2,764 research outputs found

    Fully-Functional Suffix Trees and Optimal Text Searching in BWT-runs Bounded Space

    Get PDF
    Indexing highly repetitive texts - such as genomic databases, software repositories and versioned text collections - has become an important problem since the turn of the millennium. A relevant compressibility measure for repetitive texts is r, the number of runs in their Burrows-Wheeler Transforms (BWTs). One of the earliest indexes for repetitive collections, the Run-Length FM-index, used O(r) space and was able to efficiently count the number of occurrences of a pattern of length m in the text (in loglogarithmic time per pattern symbol, with current techniques). However, it was unable to locate the positions of those occurrences efficiently within a space bounded in terms of r. In this paper we close this long-standing problem, showing how to extend the Run-Length FM-index so that it can locate the occ occurrences efficiently within O(r) space (in loglogarithmic time each), and reaching optimal time, O(m + occ), within O(r log log w ({\sigma} + n/r)) space, for a text of length n over an alphabet of size {\sigma} on a RAM machine with words of w = {\Omega}(log n) bits. Within that space, our index can also count in optimal time, O(m). Multiplying the space by O(w/ log {\sigma}), we support count and locate in O(dm log({\sigma})/we) and O(dm log({\sigma})/we + occ) time, which is optimal in the packed setting and had not been obtained before in compressed space. We also describe a structure using O(r log(n/r)) space that replaces the text and extracts any text substring of length ` in almost-optimal time O(log(n/r) + ` log({\sigma})/w). Within that space, we similarly provide direct access to suffix array, inverse suffix array, and longest common prefix array cells, and extend these capabilities to full suffix tree functionality, typically in O(log(n/r)) time per operation.Comment: submitted version; optimal count and locate in smaller space: O(r log log_w(n/r + sigma)

    Indexing Highly Repetitive String Collections

    Full text link
    Two decades ago, a breakthrough in indexing string collections made it possible to represent them within their compressed space while at the same time offering indexed search functionalities. As this new technology permeated through applications like bioinformatics, the string collections experienced a growth that outperforms Moore's Law and challenges our ability of handling them even in compressed form. It turns out, fortunately, that many of these rapidly growing string collections are highly repetitive, so that their information content is orders of magnitude lower than their plain size. The statistical compression methods used for classical collections, however, are blind to this repetitiveness, and therefore a new set of techniques has been developed in order to properly exploit it. The resulting indexes form a new generation of data structures able to handle the huge repetitive string collections that we are facing. In this survey we cover the algorithmic developments that have led to these data structures. We describe the distinct compression paradigms that have been used to exploit repetitiveness, the fundamental algorithmic ideas that form the base of all the existing indexes, and the various structures that have been proposed, comparing them both in theoretical and practical aspects. We conclude with the current challenges in this fascinating field

    Computing MEMs on Repetitive Text Collections

    Get PDF

    Optimal-Time Text Indexing in BWT-runs Bounded Space

    Full text link
    Indexing highly repetitive texts --- such as genomic databases, software repositories and versioned text collections --- has become an important problem since the turn of the millennium. A relevant compressibility measure for repetitive texts is rr, the number of runs in their Burrows-Wheeler Transform (BWT). One of the earliest indexes for repetitive collections, the Run-Length FM-index, used O(r)O(r) space and was able to efficiently count the number of occurrences of a pattern of length mm in the text (in loglogarithmic time per pattern symbol, with current techniques). However, it was unable to locate the positions of those occurrences efficiently within a space bounded in terms of rr. Since then, a number of other indexes with space bounded by other measures of repetitiveness --- the number of phrases in the Lempel-Ziv parse, the size of the smallest grammar generating the text, the size of the smallest automaton recognizing the text factors --- have been proposed for efficiently locating, but not directly counting, the occurrences of a pattern. In this paper we close this long-standing problem, showing how to extend the Run-Length FM-index so that it can locate the occocc occurrences efficiently within O(r)O(r) space (in loglogarithmic time each), and reaching optimal time O(m+occ)O(m+occ) within O(rlog(n/r))O(r\log(n/r)) space, on a RAM machine of w=Ω(logn)w=\Omega(\log n) bits. Within O(rlog(n/r))O(r\log (n/r)) space, our index can also count in optimal time O(m)O(m). Raising the space to O(rwlogσ(n/r))O(r w\log_\sigma(n/r)), we support count and locate in O(mlog(σ)/w)O(m\log(\sigma)/w) and O(mlog(σ)/w+occ)O(m\log(\sigma)/w+occ) time, which is optimal in the packed setting and had not been obtained before in compressed space. We also describe a structure using O(rlog(n/r))O(r\log(n/r)) space that replaces the text and extracts any text substring of length \ell in almost-optimal time O(log(n/r)+log(σ)/w)O(\log(n/r)+\ell\log(\sigma)/w). (...continues...

