391 research outputs found

    Annotated Bibliography: Anticipation

    Get PDF

    Does the motor system need intermittent control?

    Get PDF
    Explanation of motor control is dominated by continuous neurophysiological pathways (e.g. trans-cortical, spinal) and the continuous control paradigm. Using new theoretical development, methodology and evidence, we propose intermittent control, which incorporates a serial ballistic process within the main feedback loop, provides a more general and more accurate paradigm necessary to explain attributes highly advantageous for competitive survival and performance

    Understanding motor control in humans to improve rehabilitation robots

    Get PDF
    Recent reviews highlighted the limited results of robotic rehabilitation and the low quality of evidences in this field. Despite the worldwide presence of several robotic infrastructures, there is still a lack of knowledge about the capabilities of robotic training effect on the neural control of movement. To fill this gap, a step back to motor neuroscience is needed: the understanding how the brain works in the generation of movements, how it adapts to changes and how it acquires new motor skills is fundamental. This is the rationale behind my PhD project and the contents of this thesis: all the studies included in fact examined changes in motor control due to different destabilizing conditions, ranging from external perturbations, to self-generated disturbances, to pathological conditions. Data on healthy and impaired adults have been collected and quantitative and objective information about kinematics, dynamics, performance and learning were obtained for the investigation of motor control and skill learning. Results on subjects with cervical dystonia show how important assessment is: possibly adequate treatments are missing because the physiological and pathological mechanisms underlying sensorimotor control are not routinely addressed in clinical practice. These results showed how sensory function is crucial for motor control. The relevance of proprioception in motor control and learning is evident also in a second study. This study, performed on healthy subjects, showed that stiffness control is associated with worse robustness to external perturbations and worse learning, which can be attributed to the lower sensitiveness while moving or co-activating. On the other hand, we found that the combination of higher reliance on proprioception with \u201cdisturbance training\u201d is able to lead to a better learning and better robustness. This is in line with recent findings showing that variability may facilitate learning and thus can be exploited for sensorimotor recovery. Based on these results, in a third study, we asked participants to use the more robust and efficient strategy in order to investigate the control policies used to reject disturbances. We found that control is non-linear and we associated this non-linearity with intermittent control. As the name says, intermittent control is characterized by open loop intervals, in which movements are not actively controlled. We exploited the intermittent control paradigm for other two modeling studies. In these studies we have shown how robust is this model, evaluating it in two complex situations, the coordination of two joints for postural balance and the coordination of two different balancing tasks. It is an intriguing issue, to be addressed in future studies, to consider how learning affects intermittency and how this can be exploited to enhance learning or recovery. The approach, that can exploit the results of this thesis, is the computational neurorehabilitation, which mathematically models the mechanisms underlying the rehabilitation process, with the aim of optimizing the individual treatment of patients. Integrating models of sensorimotor control during robotic neurorehabilitation, might lead to robots that are fully adaptable to the level of impairment of the patient and able to change their behavior accordingly to the patient\u2019s intention. This is one of the goals for the development of rehabilitation robotics and in particular of Wristbot, our robot for wrist rehabilitation: combining proper assessment and training protocols, based on motor control paradigms, will maximize robotic rehabilitation effects

    The perceptual shaping of anticipatory actions

    Get PDF
    Humans display anticipatory motor responses to minimize the adverse effects of predictable perturbations. A widely accepted explanation for this behaviour relies on the notion of an inverse model that, learning from motor errors, anticipates corrective responses. Here, we propose and validate the alternative hypothesis that anticipatory control can be realized through a cascade of purely sensory predictions that drive the motor system, reflecting the causal sequence of the perceptual events preceding the error. We compare both hypotheses in a simulated anticipatory postural adjustment task. We observe that adaptation in the sensory domain, but not in the motor one, supports the robust and generalizable anticipatory control characteristic of biological systems. Our proposal unites the neurobiology of the cerebellum with the theory of active inference and provides a concrete implementation of its core tenets with great relevance both to our understanding of biological control systems and, possibly, to their emulation in complex artefacts

    Multimodal Sensory Integration for Perception and Action in High Functioning Children with Autism Spectrum Disorder

