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ABSTRACT	
This PhD Thesis tries to present a different point of view when talking about the 
development of control architectures for humanoid robots. Specifically, this Thesis is 
focused on studying the human postural control system as well as on the use of this 
knowledge to develop a novel architecture for postural control in humanoid robots. The 
research carried on in this thesis shows that there are two types of components for 
postural control: a reactive one, and other predictive or anticipatory. This work has 
focused on the development of the second component through the implementation of a 
predictive system complementing the reactive one. 

The anticipative control system has been analysed in the human case and it has been 
extrapolated to the architecture for controlling the humanoid robot TEO.  In this way, its 
different components have been developed based on how humans work without 
forgetting the tasks it has been designed for. This control system is based on the 
composition of sensorial perceptions, the evaluation of stimulus through the use of the 
psychophysics theory of the surprise, and the creation of events that can be used for 
activating some reaction strategies (synergies)     

The control system developed in this Thesis, as well as the human being does, 
processes information coming from different sensorial sources. It also composes the 
named perceptions, which depend on the type of task the postural control acts over. 
The value of those perceptions is obtained using bio-inspired evaluation techniques of 
sensorial inference.    

Once the sensorial input has been obtained, it is necessary to process it in order to 
foresee possible disturbances that may provoke an incorrect performance of a task. 
The system developed in this Thesis evaluates the sensorial information, previously 
transformed into perceptions, through the use of the “Surprise Theory”, and it 
generates some events called “surprises” used for predicting the evolution of a task.   

Finally, the anticipative system for postural control can compose, if necessary, the 
proper reactions through the use of predefined movement patterns called synergies. 
Those reactions can complement or substitute completely the normal performance of a 
task. 

The performance of the anticipative system for postural control as well as the 
performance of each one of its components have been tested through simulations and 
the application of the results in the humanoid robot TEO from the RoboticsLab 
research group in the Systems Engineering and Automation Department from the 
Carlos III University of Madrid. 
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RESUMEN	
Esta Tesis Doctoral pretende aportar un punto de vista diferente en el desarrollo de 
arquitecturas de control para robots humanoides. En concreto, esta Tesis se centra en 
el estudio del sistema de control postural humano y en la aplicación de este 
conocimiento en el desarrollo de una nueva arquitectura de control postural para 
robots humanoides. El estudio realizado en esta Tesis pone de manifiesto la existencia 
de una componente de control postural reactiva y otra predictiva o anticipativa. Este 
trabajo se ha centrado en el desarrollo de la segunda componente mediante la 
implementación de un sistema predictivo que complemente al sistema reactivo.   

El sistema de control anticipativo ha sido estudiado en el caso humano y extrapolado 
para la arquitectura de control del robot humanoide TEO.  De este modo, sus 
diferentes componentes han sido desarrollados inspirándose en el funcionamiento 
humano y considerando las tareas para las que dicho robot ha sido concebido. Dicho 
sistema está basado en la composición de percepciones sensoriales, la evaluación de 
los estímulos mediante el uso de la teoría psicofísica de la sorpresa y la generación de 
eventos que sirvan para activar estrategias de reacción (sinergias). 

El sistema de control desarrollado en esta Tesis, al igual que el ser humano, procesa 
información de múltiples fuentes sensoriales y compone las denominadas 
percepciones, que dependen del tipo de tarea sobre la que actúa el control postural. El 
valor de estas percepciones es obtenido utilizando técnicas de evaluación bio-
inspiradas de inferencia sensorial. 

Una vez la entrada sensorial ha sido obtenida, es necesario procesarla para prever 
posibles perturbaciones que puedan ocasionar una incorrecta realización de una tarea. 
El sistema desarrollado en esta Tesis evalúa la información sensorial, previamente 
transformada en percepciones, mediante la ‘Teoría de la Sorpresa’ y genera eventos 
llamados ‘sorpresas’ que sirven para predecir la evolución de una tarea.  

Por último, el sistema anticipativo de control postural puede componer, si fuese 
necesario, las reacciones adecuadas mediante el uso de patrones de movimientos 
predefinidos llamados sinergias. Dichas reacciones pueden complementar o  sustituir 
por completo la ejecución normal de una tarea. 

El funcionamiento del sistema anticipativo de control postural y de cada uno de sus 
componentes ha sido probado tanto por medio de simulaciones como por su aplicación 
en el robot humanoide TEO del grupo de investigación RoboticsLab en el 
Departamento de Ingeniería de Sistemas y Automática de la Universidad Carlos III de 
Madrid.  
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CHAPTER	1 	
 

Introduction	
	
		

1.1 The	Motivation	and	Origin	of	the	Thesis		
From the first Industrial Revolution, the automation of machines has dramatically grown 
up. One of the Automation branch has been the development of humanlike machines 
to replicate the human behaviour. The desire or necessity of performing tasks, in the 
same way that humans do, has motivated the research in mechatronic systems 
adapted to daily live environments.  These kinds of machine are the humanoid robots. 
The word ‘robot’ was introduced by Karel Čapek (1890-1938) into his play R.U.R. 
(Rossum's Universal Robots) (Čapek, 1923). Several years after, the term ‘robotics’ 
was first used in Runaround, a short story published in 1942 (Asimov, 1942), by Isaac 
Asimov (1920-1992). In both cases, the robot was thought like an anthropomorphic 
machine. Nevertheless, the design of the first robotic devices is very different than the 
exposed by Čapek and Asimov. 

The first successful robot was produced by Unimation in 1961. The UNIMATE was 
installed in General Motors factories for die casting handling and spot welding 
(Rosheim, 1994). The industrial robot was merely an object manipulator or tool 
positioner with 6DoF. Exploiting this concept, the industrial robot has had a great 
success improving industrial processes.  

But this kind of robots was far from having the anthropomorphic design of the robots 
dreamt by Čapek and Asimov. The question is why researchers chase the dream of 
designing humanoid robots. The answer can be widely discussed but two main reasons 
support it, from machine design point of view. 

First of all, the human body is one of the most complex ‘machines’ of the nature and 
replicate this complexity is a big challenge and only a few institutions are dedicated to 
the creation of humanoid robots. Humanoid robots program of the RoboticsLab started 
on 2001 by developing the 7DoF biped robot Leroy. Since 2002 several research 
projects has been carried out to develop the RH full size robot series. The main 
achievements of the program were the development of RH-0 and RH-1 platforms, from 
mechatronics point of view. In this sense, the RoboticsLab team has developed a new 
prototype, called TEO (Task Environment Operator), to implement the research 
advances regarding locomotion, perception and behaviour control during task 
execution. 
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The second reason to investigate in humanoid robotics is related with our living 
environment. Things in our world are designed to be used by humans, so the ‘universal 
robots’ would be those with anthropomorphic shape that can adapt itself to the real 
world and not in the opposite way. It means that the robot must have some kind of 
‘intelligent behaviour’ to perform tasks in real-world domains where uncertainty cannot 
be effectively modelled. In this way, robots must have a means of reacting to an infinite 
number of possibilities. To know enough about an environment is only possible in 
restricted domains such as a chess game or virtual worlds where there are a limited 
number of possible states. For more complicated domains it is necessary to find an 
appropriate balance between reactive and deliberative control.  Therefore, the difficulty 
of a full size humanoid robot design has motivated that research efforts had been 
divided in different fields. They can be sorted as follows: bipedal locomotion, dexterous 
manipulation, perception, learning and adaptive behaviour and human-robot interaction 
(Behnke, 2008). Taking in account this classification, the RoboticsLab research group 
has focus its activities to develop stable biped locomotion, exoceptive and 
proprioceptive perception and behaviour control architectures (Kaynov, 2008; Arbulú, 
2009).  

The work performed during these first years has established the foundations for 
humanoid robotics research in the RoboticsLab. But new problems must be addressed. 
Lessons learned from the previous RH platforms have been applied in the new 
prototype TEO (Figure 1).  

 

Figure 1 Robot TEO 

Huge mechanical and electronic improvements have been achieved, incrementing 
operability and computation speed. The RH’s old electronics limited the software 
architecture and performance of the developed modules. Offline gait generation was 
achieved and applied to the robotic platforms and basic stability, based on simple 
inverted pendulum model, was implemented. New robotic platform TEO will enable the 
development of new software modules with a notorious modification: their ‘online’ 
approach.  In this way, new visions of the robot behaviour can be adopted. Postural 
and high level tasks analysis will be developed and tested in robot TEO. 
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The origin and motivations of this Thesis are due to the new direction taken by the 
RoboticsLab in humanoid robotics research.  This Thesis is focused on the 
development of new algorithms for postural analysis. Online task performance will be 
improved by means of the implementation of a new preview controller, using sensor 
information and comparing it with stored models. 

1.2 Objectives	of	the	Thesis		
This PhD Thesis is focused on the improvement of the system control architecture of 
the humanoid robot and attempts to discuss problems and issues that should be 
considered when the control system of a humanoid robot is designed. 

The central objectives are: 

 Design of novel human inspired control architecture for effective and stable 
postural control. This Thesis is mainly focused on the predictive feedforward 
loop presented in the human control architecture case. The control architecture 
should predict the humanoid robot behaviour and anticipate the next execution 
step in case of postural correction needed. 
 

 The operation of the control system is task oriented. The development is 
focused on the study of general manipulation and locomotion tasks. Other kinds 
of task are combinations of parameterized units of the basic tasks. The new 
task instance depends of the scenario conditions, goal of the task, etc. Because 
of this high number of possibilities, this Thesis has been oriented to the study of 
the most generic type of tasks. 
 

 The modules composing the control architecture are inspired in the 
corresponding human systems and their operation:  

o Sensation systems 
o Human inspired perception composition 
o Evaluation and construction of reactions based on surprise generation 

concepts 
o Execution of reaction based on reflex and automatic motor responses 

based on synergies 

To accomplish these three main objectives it is necessary to meet with the following 
intermediate goals: 

 Development of human inspired sensorial perceptions. The information from 
sensorial sources will be processed to create perceptions. Following the 
principle of human inspiration, it will be performed applying neuro-fuzzy 
perception evaluators which will output useful parameter to take decisions, not 
for control. Two kinds of perception will be created: exoceptive and 
proprioceptive. Meanwhile sensations are a set of raw information independent 
of the task being performed, the output parameters from both perceptions are 
task related. 
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 Reactions driven by surprise. The parameters forming the proprioceptive and 
exoceptive perceptions are the basis for predictive postural control. This 
prediction will be driven by the generation of different levels of ‘surprise’.  The 
output from the exoceptive and the proprioceptive perceptions is then evaluated 
depending of the task. The result from this evaluation will be a surprise level or 
event. It will indicate whether a reaction should be triggered, what reaction 
should be activated and in which manner. 
 

 Online posture adaptation. Attending to the evaluation of perceptions and the 
‘surprise events’ generated, the trajectories of the body joints should be 
modified to compensate the disturbances. The normal execution of the tasks 
could be interrupted or modified to keep postural control. This motor 
modification will be implemented mainly by means of the execution of 
predefined adjustable movement patterns called synergies.  
 

 Experimentation of the human inspired control architecture. This objective will 
be firstly accomplished by means of simulations of the components and 
systems developed. After the simulation process, the operation of the modules 
developed will be tested in available mechanical systems, such as the robotic 
humanoid platform TEO. 

1.3 Contributions	of	the	Thesis		
This thesis tries to propose a new human inspired and task oriented approach to the 
design of a control system for humanoid robots. All aspects of the design process as 
well as the detailed architecture and control algorithms were developed and 
implemented. 

The main contributions of this thesis focus on the following: 

 Development of novel human inspired perception systems. New methods of 
processing sensorial data needed for postural control has been proposed. The 
study of the evaluation of the sensorial data by humans is the inspiration to 
perform an alternative method to compose perceptions. The application the 
neuro-fuzzy technique enhances learning and processing of sensorial data 
without using models of the perceptual system. The output of the complex 
perceptual evaluation performed by the fuzzy system is then applied in decision 
making for improving postural control. 
 

 Development of new decision making system for anticipating motor responses 
of the robot. The complex behaviour of the human Central Nervous System 
related with postural control has been explored. The principles extracted from 
this study have been extrapolated to the humanoid robot system. The concepts 
of reflex and automatic reactions have been implemented to speed postural 
control up. The system provides a decision based on perceptions and 
experience from previous tasks. As well, it is able to gain the robot control, stop 
the current task performance and trigger a reaction if it is needed.  
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 Development of the task oriented postural feedforward system for humanoid 
robots. The preview feedforward system developed allows anticipating 
reactions improving postural control and balance. This loop is added to the 
existing feedback balance control loop. Its main contribution is the evaluation of 
future consequences of the task performance. In this way, it could introduce 
corrective parameters into the pending execution steps of the task or it could 
take the entire control of this execution and start a new postural task. 

Finally, it should be mentioned that the proposed Thesis is a complex study that 
considers the postural control system of humanoid robots as a whole. It stresses the 
human inspiration and the tasks orientation of the robot, covering all levels of postural 
control.

1.4 Guide	to	the	Thesis		
This PhD Thesis has been arranged into eight chapters, including this introductive 
chapter, as follows: 

 Chapter 2: It describes the foundations of human postural control system, 
explaining briefly all higher levels involved and their operation. The conclusions 
extracted from this review are the high level principles applied in the humanoid 
postural control system exposed in this Thesis. 
 

 Chapter 3: Based on the principles extracted in Chapter 2, the novel humanoid 
postural architecture is proposed. It is composed by the same high level 
components than the human control system. The description performed in this 
Chapter starts from the establishment of the basic structure of the architecture. 
In subsequent section, each module from this high level architecture is 
decomposed and described deeper in detail. The chapter concludes with the 
complete low level postural control system, integrating all components 
described before in the Chapter. 
 

 Chapter 4: Once the humanoid robot architecture has been exposed, this 
Chapter exposes the foundations applied for the development of each module 
described in Chapter 3.  
 

 Chapter 5: As the human case, the postural control system is integrated by 
different devices and system that support the perception, processing and 
actuation chain.  In this Chapter, the human sensorial, processing and actuation 
systems are briefly reviewed. They are as well compared with the systems 
integrated in TEO humanoid robot from a functional point of view. That is, this 
Chapter compares the human physiology with the humanoid’s one. 
 

 Chapter 6: Taking in account the foundations exposed in Chapter 4 and the 
functionality of the devices exposed in Chapter 5, each module of the humanoid 
postural control system has been implemented. This Chapter exposes the 
development of the mentioned modules and their integration in the postural 
control architecture. 
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 Chapter 7: In this Chapter, the results of experimentations are exposed and 

analysed. These experiments consist of functional testing of each module and 
the whole system performance. 
 

 Chapter 8:  The last Chapter exposes the conclusions extracted from all work 
done and the future works proposed to continue with the development of the 
system established by this PhD Thesis. 



 

 

CHAPTER	2 	
 

Human	Postural	Control		
	
	

2.1 Introduction	to	Human	Posture	Control		
The postural control correspond to a complex motor response that involves the 
integration of a variety of sensorial information, elaboration and execution of movement 
patterns (Horak & Macpherson, 1996). The human postural control system is 
developed from birth and it is critically influenced by sensor system maturation and the 
development of the Central Nervous System (CNS). During the growth process, 
humans learn to control posture by means of experience acquired in response to 
sensorial inputs. So, the human posture control system is basically composed by a 
sensor input system which collects information, an integration system which process 
this information, and an end-effector system which performs the movements to keep 
the right posture. Figure 2 shows the high level structure of the CNS physiology that 
will be described in this Chapter. 

