4,091 research outputs found

    Distributed model predictive control of steam/water loop in large scale ships

    Get PDF
    In modern steam power plants, the ever-increasing complexity requires great reliability and flexibility of the control system. Hence, in this paper, the feasibility of a distributed model predictive control (DiMPC) strategy with an extended prediction self-adaptive control (EPSAC) framework is studied, in which the multiple controllers allow each sub-loop to have its own requirement flexibility. Meanwhile, the model predictive control can guarantee a good performance for the system with constraints. The performance is compared against a decentralized model predictive control (DeMPC) and a centralized model predictive control (CMPC). In order to improve the computing speed, a multiple objective model predictive control (MOMPC) is proposed. For the stability of the control system, the convergence of the DiMPC is discussed. Simulation tests are performed on the five different sub-loops of steam/water loop. The results indicate that the DiMPC may achieve similar performance as CMPC while outperforming the DeMPC method

    A robust PID autotuning method for steam/water loop in large scale ships

    Get PDF
    During the voyage of the ship, disturbances from the sea dynamics are frequently changing, and the ship's operation mode is also varied. Hence, it is necessary to have a good controller for steam/water loop, as the control task is becoming more challenging in large scale ships. In this paper, a robust proportional-integral-derivative (PID) autotuning method is presented and applied to the steam/water loop based on single sine tests for every sub-loop in the steam/water loop. The controller is obtained during which the user-defined robustness margins are guaranteed. Its performance is compared against other PID autotuners, and results indicate its superiority

    Variable structure techniques in control system design

    Get PDF
    During the last twenty years, control theorists belonging almost exclusively to the USSR, have laid down the foundations of variable-structure systems (commonly abbreviated to vsS). As the name implies, such systems are allowed to change their structure through time in accordance with some preassigned algorithm. The theory has demonstrated that some significant advantages could be gained by adopting that approach in the, design of automatic control systems, amongst which are good transient responses and insensitivity to parametric variations and to external disturbances. The VS controller is slightly more complex than a fixed structure design based on standard methods such as state feedback or frequency response techniques, but is a great deal less complex than some adaptive designs. It also lends itself to a straightforward microcomputer implementation. While the theoretical aspect of VSS has been well explored, its general applicability to engineering problems is yet to be established. There are still unanswered questions as to the suitability of the method for practical systems, which invariably contain a certain amount of noise, uncertainties and nonlinearities. The work described in this thesis concentrates on that particular aspect and is, in brief, an investigation of VSS as an engineering design procedure. The theory of VSS is reviewed and the principles are then applied to a number of engineering examples. The performance of the systems are assessed from digital simulation runs, hybrid computation and the microcomputer control of a DC motor

    Pneumatic Tire

    Get PDF
    For many years, tire engineers relied on the monograph, \u27Mechanics of Pneumatic Tires\u27, for detailed information about the principles of tire design and use. Published originally by the National Bureau of Standards, U.S. Department of Commerce, in 1971, and a later (1981) edition by the National Highway Traffic Safety Administration (NHTSA), U.S. Department of Transportation, it has long been out of print. No textbook or monograph of comparable range and depth has appeared since. While many chapters of the two editions contain authoritative reviews that are still relevant today, they were prepared in an era when bias ply and belted-bias tires were in widespread use in the United States and thus did not deal in a comprehensive way with more recent tire technology, notably the radial constructions now adopted nearly universally. In 2002, it was preposed that NHTSA should sponsor and publish electronically a new book on passenger tires, under editorship of the University of Akron, to meet the needs of a new generation of tire scientists, engineers, designers, and users. This text is the outcome. The chapter authors are recognized authorities in tire science and technology. They have prepared scholarly and up-to-date reviews of the various aspects of passenger car tire design, construction and use, and included test questions in many instances, so that the book can be used for self-study or as a teaching text by engineers and others entering the tire industry

    Study of spacecraft direct readout meteorological systems

    Get PDF
    Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link

    16th Nordic Process Control Workshop : Preprints

    Get PDF

    Input space dependent controller for civil structures exposed to multi-hazard excitations

    Get PDF
    A challenge in the control of civil structures exposed to multiple types of hazards is in the tuning of control parameters to ensure a prescribed level of performance under substantially different excitation dynamics, which could be considered as largely uncertain. A solution is to leverage data driven control algorithms, which, in their adaptive formulation, can self-tune to uncertain environments. The authors have recently proposed a new type of data-driven controller, termed input space dependent controller (ISDC), that has the particularity to adapt its input space in real-time to identify key measurements that represent the essential dynamics of the system. Previous studies have focused on time delay formulations, where the adaptive control rule would use time delayed measurements as inputs. In this configuration, termed variable multi-delay controller (VMDC), the time delay itself was adaptive, which provided the input space dependence capabilities. However, the size, or embedding dimension, of the input space was kept constant. In this paper, the authors formulate and study a strategy to also have the embedding dimension vary, therefore providing full adaptive input space capabilities. This generalization of the ISDC algorithm will allow the controller to adapt to excitations with higher levels of chaos, such as a seismic event. The performance of ISDC under multi-hazard excitations is first investigated on a single-degree-of-freedom system and compared with the previously developed and demonstrated VMDC. Results show that the adaptive embedding dimension provides significantly enhanced mitigation performance. After, the ISDC performance is assessed on two benchmark buildings equipped with a semi-active friction device and subjected to non-simultaneous multi-hazard excitations (wind, blast and earthquake). Results are compared with a sliding mode controller, where the ISDC is shown to provide better mitigation capabilities
    corecore