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Abstract
We consider the problem of computing the Maximal Exact Matches (MEMs) of a given pattern
P [1 . . m] on a large repetitive text collection T [1 . . n], which is represented as a (hopefully much
smaller) run-length context-free grammar of size grl. We show that the problem can be solved
in time O(m2 logϵ n), for any constant ϵ > 0, on a data structure of size O(grl). Further, on a
locally consistent grammar of size O(δ log n

δ
), the time decreases to O(m log m(log m + logϵ n)). The

value δ is a function of the substring complexity of T and Ω(δ log n
δ

) is a tight lower bound on the
compressibility of repetitive texts T , so our structure has optimal size in terms of n and δ.
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1 Introduction and Related Work

Mutations and experimental sequencing errors make exact pattern matching seldom used in
Bioinformatic applications, except possibly for very short patterns and some niche applications
[19, 37, 28]. A much more interesting problem is that of finding the Maximal Exact Matches
(MEMs) of a given pattern P [1 . . m] in a text T [1 . . n]. A MEM is a maximal substring
P [i . . j] that appears in T (i.e., P [i− 1 . . j] and P [i . . j + 1] are out of bounds or do not occur
in T ). This is useful, for example, to find long conserved areas of a gene or to best align a
read (where m is typically in the hundreds or thousands) on a reference genome (where n

can be in the billions), and even to find similarities between two genomes. In this paper we
are interested in the case where T is known in advance and can be indexed.

Finding MEMs is a classic problem in stringology and can be solved in optimal O(m)
time using a suffix tree of T [41, 31] (see, e.g., the similar problem of computing matching
statistics [19, Sec. 7.8]). Suffix trees, even if using linear space, are too large to maintain in
main memory for current text collection sizes, however. The suffix tree of a single human
genome, for example, with n ≈ 3 · 109, may take 60GB with a decent implementation.
This makes suffix trees hard to use directly on current bioinformatic collections. Even if
lower-space alternatives can replace suffix trees for most tasks [28, MEMs in Sec. 11.1.3], this
space reduction is still insufficient to face current projects for sequencing millions of human
genomes (see https://b1mg-project.eu).

A fortunate situation is that many of the fastest growing text collections are highly
repetitive [33]. For example, collections of genomes of the same species feature a small
percentage of differences between any pair of genomes. Several text indices exploiting
repetitiveness to reduce space have appeared [34]. Those indices may take orders of magnitude
less space than the raw data, and even more orders less space than a suffix tree on the data.

Those compressed indices support exact pattern matching, that is, they can list all the
positions where P occurs in T . While useful, this is less than the full suffix tree functionality,
and insufficient to efficiently implement the classic O(m)-time MEM finding algorithm.
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24:2 Computing MEMs on Repetitive Text Collections

Compressed suffix trees for highly repetitive text collections do exist, but do not compress
that much. Gagie et al. [17] show how to simulate a suffix tree within space O(r log n

r ), where
r is the number of equal-letter runs in the BWT [7] of T . It could find the MEMs in time
O(m log n

r ) if we run the algorithm backwards on P , using operations parent and Weiner
link instead of child and suffix link. The problem is the space: while r is an accepted measure
of repetitiveness [21], it is a weak one [33, 21], and multiplying it by log n

r makes it grow by
an order of magnitude. Current implementations of compressed suffix trees for repetitive
texts achieve remarkable space, but still use at least 2–4 bits per symbol [39, 15, 8, 5].

Another trend has been to expand the functionality of a more basic compressed text index
for repetitive texts so as to support specific operations, MEMs in our case. Bannai et al. [1]
show how to compute matching statistics (from where MEMs are easily extracted in O(m)
time) by extending the RLBWT-index [29], in O(m(s + log log n)) time and O(r) space, with
the help of a data structure that provides access to a symbol of T in time O(s). This can
be, for example, the samples of the RLBWT-index, which add O(n/s) space to the index,
or a context-free grammar of T , which provides access in time s = O(log n) [4]. Various
implementations of this idea [38, 6, 40] showed its practicality on large genome collections,
with indices that are an order of magnitude smaller than the text.

All those results have been obtained on the so-called suffix-based compressed indices for
repetitive collections [34]. This is natural because those emulate variants of suffix trees or
arrays [30], which simplifies the problem of simulating the suffix tree traversal of the classic
MEM-finding algorithm. Even the naive algorithm of searching for all the O(m2) substrings
of P can be run in O(m2 log log n) time on those O(r)-sized indices.

The problem is much harder on the so-called parsing-based indices [34]. Those are
potentially smaller than the suffix-based indices because they build on stronger measures of
repetitiveness. For example, the size g of the smallest context-free grammar that generates
T is usually considerably smaller than r [33]. Because these indices cut T into phrases,
even exact pattern matching is complicated because the occurrences of P can appear in
many different forms, and many possible cuts of P must be tried out (m− 1 in the general
case) [12]. This makes the problem of finding MEMs considerably harder. We are only aware
of the results of Gao [18], who computes matching statistics in time O(m2 logϵ γ + m log n)
using O(δ log n

δ ) space (for any constant ϵ > 0), or O(m2 + m log γ log log γ + m log n) using
O(δ log n

δ + γ log γ) space. Here δ ≤ γ are lower-bounding measures of repetitiveness [22, 11].
The size O(δ log n

δ ) matches a tight lower bound on the size of compressed representations of
T [25], so a structure of this size uses asymptotically optimal space for every n and δ.

Let grl be the size of any run-length context-free grammar generating T (those include
and extend classic context-free grammars). The smallest such grammar is of size grl =
O(δ log n

δ ) [25]. We first show that, on an index of size O(grl), one can compute the MEMs
in time O(m2 logϵ grl), for any constant ϵ > 0. This is done by sliding the window P [i . . j] of
the classic algorithm while we simulate the process of searching for that window with the
grammar. The simulation is carefully crafted to avoid expensive operations, so the time stays
proportional to the number of cuts tried out on a single search for P . The space O(grl) is
the least known to support direct access to T with logarithmic time guarantees [33]. The
result essentially matches the first one of Gao, which could also run within O(grl) space.

We further show that, on a particular grammar featuring local consistency properties [24],
we can reduce the time to O(m log m(log m + logϵ n)) by exploiting the fact that only
O(log(j − i + 1)) cuts need to be tried out for P [i . . j], and using much more sophisticated
techniques to amortize the costs. This grammar is of size O(δ log n

δ ), optimal for every n

and δ, and within this space we sharply break the quadratic time of previous solutions.
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2 Maximal Exact Matches (MEMs) and How to Find Them

We assume the usual notation on strings S[1 . . n] and that the reader is familiar with the
concepts related to suffix trees [41, 31, 13]. We start by defining MEMs.