 

Figure 2 Basic human postural control system components 

The postural control is performed continuously because it is the foundation of any kind 
of task. That is, one task can be considered as a sequence of controlled and learned 
postures. During the execution of each posture of the sequence, the sensorial inputs 
are evaluated to generate CNS stimuli that are transmitted to the neural processor 
centres. Depending on the result of the evaluation, different levels of postural control 
could be fired if it would be necessary. These reactions are classified in reflex, 
automatic or voluntary movements depending on the response velocity required. 
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Another factor influencing response velocity is the architecture of the human postural 
control system. There exist two basic modes of operation of the system when a 
disturbance is detected: reactive and predictive. The schemes that implement these 
operational modes in the postural control architecture are a reactive feedback loop and 
a predictive feedforward system. The aim of this Thesis is to study the operation of this 
predictive postural control mechanism, in which the sensorial inputs are used to predict 
the possible consequences from perturbations. According to the human system 
operation, the main function of this predictive system is preparing the effector system to 
apply a reaction. It is essential when higher level disturbances are detected or faster 
reactions are required than the feedback control loop can manage or trigger.  

All these operational issues are related to the task performed and, due to this, it is 
necessary to establish a set of task parameters to be controlled. It is obvious that the 
selection of the parameters depends on the task complexity. To minimize this problem, 
this Thesis has been focused on postural control during two basic independent actions: 
locomotion and manipulation. With this selection, balance and equilibrium problems in 
locomotion can be isolated from postural control during a pure manipulation task. In 
this way, the solution to complex tasks postural control will be a combination of these 
basic sub-problems. Nevertheless, the basic principles for postural control, described in 
this Chapter, are shared by both task problems. 

2.1.1 Manipulation	Problem	
The dexterous manipulation skill is, with upright locomotion, the most important feature 
that defines the human being. It is well known that the manipulation capacity has been 
a determinant factor in the human being evolution. Thanks to this skill, humans have 
been able to build objects and tools that have favoured the specie evolution. The 
manipulation capacity is also a differentiate element between human beings and 
animals. This importance, joined with the possibility of avoiding the balance problem 
during manipulation task performance, is the reason to consider this postural control 
problem independently. It is possible if the support base of the robot is fixed or 
intrinsically stable. In this case, the voluntary movement of throwing and catching a ball 
is considered as a sequence of upper limbs postures (Figure 3 (a)). Whether the ball 
trajectory suffers a deviation that is captured by the sensorial system, the hand location 
must be modified by the reaction produced (Figure 3 (b)). 

 

Figure 3 Manipulation task postural control: (a) Normal behaviour. (b) Task deviation corrected 

by postural control system 
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Human control system can estimate the deviation from expected trajectory and the 
approximate position where the ball should fall. Different control systems may be 
involved depending of the deviation level. In the case of low deviations, the 
manipulation feedback control system should be fast enough to modify the hand 
location. But in case of high disturbances and deviations, other strategies may be 
necessary and human anticipatory system may be involved.  

If high deviation is detected, the target point to catch the ball will be further from the 
expected. In this case, feedback control may be not as fast as required and the human 
would miss the ball. In order to solve this issue, the human anticipatory feedforward 
system can trigger a reaction consisting in the arm movement towards the 
surroundings of the estimated target location. This kind of operation is driven by 
unexpected events and it is the fastest mechanism the human body has. But speed is 
opposite to precision. The goal of these movements is positioning the hand as near as 
possible of the estimated target location. Thus, the feedback control can take the 
control again and finish the task with success. 

2.1.2 Locomotion	Problem	
Upright locomotion is one of the most important characteristics that define the human 
being. It enables humans to use the upper limbs only for manipulation tasks. 
Nevertheless, upright stance and stable locomotion require a complex postural and 
balance control system supported by the combination of different sensorial perceptions. 
It is also important to explain that balance is considered as the ability to maintain the 
body’s position over its base of support (Berg, 1989; Spirduso, Francis, & Macrae, 
1995). Taking in account that the human body is never absolutely stable, a control 
system is required to avoid the body from falling. Due to this, “postural control” and 
“balance control” have been used indistinctly to refer to the act of keeping the body 
close to the Equilibrium Point (Karlsson & Frykberg, 2000). In general, maintaining 
postural or balance control means to perform movements of the Centre of Mass (CoM) 
relative to stability limits in order to maintain equilibrium. 

In this way, balance control can be divided into static and dynamic balance control 
problems, depending on whether the supporting base is stationary or moving:  

1) Static balance control: It is used for keeping a stable position in the space during 
upright stance. Sway is limited to a minimum level in which the CoM is maintained 
inside the support base while upright standing. 

2) Dynamic balance: It is related to the movement of the CoM during locomotion task 
performance. The dynamic balance involves keeping a proper posture while the CoM 
and the support base are moving. This kind of balance tries to maintain the CoM inside 
specific stability limits during movements that involve the dynamic modification of the 
supporting area. 

Therefore, the strategies used to regain balance, during upright stance or locomotion, 
are influenced by these balance control problems. The postural control act will consist 
of keeping one of the mentioned balance states or switching from one to another to 
prevent falling.   
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External forces exerted over the body cause loss of balance during locomotion (Figure 
4). In this case, the static balance control maintains posture until the level of external 
disturbance exceeds a pre-established limit. After that, the postural control system 
switch to other strategy and dynamic balance control acts to regain equilibrium. 

 

Figure 4 Locomotion task postural control

2.2 Physiology	of	the	Postural	Control	System	
To understand how humans control their posture, it is necessary to know the 
physiology of this control system. Attending to Figure 2, we can distinguish four main 
parts that compose the Central Nervous System: 

 RECEPTOR (information input):   
o Exoceptive system 

 Vestibular system 
 Visual system  

o Proprioceptive system  
 Articular nervous endings 
 Muscular spindles 
 Cutaneous  

 
 PROCESSOR (Integration centres) 

o Spinal cord 
o Cerebral trunk 
o Motor cortex 
o Associated areas: Cerebellum, Basal ganglia. 

 
 EFFECTOR (action system) 

o Skeletal muscle system 
 

 Communication channels 
o Afferent system 
o Efferent system 

The sensorial information is captured by the corresponding receptors of the peripheral 
nervous system. This information is transmitted by means of the afferent sensitive 
neurons of the peripheral nervous system. Then the information arrives to the Central 
Nervous System where it is processed.  
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The level of the sensation captured and the velocity of the response needed determine 
where the information must be processed and which reaction must be triggered. 
Therefore, the reflex reactions are the fastest response and they are processed in the 
spinal cord. Following, the automatic medium latency reactions are generated in the 
cerebral trunk and, at last, the voluntary slowest movements are planned by the motor 
cortex. 

After this information processing, the resulting actions are transmitted to the motion 
system by means of the efferent neurons to perform the movement. The hierarchical 
structure of the human postural control system is shown in Figure 5 and the functions 
and components of each system implied in postural control will be explained further in 
detail. 

 

Figure 5 Motor neural control hierarchical structure 

2.2.1 Sensorial	System:	Receptor	
As stated before, the sensorial system is composed by two main parts depending of 
the origin of the stimulus. The exoceptive system captures external stimulus which has 
no direct physical interaction with the body (i.e. images). By the other hand, the 
proprioceptive system collects the information of the body itself (i.e. joint angles). 

 Exoceptive	Sensation	Systems		2.2.1.1

The exoceptive sensation is composed by the information about environmental 
circumstances or disturbances. The exoceptive perception will be then the result of the 
processing of the stimuli sensed. This information comes from the vestibular and visual 
sensorial systems.  
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 Vestibular	System	2.2.1.1.1

An essential aspect of the physiology of human postural control system is the operation 
of the vestibular apparatus for tracking the position of the head/body in space 
(Delaney, 1998) and the body inertial forces. The vestibular apparatus is composed by 
two separate entities: the semicircular canals and otolithic system (Baloh & Honrubia, 
2001). 

1) The Semicircular Canals.  

The semicircular canals are the angular sensing elements shown in Figure 6. There are 
six canals, three on either side of the head, and they are located in the inner ear. The 
semicircular canals consist of a horizontal canal, a superior and a posterior canal at 
right angles amongst themselves, so that they cover all three planes in space. In this 
way, the canals can respond to angular movement of the head/body about any of its 
axes. The canals themselves are filled with a fluid called endolymph. This fluid acts 
upon a structure called the cupula which resembles a water-tight door. This structure 
bend the hair cells sited on the crista to generate the sensorial output signal. The 
cupula is concerned with equilibrium control during motion and with angular 
acceleration (rotation of the head/body), but is unaffected by linear acceleration. 

 

Figure 6 Semicircular Canals (adapted from Encyclopaedia Britannica, Inc.) 

2) The Otolithic System. 

The vestibular otolithic system is composed by the saccule and utricle. The saccule is 
primarily located in a vertical plane meanwhile the utricle is primarily oriented 
horizontally. The sensory membrane of each organ is called the maculae. The maculae 
are covered by one membrane containing otoliths that are calcium carbonate crystals. 
The sensor operates by responding to a component of the movement of sensory hairs 
along a specific axis, the direction of which is determined by the position of a reference 
hair, the kinocilium, with respect to other hairs, the stereocilia (Figure 7). 

 

Figure 7 The maculae (adapted from Encyclopaedia Britannica, Inc.) 
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The otolithic system is sensitive to multiple directions of linear acceleration. For any 
pattern of acceleration and gravity the hairs respond with a specific pattern of 
stimulation. The brain then applies pattern recognition to the stimulation pattern and 
resolves the pattern into three orthogonal axes with respect to the head. 

 Visual	System	2.2.1.1.2

This system detects, transmits and interprets visible light stimuli (wavelengths between 
400 and 725nm). The eyes, which are the sensorial organs, can distinguish brightness 
and colour.  

The photoreceptors inside the eyes are rods and cones located in a specialised 
epithelium called the retina. In each eye the retina contains about 6 million cones and 
120 million rods. In the peripheral region of the retina both rods and cones converge on 
bipolar cells. The bipolar cells converge on ganglion cells giving rise to the one million 
nerve fibres in each optic nerve.  

In addition to allowing us to detect hazards in the environment, vision plays a direct and 
important role in stabilizing balance and postural control by providing the nervous 
system with continually updated information regarding the position and movements of 
body segments in relation to each other and the environment. Visual system triggers 
the muscle activation required for postural corrections, but it can be compensated for 
by other information sources (Kejonen, 2002). 

 Proprioceptive	Sensation	Systems		2.2.1.2

The proprioceptive or somatosensory system receptors are located in muscles, joints 
and skin. They give information about the position of the limbs and the body, the 
distension of the respective muscles, vibrations, pressure, etc.   

There are some essential inputs for postural control produced by proprioception. 
During locomotion or upright stance, the information from ankle joints should be 
recognized, as it is affected by the movement of the centre of gravity, resulting in 
torque changes around the ankle joint. As well, the importance of proprioception in 
postural control during manipulation when reaching and grasping objects (Gentilucci et 
al., 1994).  

 Articular	Nervous	Endings	2.2.1.2.1

The majority of sensory innervation of the articulation is found in the joint capsule. The 
receptors in these capsules give information about the movements and positions of the 
body parts relative to each other (mechanoreceptors). There are four main types of 
receptors with different sensorial functions (see Figure 8): 

1) Ruffini endings: located on the flexion side of the joint. They give information 
about static joint position, intra-articular pressure and, as well, range and 
rotation of the joint.  
 

2) Pacini corpuscles: mechanoreceptors sensitive only to rapid variations of 
deformation, that is, they are joint acceleration sensors. 
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3) Golgi corpuscles: located in the posterior side of capsule. Monitors tension in 
ligaments, especially at the end of the range of motion. 
 

4) Free nerve endings: widely distributed over all articular structures. They 
constitute the joint nocioceptive system (pain stimuli). 

 

Figure 8 Articular sensor receptors 

 Muscular	spindles	2.2.1.2.2

The muscle spindles give information about the changes in muscle length and tension 
(dynamic stretch), and they can also be activated by passively stretching the entire 
muscle. Lots of them are dispersed inside the muscle and they are connected to 
multiple sensory endings (Figure 9).  

 

Figure 9 Muscle spindles 

 Cutaneous	2.2.1.2.3

Some of the receptors described in section 3.2.1 are also located in the cutaneous 
system. Depending on the velocity of response, these receptors detect fast variations 
or static stimuli. The pressoreceptors (Ruffini Endings and Merkels discs) detect 
pressure and body sway, whereas the mechanoreceptors (Pacini and Meissner 
corpuscles) can determine both the site and velocity of an indentation of the skin, as 
well as acceleration and pressure changes (Vallbo & Johansson, 1984). 
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2.2.2 Integration	centres:	Processor	
The main processor of the stimuli involved in posture balance control is Central 
Nervous System (CNS), shown in Figure 10. The mechanisms and the CNS parts 
involved in motor information processing depend on the voluntary nature of the 
reaction. The voluntary movements needed for balancing posture are planned within 
the brain; meanwhile, other involuntary balance actions are commanded by other CNS 
structures (i.e. the spinal cord).    

 

Figure 10 Central Nervous System (Adapted from Kopp Illustration, Inc.) 

 Spinal	cord	2.2.2.1

Two important functions of the spinal cord are the communication of the information 
coming from the brain to the rest of the body and the initiation of reflexes in response of 
the body to the high level surprising stimuli. Although the speed at which the 
information travels from sensor system to the brain and back to muscles is very fast, 
sometimes it is necessary a greater signal communication speed. This is where the 
reflex action, triggered by the spinal cord, comes into play. As a defence mechanism, 
the body reacts faster than the normal time it usually takes. 

 Cerebral	trunk	2.2.2.2

It is located under the brain base. The cerebral trunk connects the spinal cord with 
other cerebral structures. It controls the automatic functions of the human body. In this 
sense and related with balance control, the cerebral trunk maintain the stance posture 
of the body against gravity.  

Parts of the Central Nervous System as pons, bulbus and spinal cord, are endowed 
with programs of posture and movement, which are used by the organism when 
necessary, without the necessity of the involvement of regions located in a higher level 
in the central nervous system (Brandão, 2004). 
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 Cortical	2.2.2.3

Voluntary movements require the participation of the third and fourth levels of the 
hierarchy: the motor cortex and the association cortex. These areas of the cerebral 
cortex plan voluntary actions, coordinate sequences of movements, make decisions 
about proper behavioural strategies and choices, evaluate the appropriateness of a 
particular action given the current behavioural or environmental context, and relay 
commands to the appropriate sets of lower motor neurons to execute the desired 
actions. 

The motor cortex comprises three different areas of the frontal lobe: the primary motor 
cortex (Brodmann’s area 4), the premotor cortex, and the supplementary motor area 
(Figure 11). Thus, the pre-motor cortex and supplementary motor areas appear to be 
higher level areas that encode complex patterns of motor output and that select 
appropriate motor plans to achieve desired end results. 

 

Figure 11 Motor Cortex Areas 

Virtually all "voluntary" movements involve conscious activity in the cerebral cortex. 
However, this does not mean that each contraction of each muscle is willed by the 
cortex itself. Instead, most control used by the cortex involves the patterns of function 
in the lower brain areas (in the spinal cord, in the brain stem, in the basal ganglia, in 
the cerebellum) and these lower centres in turn send most of the specific activating 
signals to the muscles. 

