Simple Order-Isomorphic Matching Index with
Expected Compact Space

Sung-Hwan Kim' &
Pusan National University, Busan, South Korea

Hwan-Gue Cho® =

Pusan National University, Busan, South Korea

—— Abstract

In this paper, we present a novel indexing method for the order-isomorphic pattern matching problem

(also known as order-preserving pattern matching, or consecutive permutation matching), in which
two equal-length strings are defined to match when X [i] < X[j] iff Y[i] < Y[j] for 0 < 4,5 < |X]|. We
observe an interesting relation between the order-isomorphic matching and the insertion process of a
binary search tree, based on which we propose a data structure which not only has a concise structure
comprised of only two wavelet trees but also provides a surprisingly simple searching algorithm. In
the average case analysis, the proposed method requires O(R(T')) bits, and it is capable of answering
a count query in O(R(P)) time, and reporting an occurrence in O(lg|T'|) time, where T' and P are
the text and the pattern string, respectively; for a string X, R(X) is the total time taken for the
construction of the binary search tree by successively inserting the keys X[|X|—1],---, X[0] at the
root, and its expected value is O(] X |1g o) where o is the alphabet size. Furthermore, the proposed
method can be viewed as a generalization of some other methods including several heuristics and
restricted versions described in previous studies in the literature.
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1 Motivation

In string matching, it is asked to find all the substrings of a given text string that match a
pattern string. Instead of the standard setting where two strings are said to match if they are
exactly the same, we can define a match of two strings in a different way depending on the
target application. For example, parameterized string matching [2] and structural pattern
matching [23] define the matching using bijective functions on the alphabet X, satisfying
certain conditions to address pattern matching problems on program source codes and
RNA sequences, respectively. In another variant of the matching problem [21], Cartesian
tree is used to determine the matching of strings. Especially, in order-isomorphic pattern
matching [19, 15], which is of interest in this paper, the relative ordering of characters is
used; more formally, two equal-length strings X and Y are said to match, which we denote
by X =, Y, if X[i] < X[j] e Y[i] <Y[j] for 0 <i,j < |X|.

Despite the standard string matching, for which there are many space-efficient data
structures such as [9] that require only a small amount of space, indexing strings for variant
problems in a compact space has been considered quite challenging. Until Ganguly et al. [13]
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presented the first succinct index for the parameterized string matching problem, it had not
been revealed whether there exists any data structure that is capable of efficiently processing
string matching queries for such problems using asymptotically less than ©(nlgn) bits;
only the indexing methods that exploit the conventional suffix tree and suffix array had
been usually considered. After this breakthrough method was successfully invented, several
succinct and compact data structures [12, 11, 16, 18, 17] for these problems have started to
be actively developed.

One of the main concerns in developing a space-efficient index for such problems is
suffix representation. Conventionally, we transform the suffixes into a certain form so that
indexing these encoded suffixes enables us to search for pattern strings efficiently. Since the
encoded suffixes should have several required properties to be effectively indexed, finding an
appropriate representation is an important goal. Let E(-) be such an encoding function. When
exploiting the conventional suffix tree and suffix array, it is sufficient to hold the property
that (X oY) has a prefix E(X) for any strings X and Y where o is the concatenation
operator. However, when developing an index that is more space-efficient, we need more
than that. Many space-efficient indexes rely on the compact representation of the relation
between adjacent suffixes. For a text string T'[0..n — 1], adjacent suffixes T'[i..n — 1] and
T[i+ 1..n — 1] are associated using this relation, which refers to the so-called LF-mapping or
U function in the literature, and they are used to access the sampled suffix array stored in a
compact space. To do this, we must have a space-efficient way to characterize the operation
that prepends a character; i.e. it is necessary to compactly represent the relation between
the encoded strings E(X) and E(x o X) for any character z and string X.

It is more complicated for the order-isomorphic matching. As mentioned in the literature
[11, 16], there are possibly many positions in which encoded characters differ when comparing
E(X) with E(xoX). Moreover, an encoded character that has been already changed possibly
changes again after performing prepending operations successively. This is quite different
from much simpler problems such as parameterized string matching [2, 13], in which at
most one character in an encoded string can change after prepending a character to the
original string; and once an encoded character changes, it never changes anymore. Due
to this complicated nature of the order-isomorphic matching, the ordering of the encoded
strings is severely jumbled by prepending characters. Consequently, it is sophisticated to
characterize the relation between adjacent suffixes, which makes its indexing problem much
challenging.

