

Implementation details

The J∗, J, J+,OMAX, andOMIN calculation algorithms are presented in Algorithm 1 and

Algorithm 2 (for J∗), Algorithm 4.1, Algorithm 4.2, Algorithm 4.4, and Algorithm 4.3 (for

others, respectively). In our experimental runs, we stored the spatiotemporal instances

in main memory. Our running time comparison solely includes the time required for

procedures to calculate values of measures from given instances. For providing a fair

65

comparison, we implemented the measures in a similar fashion. We first find the inter-

section volumes, then union (J, J∗, and J+), minimum (OMIN), or maximum (OMAX)

volumes. All the experiments are repeated for five times for both artificial and solar

event datasets, and average running times are reported.

J J* J+ OMAX OMIN
0

5

10

15

20
ar_ef

J J* J+ OMAX OMIN
0

2

4

6

8

10
ef_ch

J J* J+ OMAX OMIN
0

20

40

60

80

100

120
ss_fi

J J* J+ OMAX OMIN
0.0

0.5

1.0

1.5

2.0

2.5

3.0
ef_sg

J J* J+ OMAX OMIN
0

1

2

3

4

5

6

7

8
ss_fl

J J* J+ OMAX OMIN
0

2

4

6

8

10

12

14
ar_sg

J J* J+ OMAX OMIN
0

2

4

6

8

10

12
fi_sg

J J* J+ OMAX OMIN
0

5

10

15

20

25

30

35

40

45
ar_fi

J J* J+ OMAX OMIN
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
fi_fl

J J* J+ OMAX OMIN
0.0

0.5

1.0

1.5

2.0

2.5
ar_fl

J J* J+ OMAX OMIN
0

50

100

150

200

250
ss_ar

J J* J+ OMAX OMIN
0

10

20

30

40

50

60
ss_sg

J J* J+ OMAX OMIN
0

2

4

6

8

10
ef_fi

J J* J+ OMAX OMIN
0

20

40

60

80

100

120
fi_ch

J J* J+ OMAX OMIN
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
ef_fl

J J* J+ OMAX OMIN
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
sg_fl

J J* J+ OMAX OMIN
0

10

20

30

40

50

60

70

80
ss_ef

J J* J+ OMAX OMIN
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
ch_fl

Figure 4.10: The boxplots showing the running times (in milliseconds) for J, J+, J∗, OMIN, and
OMAX in size-2 co-occurrences in Q1 dataset.

Comparison of Running Times for Size-2 Co-occurrences

In Figure 4.10, the boxplots of running times for size-2 co-occurrences in Q1 dataset are

demonstrated. The running times are grouped by the event types of instances involved

in the co-occurrences. Outliers are not demonstrated. Mean values are demonstrated

with magenta dots, and median values are shown as red lines inside the boxes.

It can be observed from Figure 4.10 that for size-2 co-occurrences, the J∗ and J+ cal-

culations require less running time when compared to the J calculations for all different

types of events. As expected, J∗ and J+ measures, and OMAX and OMIN measures

66

have very similar running times. The longer running times are reported for pairs of

long lifespan event instances (such as AR, SS, FI, and CH instances). Specifically, AR-SS

pairs have the most computationally expensive calculations for all the measures. On the

other hand, the co-occurrences involving short lifespan instances (such as EF, FL, and SG

instances) require significantly less time. This situation is more noticeable when SS-AR

and AR-FL co-occurrences are compared. AR-FL co-occurrences require two orders of

magnitude less running times for measure calculations than SS-AR co-occurrences. This

is an anticipated result because when measures are calculated the intersection volumes

(and union volumes for J∗ and J+) are determined by filtering the coexistence time inter-

vals, and the filtering operation significantly reduces the computational load for short

lifespan instances.

J J* J+ OMAXOMIN
0

100

200

300

400

500

600

700

800
ar_fi_sg

J J* J+ OMAXOMIN
0

100

200

300

400

500
ss_ef_sg

J J* J+ OMAXOMIN
0

100

200

300

400

500

600
ar_ef_fi

J J* J+ OMAXOMIN
0

100

200

300

400

500
ar_ef_fl

J J* J+ OMAXOMIN
0

100

200

300

400

500
ar_ef_sg

J J* J+ OMAXOMIN
0

100

200

300

400

500

600
ss_fi_fl

J J* J+ OMAXOMIN
0

500

1000

1500

2000

2500
ss_ar_sg

J J* J+ OMAXOMIN
0

50

100

150

200

250

300

350
ss_ef_fl

J J* J+ OMAXOMIN
0

500

1000

1500

2000

2500
ss_ar_ef

J J* J+ OMAXOMIN
0

100

200

300

400

500

600

700
ss_fi_sg

J J* J+ OMAXOMIN
0

500

1000

1500

2000

2500

3000

3500
ss_ar_fi

J J* J+ OMAXOMIN
0

10

20

30

40

50
ef_fi_fl

J J* J+ OMAXOMIN
0

100

200

300

400

500

600
ar_sg_fl

J J* J+ OMAXOMIN
0

100

200

300

400

500
ar_fi_fl

J J* J+ OMAXOMIN
0

500

1000

1500

2000

2500

3000

3500
ss_ar_fl

J J* J+ OMAXOMIN
0

10

20

30

40

50

60

70
ef_fi_sg

J J* J+ OMAXOMIN
0

5

10

15

20

25

30

35

40

45
fi_sg_fl

J J* J+ OMAXOMIN
0

2

4

6

8

10

12
ef_sg_fl

J J* J+ OMAXOMIN
0

50

100

150

200

250

300

350

400
ss_sg_fl

J J* J+ OMAXOMIN
0

100

200

300

400

500

600

700
ss_ef_fi

Figure 4.11: The boxplots showing the running times (in milliseconds) for J, J+, J∗, OMIN, and
OMAX in size-2 co-occurrences in Q1 dataset.

67

Comparison of Running Times for Size-3 Co-occurrences

In Figure 4.11, the boxplots of running times for size-3 co-occurrences are demonstrated.

Similar to Figure 4.10, the running times for the measures are grouped together based

on different event type triples. Note that not all the event types co-occur with each

other. For instance, we did not identify any co-occurrences of AR-CH-SG or CH-EF-SS

instances in Q1 dataset.

From Figure 4.11, we can observe that average running time (mean) for OMAX and

OMIN values are very close to each other. Among all five measures, the J+ is the most

efficient one. For many size-3 co-occurrences, the J∗ is more efficient than the J measure.

The J is more efficient than J∗ for SS-AR-SG, SS-AR-FI, SS-AR-EF, and SS-AR-FL co-

occurrences. This can be explained by long co-occurrence time intervals between SS

and AR instances. For many of size-3 co-occurrences that include SS and AR instances,

the cross co-occurrence time intervals are very long (as sunspots occur inside the active

regions), which creates an overhead for J∗ calculations.

Similar to size-2 co-occurrences, the shortest calculation times are observed for co-

occurrences among short lifespan instances such as EF, SG, or FL. See the boxplots for

EF-SG-FL, FI-SG-FL, and EF-FI-FL in Figure 4.11. The measure calculation times are

significantly higher for co-occurrences between long lifespan instances. Particularly for

SS-AR-FI co-occurrences, the average J∗ calculation time is greater than 1000 ms, while

the mean J∗ calculation time for EF-SG-FL is 4 ms.

Comparison of Running Times for Artificial Datasets

In Figure 4.12, the boxplots of running times for artificial datasets (HVLL, HVSL, LVLL,

and LVSL) are demonstrated. All the artificial datasets include two artificial event types,

each having 1,000 instances. The area values for the region polygons in the artificial

datasets are the same. However, for observing the effect of spatial operations (i.e., union,

intersection, intersects, and area), we change the number of vertices to create more com-

68

J J* J+ OMAX OMIN
0

20

40

60

80

100

120
HVLL

J J* J+ OMAX OMIN
0

20

40

60

80

100

120
HVSL

J J* J+ OMAX OMIN
0

20

40

60

80

100

120
LVLL

J J* J+ OMAX OMIN
0

20

40

60

80

100

120
LVSL

Figure 4.12: The boxplots showing the running times for J, J+, J∗, OMIN, and OMAX in artificial
datasets.

plex region geometries. LV_ and HV_ prefixes denote low and high vertex counts in the

region geometries represented as polygons. On the other hand, we altered the lifespans

of the instances to observe the impact of temporal complexity. _SL and _LL suffixes

denote short and long lifespans of the instances.

From Figure 4.12, we can make following observations. In short lifespan datasets

(LVSL and HVSL), the running times of J is closer to J∗’s. However, for long lifespan

datasets (LVLL and HVLL), J∗ takes noticeably less time than J. Additionally, OMIN

and OMAX are the most efficient measures for artificial datasets. Lastly, as expected,

spatially more complex HVSL (with short lifespans) dataset requires more running time

for all the measures when compared to temporally complex dataset LVLL (with low

vertex counts).

Remarks on Running Times

From the running time analysis of size-2 and size-3 co-occurrences from solar event

datasets (Figure 4.10 and Figure 4.11) and artificial datasets (Figure 4.12), we can outline

our remarks as follows:

69

• The OMIN and OMAX are the most computationally efficient measures for size-2

co-occurrences.

• The J+ is the most efficient measure for size-3 co-occurrences.

• For size-2 co-occurrences, the J∗ consistently takes less time than the J.

• For size-3 co-occurrences, the J∗ usually takes less time than the J. In four types of

co-occurrences involving long lifespan SS and AR instances, the J calculation takes

less time on average.

• Increasing spatial complexity (more complex polygons) impacts the running time

more than increasing the temporal complexity (longer lifespans).

The main difference between the J, J+ and J∗ calculation procedures is the identifica-

tion of cross co-occurrence or co-occurrence time intervals. The J∗ calculation procedure

for size-2 co-occurrences has a shortcut for direct identification of cross co-occurrence

time intervals. For larger size co-occurrences, the cross co-occurrence time intervals are

found by examining the co-occurrence time intervals of each instance pair. This op-

eration is expensive as it essentially checks whether a spatial overlap occurs between

each geometry of each instance pair. On the other hand, the J+ calculation is relatively

less complex. The co-occurrence time intervals are found using a temporal coexistence

filter, which reduces the search space. While determining the co-occurrence or cross co-

occurrence time intervals creates overhead, the J+ and J∗ measures calculate the union

volume for only co-occurrence and cross co-occurrence time intervals, and remaining

time intervals are not considered. Contrarily, the J measure includes the union volumes

of all instances.

In summary, for larger size co-occurrences, J∗ calculation can be less efficient as it

needs to initially identify the cross co-occurrence time intervals. For spatiotemporal

frequent pattern mining applications (such as STCOP mining [142]), initial identification

70

of cross co-occurrence time intervals is not usually performed, as the larger size co-

occurrences are found by using smaller size co-occurrences, and the cross co-occurrence

time intervals can be easily identified. On the other hand, the J∗ can be more efficient

for co-occurrences with certain characteristics (such as long lifespan instance vs. short

lifespan instance - see running times of FI-AR-EF in Figure 4.11), as it only calculates the

union volumes at cross co-occurrence time intervals.

a
r_

e
f

(3
6
5
)

e
f_

ch
 (

7
9
)

ss
_f

i
(4

7
)

e
f_

sg
 (

3
4
9
)

ss
_f

l
(1

4
3
1
)

a
r_

sg
 (

7
2
3
)

fi
_s

g
 (

2
9
7
)

a
r_

fi
 (

1
4
9
)

fi
_f

l
(6

6
2
)

a
r_

fl
 (

2
2
9
9
)

ss
_a

r
(1

1
5
)

ss
_s

g
 (

2
4
8
)

e
f_

fi
 (

1
7
7
)

fi
_c

h
 (

1
1
0
)

e
f_

fl
 (

8
2
1
)

sg
_f

l
(1

2
0
9
)

ss
_e

f
(1

4
7
)

ch
_f

l
(1

)

Events (total number of co-occurrences)

1.000000

0.562341

0.316228

0.177828

0.100000

0.056234

0.031623

0.017783

0.010000

0.005623

0.003162

0.001778

0.001000

0.000562

0.000316

0.000178

0.000100

0.000056

0.000032

0.000018

0.000010

0.000006

0.000003

0.000002

0.000001

cc
e
 T

h
re

sh
o
ld

 (
lo

g
a
ri

th
m

ic
 s

ca
le

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a
r_

e
f

(3
6
5
)

e
f_

ch
 (

7
9
)

ss
_f

i
(4

7
)

e
f_

sg
 (

3
4
9
)

ss
_f

l
(1

4
3
1
)

a
r_

sg
 (

7
2
3
)

fi
_s

g
 (

2
9
7
)

a
r_

fi
 (

1
4
9
)

fi
_f

l
(6

6
2
)

a
r_

fl
 (

2
2
9
9
)

ss
_a

r
(1

1
5
)

ss
_s

g
 (

2
4
8
)

e
f_

fi
 (

1
7
7
)

fi
_c

h
 (

1
1
0
)

e
f_

fl
 (

8
2
1
)

sg
_f

l
(1

2
0
9
)

ss
_e

f
(1

4
7
)

ch
_f

l
(1

)

Events (total number of co-occurrences)

1.000000

0.562341

0.316228

0.177828

0.100000

0.056234

0.031623

0.017783

0.010000

0.005623

0.003162

0.001778

0.001000

0.000562

0.000316

0.000178

0.000100

0.000056

0.000032

0.000018

0.000010

0.000006

0.000003

0.000002

0.000001

cc
e
 T

h
re

sh
o
ld

 (
lo

g
a
ri

th
m

ic
 s

ca
le

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) J Heatmap (b) J∗ Heatmap

Figure 4.13: Heatmaps of the J (in (a)) and J∗ (in (b)) values of size-2 co-occurrences for
the Q1 dataset. The heatmaps demonstrate the ratio of the significant size-2 co-
occurrences for different co-occurrence coefficient (cce) thresholds and event types
of co-occurring instances, on x and y axes respectively.

4.6.4 Suitability for STCOP Mining

In this part of the experiments, we will discuss the measures from the perspective of

STCOP mining. It should be noted that STCOP mining algorithms require antimono-

tonic measures for the correctness. Therefore, OMIN and J+ measures, which does not

carry antimonotonic property cannot be used in the context of current STCOP mining

71

a
r_

fi
_s

g
 (

1
6
4
)

ss
_e

f_
sg

 (
1
5
8
)

a
r_

e
f_

fi
 (

5
3
)

a
r_

e
f_

fl
 (

6
8
6
)

a
r_

e
f_

sg
 (

3
0
8
)

ss
_f

i_
fl
 (

2
1
6
)

ss
_a

r_
sg

 (
2
3
4
)

ss
_e

f_
fl
 (

6
0
6
)

ss
_a

r_
e
f

(1
2
9
)

ss
_f

i_
sg

 (
6
1
)

ss
_a

r_
fi
 (

3
6
)

e
f_

fi
_f

l
(1

7
2
)

a
r_

sg
_f

l
(1

2
2
5
)

a
r_

fi
_f

l
(2

7
6
)

ss
_a

r_
fl
 (

1
1
6
7
)

e
f_

fi
_s

g
 (

1
0
4
)

fi
_s

g
_f

l
(7

3
6
)

e
f_

sg
_f

l
(5

2
8
)

ss
_s

g
_f

l
(1

0
8
8
)

ss
_e

f_
fi
 (

2
2
)

Events (total number of co-occurrences)

1.000000

0.562341

0.316228

0.177828

0.100000

0.056234

0.031623

0.017783

0.010000

0.005623

0.003162

0.001778

0.001000

0.000562

0.000316

0.000178

0.000100

0.000056

0.000032

0.000018

0.000010

0.000006

0.000003

0.000002

0.000001
cc

e
 T

h
re

sh
o
ld

 (
lo

g
a
ri

th
m

ic
 s

ca
le

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a
r_

fi
_s

g
 (

1
6
4
)

ss
_e

f_
sg

 (
1
5
8
)

a
r_

e
f_

fi
 (

5
3
)

a
r_

e
f_

fl
 (

6
8
6
)

a
r_

e
f_

sg
 (

3
0
8
)

ss
_f

i_
fl
 (

2
1
6
)

ss
_a

r_
sg

 (
2
3
4
)

ss
_e

f_
fl
 (

6
0
6
)

ss
_a

r_
e
f

(1
2
9
)

ss
_f

i_
sg

 (
6
1
)

ss
_a

r_
fi
 (

3
6
)

e
f_

fi
_f

l
(1

7
2
)

a
r_

sg
_f

l
(1

2
2
5
)

a
r_

fi
_f

l
(2

7
6
)

ss
_a

r_
fl
 (

1
1
6
7
)

e
f_

fi
_s

g
 (

1
0
4
)

fi
_s

g
_f

l
(7

3
6
)

e
f_

sg
_f

l
(5

2
8
)

ss
_s

g
_f

l
(1

0
8
8
)

ss
_e

f_
fi
 (

2
2
)

Events (total number of co-occurrences)

1.000000

0.562341

0.316228

0.177828

0.100000

0.056234

0.031623

0.017783

0.010000

0.005623

0.003162

0.001778

0.001000

0.000562

0.000316

0.000178

0.000100

0.000056

0.000032

0.000018

0.000010

0.000006

0.000003

0.000002

0.000001

cc
e
 T

h
re

sh
o
ld

 (
lo

g
a
ri

th
m

ic
 s

ca
le

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) J Heatmap (b) J∗ Heatmap

Figure 4.14: Heatmaps of the J (in (a)) and J∗ (in (b)) values size-3 co-occurrences for the
Q1 dataset. The heatmaps demonstrate the ratio of the significant size-3 co-
occurrences for different co-occurrence coefficient (cce) thresholds and event types
of co-occurring instances, on x and y axes respectively.

algorithms. We also showed that OMAX and J values are very similar in Section 4.6.2.

Therefore, here, we will compare the J measure, which is currently used for ultimately

determining the significance of co-occurrences, with our newly proposed J∗ measure.

In Figure 4.13 and Figure 4.14, the heatmaps of J and J∗ values for size-2 and size-3 co-

occurrences are demonstrated. Essentially, all the heatmaps encode information regard-

ing the ratio of significant co-occurrences to all discovered co-occurrences (of particular

event types) for specific co-occurrence coefficient (cce) threshold values. In Figure 4.13

and Figure 4.14, the threshold values exponentially decrease from 1.0 to 0.000001 (10−6)

by 4
√
10.

In STCOP mining, a key challenge is to determine a meaningful co-occurrence coef-

ficient threshold for the recognition of strong co-occurrences [38]. The co-occurrence

coefficient threshold essentially implies the level of significance for the STCOP mining

72

scheme. In other words, for a particular cce threshold, the STCOP mining algorithm

identifies the patterns whose instances have a strong co-occurrence based on that cce

threshold. Apart from the anomalies of J measure in Section 4.6.2, for the spatiotem-

poral instances with highly unbalanced characteristics (e.g. solar event datasets), it is

difficult to determine a threshold or a set of thresholds using the J measure for STCOP

mining analysis. The reason for that is the fluctuation of J values happens in a very

limited interval. We can observe from Figure 4.13 that for the J values, the variability on

the ratio of significant co-occurrences can only be observed in threshold interval from

0.1 to 0.0001. Conversely, much of the variability for J∗ can be observed in threshold

interval from ∼0.316 to 0.001.

Another problem with using the J is the exclusion of important co-occurrences or in-

clusion of spurious co-occurrences. We have mentioned the strong association between

flares and active regions in Relevancy Analysis (Section 4.6.2). For including a very op-

timistic 30% of AR-FL co-occurrences in Q1 dataset, the cce threshold should be set to

less than 0.000562. Such a mining schema would consider almost all the identified co-

occurrences as significant, which makes the significance assessment procedures pointless

because it would include all the co-occurrences including possibly spurious ones. Con-

versely, using the J∗ measure in STCOP mining, with a cce threshold set to 0.1 or 0.0562,

would include 60% to 80% of AR-FL co-occurrences, while preserving variations among

the other co-occurrences.

4.7 Summary on Significance Measurements

We presented two novel significance measures, J+ and J∗, which are specifically designed

for determining the strength of spatiotemporal co-occurrences appearing among event

instances. We have initially presented shortcomings of the currently used OMAX and

J measures with example anomaly scenarios that can appear among the spatiotemporal

co-occurrences. These anomalies can lead to unfair significance assessments that can

73

impact the applicability of data mining algorithms to real life datasets. As a solution to

these anomalies, we introduced the J+ and J∗ measures. Both J+ and J∗ are extensions to

the Jmeasure. Our measures limit the volume calculations to specific regions of interests

that are co-occurrence (for J+) and cross co-occurrence (for J∗) time intervals. We have

also presented novel algorithms for J+ and J∗ value calculations, which uses temporal

coexistence filtering. We have provided proofs for antimonotonicity and containment

properties of J∗. For demonstrating the effects of using our new measures for assessing

the strength of co-o ccurrences, we have conducted our experiments with four solar

event datasets and four artificial datasets. In our experiments, we have compared our

measures with J, OMIN, and OMAX measures, and shown that J∗ and J+ can solve the

anomalies created by the J and OMAX measures. As a result of our experiments, we

have confirmed that J∗ measure is more efficient than J measures, and can be utilized for

discovering more meaningful spatiotemporal co-occurrences.

74

5 SPATIOTEMPORAL EVENT SEQUENCE MINING

Spatiotemporal event sequences (STESs) are the ordered sequences of event types, which

frequently follow each other in spatiotemporal context. Formally, given a dataset of event

types (E = {e1, . . . , em}) and spatiotemporal event instances (I = {ins1, . . . insn}, where

each insi is a spatiotemporal event instance defined by an evolving region trajectory

and is associated with an event type (ej)), the purpose of STES mining is to discover

sequences of event types in the form (ej1 � ej2 � . . .� ejk) such that the instances of par-

ticipating event types temporally follow each other and spatially located close-by at certain

locations where sequence forming behavior is observed. These two conditions define the

spatiotemporal follow relationship.