 Associated	areas:	Cerebellum,	Basal	ganglia	2.2.2.4

The basal ganglia and cerebellum are large collections of nuclei that modify movement 
on a minute-to-minute basis. Motor cortex sends information to both, and both 
structures send information right back to cortex via the thalamus. (Remember, to get to 
cortex you must go through thalamus.) The output of the cerebellum is excitatory 
(positive), while the basal ganglia are inhibitory (negative). The balance between these 
two systems allows for smooth and coordinated movement (Figure 12). 
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Figure 12 Cerebellum and Basal Ganglia functions 

2.2.3 Action	System:	Effector	
Skeletal muscles are composed by numerous muscle fibres, distributed along the 
entire length of the muscle. All fibres are roughly parallel in orientation. A single muscle 
fibre is in turn subdivided into several thousand parallel units called myofibrils. The 
mechanisms of contraction lie within these tiny myofibrils. 

The total muscle output is the summation of tension developed by each of the motor 
units within the muscle. Simplified muscle models, considering the muscle as a single 
force generating unit, predict input-output characteristics. The variables affecting 
muscle output (tension) are the following: 

1) Activation level (in the single component model this is the average activation 
level of all motor units in the muscle).  
 

2) Instantaneous length of the muscle.  
 

3) Shortening velocity of the muscle. 

Coordinated control of the body segments is a complex aspect of human postural 
control, owing to the multiple Degrees of Freedom (DoF) of the controlled system 
(Bernstein, 1968). These DoFs build the posture up by the sum of several basic 
mechanisms (Massion, 1984) based on the muscular tone, which is usually defined as 
the resistance to passive movement (Bodensteiner, 2008). The muscle tone is 
regulated both by the brain and spinal cord and the brain is kept informed of the ever-
changing status of this tone. 

In addition, spinal reflexes transmitted to the muscles though the spinal cord are 
responsible, among other functions, for all of the skilled movements of the trunk and 
limbs and standing erect, walking, and running. Therefore, muscles have two main 
roles in postural control that define the following functional classification: 

1) Rest or tonic muscles: this kind of muscles maintains the tensional state of the 
body to counteract gravity force, keeping a balanced position. The body 
remains in this case in static postures. 
 

2) Phasic muscles: Their main function is producing movement. They provide a 
stable background for voluntary activity. 



36 Physiology of the Postural Control System
 

 
 

2.2.4 Communication	channels	
Motor signals are transmitted directly from the cortex to the spinal cord through the 
corticospinal tract and indirectly through multiple accessory pathways that involve the 
basal ganglia, the cerebellum and various nuclei of the brain stem. 

 Afferent	system	2.2.4.1

The afferent information channel carries impulses from sensory organs to processor 
centres (CNS). It is composed by the afferent neurons, also called sensory or receptor 
neurons, connected directly to the sense organs and interneurons that connect each 
neuron with others.  

 Efferent	system	2.2.4.2

Efferent neurons are also called as motor neurons. They mostly carry responses to the 
muscles or glands, bringing about the movement. The efferent neuron forms an 
electrochemical pathway towards the effector system. 

The most important point of comparison between afferent vs. efferent neurons is that 
they perform an exactly opposite function and follow an opposite electrochemical 
pathway in the central nervous system loop (Figure 13). 

 

Figure 13 Multisensory integration systems(Ting & McKay, 2007)
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2.3 Foundations	of	Postural	Control		
Different theories were developed in the past to explain how the human body controls 
its posture. The two major theories make the difference in the internal organization of 
the responses and the way they are triggered. In the reflex/hierarchical theory posture 
and balance are the result of hierarchically organized reflex responses triggered by 
sensory input (Granit & Burke, 1973). But nowadays, postural control has been 
oriented to a systemic point of view. Today researchers recognize that postural control 
is complex and context-dependent and that all levels of the nervous system must be 
examined to account for this complexity (Kandel, Schwartz, & Jessell, 2000). Although 
some controversy exists regarding the range of subsystems involved, there is general 
agreement that the neurological system, the musculoskeletal system, the sensory 
system, the environmental context, and the task demands are important contributors to 
postural control (Kamm, Thelen, & Jensen, 1990).  

Besides relying on their feedback systems, humans also maintain balance using 
anticipatory motor action. During human movement, two control actions are performed 
continuously and in parallel: movement and postural control. Meanwhile movement 
control system commands body limbs position, the postural control performs actions to 
maintain balance taking in account the proprioceptive information. Figure 14 shows this 
basic idea, but this control system is defective in the sense that it only provides 
information about the feedforward and feedback postural adjustments produced by 
voluntary movements. 

 

Figure 14 Feed-forward and feedback postural adjustment from (Kejonen, 2002) 

It is important to state that posture and movement are close related but they are 
essentially different. From a biomechanical point of view, the movement can be 
described as the combination of motor gestures. Purposeful or voluntary motor acts are 
performed moving one or several body segments towards a goal (Agid, 1990); 
meanwhile other segments must be positioned in order to regain posture and 
equilibrium. It is ease to point out that voluntary movements are one source of postural 
perturbations.  
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Therefore, posture poses a static and dynamic dual nature. The former, static or 
postural fixation, is a local mechanism to maintain the body segments in stationary 
positions against internal (e.g. weight) or external forces (e.g. load ported) (Martin, 
1967). The latter, dynamic posture component is the continuous looking for keeping the 
desired target according to the task performed.  

2.3.1 Levels	of	Reaction	of	the	Postural	Control	System	
Three different reaction levels have been established depending of where the stimuli 
information is processed and the system producing it, as shown summarised in Table 1 
(Diener & Dichens 1986, Schmidt 1991, Nashner 2001, Schmidt & Lee 1999). The 
motor response to external perturbations can be reflex, automatic or voluntary. 

Table 1 Properties of the three motor systems in balance movement control  

System 
property 

Motor System 

Reflex Automatic Voluntary 

Processor Spinal Brainstem/subcortical Cortical 

Activation External stimulus External stimulus 
External stimulus 

Self-generator 

Response 
Local to point of 

stimulus and 
stereotyped 

Coordinated and 
stereotyped 

Unlimited variety 

Role in 
Postural 
Control 

Muscle force 
regulation 

Resist disturbances 
Purposeful 
movements 

Latency Fixed 20-60ms Fixed, 130-170ms Variable >150ms 

 

1) Reflex reactions 

This motor reaction to outside perturbation is processed in the spinal nervous system. 
The role of this reflex is to regain postural stability by a rapid muscle response 
(Rothwell & Lennon, 1994). Any kind of action threatening the posture of the body is 
detected by an afferent input via muscle and tendon proprioception, which initiates the 
first muscle movement by acting the appropriated muscles all over the body. The spinal 
response is very fast (20-60ms) after perturbation detection. The reflexes do not 
contribute directly to the recovery of balance (Nashner, 1993).  

2) Automatic reactions 

The first response against perturbations is an automatic reaction that occurs as 
medium-latency muscle responses (130-170ms). These reactions are coordinated and 
transmitted through brain trunk and affect all muscles of the legs, torso and neck 
(Allum, Bloem et al., 1998). In addition to the medium-latency responses, long-latency 
responses have been found to co-occur with them in the antagonist muscles (Diener, 
Dichgans et al., 1984). Automatic responses can be considered as overlearned, “long-
loop” reflexes that rapidly respond by resisting disturbances (Diener et al., 1984; 
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Nashner & McCollum, 1985). Automatic reactions are context-dependent and 
adaptable to the specific balance demands. The pre-programmed patterns of automatic 
reactions could be adapted to the environment conditions by experience and learning.  

3) Voluntary movements 

In contrast to reflex and automatic responses, voluntary movements are based on 
conscious information processing by the brain motor centres. Voluntary postural 
adjustments displace the position of the centre of gravity and, hence, the ground 
reference points associated. Postural adjustments and voluntary movements can be 
produced at the same time during continuous movements. The latency of this response 
occurs between 220 and 360 milliseconds after perturbation. 

2.3.2 Psychophysics	and	Postural	Control	
According to the International Society of Psychophysics and different authors, it is a 
discipline within the psychology science focused in the investigation of the relationship 
between physical stimuli and the unleashed sensations and perceptions. This must be 
a quantitative and measurable relationship (Bruce, Green, & Georgeson, 2003; 
Gescheider, 1997).  

The described sensory organs provide great amounts of quantitative information to the 
central nervous system. In the case of postural feedback, muscle sensors detect limbs 
position and, at the same time, visual perception provides the same information. It is 
obvious that exoceptive and proprioceptive sensations are complementary but a lot of 
information is redundant. The captured information must be processed, classified and 
integrated in order to command actions in the proper way. With this sensation 
processing the raw data coming from sensory organs is converted into perceptions. It 
has been suggested that such filtering and integration of redundant information is 
performed by minimum-variance estimations, ascribing weights to each modality 
according to its relative precision (vision and touch (Ernst & Banks, 2002), vision and 
audition (Ghahramani, 1995), and other combinations of sensory input (Jacobs, 1999; 
Van Beers, et al., 1999; Welch, et al., 1979)).  

Psychophysics also refers to a general class of methods applied to the quantitative 
study the relations between physical stimulus magnitudes and the corresponding 
magnitudes of sensation. These methods try to solve four main problems related to 
stimuli process: detection, identification, discrimination and scaling. Detection relates to 
the interest of knowing whether one stimulus was received or not. If the knowledge of 
stimuli has been produced is not relevant but their characteristics, identification might 
be performed after detection. Both problems are solved quickly and almost 
simultaneously when they concern stimuli which are strong and clear enough. 
However, under conditions of weak and noisy signals, detection of something is 
performed but clear identification is not possible. In such a case, the discrimination of 
the received information is needed to filter out the consistent signal attributes. The last 
perception problem refers to the level of its magnitude and how this level must be 
interpreted (scaling). 
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The first kind of methods is related to the subjective perception of an observer. These 
classical psychophysical methods try to calculate thresholds of event occurrence 
(happen/not happen). The second type of methods tries to solve the subjective 
influence of the observer when the report of perception is given. The so called modern 
methods provide objective information from the trials such as occurrence time or 
perception location. These methods are (Ehrenstein & Ehrenstein, 1966): 

1) Classical Psychophysical Methods 
 

a. Method of Limits 

In the method of limits, a single stimulus is changed in intensity in successive, discrete 
steps and the observer’s response to each stimulus presentation is recorded. The 
experiments are usually performed in alternate ascending and descending series. The 
average of the intensity of the last “detected” and the first “not detected” stimulus is 
recorded as an estimate of the absolute threshold.  

The comparison of a standard constant stimulus with other “weaker” or “stronger” 
allows calculating the difference threshold. Then, it is the difference of intensity 
between the stimuli of the first trial on which the response differs from the previous one.  

b. Method of Constant Stimuli 

In this method, a fixed set of stimuli is presented multiple times in a quasi-random order 
that ensures each will occur equally often. After each stimulus presentation, the 
observer reports whether or not the stimulus was detected (absolute threshold) or 
whether its intensity was stronger or weaker than that of a standard (difference 
threshold). After multiple experiments, the proportion of “detected” and “not detected” 
(or, “stronger” and “weaker”) responses is calculated for each stimulus level. The data 
are then plotted with stimulus intensity along the abscissa and percentage of perceived 
stimuli along the ordinate. The resulting graph represents the so-called psychometric 
function. 

c. Method of Adjustment 

The simplest and quickest way to determine thresholds is to let a subject adjust the 
stimulus intensity. In the case of measurements of the absolute threshold, the 
experiments are performed until stimulus is just perceived or vice versa, depending on 
ascending or descending trials. For difference threshold calculus, the user must adjust 
the stimulus intensity until it will be notoriously different from, or to just match, some 
other standard stimulus. 

2) Modern methods  
 

a. Forced Choice Methods 

One of the potential difficulties that arise with the traditional methods is that the 
participant might be deceiving the experimenter. The forced-choice method provides a 
more objective approach than methods exposed previously. In this method, the 
observer is required to make a positive response on every trial regardless of whether 
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detection of the stimulus was performed. On every trial, the subject either has to say 
when the stimulus occurred or where it occurred. 

b. Signal Detection Theory (SDT) 

SDT provides the basis for a set of methods used to measure both the sensitivity of the 
observer in performing the perceptual task and any response bias that the subject 
might have. According to SDT, the sensorial signal is characterized as a distribution of 
values on a continuum of sensory evidence rather than as a single value. Also, on any 
given trial there is some “noise” present in addition to the signal. Therefore, trials on 
which a signal is present are typically called signal plus noise trials. 

In conclusion, these techniques provide quantitative information about a physical 
variable (e.g., movement direction, amplitude, velocity, acceleration, etc.) and the 
threshold at which such stimulus is noticed by a subject.  

One key point of the human postural control system is the way the disturbances are 
sensed and how this perception commands body reactions. Using psychophysical 
principles, it is possible to model these disturbances as unexpected events or surprise 
events produced depending on the task context (Dey, 2001).  

Since surprise depends on the ‘unexpectedness’ of the stimulus (Ortony & Partridge, 
1987), at least the three following layers and each corresponding test must be 
distinguished in order to provide an exhaustive model of surprisingness generated by 
expectation failure (Lorini & Falcone, 2005).  

1) Mismatch-based Surprise: based on sensory-motor expectations, it is 
generated by the mismatch between active knowledge and disturbance 
perception, exceeding some threshold value (Macedo, et al., 2004; Meyer, et 
al., 1997)(function of Unexpectedness). It is based on some form of 'statistical' 
learning (Baldi & Itti, 2010) and its intensity is function of the degree of certainty 
and the value of the goal. 
 

2) Passive Prediction-based Surprise: surprise results from a conflict or 
inconsistency between the updated set of knowledge and the perceived 
sensation (Ortony & Partridge, 1987). Passive expectations are formed after the 
surprising event has occurred (Spitz, 2011). 
 

3) Implausibility-based Surprise: This refers to those (quite numerous) situations in 
which the input proposition expresses information related to non-existent 
knowledge (function of Incredulity). 

Summarizing, capture surprise events or feeling surprise seems to play several 
functions: 

1) Redirecting attention on the mismatching facts, concentrating cognitive 
processing resources on them. 
 

2) Activating resources for possible practical activity; physical arousal, bodily 
preparation for fast reaction.  



42 Perceptual Evaluation 
 

 
 

 
3) There are also long term effects (and functions) of the perceived surprise for a 

bad prediction (e.g. increasing controls before and during the actions). 

2.3.3 Sensorimotor	Integration	in	Postural	Control	
To maintain postural control during both static and dynamic situations, individuals rely 
on their sensory (visual, vestibular and somatosensory) systems to provide information 
such as their limbs locations and movement with respect to the surrounding 
environment. The Central Nervous System then interprets the sensory information and 
commands the musculoskeletal systems to adjust the body parts position trying to keep 
a desired or stable posture. However, since human beings are constantly interacting 
with their surroundings, one must not ignore the environment when studying postural 
control. The influence of environmental factors such as light conditions, concurrent 
distracting factors, special surface characteristics, etc. are affecting the requirements to 
the postural control. Similarly, it is easily understood that the postural control demands 
during the task of walking and other locomotive activities are different from the 
demands when humans perform manipulation tasks (Figure 15). 