▶ Definition 1. A Maximal Exact Match (MEM) of a pattern P [1 . . m] in a string T is a
substring P [i . . j] that occurs in T , but in addition

i = 1 or P [i− 1 . . j] does not occur in T , and
j = m or P [i . . j + 1] does not occur in T .

▶ Definition 2. Given a text T [1 . . n] that can be preprocessed, the MEM-finding problem is
that of, given a pattern P [1 . . m], return the range (i, j) of each of its MEMs P [i . . j] in T , in
increasing order of i (or j). A position where each MEM occurs in T must also be returned.

The MEM finding problem can be solved in O(m) time with a suffix tree. Algorithm 1
shows how, abstracting away some complications of implementing it on the long edges of
suffix trees. The next problem is strongly related to the MEM finding problem.

▶ Definition 3. Given a text T [1 . . n] that can be preprocessed, the matching statistics
problem is that of, given a pattern P [1 . . m], return the length M [k] of the longest prefix of
P [k . .] that occurs in T , for every 1 ≤ k ≤ m. A position where each such longest prefix
occurs must be given for each k.

Given a solution to the MEM finding problem, (i1, j1), . . . , (is, js), we compute the
matching statistics as follows. Set all M [k] to zero and then traverse the tuples (ir, jr) in
order. Set M [k] = jr − k + 1 for all ir ≤ k ≤ min(jr, ir+1 − 1), assuming is+1 = m + 1. The
occurrence of each M [k] > 0 is that of its (ir, jr) shifted by k − ir. Conversely, given the
matching statistics M [k] for 1 ≤ k ≤ m, we obtain the MEMs by reporting, for increasing i,
every pair (i, i + M [i]− 1) such that i = 1 or M [i] ≥M [i− 1], and M [i] > 0. Therefore, both
problems are interchangeable as one can convert one output to the other in optimal O(m)
time. Gusfield [19, Sec. 7.8] shows how to compute matching statistics with the suffix tree.

Algorithm 1 Finding the MEMs of P [1 . . m] in T using the suffix tree of T .

1 i← 1; j ← 0;
2 v ← suffix tree root;
3 while j < m do
4 if v has no child labeled P [j + 1] then
5 i← i + 1; j ← j + 1;
6 end
7 else
8 while j < m and v has a child labeled P [j + 1] do
9 j ← j + 1; v ← the child of v by P [j + 1];

10 end
11 report (i, j) with some occurrence of v;
12 while i ≤ j < m and v has no child labeled P [j + 1] do
13 i← i + 1; v ← the suffix link of v;
14 end
15 end
16 end

CPM 2023
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3 Grammar based Indices

Let T [1 . . n] be a text. Grammar-based compression of T consists in replacing it by a
context-free grammar (CFG) that generates only T [23]. The compression ratio is then the
size of the grammar divided by the text size.

We consider a slightly more powerful type of grammar called run-length context-free
grammar (RLCFG), which includes run-length rules of constant size. To simplify, we disallow
rules of the form A→ ε, which are easily removed without increasing the grammar size.

▶ Definition 4. A Run-Length Context-Free Grammar (RLCFG) for T is a context-free
grammar that generates (only) T , having exactly one rule per nonterminal A. The rules are
of the form A→ B1 · · ·Bk for k > 0 and terminals or nonterminals Bi (this rule is said to
be of size k), and of the form A→ Bk for k > 1 and a terminal or nonterminal B, which
is identical to A → B · · ·B with k copies of B, but is said to be of size 2. The size of the
RLCFG is the sum of the sizes of all of its rules. A Context-Free Grammar (CFG) for T is
a RLCFG for T that does not use rules of the form A→ Bk.

Clearly, the size grl of the smallest RLCFG for T is always less than or equal to the
size g of the smallest CFG for T . Grammar-based compression (with or without run-length
rules) has proved to be particularly effective on highly repetitive texts [34]. While finding
the smallest grammar is NP-hard [10], heuristics like RePair obtain very good results [27].

Note that our RLCFGs have a unique parse tree, defined as follows [11, Sec. 4].

▶ Definition 5. The parse tree of a RLCFG for T has a root labeled with the initial symbol.
If a node is labeled A and its rule is A → B1 · · ·Bk, then the node has k children labeled
B1, . . . , Bk left to right. If its rule is A → Bk, then the node has k children labeled B. It
follows that the ith left-to-right leaf of the parse tree is labeled T [i].

While the parse tree has size Θ(n), a convenient representation of a RLCFG is the
so-called grammar tree, which is of size O(grl) [11, Sec. 6].

▶ Definition 6. The grammar tree of a RLCFG is obtained by pruning its parse tree,
preserving the leftmost internal node labeled A for each nonterminal A, and converting the
others to leaves. Further, for the remaining internal nodes labeled A with rules A→ Bk we
preserve their first child only, replacing the other k − 1 children (which are leaves) with a
single special leaf labeled B[k−1]. If the RLCFG size is grl, its grammar tree has grl + 1 nodes.

We will sometimes identify a nonterminal with its (only) internal node in the grammar
tree. We call exp(A) the string of terminals to which symbol A expands, and exp(a) = a for
terminals a. The grammar tree defines a parse of T , as follows.

▶ Definition 7. The grammar tree, with leaves v1, . . . , vk, induces the parse T = exp(v1) ·
exp(v2) · · · exp(vk) into phrases exp(vi).

A classic grammar-based index [12] divides the occurrences of a pattern P [1 . . m] into
primary and secondary, depending on whether they cross a phrase boundary or lie within a
phrase, respectively (if m = 1, its occurrences ending a phrase boundary are taken as primary).
It uses the fact that every occurrence has primary occurrences and that all the secondary
ones can be found inside pruned leaves of nonterminals that contain other occurrences. In
this paper we will be interested in the mechanism to find the primary occurrences. This is
based on the parsing, but defined in a particular way to avoid reporting multiple times the
primary occurrences that cross several phrase boundaries. The mechanism was extended to
RLCFGs [11, Sec. 6 and App. A].
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▶ Definition 8. Let X and Y be multisets of strings defined as follows. For each rule
A→ B1 · · ·Bt, for each 1 < s ≤ t, the string exp(Bs−1)rev (i.e., exp(Bs−1) read backwards)
is inserted in X and the string exp(Bs) · · · exp(Bt) is inserted in Y; we say those two are
corresponding strings. Similarly, for each rule A → Bt, exp(B)rev is inserted in X and
exp(B)t−1 (i.e., t− 1 concatenations of exp(B)) is inserted in Y. A grid G has one row per
string in Y and one column per string in X . After lexicographically sorting X and Y, a point
(x, y) is set in G if the xth string of X corresponds to the yth string of Y.