For this reason, there has been a limited progress on developing indexes for the order-
isomorphic matching that are space-efficient than the suffix tree-based method [6, 7]. Some
methods used a filtering technique, in which two strings have the same signature only if they
are order-isomorphic; e.g. up-down signature [3] and the rank information within a window of
a restricted length [8]. However, these techniques may produce false positives in the filtering
step, so the verification step must follow, which possibly involves substantial costs. It was
also shown that one can report an occurrence of a pattern, if any, using an O(nlglgn)-bit
data structure when the pattern length is restricted within a logarithmic size [10]. However,
it had been an open problem whether there exists a compact index that does not restrict
the searching capabilities until Ganguly et al. [11] presented the first O(nlgo)-bit compact
index for this problem, where n and o is the text length and the alphabet size. The idea
is to sample not only the suffix array but also the LF-mapping function, and the notion of
LF-successor has been introduced to support this two-level sampling method. The underlying
observation is the changing positions on the encoded string can be characterized by the
rightmost position in which the change is made. They showed that this property can be
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used to represent the relations between suffixes whose LF-mappings are adjacent. However,
representing these relations were still rather sophisticated, which involved the classification
of suffixes into four types according to the behavior of their LF-mapping, and an intricate
structure including the topology of the suffix tree and a number of its subgraphs as well as
many auxiliary bitvectors and wavelet trees storing the required information.

1.1 Contributions

In this paper, we develop a novel index with a concise structure and a simpler searching

algorithm. More specifically, the main contributions can be summarized as follows.

1. Novel suffix representation (Section 2): We show how the order-isomorphic pattern
matching can be described in terms of binary search trees, based on which we propose a
novel suffix representation for this problem. With the new representation, each encoded
character is a set, thereby not entirely replaced with another one but an integer is added
to it when it changes by a prepending operation. This resolves many complications that
arise in representing the relations between adjacent suffixes compactly.

2. Simplicity (Sections 3 and 4): The proposed data structure has a simple structure,
which basically consists of only a pair of wavelet trees [9, 20] (plus a sampled suffix array
if reporting each occurrence is needed); each wavelet tree can be implemented as a single
bitvector. The searching algorithm is also surprisingly simple; the process can be done
just by (properly) walking down on one wavelet tree, and then tracing up on the other
wavelet tree.

3. Expected compact space (Section 5): The proposed data structure requires O(R(T))
bits, where R(T') is the time taken by root insertion of the characters of the input string
T into a binary search tree in the backward fashion, which is O(nlgo) on average [24]
where n and o is the text length and the alphabet size, respectively. It has the same
bound as that of the previous work in the average case analysis. Since the deviation of
R(T) seems small [24], many input strings are likely to be indexed within this bound.

4. Fully-searchable index: As far as we know, for this problem, this is the first fully-
searchable index that does not require to keep the text string separately. Although adding
the text string itself does not increase the space requirement asymptotically, we believe
the proposed method can be a hint towards a succinct self-index for this problem.

5. Extensibility and generalizability (Section 6): The proposed method also has
interesting connections with other related methods and problems. It can be viewed
as a generalized method from existing methods addressing this problem including: (i)
window-based order-isomorphic testing [8], (ii) filtering with up-down signatures [3],
and (iii) indexing for length-restricted queries [10]. We can also effectively derive index
structures for many variations of the order-isomorphic matching problem.

2 Binary Search Tree and Order-isomorphic Matching

In this section, we observe the relation between binary search trees and order-isomorphic
matching. For brevity, until Section 5, we assume that all the characters of the string are
distinct. We show that order-isomorphic matching of two strings can be represented as a
match of their corresponding binary search trees. In this perspective, prepending a character
at the beginning of a string is equivalent to inserting a node into the corresponding binary
search tree as the root node. We establish some notations for characterizing a root insertion
operation on a binary search tree (see Figure 1).

61:3
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2.1 Binary Search Tree Generated from a String

Let X[0..]X| —1] be a string. Consider a binary search tree BST(X) constructed by inserting
a node with key X[i] and value ¢ for 0 <4 < |X| in order; in other words, for each insertion
i=20,---,|X|—1, we perform the conventional search for key X[i] on the current binary
search tree until we reach a leaf node, then we insert the new node having key X[i] and
value i as a child. For a node v of BST(X), we denote its value, left child and right child by
value(v), left(v), and right(v), respectively. We also denote the subtree rooted at node v by
subtree(v).

Consider two strings X and Y, and their corresponding binary search trees BST(X) and
BST(Y). We say two binary search trees BST(X) and BST(Y") are value-identical, denoted
by BST(X) =, BST(Y), if:

1. the number of nodes (tree sizes) are equal,

2. value(ry) = value(ry),

3. subtree(left(rx)) =, subtree(left(ry)), and

4. subtree(right(ry)) =, subtree(right(ry)).

where rx and ry are the root node of BST(X) and BST(Y), respectively. To be well-defined,
two empty binary search trees are also considered to be value-identical.

It is easy to see that X and Y are an order-isomorphic match iff BST(X) and BST(Y)
are value-identical.

» Lemma 1. X =, Y iff BST(X) =, BST(Y).