    Optimal-Time Dictionary-Compressed Indexes

    Full text link
    We describe the first self-indexes able to count and locate pattern occurrences in optimal time within a space bounded by the size of the most popular dictionary compressors. To achieve this result we combine several recent findings, including \emph{string attractors} --- new combinatorial objects encompassing most known compressibility measures for highly repetitive texts ---, and grammars based on \emph{locally-consistent parsing}. More in detail, let γ\gamma be the size of the smallest attractor for a text TT of length nn. The measure γ\gamma is an (asymptotic) lower bound to the size of dictionary compressors based on Lempel--Ziv, context-free grammars, and many others. The smallest known text representations in terms of attractors use space O(γlog(n/γ))O(\gamma\log(n/\gamma)), and our lightest indexes work within the same asymptotic space. Let ϵ>0\epsilon>0 be a suitably small constant fixed at construction time, mm be the pattern length, and occocc be the number of its text occurrences. Our index counts pattern occurrences in O(m+log2+ϵn)O(m+\log^{2+\epsilon}n) time, and locates them in O(m+(occ+1)logϵn)O(m+(occ+1)\log^\epsilon n) time. These times already outperform those of most dictionary-compressed indexes, while obtaining the least asymptotic space for any index searching within O((m+occ)polylogn)O((m+occ)\,\textrm{polylog}\,n) time. Further, by increasing the space to O(γlog(n/γ)logϵn)O(\gamma\log(n/\gamma)\log^\epsilon n), we reduce the locating time to the optimal O(m+occ)O(m+occ), and within O(γlog(n/γ)logn)O(\gamma\log(n/\gamma)\log n) space we can also count in optimal O(m)O(m) time. No dictionary-compressed index had obtained this time before. All our indexes can be constructed in O(n)O(n) space and O(nlogn)O(n\log n) expected time. As a byproduct of independent interest..

    Universal Compressed Text Indexing

    Get PDF
    The rise of repetitive datasets has lately generated a lot of interest in compressed self-indexes based on dictionary compression, a rich and heterogeneous family that exploits text repetitions in different ways. For each such compression scheme, several different indexing solutions have been proposed in the last two decades. To date, the fastest indexes for repetitive texts are based on the run-length compressed Burrows-Wheeler transform and on the Compact Directed Acyclic Word Graph. The most space-efficient indexes, on the other hand, are based on the Lempel-Ziv parsing and on grammar compression. Indexes for more universal schemes such as collage systems and macro schemes have not yet been proposed. Very recently, Kempa and Prezza [STOC 2018] showed that all dictionary compressors can be interpreted as approximation algorithms for the smallest string attractor, that is, a set of text positions capturing all distinct substrings. Starting from this observation, in this paper we develop the first universal compressed self-index, that is, the first indexing data structure based on string attractors, which can therefore be built on top of any dictionary-compressed text representation. Let γ\gamma be the size of a string attractor for a text of length nn. Our index takes O(γlog(n/γ))O(\gamma\log(n/\gamma)) words of space and supports locating the occocc occurrences of any pattern of length mm in O(mlogn+occlogϵn)O(m\log n + occ\log^{\epsilon}n) time, for any constant ϵ>0\epsilon>0. This is, in particular, the first index for general macro schemes and collage systems. Our result shows that the relation between indexing and compression is much deeper than what was previously thought: the simple property standing at the core of all dictionary compressors is sufficient to support fast indexed queries.Comment: Fixed with reviewer's comment

    Computing MEMs and Relatives on Repetitive Text Collections

    Full text link
    We consider the problem of computing the Maximal Exact Matches (MEMs) of a given pattern P[1..m]P[1 .. m] on a large repetitive text collection T[1..n]T[1 .. n], which is represented as a (hopefully much smaller) run-length context-free grammar of size grlg_{rl}. We show that the problem can be solved in time O(m2logϵn)O(m^2 \log^\epsilon n), for any constant ϵ>0\epsilon > 0, on a data structure of size O(grl)O(g_{rl}). Further, on a locally consistent grammar of size O(δlognδ)O(\delta\log\frac{n}{\delta}), the time decreases to O(mlogm(logm+logϵn))O(m\log m(\log m + \log^\epsilon n)). The value δ\delta is a function of the substring complexity of TT and Ω(δlognδ)\Omega(\delta\log\frac{n}{\delta}) is a tight lower bound on the compressibility of repetitive texts TT, so our structure has optimal size in terms of nn and δ\delta. We extend our results to several related problems, such as finding kk-MEMs, MUMs, rare MEMs, and applications

