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i 

AN ABSTRACT OF THE THESIS OF 

David Leifer, for the Master of Science degree in Geography, presented on May 11, 2019, at 

Southern Illinois University Carbondale. 

TITLE: SOCIAL MEDIA FOOTPRINTS OF PUBLIC PERCEPTION ON U.S. ENERGY 

ISSUES 

MAJOR PROFESSOR: Dr. Ruopu Li 

 Energy has been at the top of the national and global political agenda along with other 

concomitant challenges, such as poverty, disaster and climate change. Social perception on 

various energy issues, such as its availability, development and consumption deeply affect our 

energy future. This type of information is traditionally collected through structured energy 

surveys. However, these surveys are often subject to formidable costs and intensive labor, as 

well as a lack of temporal dimensions. Social media can provide a more cost-effective solution to 

collect massive amount of data on public opinions in a timely manner that may complement the 

survey. The purpose of this study is to use machine learning algorithms and social media 

conversations to characterize the spatiotemporal topics and social perception on different energy 

in terms of spatial and temporal dimensions. Text analysis algorithms, such as sentiment analysis 

and topic analysis, were employed to offer insights into the public attitudes and those prominent 

issues related to energy. The results show that renewable energy sources were consistently more 

positive than either nuclear or coal, which holds true when viewed temporally or spatially. The 

study is expected to help inform decision making, formulate national energy policies, and update 

entrepreneurial energy development decisions.  
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CHAPTER 1 

INTRODUCTION 

 

 Energy research has transitioned from a research area dominated by physical energy 

systems to one focusing on social dimensions. The success of programs on energy development 

and consumption depend on how the public perceives those related issues, such as environmental 

pollution and anthropogenic climate change. A common way to measure social perception is 

through phone and structured mail surveys (e.g., Farhar et al., 1980; Farhar et al., 1994; Bolsen 

and Cook, 2008; Sütterlin and Siegrist, 2017). Although these approaches statistically represent 

the surveyed population, they are subject to a few limitations, such as its lack of temporal scales, 

intensive labor costs, low response rates, and limited space for free expression (Ceron et al., 

2014). Social media-based data mining offers an alternative insight into people’s opinions on a 

variety of energy issues. 

 Social media datasets are within the scope of big data, which can be characterized by four 

V’s: volume, variety, velocity, and value. Volume refers to the amount of data, variety is the 

different forms of data, velocity is the analysis of streaming data, and value is the ability to use 

the data as actionable information (Kaisler et al., 2013). Accessing this large stream of 

information poses challenges because the data needs to be filtered and further condensed for 

analyses using traditional methods to occur. Twitter specifically states that over 500 million 

tweets are created each day by hundreds of millions of accounts (Twitter for Business). Because 

of the size, variability, type, and uncertainty presented by social media data, we employed 

scripting languages such as Python to scrape, condense, analyze, and measure the uncertainty of 

the data. 
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1.1 Problem Statement 

 Energy has been developed and consumed at an unprecedented pace, as the world is 

becoming more populated and third world countries are rapidly developing. According to the 

Intergovernmental Panel on Climate Change (IPCC)’s Summary for Policymakers (2014), the 

global average temperature is expected to increase by 1.5-2.0 °C by the end of the 21st century. It 

is widely accepted by the scientific community that climate change is directly linked to 

anthropogenic energy-related activities, i.e., the release of carbon dioxide and other greenhouse 

gasses from the burning of coal, natural gas, and other fossil fuels. As developing nations, such 

as India and China, have increased in population and industrialization, their demands for energy 

have reached all-time highs. Despite having a smaller amount of the world’s population, the 

United States consumes a disproportionately large amount of energy. As we begin the transition 

from a fossil fuel energy economy to one dominated by renewable sources, how people perceive 

different types of energy needs to be examined to better inform decisions on energy 

development. 

 Social perception of energy affects how government officials set national, state, and local 

energy agendas. Social perception on energy has been found to be an important factor behind 

social and political campaigns that sway decision making on energy development, consumption, 

and policy. (Batel et al., 2013). Therefore, it is necessary to understand the public preference and 

opposition towards different energy types and related concerned issues. Public perception 

towards energy sources will significantly influence our energy future (Wüstenhagen et al., 2007). 

 Social media platforms, such as Facebook, Twitter, and YouTube, have emerged in the 

last decade as incredibly popular means of sharing opinions and connecting with other 

individuals. These uncensored media have increasingly been used to study public opinions on 



 

3 

social issues (Petkov et al., 2011; Bertot et al., 2012; Sivarajah et al., 2015). Social media also 

provides rich textual information that is largely limited or unavailable in traditional surveys. 

Since social media has been routinely used to study a variety of social research issues, it is 

necessary to apply these established methods to study today’s “energyscape”. Social media 

provides a backdrop of temporal, spatial, and contextual information along with a freedom of 

expression not found in traditional surveys. Many contemporary issues, such as social images of 

coal and the transition to carbon-zero energy sources, can thus be studied by what people post on 

the internet. For example, Santoianni (2013) revealed that industries powered by coal have been 

facing increasing public opposition on social media. 

 

1.2 Research Questions 

 This thesis focuses on two research questions: 

 1. What are the public perception and concerned issues towards different energy sectors 

 in the U.S. based on social media? 

 2. Can we gain insights of spatiotemporal differences in social perception on energy

 issues using social media-based data mining approaches? 

 

1.3 Research Significance 

 This study contributes to the knowledge of location-based perception towards energy 

resources by leveraging uncensored and free social media conversations. Additionally, this study 

adds to the plethora of literature regarding the applications of social media data mining 

techniques. It is my intention that the outcome of this research be used by policy makers and 

entrepreneurs to support strategical decisions about energy development in the United States. 
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1.4 Structure Overview 

 Chapter 2 is dedicated to the literature review of social perception towards energy and 

potential data mining techniques, including past research using social media location, sentiment 

analysis, and topic analysis on very large text corpora. Chapter 3 outlines the methodology for 

scraping Twitter data, extracting geolocations from user profiles, and analyzing the data using 

machine learning techniques. Chapter 4 presents and interprets the results and discusses technical 

and social issues related to the research outcome. Finally, chapter 5 summarizes the research 

findings and proposes future work.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 This chapter outlines the literature review or methods that will be employed throughout 

the study. In section 2.1, we examined the literature behind using social media to understand 

energy perception. In section 2.2, we covered the workflow and various data mining and 

sentiment analysis techniques. Finally, in section 2.3, we analyzed the literature on 

spatiotemporal characteristics of social media datasets. 

 

2.1 Using Social Media to Understand Energy Perception 

 Although there has been research on social perception towards a variety of subjects on 

social media, we have identified a gap when it comes to the perception of energy sources on 

social media. Existing studies on energy sources from social media include energy and 

environment (Santoianni, 2013), energy conservation domestically (Petkov et al., 2011), and 

energy efficiency and savings (Russel et al., 2013). For example, Santoianni (2013) found that 

pages on Facebook supportive of coal were far outnumbered by pages that were anti-coal. 

Furthermore, 76% of posts containing the word “coal ash” were unfavorable. Similarly, Russel et 

al. (2013) found that Twitter data was useful in discovering communication campaigns about 

energy-related posts. 

 A study conducted by the Pew Research Center (Americans' Opinion on Renewables and 

Other Energy Sources, 2016) found interesting results about the perception of the American 

people towards various energy types. They conducted a traditional survey and had respondents 

include their political affiliation. Coal was very controversial, with only 41% in favor of 
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expanding coal while 57% oppose of it. 89% of all respondents favored more solar panel farms 

while just 9% oppose it. Nuclear was also more controversial, with 43% favoring more nuclear 

and 54% opposing it. 83% favor more wind turbine farms while just 14% oppose them. The 

study also found divisions when controlling for political affiliation. Although both Republicans 

and Democrats favor more renewable resources, Republicans support more coal mining with a 

73% favor rate while just 14% of Democrats favor it. 57% of Republicans favor more nuclear 

plants and 40% of Democrats favor it. 

 Although traditional surveys provide an important background on American perception 

on energy sources, they often lack, or avail at formidable costs, important spatiotemporal 

dimensions. Most of surveys can be regarded as ‘snapshots’ of social conditions in terms of the 

time periods. A national survey that covers a wide range of geographic areas is usually extremely 

expensive. Additionally, as the respondents fill in bubbles to predefined questions, the contextual 

background and unstructured information related to the surveys may be unavailable. Most 

importantly, these traditional surveys often limit spatial extents due to formidable costs. 

 

2.2 Data Mining Techniques 

 As this study relies on data mining, it is important to address the body of literature that 

pertains to a wide range of data mining techniques. As previously noted, social media platforms 

in the age of Web 2.0 supplies a wealth of social conversations. However, a majority of the 

generated information was designed in such a way that reduces storage space in an effort to 

speed up the call and response time of the web interface. Thus, we are left with a term coined as 

“messy data”, or data that needs to be cleaned using preprocessing techniques. 
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2.2.1 The General Workflow 

 The general workflow of analyzing social media includes collecting, cleaning, quality 

checking, and analyzing the data. To remedy the variable quality of social media data, it is 

imperative to employ data cleaning methods developed by Wickham (2014). This was an attempt 

to create a framework for making these complicated tabular sets of data easier to be analyzed by 

examining five common problems. This includes column headers stored as values instead of 

names, multiple variables stored in a single column, variables being stored in columns and rows, 

many different types of observational units stored in the same dataset and finding a single 

observational unit in multiple datasets. Approaches to remedying this include the following and 

align respectively with the five problems: melting columns into rows, splitting columns, rotating 

melted rows into columns, splitting a single dataset into multiple datasets, and concatenating 

multiple datasets into a single dataset. 