The grammar-based index includes a Patricia tree PX storing the strings of X and
another Patricia tree PY storing the strings of Y [32]. Let us add some data to nodes for our
convenience. Each Patricia tree node v stores its range [v1, v2] of the left-to-right ranks of
the leaves descending from v. The edges of the Patricia tree nodes can represent strings, so
prefixes that end in the middle of an edge that leads to a node v correspond to virtual nodes
u; the range [u1, u2] is the same [v1, v2]. The nodes v also store their string depth |v|, which
is also easily computed for virtual nodes as we descend or ascend in the Patricia tree.

Each primary occurrence consists of a suffix of some string X ∈ X matching P [1 . . i]
corresponding to some string Y ∈ Y whose prefix matches P [i + 1 . . m], for some 1 ≤ i < m

(if m = 1, it is just a suffix of X matching P ) [11, Sec. A.4]. Therefore, to find the primary
occurrences of P , the index tries out every cutting point i, and searches PX for P [1 . . i]rev

and PY for P [i + 1 . . m]. If both nodes x ∈ PX and y ∈ PY exist, then the points in the
orthogonal range [x1, x2]× [y1, y2] of G represent the primary occurrences of P cut at position
i, and are efficiently found with a geometric data structure on G. By storing the position t

of T where exp(Bs−1) ends for such point, we know that P occurs in T [t− i + 1 . . t− i + m]
(the actual index stores pointers to the grammar tree, but this suffices for us).

Both the Patricia trees and the grid take O(grl) space. The index also needs to verify
the matches of the Patricia trees. It uses an O(grl)-space data structure A that can read,
in O(ℓ) time, any length-ℓ prefix or suffix of exp(A), for any nonterminal A [11, Lem 6.6].
If x is a node of PX , its corresponding string is the |x|-length reversed suffix of any string
between the x1th and the x2th in X . Let X = exp(Bs−1)rev be one such string, then we store
⟨v⟩ = Bs−1 associated with v. Similarly, a node v ∈ PY that prefixes exp(Bs) · · · exp(Bt)
stores ⟨v⟩ = Bs (from where we can obtain the subsequent siblings). We can then obtain the
string represented by any v using A on ⟨v⟩.

4 A Quadratic-Time Solution

We now present a quadratic-time solution that works with any RLCFG of size grl for T ; we
use the O(grl)-space data structures described in the previous section. Since any CFG is a
particular case of RLCFG, our algorithm also runs with any CFG.

The generic idea follows that of Algorithm 1, sliding a window P [i . . j] along the pattern.
We maintain a set of so-called active positions r ∈ [i . . j].

▶ Definition 9. A position r ∈ [i . . j] is active if P [r + 1 . . j] prefixes some string in PY .

Note that, since we slide the window P [i . . j] forwards, once a position r becomes inactive,
it will not become active again.

4.1 Algorithm
The algorithm maintains the invariant that, when the window is P [i . . j], (i, j) is the last
MEM of P [1 . . j] (if i ≤ j) and all the MEMs ending before j have already been reported. It
maintains the set R ⊆ [i . . j] of active positions, and for each such active position r ∈ R:

CPM 2023
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The node yr ∈ PY corresponding to P [r + 1 . . j]; this node can be virtual. Note that
[y1

r , y2
r ] is the same range of rows in G of the strings of Y that start with P [r + 1 . . j].

The length ℓr of the maximum prefix of P [r + 1 . .] that prefixes a string in PY ; note that
r is active iff r + ℓr ≥ j.

The node xr ∈ PX corresponding to the longest prefix of P [i . . r]rev that exists in PX ,
and such that there are points in G in the range [x1

r, x2
r]× [y1

r , y2
r ]. Note again that xr

can be virtual and that [x1
r, x2

r] is the same range of columns in G of the strings of X that
start with P [r − |xr|+ 1 . . r]rev.

Our algorithm, depicted in Algorithm 2, iterates over j, from 0 to m− 1, and at each
cycle it extends the current window to end in j + 1. When i = j + 1 (including when we
start with i = 1 and j = 0), the window is empty and there are no active positions. Line
3 first sees, in this case, if we can descend from the root of PX by P [j + 1], to start a new
nonempty substring P [j + 1, j + 1]. If this is not possible, it just increases i and goes for the
next value of j. Otherwise, there will be active positions for the window ending at j + 1 and
we enter into the main process.

Lines 5–7 first create the new active position r = j + 1, with corresponding yr set at the
root of PY . To compute ℓr, we descend in PY as much as possible by P [r + 1 . .]. To compute
xr, we also descend in PX as much as possible by P [i . . r]rev. Those are classic Patricia tree
searches, first reaching a candidate node v by comparing only the branching characters in the
trie, and then verifying which ancestor of v is the correct answer. The verification proceeds
by extracting the needed prefix from ⟨v⟩ in PY (at most ℓr + 1 characters) or the needed
suffix in PX (at most |xr|+ 1 characters).

Lines 8–16 then remove the active positions that do not reach j + 1 and updates the
variables for the surviving ones. Line 10 first removes the active positions r where r + ℓr = j.
On the remaining ones, each yr moves to its child by P [j +1] in PY in line 12 (this shrinks the
range [y1

r , y2
r ]). Note that, once we know that we can descend from yr by P [j + 1] (because

r + ℓr ≥ j + 1), we can compute the child node on the Patricia tree without accessing the
text, both for explicit and virtual nodes yr. Thus, by computing ℓr once when the active
position r is created, in time O(ℓr), we save all the accesses to T that would have been
needed to descend from virtual nodes yr ∈ PY : when yr is not the root, its text position is
not phrase-aligned, so we cannot access its first symbols in constant time using A.

Line 13 updates the nodes xr of the surviving active positions, because some ranges
[x1

r, x2
r]× [y1

r , y2
r ] could be empty after we reduce [y1

r , y2
r ]. For every active position r, as long

as there are no points in [x1
r, x2

r] × [y1
r , y2

r ], we move xr to its parent in PX . This process
eventually terminates because, when xr is the root and [x1

r, x2
r] is the whole range of columns,

we know that there are points in the band [y1
r , y2

r ] because it corresponds to the node yr.
Lines 8, 14, and 17 recompute the value p = min{r − |xr| + 1, r is active}. This is

necessary to make i grow as needed so that P [i . . j + 1] occurs in T , then reestablishing the
invariant that P [i . . j + 1] is the last MEM of P [. . j + 1]. If p = i, then P [i . . j + 1] occurs in
T (as it has a primary occurrence in some [x1

r, x2
r]× [y1

r , y2
r ]), so we can retain the current

value of i; line 18 collects some text position t to be reported in case (i, j + 1) turns out to be
a MEM of the whole P . If, on the other hand, p > i, this means P [i . . j + 1] does not occur
in T and thus (i, j) was a MEM. Lines 20–21 then report MEM (i, j) with its text position t

(collected in the previous cycle of j) and increase i to p, since only P [p . . j + 1] occurs in T .
This could make i exceed j + 1 when the window becomes empty; otherwise line 23 finally
inserts j + 1 as an active position. Line 26 reports the final MEM when j reaches m.
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Algorithm 2 Finding the MEMs of P [1 . . m] in T using a grammar-based index.