A spatiotemporal follow relationship occurs between two event instances. Two event

instances, insi and insj, which have a follow relationship (denoted as � for instances)

between each other, form the simplest form of instance sequence, that is a length-2 se-

t

10

t

11

t

12

t

3

t

9

t

7

t

8

t

4

t

6

t

5

t

6

t

1

t

2

t

5

t

7

t

8

t

3

t

3

t

5

t

4

t

1

t

2

t

10

t

11

t

8

t

9

Type A Type B Type C

t

6

t

5

t

7

t

6

t

5

t

4

t

8

t

9

t

9

t

10

t

3

t

2

t

4

t

3

t

4

t

5

t

6

B followed-by C

A followed-by C followed-by B

ins

6

ins

7

ins

8

ins

1

ins

2

ins

3

ins

4

ins

5

ins

9

ins

10

ins

11

ins

12

ins

13

ins

14

ins

15

ins

16

B followed-by A

A followed-by B

A followed-by B
A followed-by B followed-by A

C followed-by B followed-by A

B followed-by C

Figure 5.1: An example dataset of spatiotemporal instances I with 3 event types A,B, and C.
The spatiotemporal instances are evolving region trajectories. The timestamps are
displayed on the geometries. The dataset includes five instances of event type A
(ins1, . . . ins5), seven instances of event type B (ins6, . . . ins12), and four instances
of event type C (ins13, . . . ins16). The figure also illustrates spatiotemporal follow
relationships between the instances.

quence (i.e., insi� insj). Multiple follow relationships observed in consecutive instances

form longer instance sequences. For example, if there is a follow relationship between

insi and insj, and another one between insj and insk, they form a length-3 sequence,

(insi � insj � insk).

To illustrate the problem better, in Figure 5.1, we depict an example dataset of sixteen

instances (E = {ins1, . . . ins16}) from three different event types (E = {A,B,C}). The times

are marked on the region polygons of the instances, and their shapes are different for

each instance. We indicate the spatiotemporal follow relationships among the instances

with dashed arrows. For example, there are two instances of event type B, which are

followed by an instance of event type C (forming (B�C), see ins8 is followed-by ins15).

It is possible to see the longer length sequences, as well as the ones with repetitions. An

example for longer length sequences with repetitions is A followed-by B followed-by A

(forming (A� B�A), see ins3, ins10, and ins4). Similarly, the same instance can be

followed by more than two seperate instances. For example ins5 is followed by ins11

and ins12, and there are no sequence forming relationship between ins11 and ins12.

The goal of the spatiotemporal event sequence mining is to find frequently occurring

spatiotemporal follow relationships among the instances of different event types and cre-

ate event sequence patterns from these individual relationships. In our example dataset

shown in Figure 5.1, we observe two (B� C) sequences, and three (A� B) sequences.

However, we do not see any (C�A) sequences. While we count the number of relation-

ships to highlight our point in this example, we use a relative frequency based measure

(prevalence index) to measure the frequency of the spatiotemporal event sequences.

In this chapter, we will focus on modeling the spatiotemporal event sequences, and the

algorithms for mining the spatiotemporal event sequences. We will explain the model

we developed for the follow relationship in Section 5.1 and Section 5.2, as well as the

preliminary concepts of mining. In Section 5.3, we will present two Apriori-based STES

mining algorithms. In Section 5.4, we will present our pattern growth-based algorithms.

76

Lastly, in Section 5.6, we will present a new technique for mining spatiotemporal event

sequences without thresholds.

5.1 Modeling Spatiotemporal Event Sequences

Spatiotemporal event instances are evolving region trajectories with a unique identifier

and an associated event type. Our evolving region trajectory model is described thor-

oughly in Chapter 3. To remind the readers, the spatiotemporal event instances are

formed by evolving region trajectories. In our trajectory data model, we use a chrono-

logically ordered list of time-geometry pairs for representing moving region objects (in-

stances) that create the trajectories. Each time-geometry pair represents the location of

the instance at a particular time (point or interval). Event instances are identified by a

unique identifier. Moreover, each event instance is associated with an event type. The

event types signifies the class of its associated instances. The event type of an instance is

represented with insi.E.

We denote the set of instances as I = {ins1, . . . , insn}. An event type is denoted by ej.

The set of all event types is denoted as E = {e1, e2, . . . , em}. We expect m to be much

smaller than n (m << n). The set of instances of type ej is represented as Iej . In other

words, the set of all instances is formed by the union of the event instances of event types

in E (I =
⋃
ej∈E

Iej).

A spatiotemporal event sequence (denoted as ES) is an ordered series of event types

with possible repetitions.

ESi = (ei1 � ei2 � . . .� eik) (5.1)

The follow relationship between two event types is denoted by the ’�’ symbol. This is to

say, ‘ei � ej’ indicates ei is followed-by ej. Event sequences are derived from instance

sequences. An instance sequence (denoted as ISq) is a unique occurrence of a spatiotem-

77

poral event sequence. Instance sequences are formed by individual instances, which

follow each other in spatiotemporal context.

ISqi = (insi1 � insi2 � . . .� insik) (5.2)

The number of participating instances in an instance sequence is the length of the in-

stance sequence. To refer to the length-k instance sequences, we will use the term k-

sequence. Given an event sequence ESi, an instance sequence (ISqi) is of-type ESi, if and

only if the event types of the participating instances of ISq are identical and in the same

order as the event types in ESi. This is to say (following the notation in Eq. 5.1 and

Eq. 5.2), if insi is of-type ESi, then insi1 .E = ei1 , insi2 .E = ei2 , . . ., and insik .E = eik .

5.1.1 Head and Tail Window of an Instance

The instance sequences are formed by two or more instances. Between each two con-

secutive instances there exists a spatiotemporal follow relationship. Essentially, the follow

relationship occurs between two event instances, and is denoted with the ’�’ symbol.

The relationship is characterized by two predicates that delineate temporal continuity

and spatial proximity.

To actualize these predicates, we present two concepts that are the head and the tail

window of instances. The head of an instance refers to the initial segment of the instance’s

evolving region trajectory. Similarly, the tail of an instance refers to the last segment of

the trajectory. Tail window is a complex spatiotemporal buffer obtained by spatially

buffering and temporally propagating the tail of an instance. Given an instance, insi,

the head and tail window of insi are represented with hi and twi, respectively.

78

5.1.2 Generating Head and Tail Window

An example of head and tail generation from an instance can be seen in Fig 5.2. In our

example, we used the interval-based head and tail generation, where the head interval

is 2 days, and the tail interval is 3 days. The initial 2-day segment of the instance, which

corresponds to the first two time-geometry pairs of the trajectory, is the head of the

instance. Similarly, the final 3-day segment of the instance is the tail of the instance.

An example of tail window generation can be seen in the lower-right section of Fig 5.2.

2-D
Space

Time

20
12
-0
1-
01

ins

i

20
12
-0
1-
02

20
12
-0
1-
03

20
12
-0
1-
04

20
12
-0
1-
05

20
12
-0
1-
06

20
12
-0
1-
07

20
12
-0
1-
08

hIn = 2 days tIn = 3 days

h

i

tail

i

Apply
spatial
buffer

Apply
temporal

propagation

tw

i

tv = 1 day

Create tail window by
merging (unioning)

spatially buffered and
temporally propagated

segments

bd

Figure 5.2: Creating the head and tail window of an instance. (Parameters: hIn = 2days, tIn =
3days, and tv = 1day)

79

Firstly, the tail of the instance in Fig 5.2 is spatially buffered. Then, each geometry in the

buffered tail is considered to last its effect for another day; thus, they are propagated in

time for one day.

The tail window is a unidirectional temporal projection of buffered tail geometries. It

is designated to represent the propagating temporal effect of individual tail geometries.

The buffer distance, used when creating the tail buffer, determines the amount of spatial

span of the instance at a particular time interval. Tail validity can be seen as the amount

of time that the spatial span continues its effectiveness. A fine analogy would be the

effect of burglaries at a certain area. If an unexpectedly high number of household bur-

glaries happen at a particular apartment complex (tail), it is expected to lower the rents

in that particular complex, as well as the neighboring housing options (buffered tail). We

would expect to see the low rent trend caused by the burglaries for a particular amount

of time, usually until people are persuaded that the area is secure, or the burglaries are

forgotten (tail validity).

When creating the tail window of an instance, we initially get the tail segment of

the instance and buffer the geometries in the tail. The buffer operation is a spatial-

only buffer, where the indivudual geometries are expanded only in two-dimensional

space but not in the time dimension. A spatiotemporal buffer operation applied to the

tail would bidirectionally expand the boundaries of the tail in both spatial and temporal

dimensions. Tail window, on the other hand, is the aggregation of the unidirectional

temporal projection of the buffered geometries of the tail. It is important to note that

buffered geometries in the tail are projected to succeeding timestamps, but the preceding

geometries are neither buffered in space nor projected in time.

For clarification, in Fig. 5.2, we illustrated the creation of head and tail window of an

instance. In our example, the head interval is 2days, the tail interval is 3days, and the

tail validity is 1day. Given the instance, insi, in Figure 5.2,

80

• The head of the instance is the trajectory segment composed of the two initial

time-geometry pairs of the instance.

• The tail of the instance is the trajectory segment composed of the final three time-

geometry pairs of the instance.

• Buffered tail geometries are only determined by spatially buffering the geometries

in the tail.

• The geometries in the tail window are determined by spatially unioning the cor-

responding buffered tail geometry and tv = 1day previous geometries. The tail

window geometry at t = 2012− 01− 06 is found by unioning the buffered geome-

tries from 2012− 01− 05 and 2012− 01− 06.

5.1.3 Strategies for Head and Tail Window Generation

With the parameterized approach on creating the heads, tails, and tail windows of in-

stances, we aim to create a flexible framework for mining the event sequences. These

concepts can be interpreted as the regions of interest for their respective domains. In

this part of our discussion, we will present different strategies for generating heads and

tails of the instances.

Selection of the Segment: Interval-based vs. Ratio-based Generation

In the interval-based generation strategy, we consider two global parameters to be ap-

plied to the instances to generate trajectory segments. These are the head interval (hIn)

and the tail interval (tIn) parameters. The head interval refers to the time period for

determining the head segment of the instance’s trajectory. Similarly, the tail interval is

used to determine the tail segment of the trajectory. The length of these intervals are

fixed for all the instances in a given dataset. This is to say, all the head segments have

81

Time

Interval-based Generation Ratio-based Generation

Head Tail Head Tail

hIn=3h tIn=3h hR=0.25 tR=0.25

tstart=0h tend=12h

hIn=3h tIn=3h

hR=0.25 tR=0.25

Partial Coverage Full Coverage Overfull Coverage

Head Tail Head Tail Head Tail

hIn=3h tIn=3h hR=0.25 tR=0.75 hR=0.5 tR=0.75

Disjoint Overlapping

insi

Figure 5.3: Strategies for generating head and tail of an instance

the same interval length (which is hIn), and all the tail segments have the same interval

length (which is tIn).

In the ratio-based generation strategy, we are given two ratio-based global parameters

that are the head ratio (hR) and the tail ratio (tR). The ratios (hR and tR) imply the

proportion of trajectory’s lifespan that will be assigned for head and tail segments, re-

spectively. Note that both head and tail ratio is a number between 0 and 1 (0 is excluded,

while 1 is not excluded). In this strategy, the lengths of the head and tail segments are

variable, and are dependent on the lifespan of the instances.

In the interval-based strategy, the lifespan of the instances do not affect the length of

the head and tail segments. Therefore, their lengths are fixed throughout the datasets.

82

When a given interval (head or tail interval) is greater than the lifespan of the instances,

the whole trajectory is considered as either tail or head, and they are not extended. This

can be problematic for consistency of the generated heads and tails. In the case of ratio-

based strategy, head and tails are determined based on a ratio-based parameter (that is

in the range (0, 1]), and the problems stemming from fixed intervals do not exist.

Coverage Strategies: Partial, Full and Overfull

An important issue with the head and tail generation is the coverage of instance trajec-

tories. In the full-coverage strategy the entire trajectory is divided into two parts, where

the initial segment is considered as the head, and the last segment is considered as the

tail. The full-coverage strategy puts a constraint on the instance trajectory by using it

entirely to generate the head and tail segments. Part of the trajectory is used as the

head segment and the complimentary part is used as the tail segment. To actualize the

full-coverage strategy, the ratio-based strategy is needed, where the sum of head and tail

ratio must be 1 (hR+ tR = 1). It can also be speculated that it is possible to use interval-

based strategy for full-coverage; however, it requires all the instances in a dataset to have

the same lifespan, which is generally unrealistic.

In contrast to full-coverage, with the partial-coverage strategy there can be portions of

the instance trajectory not covered by either the head or tail segments. Overfull-coverage

occurs when portions of the instance trajectory are covered by both head and tail seg-

ments. The partial and overfull coverage strategies are less constrained when compared

to full coverage, and can be actualized by both interval and ratio-based strategies. How-

ever, to guarantee the coverage schema (for all partial, full, or overfull strategies), the

ratio-based schema should be used. For the case of partial coverage hR+ tR must be less

than 1, while for overfull coverage hR+ tR must be greater than 1. Using interval-based

schema can create mixed strategies, where some instances might have partial coverage,

while the others may have full or overfull coverage.

83

Overlapping vs. Disjoint Coverage Strategies

Another aspect of the head and tail generation that is worth considering is the character-

istics of coverage strategies. The coverage of the instance trajectories is a primary factor

in generating the sequence forming behavior, both from the relevance and computational

cost perspective. We present two strategies: overlapping strategy and disjoint coverage

strategy.

In the disjoint coverage strategy, no segment of the instance trajectory can a part of

both head and tail segments. Partial and full coverage strategies create disjoint head

and tail segments. In the overlapping coverage strategy, a portion of the instance’s

trajectory can be included both in the head and tail segments. Overfull-coverage leads

to the overlapping strategy. An overlapping strategy guarantees the usage of all the

time-geometry pairs of all the instances in the mining process, with some portions of the

trajectories are used for both head and tails. In disjoint coverage strategy, portions of the

time-geometry pairs may be ignored by the algorithms.

In a particular dataset, overlapping (or disjoint) head and tail segments can be guar-

anteed by the ratio-based head and tail generation strategy. On the other hand, usage

of interval-based generation can lead to a mixed coverage strategy, where head and tail

segments can be overlapping or disjoint depending on the lifespan of the instance.

It is also worth noting that using overfull strategy can drastically increase the runtime

complexity of the mining algorithms, while using very-low head and tail generation

parameters (i.e., hIn and tIn or hR and tR) can decrease the relevancy of the results.

Therefore, these two aspects can be traded off to create a mining schema that is more

efficient or more relevant.

Temporal Propagation Strategies for Tail Window Generation

Another issue that is worth considering is the determination of the tail validity interval.

We propose two alternatives for selecting the interval for temporal propagation. The first

84

alternative is the fixed interval-based temporal propagation, where the tail is temporally

propagated for a fixed time range. Secondly, similar to the ratio-based parameters, the

tail validity interval can be determined based on a ratio-based parameter. The ratio-

based tail validity interval is dependent on the lifespan of the individual instances.

5.2 Spatiotemporal Follow Relationship and Measuring the Significance

Given two instances insi and insj, there exists a spatiotemporal follow relationship be-

tween insi and insj (insi � insj) if and only if (1) the start time of insi is less than the

start time of insj, and (2) there exists a spatiotemporal co-occurrence between the tail

window of insi and the head of insj. Under these conditions, insi is the followee and

insj is the follower in the relationship.

To form a 2-sequence, there must be one spatiotemporal follow relationship between

two instances. More generally, to form a k-sequence, there must be k-1 spatiotempo-

ral follow relationships between each consecutive participating instance. That is, for k

instances (ins1, ins2, . . . , insk), the instance sequence ISq = (ins1 � ins2 � . . .� insk)

exists if and only if there exists a series of follow relationships between ins1 and ins2

(ins1� ins2), ins2 and ins3 (ins2� ins3), . . . , and, lastly insk−1 and insk (insk−1� insk).

5.2.1 Significance of the Instance Sequences

An important aspect of the spatiotemporal event sequence mining is the determination

of significant or spurious instance sequences. The significance assessment is important

as the accuracy and reliability of the resulting event sequences are dependent on the

discovered instance sequences. For assessing the significance of the follow relationship

between instances, we present the chain index measure.

The chain index, denoted as ci, for 2-sequences is defined as the significance of the

spatiotemporal co-occurrence between the tail window of the followee instance and the

85

head of the follower instance. The significance of spatiotemporal co-occurrences occur-

ring between evolving region trajectories are studied in [37, 142]. The significance can

be measured with measures such as OMAX, J, or J∗. For this work, we will use the

J∗ measure [142]. J∗ measure between two trajectory segments is defined as the ratio

of intersection to union volume at time intervals where there exists a spatiotemporal

overlap.

As previously mentioned, a k-sequence, where k > 2, is essentially formed by (k-1)

follow relationships occurring between each consecutive instance pair. That is to say,

there are (k-1) 2-sequences contained in a k-sequence. For sequences of length 3 or more,

the chain index is defined as the minimum chain index of all 2-sequences contained.

Formally, for a 2-sequence, ISqr = (insr1 � insr2), the significance of the follow rela-

tionship is assesed as follows:

ci(ISqr) =

J∗(twr1 ,hr2) if insr1 .ts < insr2 .ts,

0 otherwise
(5.3)

where ts represents the starting time of an instance, and J∗ for the tail window and head

segments is defined as:

J∗(tw,h) =
Vtilxco(tw∩ h)
Vtilxco(tw∪ h)

- (See [142]) (5.4)

For a k-sequence ISqi = (insi1 � insi2 � . . .� insik), where k > 2, the significance is

assessed as follows:

ci(ISqi) = min
16j<k

(ci(insij � insij+1
)) (5.5)

The instance sequences are considered as significant if their chain index value is greater

than a user-defined chain index threshold (cith). The chain index is an antimonotonic

86

measure. Antimonotonicity (downward closure property) is a crucial property for fre-

quent pattern mining, as it helps pruning the search space efficiently. The property refers

to the phenomenon that for any k-sequence, if the k-sequence is significant, any of its

subsequences are also significant, and the k-sequence cannot be significant, if at least one

of its subsequences is not significant. Next, we will present the proof of antimonotonicity

for the chain index.

Lemma: The chain index is antimonotonic.

Proof: Given ISqj = (ins1 � ins2 � . . .� insk) is an instance sequence. Let prej be the

length-(k-1) prefix subsequence of ISqj and sufj be the length-(k-1) suffix subsequence

of ISqj.

prej = (ins1 � ins2 � . . .� insk−1),

sufj = (ins2 � ins3 � . . .� insk).
(5.6)

For any chain index threshold cith, if ISqj is significant:

cith 6 ci(ISqj),

cith 6 min(ci(i1 � i2), . . . , ci(ik−1 � ik)).
(5.7)

The chain indexes of subsequences are defined as:

ci(prej) = min(ci(i1 � i2), . . . , ci(ik−2 � ik−1)),

ci(sufj) = min(ci(i2 � i3), . . . , ci(ik−1 � ik)),
(5.8)

Then, cith 6 ci(ISqj) 6 ci(prej) and cith 6 ci(ISqj) 6 ci(sufj), hence, chain index is

antimonotonic.

87

5.2.2 Prevalence of the Event Sequences

Event sequences are derived from significant instance sequences. To measure how com-

mon a particular event sequence is, we will use the participation index measure. The

participation index is defined in [110], and signifies the importance of an event sequence.

For an event sequence, ESj=(ej1 � .. � ejk), the participation index of the event sequence

is the minimum of participation ratios (pr) of the event types in the sequence.

pi(ESj) = min(pr(ei1 |ESj), . . . ,pr(eik |ESj)) (5.9)

The participation ratio of an event type (ei) on an event sequence (ESj) is the ratio of

number of unique participators of ei’s instances to the total number of event instances

of ei.

pr(ei|ESj) =
|{insi|insi ∈ ISqi ∧ insi.E=ei ∧ ISqi of-type ESj}|

|Iei |
(5.10)

where | · | shows the set size. Event sequences are considered as prevalent, if and only if

the participation index of the event sequence is greater than the user-defined participa-

tion index threshold (pith).

5.2.3 A Discussion on the Ambiguity of Allen’s Temporal Algebra and How We Solve It

In Allen’s temporal algebra [7], any two time intervals can have one and only one rela-

tionship. While theoretically the algebra is not ambiguous, the same algebraic relation

can quantitavely represent remarkably different situations. Additionally, a simple tem-

poral predicate can be represented by more than one algebraic relationships. The lack of

robustness in the algebra creates the ambiguity for knowledge discovery. For instance,

in our spatiotemporal follow relationship, the starts after predicate can be represented

88

by five different relationships, and multiple follow relationships cannot be robustly cap-

tured by using only Allen’s algebra.

Moerchen suggests the usage of thresholds and fuzzy extensions to the temporal alge-

bra in order to overcome the ambiguity problems [143]. Following this suggestion, we

addressed this problem by adapting two strategies:

1. Instead of using Allen’s temporal algebra for starts after predicate, we only check

the start times of the potentially sequence forming instances. This check is not

based on the intervals, but only the start times of the instances.

2. To capture the sequence forming behavior, we introduced the tail window and head

concepts for spatiotemporal event instances. The second predicate of the follow

relationship is the spatiotemporal overlap. This predicate is particularly beneficial

when checking the strength of the sequence forming behavior at regions of interest

by translating the sequence forming behavior to a spatiotemporal co-occurrence

relationship.

These two strategies enable us to

• Conveniently and efficiently inspect the starts after temporal predicate,

• Build a robust spatiotemporal follow relationship,

• Most importantly, create a flexible event sequence generation framework with the

parameterized tail window and head concepts.