 Once the data is collected, it is important to discover how the data will be implemented to 

answer questions. He et al. (2015) created a social media analytics framework to analyze 

sentiment for business competitors. Their approach used IBM SPSS to extract information and 

perform cluster analysis on the data. The problem with building such a framework is that since 

the programs are written to utilize existing APIs and web crawlers, if the API or web crawler is 

updated by Twitter or another organization, the tool breaks and becomes worthless. It would take 

a dedicated team to constantly keep the tool up to date with the APIs and web crawlers. This is 

beyond the scope of my own survey. 

 After the data is collected and properly cleaned, there are myriad ways of progressing 

with the analyzation. One such approach examined by Hu et al. in (2015) created an agent-based 

model to simulate how people interact with each other and mass news on social media. This 
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model consisted of committed agents, who cannot change their opinions, influencing 

uncommitted agents, who update their opinions at each time step. The uncommitted agent is also 

influenced by mass news media sources, which acts as a weight that can be increased or 

decreased. Similarly, Anderson et al. (2015) attempted to create an agent-based model 

represented as a social graph to keep track of how disaster news about people’s whereabouts is 

disseminated as it breaks in real time. This is highly dependent on the amount of information a 

person creates about themselves in the minutes and hours after a disaster to feed the study’s 

support vector machine and random forest classifier algorithm. Without provided data, it is 

largely difficult to estimate their status. A limit of both of these approaches is the lack of 

literature linking quantitative models to real world humans making decisions. The real world is 

so stochastic that it is difficult to account for every minuscule detail in a model. 

 A comprehensive literature review of the tools available was examined by Adeoyin-

Olowe et al. (2014). The aspect-based/feature-based approach determines the polarity of an 

overall review based on whether the text was positive or negative. Homophily clustering links 

the sentiment of the same opinion with other similar opinions as a series of nodes. Opinion 

definition/summarization is a machine learning approach that learns the polarity of text using 

support vector machines. Sentiment orientation rates a text on a one to five-star basis. Aspect 

rating analysis extracts each aspect of a text via probabilistic latent semantic analysis for each 

subsequent text’s score. Sentiment lexicon is an approach that uses a dictionary of predefined 

words (also known as a text corpus) and scores the text based on if the predefined word appears 

in the text. Unsupervised classification discovers adjectives and adverbs to classify the text using 

average semantic orientation. This approach does not distinguish between test and training data, 

using all supplied data to build a prediction model. Supervised and semi-supervised approaches 
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split the data into training and testing data to evaluate the model’s predictive powers in 

classifying text as positive or negative. Topic detection or topic analysis uses support vector 

machines or naïve Bayesian classifiers to specify words as either positive or negative. 

 Rather than relying on state-of-the-art opinion estimation algorithms, Russell et al. (2013) 

analyzed the content of social media regarding energy consumption. The purpose of the study 

was to decipher the feasibility of using Twitter streams as a data source and analyze the collected 

data for word frequency, periodicity, and context. The analysis portion was concerned mainly 

with co-occurring hashtags and clusters of words rather than the actual analysis of the text’s 

contents. This focus provides a framework for discovering similar hashtags on Twitter for use in 

data collection. 

 The validity of using social media as a data source was questioned in prior research 

applications, such as in Adedoyin-Olowe et al. (2014) and discussed in Tufekci (2014) and 

Oliveira et al. (2017). Tufekci (2014) specifically set out to address the over emphasis of using 

only one platform, Twitter, in academic research to summarize the consensus of social media. 

Existing frameworks in prior research fails to accommodate the sampling bias of using only 

hashtags in data collection. One side of an argument might use a particular hashtag more than the 

other, providing another basis of sampling bias. Such shortfalls of using Twitter include the one-

way graph between users; one user does not have to confirm the friendship of another to follow 

or follow back. Additionally, Twitter is confined to short texts, lacks private communication, and 

the demographics of its user base are primarily young, white adults. Less than 20% of adults in 

the United States use Twitter on a frequent basis (Tufekci, 2014). Measurable statistics such as 

retweets can also lead to incorrect conclusions about the data. Trending news might accumulate a 

mass of retweets and comments but has no bearing on whether the news was either positive or 
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negative or was even factual. To further address the question of validity of using a social media 

microblogging service like Twitter, Oliveira et al. (2017) compared the results of sentiment 

analysis and traditional opinion polls during the Brazilian presidential race. They collected data 

from Twitter during the same time period as the traditional polls. Opinion mining software such 

as DiscoverText, RapidMiner, and Scup was utilized and got an 81% correct classification rate 

on their Twitter data while error from traditional polls was 95%. The candidate Dilma had more 

positive tweets than did Aecio, which coincides with the traditional opinion poll stating that 

Dilma had taken the lead over Aecio. 

 Another problem with using Twitter as a data source is that only a small percentage of 

tweets have attached geolocation information. Resulting from my preliminary study, less than 

1% of all tweets had attached geolocated coordinates. This statistic is confirmed when analyzing 

the literature and is most likely because people have to opt into activate this feature, besides the 

fact that the scale at which the geocoding occurs varies widely (Crampton et al., 2013). 

Stefanidis et al. (2011) attempted to rectify this lack of available data by collecting what was 

coined as ambient geospatial information. tweets were included if they contained a keyword 

about a physical location and an example about Tahrir square during the Arab Spring in 2011 

was examined. They modeled the connection of users via a graph system of interconnected 

nodes. 

 

2.2.2 Sentiment Analysis 

 Sentiment analysis is critical to the general emotional tendency of people towards the 

concerned issues, resulting in numerical scores representative of positive, negative, and neutral 
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attitudes. There are many studies that focus on the algorithmic and applied aspects of the 

sentiments. Due to its importance, we make it a separate section to dedicate to its review. 

 The ease of use for a sentiment analysis tool was examined by self-proclaimed novice 

technologists in Yoon et al. (2013). Rather than using complex machine learning algorithms, this 

was an attempt to provide a comprehensive approach to sentiment analysis. They attempted to 

classify sentiment towards 17 keywords relating to physical activity. They imported the tweets 

using NodeXL, a free and open source Microsoft Excel application that analyzes social media 

networks and visualizes the results. This application reduced dimensionality and removed special 

characters, and then broke the words down into n-grams, which are a chain of text words starting 

with unigrams, progressing to bigrams, and eventually forming chained-together words. To 

analyze the preprocessed data, the information was deciphered using topic detection, sentiment 

analysis, and hot topics. The information was then displayed as the frequency of content changes 

over time by week. For example, 77% of bicycling related tweets were classified as positive and 

40% of running related tweets were classified as negative. This study provides an important 

backdrop to the ease of use in using some of these sentiment analysis tools. 

 A different approach to sentiment analysis was carried out by Williams et al. (2015), 

which examined the polarizing sentiment of attitudes towards anthropogenic climate change on 

social media by exploring the various echo chambers that arise from five Twitter hashtags. Using 

each hashtag, the mean Sorenson similarity between user populations was calculated for ten-day 

intervals. This resulted in 15 networks from followers to people that they retweet and were 

visualized as directed graphs created by the ForceAtlas2 layout algorithm. ForceAtlas2 refers to 

a combination of a variety of techniques used by Gephi, a network visualization software, to 

visualize social networks. The users themselves were classified by a panel of researchers as 
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activist, skeptic, neutral, or unknown and the tweets were classified by the same panel as 

positive, negative, neutral or unknown. Homophily was then measured between similar users and 

dissimilar users and a Louvain method algorithmically detected which group a user belonged to. 

The results confirmed that there are many more skeptics and activists than neutral or unknown, 

indicating the polarizing nature of the subject. There was also little retweeting and inmixing by 

the users on opposing sides, indicating that they largely ignored each other. Although hand 

labeling the sentiment is an interesting approach, it falls beyond the scope of my study. 

 Another example of sentiment analysis on data collected from Twitter was proposed by 

Cody et al. (2015) in regard to climate change. They employed the Hedonometer, a previously 

created social media metrics tool, to analyze the change in sentiment on Twitter. The 

Hedonometer assigns scores based on the positive or negative sentiment and draws from a corpus 

of 10,222 most frequently used words in social media. The scores ranged from one to nine and 

created word shift graphs comparing the happiness of two texts by ranking the content of their 

words. Four events were analyzed in this study and included three natural disasters and a climate 

rally. They discovered that the frequency of the word climate decreased over the period of study 

from 2008 to 2014. The average happiness score in regard to climate was 5.84/9.0, while the 

average of all tweets during this time was 5.99/9.0. It was also realized from the data that climate 

change deniers used the term “global warming” more than climate change activists. 

 A more complex study on Twitter compared three different approaches to sentiment 

analysis: lexicon-based approach, machine learning, and a hybrid-based approach (Chen et al., 

2016). This study looked to explore how various governments use social media by examining 20 

different city government accounts over eight months. Three different lexicons or text corpora 

were used: Taboada et al., Valence Aware Dictionary and sEntiment Reasoner (VADER), and 
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the National Research Council Emotion Lexicon. The text processing library used was the 

Natural Language Tool Kit (nltk). The machine learning implementation they used was Weka, a 

library written in the Java programming language. The text was transformed into a vector using 

StringToWordVector and then used the Naïve Bayes, K-nearest Neighbors, and Random Forest 

algorithms. Training data was taken from Sentiment140. A final approach combined the two 

methods by using Senti-Strength to classify short, informal text. The hybrid approach also 

classified emoticons. An Analysis of Variance (ANOVA) test was used to show dips and spikes 

as the government announced music festivals or other expositions. This study is specifically 

useful because they employed the VADER corpus, which is a widely adopted method in 

exploring short social media texts. 