1 i← 1; R← ∅;
2 for j ← 0, . . . , m− 1 do
3 if i = j + 1 and the root of PX has no child labeled P [j + 1] then i← i + 1 ;
4 else
5 yj+1 ← root of PY ;
6 v ← descend in PY as much as possible with P [j + 2 . .]; ℓj+1 ← |v|;
7 xj+1 ← descend in PX as much as possible with P [i . . j + 1]rev;
8 rmin ← j + 1;
9 for r ∈ R do

10 if r + ℓr = j then R← R \ {r} ;
11 else
12 yr ← child of yr by P [j + 1];
13 while the range [x1

r, x2
r]× [y1

r , y2
r ] is empty do xr ← parent of xr ;

14 if r − |xr| < rmin − |xrmin | then rmin ← r ;
15 end
16 end
17 p← rmin − |xrmin |+ 1;
18 if p = i then t← text position of some point in [x1

rmin
, x2

rmin
]× [y1

rmin
, y2

rmin
] ;

19 else
20 report (i, j) with position T [t− j + i . . t];
21 i← p

22 end
23 if i ≤ j + 1 then R← R ∪ {j + 1} ;
24 end
25 end
26 if i ≤ m then report (i, m) with position T [t−m + i . . t];

4.2 Analysis

For each value of j, we spend O(1) time per active position. Since there are O(m) active
positions at any time, this amounts to O(m2) time.

The costs of lines 6, 7, and 13, are better charged to each active position r, from its
creation to its inactivation. When r is created, we spend O(m) time to compute ℓr ≤ m

and xr (since |xr| ≤ m). Later, we can decrease |xr| several times, performing one range
emptiness query in [x1

r, x2
r]× [y1

r , y2
r ] per decrement of |xr| (in fact we can go directly to the

lowest phyisical ancestor of xr rather than to its possibly virtual parent node, since otherwise
the range [x1

r, x2
r] will not change). Thus, we perform overall O(m2) emptiness queries, up to

m per position r along its life. Maintaining the variables associated with active positions
allows us amortizing these costs along the process.

Emptiness queries on G can be solved in O(logϵ grl) time and O(grl) space for any constant
ϵ > 0 [9]; a recent construction takes O(g

√
log g) time [2]. The same complexity holds for

returning one point in nonempty ranges. The O(m2) cost charged to positions r is then
multiplied by this factor. The rest of the construction time is inherited from the CFG-based
index [12]; extending it to RLCFGs does not increase it.

CPM 2023
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▶ Theorem 10. Let grl be the size of a RLCFG generating only T [1 . . n]. Then, for any
constant ϵ > 0, we can build in O(grl log2 n) time a data structure of size O(grl) that finds
the MEMs of any given pattern P [1 . . m] in time O(m2 logϵ grl) ⊆ O(m2(logϵ δ + log log n)),
with an occurrence of each. The query process uses O(m) additional space.

As mentioned, any CFG can also be used in the theorem. By using an emptiness structure
of size O(grl log log grl) [9], we find the MEMs in time O(m2 log log grl).

5 Indexing Locally Consistent Grammars

Before entering into the details of our more sophisticated solution, we must introduce some
new concepts. A locally consistent grammar is a kind of RLCFG that guarantees that
equal substrings of T are covered by similar subtrees of the parse tree, differing in O(1)
nonterminals at each level of both subtrees. This has been used to produce grammar-based
indices that find all the primary occurrences with only a logarithmic number of cuts in P ,
thereby obtaining exact pattern searches in time that grows only linearly with m [11, 25, 24].
In this paper we make use of the latest result [24]. We present a lighter informal description;
see the original paper for full details.

5.1 The Grammar
We first define the grammar [24, Sec. 3], which is produced level by level, for O(log n) levels.
Let Sk be the sequence of terminals and nonterminals forming level k of the grammar. Let
ℓk = (4/3)⌈k/2⌉−1, and let Ak be the set of symbols A such that |exp(A)| ≤ ℓk. Those are
the symbols that can be grouped to form new nonterminals in level k.

Our string at level 0 is S0 = T . To form the string S1, we detect the maximal runs of (at
least 2) equal consecutive symbols in S0 that are in A1 = Σ (Σ is the alphabet of T and also
the set of terminals of the RLCFG). For each such run, say of t symbols a ∈ A1, we create
the rule A→ at and replace the run by the nonterminal A. The resulting sequence after all
the runs have been replaced is S1 = rleA1(S0), which contains terminals and nonterminals.
To form level 2, we define a function π2 that reorders at random the distinct symbols of S1,
and use it to define blocks in S1. Each position 0 < i < |S1| such that

π2(S1[i− 1]) > π2(S1[i]) < π2(S1[i + 1])

is the end of a block. We also set ends of blocks at |S1| and before and after every symbol
not in A2 (which is still Σ per the formula of ℓk, so the runs introduced in S1 cannot yet
be grouped). For each distinct resulting block S1[i . . j] we create a new rule A→ S1[i . . j]
and replace every occurrence of the same block in S1 by A. The resulting string is called
S2 = bcπ2,A2(S1). The process continues in the same way for odd and even levels:

Sk = rleAk
(Sk−1) if k is odd,

Sk = bcπk,Ak
(Sk−1) if k is even,

until we reach |Sk| = 1 for some k = O(log n). The algorithm is Las Vegas type, trying out
functions πk to obtain some desired grammar size, but otherwise any functions πk yield a
correct index. They [24] prove that, in O(n) expected time, a RLCFG of size O(δ log n

δ ) is
obtained, where δ is a lower bound measure based on the substring complexity of T [11]: let Tℓ

be the number of distinct length-ℓ substrings in T , then δ = max{Tℓ/ℓ, ℓ > 0}. Interestingly,
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for every n and δ, there exists a string family that requires Ω(δ log n
δ ) space (i.e., log(n)-bit

words) to be represented [25]; therefore using space O(δ log n
δ ) for a grammar (and for an

index) is asymptotically optimal for any specific n and δ.
A key property of this grammar is local consistency. Let Bk be the set of all the ends of

level-k blocks:

Bk = {|exp(Sk[. . j])|, 1 ≤ j ≤ |Sk|},

where we are extending exp(·) homomorphically to strings. The cuts of level k that fall inside
the substring at T [i . . j] have the following positions inside T [i . . j]:

Bk(i, j) = {p− i + 1, p ∈ Bk ∩ [i . . j − 1]}.