5.3 Apriori-based Algorithms for Mining Spatiotemporal Event Sequences

In this section, we will discuss two Apriori-based spatiotemporal event sequence mining

algorithms. The seminal Apriori algorithm, proposed by Agrawal and Srikant [67], is

designated for frequent itemset mining from transactional databases. The algorithm

proceeds by identifying frequent individual items and extends them to larger and larger

89

itemsets as long as the discovered itemsets are sufficiently frequent in the transactional

database. Apriori uses a bottom up approach, where frequent sub-itemsets are extended

one item at a time (with candidate generation), and the candidate itemsets are tested

against the database. In other words, Apriori algorithm generates candidate itemsets of

size-k from itemsets of length-(k− 1). Then, it prunes the candidates which have one or

more infrequent sub-itemsets. After that, it scans the transaction database to determine

frequent itemsets among these candidates. This procedure is repeated iteratively until

no candidate itemset can be generated.

Our Apriori-based algorithms follows a similar approach, where we generate candi-

date spatiotemporal event sequences, prune the infrequent ones, and repeat the process

until no further extension is possible. Our first mining algorithm is called NaïveApriori

and the second one is called SequenceConnect. Both of these algorithms share the same

initialization steps, where we create heads, tails, and tail windows from instances.

5.3.1 Initialization

In the initialization steps, we create the heads and tail windows of all the instances in the

set of all instances (I), and store them for further use in a map structure. The pseudocode

for the initialization steps can be seen in Algorithm 3. For each instance, the initialization

procedure creates head and tail windows as described in Section 5.1.1, and inserts them

to the head (H) and tail window (TW) maps. Both H and TW collections are designed

as two-level maps that store mappings from event types to instance identifiers, and from

instance identifiers to head or tail window trajectory segments. Both the head and tail

windows of the instances are stored in the form of an evolving region trajectory.

5.3.2 Naïve Apriori Algorithm

The initial iteration of the classical Apriori algorithm discovers frequent size-1 itemsets

[67]. In spatiotemporal event sequence mining, our initial iteration identifies the length-2

90

Algorithm 3: Initialization steps, creation of head and tail windows
Input: The set of all instances (I) and the parameter map (params) required for

head and tail window generation (If interval-based hIn, tIn,bd, tv, if
ratio-based hR, tR, bd, tvR)

Output: Head and tail windows of instances in I (H, TW)
1 Algorithm Initialize(I, params)
2 foreach insi in I do // for each instance in the dataset

/* create head segment and add it to the map */
3 Hi ← insi.CreateHead(params) ;
4 H.Put(insi.E, i, Hi) ;

/* create tail window segment and add it to the map */
5 TWi ← insi.createTailWindow(params) ;
6 TW.Put(insi.E, i, TWi)

7 return H and TW

spatiotemporal event sequences. After finding length-2 sequences, in the iterative steps,

we increase the length of the event sequences one event type at a time, and find the

longer length event sequences.

We give the outline of Naïve Apriori-based spatiotemporal event sequence mining

algorithm in Algorithm 4. The algorithm starts with head and tail window initializa-

tion (Step 1). Through Step 2 to 6, we demonstrate the initial Apriori iteration that

finds prevalent length-2 event sequences. In the initial iteration step, we firstly, generate

candidate length-2 event sequences (C-ESq), and then generate the (candidate) instance

sequences (C-ISq) of length-2 candidate event sequences (Step 3 and 4). Candidate in-

stance sequences are created by performing a spatiotemporal join operation (based on

the spatiotemporal overlap of tail window and heads of the instances). For instance, for

E = {A,B,C}, candidate event sequences (A�A), (A� B), (A� C), (B�A), (B� B),

(B� C), (C�A), (C� B), and (C� C) are created and stored in C-ESq list. Then, for

each of them, we create the candidate instance sequences by joining the heads and tail

windows. For example, in the case of (A� B), we join the tail windows of instances

of-type A with the heads of instances of type B. Additionally, we check the start times

of instances for starts after predicate of spatiotemporal follow relationship.

91

Algorithm 4: Naïve Apriori-based STES Mining Algorithm
Input: Set of all instances (I), set of all event types E, head and tail window

generation parameters, chain index threshold (cith), participation index
threshold (pith)

Output: Set of all prevalent spatiotemporal event sequences based on the given ci
and pi thresholds

1 Algorithm NaiveAprioriSTESMiner(I,E, params, cith, pith)
2 〈H, TW〉 ← Initialize(I, params) ;

/* Generate candidate event and instance sequences */
3 C-ESq← GenerateCandidates(E) ;
4 C-ISq← GenerateInstanceSequences(C-ESq,H,TW) ;

/* Prune insignificant instance sequences */
5 S-ISq← PruneInstanceSequences(C-ISq, cith) ;

/* Prune event sequences based on pith (prevalence) */
6 P-ESq← PruneEventSequences(C-ESq,S-ISq,pith) ;
7 k← 2 ;
8 PS[k]← P-ESq // PS[k] stores k-sequences
9 while PS[k] is not null do

/* iterative steps: generate and prune cadidate event sequences */
10 C-ESq← GenerateCandidates(PS[k]) ;

/* Join the head and tail windows of instance sequences */
11 C-ISq← GenerateInstanceSequences(C-ESq, S-ISq) ;
12 S-ISq← PruneInstanceSequences(C-ISq, cith) ;
13 P-ESq← PruneEventSequences(C-ESq, S-ISq, pith) ;
14 PS[k+ 1]← P-ESq ;
15 k← k+ 1 ;

16 return PS ;

Later, we prune the length-2 candidate instance sequences based on their significance

using cith and create length-2 significant instance sequences (S-ISq) (Step 5). Then, we

prune the candidate event sequences using significant instance sequences based on the

pith value and create prevalent length-2 event sequences (P-ESq) (Step 6).

After the initialization steps, the algorithm proceeds to the iterative steps for candidate

sequence generation and testing. In the iterative steps, the length-(k+ 1) candidate event

sequences are discovered by self-joining the prevalent event sequences (P-ESq - length-2)

discovered in the previous iteration (Step 10). Then, length-(k+ 1) candidate instance

sequences (C-ISq) are generated for each length-(k+ 1) candidate event sequence found

92

in Step 10 (Step 11). The candidate event sequences generation is performed by joining

head and tail window tables based on spatiotemporal follow predicates (spatiotemporal

overlap and starts after). It should be noted that the spatiotemporal join predicate joins

the head and tail windows of the instances as in the initialization step. Later, the can-

didate instance sequences are filtered using the chain index threshold (Step 12). Finally,

prevalent sequences are discovered using significant instance sequences (Step 13). This

process is continued, until no further prevalent event sequence of length-(k+ 1) can be

generated.

Algorithm 5: Apriori-based SequenceConnect Algorithm
Input: Set of all instances (I), set of all event types E, head and tail window

generation parameters, chain index threshold (cith), participation index
threshold (pith)

Output: Set of all prevalent spatiotemporal event sequences based on the given ci
and pi thresholds

1 Algorithm SequenceConnect(I,E, params, cith, pith)
2 〈H, TW〉 ← Initialize(I, params) ;

/* Generate length-2 candidate event and instance sequences, and prune

*/
3 C-ESq← GenerateCandidates(E) ;
4 C-ISq← GenerateInstanceSequences(C-ESq,H,TW) ;
5 S-ISq← PruneInstanceSequences(C-ISq, cith) ;
6 P-ESq← PruneEventSequences(C-ESq,S-ISq,pith) ;
7 k← 2 ;
8 IDsgf[k]← GetInstanceIds(S-ISq) ;
9 PS[k]← P-ESq // PS[k] stores k-sequences

10 while PS[k] is not null do
/* iterative steps: generate and prune cadidate event sequences */

11 C-ESq← GenerateCandidates(PS[k]) ;
/* use identifiers for connection instead of spatiotemporal joins

*/
12 IDsgf[k+ 1]← SequenceConnector(IDsgf[k]) ;
13 P-ESq← PruneEventSequences(C-ESq, IDsgf[k+ 1], pith) ;
14 PS[k+ 1]← P-ESq ;
15 k← k+ 1 ;

16 return PS

93

5.3.3 SequenceConnect Algorithm

In the naïve algorithm, we proposed a solution that uses a brute-force approach when

finding the candidate instance sequences. This requires a computationally expensive

spatiotemporal join operation on every Apriori iteration. To alleviate the computational

burden of expensive candidate instance sequence generation procedures, we propose the

SequenceConnect algorithm, which employs the antimonotonic property of the chain

index for efficiently discovering significant instance sequences. The following lemma is

employed for discovering the instance sequences.

Lemma: If there exists k− 1 significant 2-sequences such that (insi1 � insi2), (insi2 �

insi3), . . . , (insik-1� insik); then, there is a significant length-k instance sequence, ISqi =

(insi1 � insi2�, . . . , �insik).

Proof: The chain indices of all the (k−1) length-2 instance sequences are greater than

or equal to the cith (ci(insij � insij+1
) > cith), because they are significant. The chain

index for ISqi is the minimum chain index of all the 2-sequences it contains (ci(ISqi) =

min16j<k(ci(insij � insij+1
)). Since all of the contained 2-sequences are significant, the

minimum of their chain indices is greater than or equal to cith; thus, ISqi is also signifi-

cant (ci(ISqi) > cith).

We give the outline of the SequenceConnect algorithm in Algorithm 5. Different from

the Naïve Apriori-based algorithm (shown in Algorithm 4) the SequenceConnect algo-

rithm requires the instances participating in the significant chains to be stored (Step 8).

Similar to the Naïve Apriori-based algorithm, the initial Apriori steps of candidate event

sequence generation and pruning are the same (See Steps 2 to 6). The identifiers of

length-2 significant event sequences, which are discovered in Step 8, are used in iterative

steps for generating the candidate instance sequences, and determining the prevalent

event sequences by pruning the instance sequences.

Similar to the Naïve Apriori algorithm, candidate event sequences are generated from

the prevalent event sequences discovered in the previous iteration. However, this time

94

Algorithm 6: SequenceConnector Procedure
Input: The list of identifiers of length-k significant instance sequences
Output: The list of identifiers of the length-(k+ 1) significant instance sequences

1 Procedure SequenceConnector(IDsgf)

2 IDs(k+1) ← [] // Longer length connected sequences
3 foreach isqi, isqj ∈ IDsgf where i 6= j do
4 if Matches(isqi, isqj) then
5 isqk+1 ← Merge(isqi, isqj) ;
6 IDs(k+1).Add(isqk+1) ;

7 return IDs(k+1)

1 Procedure Matches(ISqi, ISqj)
/* Let ISqi be (idi1 � . . .� idik), and ISqj be (idj1 � . . .� idjk) */

2 suffixi ← (idi2 � . . .� idik) ;
3 prefixj ← (idj1 � . . .� idjk−1

) ;
4 if suffixi = prefixj then
5 return True ;

6 else
7 return False ;

1 Procedure Merge(insi, insj)
/* Let ISqi be (idi1 � . . .� idik), and ISqj be (idj1 � . . .� idjk) */

2 suffixi ← (idi2 � . . .� idik) ;
3 lastj ← idjk−1

;
4 return Concatenate(suffixi, lastj) ;

we do not use a spatiotemporal join based on overlap predicate in the iterative steps.

Instead of the spatiotemporal join, we apply the efficient SequenceConnector procedure.

The algorithm for the SequenceConnector procedure is provided in Algorithm 6. The

procedure takes a list of length-k instance sequences (in the form of a list of participating

instance identifiers), and returns the identifier list of length-(k+ 1) instance sequences.

The SequenceConnector iterates on a nested loop, where the pairs of length-k instance

sequences are merged to create length-(k+ 1) instance sequences. The criterion for merg-

ing is suffix and prefix matching, which is shown in Matches procedure in Algorithm 6.

Given two length-k instance sequences (insi, insj) to the Matches procedure, the proce-

dure gets the length-(k− 1) suffix of the first one (the last (k− 1) participating instances

95

of insi) and the length-(k− 1) prefix of the first one (the first (k− 1) participating in-

stances of insj). If the suffix of of insi and prefix of of insj are the same, the Matches

procedure returns true. When two instance sequences matches, the SequenceConnector

procedure merges them, using the Merge procedure shown in the final part of Algo-

rithm 6. Lastly, these sequences are added to the identifier list of length-(k+ 1) instance

sequences (IDs(k+1) in Step 6 of Algorithm 6).

We will provide a simple example to clarify the SequenceConnector algorithm. Let a

length-3 instance sequence, ISqi, be (ins1 � ins2 � ins3). For ISqi, the join operation

essentially finds the instance sequences that starts with ins2 and ins3, and merges them

with ISq1. For the sake of example, let ISqj be (ins2 � ins3 � ins4). The result of the

merge operation between ISqi and ISqj is a length-4 instance sequence (ins1 � ins2 �

ins3 � ins4).

In a nutshell, the SequenceConnect algorithm applies a join on the instance identifiers

of the length-k instance sequences to create length-(k+ 1) instance sequences. Similar to

the Naïve Apriori-based algorithm, the last portion of the SequenceConnect algorithm

is to test the prevalence of the spatiotemporal event sequences based on the pith value.

The prevalent event sequences are passed to the next iteration of the algorithm, and the

iterative process is continued until no further prevalent event sequences are found.

5.4 A Pattern Growth-based Approach for Mining Spatiotemporal Event Sequences

5.4.1 Event Sequences and Graph Representation

One of the difficulties of working with spatiotemporal instances is the computational

complexity of spatial operations needed to identify the sequence forming behavior. In

SequenceConnect algorithm, we mitigate this problem using SequenceConnector proce-

dure, where we do not apply spatiotemporal join, but only a regular join on scalar

instance identifiers. Another challenge for the Apriori-based spatiotemporal event se-

96

quence mining is the computational complexity of the candidate generation procedures.

Apriori-based procedures virtually create a lattice and perform self-joins to move from

bottom to the top of that lattice. When the lattice is sparse, the number of generated

candidates is low. However, with the datasets resulting in a very dense lattice (many

patterns being frequent), the candidate generation procedure becomes expensive due

to the following reasons: (1) Candidate event sequence generation is a permutational

procedure that requires us to find the matching subsequences in every iteration and

(2) iteratively finding the matching instance sequences is neither computationally nor

storage-wise efficient. Thus, when massive spatiotemporal trajectory datasets are pro-

cessed, the join operations create a performance bottleneck for mining algorithms. To

alleviate this problem, we propose to transform the instances and follow relationships

into a graph structure, and mine the spatiotemporal event sequences from this graph.

The graph transformation creates a directed graph from event instances and the fol-

low relationships. The instances, which participate in a 2-sequence, are transformed

into graph’s vertices. The follow relationships between instances are represented by the

directed edges. Here, the paths in the graph become the instance sequences, and the

frequently occurring paths become the event sequences. The task of mining can then be

transformed to finding sequences of event types whose instances frequently form paths

in the created graph structure. In the following parts of this section, we will initially de-

scribe the generation of event sequence graph, and, later, we will introduce our pattern

growth-based algorithm for mining spatiotemporal event sequences.

Graph Transformation

The initialization step of the pattern growth-based algorithm includes not only the iden-

tification of the follow relationships, but also the creation of the event sequence graph,

which is denoted as ESG. Formally, the event sequence graph is a structure that contains

a set of vertices (V) and a set of edges (E) as shown in Eq. 5.11. The event sequence

97

Algorithm 7: Graph transformation of instances and spatiotemporal follow relation-
ships
Input: Set of all instances (I), head and tail window generation parameters

(params), chain index threshold cith
Output: The event sequence graph (ESG) created from spatiotemporal follow

relationships based on the cith
1 Algorithm GraphTransform(I, params, cith)
2 ESG(V ,E) = {} ;
3 foreach insi ∈ I do
4 ESG.AddVertex((i, insi.E));

5 〈H, TW〉 ← Initialize(I,params);
6 foreach TWi ∈ TW do
7 foreach Hj ∈H do

/* Check spatiotemporal overlap and starts after predicates */
8 if STOverlaps(TWi, Hj) and (insi.start < insj.start) then
9 ci← CalculateCI(TWi, Hj); // Calculate ci value

10 if ci > cith then
11 ESG.AddEdge(i, j, ci); // Add an edge from vertex i to j

12 return ESG ;

graph is a directed weighted graph, where the vertices represent the event instances,

while the weighted edges represent the spatiotemporal follow relationships and their

significance as weights of the edges. The vertices, denoted as vi in vertex set represents

an instance (insi) and store the identifier of the instance, which is i, and the event type of

that instance insi.E. Each vertex is uniquely identified by its identifier, which is also the

identifier of the instance. The edges are represented as triples comprising the identifier

of source vertex, identifier of target vertex, and the weight of the edge. The source vertex

identifier represents the identifier of the instance that is being followed (i.e., followee

instance), while the target vertex identifier represents the identifier of the instance that

98

follows (i.e., follower instance). The weight represents the chain index value of the follow

relationship from the followee instance to follower instance.

ESG = (V ,E)

V = {v1 = [i1, ei1], v2 = [i2, ei2], . . . , vn = [in, ein]}

E = {[isource1 , itarget1 ,w1], . . . , [isourcek , itargetk ,wk]}

(5.11)

The algorithm for transforming the spatiotemporal follow relationships between in-

stance to the event sequence graph structure is shown in Algorithm 7. The algorithm

starts with creating an empty graph and adding the spatiotemporal event instances in

the set of all instances as vertices of the graph (Step 3 and 4). Then, we create head and

tail windows of the instances using the Initialize procedure shown in Algorithm 3. After

creating the head and tail windows of instances, we identify each spatiotemporal follow

relationship by checking the two predicates of the relationship. For two instances (insi

and insj) we check the temporal starts after relationship (insi.start < insj.start) and

the spatiotemporal co-occurrence relationship between followee instance’s tail window

and follower instance’s head (STOverlaps(TWi, Hj)) (See Steps 6 through 11). Note that

for each follow relationship, we calculate the ci value and test it with the given cith

value. Then, we add the edge with that particular weight from the followee (insi) to the

follower (insj) if it is greater than the given cith.

By using the ESG, we aim to substantially reduce the storage requirements of our

mining algorithm. In the ESG, we only store the unique instance identifiers with the in-

stance’s associated event type. The temporal and spatial data (time-geometry pairs), are

not stored in the graph. For clarification, in Figure 5.4, we demonstrate the transformed

version of our example dataset shown in Fig. 5.1.

Another important aspect of the event sequence graph is the acyclicity. As it can be

seen from our example in Figure 5.4, the transformed graph is ordered on time dimen-

sion. This comes from the order imposed by the spatiotemporal follow relationship that

99

t

10

t

11

t

12

t

3

t

9

t

7

t

8

t

4

t

6

t

5

t

6

t

1

t

2

t

5

t

7

t

8

t

3

t

3

t

5

t

4

t

1

t

2

t

10

t

11

t

8

t

9

Type A Type B Type C

t

6

t

5

t

7

t

6

t

5

t

4

t

8

t

9

t

9

t

10

t

3

t

2

t

4

t

3

t

4

t

5

t

6

B followed-by C

A followed-by C followed-by B

ins

6

ins

7

ins

8

ins

1

ins

2

ins

3

ins

4

ins

5

ins

9

ins

10

ins

11

ins

12

ins

13

ins

14

ins

15

ins

16

B followed-by A

A followed-by B

A followed-by B
A followed-by B followed-by A

C followed-by B followed-by A

B followed-by C

→

Time
t1 t2 t3 t4 t5 t6 t7 t8

3
A

t9 t10

2
A

1
A

4
A

5
A

6
B

10
B

9
B

8
B

7
B

11
B

12
B

13
C

16
C

15
C

14
C

Figure 5.4: The graph representation of the spatiotemporal follow relationships and the instances
shown in Fig. 5.1. The vertices representing instances are ordered based on their start
time.

requires the start time of the followee must be less than the start time of the follower.

This condition guarantees the non-existence of a feedback edge set (directed edges cre-

ating cycles), and imposes a topological order on the inspected instances based on their

start times.

Lemma: The event sequence graph (ESG) is a directed acyclic graph.

Proof: Let ESG(V ,E) be an event sequence graph, and vertices of the ESG be V =

{v1, v2, . . . vn}. The edges are created when there exists a follow relationship between two

instances. Namely, for each edge vi1 → vi2 , we have insi.start < insj.start. Suppose

ESG is not an acyclic graph, which means that there is a cycle, which can be found by a

closed walk that starts and ends at the same vertex (i.e., path = vi1 → vi2 → vik →

vi1). Given the starts after predicate of the follow relationship, then the relationships in

the path can be expanded as follows:

vi1 → vi2 ⇐⇒ insi1 .start < insi2 .start

vi2 → vi3 ⇐⇒ insi2 .start < insi3 .start

. . .

vik → vi1 ⇐⇒ insik .start < insi1 .start

(5.12)

100

Then, we can get the following inequality

insi1 .start < insi2 .start < insi3 .start < . . . insik .start < insi1 .start (5.13)

However, insi1 .start cannot be less than itself; thus, it is not possible to have such cyclic

behavior in the event sequence graph. Essentially, the starts after predicate of the follow

relationship enforces that for any edge in ESG, the start time of the source vertex must

be less than the start time of the target vertex. This creates a topological ordering among

all the connected vertices. As the vertices in ESG has topological ordering, ESG is a

directed acyclic graph.

5.4.2 EsGrowth Algorithm

In this part, we will explain our pattern growth-based spatiotemporal event sequence

mining algorithm, which is called EsGrowth(that stands for Event Sequence Growth).

The EsGrowth algorithm initially discovers the significant follow relationships appear-

ing between the instances and transforms them into a directed acyclic graph structure.

Using the event sequence graph structure, the algorithm recursively discovers the fre-

quently appearing event sequences using a pattern growth-based approach. The outline

of EsGrowth can be seen in Algorithm 8.