    Simple Order-Isomorphic Matching Index with Expected Compact Space

    Get PDF
    In this paper, we present a novel indexing method for the order-isomorphic pattern matching problem (also known as order-preserving pattern matching, or consecutive permutation matching), in which two equal-length strings are defined to match when X[i] < X[j] iff Y[i] < Y[j] for 0 ? i,j < |X|. We observe an interesting relation between the order-isomorphic matching and the insertion process of a binary search tree, based on which we propose a data structure which not only has a concise structure comprised of only two wavelet trees but also provides a surprisingly simple searching algorithm. In the average case analysis, the proposed method requires ?(R(T)) bits, and it is capable of answering a count query in ?(R(P)) time, and reporting an occurrence in ?(lg |T|) time, where T and P are the text and the pattern string, respectively; for a string X, R(X) is the total time taken for the construction of the binary search tree by successively inserting the keys X[|X|-1],?,X[0] at the root, and its expected value is ?(|X|lg?) where ? is the alphabet size. Furthermore, the proposed method can be viewed as a generalization of some other methods including several heuristics and restricted versions described in previous studies in the literature

    Kings, Name Days, Lazy Servants and Magic

    Get PDF
    Once upon a time, a king had a very, very long list of names of his subjects. The king was also a bit obsessed with name days: every day he would ask his servants to look the list for all persons having their name day. Reading every day the whole list was taking an enormous amount of time to the king\u27s servants. One day, the chancellor had a magnificent idea: he wrote a book with instructions. The number of pages in the book was equal to the number of names, but following the instructions one could find all people having their name day by looking at only a few pages - in fact, as many pages as the length of the name - and just glimpsing at the list. Everybody was happy, but in time the king\u27s servants got lazy: when the name was very long they would find excuses to avoid looking at so many pages, and some name days were skipped. Desperate, the king made a call through its reign, and a fat sorceress answered. There was a way to look at much, much fewer pages using an additional magic book. But sometimes, very rarely, it would not work (magic does not always work). The king accepted the offer, and name days parties restarted. Only, once every a few thousand years, the magic book fails, and the assistants have to go by the chancellor book. So the parties start a bit later. But they start anyway

    String Synchronizing Sets: Sublinear-Time BWT Construction and Optimal LCE Data Structure

    Full text link
    Burrows-Wheeler transform (BWT) is an invertible text transformation that, given a text TT of length nn, permutes its symbols according to the lexicographic order of suffixes of TT. BWT is one of the most heavily studied algorithms in data compression with numerous applications in indexing, sequence analysis, and bioinformatics. Its construction is a bottleneck in many scenarios, and settling the complexity of this task is one of the most important unsolved problems in sequence analysis that has remained open for 25 years. Given a binary string of length nn, occupying O(n/logn)O(n/\log n) machine words, the BWT construction algorithm due to Hon et al. (SIAM J. Comput., 2009) runs in O(n)O(n) time and O(n/logn)O(n/\log n) space. Recent advancements (Belazzougui, STOC 2014, and Munro et al., SODA 2017) focus on removing the alphabet-size dependency in the time complexity, but they still require Ω(n)\Omega(n) time. In this paper, we propose the first algorithm that breaks the O(n)O(n)-time barrier for BWT construction. Given a binary string of length nn, our procedure builds the Burrows-Wheeler transform in O(n/logn)O(n/\sqrt{\log n}) time and O(n/logn)O(n/\log n) space. We complement this result with a conditional lower bound proving that any further progress in the time complexity of BWT construction would yield faster algorithms for the very well studied problem of counting inversions: it would improve the state-of-the-art O(mlogm)O(m\sqrt{\log m})-time solution by Chan and P\v{a}tra\c{s}cu (SODA 2010). Our algorithm is based on a novel concept of string synchronizing sets, which is of independent interest. As one of the applications, we show that this technique lets us design a data structure of the optimal size O(n/logn)O(n/\log n) that answers Longest Common Extension queries (LCE queries) in O(1)O(1) time and, furthermore, can be deterministically constructed in the optimal O(n/logn)O(n/\log n) time.Comment: Full version of a paper accepted to STOC 201
    corecore