Local consistency makes the sets Bk(i, j) and Bk(i′, j′) similar if T [i . . j] = T [i′ . . j′], except
at the extremes. Concretely, let αk = ⌈8ℓk⌉, then Bk(i + 2αk, j −αk) = Bk(i′ + 2αk, j′ −αk).

An additional property of the resulting grammar is that it is locally balanced: the subtree
of the parse tree rooted at nonterminal A is of height O(log |exp(A)|). This is a consequence
of the fact that in Sk there are fewer than 1 + 4(j − i + 1)/ℓk+1 blocks ending inside T [i . . j],
and the height of A is never more than the level k of the string Sk where it was created.

5.2 Pattern Searching
Let us now define which cuts of P we need to try out in order to capture all the primary
occurrences with this grammar [24, Sec. 4]. Since ends of blocks in Bk(i, j) correspond to
the phrase endings where a primary occurrence T [i . . j] = P can be cut, our set of cutting
positions must suffice to capture those possible block endings for all k and for every possible
T [i . . j] that matches P . We define

Mk(i, j) = Bk(i, j) \ [2αk+1 + 1 . . j − i− αk+1]
∪ {min(Bk(i, j) ∩ [2αk+1 + 1 . . j − i− αk+1])},

that is, all the cutting points in the extremes, where the different occurrences of T [i . . j] may
differ, and just the first one in the part that is guaranteed to be equal. Over all the levels,

M(i, j) =
⋃
k≥0

Mk(i, j).

The key point [24] is that M(i, j) depends only on the content of T [i . . j] (not on its position
in T ), so we can define M(P ) = M(i, j) if P = T [i . . j], and this is the same set for every
possible occurrence of P in T . Further, |M(P )| = O(log m). In operational terms, this
means that, at query time, we parse P in O(m) time using the same rules we defined for T ,
producing a parse tree of height O(log m) and finding the O(log m) cutting points M(P ).

6 A Faster Solution using Locally Consistent Grammars

The idea to use the index of the preceding section is to exploit the fact that O(log(j − i + 1))
cutting points suffice to find all the primary occurrences of any window P [i . . j]. We will then
maintain the parse tree of P [i . . j], and the set M(P [i . . j]), as we slide it through P , and
use it to maintain the number |R| of active positions within O(log m). We also need more
sophisticated mechanisms to avoid the quadratic costs in lines 6, 7, and 13 of Algorithm 2.
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6.1 Parsing the Pattern
In this section we show how we maintain the parse tree of P [i . . j], or more precisely, the
corresponding strings S0, S1, . . ., as well as M(P [i . . j]) and R, as we slide P [i . . j] along P .
Recall that the height of the parse tree of P is O(log m) in our locally-balanced grammar.

Maintaining the parse

Assume the parse tree is built for P [i . . j] and now we have to increment j. At level k = 0,
we simply extend S0 by the symbol e0 = P [j + 1]. This propagates upwards as follows, where
lk is the last symbol of Sk and ek−1 has just been added at the end of Sk−1.
1. If k is odd (a run-formation level), lk = lk−1 or lk → lt

k−1, |exp(ek−1)| ≤ ℓk, and
lk−1 = ek−1, we find or create a rule ek → lt+1

k−1 (t = 1 if lk = lk−1) and replace lk by ek.
2. If k is even (a block-formation level), lk = lk−1 or lk → βlk−1, |exp(ek−1)| ≤ ℓk, and

πk(lk−1) > πk(ek−1), we find or create a rule ek → βlk−1ek−1 (β = ε if lk = lk−1) and
replace lk by ek.

3. In any other case, we just append ek = ek−1 at the end of Sk.
We see that insertions at the end of Sk−1 propagate as new insertions or replacements at the
end of Sk. We process those replacements as the deletion of lk followed by the insertion of
ek at the end. The following are the rules to propagate to Sk the deletion of lk−1.
1. If lk = lk−1, we delete lk.
2. If lk → lt

k−1 is a run, we find or create the rule ek → lt−1
k−1 (just ek = lk−1 if t − 1 = 1)

and replace lk by ek.
3. If lk → β lk−1 is a block, we find or create the rule ek → β (just ek = β if |β| = 1) and

replace lk by ek.
Each of those updates can be carried out in constant time by just maintaining linked lists
with the sequence of symbols in each string Sk, perfect hash tables with the existing right-
hand sides of the run-formation rules lk → lt

k−1, and tries with the right-hand sides of the
block-formation rules lk → β lk−1. In particular, each block-formation nonterminal lk points
to the node in the trie that represents its string β lk−1, and the trie node representing β lk−1
stores lk. With parent pointers in the trie, we have constant-time access to the node of β

from the node of β lk−1, and with child pointers we move from β lk−1 to β lk−1 ek−1. The
children of trie nodes are stored in perfect hash tables to enable downward traversals in
constant time. All this can be precomputed in expected time linear in the grammar size.

The case when i increases is symmetric. We start by deleting the first symbol of S0, and
propagate the update upwards acting on the first symbols fk at each level k. To handle
those operations we need the lists for Sk be doubly-linked, and also to store tries for all the
right-hand sides read as fk → fk−1β′.

The number of updatess are actually bounded to O(1) updates per level, and thus to
O(log m) per increase of j or of i. Consider the string P [i . . j] · $, where $ is a special symbol
for which we assume πk($) = +∞ for all k. The parse tree of P [i . . j] · $ is then identical
to that of P [i . . j], just adding $ at the end of every Sk. The strings Sk formed for P [i . . j]
followed by $ are the same formed for P [i . . j] followed by P [j + 1], except for the first 2αk

and the last αk positions of P [i . . j] [24, Lem. 3.7]. Therefore, the addition of P [j + 1] can
only alter the last 1 + αk positions of P [i . . j + 1] in each Sk. Analogously, removing P [i] can
only alter the first 2αk−1 positions of P [i + 1 . . j] in its strings Sk. On the other hand, those
O(αk) positions correspond to only O(1) symbols in Sk [24, Lem. 3.8]. The total amount of
work is proportional to the number of updated symbols if we perform them levelwise, on S0,
then on S1, and so on. All the changes then add up to O(m log m) along the processing of P .
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Dealing with unknown symbols

We analyzed the parsing process as if we would always find a known nonterminal for the
right-hand sides we modify, but it could be that we have to create new nonterminals that
were never formed during the parsing of T .