 Lexicon-based approaches to sentiment analysis include Natural language processing 

(NLP) steps to preprocess the data and have data cleaning, stop word removal, hanging feature 

removal, and character disabling (Jeong, 2015). Machine learning approaches, such as those 

included in Go et al. (2009), Mikolov and Le (2014) and Lau and Baldwin (2016), employed 

Naïve Bayes, Maximum Entropy, Support Vector Machines, and doc2vec algorithms to analyze 

the sentiment. Accuracy for these methods ranged from 80% to 82% accuracy. The results were 

different when they attempted to account for two or more words in a sequence, known as 

bigrams. When unigrams were included with bigrams, Maximum Entropy accuracy improved 

but Naïve Bayes and Support Vector Machines did not. Compared with bag of word models, 

doc2vec far outperformed the accuracy by representing words as vectors in feature space. 

Although these are significant contributions to the field of NLP, the accuracy results proved 

inconclusive to replicate (Lau and Baldwin, 2016). 
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2.2.3 Topic Analysis 

 Topic analysis, also known as topic modeling or feature extraction of text corpora, is 

important to understand social media discussions in terms of generalized common topics. Dai et 

al. (2015) used the algorithm doc2vec to learn paragraphs of Wikipedia and arXiv as embedded 

paragraphs. This approach was compared with Latent Dirichlet Allocation (LDA). The paper 

attempted to see if the methods could find similar paragraphs based on a given input word. The 

Paragraph Vector Model works as follows: 

 1) Insert the memory vector into a standard language model. 

 2) The paragraph vector is then averaged with local context to predict the next word. 

 3) Backpropagation is issued to tune paragraph vectors (known as distributed bag of 

 words). 

Word embeddings were jointly trained with paragraph vectors. Triplet pairs of items that were 

close to each other were then constructed. 10 epochs of training using hierarchical softmax as a 

Huffman tree classifier occurred. Cosine similarity was used as the similarity index. LDA was 

applied with Gibbs sampling and 500 iterations, where alpha was set at .1. Posterior topic 

proportions with Hellinger distance was used to compute similarity. The word embeddings for 

each word was then averaged. They visualized 915,715 words using the t-SNE algorithm. They 

found the nearest neighbors for the term ‘Machine Learning’. Deep learning is more similar to 

machine learning than to a computer network. They found that the term ‘Google’ is closer to 

‘Facebook’ than ‘Walmart. They also found that paragraph vectors outperformed LDA in the 

similarity index. 

 Kusner et al. (2015) measured the similarity of text documents using the Word Mover’s 

Distance (WMD) algorithm, which is the distance the words need to travel in space to reach 
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other words. They approached the subject as though it is a transportation problem. Their 

algorithm was based on word2vec’s shallow neural network architecture and is as follows: 

 1) An input layer, projection layer, and output layer are used to predict close words. 

 2) Word vectors are then trained to max log probability of nearby words. 

An example of this input/output sequence would be ‘Japan’ minus ‘sushi’ plus ‘Germany’ would 

equal the output term ‘bratwurst’. The Euclidian distance was found between similar words to 

produce a dissimilar index. Another example would be that transforming ‘Illinois’ to ‘Chicago’ 

is closer than ‘Japan’ to ‘Chicago’. Each document is represented by its weighted mean vector. 

WMD, albeit slow in performance, outperformed all other attempts with the lowest test error. It 

was also found that the model improved with sample size. 

 In the paper by Zhang and Wallace (2015), they attempted to conduct an analysis of a 

single layer convolutional neural network (CNN) with altered parameters in the sentence 

classification task. They converted a sentence to a vector matrix for input from word2vec or 

GloVe. They acknowledge that tuning the hyperparameters of the CNN is like a black art. They 

took a significantly long time to train, thus it is important that the hyperparameters are tuned 

correctly to begin with. There were multiple steps to counteract this, as described in the paper. 

First, perform convolution with linear filters, where the filters were parameterized by the weight 

matrix. The inclusion of a bias term and activation function to create a feature map, using 1-max 

pooling to extract a scalar from each feature map. Next, they were concatenated into a fixed 

length feature vector and fed into a softmax layer. Regularization was then applied via dropout or 

L2 norm. The aim of this is to minimize cross-entropy loss by measuring the parameters. 

Optimization is done using stochastic gradient descent and back propagation. Instead of 

reporting on the accuracy, they instead measured the area under the curve. They found that a 
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CNN is not suitable when the dataset is small. The best result for filter region depends on the 

sentence length. 1-max pooling outperformed all others while dropout outperformed L2 norm for 

regularization when set to a small value. Finally, it was recommended to use word2vec or GloVe 

rather than one-hot vectors for topic analysis. 

 An interesting approach to sifting through the roughly 10% of robot posts on Twitter was 

examined in Chen et al. (2017). They define this spam as low-quality content and developed an 

expectation maximization algorithm on tweets by dividing tweets into four categories: low 

quality advertisements, automatically generated content, meaningless content, and clickbait. 

They then surveyed 211 participants in an attempt to define low-quality content. 100,000 tweets 

were labeled using this approach. Support Vector Machines and random forest classifiers were 

then applied to classify more tweets into categories. Cohen’s Kappa coefficient was used to 

evaluate the agreement of the surveyed labeling. From their results, words like ‘click’ and ‘free’ 

appeared more in low quality content. From building a blacklist dictionary, about 95% of tweets 

were correctly categorized as low-quality content. This number improved to 97.11% when word 

level analysis was implemented. 

 

2.3 Spatiotemporal Dimensions of Social Media Data 

 Social media is rich in textual information with spatiotemporal dimensions. It has been in 

the research spotlight along with the ‘geospatial revolution’ in the recent decade. Goodchild and 

Sui (2011) curated an article discussing the new challenges faced by geographic information 

systems (GIS) as social media emerges as a new topic. The rise of websites like Google Maps, 

Bing Maps, and Yahoo Maps have drawn in users by the millions and created new GIS/social 

media communities, resulting in real life meetups. This mapping has expanded to other social 
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media outlets that employed location-based services to track its users such as Facebook and 

Twitter. The rise of big data from these location-based media sites has opened up new frontiers 

for GIS studies, resulting in three categories of data interaction: people who generate data, 

people who collect data, and people who can analyze data. A foreseen pitfall in future studies on 

big data is discovering how people without mobile phones can be included in the study. New 

developments in data analyzation frameworks will need to be created to account for this influx in 

available data collection. 

 Since the introduction of smartphones equipped with 5-15-meter positional accurate 

global positioning satellites (GPS) and highly accurate clocks, the spatiotemporal variability of 

human movement patterns has been examined by researchers. Hasan et al. (2013) used social 

media data to track the timing component as well as spatial distribution of social media entries in 

Los Angeles, New York City, and Chicago. By breaking up the Twitter data down to users who 

had more than 25 geolocated check-ins, the study categorized the likelihood an individual was 

either at home, work, eating, being entertained, recreating, or shopping. The temporal component 

was crucial in impacting the spatial aspect of the activity. For example, entertainment was 

usually logged in the evening and eating was geographically centered. This work could be 

employed to probabilistically track a person choosing a destination. The idea of using the 

spatiotemporal configuration for location recommendation is expanded upon by Hu et al. (2013). 

They developed a supervised learning model to predict the likelihood of an individual choosing a 

destination based on the Monte Carlo Expectation Maximization. Their model outperformed 

similar state of the art approaches. 

 One of the first applications of this new geospatial technology from social media arose 

from Crandall et al. (2010), which examined the online data of people to see if those who were 
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located near to each other in space-time knew each other. The photo-sharing website Flickr was 

utilized to scrape data with a time stamp and geolocated coordinates. About 85 million such 

photos were crawled and filtered down to 38 million photos from 490,000 users. The Earth was 

subsequently divided into a grid and if users appeared in the same grid, they were marked as co-

occurring. To decide if they knew each other, their friend list was examined. The results 

concluded that the probability of a connection increased with the presence of a co-occurring 

photo and the temporal range decreased. Bayesian inference was used to examine the likelihood 

of knowing each other based on the aforementioned information. 

 Further exploration of the value of spatiotemporal data was examined by Hossain et al. 

(2016) in deciphering alcohol consumption patterns based on geolocated Twitter data. This study 

collected geo-tagged tweets from rural, urban and suburban areas in New York state. By 

employing the payment-based Amazon Mechanical Turk, the tweets were connected to actual 

users who said they were drinking at the time of the tweet. The dataset was preprocessed and 

used to build a hierarchical support vector machine, a type of supervised machine learning 

algorithm, which avoids overfitting by restricting the dataset. The model was 80% accurate in 

determining if a person was tweeting from their home and drinking, indicating a high degree of 

accuracy in predicting block level geolocation. 

 An interesting approach to the spatiotemporal variations of human movements in real 

world spaces along with virtual places was in Gao et al. (2018). This was an attempt to better 

understand the human dynamics at play in geotagged tweets. They defined three edges in a 

spatiotemporal network (STN): physical edges, social edges, and physical-social edges. This 

study took Michael Phelps tweets during the 2016 Olympics from three time periods: after the 

4X100M medley relay, after Schooling beat him, and after a return to the United States. They 
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also analyzed 30 retweets from Phelps after he won and 20 after he lost. Most of the retweets 

came from the user’s original location. For example, most of Phelps’ retweets came from the 

United States while Schooling’s came from Singapore and from the University of Texas-Austin, 

where Schooling is a student. This study is important because of the implications from studying 

human movement along with social or behavioral science as it relates to computational 

modeling.  