    Get PDF
    Movement disorders are the earliest observed features of autism spectrum disorder (ASD) present in infancy. Yet we do not understand the neural basis for impaired goal-directed movements in this population. To reach for an object, it is necessary to perceive the state of the arm and the object using multiple sensory modalities (e.g. vision, proprioception), to integrate those sensations into a motor plan, to execute the plan, and to update the plan based on the sensory consequences of action. In this dissertation, I present three studies in which I recorded hand paths of children with ASD and typically developing (TD) controls as they grasped the handle of a robotic device to control a cursor displayed on a video screen. First, participants performed discrete and continuous movements to capture targets. Cursor feedback was perturbed from the hand\u27s actual position to introduce visuo-spatial conflict between sensory and proprioceptive feedback. Relative to controls, children with ASD made greater errors, consistent with deficits of sensorimotor adaptive and strategic compensations. Second, participants performed a two-interval forced-choice discrimination task in which they perceived two movements of the visual cursor and/or the robot handle and then indicated which of the two movements was more curved. Children with ASD were impaired in their ability to discriminate movement kinematics when provided visual and proprioceptive information simultaneously, suggesting deficits of visuo-proprioceptive integration. Finally, participants made goal-directed reaching movements against a load while undergoing simultaneous functional magnetic resonance imaging (MRI). The load remained constant (predictable) within an initial block of trials and then varied randomly within four additional blocks. Children with ASD exhibited greater movement variability compared to controls during both constant and randomly-varying loads. MRI analysis identified marked differences in the extent and intensity of the neural activities supporting goal-directed reaching in children with ASD compared to TD children in both environmental conditions. Taken together, the three studies revealed deficits of multimodal sensory integration in children with ASD during perception and execution of goal-directed movements and ASD-related motor performance deficits have a telltale neural signature, as revealed by functional MR imaging

    Sensorimotor learning and self-motion perception in human balance control

    Get PDF

    Human inspired humanoid robots control architecture

    Get PDF
    This PhD Thesis tries to present a different point of view when talking about the development of control architectures for humanoid robots. Specifically, this Thesis is focused on studying the human postural control system as well as on the use of this knowledge to develop a novel architecture for postural control in humanoid robots. The research carried on in this thesis shows that there are two types of components for postural control: a reactive one, and other predictive or anticipatory. This work has focused on the development of the second component through the implementation of a predictive system complementing the reactive one. The anticipative control system has been analysed in the human case and it has been extrapolated to the architecture for controlling the humanoid robot TEO. In this way, its different components have been developed based on how humans work without forgetting the tasks it has been designed for. This control system is based on the composition of sensorial perceptions, the evaluation of stimulus through the use of the psychophysics theory of the surprise, and the creation of events that can be used for activating some reaction strategies (synergies) The control system developed in this Thesis, as well as the human being does, processes information coming from different sensorial sources. It also composes the named perceptions, which depend on the type of task the postural control acts over. The value of those perceptions is obtained using bio-inspired evaluation techniques of sensorial inference. Once the sensorial input has been obtained, it is necessary to process it in order to foresee possible disturbances that may provoke an incorrect performance of a task. The system developed in this Thesis evaluates the sensorial information, previously transformed into perceptions, through the use of the “Surprise Theory”, and it generates some events called “surprises” used for predicting the evolution of a task. Finally, the anticipative system for postural control can compose, if necessary, the proper reactions through the use of predefined movement patterns called synergies. Those reactions can complement or substitute completely the normal performance of a task. The performance of the anticipative system for postural control as well as the performance of each one of its components have been tested through simulations and the application of the results in the humanoid robot TEO from the RoboticsLab research group in the Systems Engineering and Automation Department from the Carlos III University of Madrid. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Esta Tesis Doctoral pretende aportar un punto de vista diferente en el desarrollo de arquitecturas de control para robots humanoides. En concreto, esta Tesis se centra en el estudio del sistema de control postural humano y en la aplicación de este conocimiento en el desarrollo de una nueva arquitectura de control postural para robots humanoides. El estudio realizado en esta Tesis pone de manifiesto la existencia de una componente de control postural reactiva y otra predictiva o anticipativa. Este trabajo se ha centrado en el desarrollo de la segunda componente mediante la implementación de un sistema predictivo que complemente al sistema reactivo. El sistema de control anticipativo ha sido estudiado en el caso humano y extrapolado para la arquitectura de control del robot humanoide TEO. De este modo, sus diferentes componentes han sido desarrollados inspirándose en el funcionamiento humano y considerando las tareas para las que dicho robot ha sido concebido. Dicho sistema está basado en la composición de percepciones sensoriales, la evaluación de los estímulos mediante el uso de la teoría psicofísica de la sorpresa y la generación de eventos que sirvan para activar estrategias de reacción (sinergias). El sistema de control desarrollado en esta Tesis, al igual que el ser humano, procesa información de múltiples fuentes sensoriales y compone las denominadas percepciones, que dependen del tipo de tarea sobre la que actúa el control postural. El valor de estas percepciones es obtenido utilizando técnicas de evaluación bioinspiradas de inferencia sensorial. Una vez la entrada sensorial ha sido obtenida, es necesario procesarla para prever posibles perturbaciones que puedan ocasionar una incorrecta realización de una tarea. El sistema desarrollado en esta Tesis evalúa la información sensorial, previamente transformada en percepciones, mediante la ‘Teoría de la Sorpresa’ y genera eventos llamados ‘sorpresas’ que sirven para predecir la evolución de una tarea. Por último, el sistema anticipativo de control postural puede componer, si fuese necesario, las reacciones adecuadas mediante el uso de patrones de movimientos predefinidos llamados sinergias. Dichas reacciones pueden complementar o sustituir por completo la ejecución normal de una tarea. El funcionamiento del sistema anticipativo de control postural y de cada uno de sus componentes ha sido probado tanto por medio de simulaciones como por su aplicación en el robot humanoide TEO del grupo de investigación RoboticsLab en el Departamento de Ingeniería de Sistemas y Automática de la Universidad Carlos III de Madrid