To handle those cases, we create fresh nonterminals and continue the process normally,
removing them when they are no longer needed. An easy way to handle this would be to
make the hash tables and tries of right-hand sides dynamic, so we can add and remove
elements in the tables and nodes; we will soon sharpen this solution.

We must assign values πk(ek) to the fresh symbols ek we create in Sk. We can assign
arbitrary values (different from the other πk values) without affecting correctness: the index
works correctly for arbitrary functions πk, as explained. No matter how we choose the values
πk(ek), we can add O(m log m) fresh symbols along the whole process, but we can do better.

New symbols ek may appear in the parsing of P [i . . j] even if P [i . . j] appears in T ,
because the parsing of P [i . . j] can be different from that of its occurrences in T . However,
this can happen only in the first 2αk and the last αk positions, in Sk. Once the end of ek

falls before position j − αk, and it is after the position 2αk, then ek should have appeared in
the parsing of every occurrence of P [i . . j] in T [24, Lem 3.7]. Therefore, when we completely
incorporate P [j + 1] and as a result the end of a fresh symbol ek of Sk falls behind position
j + 1− αk of P [i . . j + 1], we know P [i . . j + 1] cannot appear in T until the position falls
behind i + 2αk. At this point, then, we can suspend the search (very much as Algorithm 2
does in line 3) and increase i until ek ends within the leftmost 2αk symbols of P [i . . j + 1].

This has as a consequence that we can have only O(1) fresh symbols per level, just as
Mi,j(P ), and O(log m) in total. Instead of making the tries and hash tables dynamic, we
can have one extra atomic heap per hash table (the one for the run-length symbols and the
one in each trie node) where we can insert/delete the necessary fresh symbols, and they will
be processed in constant time. We then retain the O(m log m) total processing cost.

Maintaining M(P ) and R

After we finish updating the parse tree, we collect the first 2αk+1 positions, the position of the
following end of block, and the last αk+1 positions, in each list Sk, to form the sets Mk(P ).
Those are then merged into M(P ) and sorted by increasing value. Since |M(P )| = O(log m),
and its values are integers in [1 . . m], M(P ) can be sorted in O(log m) time with atomic
heaps. We then traverse M(P ) and the current set R in synchronization, so as to (1) remove
the positions of R that are not anymore in M(P ), and (2) insert in R the positions that are
now in M(P ), as long as the position had not been in R before and had been inactivated
(this is easily marked in an array of size m). At the end of this process, it always holds that
R ⊆ M(P [i . . j]), and thus |R| = O(log m). Due to the parsing, an active position r may
enter and leave R several times along the process, but this time that will not be an issue.

Overall, we maintain the parsing, M(P [i . . j]), and R in time O(m log m). Since all the
lines in Algorithm 2 other than 6, 7, and 13, take O(1) time per element in R, the total time
spent in those lines adds up to O(m log m).

6.2 Patricia Tree Searches
Lines 6 and 7 of Algorithm 2 perform Θ(m)-time searches in PX and PY . Since each of the
m positions becomes active when j + 1 reaches it, this amortizes to no less than Θ(m2),
which is now too high for us. We then resort to a different technique.
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Instead of computing ℓj+1 and xj+1 inside the main cycle, we will compute them all
beforehand, in batch form. We make use of the following result, which was key to obtain
subquadratic times in grammar-based indexing.

▶ Lemma 11 ([11, Lem 6.5]). Let S be a set of strings and assume we have a data structure
supporting extraction of any length-ℓ prefix of strings in S in time fe(ℓ) and computation of
a given Karp–Rabin signature κ of any length-ℓ prefix of strings in S in time fh(ℓ). We can
then build a data structure of O(|S|) words such that, later, given a pattern P [1 . . m] and τ

suffixes Q1, . . . , Qτ of P , we find the ranges of strings in (the lexicographically-sorted) set S
prefixed by each Qi, in O(m + τ(fh(m) + log m) + fe(m)) total time.

When S = X or S = Y, our access data structure A provides the required prefix/suffix
extraction in time fe(ℓ) = O(ℓ). As for Karp-Rabin signatures [20], a result of independent
interest is that we can obtain fh(ℓ) = O(log ℓ) time on our grammar, as proved next. We
consider the more complicated case of Y ∈ Y ; the case of X ∈ X is analogous. Recall we can
compute in O(1) time one of κ(S · S′), κ(S), and κ(S′), from the other two [11, Sec. A.3].

▶ Lemma 12. The Karp-Rabin signature κ(Y [. . ℓ]) of any Y ∈ Y can be computed in time
O(log ℓ) with our grammar.

Proof. We build on the same structure A used for extraction from the root of PY . The
strings in Y are concatenations Y = exp(Bs) · · · exp(Bt) of siblings in rules A→ B1 · · ·Bt

in the grammar tree. The node v ∈ PY of Y stores ⟨v⟩ = Bs. Let us first assume that
|exp(Bs)| ≥ ℓ, so the signature can be computed on exp(Bs)[. . ℓ].

Structure A is a set of tries on the grammar symbols. The terminals Σ form the trie
roots. If A → B1 · · ·Bt, then B1 is the parent of A. If A → Bt, then B is the parent of
A. Any ancestor C of Bs in the tries is a node that descends from Bs by the leftmost
path in the parse tree. The structure A can jump from Bs to any such C in constant time
in the tries. Our grammar is locally balanced: there can be only one block ending inside
exp(Bs[. . ℓ]) at level k = 1 + 2 log4/3(4ℓ) [24, Lem. 3.8], and thus the lowest C such that
|exp(C)| ≥ ℓ has level at most k + 1; its height is d ≤ k + 1 = O(log ℓ). It can then be
found in O(log log ℓ) time with exponential search on the ancestors of Bs. We then have that
exp(Bs)[. . ℓ] = exp(C)[. . ℓ] and can compute the signature on C instead.

The basic algorithm to compute signatures takes time O(log2 ℓ) [11, Lem 6.7]. It moves
from C towards the leaf L of the parse tree that corresponds to exp(C)[ℓ]. Let C → C1 · · ·Ct,
then it stores every wi(C) = |exp(C1 · · ·Ci)| and every κi(C) = κ(exp(C1 · · ·Ci)). The
algorithm finds, in O(log i) ⊆ O(log ℓ) time, using exponential search, the Ci that is in the
path to L (i.e., wi−1 < ℓ ≤ wi), sets ℓ← ℓ− wi−1, collects κi−1(C), and continues by Ci. It
composes all those κ values towards L to obtain κ(Y [. . ℓ]). In rules C → Ct

1 it obtains i in
constant time but spends O(log i) time to compute κi−1(C) from the stored κ(exp(C1)).