Proof. We prove by induction. If | X| = Y| = 1, it is trivial. Let us assume that X =, Y
and BST(X) =, BST(Y). Consider two strings X oz and Y oy for some characters = and y.
We can have X oz =, Yoy < BST(X ox) =, BST(Y oy) immediately from the observation
that, when a node with key z is inserted into a binary search tree BST(X) as its leaf node
to obtain BST(X o ), the locus of the new leaf node is uniquely determined by the rank of
x among {X[0],--- , X[|X| —1],z}. <

2.2 Root Insertion and Prepending operation

Let X be a string and = be a character. Consider a binary search tree BST(X). Suppose we
prepend z at the beginning of X, and we want to have BST(x o X). We can observe that
BST(x o X) can be obtained from BST(X) as follows:

1. Increment value(v) by 1 for every node v.

2. Insert a new node with key = and value 0 as the root node (as described in [24]).

Because the increment operation is applied to all nodes equally, the change can be
characterized by how the root insertion is performed. Let us define vpath(z, X) to be the
sequence of values of the nodes visited by searching 2z on BST(X); in other words, vpath(z, X)
indicates the positions of the characters of X that correspond to the visited nodes when
searching with the key . We also define branch(z, X) to be a string over {L,R} that indicates
the branch taken at each node. More specifically, for 0 < i < |vpath(z, X)|,

L if z < X|vpath(z, X)[i]]

, . (1)
R if 2 > X]vpath(z, X)[i]]

branch(z, X) = {

Here, note that X [vpath(x, X)[i]] is the key of the node having the value vpath(z, X)[i].



S.-H. Kim and H.-G. Cho

0 key 0 0
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= = =
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1 012345678910111213 % 012345678910111213 1 01234567891011121314
X[ UB1015921143812647 X[ SOBUBITIUSELG6ET  @oxfi 51UB05921143812647
(a) BST(X) (b) Prepending x = 5 (c) BST(z o X)

Figure 1 Examples of a string X =11 13101592114 38 12 6 4 7, and its corresponding binary
search tree. (a) BST(X). Each dot is a node. z-axis represents the key, and y-axis represents the
value of the nodes. (b) A character x = 5 is being prepended. Red dashed line indicates z = 5, and
blue thick edges are the paths visited by searching for 5 on the tree. vpath(z, X)=024589 11 12
(positions in which X[i] are underlined), branch(z, X) = LLLRRLLR, and turnpoint(z, X) = {0, 5,9, 12}
(positions in which X [¢] are boxed). (c¢) BST(z o X). The red dashed edges are removed ones, blue
thick edges are newly established edges.

We also define turnpoint(z, X) to be the set of vertices at which the branching direction
is switched. If the left branch (L) is taken at the root node, the root node is also included.

turnpoint(z, X) = {vpath(z, X)[i] : 0 < i < p,branch(z, X)[i — 1] # branch(z, X)[¢]} (2)

where p = |branch(z, X)| and for convenience we assume branch(z, X)[—1] =R.

3 Data Structure

In this section, we describe how to organize and implement the proposed data structure. We
transform the suffixes into a certain form based on their corresponding binary search trees,
after which we sort these encoded suffixes. After computing two arrays F' and L of binary
strings containing information required for the searching tasks, we build wavelet trees [9, 20]
on them.

3.1 Suffix Representation

First, we define an encoding function E(X) to transform a string into a certain form in which
an order-isomorphic match can be easily determined. We use the fact that (i) two strings are
order-isomorphic iff their corresponding binary search trees are value-identical, and (ii) two
value-identical binary search trees are still value-identical after performing a root insertion
with the same branching sequence.

We define E(X) as a length-| X | string over 2¥Y{>°} where N is the set of natural numbers;
i.e. each character of F(X) is a set. If X is an empty string, F(X) is also an empty string. If
X is a non-empty string, then E(X) can be defined recursively as follows: for 0 < i < |X]|,

{oo} if i = 0,
E(xoX)i] =4 BE(X)[i —1Ju{i} ifi— 1€ turnpoint(x, X) (3)
E(X)[i—1] otherwise.

61:5
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We transform all the suffixes T'[i..n — 1] of a given text string T[0..n — 1] into its encoded
form E(T[i.n —1]) for 0 < i < n; here, we define T[n..n — 1] to be an empty string. Before
sorting them, we need to define the ordering on sets because characters of the encoded
suffixes are sets. We compare two sets by treating each set as a string that consists of the
elements in the ascending order: i.e., for two sets A and B, we define A < B iff:

1. min A < min B, or
2. min A = min B and A — {min A} < B — {min B}.

Now we can sort all the suffixes to determine the lexicographic ranks of (encoded) suffixes;
note that each encoded suffix is a string of sets. Let SA[0..n] be an integer array such that
SA[i] = j iff there are ¢ encoded suffixes that are lexicographically smaller than E(T[j..n —1]):
ie. SAlil=j < i=|{0<k<n|ETk.n—-1]) < E(T[j.n—1])}|. This array is the
so-called suffiz array. Because SA[0..n] is a permutation of 0,--- ,n, we can also define its
inverse SA™'[0..n] such that SA™[SA[i]] =i for 0 < i < n.