 

Figure 15 Postural control (PC) is influenced by factors related to the individual, the task, and 

the environment adapted from (Shumway-Cook et al., 1995) 

Since postural control has been defined as the control of the body’s position in space, it 
must be performed adjusting parameters such as centre of mass, base of support, joint 
momentum, etc. The adjustments are counterbalancing actions of the limbs, the head 
and the trunk influenced by the muscular strength, previous experience, etc.  

 Motor	Strategies	to	Control	Balance		2.3.3.1

The particular case of postural control during locomotion has been extensively studied 
in order to try to understand the mechanisms that humans use to solve the balance 
problem during upright stance, walking, etc. One of the main conclusions is the 
existence of learned patterns that are automatically triggered in response to 
determined stimuli. These patterns are called motor strategies or ‘synergies’ (e.g. 
Bernstein, 1967; Sherrington, 1906). According to Sherrington, the control of the 
movement related to the synergies is composed by a reflex motor unit above the 
voluntary motor unit. Such reflex movements are organised more naturally into 
collective functional units defined over groups of muscles and joints (Kelso & Saltzman, 
1982). By the other side, Bernstein suggests that a restricted number of programs may 
underlie most of our behaviour. 
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For any given perturbation, one or more muscle synergies may be activated so that 
their combined influences define the resulting muscle activation pattern (Ting, 2007). 
Extending the concept, complex synergies can be in general considered as programs 
for controlling some distinctive motor performance extended in space and time, built 
upon basic synergies of coordinated reflexes as substrate (Arbib, 1987).  

Therefore, synergies can be classified according the direction of action of the 
perturbations. All of them can be decomposed in anteroposterior disturbances (sagittal 
plane) and mediolateral disturbances (frontal plane).  Studies of quiet stance have 
suggested separate postural strategies for balance in both planes depending on the 
stance position (Day, et al. 1993; Winter, et al. 1996). There are three main 
mechanisms that can be applied to regain balance in such planes depending on the 
level of the disturbance.   

The first is the ankle strategy. In this one, the body can be regarded as a stiff 
pendulum, and balance adjustments are mainly made in the ankle joint, with the person 
swaying like an inverted pendulum (Nashner, 1985). This postural adjustment is 
applied in the anteroposterior direction to compensate low intensity disturbances. 

In the hip strategy, the resulting motion is primarily focused about the hip joints (Horak, 
et al. 1990). It can be applied independently or in combination of the ankle strategy. 
The hip joint movement is triggered when the external disturbance increases and the 
ankle strategy is not enough to keep balance. Figure 16 and Figure 17 show how the 
levels for strategy triggering changes depending of environmental conditions (flat 
surface stance vs. narrow beam).  The hip strategy, same as ankle one, acts in the 
anteroposterior direction. 

 

Figure 16 Strategy trigger modification influenced by environment conditions 

When these postural corrections become insufficient, the base of support must be 
adjusted. (Carr, et al. 1987; Horak, et al. 1990) This action will be seen as protective 
stepping reactions. The modification of the support base leads new balance stability 
limits.  
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Figure 17 Balance strategies 

In the mediolateral direction or frontal plane, the disturbances are compensated by the 
lateral movement of the hip joint in the case of upright stance. But if disturbances 
appear during walking, the compensation changes to the ankle strategy.  

Other examples of synergies considered in different studies include a multi-link strategy 
and muscle amplitude synergies (Allum & Honegger, 1993), the ankle, knee, and hip 
eigen-movements (Alexandrov et al., 1998), axial synergies (Crenna et al., 1987), and 
reciprocal and co-contraction strategies (Slijper & Latash, 2000). All these examples 
are based on a common assumption that regularity in the behaviour of a set of 
elements is a sufficient sign to claim an existence of a synergy (Latash et al., 2005). 

2.3.4 Basic	Postural	Control	System	Schemes		
Postural control can be seen as a response to sensory information on a feedback 
basis, but when a balance threatening situation can be predicted, an anticipatory 
strategy can be used (Ghez & Krakauer, 2000). Postural control strategies may 
therefore be either “reactive” (compensatory), “predictive” (anticipatory), or a 
combination (Pollock, et al. 2000).  

In a feedback system, sensed signals are compared to reference signals by means of 
comparators (Figure 18). The difference between a feedback signal and the reference 
is the error signal. Feedback control is usually used for slow movements and for 
maintaining posture. For instance, it is originated by the sensorial events associated to 
an unexpected balance lost (compensatory). They are the result of the interaction 
between the body and its environment. The body adapts itself to the external conditions 
thanks to the sensorial information (exoceptive and proprioceptive).  
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Figure 18 Feedback control scheme (Kandel et al., 2000) 

In a feedforward control, state variables (e.g. joint angle) and advance information 
about disturbance are received by sensors and fed forward by the controller (Figure 
19). Feedforward control is essential for rapid movements and relies on advance 
information to adjust controlled variables. When a disturbance repeats itself and, 
therefore, it can be predicted, its correction can be improved through an “in advance” 
system. This system predicts possible disturbances and generates and answer 
program whose goal is to maintain the stability. This answer allows carrying on some 
previous position adjustments before executing an intentional movement (previous 
experience). If the feedforward had not existed, the body would have been unstable 
and would have fallen down.  

 

Figure 19 Feedforward control scheme (Kandel et al., 2000) 

Closely related to the concepts of feedforward and feedback control we find open and 
closed loop control schemes, respectively. These concepts used by (Kandel et al., 
2000) provide descriptions of two different ways in which the nervous system behaves 
in controlling movement. Feedback control is often referred to as closed loop control 
because the outgoing commands, the effectors (or actuators), the feedback signals and 
the control centre all form a loop. In this case, the element sensed is directly the 
actuator and, mainly, it is proprioceptive information (Figure 18). Feedforward control is 
often referred to as open loop control in order to emphasise that the sensory signals 
come from exoceptive stimuli (i.e. visual information). The feedforward control 
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complements the feedback control to increment the velocity of response against 
disturbances (Figure 19). In fact, the architecture for human postural control is based 
on the combination of feedback and feedforward schemes. A direct mapping of the task 
parameters into the appropriate muscle activation patterns could constitute a task 
specific feedforward controller adequately solving the control problem (D'Avella et al., 
2008). 

2.4 The	Human	Postural	Control	System	
Taking into account the basic principles of human postural control, it is possible to 
develop a full control system scheme. The components involved in this system are 
interrelated by means of feedback and feedforward information flows. Many 
researchers have developed theories regarding the operation of the sensorimotor 
system that controls posture and balance (Nashner, 1985; Horak et al., 1990; Rothwell 
& Lennon, 1994; Winter, 1995; Kandel et al., 2000; Mahboobin, et al. 2002; Peterka et 
al., 2002). The resulting control scheme joins all the basic principles but some of them 
have little differences, depending how the operation of the whole system is considered. 
Figure 20 shows one holistic approach of the human being postural control system. In 
this scheme, there exist two position inputs: postural and movement.  

Postural control (orientation and balance) is related to the proprioceptive perception 
meanwhile movement control corresponds to the voluntary actions. The proprioceptive 
information is merged with other sensorial sources to build the body schema which 
shows a representation of the body’s configuration together with its relationships with 
the external world. All these components belong to the feedback control loop. 

The movement control is, in fact, the desired position of the body. As the target 
position, the central neuron system commands each muscular group with its own local 
control loop. At the same time, this command position is feedforwarded and compared 
with the resulting information of balance to make the proper adjustments. 

 

Figure 20 Human postural control architecture adapted from (Massion, 1998) 

In the model of Figure 20, the human body is represented by a simplified model in 
which sensor and balance information’s are the variables. The scheme shown in Figure 
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21 incorporates this model inside the ‘processing & integration’ module, avoiding the 
duplication of input information to the comparator produced in Figure 20 . In this case, 
the result of the comparison is a corrective command of the body orientation that is the 
center of the feedforward control loop. 

 

Figure 21 Human postural control scheme



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER	3 	
 

High	Level	TEO	Humanoid	Postural	
Control	Architecture		
	
	

3.1 Introduction	to	Humanoid	Posture	Control		
The human postural control system, outlined in Chapter 2, is the result of millions of 
years of evolution. Its complex operation and physiology are still being researched and 
are far from being completely understood. Although technology evolution is much faster 
than biology evolution, the same problems must be addressed and they are 
continuously under development.  

The case of humanoid robotics is very particular. This technology deals with the dream 
of designing an artificial human-like machine. Many reasons have been exposed to 
justify the design of humanoid robots. Some authors argue that these kinds of design 
are semi-optimal for the dexterous manipulation of objects and for other complex 
motions, but they also recommend not copying the human form without functional 
motivation (Ambrose & Ambrose, 2004). Another very practical reason to design 
humanoid robots is that they will be able to operate in the same environments that 
humans operate in today (Brooks et al., 2004). This is due to the world is adapted to 
the human body shape and it is easier to design machines adapted to our world than 
modify it. This allows the robot operation in a whole range of situations in which a non-
humanoid robot would be quite ineffective. There are two main human characteristics 
to replicate in humanoids robots: appearance and behaviour.  

Lots of human-like mechanical designs have been developed during last fifty years, 
from first prototype Wabot-1 (Kato, 1973) to cutting-edge humanoid robots ASIMO 
(Hirose, Haikawa, Takenaka, & Hirai, 2001), HUBO (Oh et al., 2006) and HRP-3 
(Kaneko et al., 2008). From a mechanical point of view, the development of these 
robots has taken the advantage of leading technologies existing in their time but the 
concepts used were based on traditional mechanical solutions. For instance, joint 
designs have been mainly created with rotary motors joined to mechanical 
transmissions to increase velocity and torque at their output. But mechanical limitations 
and the desire of high human appearance favour the searching for new solutions for 
the humanoid robot design. In this sense, the field of bionics seeks to design 
technology by mimicking the salient features of biological structures (Vincent et al., 
2006). Lessons learned from bionics state that success of natural inspired designs 
relies on effective embodiment: on clever morphology and use of material properties 
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(Eaton, 2008). Taking this in account, it is obvious that it is necessary to develop new 
human inspired technologies to enable this embodiment. In this way, full body 
humanoid robot development has been slowing down during last decade and the 
mechatronics research efforts have been redirected to solve more focused problems: 
artificial muscles, advanced materials, etc. 

It has been demonstrated the feasibility of building full body humanoid robots. 
However, it has been recently paid attention to the second main issue involved in 
human being replication: the imitation of human behaviour. As described in Chapter 2, 
the main studies regarding physiology and human behaviour date back the turn of 20th 
Century. The advances achieved in the knowledge of the human organism during the 
last decades have made possible a better understanding of the underlying mechanisms 
that produce the different human behaviours. There is a variety of human behaviours 
and their classification is complex. In this work only physical behaviours related with 
movement will be considered. Attending to their nature, behaviours can be classified as 
innate or learned.  

Innate or instinctive behaviours will be those, conscious or unconscious, that have a 
biological and genetic basis, are performed naturally, and are reinforced by practice. 
The human being has acquired this kind of innate behaviours thanks to thousands 
years of evolution, and they are “hard-wired” in the Central Nervous System. In 
general, instinctive behaviours are considered as “pre-programmed" responses 
triggered by external stimuli. They usually fit into one of the following categories 
(Meyer, 2006): 

1) Reflex: it is the most basic innate behaviour. Correspond to the basic reflex arc 
involving only a few neurons. 
 

2) Orientation behaviours: they are coordinated movements like walking, etc. 
 

3) Kinesis: it is a change on the speed of movement or a change rate of turn which 
are directly proportional to the stimuli intensity. 
 

4) Taxis: it is a movement directly toward (positive) or away from (negative) a 
stimulus. 

Learned behaviours are skills acquired or modified by the experience resulting from a 
learning procedure. Taking this into account, it is obvious to conclude that innate and 
learned behaviours are close related by means of experience. The human being 
acquires new skills and knowledge through trial and error, observation of other 
individuals or memory of past events.  In general, learned behaviours will always be 
(Meyer, 2006): 

1) Non-heritable: behaviour acquired only through observation or experience. 
 

2) Extrinsic: it is caused by social interaction. 
 

3) Permutable: pattern or sequence may change over time. 
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4) Adaptable:  it is capable of modification to suit changing conditions. 
 

5) Progressive: subject to improvement or refinement through practice. 

The better understand of the human postural control system operation has enabled the 
development of a large number of control schemes in cybernetic/robotic and 
biomechanical fields. In the former, theoretical and experimental situations as standing 
posture and free fall (Gorce, et al., 1995; Gorce & Vanel, 1997), walking (Fujimoto & 
Kawamura, 1995; Kajita & Tani, 1995; Kajita et al., 1992; Takanishi et al., 1990; 
Vukobratovic et al., 1970), run-to-walk and vice versa (Hodgins, 1991), (Hodgins, 1994; 
Raibert, 1986), have been studied considering static or dynamic 2D/3D problems. In 
the latter field, studies are focused on experimental postural analysis (Bouisset & 
Zattara, 1981), organization of the postural control (Nashner & McCollum, 1985) or 
biomechanical modelling to study postural control (McCollum & Leen, 1989), gait 
initiation (Brenière & Dietrich, 1992), musculoskeletal control (Van Der Helm & 
Rozendaal, 2000) or jumping (Levine et al., 1983).  

These works are contributions for a better human behaviour understanding. They are 
studies about the dynamic equilibrium problem as part of more complex behaviours. 
These studies deal more generally with the selection of strategies to balance the 
external perturbation (force and moment) acting on the human structure. In these 
cases, the matter under control is the desirable posture during and after the 
performance of a voluntary movement. From the initial posture, the movement is the 
succession of instantaneous postures subjected to external perturbations. Then, the 
reactions against these perturbations are computed and deployed according to the 
response velocity required and the origin of the disturbance.      

The postural state and the perturbations are captured by two sensorial systems or 
perceptions. The proprioceptive perception captures the internal state of the body, that 
is, the limbs position. The exoceptive perception senses the external perturbations from 
a variety of sources.  All the perceptions are fed into the postural control system after a 
complex processing stage, performed by the own sensor organs and the brain 
processing centres. This complexity is solved by the postural control system in order to 
produce a properly response against perturbations.  

It has been stated that human posture control is composed by the two main types of 
control loops. The first one, the closed or feedback loop maintains the posture and 
reacts to disturbances during slow movements. But this system is not enough to regain 
balance when fast reactions are needed. In this case, it exists a complementary open 
loop control system that helps to anticipate and to prepare the body against postural 
disturbances. This feedforward mechanism enables fast reflex and automatic reactions. 

The development of humanlike machines has motivated a deeper research in human 
postural control systems. Early developments of humanoid prototypes were built to 
research the first postural problem humans must face up in the first year of their life: 
the equilibrium maintenance. The increase in computer processing power has enabled 
the fast development of these prototypes and the construction of full size humanoid 
platforms, which are able of performing complex postural tasks. 
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The step up in mechatronics and computing has favoured the development of high 
complexity control schemes and their transformation into ‘human inspired’ control 
systems. The final goal of these control schemes is to imitate the human behaviour as 
much as possible.  

This human inspiration has caused a change in how the researcher considers the 
humanoid platform. The humanoid robot was only a mechatronic platform to test tasks 
and control schemes. Now, new robotic platforms have been developed to study the 
cognitive aspect of the human nature. In these platforms, the understanding of 
cognition and the analysis of how humans perceive the environment, how they interact 
within it and how the information is processed and applied, are the key point of control.  
This is one of the reasons why techniques, derived from the study of human behaviour, 
are taking more importance in postural control. Genetic algorithms, neuro-fuzzy 
controllers, etc. used in Artificial Intelligence are being applied in control, due to their 
similarity with real human processing.  