Similar to the SequenceConnect algorithm, the EsGrowth algorithm initially dis-

covers the significant follow relationships in graph transformation procedure based on

the cith value (Step 3). After the transformation, the algorithm loops through all the

event types in E. This is to find the event sequences starting from a particular event

type. Then for each event type ei, using the FindInstancesOf procedure, we discover the

non-leaf vertices of type ei from the event sequence graph (Step 5). The FindInstancesOf

procedure finds the instance sequences of the event sequences of a given event sequence.

101

Algorithm 8: Pattern growth-based EsGrowth algorithm
Input: Set of all instances (I), set of all event types E, head and tail window

generation parameters, chain index threshold (cith), participation index
threshold (pith)

Output: Set of all prevalent spatiotemporal event sequences based on the given ci
and pi thresholds

1 Algorithm EsGrowth(I,E, params, cith, pith)
2 ES← {}; // Global variable
3 ESG← GraphTransform(I, params, cith); // Global variable
4 foreach ei ∈ E do
5 Paths(ei) ←FindInstancesOf((ei), ESG) ;

/* (ei) is a temporary 1-sequence to be extended */
6 GrowSequence((ei), Paths(ei)) ;

7 return ES

1 Procedure GrowSequence(esq, Pathsesq)
2 SucPaths← FindSuccessorPaths(Pathsesq) ;
3 foreach ej ∈ E do
4 esqtmp ← (esq� ej); // Temporarily append event type to be inspected
5 Pathsesqtmp ← FindInstancesOf(esqtmp, SucPaths) ;
6 pi← CalculatePI(esqtmp, Pathsesqtmp) ;
7 if pi > pith then
8 ES.Insert(esqtmp) ;
9 GrowSequence(esqtmp, Pathsesqtmp)

In the initial iteration, we create a virtual length-1 event sequence that only represents

the event type, and find the vertices of the event type in the graph.

After, we find the starting points of the paths in the graph (as Paths(ei)), we call the

GrowSequence procedure. The GrowSequence procedure is shown in the second part of

the Algorithm 8. In essence, the procedure extends the paths to find instance sequences

of longer length event sequences. Firstly, the procedure finds the successor paths of the

given event sequence (See SucPaths in Step 2). After that, we iterate through all the

event types, and extend the given event sequence with the event type to create a tempo-

rary event sequence (See esptmp in Step 4). Then, using the FindInstancesOf procedure,

we extend the instance sequences (in the form of paths) found in the SucPaths. With

this, we find the instance sequences of the temporary event sequence (esqtmp) (Step 5).

102

Then, we calculate the participation index of the given event sequence, and test the par-

ticipation index (pi) with the threshold value pith. If the pi of event sequence is greater

than the threshold, we add it to the list of prevalent event sequences (ES) and call the

GrowSequence with the found paths (representing the instance sequences of esqtmp) of

esqtmp (See Steps 6 through 9).

This part of our algorithm extends the pattern growth-based PrefixSpan algorithm [61]

to the event sequence graphs. For readers who are familiar with the PrefixSpan algo-

rithm, the set of successer paths, SucPaths, has a similar functionality with the prefix-

projected databases [61]. In contrast to the prefix-projected databases, we only pass

pointers to the vertices of the graph, which significantly reduces the storage require-

ments of the algorithm.

The GrowSequence procedure is a recursive procedure, where we call it for every preva-

lent event sequence based on the pith value. For the event sequences who cannot pass

the pith test, we do not call this procedure because of the downward closure property.

Note that if an event sequence is not prevalent, any of its super-sequences cannot be

prevalent.

5.5 Mining the Most Prevalent Spatiotemporal Event Sequences: Top-(R%,K)

Approach

The Top-K approaches compute the rank for all items and finds the most important

K patterns based on an interest measure. Getting the top-K patterns is one of the ap-

proaches for solving the problem of not having the prior knowledge, and previously

used in many classical [144–147] and spatiotemporal [42, 148] frequent pattern mining

approaches.

Previous spatiotemporal event sequence mining algorithms (SequenceConnect and Es-

Growth) use significance and prevalence thresholds for discovering the spatiotemporal

event sequences. These mining algorithms heavily rely on domain experts knowledge

103

to choose the optimal threshold parameters, which in some cases is not available. To

tackle these issues, we propose an approach for mining the most prevalent K spatiotem-

poral event sequences from R% most significant follow relationships. In general, we will

refer to this class of mining schemata as Top-(R%,K) spatiotemporal event sequence min-

ing. We will propose two algorithms for performing Top-(R%,K) spatiotemporal event

sequence mining: (1) Naïve Top-(R%,K)-ES-Miner and (2) Fast Top-(R%,K)-ES-Miner.

In our new class of algorithms, we will use the weights in the event sequence graph

more effectively with a version of pattern growth-based EsGrowth algorithm. Instead

of mining based on a set threshold, we will get a portion (R%) of the follow relation-

ships from the event sequence graph. Similar to the EsGrowth algorithm algorithm, we

will initially perform the graph transformation and later mine the spatiotemporal event

sequences by incrementally growing them.

5.5.1 Naïve Approach

The algorithm for Naïve Top-(R%,K)-ES-Miner is outlined in Algorithm 9. This algo-

rithm simply simulates the Top-(R%,K) STES mining using the EsGrowth algorithm. In

essence, we find all the spatiotemporal event sequences based on the R% most significant

follow relationships, and get the Top-K most prevalent ones.

The naïve algorithm starts by generating the event sequence graph with cith = 0.0,

and determines the chain index threshold value that corresponds to the most significant

R%th follow relationship from the edges of the event sequence graph (See Step 2 and 3).

In Algorithm 9, the ci value corresponding to the R% is denoted as ciTopR. Later, we

utilize the EsGrowth algorithm, and call it with cith = ciTopR and pith = 0.0. Here,

for conciseness of the notation, we show that we call the regular EsGrowth; however,

as we have already transformed the instances into the graph structure, we only filter

the edges of the event sequence graph based on the given cith. After getting all the

104

Algorithm 9: Naïve Top-(R%, K) Spatiotemporal Event Sequence mining algorithm
Input: Set of all instances (I), set of all event types E, head and tail window

generation parameters, the ratio of significance (R), the number of STESs to
be discovered (K)

Output: Set of top-K most prevalent spatiotemporal event sequences based on the
given Rpc and K values

1 Algorithm NaiveTopRK-EsMiner(I,E, params, R, K)
2 ESG(V ,E)← GraphTransform(I, params, cith = 0.0) ;

// find the ci value that is the R% highest ci value in follow edges
(E)

3 ciTopR← findTopR%-Threshold(ESG.E,R) ;
// Mine using the EsGrowth, set ci to ciTopR and pi to 0.0

4 ES← EsGrowth((〈I,E, params〉 as ESG), cith = ciTopR, pith = 0.0);
5 ESTopRK ← Top(K); // Get top-K most prevalent and return

6 return ESTopRK

prevalent spatiotemporal event sequences, we get the K most prevalent ones based on

their prevalence index (pi) values.

5.5.2 Fast Top-(R%,K) Approach

As mentioned earlier, the naïve approach is simply a simulation of theTop − (R%,K)

spatiotemporal event sequence mining with EsGrowth algorithm. One issue with the

naïve approach is that we set the pith value to 0.0, which can be very problematic, and

lead to finding many spatiotemporal event sequences of greater sizes that may have low

participation index values. In the Fast Top-(R%,K) approach, we employ a dynamic

update mechanism for the pi values.

The fast mining algorithm for Top-(R%,K) spatiotemporal event sequence discovery

can be seen in Algorithm 10. The algorithm can be seen as a version of EsGrowth

algorithm with dynamic pith value updates.

The Fast Top-(R%,K)-ES-Miner algorithm starts with creating an empty sorted list,

where we store the mappings of pi values and spatiotemporal event sequences (Step

2). The sorted list is denoted as TopES, and its maximum capacity is set to K. When,

105

Algorithm 10: Fast Top-(R%, K) Spatiotemporal Event Sequence mining algorithm
Input: Set of all instances (I), set of all event types E, head and tail window

generation parameters, the ratio of significance(R), the number of STESs to be
discovered (K)

Output: Set of top-K most prevalent spatiotemporal event sequences based on the
given Rpc and K values

1 Algorithm FastTopRK-EsMiner(I,E, params, R, K)
/* Create an empty sorted list (on pi values) of K event sequences */
/* TopES = [〈PI1, esq1〉, . . . 〈PIk, esqk〉] and PIi > PIi+1 */

2 TopES← SortedList(max. capacity= K) ; // global variable
3 ESG(V ,E)← GraphTransform(I, params, cith = 0.0) ;

// find the ci value that is the R% highest ci value in follow edges
(E)

4 ciTopR← findTopR%-Threshold(ESG.E,R) ;
5 ESGf ← CIFilter(ESG.E, ciTopR) ;
6 foreach ei ∈ E do
7 Paths(ei) ←FindInstancesOf((ei), ESGf) ;

/* (ei) is a temporary 1-sequence to be extended */
8 DynamicGrowSequence((ei), Paths(ei)) ;

9 return TopES

1 Procedure DynamicGrowSequence(esq, Pathsesq)
2 SucPaths← FindSuccessorPaths(Vpre) ;
3 foreach ej ∈ E do
4 esqtmp ← (esq� ej); // Temporarily append event type to be inspected
5 Pathsesqtmp ← FindInstancesOf(esqtmp, SucPaths) ;
6 pi← CalculatePI(esqtmp, Pathsesqtmp) ;

// Check with pi of currently Kth event sequence
7 if pi > TopES.Get(K).PI then
8 TopES.Insert(〈pi, esqtmp〉) ;
9 DynamicGrowSequence(esqtmp, Pathsesqtmp)

a new spatiotemporal event sequence is added to the list, the list stores it based on

the event sequence’s pi value. The event sequences are sorted in a descending fashion.

In other words, the first item in the TopES is the most prevalent spatiotemporal event

sequence, while the tenth item corresponds to the tenth most prevalent spatiotemporal

event sequence. When the list is full, an insert operation on this sorted list simply deletes

the Kth item and adds the event sequence, if the pi value of the inserted spatiotemporal

106

event sequence is greater than the Kth item’s pi value. In other cases, the insert operation

is rejected.

After initializing the sorted TopES list, we create the event sequence graph (with cith =

0.0) and filter the graph based on the R% value. The R% filtering is performed by first

finding a ci cutoff point that corresponds to R%th portion of the edge weights in the

ESG (See ciTopR in Step 4) and later removing the edges whose weights are less than

the ciTopR (Step 5). The filtered event sequence graph is denoted as ESGf.

The above mentioned steps (Steps 2 to 5) of the algorithm can be seen as the initializa-

tion for Top-(R%,K) mining schema. Then, similar to the EsGrowth algorithm, we iter-

ate through the event types (ei) and find spatiotemporal event sequences that starts with

a particular event type (Steps 6 to 8). In these iterative steps, we find the paths starting

from a non-leaf instance vertex whose event type is ei, and call the DynamicGrowSequence

procedure. This procedure is similar to the GrowSequence procedure in Algorithm 8, but

it dynamically updates the pith value by checking the pi value of the Kth most prevalent

spatiotemporal event sequence (See the condition pi > TopES.Get(K).PI in Step 7). At

any particular time, the pi value of the Kth element in the sorted TopES list corresponds

to the pith value, and the sorted nature of the list guarantees the correctness of our

results.

5.6 Bootstrap Approach: Mining Spatiotemporal Event Sequences without Thresh-

olds

Bootstrap is a resampling technique for estimating the distribution of a statistic [149],

and it is especially useful when there is no analytical form of help in estimating the

distribution of the statistics of interest. Here, we treat the participation index (pi) values

of STESs as a complex statistic to be obtained from the event sequence graph (ESG)

structure, and have the opportunity to explain the prevalence of spatiotemporal event

sequences as a distribution rather than a single value.

107

In our novel bootstrap approach, we resample the edges in the event sequence graph,

and similar to the Top-(R%,K) approach, we discover the event sequences from a sub-

graph of event sequence graph and collect its result. Yet, we perform this operation

many times based on a parameter, the number of bootstrap trials (denoted as η).

Algorithm 11: Bootstrap-based Spatiotemporal Event Sequence mining algorithm
Input: Set of all instances (I), set of all event types E, head and tail window

generation parameters (params), resampling ratio (R), the number of
bootstrap trials (ν)

Output: A complex map of spatiotemporal event sequences and their pi values
found after ν bootstrap trials

1 Algorithm Btsp-EsMiner(I,E, params, rR, ν)
/* Create an empty STES map storing pi values for each trial */
/* BtspES = [〈esq1 → [pi1, . . . ,piν]〉, . . . 〈esqn → [pi1, . . . ,piν]〉] */

2 BtspES← [] ; // global variable
3 ESG(V ,E)← GraphTransform(I, params, cith = 0.0) ;
4 foreach j from 1 to ν do
5 rESG←EdgeResample(ESG, rR) ;
6 iES← {} ;
7 foreach ei ∈ E do
8 Paths(ei) ←findInstancesOf((ei), rESG) ;
9 GrowBtspSequence((ei), Paths(ei), iES, rESG) ;

10 BtspES.Append(iES)

11 return BtspES

1 Procedure GrowBtspSequence(esq, Pathsesq, iES, rESG)
2 SucPaths← FindSuccessorPaths(Pathsesq) ;
3 foreach ej ∈ E do
4 esqtmp ← (esq� ej);
5 Pathsesqtmp ← findInstancesOf(esqtmp, SucPaths) ;
6 pi← CalculatePI(esqtmp, Pathsesqtmp) ;
7 if pi > 0.0 then
8 iES.Insert(〈esqtmp → [pi]〉) ;
9 GrowSequence(esqtmp, Pathsesqtmp , iES)

In Algorithm 11, we give the overview of the Btsp-EsMiner mining algorithm. The

algorithm takes the set of all instances (I), set of all events (E), head and tail window

generation parameters (params), resampling ratio (rR) that is the ratio between the

108

number of edges to be resampled and total number of edges in ESG, and the number of

bootstrap trials to be performed (ν) as input parameters.

In a nutshell, the Btsp-EsMiner algorithm performs resampling of the edges in the

ESG structure for ν times to estimate the pi value for the spatiotemporal event sequences.

Similar to the earlier pattern growth-based algorithms, using GraphTransform procedure,

our Btsp-EsMiner algorithm transforms the spatiotemporal follow relationships into the

event sequence graph (ESG) structure. After the initialization, the algorithm performs

ν bootstrap trials (See Steps 4 to 10). Each trial can be considered as a new call to

EsGrowth algorithm on a randomly resampled subgraph of the full event sequence

graph.

The iterative calls for each bootstrap trial can be summarized as follows. Firstly, the

algorithm performs edge resampling based on resampling ratio (rR) parameter (Step

5). The resampling ratio parameter determines the ratio of the edges to be included in

the new random subgraph. The randomly created subgraph is generated by selecting

k edges where k is d|ESG.E × rR|e. We denote the randomly created subgraph after

edge resampling as rESG. Note that our weighted graph structure is not a multi-graph;

therefore, we opt for resampling without replacement. After resampling, we perform a

version of the EsGrowth algorithm and obtain the event sequences and their pi values

(Steps 6 to 10). Lastly, we append them to the map structure (BtspES) for every iteration,

and return the BtspES.

The discovery of spatiotemporal event sequences from the resampled subgraphs of

ESG can be summarized as follows. The resampled subgraphs (rESG) For each resam-

pled subgraph, we perform a recursive procedure similar to the EsGrowth algorithm.

For each event type ei, we find the non-leaf vertices of ei. These vertices corresponds

to the starting vertices in the paths (which represents the instance sequences). Next, we

grow the sequences using the resampled graph and add the results to the intermediate

event sequence list (iES) (See GrowBtspSequences procedure in the second part of Al-

109

gorithm 11). This can be considered as running the EsGrowth algorithm with pith = 0.0.

Lastly, we append them to the map structure (BtspES) for every iteration, and return the

BtspES, which contains the discovered STESs and a size-(ν) list of pi values for each

discovered STES.

110

6 EXPERIMENTAL EVALUATION

In this chapter, we will present a comparative analysis of our algorithms using real-life

solar event datasets. We will firstly provide details on our experimental settings, intro-

duce our data sources, and explain the pre-processing steps (tracking and interpolation)

that we applied to the raw solar event data. Later, we will discuss the efficiency of our

algorithms in the context of runtime complexity and storage requirements. In the effi-

ciency analysis, we will compare the different steps of the algorithm such as head and

tail window generation, the identification of spatiotemporal follow relationships, and the

discovery of spatiotemporal event sequences using instance sequences. In the relevancy

analysis section, we will primarily inspect the characteristics of spatiotemporal event se-

quences found from our datasets. We will discuss the advantages and disadvantages of

using different types of algorithms.

6.1 Experimental Settings and Solar Event Datasets

6.1.1 Lifecycle of Solar Event Data

Solar physics researchers entered the big data era with the launch of NASA’s Solar

Dynamics Observatory (SDO) mission, which captures approximately 60,000 high reso-

lution images every day, and generates 0.55 petabytes of raster data each year [85]. The

big data trend in solar data is anticipated to be sustained by the ground-based DKIST

telescope, which is expected to generate three to five petabytes of data each year [9].

We illustrate the lifecycle of solar event data from images to evolving region trajecto-

ries in Figure 6.1 To process and analyze the data, NASA selected a consortium (Fea-

ture Finding Team, FFT) to produce a comprehensive automated solar event recognition

system for solar images captured by the SDO. The automated system contains many

individual modules detecting the spatial locations of different types of solar events from

the SDO data [123]. The detected solar event instances are object data with spatiotempo-

ral characteristics [8]. Recently, the curated large-scale solar image datasets with labeled

event regions was published in [150]. Next, we will briefly point out how the solar events

are tracked and interpolated.

Tracking the Solar Events

The tracking algorithm for events are introduced by Kempton et al. in [23, 133]. The

algorithm utilizes the locations and image parameters for linking the polygon based

instances. Therefore, it creates spatiotemporal trajectory objects with extended geometric

representations.

Solar Images

FFT Modules

Heliophysics Event
Knowledgebase (HEK)

Tracking
Module

Interpolation
Module

Individual
Solar Event
Recordings

Tracked
Solar Events

(Moving Region
Objects)

Tracked and
Interpolated Solar
Event Trajectories

(Evolving Region
Trajectories)

Figure 6.1: Lifecycle of solar event data

112

The goal of the tracking module is to link the solar events, which represent the same

phenomenon, reported by the FFT modules into a chronologically ordered sequence

representing the trajectories of the solar events. The algorithm, firstly links the individual

event instances by projecting a detected object forward using the known differential

rotation of the solar surface and searching for the potential detections that overlap with

the search area at the next time step. If there is one and only one possible detection to

be linked to, the algorithm links them together.

Then, the algorithm repeats the search for possible detections to link to. In these later

steps, it considers detections that had multiple paths in their search region. To determine

which path a tracked object takes, several aspects of visual and motion similarity are

compared to produce a probable path for the object. The resultant paths are again fed

into another iteration of the algorithm with larger and larger gaps between detections

allowed to account for missed detections in the original metadata.

Interpolating the Tracked Solar Event Trajectories

Though the tracking algorithm generates moving region objects that can last over days,

there are gaps in the individual solar event recordings. To increase the accuracy of

our mining results, we fill these gaps using our specifically designed spatiotemporal

interpolation techniques as appeared in our work [24].

As an example, for the case of filament events, they are alternately reported every 12

hours from the Kanzelhoehe and Big Bear Solar Observatories. On the other hand, active

region events and coronal hole events are reported more frequently (approximately every

4 hours). This is essentially where the spatiotemporal interpolation methods are utilized,

which allows the expansion of the tracked solar event data to the sites (locations on the

Sun) where no events have been reported.

We proposed different interpolation strategies depending on the solar event type to be

interpolated. The simplest interpolation method is the MBR-Interpolation, which is de-

113

signed for event types that are reported using their minimum bounding rectangles. For

the event types that are reported using their complex polygon boundaries, we use the

(Complex-Polygon Interpolation) CP-Interpolation algorithm, which uses the centroid-

based shape signature along with the dynamic time warping alignment to match and

regenerate the complex geometries. The Filament Interpolation (FI-Interpolation) is an-

other interpolation method that includes the unique physical characteristics of the fila-

ment event type to make the interpolation more specialized. In addition to interpolating

trajectory data, we also use extrapolation to estimate the shape of the geometries that do

not belong to any track (single event as a moving object).

In summary, using the tracking algorithm, we are able to access and make use of

solar events in the form of moving region objects, whose locations and shape and areal

characteristics change continuously over time. We interpolate the solar event data to

create more accurate spatiotemporal trajectories of solar events, which is in the form of

spatiotemporal trajectories of continuously evolving polygons.

Table 6.1: Characteristics of the Solar Event Datasets

Dataset Tag #of Instances #of Region Polygons

January 2012 Jan 2,072 159,773

February 2012 Feb 1,253 111,615

March 2012 Mar 2,027 157,374

April 2012 Apr 1,778 124,611

May 2012 May 2,258 199,390

June 2012 Jun 2,240 206,442

July 2012 Jul 2,387 182,601

August 2012 Aug 2,052 193,028

September 2012 Sep 2,123 186,906

October 2012 Oct 1,949 178,642

November 2012 Nov 2,058 161,930

December 2012 Dec 1,682 156,333

114

6.1.2 Our Datasets

To analyze the performance levels of our three different classes of algorithms we used

twelve real-life solar event datasets. These datasets include the spatiotemporal instances

of seven different solar event types that are: Active Regions (ar), Coronal Holes (ch),

Emerging Flux (ef), Filaments (fi), Flares (fl), Sigmoids(sg), and Sunspots (ss). Each

instance consists of region polygons, obtained from FFT module’s reportings stored in

the Heliophysics Event Knowledgebase (HEK) [151], and the regions are tracked and

interpolated using the algorithms presented in [24, 133]. The characteristics of our real-

life datasets can be seen in Table 6.1. Additionally, for each dataset, we show the number

of event instances in our datasets for each different event type in Figure 6.2. For many

datasets, there are usually a high number of Flare instances and low number of Sunspot

instances. Additionally, the number of instances in May, Jun, and Jul datasets are higher.