 In an attempt to examine the spatiotemporal movement patterns in the aftermath of a 

hurricane, He et al. (2015) took 418 million geotagged tweets over a six-month period and split 

the dataset into temporally related to Hurricane Matthew, spatially related to Matthew, and 

evacuation behavior analysis categories. They employed a regression analysis from the 

normalized Twitter activity by county and the length from the county centroid to the track of the 

hurricane. They found that 60% of tweets came from Florida and peaked on the day of the 

hurricane, then declined rapidly. They established a threshold of ten tweets to discover the user’s 

home location. From the tweet dispersal, it is estimated that 54% of people actually evacuated, 

with most evacuees (45.6%) residing in South Carolina.  

 Perhaps a more important application of this new highly accurate temporal data can be 

found in a De Choudhury et al. (2013) study in predicting depression from social media posts. 

First, a list of Twitter users that were diagnosed with depression was compiled and used to 

scrape their tweet history for the past year. Amazon Mechanical Turk was used to administer a 

clinical survey to analyze their depression history. The applicants were not told the nature of the 

study, just that it was a study on behavioral psychology. From a pool of 1,583 crowdsourced 

individuals, only 171 met the criteria of having depression, were willing to share their Twitter 

posts, and passed the validity tests. Temporally, it was discovered that depressed individuals had 
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peak Twitter usage late at night and early in the morning while the opposite is true for non-

depressed individuals. Depressed users were also less likely to post at all and were more likely to 

post about their symptoms than non-depressed individuals. A limitation in using this study is the 

lack of a spatial component to make predictions. 

 Huang et al. (2014) used an approach to geolocating tweets using no less than 50 

geotagged tweets with a spatial accuracy of 20 by 20 meters. The study discovered spatial 

clustering by utilizing a density-based approach with a noise algorithm. Temporally, the noise 

algorithm was employed to find the nearest neighbor instead of the Euclidean distance. The point 

level data of 1,259 geotagged tweets around St. Louis, Missouri was then joined with a land-use 

map. Eleven high representative activity zones with more than six tweets were identified by 

looking at the cluster of tweets in space and four zones were identified along the temporal 

component. It was apparent from the data that areas of traffic jams often had numerous tweets. 

 Making accurate predictions based on a user’s movements is a valuable resource in 

studies, however, it raises numerous privacy concerns about how that data will be used in the 

future. Swift and Weidemann (2013) attempted to address these problems by creating an ArcGIS 

add-in tool called Twitter2GIS that converts geolocated tweets into geospatial data. The tool also 

had the ability to geocode tweets from a specified region. From this tool, 15 million total tweets 

were collected based on all hashtags. About 3.5% of this information had precise coordinates and 

23.5% could be located down to street level accuracy. 2.2% of the tweets had enough 

information from the Text to geolocate. Because this tool uses the legacy API, the tool was not 

available for access when the authors were contacted. 

 Liu et al. (2019) explored the uncertainty of what type of activity a user is engaged in 

using digital footprints from social media. They employed a multi-scaled algorithm Density-
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based spatial clustering of applications with noise (DBSCAN) to build upon previous research. 

This algorithmic research is essential to understand what people are doing while they tweet and 

is used in many industry standard products such as recommendation systems in popular content 

aggregate webpages and mobile applications. 

 Mahmud et al. (2012) contribute to the examination of inferring home locations of 

Twitter users using tweets to triangulate their location based on contextual information. They 

collected tweets from July 2011 to August 2011 from the 100 most populated cities in the United 

States using a bounding latitude and longitude box. They then selected the 200 most recent 

tweets from a user from their location. The users were then classified using three techniques. 

Content-based statistical classifiers, which bases the user’s home location on words, hashtags, 

and place names. Content-based heuristics classifiers, which uses contextual information such as 

if a user mentions a home state or city more often than other states or cities. And finally, 

behavior-based time zone classifiers, which uses the time from the user tweet to find their home 

location. The study created a list of heuristic and statistical classifiers to build upon their 

accuracy assessments.  

 Yaqub et al. (2018) used information in the form of tweets gathered during the 2016 

United States presidential election to test how sentiment scores varied for each candidate by state 

and who was mentioned more in subjective tweets. They also attempted to examine how tweets 

from state locations correlated with real-world sentiment of the public in both candidates. 

Although this study expressed reprehension in using Twitter data because of doubts about 

representativeness, Twitter is still used increasingly to post a candidate’s opinion and influence 

traditional media outlets. The research thus used Flask and Python as the backend to create a web 

application that analyzes the sentiment of users and plots their location on a web map. They also 
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used TextBlob for the NLP sentiment analysis portion of the application. Tableau was used for 

the mapping portion of the application. Again, the issue of only 1-2% of tweets having precise 

geolocation information arose and was circumnavigated by using the location information 

provided in a user’s profile. Some studies cited in the paper have found an 80% correlation 

between Twitter sentiment analysis and actual public opinion surveys. It was found that Donald 

Trump had a higher subjectivity score in the top 10 most populous states. This effort could be 

expanded to divide the United States into rural and urban areas to define location better. This 

application could be further refined to study other elections. 

 Hamstead et al. (2018) used geolocated social media data as an indicator of visitors to a 

park along with deciphering where equal park access took place in New York City (NYC). They 

did this by geolocating Flickr and Twitter data to NYC parks. Usage rate was specified as Flickr 

user days and Twitter user days and combed through 51.3 million geotagged tweets from 2012 to 

2014. Pictures taken at NYC parks from Flickr were then divided into local residents and 

tourists. They found that 76% of photos were from people residing outside of NYC. They 

focused on three predictors for park visitations. These included park facilities, accessibility, and 

neighborhood characteristics. Accessibility was defined as parks within a ten-minute walk from a 

user’s location. Pearson’s correlation coefficients were used to validate the regression model that 

tested whether neighborhood characteristics explained park visitation. They found that 95% of 

parks had 0-13 user days, seven parks had 537-894 and six had 7,291-50,384. They used 35 

explanatory variables to perform backward stepwise regression. Wi-Fi was a positive predictor 

and might indicate that people go to parks to find free Wi-Fi, or that they upload more when free 

Wi-Fi is available. A racial divided was also discovered with more Whites located near large 
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parks while Hispanics and Asians located near smaller parks. This study provides an excellent 

framework of explanatory variables to run statistical tests. 
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CHAPTER 3 

METHODS 

 

 This chapter outlines the methodological techniques employed to use a lexicon-based 

approach to classify massive amounts of text data into positive, negative, and neutral categories. 

Section 3.1 provides for an outline of the area of interest, the lower continental 48 states of the 

United States. Section 3.2 describes how we scrapped Twitter tweets from the website using a 

web crawler designed using Python libraries. Section 3.3 describes how we accessed profile 

location information from the website. Section 3.4 introduces the computing environment used to 

scrape and geocode the tweets. Section 3.5 details how the geocoder Python library was used 

along with a nltk implementation of the VADER sentiment analysis algorithm to classify 

sentiment. Section 3.6 outlines the steps taken to analyze the geocoded and classified sentiment 

scores and the performance of the model using accuracy assessment equations. 

 

3.1 Study Area 

 The study area focuses on the conterminous United States of America, consisting of the 

lower 48 states and ranging from the Northeast corner at 44°48′55.4″N 66°56′59.2″W to the 

Southwest corner at 32°32'20.8''N and 117°7'16.2228''W (Latitude and Longitude Finder, 2019). 

The lower 48 states have a combined area of 7,663,942 square kilometers (Central Intelligence 

Agency, 2018). There are large urban collections throughout the Eastern and Western portion of 

the United States. It is heavily populated on the coastal regions (Central Intelligence Agency, 

2018). It is the third largest country in the world in terms of both population and country size. 
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3.2 Twitter Web Crawler 

 The first step was to set up a web crawler to use customized functions to access Twitter’s 

API. Since the programming language Python is widely accepted in research studies due to its 

ease of readability and reproducibility, we built the web scraper using these programming 

guidelines. An example of my workflow can be described in Figure 1. The script first imported 

the module tweepy, which is a Python library sponsored by Twitter that can access the API. 

Other libraries imported were os and sys for basic operating and system functionalities as well as 

the library datetime which kept track of when and how long the operation took place. The file 

name created by this script included the date and time of the first tweet captured and was saved 

with the extension .txt. The actual data captured was saved as a JavaScript Object Notation (json) 

file, which is a datatype that is an extension of JavaScript. Next, the script needed to authenticate 

with the API that it was indeed registered with Twitter. This required the creation of a custom 

application on the Twitter Developer website, which provided access credentials, including 

access_token, access_token_secret, consumer_key, and consumer_secret. We also created a .log 

file that logged when an error was found for debugging purposes. Next, a class called 

MyListener was setup to write each received tweet to a file. The limit on this file was for 10,000 

tweets per file in order to make the file size manageable for future processing. We used functions 

to help define code that would be reused within the script. We used two functions to define how 

the tweets were written to a file. A third and fourth function were created to log the exceptions 

when MyListener raised an error. To avoid the interruption of script execution due to rate limits, 

we created another function to close the current python file and open another duplicate python 

file to resume data collection. Finally, the stream was filtered along 13 hashtags predefined as 
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being relevant to energy consumption. These hashtags were chosen after careful deliberation of 

the most popular energy related hashtags on Twitter. 

 

Figure 1: A chart of my workflow. 

 
Table 1: Hashtags for my focused energy types. 