During the last decade, the RoboticsLab research group has been introduced in the 
development of humanoid robots. The prototype RH-1 (Arbulu & Balaguer, 2010; 
Arbulu, Kaynov, Cabas, & Balaguer, 2009; Monje, Pierro, & Balaguer, 2009a, 2009b; 
Pierro, Monje, & Balaguer, 2008, 2009) was the first anthropomorphic mechatronics 
design carried out. It was useful to understand the challenging of the humanoid robot 
mechatronics and control design. With the new humanoid robot prototype TEO (Task 
Environment Operator), Roboticslab has applied lessons learned with RH-1. New 
improvements in mechatronics enable the change on the control philosophy from 
classical control techniques towards human behaviour inspired control. 

This Thesis deals with this change and the development of human inspired control 
architecture for TEO humanoid robot. The first version of the control scheme deployed 
for TEO humanoid robot was a classic feedback control system to regain stability. It 
matches with the feedback loop in the human control schemes exposed in Section 
2.3.4. The architecture proposed in this work adds the open feedforward loop to 
complete the human inspired postural control scheme. 

3.2 Performing	Humanoid	Tasks		
It has been exposed that human actions are a mixture of different kind of behaviours 
composed by simpler tasks. By means of the learning process, tasks become more 
complex and they enhance the human capabilities during growth. Thus, a task should 
not be considered simply as a succession of fixed motor patterns. It might be 
considered as a flexible, adaptable and configurable motor sequence that, as well, 
includes mechanisms for dealing with unexpected events.   

In this way, TEO humanoid robot tasks are not mere sequences of joint angles, 
velocities and accelerations. There are complete sets of configurable modules 
established to enable the human inspired postural architecture. Figure 22 represents 
the structure of TEO tasks. One task frame is composed by a main movement, which 
can be configurated to perform different movements with the same shape. As well, the 
mechanisms to react against perturbations have been added by means of the 
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integration of motor patterns or synergies. Finally, it has been included a module which 
combines motion sequences, depending on the control requirements. 

 

Figure 22 Humanoid task modules 

Then, complex behaviours are those groups of tasks sharing one main characteristic 
that defines them. Thus, the study of postural control has been divided into 
manipulation and locomotion behaviours or groups of tasks. In Chapter 2 two specific 
task problems were introduced. These specific tasks have been selected from each 
one of those behaviours to illustrate and test the results obtained from development of 
this PhD Thesis. 

 

3.3 Human	Inspired	Postural	Control	Architecture	
The main objective of the Thesis is to propose and design novel human inspired and 
task oriented control architecture for humanoid robots. This development has been 
deployed for robot TEO which is the third generation of humanoid robots from 
RoboticsLab research group. The research in the field of humanoid robots started with 
the development of the platform RH-1. This mechatronic system integrates a postural 
control to maintain equilibrium during locomotion tasks. The high level control scheme 
is shown in Figure 23. 

 

Figure 23 RH-1 Control architecture  

In this scheme, a central pattern generator computes a statically stable locomotion 
task. It is composed by a sequence of joint positions or postures whose stability was 
ensured offline. These positions are transmitted to the joint controllers and executed. 
An internal joint control loop minimizes the posture position error. But this loop is not 
enough to regain balance if higher disturbances act over the robot. In this case, a 
second control loop for dynamic stability or ‘stabilizer’ maintains postural balance 
during locomotion by means of ZMP and CoM allocation control. The first loop 



54 Human Inspired Postural Control Architecture
 

 
 

corresponds to the internal PID control of each individual joint. It is performed by the 
driver device that actuates every degree of freedom. Due to this nature, it is impossible 
to perform whole body postural corrections only with this loop. On the opposite, the 
‘stabilizer’ considers the robot as a whole and it supervises the parameters influenced 
by the body dynamics. These parameters can be computed online thanks to the use of 
a simple inverted pendulum model that reduces significantly the processing time. 

Another important aspect of this architecture is the availability of sensor data and its 
treatment. The only sensor devices integrated in the kinematic chain of the RH-1 robot 
are incremental encoders used to measure joint angles. This kind of sensors does not 
provide information about the dynamics of the robot. The use of the simplified model of 
the robot body helps to estimate the dynamics and its influence in balance. 

The unfeasibility of obtaining direct sensor data regarding the body dynamics, such as 
limb accelerations, forces exerted on the body, etc., causes an increase of computing 
time. Due to this, the admissible level of perturbation is low and the time to reaction 
high. 

Apart from the restrictions in control, RH-1 robot presented great limitations which did 
not allow a correct motion performance in terms of mechanical robustness (high joint 
looseness), stability, and energy consumption (necessity to be connected to the 
electrical net since battery could not supply the required energy for more than a while), 
not to mention the realization of high-level tasks such as manipulation, complex gait 
generation, or complex human-robot interaction (Monje et al., 2011). 

TEO robot comes to substitute RH-1 humanoid robot to overcome its limitations. The 
design of the new platform turns the humanoid robot into a cognitive robot that enables 
the implementation of human inspired concepts. The novel postural control architecture 
proposed for TEO humanoid robot is compounded by two differentiated parts: the 
feedback and the feedforward control loops. It is shown in Figure 24. 

 

Figure 24 TEO Control architecture 

This Thesis deals with the development of the feedforward control loop shown in Figure 
24. It has been inspired in the architectures for human postural control system stated in 
Section 2.4. As commented before, human body has different levels of reaction 
depending of the required response velocity. Automatic and reflex acts are the fastest 
levels of reaction against disturbances. These reactions are activated by the inputs 
coming from the corresponding sensorial organs. The information from these organs is 
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transmitted to the processing centres in which the reaction is built. Once the response 
is composed it is sent to the muscles to perform the programmed action. 

The novel TEO postural controller has been inspired in this operation and the 
mechatronic design of the robot supports it, as described in Chapter 5. In this way, the 
described ‘foundations of postural control’ are applied in TEO control architecture 
(Figure 24).  

Apart from the levels of motor reaction, the basis of the postural control is the 
sensorimotor integration and the way of enabling it. As reviewed in Section 2.3.3, 
several theories have been developed to explain how the sensorial information is 
captured, processed and, executed through the corresponding action. Multiple systems 
are involved in postural control in a multilevel structure. Taking this into account, it has 
been established a sensorial evaluation module to compute the input information and 
to compose the named ‘perceptions’.  

The exoceptive perception will capture the external perturbations (Table 2). This 
perception is composed by different sensor devices that accomplish the same function 
as one system of the human body (see Chapter 5): 

Table 2 Human vs. humanoid exoceptive perception 

Exoceptive Humanoid System Exoceptive Human System 
Inertial Measurement Unit (IMU) Vestibular System 

Force / Torque Sensors (F/T) Muscles / Skin 
Vision (3D cameras) Vision 

 

The proprioceptive perception measures the internal body status. The sensorial data is 
provided by joint position and velocity sensors (Table 3).  

Table 3 Human vs. humanoid proprioceptive perception 

Proprioceptive Humanoid System Proprioceptive Human System 
Relative Encoder Joint Velocity 
Absolute Encoder Joint Position 

 

Each perception is processed following psychophysics principles that relate physical 
stimuli with the corresponding sensation. The captured information must be processed, 
classified and integrated in order to command actions in the proper way. To evaluate 
the sensorial input using psychophysical principles, the perceptual process has been 
modelled considering perturbations as unexpected events or surprise events produced 
depending on the task context. This operation is performed by the module ‘surprise 
generation’ from Figure 24. 

Another basic principle used in TEO postural control architecture is integrated in the 
module ‘Behaviour Decision System’. Based on the concepts of automatic and reflex 
reactions, this module modifies the actual task according to surprise events with the 
help of pre-programmed synergies. These strategies have been defined as quasi-static 
postural mechanisms learned by experience. The operation of this module is supported 
by the definition of task as complex behaviours stated in Section 3.2. 
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Based on these foundations, inspired in human postural control, the high level of the 
novel TEO postural control architecture has been developed and presented. Next 
sections study in depth every one of the modules outlined. 

3.4 Perceptual	Evaluation	
TEO humanoid robot has been equipped with different sensing devices that provide the 
necessary information to compose the proprioceptive and exoceptive perceptions. The 
raw data coming from the sensors composes the robot sensations and it must be 
processed to be useful in postural control.   

The result of the sensor data evaluation depends highly on the task being performed. It 
means that the resulting perception will not be the same if the task performed is, for 
instance, pure manipulation or pure locomotion. It is the task oriented perceptual 
system which filters the information and uses it in the proper way.  Taking this into 
account, two premises can be established for TEO robot perceptual evaluation: 

1) Same sensorial inputs will produce different perception depending on the task 
performed. 
 

2) Exoceptive and proprioceptive perceptions will be composed by different 
sensorial sources depending on the task performed. 

The first premise means, following psychophysical principles, that the processor 
centres filters the sensorial information to speed the result of the evaluation up and to 
produce an accurate response (detection, identification, discrimination and scaling). 
Second premise remarks the task dependant nature of the perception production as 
well. For instance, the use of data related with equilibrium is unnecessary in a 
manipulation task when the robot is seated.  

Summarizing, not all information might be used in all cases and the information might 
not be applied in the same way in every task. Figure 25 shows the modules in charge 
of perceptive evaluation in TEO control architecture. Sensations composed by the 
information captured by sensory devices are evaluated forming the proprioceptive and 
exoceptive perceptions. Both sets of perceptual information is then available in the 
system to be used depending of the postural control necessities. 
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Figure 25 Perception evaluation 

3.4.1 Sensation	Detection		
The first step to perform reactions against any perturbation is to perceive it. While 
sensation is related with the process through which the senses pick stimuli up and 
transmit them to the brain, the perception deals with the organization and interpretation 
of the sensed information. 

The process to compose perceptions starts in the sensory receptors that detect and 
convert stimuli into electrical signals. The robot sensory system operates in the same 
way than the human’s, following the same pathway. Complex sensing devices filter and 
discriminate stimuli for generating proper electrical signals. Then, such signals are 
transmitted to the processor centres where the information is turned into perceptions 
(Figure 26). 

 

Figure 26 Sensations pathway 

The production of sensations is performed by the electro-mechanic sensing devices. In 
most of the cases, the electronic devices have better performance capturing 
information and pre-processing it than the human sensory organs. But in the same 
way, it is necessary to establish some boundaries inside where the information to 
compose perceptions is relevant. It is performed using the psychophysics concept of 
sensory thresholds Figure 27. 
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Different levels of stimuli can be captured by sensory devices. The difference between 
the highest and lowest levels establishes the measurement range. But all this range is 
not always useful. It depends of the sensation to deploy. There exist threshold values 
that determine if a sensation must be produced or even if it is too high. In the first case, 
the lowest threshold establishes the minimum relevant perturbation level from which 
the corresponding perception would be obtained. On the opposite, the highest 
threshold indicates that stimuli above this level saturate the sensation and the 
subsequent perception.  

 

Figure 27 Sensation Thresholds 

Related to the signal measurement, the absolute threshold corresponds with the 
smallest detectable level of stimulus which could not coincide with the minimum useful 
value. The last important concept is related to the difference threshold that indicates 
the minimum change between two stimuli to conclude they are not the same. 

 All these concepts are related to each sensory device performance and, more 
important, to the task the perception is composed for. The main advantage of this 
procedure is to rule out unnecessary sensations for the task under question. For 
instance, ankle forces used for ZMP evaluation are unnecessary while robot is seated. 
It reduces the data to be processed and increases its performance. 

Once the sensation is composed by the raw sensor data, it must be classified, 
evaluated and converted into perceptions. This process is constraint by the nature of 
the scheme established, in which the perceptions are task dependant. 

3.4.2 Perception	Evaluation	
The concept of sensation is related to each individual sensory device and the process 
of capturing information. Firstly, the electro-mechanic transducers convert stimuli into 
electrical signals. At this stage, the raw data is still inside the sensory device. 
Previously to be dispatched to the central processor system, this data is interpreted to 
compose computer understandable sensorial information. 

 This pre-processing constitutes one important difference with the human sensorial 
system, in which the sensor devices transmit only electrical impulses to the processor 
centres where the information is interpreted. The result of the sensation detection is a 
stream of information from the each sensory device transmitted using the proper format 
and protocol.   
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This stream of information from every device is at the processor centres disposal. But 
the sensorial information is not completely useful at this time. Every sensing device 
provides information about a particular kind of stimuli that can come from internal or 
external sources. Taking this into account, the first task of the processor centres is the 
classification of the sensorial information depending on its origin. The result of this 
reorganization is the composition of the proprioceptive and exoceptive perceptions. 
They are sets of interpreted sensorial information classified by the origin of the stimuli 
and they are available in the system for being used. 

 Proprioceptive	Perception	Evaluation	3.4.2.1

The proprioceptive perception is composed by sensations coming from ‘inside’ the 
body. This information is collected by absolute encoders, located in every DoF, that 
measure the relative angle between two adjoins links of the robot. These angles are 
measured taking into account the upright stance posture as the ‘home’ posture for the 
robot. The proprioceptive perception is divided in two groups due to the disposition of 
TEO robot hardware architecture: upper and lower body proprioception. They are used 
in the different task according to Figure 28. 

 

Figure 28 Components of the proprioceptive perception 

The sensorial information is transmitted to two processor units to compute the upper 
and lower proprioception independently. It speeds the proprioceptive evaluation up and 
it simplifies the output of the sensorial evaluation, improving postural control 
performance. Then, this proprioception is obtained by means of two neuro-fuzzy 
evaluation systems. Each one computes one of the body groups in which the robot has 
been divided Figure 29. 
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Figure 29 Body limbs location evaluation  

The evaluation of the upper body absolute encoders outputs the hands location. 
Meanwhile, the feet location is obtained after the evaluation of the lower body absolute 
encoders’ information. In this way, the proposed system evaluates the forward 
kinematics of each extremity using the human-like computing style of fuzzy systems.  

 Exoceptive	Perception	Evaluation	3.4.2.2

The exoceptive perception in TEO robot is composed by sensations coming from 
Force/Torque sensors, an Inertial Measurement Unit (IMU) and the vision sensor 
(KinectTM). These sensory devices will be described further in detail in Chapter 5. 
Following the task oriented system concept, the exoceptive perception is composed by 
different sets of information from the available sensorial sources. Figure 30 shows the 
basic tasks established and the sensors involved in composing the exoceptive 
perception in each case. This chart exposes, for instance, that vision system is applied 
in both manipulation and locomotion tasks. In this case, the sensorial device is the 
same but the set of information used in each task is different.   

 

Figure 30 Components of the exoceptive perception 

As well, same perceptual sets can be composed by different sensory devices. This is 
the case of the sensation about forces exerted on the robot. F/T sensors and the IMU 
device capture information about the same sensorial source and the information they 
provide is complementary. This issue enriches the resulting perception.   

In this way, the Inertial Measurement Unit, allocated inside TEO robot torso, provides 
direct information about robot movement and, as well, it can be used to determine the 
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movement tendency. Figure 31 illustrates which the outcomes from IMU sensation 
evaluation are.  