6.1.3 Implementation Details and Experimental Settings

For the experimental evaluation, we implemented complex mining modules in Java pro-

gramming language. Our modules can handle our base data types that we have pre-

sented in Chapter 1. To reiterate these base data types, we have moving region objects

that consistently change their shape and location as our base data type for spatiotempo-

ral event instances. These are represented using the raw trajectory data model, where

each particular segment of the trajectory is represented discretely as time-geometry pairs.

Each time-geometry pair object has a time interval object and a spatial geometry object

that is of polygon type.

Then, on top of the base data types, we have implemented spatial, temporal, and

spatiotemporal operations such as temporal starts after, spatial buffer, intersection, and

union, and spatiotemporal intersection and union operators. These operations help per-

115

0

200

400

600

800

1000

1200
N

u
m

b
e
r

o
f

In
st

a
n
ce

s
Jan Feb Mar

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

In
st

a
n
ce

s

Apr May Jun

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

In
st

a
n
ce

s

Jul Aug Sep

ar ch ef fi fl sg ss

Event Types

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

In
st

a
n
ce

s

Oct

ar ch ef fi fl sg ss

Event Types

Nov

ar ch ef fi fl sg ss

Event Types

Dec

Figure 6.2: The number of instances per event type in our datasets

form the low-level operations when identifying the spatiotemporal follow relationship,

as well as finding the significance of these follow relationships.

Next, we have a miner module, where we implement the mining algorithms presented

in Chapter 5. The miner module makes use of the base data types and spatiotemporal

operations. Additionally, we implemented an event sequence graph structure, which is

a directed acyclic graph implementation. All of our implementations, excluding the Se-

116

quenceConnect algorithm, makes use of the event sequence graph. Our implementations

do not use database connections to create a fair comparison environment. Note that the

SequenceConnect may use a database when performing joins, while the event sequence

graph structure can easily be stored in the main memory.

All of our modules are implemented in Java programming language (JDK version 8).

For spatial operations, we used the JTS Topology Suite library [152]. For graph data

types and operations, we used the JGraphT library [153]. We store our datasets in text

files, and read them to memory for a fair comparison. Similarly, the graph structures are

also stored in memory. All the experiments are performed on an Ubuntu virtual machine

(in a dedicated server) with 1TB RAM and Intel Xeon processor (E7-8860, 2.20GHz).

We run our experiments using the following predefined head and tail window gener-

ation parameters. We set the head and tail ratio parameters to 0.1 and 0.2, respectively.

We set the buffer distance parameter to 10 arcsec, and tail validity interval parameter to

2 hours. To show the characteristics of the algorithms in different parametric settings,

we ran each algorithm 16 times. For all of our algorithms, we have two parameters of

interest, and we set each of these parameters to four different values in each set of exper-

iments and combine different results. For threshold-based approaches (SequenceConnect

and EsGrowth algorithms) we set the chain index threshold (cith) to 0.1, 0.15, 0.2, and

0.25; and the participation index threshold (pith) to 0.04, 0.08, 0.12, and 0.16. For the

Top-(R%,K) mining algorithms, we set the R% value to 0.2, 0.4, 0.6, and 0.8; and K value

to 5, 25, 125, and 625. For the bootstrap-based algorithm, we set the resampling ratio (rR)

to 0.1, 0.2, 0.3, and 0.4; and the number of bootstrap trials parameter (ν) to 50, 100, 150,

200. In total, we run the algorithms for 16 times for each dataset. Thus, in total we will

be presenting our results based on a total of 960 experiments coming from 12 datasets,

16 runs, and 5 algorithms.

117

6.1.4 Agenda of Our Experiments

In the remainder of this chapter, we will analyze the efficiency of our mining algorithms

primarily from the running time performance aspect. We ran 16 experiments with all

SequenceConnect, EsGrowth, Naïve Top-(R%,K)-EsMiner, Fast Top-(R%,K)-EsMiner, and

Btsp-EsMiner event sequence miner algorithms on 12 datasets. All of our algorithms

share the initialization steps, where we generate heads and tail windows of the event

instances and identify the spatiotemporal follow relationships. Excluding the Sequence-

Connect algorithm, we also transform the follow relationships into the event sequence

graph structure. We will firstly inspect the running time performance of the initializa-

tion steps.

After that, we will compare the running time performance algorithms from different

perspectives. Note that, we will not include the Naïve Apriori-based algorithm in our

discussion, as we have shown that it is inefficient when compared to the SequenceConnect

algorithm in our earlier work [154].

6.2 Initialization Times

In Figure 6.3, we illustrate the running times we recorded for the initialization steps of

head and tail window generation (H-TW Generation) and spatiotemporal follow rela-

tionship discovery (Follow Discovery). We also show the number of vertices and edges

in the event sequence graph for each dataset. Note that the number of edges show the

number of spatiotemporal follow relationships we discovered from each dataset. The

running times are aligned to major Y-axis and shown with green and blue lines, while

the graph properties are aligned to minor Y-axis and shown with the grey and red bars.

From the results shown in Figure 6.3, we can see that the head and tail window genera-

tion time varies for each dataset. We can observe that part of it stems from the number of

instances (vertices) in the dataset, and another factor is the number of individual region

118

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Datasets

0

100

200

300

400

500

600

700

800
Ru

nn
in

g
Ti

m
es

 (s
ec

)
Follow Discovery
H-TW Generation

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f V
er

tic
es

 a
nd

 E
dg

es

Edges
Vertices

Figure 6.3: Average initialization times (follow discovery and head and tail window generation)
for all of the algorithms, aligned on the major Y-axis. The number of edges and the
number of vertices for each dataset are shown with bars aligned on the minor Y-axis.

polygons in the datasets, which can be seen in Table 6.1. We observe the highest head

and tail window generation times are recorded for May, Jun, and Jul datasets, where we

have the highest number of region polygons in the datasets. Similarly, the lowest head

and tail window generation times are recorded for February and April datasets where

we have the lowest number of region polygons.

The follow time is also inconsistent in our datasets. The follow time depends on

the number of spatiotemporal follow relationships among the instances in the dataset.

While they are not completely correlated, the number of edges (follow relationships) in

the generated graph is a good indicator for the follow discovery time. Another factor

that impacts the follow discovery time is the number of instances and region polygons,

119

because we get 10% and 20% of the instance trajectories as heads and tails (as hR =

0.1 & tR = 0.2).

For the case of the head and tail-window generation, our algorithm iterates through

all the instances in the database and compute the time propagated and spatially buffered

time-geometry pairs (representing the region trajectories). This process is done in linear

time which explains the relation between the running time and the number of instances

and region polygons. On the other hand, the event sequence graph generation algorithm

iterates through the tail windows and performs a spatiotemporal join on overlap pred-

icate with the head of instances. This makes the complexity of the follow relationship

identification quadratic; however, since we apply a two-step filter based on the time-

overlap and the spatial-overlap predicates the complexity becomes subquadratic (and

very close to linear) with respect to the number of region polygons in follow time. It

should be noted that, in the situation where there is a time requirement constraint, the

user can shrink the size of the tail window (using tR, tv and bd parameters) to decrease

the amount of overlap; thus, reducing the number of follow relationships.

6.3 Overview of Running Times

In Figure 6.4, we illustrate the total running times of the algorithms (SequenceConnect,

EsGrowth, Fast Top(R%,K)-EsMiner, and Btsp-EsMiner) on our datasets. We show the

average running times of sixteen experiments for each algorithm for all our datasets.

The running times of threshold-based algorithms and the Top(R%,K)-EsMiner are very

similar on average. However, the bootstrap-based algorithm (Btsp-EsMiner) takes 25%to

60%more time than the threshold-based algorithms. This difference is much expected,

as we perform 50 to 200 (based on the ν - number of bootstrap trials parameter) resam-

pling and graph mining procedures. This means that we essentially apply the mining

procedure on the resampled graphs, and the overhead generated by these operations are

reflected on the average running times of the Btsp-EsMiner algorithm.

120

Another observation we can make from both Figure 6.3 and Figure 6.4 is that the total

running times of the algorithms are dominated by the initialization times, where we

apply the spatiotemporal operations. It should be noted that tail window generation

as well as the follow relationship discovery (with ci calculations) are computationally

expensive procedures.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Datasets

0

200

400

600

800

1000

1200

1400

Av
er

ag
e

To
ta

l R
un

ni
ng

 T
im

es
 (s

ec
)

SequenceConnect Run
EsGrowth Run
FastTopRK-EsMiner Run
Btsp-EsMiner Run

Figure 6.4: Total running times of the algorithms, averaged over sixteen individual runs of each
algorithm for all the datasets

6.4 Analysis of Threshold-based Approaches

In the previous sections, we inspected the initialization and total running times of all the

algorithms. In this part of our discussion, we will analyze the results from two of our

threshold-based approaches that are: the SequenceConnect and the EsGrowth algorithms.

121

To remind the readers: the SequenceConnect algorithm is an Apriori-based algorithm,

where we generate candidates and prune them by testing the sequences. The EsGrowth

algorithm is pattern growth-based and it iteratively grows the sequences using the event

sequence graph.

For all the different values of pith and cith parameters, we show the total running

time (including initialization phase) in Figure 6.5 and the total number of spatiotemporal

event sequences in Figure 6.6.

In a nutshell, we can observe that EsGrowth algorithm generally performs similarly

with SequenceConnect algorithm. However, when there are more follow relationships (as

in the case for the May, Jun and Jul datasets), we start observing the drastic differences

between these two algorithms. This is much expected, as the number of the generated

candidates increases the efficiency of the SequenceConnect algorithm significantly drops.

In most cases, the bottleneck for SequenceConnect algorithm is the spatiotemporal follow

relationships discovery (i.e., the length-2 candidate instance sequence generation). How-

ever, when there are a lot of spatiotemporal follow relationships between instances (as

in Jul dataset - See Figure 6.3) the candidate sequence generation and joins become the

bottleneck of the algorithm.

In our earlier work [155], we also compared the SequenceConnect and EsGrowth al-

gorithms, and illustrated the effect of varying the head and tail window generation

parameters as well as the size of different datasets. Our findings here align with our

earlier results, where more instances and more follow relationships impact the running

time performance of the SequenceConnect algorithm immensely. Overall, for threshold-

based approaches, we can conclude that EsGrowth algorithm is more efficient than Se-

quenceConnect algorithm. This is because the EsGrowth avoids the expensive candidate

generation and filtering steps. It is also worth noting that, SequenceConnect writes the

significant instance sequences back to use it in the next iterations, which is an extra over-

head. EsGrowth, on the other hand, exploits the efficient searching capabilities of the

122

102

103

104

105
Ru

nn
in

g
Ti

m
es

 in
 lo
g s

ca
le

 (s
ec

)
pith = 0.04 & cith = 0.1 pith = 0.08 & cith = 0.1 pith = 0.12 & cith = 0.1 pith = 0.16 & cith = 0.1

102

103

104

105

Ru
nn

in
g

Ti
m

es
 in

 lo
g s

ca
le

 (s
ec

)

pith = 0.04 & cith = 0.15 pith = 0.08 & cith = 0.15 pith = 0.12 & cith = 0.15 pith = 0.16 & cith = 0.15

102

103

104

105

Ru
nn

in
g

Ti
m

es
 in

 lo
g s

ca
le

 (s
ec

)

pith = 0.04 & cith = 0.2 pith = 0.08 & cith = 0.2 pith = 0.12 & cith = 0.2 pith = 0.16 & cith = 0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
102

103

104

105

Ru
nn

in
g

Ti
m

es
 in

 lo
g s

ca
le

 (s
ec

)

pith = 0.04 & cith = 0.25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

pith = 0.08 & cith = 0.25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

pith = 0.12 & cith = 0.25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

pith = 0.16 & cith = 0.25

SequenceConnect EsGrowth

Figure 6.5: The running times of SequenceConnect and EsGrowth algorithms for all datasets un-
der various threshold parameters

event sequence graph structure. For the EsGrowth algorithm, the event sequence graph

generation is an overhead, and it can be seen on Figure 6.5, in the last row (cith = 0.25),

where SequenceConnect takes slightly less running time. On the other hand, the recur-

sive GrowSequence procedure is not much affected from the higher number of follow

relationships as the graph structure allows efficient in-memory search for the discovery

123

0

10

20

30

40

50
Nu

m
be

r o
f S

TE
Ss

 d
isc

ov
er

ed
pith = 0.04 & cith = 0.1 pith = 0.08 & cith = 0.1 pith = 0.12 & cith = 0.1 pith = 0.16 & cith = 0.1

0

10

20

30

40

50

Nu
m

be
r o

f S
TE

Ss
 d

isc
ov

er
ed

pith = 0.04 & cith = 0.15 pith = 0.08 & cith = 0.15 pith = 0.12 & cith = 0.15 pith = 0.16 & cith = 0.15

0

10

20

30

40

50

Nu
m

be
r o

f S
TE

Ss
 d

isc
ov

er
ed

pith = 0.04 & cith = 0.2 pith = 0.08 & cith = 0.2 pith = 0.12 & cith = 0.2 pith = 0.16 & cith = 0.2

Jan Feb Mar Apr May Jun Jul Aug Se
p Oct Nov Dec

0

10

20

30

40

50

Nu
m

be
r o

f S
TE

Ss
 d

isc
ov

er
ed

pith = 0.04 & cith = 0.25

Jan Feb Mar Apr May Jun Jul Aug Se
p Oct Nov Dec

pith = 0.08 & cith = 0.25

Jan Feb Mar Apr May Jun Jul Aug Se
p Oct Nov Dec

pith = 0.12 & cith = 0.25

Jan Feb Mar Apr May Jun Jul Aug Se
p Oct Nov Dec

pith = 0.16 & cith = 0.25

Figure 6.6: The number of spatiotemporal event sequences discovered in the threshold-based
approaches with different cith and pith values. As they are the same, we showed
only one bar for each different threshold.

of potential instance sequences. It is also worth mentioning that, as the graphs become

denser and denser, the running time complexity as well as the storage complexity of

both of our algorithms becomes exponential. Thus, for data analysis with large-scale

datasets, it can be more feasible to use non-threshold-based approaches.

124

6.5 Analysis of Top-(R%,K) Approach

10-1

100

101

102

Ru
nn

in
g

Ti
m

es
 in

 lo
g s

ca
le

 (s
ec

)
 A

fte
r G

ra
ph

 T
ra

ns
fo

rm
at

io
n

K= 5 & R% = 0.2 K= 25 & R% = 0.2 K= 125 & R% = 0.2 K= 625 & R% = 0.2

10-1

100

101

102

Ru
nn

in
g

Ti
m

es
 in

 lo
g s

ca
le

 (s
ec

)
 A

fte
r G

ra
ph

 T
ra

ns
fo

rm
at

io
n

K= 5 & R% = 0.4 K= 25 & R% = 0.4 K= 125 & R% = 0.4 K= 625 & R% = 0.4

10-1

100

101

102

Ru
nn

in
g

Ti
m

es
 in

 lo
g s

ca
le

 (s
ec

)
 A

fte
r G

ra
ph

 T
ra

ns
fo

rm
at

io
n

K= 5 & R% = 0.6 K= 25 & R% = 0.6 K= 125 & R% = 0.6 K= 625 & R% = 0.6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
10-1

100

101

102

Ru
nn

in
g

Ti
m

es
 in

 lo
g s

ca
le

 (s
ec

)
 A

fte
r G

ra
ph

 T
ra

ns
fo

rm
at

io
n

K= 5 & R% = 0.8

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

K= 25 & R% = 0.8

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

K= 125 & R% = 0.8

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

K= 625 & R% = 0.8

Naive-Top(R%, K)-EsMiner Fast-Top(R%, K)-EsMiner

Figure 6.7: Running times of Naïve and Fast Top-(R%, K)-EsMiner

6.5.1 Running Time Analysis of Top-(R%,K) Algorithms

In this part of our discussion, we will compare the running times of our Top-(R%,

K) STES mining algorithms. Later, we will compare the running times of the Top-(R%,

K) algorithms with a run of EsGrowth algorithm with comparable ci and pi thresholds.

125

0.0

0.2

0.4

0.6

0.8

1.0
ci

 (T
op

 R
%

 V
al

ue
s)

Jan Feb Mar Apr May Jun

0.0 0.2 0.4 0.6 0.8 1.0
R% values

0.0

0.2

0.4

0.6

0.8

1.0

ci
 (T

op
 R

%
 V

al
ue

s)

Apr

0.0 0.2 0.4 0.6 0.8 1.0
R% values

May

0.0 0.2 0.4 0.6 0.8 1.0
R% values

Jun

0.0 0.2 0.4 0.6 0.8 1.0
R% values

Jul

0.0 0.2 0.4 0.6 0.8 1.0
R% values

Aug

0.0 0.2 0.4 0.6 0.8 1.0
R% values

Sep

Figure 6.8: The ci values corresponding to the R% most significant follow relations

In Figure 6.7, we demonstrate the total running times of our algorithms after the ini-

tialization and graph transformation steps for each dataset. The K and R% values are

displayed on each chart. The yellow bars show the running times for Naïve-Top-(R%, K) -

EsMiner, while the black ones shows the running times for Fast-Top-(R%, K) -EsMiner.

The running times are displayed in log scale. Additionally, we demonstrate the ci values

corresponding the the R% most significant follow relationhips for each dataset.

For low R% values (i.e., R% = 0.2 and R% = 0.4, displayed on the first two rows

in Figure 6.7) we observe very similar running times. This is primarily caused by the

number of discovered STESs being very few (often less than K), where the effect of

dynamic pith updates do not benefit the Fast-Top-(R%, K) -EsMiner algorithm. In other

words, the pith are never increased in the DynamicGrowSequence procedure since the

sorted TopES list never reaches size K. It can also be observed from Figure 6.8, where

R% = 0.2 and R% = 0.4 that we consistently get ci values of ∼0.4 and ∼0.2. This makes

the filtered ESGf sparse, and reduces the number of discovered STESs in the end.

On the other hand, we start to see the running time differences when the R% value is

increased (i.e., R% = 0.6 and R% = 0.8, displayed on the last two rows in Figure 6.7).

We see the largest differences in the datasets, where we have more dense ESGs such as

in May, Jun, Jul, Nov datasets. The number of edges and vertices in these ESGs can

126

be seen in Figure 6.3. Additionally, when we increase the K values, the gap between

the running times of Naïve and Fast Top-(R%, K) -EsMiner algorithms are closed, and

we can see the largest differences when the K value is set to 5. Thus, we can conclude

that for sparse ESG and high K values, Naïve and Fast Top-(R%, K) -EsMiner algorithms

perform similarly; however, when the K value is reduced and as the ESGs gets denser,

Fast-Top-(R%, K) -EsMiner algorithm becomes more and more efficient.

6.5.2 Comparison of EsGrowth and Top-(R%, K) Approach

In this part, we will compare the efficiency of our Top-(R%, K) STES mining algorithms

with threshold-based EsGrowth algorithm. While the algorithms of Fast-Top-(R%, K) -

EsMiner and EsGrowth seems similar, their behavior is different due to the different

parametric settings. In Fast-Top-(R%, K) -EsMiner, the running time is primarily depen-

dent on the K and R% values. The R% value makes the ESG more sparse or dense, while

the K value eventually bounds the number of STES to be discovered, where the algo-

rithm can efficiently prune the search space using pi updates. In the EsGrowth, cith

serves a purpose similar to R%, where we filter the edges in the ESG. However, the pith

is constant, and the running time for EsGrowth is dependent on the data.

To show the above mentioned behavior, for our EsGrowth run, we picked a cith value

(= 0.1), which would create an ESG that is comparable to the Top-(R%, K) experiments

with R% value set to 0.6 (K ∈ {5, 25, 125, 625}). It can be seen from Figure 6.8 that the ci

values for R% = 0.6 is ∼0.1 for all our datasets. In Figure 6.9.a, we show the running times

of our EsGrowth (the same run displayed) and Naïve and Fast Top-(R%, K) -EsMiner

algorithms. Figure 6.9.b shows the number of STESs discovered.