3.2 Associating Adjacent Suffixes Using F and L Arrays

In this subsection, we consider the relation between two adjacent (encoded) suffixes E(T[¢..n—
1]) and E(T[i + 1..n — 1]). In the literature of compact indexing, it is common to use the
so-called LF-mapping, which is defined as: for 0 <i <mn,

LF(i) = SA"'[(SA[i] +n) mod (n +1)] (4)

It maps the lexicographical rank of a suffix F(T[SA[i]..n — 1]) into the lexicographical
rank of its positionally previous suffix E(T[SA[i] — 1..n — 1]) for 0 < ¢ < n. For the rank
of the suffix E(T[0..n — 1]) starting at position 0, it maps to the rank of the empty suffix
E(T[n..n —1]). Our goal is to implement LF(7) in a compact space, which will be done here
by defining two length-(n 4+ 1) arrays F and L of bitstrings.

To do this, we define an array C[0..n] of bitstrings such that C[n] = 1, C[n — 1] = 001,
and, for 0 <i<n—1,

CTi] = (00)"01(00)"01 - - - (00)"~11 (5)

where branch(T[i],T[i + 1..n — 1]) = RleLIthgltlz.. gltl—1: d is either R or L, and
loy+ ,lg—1 > 0. In other words, C[i] is a bitstring that indicates the branching direc-
tion when we insert a node with key 7[i] into the binary search tree BST(T'[i + 1..n — 1]) as
the root node. It is obvious that the sum of the length of bitstrings C[i] over 0 < i < n is
bounded by O(R(T)) where R(T) is the total time taken by performing the root insertion of
a node with key T'[n — 1],--- ,T[0] in order, starting with an empty binary search tree.

» Lemma 2. For a string T[0..n — 1],

Y [Cli)l = O(R(T)) (6)

0<i<n

Proof. Immediate from the fact that the length of C[i] is proportional to the length of
branch(:, ). <

The bits at even positions (0,2,4,---) indicate the length of the code; 1-bit at an even
position means the code ends. The bits at odd positions represent the unary code of
loyl1,- -+ ,lg—1 (except that 1-bit does not follow 0-bits for the last run) which characterize
the prepending character T'[i] for a suffix T'[i + 1..n — 1] in terms of its encoded form.
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i SA[i] LF[¢] Fi L[7] E(T[SA[i].n — 1])

0 12 1 1 001 empty string

1 11 11 o0l 001 {00}

2 7 011 00011 {oo} {1,000} {1,00} {1,00} {oo}

3 8 011 011 {0} {1,000} {1,00} {00}

4 1 12 0101001 0000011 {oo} {I,00}{2,00} {1,2,00} {3,00} {1,2,00}:"-
5 9 3 01001 011 {00} {1, 00} {00}

6 5 10 011 0001001 {oo} {1,00} {0} {1,2,00} {1,00} {1,00}

7 3 9 011 0001011 {oo} {1,00} {0} {1,2,00} {00} {1,2,00}- -+
8 6 6 00011 011 {00} {0} {1,2,00} {1,00} {l,00} {ool

9 2 4 0001011 0101001 {oo} {oo} {1,2,00} {3,00} {1,2,00} {ool

10 4 7 0001001 011 {00} {0} {1,2,00} {o0}  {1,2,00} {1,00}

11 10 5 00l 01001 {oo} {oo}

12 0 0 0000011 1 {00} {0} {100}  {2,3,00} {1,2,00} {3,00}

Figure 2 Example of sorted (encoded) suffixes and related information for 7 =5341628 79
10 12 11.

Now we define a length-(n + 1) array F[0..n] as a permuted array of C[0..n] via SA[0..n]:
for 0 <i <n,

F[i] = C[SA[i]] (7)
We also define another length-(n + 1) array L[0..n] such that: for 0 <1i <n,
L[i] = FILF(i)] (®)

See Figure 2 for an example of how the (encoded) suffixes are sorted and how these arrays
are computed.

3.3 Operations on F and L

Obviously, {C[i]} is a prefix code; i.e. there exists no 0 < ¢,j < n such that C[i] is a prefix
of C[j] unless C[i] = C[j]. Therefore, we can build a wavelet tree with a prefix-coding (as
described in Section 3.2 in [20]) for F' (and L, respectively).

For the completeness, we describe the detail. Let us consider the wavelet tree WT, of
L[0..n]. We define it recursively. For 0 < i < n, we write L[i][0] into a single bitmap B of
length n+1. B is stored in the root node. We divide I = {0,--- ,n} into two disjoint subsets
In={0<i<n:L[0] =0}, and I; = {0 < i <n:L[{][0] =1}. Let Ly be a sequence
of bitmaps that can be obtained by writing for L[i][1..] for ¢ € Iy in order. Similarly, we
define Ly using L and I;. Then we construct the wavelet tree for Ly (and L) recursively,
and make the tree as the left (and right, resp.) subtree of the current node. The recursion is
repeated until all the bits are processed.