 

Figure 31 Inertial measurements evaluation 

Rotational and linear movement tendencies must be computed from angular rate and 
linear acceleration respectively. Both movement tendencies are affected by inclination 
and gravity of the sensor device. Therefore, these parameters must be corrected to 
eliminate these errors. The results are the movement tendencies in the sagittal and 
frontal planes directions. These outcomes are evaluated, following the human 
inspiration concept, by neuro-fuzzy systems. The other devices that measures forces 
exerted on the robot are the F/T sensors. These sensory devices measure reaction 
forces and torques in the ankles and the wrists. That is, this kind of sensors measures 
the interaction between bodies.  

In the case of wrists, the sensors capture the information related with the contact 
between the robot hands and the manipulated object (Figure 32). Furthermore, this 
data could be used to estimate the characteristics of objects, such as weight, or the 
interaction impact over the manipulation task and the robot arms (payload limit, etc.) 

 

Figure 32 Wrists forces and torque measurements evaluation 

The ankle F/T sensors are only applied in locomotion tasks because they measure the 
ground reactions. Three main outputs are obtained from these sensors (Figure 33). 
One of them is obtained directly and it indicates the support phase during locomotion. 
The other two outputs are processed by the corresponding neuro-fuzzy system. The 
processed outputs compute the ZMP actual location and the feet angles on the ground. 
The reaction forces and torques measured by these sensors are useful to compute the 
ZMP location that denotes the actual balance state of the robot. Taking into account 
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the possible ZMP movement, which is the result from the IMU data interpretation, the 
future robot balance status can be previewed and reactions can be anticipated.    

 

Figure 33 Ankles forces and torque measurements evaluation 

The last exoceptive perception evaluation is related with the vision system. This is the 
only system capable of extracting some information from distant objects and the 
environment without contact.  The goal of this evaluation is to obtain the location of the 
corresponding work object and, whether it is in movement, to determinate its trajectory. 
The high level scheme for evaluating this information source is shown in Figure 34. 

 

Figure 34 Objects movement evaluation

 

3.5 Surprise	Generation	
It has been described how sensory devices generate raw data called sensation and, 
after pre-processing, the information is organized into perceptions. In this stage, only 
perceptions are available. Now, the problem is how to apply all this information in 
postural control.  

The mechanism established in the feedforward loop to trigger reactions is based on the 
evaluation of surprising events. Perturbations can be considered as unexpected events 
and, the output of its processing, the activation of a surprise (Ortony & Partridge, 
1987). Then, the information from perceptions is the base for this evaluation. The 
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system selects and combines information from the available sets, depending on the 
necessities of pre-established output surprises.  

Nevertheless, the concept of surprise is a high level envelope that explains the process 
of any kind of unexpectedness. Taking this into account, surprisingness is generated 
by lower level mechanisms called expectations. The failure of a determined expectation 
elicits a surprise event. The expectation failure can be classified in: 

1) Active expectation failure or prediction failure. It is produced when a prediction 
about an outcome has not been produced by an input proposition.  
 

2) Passive expectation failure or assumption failure. It is caused when an 
outcome, originated by a determined input proposition, is not predicted but 
some assumptions about it can be established. If this output doesn’t fit into 
these assumptions, the surprise should be elicited.   
 

3) Unanticipated incongruity. It is related to unexpected events never 
experimented before.  

To clarify these concepts the manipulation case will be used as example. When the 
robot performs the task of ‘throwing a ball and catch it’ the normal behaviour is 
considered when the ball goes straight up and falls straight down to any point very 
close to the initial position (Figure 35). 

 

Figure 35 Normal ‘throwing a ball and catch it’ task 

Nevertheless, unexpected deviations can occur during the fly of the ball. This 
unexpected situation causes surprise or an expectation failure. Taking into account the 
normal task behaviour established, the expected ball’s trajectory can be predicted at 
any time (tk+T), as exposed in Figure 36. In this case, in order to anticipate the hand 
movement, the prediction failure event should be elicited when the evaluated distance 
between two consecutive predictions exceeds an established threshold. Then, high 
deviations can be detected with anticipation and an automatic complex synergy could 
be triggered in order to solve this issue. 
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Figure 36 Deviated ‘throwing a ball and catch it’ task 

At the same time, the system is able to measure the ball’s location and, as well, the 
hand’s location in a determined time period (tk). Whether we consider valid the 
assumption of straight line fall trajectory at any time, it is possible to compute the 
distance between hand and the assumed ball falling location (Figure 36). Then, the 
assumption failure will drive a reflex reaction with the aim of correcting the hand 
location as fast as possible.  

Therefore, the reaction movements performed to solve both situations to catch the ball 
properly are considered reactions driven by surprise events.   

Passive and active expectations require a certain degree of previous knowledge about 
the matter that can cause surprise. These two forms of expectation failures have been 
considered to be applied for surprise generation in TEO robot (Figure 37). 
Unanticipated incongruity implies the integration of other kind of intelligent module that 
will be able to classify the event and to learn about it. 

 

Figure 37 Surprise generation modules 

In this way, passive expectation failure module will produce surprise events when some 
predefined thresholds will be exceeded by the input proposition. In the case of active 
expectation, predictions about critical issues related with tasks performance are 
continuously verified. Then, the surprise event is triggered if these predictions fail, 
always taking into account the task context.   

3.5.1 Passive	Expectation	Failure	
The passive expectation failure or passive assumption is produced when it is not 
possible to form previous expectations about an input proposition. It is the case in 
which sensorial inputs are compared with assumed operating thresholds. These 
expected levels are not defined by predictions but by the context of the robot (task, 
environment, etc.). 
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Surprise occurs when a task does not follow a perceptual parameter that has been 
identified. Each perceptual parameter has associated different thresholds to compare 
the level of unexpectedness.  Figure 38 shows the surprise events established for 
manipulation and locomotion tasks. 

 

Figure 38 Passive expectation failure 

In the case of manipulation tasks, the surprise is related with the location of the working 
object and it is driven by the visual perception. The location of the object is estimated 
by the vision system and its distance to the hand is evaluated. The surprise (SPX, SPY, 
SPZ) is then produced whether any of the coordinates of the object differs from the final 
location when a straight down trajectory is assumed. In this case, the evaluation of the 
height of the ball can also be used to decide if the manipulation task can be achieved 
or should be stopped because the object is under the minimum admissible height. 

For the locomotive tasks, the passive expectation failure is related with the movement 
tendency of the robot. The surprise events are elicited when linear (SPLX, SPLY) or 
rotational (SPRX, SPRY) movement exceed the established thresholds to keep robot 
balance.  

In summary, this kind of surprise events is generated by a comparative process 
between the perceptual inputs and established limitations related with the operating 
context. 	

3.5.2 Active	Expectation	Failure	
The active expectation failure or prediction failure is produced by the mismatch 
between the input proposition and the predicted one. In this case, perceptual inputs 
may be computed to obtain an anticipatory prediction of the possible robot future state 
that might be compared with the actual state. The grade of the surprise event will 
depend on the level of disparity between the input proposition and the predicted one, 
from the basis of no surprise until a ‘panic’ level.   

In this case, the complexity of the perceptual inputs, the composition of the prediction 
and the comparison between both increase the surprise generation latency.  The 
surprise events for manipulation and locomotion are shown in Figure 39.	
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Figure 39 Active expectation failure 

The prediction for manipulation task is related with the final location of the object. The 
comparison of the actual perceived hand location and the predicted goal position will 
elicit a graded surprise event. The aim of this surprise generation is to anticipate the 
arm movement towards the goal location in order to catch properly the object. For the 
locomotion task, the prediction is related with the future location of the ZMP and, 
therefore, the evolution of the stability. This surprise information will be applied in the 
pre-selection of possible future strategies to keep balance. 

3.6 Behaviour	Decision	System	
At this stage, there has been described how perturbations are perceived by the 
sensorial system. After that, it has been introduced the system which transforms 
sensations into ‘understandable’ information (perceptions). At last, perceptual 
information is interpreted and converted into surprise events that will be used by the 
control system to act against perturbations.  

But, before of performing the high level description of the behaviour decision system, it 
is important to define what is understood by ‘reactive behaviour’ or reaction. The 
postural control system developed in this Thesis adds an anticipative component to the 
classical feedback control loop. Meanwhile, feedback loops are clearly reactive 
systems this nature is not obvious in the case of the predictive system.  Besides, the 
term ‘reaction’ is usually understood like an action opposed to a perturbation performed 
for correcting a deviation from an expected behaviour.  

The decision system should anticipate a behaviour that will help the system to achieve 
the goal of a task. Therefore, it cannot be considered strictly a reactive system because 
it doesn’t act against something that has just happened. Then, taking into account all 
these considerations, the use of the term ‘reaction’ should not be used for the output of 
this decision system.  

However, the anticipated actions deployed by the decision system can be defined as 
reactions against future consequences evoked by sensorial stimuli. That is, given a 
determinate task, it is possible to know so the correct behaviour as the deviation 
caused by determined perturbations. It means that the perceptual knowledge will drive 
the decision because the consequence of the perturbation is previously known. Then, it 
is possible to say that the anticipative postural control system reacts against the future 
task state. 
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Therefore, inside the behaviour decision module, the surprise events are processed to 
decide: 

1) If any kind of future action or reaction is needed. 
 

2) The kind of reaction that would be the most appropriate. 
 

3) How the selected reaction should be performed. 

By means of evaluating the information from active and passive expectations (surprise 
events), it can be determined if a reaction might be selected and executed. The 
reaction is selected among all available motor synergies related with the corresponding 
task. These synergies are motion patterns that are filled in using the results from the 
expectations evaluation (surprise task parameters). The outcome of this module will be 
a parameterized synergy that could be executed to enhance postural control. The high 
level operation of this behaviour decision module is shown in Figure 40.   

 

Figure 40 Behaviour decision module 

The three kinds of decision subjects the system must perform and the basic operation 
described are close related with the kind of task, as it is shown in Figure 40. Thus, it is 
important to describe how this system performs the decision process in each kind of 
task. 

In the case of manipulation tasks proposed, the decision of the anticipative system is 
not related to the reaction against any perturbation but to the correct finalisation of the 
task. The proposed task consists of throwing a ball up and catching it before it falls to 
the ground. This kind of task has two phases. The first one is the programmed or 
voluntary movement. This is the conscious movement of throwing upwards the ball. 
The second phase corresponds to an unconscious movement driven by the evaluation 
of visual stimulus. The visual sensation, captured by the visual sensors (the eyes in the 
human case), is transformed into a visual perception about the approximate measure 
of the location of the object during its flight. At the same time, the location of the hand 
with which the tasks is being performed is measured by internal sensors. Both kinds of 
perceptual information are merged and evaluated. A surprise event is elicited whether 
there exists any kind of difference between hand and object location. Then, this event 
will be used to select a predefined reaction and the level of the parameters (i.e. joints 
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velocity) to carry out a corrective arm movement. Thus, this reactive behaviour is 
driven by surprise.  

The locomotion postural control is related to upright stance and normal walking tasks 
because, even though they are basically different, they are close related. These two 
kinds of locomotion problems face the reaction against disturbances in two different 
ways. Both control problems use the same sensorial sources and their derived 
perceptions. Nevertheless, the main difference arises when the decision process about 
reactions must be performed. It is caused by the high difference on the dynamics 
conditions of each situation. While upright stance is a completely static posture, 
locomotion is dominated by dynamics. These conditions will influence the evaluation of 
the inputs during decision process and the recommended reaction. It means same 
levels of surprise evaluated will not produce the same decision results and the 
reactions derived from these decisions will be, as well, completely different. Thus, the 
set of synergies or predefined movement patterns composing reactions is related with 
the dynamical constraints of the task and it will be different in each case. The upright 
stance and the postural sway control is an intensively studied problem in the 
biomechanics field. Different strategies have been demonstrated to be involved during 
sway balance control, such as the ankle or the step synergies. On the other hand, 
postural control on dynamic walking is related to the movement of the Centre of 
Masses and the reactions will be focused on the modification of its movement 
characteristics. Thus, two behaviours can be established for the locomotive reactions, 
which are not surprise driven but surprise based. The reactions can be substitutive, 
when the current action is stopped and replaced by the reaction execution, or additive, 
when the reaction is a movement added to the action being performed. 

Further on, the decision system will be developed more in detail based on the task 
behaviour described. 



 

 

 



 

 

CHAPTER	4 	
 

Foundations	for	Postural	Control	
	
	

4.1 Basic	Principles	of	Humanoid	Postural	Control	 	
The humanoid robot control problem can become extremely complex depending on the 
specified desired behaviour and the structure of the system. This control problem has 
been usually divided into two main sub-problems: biped locomotion and dexterous 
manipulation. This division is caused by the complexity of both problems and the 
necessity of study each one avoiding mutual interferences.  

As described in the introductory chapters, the humanoid robots performance can be 
compared with humans in a variety of aspects. The main factors to be compared are 
the sensorial caption, the information processing and the execution of actions.  
Regarding sensorial information caption, artificial sensor devices have even better 
features than human sensors but a precise and huge amount of information available is 
not always needed. The main advantage of the human system compared with the 
robot’s one is the vast capacity of the first one to process information in parallel. The 
last factor, the actuator system, may have the same performance regarding speed but 
the number of degrees of freedom is far from the human being’s. Taking this into 
account, the way to increase the humanoid robot performance must be achieved by the 
information processing improvement. This can be achieved applying the following 
improvements: 

1) Sensorial information processing improvement: fast mechanisms to evaluate 
information from sensor devices must be studied.  
 

2) Task dependant filtering: the redundant and unnecessary sensorial information 
can be discarded. This reduces the amount of information to process and 
increases its speed.  
 

3) Prediction of reaction: the outcome of the system may be a prediction of the 
reaction that can be executed if a trigger level is exceeded.  

The biped locomotion question corresponds not only to the study of dynamic posture 
(walking, running, etc.) but to static posture during standing with or without small 
voluntary lean movements. Humans are capable of maintaining postural stability over a 
wide range of complex scenarios and body configurations, correcting the body posture 
through a process of rejecting (and sometimes accommodating) external disturbances 
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and self-induced perturbations. This is mainly achieved by activating the appropriate 
strategy to overcome the perturbation. 

The study of manipulation problem usually is performed with the help of static or 
wheeled platforms to avoid the necessity of maintain balance. But a whole 
anthropomorphic machine is necessarily composed of both locomotion and 
manipulation systems (legs and arms). During manipulation tasks, the interaction with 
objects or with the environment generates reaction forces applied to the robot body. In 
this way, the manipulation subsystem, that is, the upper body of the humanoid robot is 
as well source of postural perturbations. 

This Chapter deals with the underpinning principles of humanoid postural control. 
These basic principles are already applied in most of the existing humanoid platforms, 
but usually from an engineering point of view.  

As outlined in previous chapters, humanoid postural control system can have a human 
inspired design, incorporating the core principles of human postural control to the 
humanoid robot. This human inspired principle has been considered to evaluate all 
issues involved in TEO robot control. In following sections, topics such as reference 
points (CoM, ZMP, etc.) or simplified robot models, such as the simple inverted 
pendulum used in postural control, are briefly revisited.  

Additionally, the foundations on computing that enable the processing of information to 
perform postural control will be briefly exposed. The computation techniques exposed 
are inspired in human behaviours and processing procedures, which are important 
premises for this Thesis. 

4.2 Human	Dynamics	Foundations	
Postural control principles in humanoid robots have been improved during last decades 
thanks to a deeper knowledge about human behaviour. Modern techniques have 
enabled complex investigations, simulations and analysis of results. This section 
presents some of these foundations that were applied in the development of this PhD 
Thesis. 