In Figure 6.9.a, we can see that the running times for Naïve-Top-(R%, K) -EsMiner

algorithm does not change as we are not updating the pi values. For all the K values,

Fast-Top-(R%, K) -EsMiner performs better than the Naïve one. When compared to Es-

Growth, we see that running times for Fast-Top-(R%, K) -EsMiner algorithm drastically

127

0

5

10

15

20

R
u
n
n
in

g
 t

im
e
s

(s
e
c)

R%=0.6, K=5

Naive-Top(R%,K)

Fast-Top(R%,K)

EsGrowth
(ci=0.1 pi=0.04)

0

5

10

15

20

R
u
n
n
in

g
 t

im
e
s

(s
e
c)

R%=0.6, K=25

Naive-Top(R%,K)

Fast-Top(R%,K)

EsGrowth
(ci=0.1 pi=0.04)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Months

0

2

4

6

8

10

12

14

16

18

R
u
n
n
in

g
 t

im
e
s

(s
e
c)

R%=0.6, K=125

Naive-Top(R%,K)

Fast-Top(R%,K)

EsGrowth
(ci=0.1 pi=0.04)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Months

0

2

4

6

8

10

12

14

16

18

R
u
n
n
in

g
 t

im
e
s

(s
e
c)

R%=0.6, K=625

Naive-Top(R%,K)

Fast-Top(R%,K)

EsGrowth
(ci=0.1 pi=0.04)

(a)

0

10

20

30

40

50

N
u
m

b
e
r

o
f

S
T
E
S
s

d
is

co
v
e
re

d

R%=0.6, K=5

Top(R%,K)

EsGrowth
(ci=0.1 pi=0.04)

0

10

20

30

40

50

N
u
m

b
e
r

o
f

S
T
E
S
s

d
is

co
v
e
re

d

R%=0.6, K=25

Top(R%,K)

EsGrowth
(ci=0.1 pi=0.04)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Months

0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f

S
T
E
S
s

d
is

co
v
e
re

d

R%=0.6, K=125

Top(R%,K)

EsGrowth
(ci=0.1 pi=0.04)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Months

0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f

S
T
E
S
s

d
is

co
v
e
re

d

R%=0.6, K=625

Top(R%,K)

EsGrowth
(ci=0.1 pi=0.04)

(b)

Figure 6.9: (a) Running times of Naïve and Fast Top-(R%, K)-EsMiner compared to EsGrowth

(b) The number of STESs from Top-(R%, K)-EsMiner and EsGrowth

128

change as we increase the K value. When K = 5, Fast-Top-(R%, K) -EsMiner performs up

to 2x better than the comparable EsGrowth (in Jul dataset). When K = 625, Fast-Top-

(R%, K) -EsMiner performs ∼3x worse than EsGrowth. The reason for this is the number

of discovered STESs in each dataset depends on different parametric settings.

In Figure 6.9.b, the green bars show the number of discovered STESs using the Es-

Growth algorithm (the values are the same for all four sub-charts). We can observe that,

as K value gets smaller, the running time of the Fast-Top-(R%, K) -EsMiner becomes less

data dependent (See Mar, Jun, Jul, Nov datasets when K = 5 and R% = 0.6). This is

not the case for EsGrowth algorithm, where the pith efficiently eliminates the STESs in

sparse ESGs such as Feb and Dec datasets, while it becomes inefficient for dense ESGs

as in May and Jul datasets. We can conclude that the running time requirements of the

Fast-Top-(R%, K) -EsMiner is less dependent on the sparsity of the underlying ESGs, and

it can efficiently find the Top-K most prevalent STESs. However, it can be inefficient to

use high K values with Fast-Top-(R%, K) -EsMiner as it cannot enable the dynamic pi

updates in the algorithm.

6.6 Analysis of Bootsrap Approach

In this part of our experiments, the running time requirements of our Btsp-ESMiner al-

gorithm will be compared to the EsGrowth algorithm. Earlier in Figure 6.4, we demon-

strated the total running times of all of our algorithms for each dataset. In Figure 6.10,

we demonstrate the average time spent on mining STESs from ESGs for EsGrowth (run-

ning time after initialization steps) and average time spent on a bootstrap trial (mining)

for Btsp-EsMiner with different resampling ratio (rR ∈ {0.1, 0.2, 0.3, 0.4}) and number of

bootstrap trial parameters ν = {50, 100, 150, 200}.

In Figure 6.4, the blue bars show the average running time of EsGrowth algorithm

with 16 different threshold parameter settings values. The red bars show the total run-

ning time of Btsp-ESMiner algorithm, which consists of 50, 100, 150, and 200 bootstrap

129

runs on the ESGs randomly bootstrapped with four resampling ratios. In Figure 6.10,

we demonstrate the running times required for mining STESs from ESG. The initializa-

tion steps (H-TW generation and follow times shown in Figure 6.3) are omitted, and we

report the average running times of threshold-based runs (with 16 different threshold

parameters), and the average running time of 2000 (4× (50+ 100+ 150+ 200)) bootstrap

trials for each dataset.

From the results shown in Figure 6.4, we can notice that the total running times re-

quired for discovering the STESs follow a very similar pattern to the initialization steps,

and it can be observed that for threshold-based approach, the total running time is dom-

inated by the initialization (See Figure 6.3). In EsGrowth experiments, as we use the

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Datasets

0

1

2

3

4

5

6

Av
er

ag
e

To
ta

l R
un

ni
ng

 T
im

es

 A
fte

r I
ni

tia
liz

at
io

n
(s

ec
)

EsGrowth Run
Btsp-EsMiner Run

Figure 6.10: Average running time of EsGrowth is compared with the average running times of
bootstrap trials

130

higher cith values for filtering, the insignificant follow relationships (or edges) are ex-

tensively pruned from the ESG, leading to very low graph mining times. Nevertheless,

it is difficult to make conclusions about the trustworthiness of the STESs with high cith

values. When we analyze the performance of the Btsp-EsMiner algorithm, we see that

for sparse ESGs (such as Feb, Apr, and Dec datasets) the total running time of the Btsp-

EsMiner is likely to be similar to the EsGrowth. On the other hand, for the denser ESGs

(such as May, Jun, Jul, and Nov datasets), we observe slightly greater differences. This

can be well explained with the algorithmic setup of bootstrap-based approach and the

observations from Figure 6.10. The average ESG mining (i.e., bootstrap trials) time of

Btsp-EsMiner in May, Jun, Jul, and Nov datasets are relatively higher than the ones for

other datasets. In our experiments, the ESG is resampled 50, 100, 150, and 250 times,

and total running time of Btsp-ESMiner includes all the bootstrap trials. Whereas, for the

threshold-based EsGrowth algorithm, the ESG is mined only once.

In summary, the total running times for Btsp-ESMiner (averaged over different boot-

strap parameters) are approximately 40% more than EsGrowth. The running time re-

quired for the Btsp-ESMiner is primarily dependent on the resampling ratio and the

number of trials. To increase the trustworthiness of the results, one can increase the

number of trials and resampling ratio. In addition to that, the trustworthiness of the

results can be traded off with the running time. Choosing a lower resampling ratio or

number of trials would decrease the running time, as well as the trustworthiness of the

results.

In Figure 6.11, we demonstrate the total number of STESs discovered from each dataset.

An important observation we can make here is that our Btsp-EsMiner algorithm can

find many more patterns when compared to the threshold-based approaches. In both

SequenceConnect and EsGrowth, we find considerably small set of resulting STESs with

our thresholds. However, setting the right thresholds for these algorithms are not viable

131

in most cases. Similarly, setting very low thresholds to comprehensively find all the

STESs often times requires exponential running times.

102

103

104

105

106

Nu
m

be
r o

f S
TE

Ss
 D

isc
ov

er
ed

 (l
og

 sc
al

e)

ν(# of Trials) = 50
 ResamplingRatio= 0.1

ν(# of Trials) = 100
 ResamplingRatio= 0.1

ν(# of Trials) = 150
 ResamplingRatio= 0.1

ν(# of Trials) = 200
 ResamplingRatio= 0.1

102

103

104

105

106

Nu
m

be
r o

f S
TE

Ss
 D

isc
ov

er
ed

 (l
og

 sc
al

e)

ν(# of Trials) = 50
 ResamplingRatio= 0.2

ν(# of Trials) = 100
 ResamplingRatio= 0.2

ν(# of Trials) = 150
 ResamplingRatio= 0.2

ν(# of Trials) = 200
 ResamplingRatio= 0.2

102

103

104

105

106

Nu
m

be
r o

f S
TE

Ss
 D

isc
ov

er
ed

 (l
og

 sc
al

e)

ν(# of Trials) = 50
 ResamplingRatio= 0.3

ν(# of Trials) = 100
 ResamplingRatio= 0.3

ν(# of Trials) = 150
 ResamplingRatio= 0.3

ν(# of Trials) = 200
 ResamplingRatio= 0.3

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
102

103

104

105

106

Nu
m

be
r o

f S
TE

Ss
 D

isc
ov

er
ed

 (l
og

 sc
al

e)

ν(# of Trials) = 50
 ResamplingRatio= 0.4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ν(# of Trials) = 100
 ResamplingRatio= 0.4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ν(# of Trials) = 150
 ResamplingRatio= 0.4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ν(# of Trials) = 200
 ResamplingRatio= 0.4

Figure 6.11: The total number of STESs discovered from our datasets with different bootstrap
parameters in Btsp-EsMiner experiments

In Figure 6.12, we show the number of STESs discovered for different resampling ra-

tios and bootstrap trials, where the STES counts are categorized based on the length of

the STESs. For almost all datasets, the number of STESs discovered with different param-

132

eters is not affected by the changes in the number of bootstrap trials or resampling ratio

parameters. Observing Figure 6.11 and Figure 6.12, we can conclude that the number

of discovered STESs are not much affected by increasing or decreasing the resampling

ratio or the number of bootstrap trials. While the number of trials or resampling ratio

does not significantly impact the number, we can suggest that it affects the quality of the

discovered results.

Next, we will discuss the relevance and quality of the mining results from Btsp-

ESMiner algorithm. To make it concise, we will illustrate the distributions of resulting pi

values of two set of Btsp-EsMiner trials for all the datasets: (1) when rR = 0.1 and ν = 50

– in Figure 6.13 and (1) when rR = 0.4 and ν = 200 – in Figure 6.14. We will report

the top-15 most prevalent length-2 STESs in each dataset to keep it simple. The event

sequences are sorted based on their average pi value from all the bootstrap trials. In

addition to the results from bootstrap-based approach, we also demonstrate the mining

results from EsGrowth algorithm. We show the resulting pi values of the STESs for

different thresholds in EsGrowth experiments. The comprehensive results for longer

length STESs can be found in our website [156].

From Figure 6.13 and Figure 6.14, we can see that the discovered top-15 STESs are

consistent throughout all of our datasets. When we compare the STESs discovered from

four datasets, we see that while their median values can differ, their confidence intervals

generally overlap with one another. This shows that our results are consistent among

the datasets. Another important observation we can make is the range of the confidence

intervals. We often observe larger confidence intervals when there is an imbalance be-

tween the instance counts of event types (See STESs involving ar and fl together). The

smaller confidence interval for an STES primarily suggests that the discovered pi value

estimation is more robust within that dataset.

Another important observation we can make is the effect of edge resampling and

bootstrap trials. When the resampling ratio is increased from rR = 0.1 to rR = 0.4, and

133

the number of bootstrap trials (ν) are also increased from 50 to 200, we observe similar

STESs discovered from the same datasets. One observable difference here is the confi-

dence intervals and the number of outliers in the distributions of the pi values for STESs.

When we have less trials, we observe a larger confidence interval, and more outliers

100

101

102

103

104

105

of

 S
TE

Ss
 (l
og

 sc
al

e)

ν (# of Trials) = 50
 ResamplingRatio= 0.1

ν (# of Trials) = 100
 ResamplingRatio= 0.1

ν (# of Trials) = 150
 ResamplingRatio= 0.1

ν (# of Trials) = 200
 ResamplingRatio= 0.1

100

101

102

103

104

105

of

 S
TE

Ss
 (l
og

 sc
al

e)

ν (# of Trials) = 50
 ResamplingRatio= 0.2

ν (# of Trials) = 100
 ResamplingRatio= 0.2

ν (# of Trials) = 150
 ResamplingRatio= 0.2

ν (# of Trials) = 200
 ResamplingRatio= 0.2

100

101

102

103

104

105

of

 S
TE

Ss
 (l
og

 sc
al

e)

ν (# of Trials) = 50
 ResamplingRatio= 0.3

ν (# of Trials) = 100
 ResamplingRatio= 0.3

ν (# of Trials) = 150
 ResamplingRatio= 0.3

ν (# of Trials) = 200
 ResamplingRatio= 0.3

2 3 4 5 6 7 8 9 10
100

101

102

103

104

105

of

 S
TE

Ss
 (l
og

 sc
al

e)

ν (# of Trials) = 50
 ResamplingRatio= 0.4

2 3 4 5 6 7 8 9 10

ν (# of Trials) = 100
 ResamplingRatio= 0.4

2 3 4 5 6 7 8 9 10

ν (# of Trials) = 150
 ResamplingRatio= 0.4

2 3 4 5 6 7 8 9 10

ν (# of Trials) = 200
 ResamplingRatio= 0.4

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

Figure 6.12: The number of STESs discovered with different bootstrap parameters in Btsp-EsMiner
experiments

134

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ef

 .
ar

ef
 .

ch
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg

Length-2 STESs (Jan)

0.0

0.1

0.2

0.3

0.4

0.5

Pa
rti

cip
at

io
n

In
de

x
(p
i)

Va
lu

es

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ef

 .
ar

ef
 .

ef
ef

 .
fi

ef
 .

fl
ef

 .
sg

ef
 .

ss

Length-2 STESs (Feb)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ef

 .
ar

ef
 .

ch
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg

Length-2 STESs (Mar)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
fi

ef
 .

ar
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg
ef

 .
ss

fi
. a

r

Length-2 STESs (Apr)

Thresholds
ci=0.10 pi=0.04
ci=0.15 pi=0.04
ci=0.20 pi=0.04
ci=0.25 pi=0.04
ci=0.10 pi=0.08
ci=0.15 pi=0.08
ci=0.20 pi=0.08
ci=0.25 pi=0.08
ci=0.10 pi=0.12
ci=0.15 pi=0.12
ci=0.20 pi=0.12
ci=0.25 pi=0.12
ci=0.10 pi=0.16
ci=0.15 pi=0.16
ci=0.20 pi=0.16
ci=0.25 pi=0.16

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ef
 .

ar
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg
ef

 .
ss

fi
. a

r

Length-2 STESs (May)

0.0

0.1

0.2

0.3

0.4

0.5

Pa
rti

cip
at

io
n

In
de

x
(p
i)

Va
lu

es

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ch

 .
fl

ef
 .

ar
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg

Length-2 STESs (Jun)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ch

 .
fl

ef
 .

ar
ef

 .
ch

ef
 .

ef
ef

 .
fi

ef
 .

fl

Length-2 STESs (Jul)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ch

 .
fl

ch
 .

sg
ef

 .
ar

ef
 .

ef
ef

 .
fi

ef
 .

fl

Length-2 STESs (Aug)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ch

 .
ch

ch
 .

fi
ef

 .
ar

ef
 .

ef
ef

 .
fi

ef
 .

fl
ef

 .
sg

ef
 .

ss
fi
. a

r
fi
. c

h

Length-2 STESs (Sep)

0.0

0.1

0.2

0.3

0.4

0.5

Pa
rti

cip
at

io
n

In
de

x
(p
i)

Va
lu

es

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ch

 .
fl

ef
 .

ar
ef

 .
ch

ef
 .

ef
ef

 .
fi

ef
 .

fl

Length-2 STESs (Oct)

ar
 .

ar
ar

 .
ef

ar
 .

fl
ar

 .
sg

ar
 .

ss
ch

 .
ch

ch
 .

ef
ch

 .
fi

ef
 .

ar
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg
ef

 .
ss

fi
. a

r

Length-2 STESs (Nov)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ef

 .
ar

ef
 .

ch
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg

Length-2 STESs (Dec)

Figure 6.13: Length-2 STESs discovered from Btsp-EsMiner (with parameters rR = 0.1 and ν = 50)
to the results from EsGrowth runs with different ci and pi thresholds

135

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ef

 .
ar

ef
 .

ch
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg

Length-2 STESs (Jan)

0.0

0.1

0.2

0.3

0.4

0.5

Pa
rti

cip
at

io
n

In
de

x
(p
i)

Va
lu

es

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ef

 .
ar

ef
 .

ef
ef

 .
fi

ef
 .

fl
ef

 .
sg

ef
 .

ss

Length-2 STESs (Feb)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ef

 .
ar

ef
 .

ch
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg

Length-2 STESs (Mar)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
fi

ef
 .

ar
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg
ef

 .
ss

fi
. a

r

Length-2 STESs (Apr)

Thresholds
ci=0.10 pi=0.04
ci=0.15 pi=0.04
ci=0.20 pi=0.04
ci=0.25 pi=0.04
ci=0.10 pi=0.08
ci=0.15 pi=0.08
ci=0.20 pi=0.08
ci=0.25 pi=0.08
ci=0.10 pi=0.12
ci=0.15 pi=0.12
ci=0.20 pi=0.12
ci=0.25 pi=0.12
ci=0.10 pi=0.16
ci=0.15 pi=0.16
ci=0.20 pi=0.16
ci=0.25 pi=0.16

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ef
 .

ar
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg
ef

 .
ss

fi
. a

r

Length-2 STESs (May)

0.0

0.1

0.2

0.3

0.4

0.5

Pa
rti

cip
at

io
n

In
de

x
(p
i)

Va
lu

es

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ch

 .
fl

ef
 .

ar
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg

Length-2 STESs (Jun)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ch

 .
fl

ef
 .

ar
ef

 .
ch

ef
 .

ef
ef

 .
fi

ef
 .

fl

Length-2 STESs (Jul)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ch

 .
fl

ch
 .

sg
ef

 .
ar

ef
 .

ef
ef

 .
fi

ef
 .

fl

Length-2 STESs (Aug)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ch

 .
ch

ch
 .

fi
ef

 .
ar

ef
 .

ef
ef

 .
fi

ef
 .

fl
ef

 .
sg

ef
 .

ss
fi
. a

r
fi
. c

h

Length-2 STESs (Sep)

0.0

0.1

0.2

0.3

0.4

0.5

Pa
rti

cip
at

io
n

In
de

x
(p
i)

Va
lu

es

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ch

 .
fl

ef
 .

ar
ef

 .
ch

ef
 .

ef
ef

 .
fi

ef
 .

fl

Length-2 STESs (Oct)

ar
 .

ar
ar

 .
ef

ar
 .

fl
ar

 .
sg

ar
 .

ss
ch

 .
ch

ch
 .

ef
ch

 .
fi

ef
 .

ar
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg
ef

 .
ss

fi
. a

r

Length-2 STESs (Nov)

ar
 .

ar
ar

 .
ef

ar
 .

fi
ar

 .
fl

ar
 .

sg
ar

 .
ss

ch
 .

ch
ch

 .
ef

ch
 .

fi
ef

 .
ar

ef
 .

ch
ef

 .
ef

ef
 .

fi
ef

 .
fl

ef
 .

sg

Length-2 STESs (Dec)

Figure 6.14: Length-2 STESs discovered from Btsp-EsMiner (with parameters rR = 0.4 and ν =
200) to the results from EsGrowth runs with different ci and pi thresholds

136

even though we have less runs and larger inter-quartile ranges. However, increasing the

resampling ratio and the number of bootstrap trials, eliminates most of the outliers, and

still decreases the confidence intervals. This situation is much more clear in ar� ef and

ar� fi sequences.

Another aspect of our evaluation is the relevance comparison with threshold-based

approach. One observation we can make is the variation of the pi values when using

different cith values in the threshold-based approach. The variation is two-fold: (1) The

variation of the pi values for a particular STES and (2) the variation of the pi values

across different STESs. The latter is much expected as the natural phenomena may or

may not be spatiotemporally following each other. However, the former variation poses

a challenge that is difficult to solve with trial and error. For example, for (ar � ar)

sequences cith = 0.25 can be an accurate cut-off point (given the distributions from Btsp-

EsMiner); however, if we set the cith to 0.25 for the entire dataset, we miss all (ar� fl)

sequences, as well as the sequences including the (ar � fl) subsequence. It is well-

known to solar physics experts that flares can occur anywhere on the Sun’s surface, from

active regions (ar) to the the boundaries of the magnetic network of the quiet Sun [135].

However, large area flares (fl) have preferred locations. They originate from the large

active regions showing a complex geometry of the 3D magnetic field [136]. Even for the

simplistic cases of (ar� ar) and (ar� fl), creating user-defined thresholds is difficult,

primarily because of the unbalanced nature of the natural phenomena. Therefore, we can

suggest that mining a distribution of pi values using edge resampling from the sample

ESG is a better approach for explorative analysis, because outputting a mere pi value

based on set thresholds cannot properly represent the characteristics of the population.

137

7 CONCLUSION

7.1 Future Work

We plan to extend our research on spatiotemporal event sequence mining algorithms

in several directions. In the following subsections, we listed these ideas into three cate-

gories.

7.1.1 Mixed Mining of Spatial, Temporal, and Image Data:

Initially, we want to include spatiotemporal attributes such as motion parameters (veloc-

ity, acceleration), shape parameters (shape evolution, areal evolution) for understanding

the dynamics of the sequences better. We also intend to incorporate the available image-

based raster data to aid in the spatiotemporal event sequence discovery, especially for

understanding the unique characteristics of particular sub-classes (e.g., the change in

the image parameters of X-class vs. M-class flares and their associations with discovered

patterns). Another future direction is examining the other available data sources such

as physical parameters of the solar events, which can help us understand the distinct

characteristics of each event type and help us create better models in spatiotemporal

frequent pattern mining.

7.1.2 Creating a Solar Event Search Engine

We are currently developing two web-based services for the solar physics community - a

search tool for solar events and image parameters, ISD (Integrated Solar Database) [157]

and a video-based visualization tool, SOLEV (Solar Event Video Generation Framework)

[24]. We developed the back-end of the ISD. In the future, we would like to integrate

these two systems with the solar graph index (Solgrind) [158], and eventually create a

solar event search engine that is capable of handling spatial, temporal, spatiotemporal,

and textual queries. For textual queries, we intend to create semantic annotations using

Solgrind, and utilize them for queries such as ’long filaments on the east limb’ or

’flaring active regions close to two sigmoids’.

7.1.3 From Knowledge to Wisdom - Utilizing Patterns for Prediction

One particularly entertaining potential application area for spatiotemporal event se-

quence discovery is the prediction. We are interested in the prediction of solar events

such as solar flares and CMEs that can create geomagnetic storms and drastically im-

pact our world. For the task of prediction, we plan to utilize the spatiotemporal event

sequences and spatiotemporal co-occurrence patterns.