Instead, an O(log n) time algorithm [11, Thm. A.3] replaces the exponential searches by
a more sophisticated scheme, whose cost is the telescoping sum

∑p
h=1 log(th/th−1) ≤ log tp,

where th is the number of children (counting C → Ct
1 as having t children) of the ancestor at

distance h of leaf L. In their case, they start from the root, which could have tp = n, but if
we start it from a node C, its time is log tp ≤ log |exp(C)|. Another component of the cost is
the number of times one leaves from heavy paths; this is again O(log n) in general but just
O(d) = O(log ℓ) if we start from the position of C in its heavy path.

It could be, however, that exp(C) is as long as n. Because it was formed in Sk, however,
the children Ci of C belonged to Ak (only those nonterminals are allowed to form rules in
Sk), and thus by definition |exp(Ci)| ≤ ℓk and log |exp(Ci)| = O(k) = O(log ℓ). We can then
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find i and compute κi−1(C) in time O(log i) ⊆ O(log ℓ) with the basic method [11, Lem 6.7]
and then continue from Ci, where the more sophisticated technique [11, Thm. A.3] completes
the computation in another O(log |exp(Ci)|) ⊆ O(log ℓ) time.

In case |exp(Bs)| < ℓ, we find the first s < i ≤ t such that wi(A) ≥ ℓ, and compute instead
the signature of exp(Bi)[. . ℓ−wi−1(A)], to then compose it with the stored values κs−1(A) and
κi−1(A) to obtain the final signature κ(Y [. . ℓ]) = κ(exp(A)[ws−1(A) + 1 . . ws−1(A) + ℓ]). ◀

Batched searches

The m searches for all the values ℓr, 1 ≤ r ≤ m, correspond to searching PY for every
suffix P [r + 1 . .]. Note that Lemma 11 does not yield the node v of line 6, but rather its
corresponding range [v1, v2]. By performing a lowest common ancestor (LCA) query on PY
from the v1th and v2th leaves, we obtain v = lca(v1, v2) (identifying leaves with their ranks).
The answer is indeed v if |v| = m− r; if m− r < |v| the answer is the virtual node of string
length m− r on the edge of PY that leads to v. Linear-space LCA data structures that are
built in linear time and answer lca in O(1) time are well known [3].

The problem is that Lemma 11 works only if P [r + 1 . .] actually prefixes some string
in Y . Otherwise, unlike classical trie searching, it does not even yield the maximum prefix of
P [r + 1 . .] that prefixes some string in Y. We will resort to, essentially, binary searching for
those longest prefixes using Lemma 11 as an internal tool.

Assume m is a power of 2 for simplicity; the general case is easily deduced. We define
sets Qa,b of positions, containing those values r such that P [r + 1 . . a] is known to be a prefix
in Y and P [r + 1 . . b + 1] is known not to be a prefix in Y (the first condition is assumed
to hold if r + 1 > a). We start with the set Q1,m = {1, . . . , m}. To process a set Qa,b, we
search for all the τ = |Qa,b| suffixes {P [r + 1 . . c], r ∈ Qa,b} of P [. . c] using Lemma 11, with
c = (a + b + 1)/2. The values r where P [r + 1 . . c] is found are moved to Qc,b, and the others
to Qa,c−1 (if r + 1 > c, then P [r + 1 . . c] = ε, so we can directly move r to Qc,b without
searching for it). We will associate the node vr,c ∈ PY to those values r for which P [r + 1 . . c]
is found in Y ; those not found retain their previous node vr,∗ (in the beginning all such nodes
are vr,r and equal to the root of PY).

Note that the values b− a + 1 halve as the elements in Qa,b are separated into two sets.
Any value r is then moved O(log m) times until it ends up in a set of the form Qc,c; at this
point we know that the longest prefix of P [r + 1 . .] that is also a prefix in Y is P [r + 1 . . c],
and also know its node vr,c.

The cost of using Lemma 11 has two parts. The cost fh(m) + log m = O(log m) can
be charged to each of the τ suffixes sought, and there is an additional global cost of
m + fe(m) = O(m). Since every suffix P [r + 1 . .] participates O(log m) times in the lemma,
the first cost adds up to O(m log2 m) over all the m positions r. The second part is potentially
very large, however: the suffixes in Qa,b may start well ahead of a, thus the pattern is P [. . c],
not P [a . . c]; a simple application of the lemma would lead to a quadratic cost again.

Smarter substring extractions

To reduce this time, we consider where the O(m) cost in Lemma 11 comes from. A first part
refers to the time needed to compute the Karp-Rabin signatures for all the suffixes in Qa,b.
This cost is easily maintained within O(m) overall because we can compute the signatures
κ(P [r + 1 . .]), for all 1 ≤ r ≤ m, in a single pass over P , and then any κ(P [r + 1 . . j]) is
obtained in constant time from κ(P [r + 1 . .]) and κ(P [j + 1 . .]).
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The second part of the O(m) cost corresponds to the time fe(m) to verify the longest
suffix among those that passed some previous filters; the rest of the verification is built on
that extracted suffix. Let P [r + 1 . . c] be the longest candidate suffix. If r + 1 > a, we extract
the actual suffix P ′[. . c− r] regularly in time fe(c− r) = O(b− a) with A, because P ′ starts
at the root of PY and thus it belongs to Y.

Otherwise, r + 1 ≤ a and thus P [r + 1 . . a] had been successfully matched before and we
have its node vr,a ∈ PY . As mentioned, the process of Lemma 11 performs several checks
before performing the final extraction of the longest suffix surviving the checks. We will
add a new check to those, which can only speed up the process: the candidate node v for
P [r + 1 . . c] must now descend from vr,a in order to be further considered. The descendance
check is performed in constant time by comparing the leaf range [v1, v2] of v with that of
vr,a. If v passes the test, we know that P ′[. . c − r] does start with P [r + 1 . . a], and then
only need to extract P ′[a− r + 1 . . c− r] from the text, which is of length O(b− a).

This time, however, the string to extract does not start at the root of PY , and thus
it requires a random access to T .1 Recall, as in Lemma 12, that the strings in Y are
concatenations Y = exp(Bs) · · · exp(Bt) of consecutive siblings in rules A→ B1 · · ·Bt in the
grammar tree (if A→ Bt, then the node stores ⟨v⟩ = B[t−1] and we have Bs = B). Let us
first assume that |exp(Bs)| ≥ c, so the substring to extract is within exp(Bs)[. . c]. We use
again the structure A, now to extract the string in time O(b− a + log c).