4.2.1 Human	Dynamics	Simplified	Models		
Because of the humanoid robot is a complex machine, the study of its behaviour 
requires a lot of computation capacity. Favoured by this limitation, different simplified 
models of the mechanics and its behaviour has been developed. Many investigations 
have demonstrated that human postural control system acts with the same principles 
from these simplified models (Gage, et al., 2004; Kuo, 2007; Kuo, Donelan & Ruina, 
2005). 
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The use of robot body simplified models enables a faster system development and it 
reduces the analysis complexity. Two different simplified models have been applied 
during the development of the novel human inspired architecture proposed in this PhD 
Thesis: the 2D simple and 2D double inverted pendulums.  

It was decided to use 2D models instead 3D models because the bio-inspired 
technique applied in the system development favoured the decomposition of robot 
movement into frontal (X) and sagittal (Y) planes. Moreover, the computing of the 
reference points exposed in Section 4.2.2 gains the advantage of using these models. 

Next, both models and the equations for obtaining the required information about their 
movement are briefly presented. 

 The	Simple	Inverted	Pendulum	4.2.1.1

The simple inverted pendulum is the most basic model but it has multiple uses in 
humanoid robotics. It is applied from biomechanical analysis of movement to postural 
or balance control in humans and biped robots. As can be seen in Figure 41, it consist 
of a mass (M) linked to a pivot point (o) by means of a massless bar of longitude (L). 

 

Figure 41 2D simple inverted pendulum 

The punctual mass M is the total mass of the modelled system concentrated in the 
Centre of Mass (CoM) of such system and the longitude L is the distance from the pivot 
to the CoM.  If gravitational force (Fg) is considered the only force acting in the system, 
the movement of the inverted pendulum will be: 

∑ ௢ܶ ൌ ܫ	 ∙ ሷߠ ൌ ܯ	 ∙ ଶܮ ∙ ሷߠ 			 	 	 	 ሺ4.1ሻ	

T୭ ൌ 	F୥ ∙ L ∙ sin θ ൌ M ∙ g ∙ L ∙ sin θ		 	 																						ሺ4.2ሻ	

Combining (4.1) and (4.2):  

M ∙ g ∙ L ∙ sin θ ൌ M ∙ Lଶ ∙ θሷ 			 	 	 	 		ሺ4.3ሻ	

θሷ ൌ
୥

୐
∙ sin θ	 	 	 	 					 		ሺ4.4ሻ	
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This dynamics equations correspond to the two dimensional case. It can be extended 
to the three dimensional case (Kajita, et al. 2001). The high simplicity of this model 
implies loss of information from the real system. To solve this issue, more complex 
models based on simple inverted pendulum has been developed, such as the double 
inverted pendulum from Figure 42, the Reaction Mass Pendulum (S. H. Lee & 
Goswami, 2009) or the Variable Impedance inverted pendulum (Sugihara & Nakamura, 
2003). 

 The	Double	Inverted	Pendulum	4.2.1.2

The double inverted pendulum increases the complexity of the simple inverted 
pendulum. It is composed by two punctual masses (M1) and (M2) joint by massless 
links (L1) and (L2). The upper mass (M2) models the upper body with all mass 
concentrated in the CoM of this substructure and, the lower mass (M1) models the 
lower body in the same way. Thus, the double inverted pendulum has 2DoF that 
usually correspond to ankles (o) and hips (1) joints. Figure 42 shows the 2D double 
inverted pendulum structure. 

 

Figure 42 2D double inverted pendulum 

Considering only gravitational force action on the system, the equations of its 
movement are: 

ߴ ൌ ଵߠ െ 			ଶߠ 	 	 	 	 ሺ4.5ሻ	

ଶܮଶܯ
ଶߠሷଶ ൅ ሷଵߠଶܮଵܮଶܯ cosሺߴሻ െ ሶଵߠଶܮଵܮଶܯ

ଶ sinሺߴሻ െ ଶ݃ܮଶܯ sinሺߠଶሻ ൌ ଴ܶ								ሺ4.6ሻ	

It is clear that the dynamics of both parts of the pendulum are coupled, which increase 
the complexity of its control. By the other hand, this model represents more accurately 
the humanoid robot structure, considering the manipulative and locomotive parts 
separately. The double inverted pendulum is more appropriate when the control 
strategies require more information about dynamics (Bardy, et al., 2002; Kaynov, et al., 
2009; Stephens, 2007) or it is necessary to model the manipulative part of the robot as 
well as the locomotive one. 
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4.2.2 Reference	Points		
The way humans cope with disturbances is clearly a learned set of behaviours. The 
operation of the human postural control is still under study and it is not completely 
unravelled. One of these topics under study is how human postural control uses the 
sensorial information to maintain balance.  

The study of body kinematical and dynamical properties has established the existence 
of different particular reference points which characterize the consequences of 
movement in balance control.  In fact, inside the humanoid robotics field, it is necessary 
to represent, compute and measure sensorial information to quantify this kind of 
parameters involved in the postural control law.  

The development of this novel human inspired and task based postural control 
architecture is related to the study of two specific reference points (Figure 43). The first 
one is the Centre of Masses (CoM) that simplifies the body structure. The second one 
is the Zero Moment Point (ZMP) which is one of the most used indicators of postural 
stability. The study and use of these reference points has been boosted by the 
challenge of developing walking robots and the necessity of balance control during its 
locomotion. As they characterize the evolution of posture, their application in this 
Thesis is fundamental for anticipating the consequences of postural disturbances.  

 

Figure 43 Reference Points 

 The	Centre	of	Mass	(CoM)	4.2.2.1

The centre of mass (CM or CoM) is the average position of a multi body system’s mass 
at every instant in time (Ruina & Pratap, 2010). From the dynamical point of view, it is 
the point in which the resulting external forces and torques can be considered to be 
applied on. At the CoM, the net external force on the robot is non-zero, but the net 
torque on the robot will be exactly zero. The location of the CoM for an n-link robot can 
be calculated by equations from (4.7). 
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																	 											ሺ4.7ሻ	

Where mi is the mass of the i-link and Pi=(Xi,Yi,Zi) is the position vector of the centre of 
mass of the i-link.  

Taking the XCM and YCM component and setting the ZCoM component to zero, the 
projection of the CoM on the floor (GCoM) can be described with: 

GCoM ൌ
∑ ୫౟୮౟
౤
౟సభ

∑ ୫౟
౤
౟సభ

	 											 	 	 				ሺ4.8ሻ	

∑ ሺGCoM െ p୧ሻ ൈ m୧g
୬
୧ୀଵ ൌ 0	 	 	 	 ሺ4.9ሻ	

In quasi-static the case, if the GCoM remains within the support polygon the humanoid 
robot will not tip over or fall. However, when the motions become faster, the dynamic 
forces increase their importance and this criterion is not sufficient anymore to ensure 
postural stability (Dekker, 2009).  

 The	Zero	Moment	Point	(ZMP)	4.2.2.2

Zero Moment Point is one of the basic reference points in postural balance. It is under 
continuous study and improvement because the understanding of its behaviour 
constitutes one important foundation for postural control. Thus, there exist multiple 
definitions accepted for describing the Zero Moment Point but they all have in common 
that the ZMP is the unique point for which the resulting moment is zero: 

	∑ T୶ ൌ 0		 	 	 	 								ሺ4.10ሻ	

	∑ T୷ ൌ 0		 	 	 	 								ሺ4.11ሻ	

Where Mx,y are the moments about X and Y axis generated by the ground reactions 
caused by forces and torques acting on the body (Vukobratović et al., 2008). 
Alternatively, the ZMP can be thought to be that point inside the support area where  
the net moment, produced by any kind of force or moment acting on the robot, has no 
component along the horizontal axes. The ZMP as a function of the CoM position, net 
CoM force and net moment about the CoM can be expressed as: 

x୞୑୔ ൌ xେ୭୑ െ
୊౮

୊౰ା୑୥
zେ୭୑ െ

୘౯ሺ୰ሬറి౥౉ሻ

୊౰ା୑୥
			 	 			ሺ4.12ሻ	

y୞୑୔ ൌ yେ୭୑ െ
୊౯

୊౰ା୑୥
zେ୭୑ െ ౮்ሺ୰ሬറి౥౉ሻ

୊౰ା୑୥
		 	 	 			ሺ4.13ሻ	

Where M is body mass, Tx/Ty are the components of the moment about the CoM and g 
is the gravity acceleration. Equations (4.12) and (4.13) define the ZMP location on the 
ground within the support area in either the single or double support phase during 
locomotion. The computation of these equations implies the knowledge of the CoM 
location and actions exerted on the body. The first issue is usually solved by means of 
using one of the simplified models exposed before. The second issue is related to the 
measurement of the forces and torques acting against the body. This is solved thanks 
to the use of sensors. Inertial sensors provide information about characteristics of 
motion caused by voluntary postural changes or external forces. Then, modelling the 
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body like a simple inverted pendulum, the ZMP can be expressed as function of the 
acceleration of the CoM as: 

x୞୑୔ ൌ xେ୭୑ െ
୸ి౥౉
୥

		ሷେ୭୑ݔ 	 	 				ሺ4.14ሻ	

y୞୑୔ ൌ yେ୭୑ െ
୸ి౥౉
୥

			ሷେ୭୑ݕ 	 	 				ሺ4.15ሻ	

Taking into account the previous definition of ZMP, it is also possible to compute it 
measuring the reactions on the support base. It can be achieved by means of force and 
torque sensors. Specifically, the use of this kind of sensors in the robot ankle structure 
enables this ZMP computation (Figure 44).   

 

Figure 44 Model for ZMP computation using F/T sensor measurements 

Then, based on the model from the previous figure, the ZMP can be obtained applying 
the equations (4.16) and (4.17). 

x୞୑୔ ൌ
்౦౟౪ౙ౞
୊౰

൅
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୊౰
		 	 	 				 						ሺ4.16ሻ	
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୊౰

൅
௛∙୊೤
୊౰
			 	 	 	 				ሺ4.17ሻ	

These equations are only valid for one sensor and, hence, they can be only applied to 
compute ZMP in single support phase. In the case of the double support phase, it is 
necessary to calculate the weighted average of the sensor measurements from both 
legs. The resulting equations for ZMP are (4.18) and (4.19) 

x୞୑୔ ൌ
୘౦౟౪ౙ౞
౎ ∙ଡ଼౎ା୘౦౟౪ౙ౞

ై ∙ଡ଼ై

ிೋ
ೃାிೋ

ಽ 		 	 									 										ሺ4.18ሻ	
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ಽ 				 	 																							ሺ4.19ሻ	
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One condition to ensure postural stability is the location of the ZMP inside the support 
area. But this condition is not always necessary to ensure stability. ZMP location 
changes with the body motion and it can be sometimes located outside the convex hull 
of the support area. Then,  it is renamed as Fictitious ZMP (FZMP) because, in reality, 
the ZMP can only exist within the support polygon (Dekker, 2009) and,  considering 
strictly the ZMP definition, whether the ZMP reaches the supporting are edge, the 
humanoid robot could turn over. 

4.3 Human	Inspired	Soft	Computing		
Classical methodologies for systems control are based on the knowledge of the system 
behaviour from which analytical and mathematical models can be established. These 
methodologies are based on the development of mathematical theories that dealt with 
over-idealized approximations of the control problems bearing little relation to theory 
(Zadeh, 1962). But this approach is not feasible when the system complexity is high or 
when the methods should cope with imprecision, uncertainties and partial truth. Modern 
relativism remarks the human ability to understand distortions and make rational 
decisions in an environment of uncertainty and imprecision (Zilouchian & Jamshidi, 
2001). This is the basis for defining an intelligent control methodology.  

Taking this into account, “soft computing” can be defined as a set of methodologies 
that deals with uncertainty, approximation and partial truth in order to get feasibility, 
robustness and low solution cost (Zadeh, 1994). In traditional hard computing, the main 
computation goals are precision and certainty. However, in soft computing, the 
precision and certainty carry a cost that must be traded off. It has been stated that 
humans take advantage of their huge and parallel process capacity to perform postural 
control. This could be almost emulated by supercomputing systems but not by 
embedded systems for humanoid control. Then, whether imprecision in control is 
tolerated, it enables a reduction in computational load which improves computation 
speeds and control robustness. 

As well, the biological and human inspiration of soft computing techniques is one of the 
most important reasons why one of them has been applied in this PhD Thesis. Each 
one of these techniques, which will be briefly presented in this section, is inspired in 
different biological behaviours. They can be applied to solve non biological problems 
which behaviour can be correlated with the biological case.  However, the power to 
emulate biological behaviours, which is the case of the system developed in this PhD 
Thesis, favours the application of these methodologies. 

Some of the principal methodologies are the following: 

 Evolutionary computation (EC) 
 

 Bayesian networks (BN)  
 

 Neural networks (NN) 
 

 Fuzzy systems (FS) 
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Furthermore, these methodologies are complementary rather than competitive. Then, it 
is possible to combine some of these techniques resulting in hybrid systems, such as 
neuro-fuzzy systems, in which each technique contributes with its strengths to the 
whole system.   

Thus, this section provides an overview of the mentioned techniques used for 
intelligent control, the main human inspired characteristics they have, and their 
possible application in humanoid robots’ postural control. This brief description also 
provides a perspective of soft computing in humanoid postural control. However, more 
detailed description of the hybrid neuro-fuzzy system will be presented due to its 
application in different modules of the developed human inspired postural control 
system.  

4.3.1 Evolutionary	Computation		
Evolutionary computation is based on the application of Darwinian principles to solve 
engineering problems. This kind of computation is the joining of several techniques 
based on this idea in which, given a population of individuals and due to environmental 
conditions, a natural selection is naturally performed, surviving the fittest. Thus, the 
fitness ones among the population are growing.  

It is easy to see such a process as optimization that works as follows. Given an 
objective function to be optimized, it can be randomly created a set of candidate 
solutions. The objective function is used as an abstract fitness measure (the better). 
Based on this fitness, some of the best candidates are chosen to seed the next 
generation by applying operators such as recombination and/or mutation. 
Recombination is applied to two selected candidates, the so-called parents, and it 
produces one or two new candidates, the children. Mutation is applied to one candidate 
and results in one new candidate. Applying recombination and mutation leads to a set 
of new candidates, the offsprings. Based on their fitness, these offsprings compete with 
the old candidates for a place in the next generation. This process can be iterated until 
a solution is found or a previously set time limit is reached (Eiben & Schoenauer, 
2002).  

Based on this operation, the first one of these techniques is the Evolutionary 
Programming (EP) (Jong, Fogel & Schwefel, 1997). It is a stochastic optimization 
strategy that stress in the behavioural union between parents and evolved individuals. 
Similar to EP, the Genetic Algorithms (GA) evolves a population evaluating their 
solutions (Holland, 1992). Nevertheless, GA differs from EP in the problem encoding, 
the exponential number of offspring required and the genetic operators used to 
produce mutations by GA. 

The next set of techniques is the so called Evolution Strategies (ES). As in the previous 
techniques, its goal is the optimization of a quality function with respect to a set of 
decision variables or control parameters. ES operate on populations of individuals in 
which each individual comprise a set of endogenous strategy parameters that enables 
evolution. These endogenous strategies are used to control certain statistical 
properties of the genetic operators, especially those of the mutation operator. During 
each evolutionary strategy iteration, offspring individuals are generated from the set of 
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parent individuals. The strategy-specific parameters are called “exogenous strategy 
parameters” which are kept constant during the evolutionary loop (Beyer & Schwefel, 
2002). 