7.2 Concluding Remarks

From various data sources including sensors, satellite imagery, GPS signals, business

transactions, social networks, healthcare applications, and many others, we have seen an

explosive growth in the volume of the data being generated. According to an IBM report

in 2012, we are expected to create 2.5 quintillion bytes of data every day [159]. To answer

the needs of the society and domain experts in their respective scientific fields, it is

necessary to create automated knowledge discovery tools to generate interesting, useful,

and actionable patterns. These patterns can be used for verification of currently known

relationships, prediction of specific events, and even potential discovery of unknown

relationships from the data.

Mining frequent patterns from spatiotemporal datasets has emerged in recent decades

with a primary focus on understanding the implicit spatial and temporal relationships

among instances and discovering useful and interesting underlying spatiotemporal pat-

139

terns. In this thesis, we have introduced the spatiotemporal event sequence mining

from evolving region trajectories. The spatiotemporal event sequences is one type of

spatiotemporal frequent patterns that has its roots in temporal event sequence mining

and spatial co-location mining. Our goal in introducing spatiotemporal event sequences

and creating a framework for discovery can be summarized with one sentence: Under-

stand the follow relationships between different groups of spatiotemporal event types and their

instances. By doing this, we aimed to help the researchers in their fields obtain an auto-

mated knowledge discovery framework, which is capable of showing which trajectories

come after another and are located close-by.

Our research has achieved these goals in several ways. Firstly, we introduced a data

model for spatiotemporal trajectories. Our models are conceptually designed and also

implemented in many different computing environments including an object oriented

design in Java [155], a relational database extension (in PostgreSQL with PostGIS) [160],

and a columnar non-relational database extension [100]. Secondly, we introduced the

groundwork for our spatiotemporal event sequence mining framework from the per-

spective of spatiotemporal co-occurrences, and introduced novel significance measures

that is more relevant and more efficient for identifying the spatiotemporal follow rela-

tionships [134, 142]. Then, we designed novel models for the spatiotemporal follow re-

lationships in the context of evolving region trajectories with the co-occurrence of head

and tail window concepts [154], and extended our models with additional flexibility on

head and tail window generation in [155]. Lastly, we have introduced algorithms for dis-

covering spatiotemporal event sequences [154,155,161]. As a by-product, we also created

an indexing technique, Solgrind, for indexing the spatiotemporal relationships among

the solar event instances [158].

Comprehensively, our work, presented in this thesis, enables domain experts to con-

duct an in-depth study of solar event types, whose spatial and temporal extensions

can be represented as evolving region trajectories. To our knowledge, none of the ex-

140

isting methods deal with the problem of mining spatiotemporal event sequences from

datasets with evolving regions. We explored and evaluated trajectory data models, sig-

nificance and prevalence measures, Apriori and pattern growth-based algorithms, as

well as Top-(R%, K) and Bootstrap-based extensions (for mining without thresholds) of

our spatiotemporal event sequence discovery algorithms.

141

BIBLIOGRAPHY

[1] LMSAL. Heliophysics Event Registry, March 2014. URL: http://lmsal.com/isolsearch,

[Online; accessed 26-June-2014].

[2] Connie C Wong, Kevin E Loewke, Nancy L Bossert, Barry Behr, Christopher J De Jonge,

Thomas M Baer, and Renee A Reijo Pera. Non-invasive imaging of human embryos be-

fore embryonic genome activation predicts development to the blastocyst stage. Nature

Biotechnology, 28(10):1115–1121, 2010.

[3] Joe Conaghan, Alice A Chen, Susan P Willman, Kristen Ivani, Philip E Chenette, Robert

Boostanfar, Valerie L Baker, G David Adamson, Mary E Abusief, Marina Gvakharia, et al.

Improving embryo selection using a computer-automated time-lapse image analysis test

plus day 3 morphology: results from a prospective multicenter trial. Fertility and sterility,

100(2):412–419, 2013.

[4] Henri E. Z. Tonnang, Richard Y. M. Kangalawe, and Pius Z. Yanda. Predicting and mapping

malaria under climate change scenarios: the potential redistribution of malaria vectors in

africa. Malaria Journal, 9:111 – 120, 2010.

[5] Krijn P. Paaijmans, Simon Blanford, Andrew S. Bell, Justine I. Blanford, Andrew F. Read,

and Matthew B. Thomas. Influence of climate on malaria transmission depends on daily

temperature variation. Proceedings of the National Academy of Sciences, 107(34):15135–15139,

2010.

[6] Katrin Kuhn, Diarmid Campbell-Lendrum, Andy Haines, and Jonathan Cox. Using climate

to predict infectious disease epidemics. World Health Organization, Geneva, 2005.

[7] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,

26(11):832–843, 1983.

[8] N Hurlburt, M Cheung, C Schrijver, L Chang, S Freeland, S Green, C Heck, A Jaffey,

A Kobashi, D Schiff, et al. Heliophysics event knowledgebase for the solar dynamics

observatory (sdo) and beyond. In The Solar Dynamics Observatory, pages 67–78. Springer,

2012.

[9] PCH Martens, GDR Attrill, AR Davey, A Engell, S Farid, PC Grigis, J Kasper, K Korreck,

SH Saar, A Savcheva, et al. Computer vision for the solar dynamics observatory (SDO). In

The Solar Dynamics Observatory, pages 79–113. Springer, 2012.

[10] Thorsten Wiegand, Kirk Moloney, and Suzanne Milton. Population dynamics, disturbance,

and pattern evolution: Identifying the fundamental scales of organization in a model

ecosystem. The American Naturalist, 152(3):321–337, 1998.

[11] Martin Hoerling and Arun Kumar. Atmospheric response patterns associated with tropical

forcing. Journal of Climate, 15(16):2184–2203, 2002.

[12] Barbara Romanowicz. Spatiotemporal patterns in the energy release of great earthquakes.

Science, 260(5116):1923–1926, 1993.

[13] Fahui Wang and William Minor. Where the jobs are: Employment access and crime patterns

in cleveland. Annals of the Association of American Geographers, 92(3):435–450, 2002.

[14] Mohammed Javeed Zaki. SPADE: an efficient algorithm for mining frequent sequences.

Machine Learning, 42(1/2):31–60, 2001.

[15] Guozhu Dong and Jian Pei. Sequence Data Mining, volume 33 of Advances in Database

Systems. Kluwer, 2007.

[16] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, and Hua Zhu. Mining access patterns effi-

ciently from web logs. In Knowledge Discovery and Data Mining, Current Issues and New

Applications, 4th Pacific-Asia Conference, PADKK 2000, Kyoto, Japan, April 18-20, 2000, Proceed-

ings, pages 396–407, 2000.

[17] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Generalizations

and performance improvements. In Advances in Database Technology - EDBT’96, 5th Interna-

143

tional Conference on Extending Database Technology, Avignon, France, March 25-29, 1996, Pro-

ceedings, pages 3–17, 1996.

[18] Yanchang Zhao, Huaifeng Zhang, Longbing Cao, Hans Bohlscheid, Yuming Ou, and

Chengqi Zhang. Data mining applications in social security. In Data Mining for Business

Applications, pages 81–96. Springer, 2009.

[19] Martin Erwig. Toward spatio-temporal patterns. In Rita de Caluwe, Guy de Tré, and Gloria

Bordogna, editors, Spatio-Temporal Databases, pages 29–53. Springer Berlin Heidelberg, 2004.

[20] Russell L Elsberry. Predicting hurricane landfall precipitation: Optimistic and pessimistic

views from the symposium on precipitation extremes. Bulletin of the American Meteorological

Society, 83(9):1333–1339, 2002.

[21] Sidney A. Gauthreaux and Carrol G. Belser and. Bird movements on Doppler weather

surveillance radar. Birding, 35(6):616–628, 2003.

[22] Michael A. Schuh, Rafal A. Angryk, Karthik Ganesan Pillai, Juan M. Banda, and Petrus C.

Martens. A large-scale solar image dataset with labeled event regions. In IEEE International

Conference on Image Processing, ICIP 2013, Melbourne, Australia, September 15-18, 2013, pages

4349–4353, 2013.

[23] Dustin Kempton, Karthik Ganesan Pillai, and Rafal A. Angryk. Iterative refinement of

multiple targets tracking of solar events. In 2014 IEEE International Conference on Big Data,

Big Data 2014, Washington, DC, USA, October 27-30, 2014, pages 36–44, 2014.

[24] Soukaina Filali Boubrahimi, Berkay Aydin, Dustin Kempton, and Rafal A. Angryk. Spatio-

temporal interpolation methods for solar events metadata. In 2016 IEEE International Con-

ference on Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016, pages 3149–3157,

2016.

[25] Stephanie R Langhoff and Tore Straume. Highlights of the “Space Weather Risks and

Society” workshop. Space Weather, 10(6), 2012.

144

[26] Dianna Payne, Sean P Flaherty, Michael F Barry, and Colin D Matthews. Preliminary

observations on polar body extrusion and pronuclear formation in human oocytes using

time-lapse video cinematography. Human Reproduction, 12(3):532–541, 1997.

[27] Jacques de Mouzon, V Goossens, Siladitya Bhattacharya, JA Castilla, AP Ferraretti, V Kor-

sak, Markus Kupka, Karl-Gosta Nygren, A Nyboe Andersen, et al. Assisted reproductive

technology in europe, 2006: results generated from european registers by eshre. Human

Reproduction, page deq124, 2010.

[28] Mark C. Walker, Kellie E. Murphy, Saiyi Pan, Qiuying Yang, and Shi Wu Wen. Adverse

maternal outcomes in multifetal pregnancies. BJOG: An International Journal of Obstetrics

Gynaecology, 111(11):1294–1296, 2004.

[29] Javier Herrero and Marcos Meseguer. Selection of high potential embryos using time-lapse

imaging: the era of morphokinetics. Fertility and sterility, 99(4):1030–1034, 2013.

[30] Marcos Meseguer, Javier Herrero, Alberto Tejera, Karen Marie Hilligsøe, Niels Birger Ram-

sing, and Jose Remohí. The use of morphokinetics as a predictor of embryo implantation.

Human reproduction, 26(10):2658–2671, 2011.

[31] Rachel Lowe, Trevor C Bailey, David B Stephenson, Richard J Graham, Caio AS Coelho,

Marilia Sa Carvalho, and Christovam Barcellos. Spatio-temporal modelling of climate-

sensitive disease risk: Towards an early warning system for dengue in brazil. Computers &

Geosciences, 37(3):371–381, 2011.

[32] PS Mellor and CJ Leake. Climatic and geographic influences on arboviral infections and

vectors. Revue scientifique et technique (International Office of Epizootics), 19(1):41–54, 2000.

[33] David J Rogers, Sarah E Randolph, Robert W Snow, and Simon I Hay. Satellite imagery in

the study and forecast of malaria. Nature, 415(6872):710–715, 2002.

[34] Shashi Shekhar, Zhe Jiang, Reem Y Ali, Emre Eftelioglu, Xun Tang, Venkata Gunturi, and

Xun Zhou. Spatiotemporal data mining: A computational perspective. ISPRS International

Journal of Geo-Information, 4(4):2306–2338, 2015.

145

[35] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining: current

status and future directions. Data Min. Knowl. Discov., 15(1):55–86, 2007.

[36] Karthik Ganesan Pillai, Rafal A. Angryk, Juan M. Banda, Michael A. Schuh, and Tim Wylie.

Spatio-temporal co-occurrence pattern mining in data sets with evolving regions. In 12th

IEEE International Conference on Data Mining Workshops, ICDM Workshops, Brussels, Belgium,

December 10, 2012, pages 805–812, 2012.

[37] Karthik Ganesan Pillai, Rafal A. Angryk, and Berkay Aydin. A filter-and-refine approach

to mine spatiotemporal co-occurrences. In 21st SIGSPATIAL International Conference on Ad-

vances in Geographic Information Systems, SIGSPATIAL 2013, Orlando, FL, USA, November 5-8,

2013, pages 104–113, 2013.

[38] Berkay Aydin, Dustin Kempton, Vijay Akkineni, Shaktidhar Reddy Gopavaram,

Karthik Ganesan Pillai, and Rafal A. Angryk. Spatiotemporal indexing techniques for

efficiently mining spatiotemporal co-occurrence patterns. In 2014 IEEE International Con-

ference on Big Data, Big Data 2014, Washington, DC, USA, October 27-30, 2014, pages 1–10,

2014.

[39] Berkay Aydin, Dustin Kempton, Vijay Akkineni, Rafal Angryk, and Karthik Ganesan Pillai.

Mining spatiotemporal co-occurrence patterns in solar datasets. Astronomy and Computing,

13:136 – 144, 2015.

[40] Berkay Aydin, Vijay Akkineni, and Rafal A. Angryk. Mining spatiotemporal co-occurrence

patterns in non-relational databases. GeoInformatica, 20(4):801–828, 2016.

[41] Shah Muhammad Hamdi, Berkay Aydin, and Rafal Angryk. A pattern growth-based ap-

proach for mining spatiotemporal cooccurrence patterns. In IEEE International Conference

on Data Mining Workshop, ICDMW 2016, Barcelona, Spain, December 12-15, 2016, 2016.

[42] Karthik Ganesan Pillai, Rafal A. Angryk, Juan M. Banda, Dustin Kempton, Berkay Aydin,

and Petrus C. Martens. Mining at most top-k% spatiotemporal co-occurrence pat-

terns in datasets with extended spatial representations. ACM Trans. Spatial Algorithms and

Systems, 2(3):10:1–10:27, 2016.

146

[43] Tamas Abraham and John F. Roddick. Opportunities for knowledge discovery in spatio-

temporal information systems. Australasian J. of Inf. Systems, 5(2), 1998.

[44] John F. Roddick and Brian G. Lees. Spatiotemporal data mining paradigms and method-

ologies. In Harvey Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge.

CRC Press, 2001.

[45] Daniel Walgraef. Spatio-Temporal Pattern Formation: With Examples from Physics, Chemistry,

and Materials Science. Springer Verlag, 1997.

[46] Shashi Shekhar and Hui Xiong, editors. Encyclopedia of GIS. Springer, 2008.

[47] Yong Ge, Hui Xiong, Chuanren Liu, and Zhi-Hua Zhou. A taxi driving fraud detection

system. In 11th IEEE International Conference on Data Mining, ICDM 2011, Vancouver, BC,

Canada, December 11-14, 2011, pages 181–190, 2011.

[48] James M. Kang, Shashi Shekhar, Michael Henjum, Paige J. Novak, and William A. Arnold.

Discovering teleconnected flow anomalies: A relationship analysis of dynamic neighbor-

hoods (RAD) approach. In Advances in Spatial and Temporal Databases, 11th International

Symposium, SSTD 2009, Aalborg, Denmark, July 8-10, 2009, Proceedings, pages 44–61, 2009.

[49] Florian Verhein and Sanjay Chawla. Mining spatio-temporal association rules, sources,

sinks, stationary regions and thoroughfares in object mobility databases. In Database Sys-

tems for Advanced Applications, 11th International Conference, DASFAA 2006, Singapore, April

12-15, 2006, Proceedings, pages 187–201, 2006.

[50] Yan Huang, Liqin Zhang, and Pusheng Zhang. A framework for mining sequential patterns

from spatio-temporal event data sets. IEEE Trans. Knowl. Data Eng., 20(4):433–448, 2008.

[51] Yijun Lu. Concept hierarchy in data mining: Specification, generation and implementation. PhD

thesis, Simon Fraser University, 1997.

[52] Michael R. Evans, Dev Oliver, Shashi Shekhar, and Francis Harvey. Summarizing trajec-

tories into k-primary corridors: a summary of results. In SIGSPATIAL 2012 International

147

Conference on Advances in Geographic Information Systems (formerly known as GIS), SIGSPA-

TIAL’12, Redondo Beach, CA, USA, November 7-9, 2012, pages 454–457, 2012.

[53] Noel A. C. Cressie. Statistics for spatial data. Wiley series in probability and mathematical

statistics. J. Wiley & Sons, 1993.

[54] Slava Kisilevich, Florian Mansmann, Mirco Nanni, and Salvatore Rinzivillo. Spatio-

temporal clustering. In Data Mining and Knowledge Discovery Handbook, 2nd ed., pages

855–874. Springer, 2010.

[55] Derya Birant and Alp Kut. ST-DBSCAN: an algorithm for clustering spatial-temporal data.

Data Knowl. Eng., 60(1):208–221, 2007.

[56] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon,

USA, pages 226–231, 1996.

[57] Toshiro Tango, Kunihiko Takahashi, and Kazuaki Kohriyama. A space–time scan statistic

for detecting emerging outbreaks. Biometrics, 67(1):106–115, 2011.

[58] Somayeh Dodge, Robert Weibel, and Anna-Katharina Lautenschütz. Towards a taxonomy

of movement patterns. Information Visualization, 7(3-4):240–252, 2008.

[59] Jungho Im, John R. Jensen, and Jason A. Tullis. Development of a remote sensing

change detection system based on neighborhood correlation image analysis and intelligent

knowledge-based systems. In IEEE International Geoscience & Remote Sensing Symposium,

IGARSS 2005, July 25-29, 2005, Seoul, Korea, Proceedings, pages 2129–2132, 2005.

[60] Martin Kulldorff. Prospective time periodic geographical disease surveillance using a scan

statistic. Journal of the Royal Statistical Society: Series A (Statistics in Society), 164(1):61–72,

2001.

148

[61] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen,

Umeshwar Dayal, and Meichun Hsu. Mining sequential patterns by pattern-growth: The

prefixspan approach. IEEE Trans. Knowl. Data Eng., 16(11):1424–1440, 2004.

[62] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos. Discover-

ing frequent arrangements of temporal intervals. In Proceedings of the 5th IEEE International

Conference on Data Mining (ICDM 2005), 27-30 November 2005, Houston, Texas, USA, pages

354–361, 2005.

[63] Edi Winarko and John F. Roddick. ARMADA - an algorithm for discovering richer relative

temporal association rules from interval-based data. Data Knowl. Eng., 63(1):76–90, 2007.

[64] Robert Moskovitch and Yuval Shahar. Fast time intervals mining using the transitivity of

temporal relations. Knowl. Inf. Syst., 42(1):21–48, 2015.

[65] Shashi Shekhar and Sanjay Chawla. Spatial databases - A tour. Prentice Hall, 2003.

[66] Shashi Shekhar and Yan Huang. Discovering spatial co-location patterns: A summary of

results. In Advances in Spatial and Temporal Databases, 7th International Symposium, SSTD

2001, Redondo Beach, CA, USA, July 12-15, 2001, Proceedings, pages 236–256, 2001.

[67] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules

in large databases. In VLDB’94, Proceedings of 20th International Conference on Very Large

Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 487–499, 1994.

[68] Jin Soung Yoo and Shashi Shekhar. A partial join approach for mining co-location pat-

terns. In 12th ACM International Workshop on Geographic Information Systems, ACM-GIS 2004,

November 12-13, 2004, Washington, DC, USA, Proceedings, pages 241–249, 2004.

[69] Jin Soung Yoo and Shashi Shekhar. A joinless approach for mining spatial colocation

patterns. IEEE Trans. Knowl. Data Eng., 18(10):1323–1337, 2006.

[70] Sajib Barua and Jörg Sander. Mining statistically significant co-location and segregation

patterns. IEEE Trans. Knowl. Data Eng., 26(5):1185–1199, 2014.

149

[71] Mete Celik, Shashi Shekhar, James P. Rogers, and James A. Shine. Mixed-drove spatiotem-

poral co-occurrence pattern mining. IEEE Trans. Knowl. Data Eng., 20(10):1322–1335, 2008.

[72] Mete Celik, Shashi Shekhar, James P. Rogers, and James A. Shine. Sustained emerging

spatio-temporal co-occurrence pattern mining: A summary of results. In 18th IEEE In-

ternational Conference on Tools with Artificial Intelligence (ICTAI 2006), 13-15 November 2006,

Washington, DC, USA, pages 106–115, 2006.

[73] Mete Celik. Discovering partial spatio-temporal co-occurrence patterns. In IEEE Interna-

tional Conference on Spatial Data Mining and Geographical Knowledge Services, ICSDM 2011,

Fuzhou, China, June 29 - July 1, 2011, pages 116–120, 2011.

[74] Mete Celik, Nuh Azginoglu, and Ramazan Terzi. Mining periodic spatio-temporal co-

occurrence patterns: A summary of results. In Innovations in Intelligent Systems and Applica-

tions (INISTA), 2012 International Symposium on, pages 1–5, July 2012.

[75] Feng Qian, Qinming He, and Jiangfeng He. Mining spread patterns of spatio-temporal

co-occurrences over zones. In Computational Science and Its Applications - ICCSA 2009, In-

ternational Conference, Seoul, Korea, June 29-July 2, 2009, Proceedings, Part II, pages 677–692,

2009.

[76] Zhongnan Zhang and Weili Wu. Composite spatio-temporal co-occurrence pattern mining.

In Wireless Algorithms, Systems, and Applications, Third International Conference, WASA 2008,

Dallas, TX, USA, October 26-28, 2008. Proceedings, pages 454–465, 2008.

[77] Huiping Cao, Nikos Mamoulis, and David W. Cheung. Mining frequent spatio-temporal

sequential patterns. In Proceedings of the 5th IEEE International Conference on Data Mining

(ICDM 2005), 27-30 November 2005, Houston, Texas, USA, pages 82–89, 2005.

[78] Florian Verhein. Mining complex spatio-temporal sequence patterns. In Proceedings of the

SIAM International Conference on Data Mining, SDM 2009, April 30 - May 2, 2009, Sparks,

Nevada, USA, pages 605–616, 2009.

150

[79] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory pattern mining.

In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, San Jose, California, USA, August 12-15, 2007, pages 330–339, 2007.

[80] Pradeep Mohan, Shashi Shekhar, James A. Shine, and James P. Rogers. Cascading spatio-

temporal pattern discovery. IEEE Trans. Knowl. Data Eng., 24(11):1977–1992, 2012.