    Augmenting Sensorimotor Control Using “Goal-Aware” Vibrotactile Stimulation during Reaching and Manipulation Behaviors

    Get PDF
    We describe two sets of experiments that examine the ability of vibrotactile encoding of simple position error and combined object states (calculated from an optimal controller) to enhance performance of reaching and manipulation tasks in healthy human adults. The goal of the first experiment (tracking) was to follow a moving target with a cursor on a computer screen. Visual and/or vibrotactile cues were provided in this experiment, and vibrotactile feedback was redundant with visual feedback in that it did not encode any information above and beyond what was already available via vision. After only 10 minutes of practice using vibrotactile feedback to guide performance, subjects tracked the moving target with response latency and movement accuracy values approaching those observed under visually guided reaching. Unlike previous reports on multisensory enhancement, combining vibrotactile and visual feedback of performance errors conferred neither positive nor negative effects on task performance. In the second experiment (balancing), vibrotactile feedback encoded a corrective motor command as a linear combination of object states (derived from a linear-quadratic regulator implementing a trade-off between kinematic and energetic performance) to teach subjects how to balance a simulated inverted pendulum. Here, the tactile feedback signal differed from visual feedback in that it provided information that was not readily available from visual feedback alone. Immediately after applying this novel “goal-aware” vibrotactile feedback, time to failure was improved by a factor of three. Additionally, the effect of vibrotactile training persisted after the feedback was removed. These results suggest that vibrotactile encoding of appropriate combinations of state information may be an effective form of augmented sensory feedback that can be applied, among other purposes, to compensate for lost or compromised proprioception as commonly observed, for example, in stroke survivors

    The body schema: neural simulation for covert and overt actions of embodied cognitive agents

    Get PDF
    This brief commentary on the general topic of ‘body schema’ is focused on its computational role, as an internal model that integrates proprioceptive information, for allowing embodied cognitive agents to carry out the neural simulation of covert and overt actions in a unitary manner. The discussion takes inspiration from the vintage but still valid seminal observation by Marr and Poggio that, in order to understand cognitive agents, both human and artificial, we should consider them as Generalized Information Processing Systems, to be analyzed along three levels: computational, algorithmic, and implementation. Accordingly, the body schema concept is briefly analyzed along this line, with the purpose of outlining a cognitive architecture that links embodied cognition with motor control through the body schema
    corecore