Energy Type Search Keywords 

Coal Coal, coalmine 

Nuclear Nuclearenergy, nuclear 

Wind Energy WindEnergy, windfarm, 

WindTurbine, THE 

Solar Energy Solarfarm, solar, SolarPower, 

SolarEnergy, SolarPanels 
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3.3 Geocoding Twitter Users’ Locations 

 This section details the first half of the geocoding script. Since we had such a small 

number of tweets with precise geolocated coordinates, we needed a method to assign a general 

location to the tweets. Twitter profiles allow the inclusion of a city and state name in the location 

field, which can be accessed via Python scraping. These named places can then be sent to a 

geocoder to collect geolocation coordinates of the named place. In order to complete this task, 

we needed to set up the script environments. Next, the appropriate libraries for the script were 

imported. Then, the location profile scraping data structure was setup to capture the relevant 

location information. The location information from the scraped profile was included in the data 

structure. Finally, the data was saved as a newly created json file. 

 

3.3.1 Setting up the Geocoding Script 

 A problem emerged when attempting to geolocate the tweets using the social media 

website’s built-in geolocation feature. Since this feature needs to be activated by the user, only 

about 1-2% of tweets contained precise coordinates (Crampton et al., 2013). This meant that of 

the roughly 6,000,000 tweets scraped, only about 60,000 tweets had precise geolocation 

information. Since the web scrapper included 53 hashtags, this meant that each hashtag only had 

about 1,132 tweets. To remedy this lack of location data, a second script was written in Python 

and was designed to access user specified location information located on a Twitter user’s 

profile. This script was written for Python version 2.7. Since we were using the Anaconda 

Python environment, we needed to first activate this version by specifying “source activate 
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py27”. We also needed to place the list of json files, each containing roughly 10,000 tweets, into 

the same directory as the Python script file. 

3.3.2 Importing the Libraries 

 The script itself first imported json and os libraries to read the json file and run 

rudimentary operations. The libraries pandas were imported for reading additional data and glob 

was imported for creating lists of files. The library geocoder was imported as a wrapper for 

accessing Open Street Map’s geocoding API known as Nominatim. Multiple alternative 

geocoding APIs, such as ESRI or Google Maps, are available within this geocoder library; 

however, they either required a paid account or were subject to daily limits. Open Street Map’s 

Nominatim is also rate limited to one geocode per second, however, there is no limit to the 

number of geocodes per day. Next, the libraries time and datetime were imported to both keep 

track of the amount of time it was taking to geocode and to limit the geocoder API to one 

second. The libraries collections, numpy, and unicodedata were imported to do some basic 

arithmetic on the pandas dataframe. Finally, stopwords and subjectivity were imported from 

nltk.corpus, and SentimentAnalyzer and SentimentIntensityAnalyzer were imported from 

nltk.sentiment and nltk.sentiment.vader. 

 

3.3.3 Setting up an Iterative Loop and Collecting Data 

 The next step of the script required the path of the current directory to be discovered and 

a list created with the library glob to grab all of the json files, demarked by the file ending with 

.txt. A loop was then setup to loop over the list of files in the directory. Each file was opened 

using the “with open” denotation and a json datatype list was created to hold the features. A 

nested loop was then inserted to loop over each line in the json file, loading each line into a 
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variable named “tweet”. Next, an if statement to test if the concatenated tweet’s user and id 

existed was established. We gave each tweet’s users some data to find them by. This was done 

by creating a user_data dictionary that included the user_id and other field such as name, id, 

screen_name, tweets, location, text, and created_at. A series of if, else if, and else statements 

were then setup to scrape the tweet coordinates, tweet place, or User location and append them to 

the data structure. This created an output list of json files in the hundreds. This portion of the 

script was adapted from a blog by Mikael Brunila (Brunila, 2017). Finally, the amount of profile 

location information scraped was printed out as a percentage and the file was saved with the json 

extension. 

 

3.4 Geocoding Process 

 Open Street Map’s open source geocoding API Nominatim has a download rate limit of 

one per second. Since we had nearly 6,000,000 tweets to geocode, it was essential that we took 

advantage of multiple computers located in Faner Hall of Southern Illinois University 

Carbondale. Thus, two PCs had the appropriate Python libraries installed on their version of 

Python 2.7 and the scripts were run overnight. Two Linux terminals also had the same Python 

libraries installed and the scripts again ran overnight. Because of starts and stops of the Python 

script due to network interruptions, this took roughly 12 days to geocode the tweets. The process 

was repeated twice due to errors on the original script appending the geocoded location 

information to the wrong tweet. 

 After the profile location information was scrapped from the first half of the script, this 

location data was then sent to the geocoder API of Open Street Map’s Nominatim. This began 

the same way as the first half of the script. The path was generated and glob was used to grab all 
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the files with location information and tweets with the ending json. Another loop was setup to 

iterate over all of the files in the directory. Next, pandas were used to read in each file and create 

a pandas dataframe. Since the features were oriented incorrectly in the aforementioned ‘data’ 

dictionary, it was necessary to correct this with a few lines of code.  

 A nested loop was setup to iterate over each index in the pandas dataframe. This loop had 

two portions: a try and an except. In the try portion of the loop, we printed the location name 

from the tweet’s profile, delayed the script by 1.01 seconds, initialized the geocoder Open Street 

Map function on the ‘location’ field, and found the geocoder’s latitude and longitude. Finally, 

we printed out the newly created coordinates for the location field called ‘geo’ and appended the 

‘geo’ variable using the panda’s library ‘at’ function. 

 

3.5 VADER Sentiment Analysis 

 The next step was to split the newly geocoded coordinate column into ‘x’ and ‘y’ 

columns to ease the processes of plotting of the tweets in a Geographic Information Systems 

(GIS) desktop application. This first required the coordinate numbers to be converted to a string. 

Then, the function ‘strip’ was employed to remove the brackets enclosing the newly converted 

string column. Two columns named ‘x’ and ‘y’ were created and the built-in ‘split’ function was 

used to split the coordinate column along the comma character, creating two new ‘x’ and ‘y’ 

columns. We then printed that the data had been geocoded. Next, since we were receiving an 

error when attempting to remove the stopwords, it was essential to specify that the ‘text’ column 

of the pandas dataframe was ‘notnull’. Stopwords include words that are not necessary to derive 

the context of the sentence. Stopwords from the nltk.corpus stopwords library were used by way 
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of a function and established a dictionary of stopwords to remove from the text corpus. We 

finally set up a code to remove words like ‘The’, ‘RT’, ‘&amp’, ‘-‘, ‘https:’, ‘.’, and ‘@’. 

 The final portion of the geocoding script involved setting up the compound, negative, 

neutral and positive columns to place the appropriately classified tweets into each column. Next, 

the SentimentIntensityAnalyzer function was set as a variable named ‘sid’. A loop that iterates 

over each tweet was then created with a try-except structure. In the try clause, the variable 

‘sentence’ was set to normalize the newly created column ‘tweet_without_stopwords’ along 

Unicode data standards. The variable ‘ss’ was created to hold the polarity scores of the sentence. 

Next, the columns named compound, negative, neutral, and positive were populated with the 

appropriate scores. In the except clause, we printed out the user and subsequent 

‘tweet_without_stopwords’ variable as a sanity check when the sentiment analyzer failed. 

Finally, the data file that was analyzed was printed out and saved as a json file. 

 

3.6 Accuracy Assessment 

 The data was contained in hundreds of json files containing 4,000 to 5,000 tweets per file. 

To ease the analysis process, these files were concatenated to create one single file. This was 

completed by utilizing Python’s Jupyter Notebook environment. First, the libraries os and json 

were imported to read json files and perform rudimentary operations. Next, pandas and glob 

were imported to create dataframes and create file lists of directories. The code that ran was 

setup to specify the path of the current working directory. Glob was used to make a list of all the 

files ending with json. Pandas was used to read in each file using a loop and each pandas 

dataframe was concatenated to form a single dataframe. Finally, the tweets index was reset and 

subsequently saved into a single file. 
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 In an attempt to see how accurate the VADER sentiment analysis algorithm was at 

classifying tweets, an accuracy assessment was introduced. We used a random sampler to create 

a dataset of 100 tweets. Next, the categories True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN) were set up to see if the hand label category matched 

with the compound score provided by the VADER sentiment analysis algorithm. Once totals for 

each category was tallied, the following equations were used to achieve accuracy, precision, 

recall, and F1 score (see e.q. 1-4). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
        e.q.1. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           e.q.2. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 e.q.3. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)   e.q.4.  
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CHAPTER 4 

RESULTS & DISCUSSION 

  

 Chapter 4 examines the results and discusses their implications. Section 4.1 begins by 

assessing the sentiment analysis results of coal, solar, nuclear, and wind energy hashtags. This 

section includes an accuracy assessment for coal and solar. Word frequency is examined in 

section 4.2 for these energy types. User frequency for the four energy hashtags is then examined 

in section 4.3 to identify power users in the “Twitterscape”. Section 4.4 then delves into the 

frequency of location for each of the four energy types. Section 4.5 constructs a time-series 

graph to display the temporal dimensions of the data and we also create a kernel density map of 

each energy type with an overlaid choropleth map to decipher patterns of positive and negative 

perception. Section 4.6 displays the result of our topic analysis using word frequency charts. 

Finally, section 4.7 discuss the policy implications for lawmakers and entrepreneurs. 

 

4.1 Overall Social Sentiments on Energy 

 Careful consideration was placed towards generating sentiment scores for four types of 

energy hashtags via a lexicon-based approach to sentiment analysis, as described in Hutto and 

Gilbert (2014), Adeoyin-Olowe et al. (2014), and Chen et al. (2016). We used a python 

implementation of VADER, which is found in the ntlk python library. These hashtags included 

solar, which contained 22,219 filtered tweets, coal, which contained 5,625, nuclear, which 

contained 23,843, and wind, which contained 10,269. As part of the exploratory data analysis 

steps that took place towards the beginning of the study, we constructed histograms ranging from 

-1 (negative sentiment) to +1 (positive sentiment). It was found that each of the energy types is 
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dominated by neutral tweets, characterized by the sentiment score of 0. This may be because the 

sentiment analysis algorithm we employed defaults to neutral when none of the words available 

in its lexicon appear in the analyzed social media text. 