[81] Chao Zhang, Jiawei Han, Lidan Shou, Jiajun Lu, and Thomas F. La Porta. Splitter: Mining

fine-grained sequential patterns in semantic trajectories. PVLDB, 7(9):769–780, 2014.

[82] Hugo Alatrista Salas, Sandra Bringay, Frédéric Flouvat, Nazha Selmaoui-Folcher, and

Maguelonne Teisseire. The pattern next door: Towards spatio-sequential pattern discov-

ery. In Advances in Knowledge Discovery and Data Mining - 16th Pacific-Asia Conf., PAKDD

2012, Kuala Lumpur, Malaysia, May 29 - June 1, 2012, Proc., Part II, pages 157–168, 2012.

[83] A Savtchenko, D Ouzounov, S Ahmad, J Acker, G Leptoukh, J Koziana, and D Nickless.

Terra and aqua modis products available from nasa ges daac. Advances in Space Research,

34(4):710–714, 2004.

[84] NOAA. NOAA GOES Geostationery Satellite Server, January 2016. URL:

http://www.goes.noaa.gov/, [Online; accessed 29-March-2017].

[85] W Dean Pesnell, BJ Thompson, and PC Chamberlin. The solar dynamics observatory (sdo).

In The Solar Dynamics Observatory, pages 3–15. Springer, 2011.

[86] Daniele Quercia, Neal Lathia, Francesco Calabrese, Giusy Di Lorenzo, and Jon Crowcroft.

Recommending social events from mobile phone location data. In ICDM, pages 971–976,

2010.

[87] Maike Buchin, Somayeh Dodge, and Bettina Speckmann. Context-aware similarity of tra-

jectories. In International Conference on Geographic Information Science, pages 43–56. Springer,

2012.

[88] Junhong Wang, Kate Young, Terry Hock, Dean Lauritsen, Dalton Behringer, Michael Black,

Peter G Black, James Franklin, Jeff Halverson, John Molinari, et al. A long-term, high-

151

quality, high-vertical-resolution gps dropsonde dataset for hurricane and other studies.

Bulletin of the American Meteorological Society, 96(6):961–973, 2015.

[89] Ling Chen, Mingqi Lv, and Gencai Chen. A system for destination and future route pre-

diction based on trajectory mining. Pervasive and Mobile Computing, 6(6):657–676, 2010.

[90] Heng Ma, Tsueng-Fang Tsai, and Chia-Cheng Liu. Real-time monitoring of water quality

using temporal trajectory of live fish. Expert Syst. Appl., 37(7):5158–5171, 2010.

[91] Stefano Spaccapietra, Christine Parent, Maria Luisa Damiani, José Antônio Fernandes

de Macêdo, Fábio Porto, and Christelle Vangenot. A conceptual view on trajectories. Data

Knowl. Eng., 65(1):126–146, 2008.

[92] Eleftherios Tiakas, Apostolos Papadopoulos, Alexandros Nanopoulos, Yannis Manolopou-

los, Dragan Stojanovic, and Slobodanka Djordjevic-Kajan. Searching for similar trajectories

in spatial networks. Journal of Systems and Software, 82(5):772–788, 2009.

[93] Irene Ntoutsi, Nikos Mitsou, and Gerasimos Marketos. Traffic mining in a road-network:

How does the traffic flow? IJBIDM, 3(1):82–98, 2008.

[94] José Antonio Cotelo Lema, Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli, and

Markus Schneider. Algorithms for moving objects databases. Comput. J., 46(6):680–712,

2003.

[95] Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig, Christian S. Jensen, Nikos A.

Lorentzos, Markus Schneider, and Michalis Vazirgiannis. A foundation for representing

and querying moving objects. ACM Trans. Database Syst., 25(1):1–42, 2000.

[96] Cédric du Mouza and Philippe Rigaux. Mobility patterns. GeoInformatica, 9(4):297–319,

2005.

[97] Gerasimos Marketos and Yannis Theodoridis. Mobility data warehousing and mining. In

Proceedings of the VLDB 2009 PhD Workshop. Co-located with the 35th International Conference

on Very Large Data Bases (VLDB 2009). Lyon, France, August 24, 2009, 2009.

152

[98] Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady L. Andrienko, Natalia V.

Andrienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis, José An-

tônio Fernandes de Macêdo, Nikos Pelekis, Yannis Theodoridis, and Zhixian Yan. Semantic

trajectories modeling and analysis. ACM Comput. Surv., 45(4):42:1–42:32, 2013.

[99] Ralf Hartmut Güting, Fabio Valdés, and Maria Luisa Damiani. Symbolic trajectories. ACM

Trans. Spatial Algorithms and Systems, 1(2):7:1–7:51, 2015.

[100] Berkay Aydin, Vijay Akkineni, and Rafal Angryk. Modeling and indexing spatiotempo-

ral trajectory data in non-relational databases. In Managing Big Data in Cloud Computing

Environments, pages 133–162. IGI Global, 2016.

[101] Michael Steinbach and Vipin Kumar. Generalizing the notion of confidence. Knowl. Inf.

Syst., 12(3):279–299, 2007.

[102] Roberto J. Bayardo Jr. and Rakesh Agrawal. Mining the most interesting rules. In Pro-

ceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, San Diego, CA, USA, August 15-18, 1999, pages 145–154, 1999.

[103] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data mining: A

survey. ACM Comput. Surv., 38(3), 2006.

[104] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right interestingness

measure for association patterns. In Proceedings of the Eighth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada,

pages 32–41, 2002.

[105] Kenneth McGarry. A survey of interestingness measures for knowledge discovery. Knowl-

edge Eng. Review, 20(1):39–61, 2005.

[106] Zeng-Jie Yang and Robert J. Wechsler-Reya. Hit ’em where they live: Targeting the cancer

stem cell niche. Cancer Cell, 11(1):3 – 5, 2007.

153

[107] Barry D Keim, Robert A Muller, and Gregory W Stone. Spatiotemporal patterns and return

periods of tropical storm and hurricane strikes from texas to maine. Journal of Climate,

20(14):3498–3509, 2007.

[108] Krzysztof Koperski and Jiawei Han. Discovery of spatial association rules in geographic

information databases. In Advances in Spatial Databases, 4th International Symposium, SSD’95,

Portland, Maine, USA, August 6-9, 1995, Proceedings, pages 47–66, 1995.

[109] Yasuhiko Morimoto. Mining frequent neighboring class sets in spatial databases. In Pro-

ceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data

mining, San Francisco, CA, USA, August 26-29, 2001, pages 353–358, 2001.

[110] Yan Huang, Shashi Shekhar, and Hui Xiong. Discovering colocation patterns from spatial

data sets: A general approach. IEEE Trans. Knowl. Data Eng., 16(12):1472–1485, 2004.

[111] Hui Xiong, Shashi Shekhar, Yan Huang, Vipin Kumar, Xiaobin Ma, and Jin Soung Yoo. A

framework for discovering co-location patterns in data sets with extended spatial objects.

In Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista,

Florida, USA, April 22-24, 2004, pages 78–89, 2004.

[112] Yan Huang, Jian Pei, and Hui Xiong. Mining co-location patterns with rare events from

spatial data sets. GeoInformatica, 10(3):239–260, 2006.

[113] Jin Soung Yoo, Shashi Shekhar, Sangho Kim, and Mete Celik. Discovery of co-evolving

spatial event sets. In Proceedings of the Sixth SIAM International Conference on Data Mining,

April 20-22, 2006, Bethesda, MD, USA, pages 306–315, 2006.

[114] Huiping Cao, Nikos Mamoulis, and David W. Cheung. Discovery of collocation episodes

in spatiotemporal data. In Proc. of the 6th IEEE Int. Conf. on Data Mining (ICDM 2006), 18-22

December 2006, Hong Kong, China, pages 823–827, 2006.

[115] Patrick Laube and Stephan Imfeld. Analyzing relative motion within groups of trackable

moving point objects. In Geographic Information Science, Second International Conference, GI-

Science 2002, Boulder, CO, USA, September 25-28, 2002, Proceedings, pages 132–144, 2002.

154

[116] Joachim Gudmundsson, Marc J. van Kreveld, and Bettina Speckmann. Efficient detection

of motion patterns in spatio-temporal data sets. In 12th ACM International Workshop on

Geographic Information Systems, ACM-GIS 2004, November 12-13, 2004, Washington, DC, USA,

Proceedings, pages 250–257, 2004.

[117] Patrick Laube, Marc van Kreveld, and Stephan Imfeld. Finding REMO — Detecting Relative

Motion Patterns in Geospatial Lifelines, pages 201–215. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2005.

[118] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters

in spatio-temporal data. In Advances in Spatial and Temporal Databases, 9th International

Symposium, SSTD 2005, Angra dos Reis, Brazil, August 22-24, 2005, Proceedings, pages 364–

381, 2005.

[119] Mete Celik, Shashi Shekhar, James P. Rogers, James A. Shine, and Jin Soung Yoo. Mixed-

drove spatio-temporal co-occurence pattern mining: A summary of results. In Proc. of the

6th IEEE Int. Conf. on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China,

pages 119–128, 2006.

[120] Mete Celik. Partial spatio-temporal co-occurrence pattern mining. Knowledge and Informa-

tion Systems, pages 1–23, 2014.

[121] Karthik Ganesan Pillai, Rafal A Angryk, Juan M Banda, Tim Wylie, and Michael A Schuh.

Spatiotemporal co-occurrence rules. In New Trends in Databases and Information Systems,

pages 27–35. Springer, 2014.

[122] Berkay Aydin and Rafal A. Angryk. Spatiotemporal frequent pattern mining on solar data:

Current algorithms and future directions. In IEEE International Conference on Data Mining

Workshop, ICDMW 2015, Atlantic City, NJ, USA, November 14-17, 2015, pages 575–581, 2015.

[123] N. Hurlburt, M. Cheung, C. Schrijver, L. Chang, S. Freeland, S. Green, C. Heck, A. Jaffey,

A. Kobashi, D. Schiff, J. Serafin, R. Seguin, G. Slater, A. Somani, and R. Timmons. Helio-

physics event knowledgebase for the solar dynamics observatory (sdo) and beyond. Solar

Physics, 275(1):67–78, 2010.

155

[124] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between

sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, Washington, D.C., May 26-28, 1993., pages 207–216, 1993.

[125] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. Addison-

Wesley, 2005.

[126] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

[127] M. Shahriar Hossain and Rafal A. Angryk. Gdclust: A graph-based document clustering

technique. In Workshops Proceedings of the 7th IEEE International Conference on Data Mining

(ICDM 2007), October 28-31, 2007, Omaha, Nebraska, USA, pages 417–422, 2007.

[128] Peter John Taylor. Quantitative methods in geography : an introduction to spatial analysis / Peter

J. Taylor. Boston : Houghton Mifflin, c1977., 1977.

[129] Elena Deza and Michel Deza. Dictionary of distances. North-Holland, 2006.

[130] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules

in large databases. In VLDB’94, Proc. of 20th Int. Conf. on Very Large Data Bases, September

12-15, 1994, Santiago de Chile, Chile, pages 487–499, 1994.

[131] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate gener-

ation. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of

Data, May 16-18, 2000, Dallas, Texas, USA., pages 1–12, 2000.

[132] Berkay Aydin, Rafal A. Angryk, and Karthik Ganesan Pillai. ERMO-DG: Evolving region

moving object dataset generator. In Proc. of the 27th FLAIRS Int. Conf., pages 321–326. AAAI

Press, 2014.

[133] DJ Kempton and RA Angryk. Tracking solar events through iterative refinement. Astronomy

and Computing, 13:124–135, 2015.

[134] Berkay Aydin, Ahmet Kucuk, and Rafal A. Angryk. Measuring the significance of spa-

tiotemporal co-occurrences. ACM Trans. Spatial Algorithms and Systems, page Under Review.

156

[135] S. Krucker, A. O. Benz, T. S. Bastian, and L. W. Acton. X-Ray Network Flares of the Quiet

Sun. The Astrophysical Journal, 488:499–505, October 1997.

[136] Stéphane Régnier and Richard C Canfield. Evolution of magnetic fields and energetics of

flares in active region 8210. Astronomy & Astrophysics, 451(1):319–330, 2006.

[137] MJ Murray, L van Driel-Gesztelyi, and D Baker. Simulations of emerging flux in a coronal

hole: oscillatory reconnection. Astronomy & Astrophysics, 494(1):329–337, 2009.

[138] E. B. Mayfield and J. K. Lawrence. The correlation of solar flare production with magnetic

energy in active regions. Solar Physics, 96:293–305, April 1985.

[139] J Heyvaerts, ER Priest, and DM Rust. An emerging flux model for the solar flare phe-

nomenon. The Astrophysical Journal, 216:123–137, 1977.

[140] J Feynman and SF Martin. The initiation of coronal mass ejections by newly emerging

magnetic flux. Journal of Geophysical Research: Space Physics, 100(A3):3355–3367, 1995.

[141] Nariaki V Nitta and Hugh S Hudson. Recurrent flare/cme events from an emerging flux

region. Geophysical research letters, 28(19):3801–3804, 2001.

[142] Berkay Aydin, Vijay Akkineni, and Rafal Angryk. Time-efficient significance measure for

discovering spatiotemporal co-occurrences from data with unbalanced characteristics. In

Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Infor-

mation Systems, GIS ’15, pages 80:1–80:4, New York, NY, USA, 2015. ACM.

[143] Fabian Mörchen. Algorithms for time series knowledge mining. In Proceedings of the Twelfth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia,

PA, USA, August 20-23, 2006, pages 668–673, 2006.

[144] Petre Tzvetkov, Xifeng Yan, and Jiawei Han. TSP: mining top-k closed sequential patterns.

Knowl. Inf. Syst., 7(4):438–457, 2005.

[145] Kun-Ta Chuang, Jiun-Long Huang, and Ming-Syan Chen. Mining top-k frequent patterns

in the presence of the memory constraint. VLDB J., 17(5):1321–1344, 2008.

157

[146] Geoffrey I. Webb. Filtered-top-k association discovery. Wiley Interdisc. Rew.: Data Mining

and Knowledge Discovery, 1(3):183–192, 2011.

[147] Vincent S. Tseng, Cheng-Wei Wu, Philippe Fournier-Viger, and Philip S. Yu. Efficient al-

gorithms for mining top-k high utility itemsets. IEEE Trans. Knowl. Data Eng., 28(1):54–67,

2016.

[148] Mete Celik, Shashi Shekhar, James P. Rogers, James A. Shine, and James M. Kang. Mining

at most top-k% mixed-drove spatio-temporal co-occurrence patterns: A summary of results.

In Proceedings of the 23rd International Conference on Data Engineering Workshops, ICDE 2007,

15-20 April 2007, Istanbul, Turkey, pages 565–574, 2007.

[149] Bradley Efron. Nonparametric estimates of standard error: the jackknife, the bootstrap and

other methods. Biometrika, 68(3):589–599, 1981.

[150] MA Schuh, RA Angryk, and PC Martens. Solar image parameter data from the sdo: Long-

term curation and data mining. Astronomy and Computing, 13:86–98, 2015.

[151] Heliophysics event knowledgebase. http://www.lmsal.com/hek/. Last Accessed: 21

March 2015.

[152] Shashi Shekhar and Hui Xiong. Java topology suite (jts). In Encyclopedia of GIS, pages

601–601. Springer, 2008.

[153] B Naveh. Jgrapht, 2017. URL: http://jgrapht.org/, [Online].

[154] Berkay Aydin and Rafal Angryk. Spatiotemporal event sequence mining from evolving

regions. In 23rd International Conference on Pattern Recognition (ICPR), Cancún, México, De-

cember 4-8, 2016, pages 4167–4172, 2016.

[155] Berkay Aydin and Rafal Angryk. Discovering spatiotemporal event sequences. In Pro-

ceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information

Systems, pages 46–55. ACM, 2016.

[156] Berkay Aydin. Dissertation Thesis: Discovery of Spatiotemporal Event Sequences, April

2017. URL: http://cs.gsu.edu/~baydin2/thesis/.

158

http://cs.gsu.edu/~baydin2/thesis/

[157] Dmlab. Integrated Solar Event Database, December 2016. URL: http://isd.dmlab.cs.gsu.

edu/, [Online; accessed 26-March-2017].

[158] Berkay Aydin, Ahmet Kucuk, and Rafal A. Angryk. Indexing spatiotemporal relations

in solar event datasets. In 2016 IEEE International Conference on Big Data, BigData 2016,

Washington DC, USA, December 5-8, 2016, pages 3140–3148, 2016.

[159] IBM. What is big data?, 2012. URL: https://www-

01.ibm.com/software/data/bigdata/what-is-big-data.html, [Online; accessed 29-Mar-

2017].

[160] Ahmet Kucuk, Shah Muhammad Hamdi, Berkay Aydin, Michael A. Schuh, and Rafal A.

Angryk. Pg-Trajectory: A PostgreSQL/PostGIS based data model for spatiotemporal trajec-

tories. In 2016 IEEE Sixth International Conference on Big Data and Cloud Computing, BDCloud

2016, Atlanta, GA, October 8-10, 2016, pages 81–88, 2016.

[161] Berkay Aydin and Rafal A. Angryk. A graph-based approach to spatiotemporal event se-

quence mining. In IEEE International Conference on Data Mining Workshops, ICDM Workshops

2016, December 12-15, 2016, Barcelona, Spain., pages 1090–1097, 2016.

159

http://isd.dmlab.cs.gsu.edu/
http://isd.dmlab.cs.gsu.edu/

	Georgia State University
	ScholarWorks @ Georgia State University
	5-10-2017

	Discovery of Spatiotemporal Event Sequences
	Berkay Aydin
	Recommended Citation

	Abstract
	Titlepage
	Copyright
	ApprovedForm
	Dedication
	Acknowledgements
	Acknowledgements
	Table of Contents
	List of Figures
	Table of Contents
	List of Tables
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Solar Physics Application for Spatiotemporal Event Sequences
	1.1.2 Biomedical Sciences – Embryo selection prediction
	1.1.3 Epidemiology – Prediction of malaria epidemics

	1.2 Challenges
	1.3 Contributions
	1.4 Outline

	2 Literature Review on Spatial and Spatiotemporal Data Mining
	2.1 Types of Spatiotemporal Knowledge
	2.2 Temporal Sequence Patterns
	2.3 Spatial Colocation and Spatiotemporal Co-occurrence Patterns
	2.4 Spatiotemporal Sequence Patterns

	3 Preliminaries on Spatiotemporal Data
	3.1 Moving Objects and Spatiotemporal Trajectories
	3.2 Evolving Region Trajectories
	3.3 Modeling Spatiotemporal Event Instances and Examples

	4 Spatiotemporal Co-occurrences and Significance Measurements
	4.1 Related Work on Spatiotemporal Data Mining
	4.1.1 Spatial Co-locations
	4.1.2 Moving Cluster Analysis
	4.1.3 Spatiotemporal Co-occurrences
	4.1.4 Summary

	4.2 A Real-life Example
	4.3 Evolution of Spatiotemporal Jaccard Measure
	4.3.1 Preliminaries
	4.3.2 Intermediate Form: J+ Measure

	4.4 J* Measure
	4.4.1 Algorithms for J* Calculation
	4.4.2 Key Properties of J*

	4.5 Algorithms for J, J+, OMAX and OMIN Calculations
	4.5.1 J Calculation Algorithm
	4.5.2 J+ Calculation Algorithm
	4.5.3 OMIN and OMAX Calculation Algorithms

	4.6 Experimental Evaluation of Significance Measures
	4.6.1 Experimental Settings
	4.6.2 Relevancy Analysis
	4.6.3 Efficiency Analysis
	4.6.4 Suitability for STCOP Mining

	4.7 Summary on Significance Measurements

	5 Spatiotemporal Event Sequence Mining
	5.1 Modeling Spatiotemporal Event Sequences
	5.1.1 Head and Tail Window of an Instance
	5.1.2 Generating Head and Tail Window
	5.1.3 Strategies for Head and Tail Window Generation

	5.2 Spatiotemporal Follow Relationship and Measuring the Significance
	5.2.1 Significance of the Instance Sequences
	5.2.2 Prevalence of the Event Sequences
	5.2.3 A Discussion on the Ambiguity of Allen's Temporal Algebra and How We Solve It

	5.3 Apriori-based Algorithms for Mining Spatiotemporal Event Sequences
	5.3.1 Initialization
	5.3.2 Naïve Apriori Algorithm
	5.3.3 SequenceConnect Algorithm

	5.4 A Pattern Growth-based Approach for Mining Spatiotemporal Event Sequences
	5.4.1 Event Sequences and Graph Representation
	5.4.2 EsGrowth Algorithm

	5.5 Mining the Most Prevalent Spatiotemporal Event Sequences: Top-(R%, K) Approach
	5.5.1 Naïve Approach
	5.5.2 Fast Top-(R%, K) Approach

	5.6 Bootstrap Approach: Mining Spatiotemporal Event Sequences without Thresholds

	6 Experimental Evaluation
	6.1 Experimental Settings and Solar Event Datasets
	6.1.1 Lifecycle of Solar Event Data
	6.1.2 Our Datasets
	6.1.3 Implementation Details and Experimental Settings
	6.1.4 Agenda of Our Experiments

	6.2 Initialization Times
	6.3 Overview of Running Times
	6.4 Analysis of Threshold-based Approaches
	6.5 Analysis of Top-(R%, K) Approach
	6.5.1 Running Time Analysis of Top-(R%, K) Algorithms
	6.5.2 Comparison of EsGrowth and Top-(R%, K) Approach

	6.6 Analysis of Bootsrap Approach

	7 Conclusion
	7.1 Future Work
	7.1.1 Mixed Mining of Spatial, Temporal, and Image Data:
	7.1.2 Creating a Solar Event Search Engine
	7.1.3 From Knowledge to Wisdom - Utilizing Patterns for Prediction

	7.2 Concluding Remarks

	References