Once again, we can search in O(log log c) time for the lowest descendant C of Bs such
that |exp(C)| ≥ c; its height is d = O(log c) because the grammar is locally balanced. Since
exp(Bs)[. . c] = exp(C)[. . c], we descend from C to the leaf L in the parse tree representing
exp(C)[a− r + 1]. Using the same techniques as in Lemma 12, the time is O(d) = O(log c).
From L, exp(C)[a−r+1 . . c−r] = P ′[a−r+1 . . c−r] is extracted in time O(c−a) = O(b−a).

In case |exp(Bs)| < c, the node C is not a descendant of Bs but we use C = A instead.
Given the limitation on |exp(Bs)|, the height of Bs is O(log c), and so is the height of A.

The O(log c) = O(log m) cost can be charged to the suffix sought, which adds up to
O(m log2 m) over the O(log m) times each suffix may use the lemma. The O(b− a) terms
add up to O(m) per level of sets Qa,b (a level corresponding to a difference b− a + 1). Since
all the ranges (a, b) of a level are disjoint (level ℓ partitions (1, m) into 2ℓ ranges of size
m/2ℓ), the b− a values add up to O(m) per level. Since there are O(log m) levels, that part
of the cost adds up to O(m log m).

We similarly compute the nodes xr for every P [. . r]rev on PX . While in line 7 of
Algorithm 2 we search only for P [i . . r]rev because we are not interested in positions before
i, this time we precompute all the values in advance for the smallest i = 1. Later, when i

increases, we will move to the required ancestors of xr in line 13.
Overall, the Patricia trie searches execute lines 6 and 7 in O(m log2 m) total time.

6.3 Emptiness Queries
In line 13, we perform one range emptiness query every time we decrement |xr| for some r;
this amounts to O(m2) emptiness queries, which we cannot afford now. We will instead use
a faster method based on orthogonal range successor queries: given a range [x1

r, x2
r]× [y1

r , y2
r ],

1 It is tempting to say that, since we had already matched P [r + 1 . . a] from the root of PY , we could
somehow save the state of that extraction so as to continue without paying the overhead of the random
access. However, we might have never extracted the text of the node vr,a explicitly; its verification may
have been carried out as a subproduct of reading longer suffix, starting before r + 1.
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we can find the largest value x< ≤ x1
r such that [x<, x2

r] × [y1
r , y2

r ] contains a point, and
the smallest value x> ≥ x2

r such that [x1
r, x>]× [y1

r , y2
r ] contains a point. Those queries can

run in O(logϵ g) time on a grid with g points, using an O(g)-space data structure, for any
constant ϵ > 0 defined at construction [35]; construction time can be made O(g

√
log g) [2].

The lowest ancestor x of xr containing some point in [x1, x2]× [y1
r , y2

r ] must then hold
x1 ≤ x< or x2 ≥ x>. In the first case, it is v1 = lca(x<, x2); in the second, it is v2 =
lca(x1, x>). Both v1 and v2 are ancestors of xr, and thus of each other. The correct node x

is then the lowest of v1 and v2, which is known from the leaf ranges stored at the nodes.
With this query, line 17 of Algorithm 2 does not cycle; it just performs one O(logϵ g)-time

step. It can then be counted as one of the O(|R|) operations performed in each cycle j. Since
there are O(m log m) such operations, this one adds O(m log m logϵ g) to the total cost.

6.4 The Final Result
Our time complexities then add up to O(m log m(log m+logϵ g)) for a grammar of size g. Since
in our case g = O(δ log n

δ ), we can write the time as O(m log m(log m + logϵ δ + log log n)).
The construction time of all the data structures we use is dominated by the O(n log n)
expected time needed to build the Karp-Rabin hashes of Lemma 11 [11, Sec. 6.6] (the
grammar is built in O(n) expected time, see [24, Cor. 3.15]).

▶ Theorem 13. Let T [1 . . n] have substring complexity δ. Then, for any constant ϵ > 0, we
can build in O(n log n) expected time a data structure of size O(δ log n

δ ) that finds the MEMs of
any given pattern P [1 . . m] in time O(m log m(log m+logϵ δ+log log n)) ⊆ O(m log m(log m+
logϵ n)), with an occurrence of each. The query process uses O(m) additional space.

We have assumed m ≤ n, but it could be the other way in some applications. Since in
this case no substring longer than n will be matched inside P , we can run O(m/n) iterations
finding the MEMs of P [1 . . 2n], P [n . . 3n], P [2n . . 4n], and so on, avoiding repeated MEMs
in the output. The total cost would then be O(m log2 n) and the query space would be O(n).

7 Conclusions

We have obtained improved results, including the first subquadratic algorithm, to find MEMs
on parsing-based indices, which are the most promising in terms of space for highly repetitive
text collections. While suffix-based indices can preprocess T [1 . . n] to find the MEMs of
P [1 . . m] in T in time O(m log log n), their space is Ω(r), where r (the number of runs in the
BWT of T ) is not such a strong measure of repetitiveness [34]. Our first result is a data
structure of size O(grl), where grl is the size of the smallest RLCFG that generates T . This
is currently the best possible space for any structure able to access T with relevant time
guarantees [34]. Our structure finds the MEMs in O(m2 logϵ n) time for any constant ϵ > 0.
This is very similar to the time of previous work [18], which could also run in O(grl) space.
Within O(δ log n

δ ) space, we obtain the first subquadratic time, O(m log m(log m + logϵ n)),
on a particular RLCFG that has local consistency properties. This space is optimal for every
n and δ, though grl is always O(δ log n

δ ) and can be o(δ log n
δ ) in some text families [25].

A challenge for future work is to extend our results to finding k-MEMs, which are the
maximal substrings of P that appear at least k times in T , for k given at query time. The
basic Algorithm 1 is easily modified to find the k-MEMs in O(m) time, but running in
compressed space is more costly. In the extended version we will show how find k-MEMs,
changing the logϵ n terms to log2+ϵ n, by building on grammar-based indices that can count

CPM 2023



24:16 Computing MEMs on Repetitive Text Collections

the number of occurrences associated with a set of primary occurrences [11]. The space also
increases: the O(grl) space becomes O(g) (g ≥ grl being size of the smallest CFG) and the
O(δ log n

δ ) space becomes O(γ log n
γ ) (γ ≥ δ being the size of a string attractor of T [22]).

Our techniques are presented on a particular locally consistent grammar [24] that yields
the best complexities, but they would work on others too. We plan to implement them on
practical constructions of CFGs [12] built with RePair [27] or of locally consistent grammars
based on induced suffix sorting [14, 36]. Further, even without having theoretical guarantees,
the algorithm for arbitrary RLCFGs will probably be competitive if implemented on Lempel-
Ziv based indices [26, 16], which are considerably smaller than those based on grammars.
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