For a node w of the wavelet tree WT, for L, a bit b € {0,1}, and an integer 0 < i,5 < n,
we define the following operation:

WT.downy, (b, i,7) returns a triplet (w’,4’, ;') of a node w’, integers i’ and j’ such that:

If b =0, w’ is the left child node of w, otherwise w’ is the right child of w,
i’ = By.rank(b,i — 1), and
j' = By.rank(b,j) — 1,
where B,, is the bitmap of node w, and B,,.rank(b, ) is the number of b-bits in B,,[0..].

61:7
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We construct the wavelet tree WT g for F' in the same way except, at this time, we build
a select dictionary on the bitmap of each node. For a node w of the wavelet tree WT g of F,
and an integer 0 < 7,j < n, we define the following operation:
WTp.up,, (i, ) returns a triplet (w’,4,j") of a node w’, integers i’ and j’ such that:
w’ is the parent node of w,
i’ = By .select(b,i+ 1), and
j' = Byy.select(b,j + 1),
where B, is the bitmap of node w’ where b = 0 if w is the left child of w’, b = 1 otherwise;
and B, .select(b, ) is the position of the i-th occurrence of b-bit in B, (note: defined
for i > 1, and i = 1 indicates the leftmost occurrence).

Note that L is a permuted array of F'. Therefore, the topology of their wavelet trees are
the same, and there is a one-to-one correspondence between the nodes of WT, and the nodes
of WT . For a node w in WTp,, we denote by paired(w) its associated node w’ in WTg.

Note also that the wavelet trees WT, (and WT ) can be emulated with a single bitmap
equipped with the rank (and select) dictionary. This can be done by concatenating all the
bitmaps in the level order. When we go down in WT, the bitmap boundary at the next
level can be computed by counting the number of 0- or 1-bits within the boundary at the
current level and node. As described later, going up in WT g will be always followed by going
down in WTp, so we can reused the bitmap boundaries.

» Lemma 3. The wavelet trees WT, and WT g require O(R(T)) bits supporting the operations
described above in O(1) time.

Proof. It is well-known that rank and select operations on a length-n bitmap can be performed
in O(1) time using n + o(n) bits [4, 14]. The total number of bits stored in arrays F' and L
is O(R(T)) according to Lemma 2. <

4  Searching Algorithm

In this section, we present the searching algorithm on the proposed data structure implemented
in the previous section. As other searching methods based on suffix arrays, our searching
algorithm represents the occurrences of a pattern string as an interval (ps, pe) on the suffix
array. For a pattern string P[0..m — 1], we call a pair (ps, p.) of integers the suffiz range for
Pifp, <i<p. < P=,T[SA[i]..SA[i] + m — 1]. We give a simple algorithm to compute the
suffix range for a pattern string. The number of occurrences can be immediately obtained by
Pe — Ps + 1 once the suffix range (ps, pe) is computed. To report each occurrences in O(lgn)
time, we also present a new method to sample the suffix array.

4.1 Computing the Suffix Range

Given a length-m pattern, its suffix range is computed in the backward fashion. We start
from the last character of the pattern. The encoded string of any length-1 string is always
{00}, thus we have its suffix range as (1,n) where n is the text length. We also have the
binary search tree with a single node at this moment. For each character to be prepended, we
perform the root insertion accordingly to obtain the bitstring representation of the branching
directions in a similar way described in Equation 5. Then we walk down on WT, according
to the computed bitstring, followed by jumping to the corresponding node on WT g, and
tracing up to the root of the wavelet tree, which completes the updated suffix range. Figure 3
describes an example of an iteration that updates the suffix range by prepending a character
at the currently searched pattern, Algorithm 1 describes the procedure to compute the suffix
range of a given pattern.
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Figure 3 An iteration for searching for the pattern P =3 1 4 on the text string 7' described
in Figure 2. For each wavelet tree, upward (downward) branches correspond to 0-bits (1-bits,
resp.). Given a suffix range (ps,pe) = (2,7) for P[1..2] = 14, P[0] = 3 is to be prepended. Since
branch(P[0], P[1..2]) =RL, ¢ = 00011. We walk down on WT, according to c[0..|c| — 2], then jump
to the corresponding locus on WT g, then trace up to the root. After the iteration the suffix range is
updated to (8,10). Note that SA[8] = 6, SA[9] = 2, SA[10] =4, and T'[6..8] =8 7 9, T'[2..4] =4 1 6,
and T[4..6] =6 2 8, which are all order-isomorphic to P[0..2]=3 1 4.
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Algorithm 1 Computing the suffix range (ps, p.) of P[0..m — 1].

1. procedure computeSuffixRange(P[0..m — 1]: a non-empty string)

2 (ps,pe) < (1,m) > The suffix range for a length-1 string P[m — 1] is always (1,n).
3 fori=m-—2,---,0do

4: ¢ < bitstring as defined in Eq. (5) w.r.t. P[i] and P[i + 1..m — 1].