 

4.1.1 Social Perception on Solar 

 In an attempt to quantify the perception of the public toward solar panel generated power 

in the United States, the mean and median sentiment scores were generated for the hashtag of 

solar. The overall mean on Twitter was .20 while the median was 0. It is suspected that the cause 

of the median being neutral was because VADER errors towards categorizing text as neutral 

when no keywords are found to classify. Since solar, wind, and nuclear are some of the primary 

sources of non-fossil fuel production of energy in the United States, it is helpful to see a 

breakdown of each state’s percent of electricity produced by non-fossil fuel energy sources 

(Figure 2). 

 

 

Figure 2: The percent of electricity produced by non-fossil fuel sources. 
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4.1.2 Social Perception on Coal 

 Although many states from Figure 3 display areas that use coal or other non-renewable 

resources, there are still multiple states in the Northwest and Northeast that use alternative 

resources, such as solar, wind or nuclear, to get their electricity. Conversely, states like 

Delaware, West Virginia, and Kentucky all have almost no electricity produced by methods 

besides fossil fuels. These locations will specifically be interesting to view the sentiments on the 

various energy types. The mean score for all tweets about coal was 0.07 while the median was 

again 0. This indicates a generally more negative score towards coal than solar.  

 

4.1.3 Social Perception on Nuclear 

 Nuclear was slightly less in sentiment than coal. The mean sentiment score for this data 

was 0.05 while the median was 0. This is again because of the large amount of neutral sentiment 

scores given by the VADER sentiment analyzer. From these scores, it can be thought that the 

sentiment of Americans on Twitter is mixed at best. This is most likely because of the perception 

of the danger of nuclear meltdowns, as happened at Chernobyl and Fukushima. There is also the 

issue of storing the waste products of nuclear energy after the core has been spent. 

 

4.1.4 Social Perception on Wind 

 There is a large number of neutral tweets for wind energy because of how the VADER 

sentiment analysis scores tweets. The mean was the second highest score out of the four energy 

types at .18 while the median was 0. Since very few people had negative things to say about the 

wind energy type on Twitter, it can be thought that users view wind as being a positive energy 
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type. Reasons why Twitter users think of wind as negative is because of the intermittent nature 

of the energy collection. When the wind is not blowing, energy is not being produced, which 

disrupts usage on America’s energy grid. There needs to be a way to efficiently store wind 

captured energy in batteries from times of extreme wind energy production so that the energy 

stream can continuously serve the American people. 

 

4.2 Energy Topic Analysis 

 There are more advanced algorithms to extract topics from text corpus, however, 

algorithms such as doc2vec and LDA were not employed in this. From these methods, LDA 

processed words are weighted by way of graphing similar meaning words in vector space and 

discovering how often they appear in the text corpora. My preliminary analysis found that both 

methods were incapable of producing meaningful clusters of topics. Instead, term frequency was 

employed to count how many of the same words appear in the text corpora. From this, topics are 

exposed and can be further analyzed to decipher the overall meaning of the topics. 

 

4.2.1 Coal Topic Analysis 

  Word frequency was used to extract the main categories of the four datasets. After careful 

evaluation and further removal of stoppage words, these main categories for coal can be viewed 

in Figure 3. An interesting phenomenon extracted from using this approach of topic analysis 

emerges from examining how often Trump is mentioned in the tweets about coal. An example of 

one of Trump’s tweets can be examined in Figure 4. Although not appearing in the top 10 most 

frequent words, he does appear in the top 50. This example is included to illustrate how divisive 

a single topic word like #coal can be using the data collection techniques. Instead of a black and 
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white blanket statement about how coal is positive or negative, there instead emerges a spectrum 

of views on the subject from various organizations and leaders. 

 

Figure 3: The coal word frequency chart. 

 

Figure 4: An example of Trump's tweet regarding coal. 

 

4.2.2 Solar Topic Analysis 

 The same process was applied to the solar dataset in an attempt to extract meaning from 

the tens of thousands of tweets. To do this, we counted how often the dataset had various 

keywords. This word chart can be viewed in Figure 5. As with coal, specific topics were 

deciphered from this word chart. One of the most tweeted about subjects was energy, which 
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indicates the data collection techniques were correctly collecting data about solar energy related 

tweets. Another frequently tweeted about topic was about wind, which indicates that renewable 

energy was typically included in tweets about solar energy. Jobs was also found quite frequently 

in the dataset which indicates solar energy tweets included figures about how many jobs were 

being created or disrupted because of solar energy. Finally, user @mikehudema was included 

frequently in the top words for solar. This could be because he is a renewable energy advocate 

for Greenpeace who consistently tweets about energy related topics. An example tweet about 

solar energy and the jobs created by this technology is included in Figure 6. 

  

Figure 5: The solar word frequency chart. 
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Figure 6: A tweet by user @mikehudema about jobs in solar energy. 

 

4.2.3 Nuclear Topic Analysis 

 The most frequent words were again counted for the nuclear hashtag and filtered by 

removing the stop words or other irrelevant words from the dataset. This chart is displayed in 

Figure 7. The most frequently used word from this dataset was for the user @NEI. Located in 

Washington, D.C., the NEI is an account for the Nuclear Energy Institute. This is an account that 

wishes to spread information about the benefits of using nuclear energy to the English-speaking 

world. An example tweet from them is found in Figure 8. Another frequently tweeted about user 

was @nuclear_matters, a national coalition that was setup to create tweets about nuclear energy 

and the benefits therein. Although energy was a frequently tweeted about word, indicating that 

most tweets were about nuclear energy, there were also outlier words. These included words like 

weapons, Russia, and North Korea, which indicates that some of the tweets were actually about 

nuclear warfare and not nuclear energy. Data filter techniques should be developed to further 

clean the dataset to get the information desired. 
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Figure 7: The most frequent words from the nuclear dataset. 

 

Figure 8: An example tweet from user @NEI. 
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can be viewed in Figure 9. Two of the most frequently mentioned terms was ‘windfarm’, which 

is indicative of tweeters writing about new installations of wind power plants, along with ‘solar’, 

which is indicative of tweeters writing about renewable energy types. 

 

Figure 9: The most frequent words for the wind energy type. 

 

4.3 Who tweeted about Energy? 

 In an attempt to identify power-users within the dataset, the top tweeters were counted 

using a Python script and subsequently plotted in Excel. Power-users were further broken down 

in the dataset by combining all of the tweets by a single user and counted it as one tweet. The 

sentiment score for the power-user was estimated using both mean and median sentiment scores 

by combining all tweets from an individual user. This limited the influence of the robots that 

were consistently tweeting positive or negative tweets.  
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4.3.1 Who tweeted about Coal? 

 One of the top tweeters in the coal dataset was the user @BeyondCoal, with 32 tweets 

(Figure 10). This account, run by director Mary Anne Hit, is an attempt by the Sierra Club to get 

countries to move beyond using coal as their primary energy source. User Bwillisful also had 32 

tweets from this time and is an account for the Beyond Coal’s press secretary, named Brian 

Wilson (Figure 11). This account also tweets and retweets about using alternative, renewable 

energy sources.  

 

Figure 10: The top Twitter users from the coal dataset. 
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Figure 11: An example tweet from @Bwillisful. 

 

4.3.2 Who tweeted about Solar? 

 To further identify users within the solar portion of the dataset, the amount of times each 

user tweeted was again counted using a Python script and plotted the data in Excel. The top user 

that tweeted the most about #solar was user @solargenerator2, with 145 tweets over this time 

period (Figure 12). An interesting aspect of the top frequently tweeting user named 

@solargenerator2 is that when the account is searched for using Twitter’s search bar, nothing 

comes up. However, when the user is searched for using Google, the account pops up with a 

warning that the user’s content has been temporarily restricted. From my own investigation, it 

appears that the user is a bot that tweets anything related to solar energy. This is evident because 

of the massive amounts of tweets per day that the account is putting out. An example tweet about 

solar is included in Figure 13. 
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Figure 12: The top power users for the hashtag solar dataset. 

 

 

Figure 13: A recent tweet by @solargenerator2 
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4.3.3 Who tweeted about Nuclear? 

 To continue to examine the top users within the dataset to discover power users, the users 

screen names were again counted for the nuclear energy hashtag. This is included in Figure 14. 

The top user from this time period was @discardedbacon, a Japanese account for a person named 

Kiyoshi Hara. Although most of this user’s tweets were in Japanese, their actual location was 

from New York, New York. An example tweet from this user in English was, “Fukui weighs 

new wave of reactors to protect status as Japan's '#nuclear capital' (1/21 JapanTimes) 

https://t.co/Q9IfgaQHrP #jishin_e,” which received a score of .3818 and indicates a positive 

tweet. The next most tweeted profile was @nuclearwebinfo, an information site located at North 

Myrtle Beach, South Carolina. An example tweet from this user links to Nuclear Marketing 

Daily, an SEO for digital marketing that includes Nuclear energy. Since this tweet was largely 

thanking the people that work there, the tweet received a score of 0.4926. 

 

Figure 14: The user frequency chart for nuclear energy. 
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4.3.4 Who tweeted about Wind? 

 The same methodology was applied to the wind energy dataset to extract the top power 

users from the data. The top users are included in Figure 15. The top power user from this 

hashtag was @renewablesearch. Located in Hartford, Connecticut, this account was started by 

Tom DeRosa, the CEO of the same company. This is a company designed to spread news about 

Cleantech, especially for energy storage, solar, and wind. An example tweet can be found below 

in Figure 16. Another top tweeter was @revolutionsolar, an account for Ken Bradley from 

Minneapolis, Minnesota. An example tweet from this user was, “Broadcasting Bradley is out 

information about #solar, #evs, #energy, #wind, #energyefficiency! Thanks for your work!” 

which received a sentiment compound score of .5399, indicating it was a very positive tweet 

about #wind. 

