6,540 research outputs found

    CloudJet4BigData: Streamlining Big Data via an Accelerated Socket Interface

    Get PDF
    Big data needs to feed users with fresh processing results and cloud platforms can be used to speed up big data applications. This paper describes a new data communication protocol (CloudJet) for long distance and large volume big data accessing operations to alleviate the large latencies encountered in sharing big data resources in the clouds. It encapsulates a dynamic multi-stream/multi-path engine at the socket level, which conforms to Portable Operating System Interface (POSIX) and thereby can accelerate any POSIX-compatible applications across IP based networks. It was demonstrated that CloudJet accelerates typical big data applications such as very large database (VLDB), data mining, media streaming and office applications by up to tenfold in real-world tests

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    A Survey On Hybrid Routing Protocols In MANETS

    Get PDF
    Mobile Ad hoc NETwork (MANET) is a collection of mobile nodes that are arbitrarily located so that the interconnections between nodes are dynamically changing. A routing protocol is used to find routes between mobile nodes to facilitate communication wi thin the network. The main goal of such an ad hoc network routing protocol is to establish correct and efficient route between a pair of mobile nodes. Route should be discovered and maintained with a minimum of overhead and bandwidth consumption. There are number of routing protocols were proposed for ad hoc networks. T he objective of this paper is to create a taxonomy of the ad hoc hybrid routing protocols, and to survey and comp are each type of hybrid protocols. We try to show the requirements considered by the different hybrid protocols, the resource limitations under which they operate, and the design decisions made by the author

    Implementation and evaluation of the sensornet protocol for Contiki

    Get PDF
    Sensornet Protocol (SP) is a link abstraction layer between the network layer and the link layer for sensor networks. SP was proposed as the core of a future-oriented sensor node architecture that allows flexible and optimized combination between multiple coexisting protocols. This thesis implements the SP sensornet protocol on the Contiki operating system in order to: evaluate the effectiveness of the original SP services; explore further requirements and implementation trade-offs uncovered by the original proposal. We analyze the original SP design and the TinyOS implementation of SP to design the Contiki port. We implement the data sending and receiving part of SP using Contiki processes, and the neighbor management part as a group of global routines. The evaluation consists of a single-hop traffic throughput test and a multihop convergecast test. Both tests are conducted using both simulation and experimentation. We conclude from the evaluation results that SP's link-level abstraction effectively improves modularity in protocol construction without sacrificing performance, and our SP implementation on Contiki lays a good foundation for future protocol innovations in wireless sensor networks

    Dtn and non-dtn routing protocols for inter-cubesat communications: A comprehensive survey

    Get PDF
    CubeSats, which are limited by size and mass, have limited functionality. These miniaturised satellites suffer from a low power budget, short radio range, low transmission speeds, and limited data storage capacity. Regardless of these limitations, CubeSats have been deployed to carry out many research missions, such as gravity mapping and the tracking of forest fires. One method of increasing their functionality and reducing their limitations is to form CubeSat networks, or swarms, where many CubeSats work together to carry out a mission. Nevertheless, the network might have intermittent connectivity and, accordingly, data communication becomes challenging in such a disjointed network where there is no contemporaneous path between source and destination due to satellites’ mobility pattern and given the limitations of range. In this survey, various inter-satellite routing protocols that are Delay Tolerant (DTN) and Non Delay Tolerant (Non-DTN) are considered. DTN routing protocols are considered for the scenarios where the network is disjointed with no contemporaneous path between a source and a destination. We qualitatively compare all of the above routing protocols to highlight the positive and negative points under different network constraints. We conclude that the performance of routing protocols used in aerospace communications is highly dependent on the evolving topology of the network over time. Additionally, the Non-DTN routing protocols will work efficiently if the network is dense enough to establish reliable links between CubeSats. Emphasis is also given to network capacity in terms of how buffer, energy, bandwidth, and contact duration influence the performance of DTN routing protocols, where, for example, flooding-based DTN protocols can provide superior performance in terms of maximizing delivery ratio and minimizing a delivery delay. However, such protocols are not suitable for CubeSat networks, as they harvest the limited resources of these tiny satellites and they are contrasted with forwarding-based DTN routing protocols, which are resource-friendly and produce minimum overheads on the cost of degraded delivery probability. From the literature, we found that quota-based DTN routing protocols can provide the necessary balance between delivery delay and overhead costs in many CubeSat missions

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    An Experimental Study of the Effect of Shared Information on Pilot/Controller Re-Route Negotiation

    Get PDF
    Air–ground data link systems are being developed to enable pilots and air traffic controllers to share information more fully. The sharing of information is generally expected to enhance their shared situation awareness and foster more collaborative decision making. An exploratory, part-task simulator experiment is described which evaluates the extent to which shared information may lead pilots and controllers to cooperate or compete when negotiating route amendments. The results indicate an improvement in situation awareness for pilots and controllers and a willingness to work cooperatively. Independent of data link considerations, the experiment also demonstrates the value of providing controllers with a good-quality weather representation on their plan view displays. Observed improvements in situation awareness and separation assurance are discussed. It is argued that deployment of this relatively simple, low-risk addition to the plan view displays be accelerated.the National Aeronautics and Space Administration Ames Research Center under grant NAG 2-716 and by The Analytical Sciences Corporation (TASC) as part of the FAA Center of Excellence in Operations Research

    Analyzing the Impact of Wireless Multi-Hop Networking On Vehicular Safety

    Get PDF
    One of the core challenges of Intelligent Transportation System is the dissemination of timely and accurate vehicle information (e.g. speed, position) to geographically large distances without compromising data supply rates from immediate neighbors. This feature is critical for the design of vehicle safety and navigation applications. Single hop broadcasting is often inadequate to ensure vehicle safety when the platoon size is arbitrarily large due to its upper bound on rate and range of wireless message transmission. Existing wireless multi-hop protocols do not ensure reliable message delivery while avoiding network congestion in the shared channel. In this thesis, we make two separate but related investigations to address this challenge - (1) Analyze the impact of distance sensitive multi-hop broadcasting in realistic traffic network (2) Analyze the impact of wireless multi-hop network in vehicle safety. For investigating the first part, we used VCAST, a distance sensitive information propagation technique, in which information is forwarded at a rate that decreases linearly with distance from the source. VCAST is evaluated by using extensive simulations in ns-3, a discrete event simulator for wireless and mobile ad-hoc networks, under different density, source broadcast rates and communication range. To simulate realistic traffic movement, we used 2d grids of different sizes and used both uniform and non-uniform mobility. The results show that VCAST is scalable for - large number of vehicles and large source broadcast rates. It is further shown that successful scaling is achieved by reduced number of vehicle records transmitted per second per vehicle for varying network sizes and varying source broadcast rates. Vehicle safety messages for VCAST are piggy backed on heart beat messages and does not require any modifications to the existing vehicular communication standards. For investigating the second part, we implemented a realistic car following model and used string stability analysis as a metric for measuring vehicle safety. The basic idea is to exploit the small network propagation time in disseminating safety messages over large distances, instead of relying on just the predecessor vehicle\u27s state. This enables distant vehicles in a traffic stream to plan well in advance against rear end collisions which could lead to string instability. We also proposed one such proactive method of planning - and that is by controlling the headway time. Through extensive simulations, we obtained results for vehicle safety when some incident is detected abruptly on its course. The results show that proactive planning using multi-hop network makes the entire platoon string stable in the presence of emergency road incidents
    • …
    corecore