5: w < the root of WTp,

6 for j=0,---,|c|]—2do > Process the code except the 1-bit at the end
7 (w, ps,pe) — WTp.downy,(c[j], ps, Pe)

8 end for

9 w’ < paired(w) > Jump to WT g
10: for j=|¢[]—2,---,0do > Trace up until reaching the root node
11: (W', ps; pe) WTF~Upw/(p37pe)

12: end for

13: end for

14: return (ps, p.)
15: end procedure

It is easy to show its running time. It is proportional to the sum of the code length over
all iterations, thereby proportional to the time required for performing the root insertion of
nodes keyed by P[m — 1],--- , P[0] to the empty binary search tree.

» Lemma 4. Algorithm 1 runs in O(R(P)) time.

Proof. The time taken for a single iteration for i is proportional to |c| because other basic
operations take O(1) time. |c| is proportional to the length of the path retrieved in the
binary search tree. Therefore, the total time is O(R(P)) by its definition. <

Now we show the correctness of this algorithm. Suppose we have a suffix range (ps, pe)
and a bitstring ¢ that characterizes the next character P[i] to be prepended to the currently
searched pattern P[i 4+ 1..m — 1]. Among the suffixes within the current suffix range (for
P[i + 1..m — 1]), we need to determine which suffix should be included in the updated
suffix range (for P[i..m — 1]). Let us define b; = branch(T[SA[LF(j)]], T[SA[j]..n — 1]) for
ps < j < pe, and let bp = branch(P[i], P[i + 1..m — 1]). If LF(j) is included in the update
suffix range, then b; must have a prefix bp, which is equivalent to that L[j] has a prefix
c[0..]c| — 2]. Otherwise, the root insertion for the suffix would take a different branching
direction within the common prefix region, which result in being excluded from the updated
suffix range. As a result, when we walk down in WT, according to ¢[0..|c| — 2], only the
suffixes that are to be included in the updated suffix range remain.

The remaining task is to show that the suffixes within the interval (ps,p.) at w’ after
executing Line 9 correspond to the correct target suffixes. In order to show this, we establish
the following lemma, which claims that the ordering of two (encoded) suffixes inverts via
LF-mapping iff the larger suffix has at least one turn points (1) beyond the common turn
points, (2) within the common prefix, (3) before any non-common turn point for the smaller
suffix within the common prefix.

» Lemma 5. Let i and j be integers such that 0 < i < j <n. Let T; = T[SA[i].n — 1] and
t; = T[SAILF(?)]] be the suffic whose rank is i and its previous character on T. Similarly,
we define T; = T[SA[j]..n — 1] and t; = T[SA[LF(j)]]. Consider 7; = turnpoint(t;, T;) and
T; = turnpoint(t;, T;). Let hy be the length of the longest common prefiz of E(T;) and E(Tj),
and let h, be the length of the longest prefix of 7, and ;. Then LF(i) > LF(j) iff:
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(a) || = hr (b) |75| > hr and 7;[hs] < 75[hs]

Figure 4 Example of order-inverted cases described in Lemma 5. Suffixes (T; and Tj), the length
of the common prefix of the encoded suffixes (hr), turn points (7; and 7;), and the length of the
common prefix of the turn point sequences (h,) are defined as in the lemma. Shaded area indicates
the common prefix of the two encoded suffixes. Dots indicate turn points where the changes are
made when the corresponding characters are prepended. In order to invert the ordering of the two
suffixes via LF-mapping, there must be a turn point for T; (indicated by 7;[h-]) between the position
of the last common turn points and the earliest position of the end of the longest common prefix
and the next non-common turn point for suffix 7;.

1. |7'j| > h,,
2. 7j[h:] < hr, and
3. |n| = hs or (|| > by and 75[h;] < 7[h.]).

Proof. (=) We prove by contrapositive. Note that the changes are made only at turn points.
For each case, when we assume it is false, then the changes made in E(T}) are either (i) also
made in E(T;) at the same position or (ii) out of the common prefix, so the ordering is not
affected.

1. Let us assume that |7;| < h,. Then, for all positions ¢ € 7; in which E(Tj)[g] changes,
E(T;)[q] also changes. Therefore E(t; o T;)[q + 1] = E(t; o T;)[g + 1] for such ¢, which
means the ordering is not inverted.

2. Let us assume that 7;[h;] > hr. Then the first position only E(T;) changes is out of the
common prefix. If 7;[h;] > hr, the ordering remains the same because it is determined
at position hr. Let us assume 7;[h,] = hy. We have E(t; o T;)[hr + 1] = E(T;)[hr] <
E(T})[hr]. Because hr+1 & E(T;)[hr], we still have E(T;)[hr] < E(Tj)hr|U{hr+1} =
E(tj o Tj)[hT + ].]

3. Let us assume that |7;| # h, and (|7;| < h, or 7;[h;] > 7;[h,]). Since h, cannot be greater
than |7;|, we can rewrite it as: |7;| > h, and (|7;| = hr or 7[h;] > 7[h.])& |7 > h, and
7jlhs] > 7i[h.]. However if 7;[h;] > 7;[h.], the position on E(T;) where a change is made
is earlier than that on E(T}), therefore F(T};) cannot become smaller after prepending
the corresponding character.