 

Figure 15: The user frequency chart for wind energy type. 
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Figure 16: An example tweet from RenewableSearch. 

 

4.4 Spatial Distribution of Energy-related tweets 

 The next aspect that was examined was how often a particular city was tweeting about 

each subject. This was done by writing a script in python to count the occurrences of each of the 

four hashtags. It is hypothesized that places such as Appalachian Mountains, particularly in West 

Virginia, Southern Illinois, and North Dakota would tweet frequently about coal and fossil fuels. 

This falls in line with Figure 2, which displays that West Virginia has 0-10% of their energy 

resources coming from non-fossil fuel sources. It is also hypothesized that cities in places like 

California, Oregon, and Washington would tweet more about Solar and Wind energy types. This 

is supported by Figure 2, which displays those three states having most of their energy 

production come from non-fossil fuel sources. Since Illinois is a top nuclear energy producer, it 

would be expected that tweeters from this state would have more tweets about nuclear energy 

production. 
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4.4.1 Spatial Distribution of Coal related tweets 

 This location frequency chart for the coal topic is included in Figure 17. Some of the top 

locations that most people were tweeting from were New York, New York, Los Angeles, 

California, and Chicago, Illinois. It is no surprise that that top three most populous cities in the 

United States also correspond with the most tweeted from places. An interesting location that 

was routinely tweeted from was Ely, Minnesota. Although there are multiple copper and nickel 

mines in the area, there are no coal mines that can be discerned. The presence of this many coal 

tweets cannot be explained by examining the data.

 

Figure 17: The coal location frequency chart. 
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4.4.2 Spatial Distribution of Solar-related tweets 

 The next aspect examined was the location frequency of how people tweeted about solar 

energy. This is included in Figure 18. Surprisingly, the top three most frequently tweeted from 

places around the country were Washington, DC, New York, New York, and San Diego, 

California. Although New York is to be expected because it is the most populous city in the 

country, Washington, DC and San Diego are 20th and 8th respectively (United States). 

 

Figure 18: The location frequency chart for solar. 
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the mind of people living in that city. The location marker Chicago, Illinois is the third most 

populous city in the United States and can thus be explained by that reasoning. 

 

Figure 19: The location frequency for nuclear energy. 
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can thus be explained that way. 

 

Figure 20: The location frequency for wind. 

 

4.5 Spatiotemporal Patterns of Social Perception 
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 A possible explanation for the reason coal sentiment spiked in mid-February of 2018 was 

because of the closing of the Big Brown coal fired plant in Dallas, Texas. Heralded by 

conservations such as Mary Anne Hit as a step forward in reducing deadly air pollution, the plant 

was also a large emitter of CO2. Mary Anne Hit specifically tweeted, “Big news that will 

literally save lives - nation‚ single largest source of deadly SO2 pollution, the Big Brown #coal 

plant closed.” This tweet was classified as having a 0.4939 compound score, which is indicative 

of a very positive tweet. 

Figure 21: A timeseries graph of solar, coal, nuclear, and wind sentiment. 
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 A possible explanation for the spike in Wind sentiment towards the beginning of April 

2018 occurred when user @wradv tweeted, “73% of respondents to the recent @GallupPoll said 

they preferred an emphasis on alternative energy, such as #windpower and #solarenergy, over 

fossil fuels. #cleanenergy”. This tweet had a sentiment score of 0.2732, which is indicative of a 

fairly positive tweet. Additionally, this tweet was retweeted three times. The rest of the time 

series was consistent in the sentiment score. Renewable energy types were consistently higher 

than nuclear or coal. 

 Hot spot analysis was originally used to cluster specific areas of positive and negative 

tweets together spatially. However, this did not work as intended and led to the discovery of 

erroneous spatial patterns. Therefore, spatial join was used to join tweets to county level data 

provided by the U.S. Census. These tweets were the summarized using mean and median scores. 

Finally, kernel density estimation was used as an underlaid map layer to define how frequently 

various areas were tweeted from. 

 

4.5.1 Spatial Patterns for Coal Sentiments 

 When the resulting locations of coal or solar are plotted on a map with their sentiment 

scores included as a choropleth range, no decipherable pattern was observed. Therefore, the use 

of kernel density was used to examine the spatial density of tweets along with joining the tweets 

to each county spatially to attempt to explain some patterns. This was done for five months of 

data. This figure is included in Figure 22. The map has a few patterns consistent with my 

hypothesis. For example, in the heavily populated (and usually more liberal) areas like the San 

Francisco Bay Area and the city of Los Angeles, these are extremely negative counties towards 

coal. Toward more sparsely populated, rural counties in the central valley of California, there are 
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more neutral and even positive tweets about coal. Surprisingly, much of Oregon and Washington 

have neutral or positive counties of tweets. In the Appalachian mountain ranges, and specifically 

in West Virginia, these counties are either neutral or positive towards coal. The Northeast coastal 

counties seem to be more mixed about coal with positive and negative counties doting the 

landscape. 

  

 
Figure 22:  Coal location kernel density and county spatial join. 

 

 

4.5.2 Spatial Patterns for Solar Sentiments 

 The same analysis was used to plot the solar sentiment analysis data by employing kernel 

density and spatial join. Figure 23 displays the sentiment clusters from the sentiment analysis 
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locations. This map appears to have many more positive counties than the coal map. For 

example, California can be viewed as being almost entirely populated by counties that have 

positive tweets about solar energy. The coastal counties of Oregon and Washington are also 

primarily positive, even though these counties receive very little sunlight. Northeast coastal 

states also have a more positive outlook on solar with an exception of Maine, which was neutral 

to negative. Surprisingly, the counties in the Appalachian Mountain range, especially West 

Virginia, were more positive towards solar. 

 

Figure 23: Five months of solar data plotted by kernel density and county spatial join. 
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4.5.3 Spatial Patterns for Nuclear Sentiments 

 The same methodology was applied to the nuclear dataset of sentiment in the U.S. and 

was plotted in Figure 24. Although the overall data is sparser than coal or solar, it can be seen 

that there are multiple instances of negative counties located throughout the U.S. Again, 

examining California, it can be seen that most counties are either neutral or negative towards 

nuclear energy. Counties along the Oregon and Washington coasts were very divisive with either 

extreme positive or negative sentiments towards nuclear energy. Data was sparser for the 

Appalachian Mountain range. Northeastern counties were generally negative with a few 

anomalies.  

 

Figure 24: Five months of nuclear data plotted by kernel density and county spatial join. 
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4.5.4 Spatial Patterns for Wind Sentiments 

 The final kernel density and county spatial join map was created for the wind dataset. 

This map is included in Figure 25. The data seems to be generally positive with rare instances of 

counties with negative posts. California in particular was especially positive towards wind, with 

only one instance of a neutral county in the Southeastern portion of the state. All the counties in 

Oregon and Washington that had data for Wind tweets were positive. Data was almost 

nonexistent for the Appalachia Mountain area. The Northeastern counties were primarily positive 

with six negative counties interspersed throughout.  

 

Figure 25: Five months of wind data plotted by kernel density and county spatial join. 
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4.6 Accuracy and Uncertainties 

 There are numerous data quality and data uncertainty issues when using social media 

data. For example, representativeness of the population is difficult because Twitter users are 

usually younger than the general populace (Longley et al., 2015). Also, geotagged tweets do not 

follow a random statistical sampling framework. The people that have the knowledge or will to 

turn on geolocated coordinates is relatively low and represents a specific type of person, one who 

cares less about privacy. There are clear issues of social media’s representativeness (Sang and 

Bos, 2012; Anstead and O’Loughlin, 2015). Additionally, it has been found that many people 

describe their location embedded within their profile as nonspecific state or country names, 

making it impossible to accurately geocode. Finally, the accuracy of using VADER for sentiment 

analysis, while consistent in how it categorizes text, may be subjective to a human operator. 

 

4.6.1 Geocoding Uncertainties 

 There are numerous data quality and uncertainty issues present in using social media data 

to understand social perceptions in terms of spatial patterns. For example, the scrapped user 

provided location information was used to aide in the geolocation of numerous tweets. There 

were several pitfalls in using this method, exemplified by how many people used general place 

names like “Earth”, “California”, or “Illinois” to describe their location. In order to better 

understand how often this occurred, it was discovered that 77% of Twitter profile location 

information had city/state names while 23% had general place names. 
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4.6.2 Sentiment Accuracy 

 In order to properly assess the data for integrity, it is essential to establish an accuracy 

report of the data. From the existing literature, VADER sentiment analysis implementation 

achieved a correlation to ground truth of 0.881. Overall precision was 0.99, recall was 0.94, and 

F1 score was 0.96 (Hutto and Gilbert, 2014). To measure the accuracy of the data, one hundred 

random sample tweets were extracted from the dataset using Python. Each tweet was then hand 

labeled as either positive, neutral, or negative, based on the contents of the text column. The 

columns, true positive, true negative, false positive, and false negative were then setup and the 

totals were calculated by hand. Finally, the equation for accuracy, precision, recall, and F1 Score 

were specified. The results for these two hashtags are displayed in Table 2. 

 

 Coal Solar 

Accuracy 0.86 0.83 

Precision 0.83 0.89 

Recall 0.98 0.92 

F1 Score 0.90 0.90 
 

Table 2: A table displaying coal and solar sentiment accuracy scores. 