(«<=) We can easily see that, for 0 < ¢ < 7,[h,|, E(t;0T;)[q] = E(t;oT;)[g]. Note that, for any g,

E(Tj)[q] > E(T;)[q)U{q+1} because each encoded character, which is a set, contains co. And

we have E(t; o T,)[r; [hs] + 1] = E(T:)[r5lhs]) = E(Ty){r3[hel] > E(T)rs o]} U {rsfhe] +1) =

E(tj o T})[r;j[h:] + 1]. See Figure 4. Therefore E(t; o T;) > E(t; o T;), which means

LF(i) > LF(j). <

Let us look at the interval (ps,pe) at node w of WT . The suffixes corresponding to
indices j < ps or pe < j do not have a common prefix long enough to invert the lexicographical
ordering. Therefore, by Lemma 5, the ordering does not change. Each suffix on the left (and
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right, resp.) side of the interval (ps, pe) at node w of WT, corresponds to a suffix on the left
(and right, resp.) side of the interval (ps,p.) at node w’ = paired(w) of WT . Therefore, the
interval at node w’ of WT g that correspond to the interval (ps,p.) at node w is still (ps, pe).
Although the lexicographical ranks of the suffixes within the interval are possibly jumbled,
all of them are the suffixes that need to be included in the updated suffix range.

Finally, by the similar reason, during tracing up to the root node of WT g the interval
length does not change. Because, otherwise it means the lexicographical rank is inverted by
the turn point out of the common prefix.

4.2 Reporting the Occurrences: Suffix Sampling along Codes

In order to reduce the space requirement to store the suffix array, the existing succinct and
compact indexes usually use the sampling method. The standard sampling method is to
sample the entries whose value is a multiple of §. Then we can retrieve the suffix array value
by calling LF () at most § times until reaching any sampled entry. However, this method is
no longer efficient for our method. Note that we can compute LF(¢) by walking down from
position ¢ in the root of WT, until we reach the leaf, then tracing up to the root of WT p;
we can easily see its correctness by showing, for any 0 < ¢ < j < n such that L[i] = L[j],
LF(¢) < LF(j) as a corollary of Lemma 5 because these two suffixes share all the turn points
within the common prefix of their encoded strings. This operation takes ©(|L[¢]|) time, and
the length |L[i]| of the bitstring L[i] can be ©(n) in the worst case.

Rather, we propose to sample the suffix array based on the actual time taken during
the computation of LF(¢). Consider the computation of LF(--- (LF(0))) = LF"(0). Starting
at the position 0 at the root node of WT,, and calling LF(-) is equivalent to walking down
to a leaf node, jumping to WT g, followed by tracing up in WTr. We repeat it until we
arrive back the starting position, which eventually forms a cycle along the bits of the wavelet
tree. We sample the suffix array entries for every d-th bit along this cycle (see Figure 5).
Note that the same suffix array value can be sampled multiple times when the length of its
corresponding L-value (bitstring) is longer than 6. Note also that each wavelet tree can be
linearized as a single bitvector, so we can store the sampled values from each wavelet tree
using an array with a bitvector indicating marked locus. When we retrieve a suffix array
value, we repeatedly call LF(-) until we arrive any locus at which the suffix array is sampled.
Then we can get the desired value by adding the retrieved sampled value by the number of
jumps from WT, to WT g performed during the LF(+) calls.

It is easy to see that O(d) navigating operations on the wavelet trees are needed until
any of marked locus is met. By setting § = O(lgn), we can have the following result.

» Lemma 6. For 0 <i <n, SA[i] can be computed in O(lgn) time, and the required space
is O(R(T)) bits.

Proof. The total number of bits to mark the sampled positions is O(R(T")). By setting
d = ©(lgn), the number of sampled entries of the suffix tree is O(R(T)/lgn) and each entry
requires [lgn] bits to be stored. The space required to store the sampled entries of the suffix
array is O(R(T)/1gn) - [lgn] = O(R(T)) bits. <

5 Non-distinct Case

In this section, we consider the case in which the characters of strings are drawn from an
alphabet of size o(< n) so that the same character can appear more than once in a string. We
can deal with non-distinct characters by making a slight modifications in order to consider
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Figure 5 Suffix array sampling along the cycle formed by the visited order of bits by successive
calls of LF-mapping (6 = 4). Blue thick lines indicate a part of this cycle. Shaded cells are the
marked locus where the sampled suffix array values are stored.
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the equality case. Each node has another pointer, which we call a middle pointer, in addition
to pointers to its left and right child. This middle pointer forms a linked list connecting the
nodes with the same key. Then the following modifications are applied:

1. Root insertion: if we find a node with the same key x, we cut the links to its left and right
child, if any. Then we remove the existing node, after which the new node is inserted as
the root node and links are reestablished properly. Then the removed node is connected
to the new node via the middle pointer.

2. Checking BST(X) =, BST(Y): for checking value-identical BSTs, we also consider the
node connected via middle pointers.

3. branch(z, X) in Eq. (1): we add the case of © = X|vpath(z, X)[é]], in which the corres-
ponding value is E.

4. Cli] in Eq. (5): we replace it with the following to deal with the case of E. More
specifically, for every three bits, the code ends if the first bit is 1, otherwise the following
two bits represent the content of branch(z, X); 00: same direction, 01: direction switched,
11: equality.

ol (000)'°001(000)"1001 - - - (000)"1001 - - - (000)**~11 branch(-) does not end with E.
1| =
(000)'001(000)'1001 - - - (000)"1001 - - - (000)**~2011 1  branch(-) ends with E.

(9)

5. E(xoX) in Eq. (3): we define it as a string of multisets, and we add the equality case in
which we insert the corresponding index twice as follows.

E(zoX)li] = B(X)[i— 1)U {i,i} ifz=X[i—1] (10)

After applying the above modifications, we can reuse the searching algorithm. Note that E
can appear only at the end of branch(:,-) so it does not involve many complications and the
useful properties still hold.

For the time and space complexity analysis, we need to know the expected value of
R(X), the time taken by performing root insertion with keys X[|X| —1],---,X][0] in order.
Note that we do not follow the middle pointer in this insertion process; middle pointers
are (conceptually) used only when comparing trees. Hence, we can consider only the nodes
connected via pointers to left and right subtrees, so the number of nodes of the binary search
tree that are of concern in this insertion process is bounded by o. Therefore, averaging over
all possible binary search trees with o nodes, we can see that the expected length of the path
from the root to a node is O(lgo) as in [24, 22]. Therefore, the expected value of R(X) is
O(|X|1go). Combining it with the previous results, we can have the following theorem.

» Theorem 7. There exists a data structure that uses O(nlgo) bits on average, and is
capable of counting the number of occurrences in O(mlgo) time on average, and reporting
each occurrence in O(lgn) time.

Proof. Immediate from Lemmas 3, 4 and 6, and the fact that, for a string X randomly
drawn over an alphabet of size o, the expected value of R(X) is O(|X|lgo). <
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6 Connections to Other Methods

The encoded string is represented based on the retrieved path through the corresponding
binary search tree. Deriving a variant by adding some restrictions to the binary search tree
can naturally come up. For example, we can restrict the number of nodes by keeping the
binary search tree have nodes having a value at most 7 where 7 is a parameter. In this case,
we remove the (leaf) node with a value greater than 7, if any, after inserting a new node.
This method is equivalent to checking the order-isomorphism with a size-7 window, as similar
to [8]. If 7 =1, it is identical to a heuristic filtering method that uses the up-down signature
used in [3]. If we set 7 = O(1g°n) for some constant ¢, then we can have the required space
to be O(nlglgn) bits on average, which is related to the space requirement of the data
structure for order-isomorphic matching with length-restricted patterns described in [10],
which O(nlglgn) in bits (in the worst case). Similarly, we can restrict other measures; e.g.
the number of nodes and the maximum depth of the tree. We can also restrict the number
of turn points used to encode the suffixes. If we restrict the number of turn points to be 1,
the matching problem becomes analogous to Cartesian tree matching [21] because the first
turn point indicates the leftmost element that is greater than the prepending character. The
proposed method can also be viewed as an extension of pointer sequence matching [16]. We
can view each node has pointers to its corresponding turn points. From this perspective,
restricting the number of nodes of the binary search tree can be viewed as restricting the
length of the pointers; and the restricting the number of turn points is equivalent to restricting
the out-degree of a node in the pointer sequence viewpoint.

7 Conclusion

Developing a space-efficient index for order-isomorphic matching has been considered chal-

lenging. In this paper, we have presented a new method to index a string regarding this

problem. The new suffix representation has been introduced, based on which two arrays L

and F' are computed using the sorted suffixes and the relation among them. The proposed

searching algorithm is quite simple as it just traverses down through the wavelet tree for L

and then traces up along the wavelet tree for F'. We also presented a new suffix sampling

method based on the time taken during the computation of LF(-), which also resolves an
open problem in [17], which asked if reporting an occurrence can be improved when L-values
are of variable lengths, possibly as long as ©(n). We leave the following open problems:

1. Suffix array construction: it has not been shown whether we can efficiently sort the
suffixes that are encoded as described in this paper. Even if we use a generalized fast
indexing method such as [5, 1], it is not trivial because a single character of an encoded
suffix can be a set of O(n) integers in the worst case, so comparing characters may take
too much time.

2. Reducing the space requirement further: although we achieved the compactness in
the average case analysis, the space requirement can be O(no) in the worst case. Using a
different representation for C[i]’s may allow to reduce the worst case space complexity;
however, further investigation and analysis are needed. Ultimately, it is interesting to
know whether there exists any nlgo + o(nlgo)-bit index.

3. Discovering new string matching problems: in this paper, we define the matching
using the binary search tree. In a similar fashion, we can discover new string matching
problems using appropriate discrete structures. For example, we can think of a tra-
jectory matching problem, in which two trajectories are defined to be a match if their
corresponding triangulations constructed by inserting the points in order are equivalent.
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