 

 While completing the accuracy assessment, it became clear that classifying sentiment by 

hand is a rather subjective exercise. What might be considered a positive statement for one 

individual might be neutral or negative and vice versa. Thus, it is essential to rely on a less 

biased classifier like VADER to classify text because the preconceived biases are known, unlike 

a human classifier. 
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4.7 Policy and Entrepreneurial Implications 

 These massive datasets on the social perception of energy issues provide important 

information on energy policy. For example, seeing which counties could use informational 

campaigns on the benefits and drawbacks of renewable technologies such as wind and solar is an 

important aspect of examining social media data. Similarly, informational campaigns could be 

targeted at counties that displayed a fondness for nonrenewable fossil fuel technologies. Other 

policy considerations could examine the backlash of public opinion on the Energy and Natural 

Resources act of 2017 (ENRA), Energy Independence and Security Act of 2007 (EISA), and 

Energy Policy Act of 2005. There are a few ways opinion on energy policy could be updated. 

Recommendations could be developed by amending existing gaps between public opinion and 

policy implementation. Additionally, the gap between energy development, consumption, and 

public views on energy could be more efficiently communicated. The opinions on social media 

could then be immediately measured to find the successfulness of these campaigns. In an effort 

to expand solar and wind installations, marketing strategies could be used on test audiences and 

the effectiveness of their campaigns could again be measured before and after. 

 According to Sovacool (2009), there is an apparent disconnect between how energy is 

produced and how it is socially perceived. Permeating the fabric of society in the U.S. is general 

apathy and misinformation about the benefits and drawbacks of various energy sources, thus 

leading to the view that renewable sources such as solar and wind are unneeded because people 

do not comprehend why such changes to the electrical grid are necessary. Furthermore, Soytas et 

al. (2007) found that income growth alone does not cause increased carbon emissions in the U.S., 

but increased energy use does. They found that continued income growth, as purported by 
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multiple agencies as the ultimate solution to climate issues, may not actually be a solution to the 

problem of run-away carbon emissions.  
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CHAPTER 5 

CONCLUSION 

 

 This chapter is a summary of all key findings, limitations, and future research. Section 

5.1 answers the research questions posed in section 1.2 of this paper. Next, section 5.2 describes 

the limitations of this study and includes recommendations for the next steps in research. Finally, 

section 5.3 concludes the paper by providing some final remarks. 

 

5.1 Summary of Findings 

 In an attempt to better comprehend the perception of energy consumption on Twitter, it is 

essential to examine the original two research questions asked in section 1.2. Firstly, what is the 

public perception towards various energy sectors? This question can be answered by 

investigating four energy types: coal, solar, nuclear, and wind, using geocoding, frequency, 

sentient, and spatial analyses. Specifically, when viewing the timeseries chart, solar was almost 

always rated as more positive than coal, nuclear, and wind. Similarly, wind was almost always 

rated higher than coal and nuclear. This indicates that the public sentiment is higher towards 

renewable energy than either fossil fuels or nuclear energy. Coal was almost always rated higher 

than nuclear, indicating that there is a large disconnect between the public’s perception on 

nuclear and the safety of using such an energy source. This low ranking for nuclear over time 

could also be attributed to how nuclear picked up some tweets about nuclear weapons. 

 The second question is concerned with if the public perception on energy issues exhibit 

spatiotemporal variation. It can be extracted from this study that coal, solar, nuclear, and wind 

perceptions from Twitter vary across both time and space. Different areas of the country have 
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starkly different characteristics, as specified from their different cultural backgrounds. From 

coal’s location analysis, it was found that there were multiple counties around highly populated 

areas in California that had negative sentiment towards coal. The Appalachian Mountain range 

counties had neutral or even positive sentiments towards coal. Solar was more positive across 

almost all counties, especially on the West coast. Nuclear, on the other hand, was almost always 

thought of as negative or neutral across the conterminous U.S. Wind, although sparse in data, 

was also generally positive across the U.S. Someone tweeting from the Appalachia Mountain 

range has very different views than someone from California because their economy depends on 

the use of coal. Conversely, solar and wind seem to have similar spatial configurations as many 

people from California agree that energy production should come from these sources. A final 

item to note would be how positivity toward an energy subject can vary in time while different 

events occur. This is exemplified best by the closing of the Brown coal plant in Dallas, Texas, 

which sparked numerous tweets praising the move and subsequently increasing the positivity 

towards coal. 

 

 

5.2 Limitations and Recommendations 

 The use of social media displayed several limitations and critical issues. Although the 

total volume of tweets on energy related subjects is high, there is a limited amount of defined 

data available for specific metropolitan areas. Challenges posed by this methodology of data 

aggregation can be summarized into three main sections: demographic representativeness, data 

quality, and algorithmic accuracy. For demographic representativeness, there are concerns about 

the statistical representativeness of the general population behind social media. Twitter users 

have been found to be much younger (Longley et al., 2015), thus it is difficult to glean attitudes 
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of the general public on Twitter. Additionally, geotagged tweets do not follow a consistent 

statistical sampling pattern, leading to errors in the representativeness of the dataset. Opinions on 

social media also tend to be inflammatory click-bait written to generate the largest number of 

likes and follows. 

 Data quality is another issue that has been found to be critical in the analysis. Even 

though there are petabytes of data generated on the subject of energy in the United States, a small 

amount of that data is actually actionable. Approximately 1% of all data has precise geotagged 

coordinates and 5% of data has general location information embedded in user profiles. These 

numbers are consistent with previous studies (Longley et al., 2015). It would be trivial for a 

profile location information to be spoofed. It was even found that broad location identifiers such 

as state names, country names, and even planet names were used. The location spread is also 

concentrated around major metropolitan areas and are sparse around smaller townships. 

 Twitter bots are also difficult to filter out since these autonomous entities provide 

hashtags that might coincide with the subject. Since it is estimated that about 10% of all users on 

Twitter are robots (Chen et al., 2017), the Twitter scrapper might be capturing the perception of 

autonomous entities rather than actual people. This fact was present in the user frequency charts 

created to examine power users in the study. The top power user for solar energy 

@solargenerator2 was almost certainly a robot that was generating text and retweeting anything 

that contained the hashtag “solar”. This can be discerned from the high frequency of the tweets, 

along with the fact that the account had been flagged by Twitter as an account with suspicious 

activity. It was elected to keep these robots in the dataset because it still represents activity on 

Twitter and might influence public opinion. However, for future studies examining human 

perception, it might be wise to remove these erroneous users by employing a threshold limit on 
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the tweets per day value. A spam filter for low-quality content as described by Chen et al. (2017) 

requires a large hand-labeled dataset and might be ill-suited for use because of the costs 

involved. 

 It is recommended that future studies examine the relationship between user supplied 

profile location information and the precise geolocated coordinates supplied when a user turns on 

the geolocation feature. This approach would find the percentage of tweets that have accurate 

profile location information by examining the relationship between user-supplied location 

information and the user’s phone coordinates, which is a much more technologically challenging 

location track to spoof. A mobile virtual private network (VPN) application could be used to 

spoof the phone’s accurate coordinates, but the percentage of people technologically capable of 

such a spoof is perceived to be relatively low. Perhaps additional studies could survey how many 

Twitter user’s use a VPN to funnel their internet traffic through a server located elsewhere. 

 Current NLP algorithms are only so accurate at gleaning the sentiment of the writer 

through text analyses. Potential pitfalls include double negative concurrent words and sarcasm. 

The unsupervised lexicon-based NLP algorithm VADER (Hutto and Gilbert, 2014) was used to 

tag the positive, negative and neutral sentiments of tweets with accuracy rates ranging between 

83-86%. Hopkins and King (2010) present a supervised, nonparametric statistical approach that 

might be used to improve upon accuracy in future studies. 

 The degrees of uncertainty in trusting social media as a source of information should be 

approached with caution, as there are many pitfalls of using such a source. Further studies 

examining the representativeness of demographics on social media are needed to address these 

data quality concerns. There is a clear gap in knowledge of social media’s representativeness that 

is consistent with existing literature (Sang and Bos, 2012; Anstead and O’Loughlin, 2015). 
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 Energy research on social media presents important opportunities and relevant 

challenges. Rich, discussion-filled content can be acquired with spatiotemporal dynamics from 

social media on energy development and consumption. Conversely, demographic 

representativeness, data quality, and algorithmic accuracy present a study with significant 

limitations. It is recommended that social media be used as a supportive data source coupled with 

traditional surveys. Using this data source can complement the perception of energy issues 

gleaned from traditional surveys by providing in-depth discussions of polarized opinions. 

 

5.3 Conclusions and Final Remarks 

 There have been multiple positive aspects identified of using social media as a data 

source to study social perception of Twitter on energy sources based on this study and literature 

review. Social media has been found to be a dynamic, spatiotemporal data source that has a wide 

range of discussions on a host of renewable and nonrenewable energy types. Geolocated social 

media conversations can provide insights into how people view energy issues and thus be used as 

a precursor to traditional surveys to narrow down spatial clusters of positive, negative, and 

neutral areas of the country. Since spatiotemporal dynamics are difficult to record with 

traditional surveys, social media can provide important initial discoveries and inform survey 

designers. It is thus recommended that location-focused surveys be designed to improve upon 

statistical significance. 

 An additional positive aspect of using social media to study energy perception is that 

freeform conversations can take place that would be impossible to record with traditional 

surveys. Social media influencers can positively or negatively impact their following’s 

perception on issues related to energy and can even mobilize support for various causes. Anyone 
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connected to these social media influencers has a chance of being influenced (Ceron et al., 2014). 

Social network analysis can further identify these influencers to see where their posts, likes, 

follows, and retweets impact opinion.  
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