The last technique briefly commented is the Differential Evolution. It is a method used 
to optimize real-valued functions by means of improving a candidate solution related to 
a given measure of quality. During the optimization process, a population of candidate 
solutions is maintained and new candidate solution is generated by combining the 
existing ones. Then, the candidate solution that has the best score or fitness is kept. 
One difference with the previous methods is that DE doesn’t make assumptions about 
the problem to optimize and it can search very large spaces of candidate solutions. 
However, DE do not guarantee an optimal solution is ever found (Price, Storn, & 
Lampinen, 2005). 

Related with robotics applications, Evolutionary Computation has turned on the so 
called Evolutionary Robotics (ER). It is a methodology that uses EC algorithms to 
develop controllers for autonomous robots. In this case, the populations are controllers 
which are repeatedly modified according to a fitness function (Harvey, Husbands, & 
Cliff, 1992). These controllers can be generated from a variety of methods including 
neural networks,  fuzzy logic controllers and simple look-up and parameter tables that 
relate sensor inputs to motor outputs (Augustsson & Wolff, 2002). As well, this 
technique has been used to shape behaviours and evolve them to obtain new 
behaviours. They are related to trajectory planning on mobile robots  (Dozier, 2001) or 
footstep planning in legged locomotion  (Hong, Kim, & Kim, 2009). And, of course, ER 
is one of the methods applied in the vast field of robot learning (Ra, Park, Kim, & You, 
2008). 

4.3.2 Bayesian	Networks		
Bayesian networks (BN) are, as well, known as belief networks or Bayes nets. They 
are probabilistic graphical models used to represent knowledge about an uncertain 
domain. In this graphical model, each node represents a random variable; meanwhile 
the edges between the nodes represent probabilistic dependencies among the 
corresponding random variables (Figure 45). These conditional dependencies in the 
graph are estimated by using statistical and computational methods, combining 
different methodologies (Mihajlovic & Petkovic, 2001). 

 

Figure 45 Bayesian Network example 
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BN have application in a wide variety of fields such as statistics, the machine learning 
or the artificial intelligence societies because these kinds of network are both 
mathematically rigorous and intuitively understandable. Bayesian Networks are used 
mainly in three different tasks: 

1) Unobservable variables inference 

BN is a complete model for variables and their relationships that can be used to solve 
queries about their behaviour. For instance, the evaluation of observable variables can 
be used to find out updated knowledge about hidden variables. The process of 
computing the posterior values for a subset of variables given the actual knowledge is 
called probabilistic inference.  

There exist exact and approximate inference methods. The exact methods find out a 
solution with minimal error but with a high computational cost. Example of this type of 
methods are the variable elimination or AND/OR search (Echegoyen, et al. 2007). The 
use of approximate methods increases the computation velocity but, as well, increasing 
the goal error. Some of the most common approximate inference algorithms are 
importance sampling, stochastic MCMC simulation, mini-bucket elimination (Marin, et 
al. 2011). 

2) Learning 

Bayesian Networks can be used in machine learning to obtain parameters of the 
network or its own structure. Parameter learning is a classification problem in which a 
learner attempts to construct a classifier from a given set of training instances with 
class labels (Su, Zhang, Ling, & Matwin, 2008). In this case, the network is known 
meanwhile only a representative set of its parameters are available. It is possible to 
have the opposed case in which the parameters and representative data are known but 
the model that relates them is unknown. Then, Bayesian Networks can be used to 
produce actionable models where the structure of the model accurately captures the 
causal relationships in the data (D. Eaton & Murphy, 2007). 

The application of Bayesian Networks on robotics is clearly focused in behaviour and 
task learning. These methods are applied in task learning by demonstration (Chatzis, 
Korkinof, & Demiris, 2012), in which the task parameters are learned from the data 
obtained from different trials. The other important application of BN is the analysis of 
visual information and pattern recognition in images (Chen, Pau, & Wang, 2005). 

4.3.3 Neural	Networks		
Neural Networks (NN) are composed by interconnected artificial units called neurons 
that mimic the properties of biological neurons. Artificial Neural Networks are used to 
understand biological systems behaviour or for solving artificial intelligence problems. 
Neural Networks constitute an attempt to abstract the complexity of biological systems. 
The human brain consists of over ten million of interconnected neurons. The connexion 
between two neurons is weighted and adjusted adaptively according to the task under 
execution in order to improve the overall system performance. 
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Figure 46 Multilayer Neural Network 

An artificial Neural Network is composed by a number of layers formed by individual 
neurons (Figure 46). This structure is called a multilayer NN where there is an input 
layer, one or several hidden layers and an output layer. Neurons from adjoint layers are 
connected by a weighted link. As well, each neuron has an equation governing their 
dynamic operation. 

The NN weights must be adjusted by means of a recursive learning or training process 
which is accomplished by the minimization of a certain objective function. The optimal 
values of the weights are stored as the strengths of the neurons' interconnections 
(Tzafestas, 1995). There exist two main NN architectures from which other NNs types 
are derived. The basic net structures are (Rojas, 1996): 

1) Feedforward networks. 

In feedforward NNs, signals travel one way only from input to output. There is no 
feedback loops from the output to any neuron in any layer. Thus, output doesn’t affect 
the evaluation process. Feedforward NNs tend to be straight forward networks that 
weight inputs to elicit outputs. This type of organisation is also referred to as bottom-up 
or top-down.  

2) Feedback networks. 

Feedback networks can have signals travelling in both directions by introducing loops 
in the network. Feedback networks change their state continuously until they reach an 
equilibrium point, remaining in this point until the input set changes. Feedback 
architectures are also referred to as interactive or recurrent.  

The NN computation is suitable for problems where conventional computation 
approaches are not effective. This is produced by the classical methodologies  
dependent from accurate problem mathematical modelling. Typical examples applied in 
robotics are speech and pattern recognition or robot kinematical control. The 
incorporation of NNs in robotic vision enables the object identification by pattern 
recognition. The training process consist of presenting to the system a set visual 
properties of the object that it must identify (Makhoul, 1991). Close related with the 
pattern recognition problem is the speech recognition one (Lippmann, 1989). It as well 
consists of identifying speech features corresponding to sound patterns previously 
learned. 
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Neural Networks are applied in kinematic control of robots. The network is trained with 
accurate data that characterize the robot kinematics. Then, NN provides a fast method 
to compute the necessary joint angles for reaching to a desired end point (Josin, 
Charney, & White, 1988).  

4.3.4 Fuzzy	Systems		
Fuzzy Systems (FS) are those based on the Fuzzy Sets Theory introduced mainly by 
Lotfi A. Zadeh (Zadeh, 1965) in 1965. The main characteristic of fuzzy sets is that their 
elements have certain degree of membership to them, expanding the classical binary 
classification membership (yes/no – [0,1]). Then fuzzy set theory permits the gradual 
assessment of the membership of elements in a set. This idea is presented in the 
Figure 47 in which the human feature of height is classified applying different 
membership functions. 

 

Figure 47 Fuzzy vs. non-fuzzy membership functions 

One feature of FSs is the ability to realize a complex nonlinear inference between an 
input set and the output. This inference process synthetizes multiple simple 
input/output relations. This inference process is similar to that applied in Neural 
Networks. The rule describes the simple input/output relation and it defines a ‘fuzzy’ 
area.  Then, successive combinations of rule areas change the shape of the output 
area. This is the essential idea of FSs and the origin of the term ‘fuzzy’ (H. Takagi, 
1997). Fuzzy logic systems can handle problems with imprecise or incomplete data 
and, as well, it can model nonlinear functions of arbitrary complexity. 

Fuzzy Inference Systems (FIS) development starts with the establishment of a set of 
rules provided by the designer. They are formulated using human language conditional 
‘if-then’ statements. The fuzzy systems convert these rules to their mathematical 
equivalents. The rules usually must be provided by a designer that understands the 
system, who can describe the system accurately. This will minimize the inference error 
in the resulting representation of the system’s behaviour. Once the rules have been 
defined, the system is ready to perform the inference process. 

Briefly, the first step of the inference process is to take a set of crisp inputs and 
determine the degree to which these inputs belong to each of the appropriate fuzzy 
sets (‘fuzzification’). Then, the rules are evaluated by inference using fuzzy set 
operations. After the inference step, the overall result is a fuzzy value. This result 
should be ‘defuzzied’ to obtain final crisp output (Mendel, 1995). This description is 
represented graphically in Figure 48. This system corresponds to a Mamdani type FIS 
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in which the output is ‘deffuzified’ using an output membership function (Mamdani & 
Assilian, 1975).  

 

Figure 48 Mamdani fuzzy inference system  

The second type of fuzzy inference system is the so called Sugeno FIS (Takagi & 
Sugeno, 1985). The main different with Mamdani FIS is that the deffuzification stage is 
not necessary because the output is already numeric. It is usually obtained by weighted 
average of the result from the inference evaluation (Figure 49).  

 

Figure 49 Sugeno fuzzy inference system  

Then, the fuzzy set theory can be used in a wide range of domains in which information 
is incomplete or imprecise.  The main application related to robotics is the control of 
mobile autonomous robots. The navigation applications gains the advantage of the FIS 
ability for processing inaccurate information captured from the robot environment 
(Carinena et al., 2004). As well, FIS can be applied in the control of mobile robot 
evaluating different behavioural units driven by sensorial information sets (Safiotti, 
1997).  

The use of classic FIS systems is constraint by the increasing complexity of the system 
to model. Thus, the main solution to overcome this problem is the combination of 
methods exposed until now. The result of this combination is a Hybrid System. 

4.3.5 Hybrid	Systems		
The nature of the problem under study favours the application of one specific intelligent 
technique among others, because of its particular computational properties. For 
instance, neural networks are good at recognizing patterns but they are unable to 
explain the motivation of the decision. Fuzzy logic systems, which can reason with 
imprecise information, are good at explaining their decisions but they cannot acquire 
the rules to perform decisions automatically (Fuller, 1999). 
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The answer to overcome these limitations is the creation of intelligent hybrid systems 
where two or more techniques are combined. Thus, in a hybrid system, each individual 
technique contributes with at least one feature unable to be performed by the others. 

The use of intelligent hybrid systems is growing rapidly and the neuro-fuzzy inference 
system is one of these alternatives. In this PhD Thesis, Neural Networks are used to 
tune membership functions of fuzzy systems that are employed for sensorial evaluation 
or decision making, mimicking the human internal processes involved in postural 
control. 

Although fuzzy logic can encode expert knowledge directly using rules with linguistic 
labels, its definition and tuning, based on the expertise of the designer, usually takes a 
lot of time. Because of this, neuro-fuzzy hybrid system gains the advantage from neural 
networks learning techniques to automate the tuning process, reducing development 
time while improving performance.  

Hybrid Systems set is composed by a wide number of combined methodologies. Here, 
two of the main Hybrid System will be briefly exposed.  

 Fuzzy‐Neuro	Systems	4.3.5.1

In theory, Neural Networks and Fuzzy Systems are equivalent regarding the methods 
to obtain results, inferring the outputs from the inputs. In practice, each technique has 
its own advantages and disadvantages. For neural networks, the knowledge is 
automatically acquired by, for instance, the backpropagation algorithm, but the learning 
process is relatively slow and analysis of the trained network is difficult because NNs 
are like black boxes. Due to this, it is impossible to extract structural knowledge (rules) 
from the trained neural network. Furthermore,  the learning procedure cannot be 
simplified adding any special information about the problem into the neural network 
(Fuller, 1995). Meanwhile, fuzzy logic provides an inference mechanism to enable a 
system to deal with cognitive uncertainties in a human way . 

The computational process proposed for the development of fuzzy-neural systems 
starts with the design of a "fuzzy neuron". This structure is based on the understanding 
of biological neuronal morphologies and learning mechanisms. This leads to the 
following three steps in a fuzzy neural computational process (Fuller, 1995):  

1) Establishment of fuzzy neural models inspired by biological neurons. 
 

2) Modelling of connections (synapses), which integrates fuzziness into neural 
network. 
 

3) Application of learning algorithms to adjust the connection’s weights.  

Combining these computation steps it is possible to obtain two possible models for the 
fuzzy neural systems. The first model is composed by a fuzzy interface module which 
transforms the linguistic statements into an input vector for the neural network. The 
training of this network will depend on the desired outputs or decisions (Figure 50). 
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Figure 50 Model of fuzzy-neural system (adapted from (Fuller, 1995)) 

The second model consists of a multi-layered neural network that drives the fuzzy 
inference mechanism (Figure 51). 

 

Figure 51 Fuzzy driven neural network system (adapted from (Fuller, 1995)) 

Fuzzy neural systems are applied in applications in which it is useful the learning 
capacities of this kind of methodologies. Specifically, this capacity enables the 
possibility of evolving the fuzzy neural system by means of the application of 
evolutionary algorithms. Then, the fuzzy system is adapted and improved online with 
new datasets captured during its operation. In robotics, this methodology is used in 
adaptive controllers such as the joint controller based on force measurements 
developed by Kiguchi. This system improve the controller learning from the data 
acquired in unknown operational conditions (Kiguchi, Watanabe, & Izumi, 2000). In the 
case of mobile robots navigation, the use of this kind of hybrid systems enables the 
adaptive robot navigation. The sensor data captured during robot movement is used to 
improve the trajectory planning and obstacle avoidance systems (Song & Sheen, 
2000). 

 Neuro‐Fuzzy	Systems	4.3.5.2

The neuro-fuzzy hybrid system is, as well, the result of the combination of FIS systems 
with NNs, such as the previous case. But, in this case, the fuzzy system gains the 
advantage of the learning capacities from the neural network.  

One of the main problems in the development of classic fuzzy systems is 
representation of the system under study. The designer needs an accurate knowledge 
of the process to be controlled. To overcome the problem of knowledge acquisition, 
neural networks are extended to automatically extract fuzzy rules from numerical data 
obtained from the system. 

There are two major formulations of neuro-fuzzy systems. The first one group those 
systems based on Mamdani rules, such as POP-Yager (Quek, Wahab, & Aarit, 2000) 
or eFSM (Tung & Quek, 2010). The second formulation group those systems based on 
Sugeno type rules, such as Denfis (Kasabov & Song, 2002) and Anfis (Jang, 1993). 
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The main difference between these methods is related with the possibility of 
interpretation of the resulting system. The Mamdani based systems allow posterior 
interpretation because they obtain a structured knowledge of the underlying system. 
This issue is not possible in Sugeno type systems but, on the other hand, this type has 
higher levels of computational efficiency and robustness. 

The neuro-fuzzy system interested in this Thesis is the Adaptive Neuro-fuzzy System 
(Anfis) established by Jang. The features exposed for the FIS systems, joint with the 
powerful available tools for Anfis system development, have favoured the selection of 
this method to develop the postural control architecture proposed in this PhD Thesis. 
Furthermore, the human style fuzzy reasoning of Anfis system matches the human 
inspiration requirement of this Thesis.  

Anfis systems are based on a five layer structure (Figure 52). These layers are: 

1) Layer 1: it generates the fuzzy membership values for each input variable.  
 

2) Layer 2: it multiplies the incoming signals from the previous layer and it 
calculates the firing strength of the rule.  
 

3) Layer 3: it is in charge of computing the normalized firing strength.  
 

4) Layer 4: the nodes of this layer calculate the contribution of the each model rule 
in the output. 
 

5) Layer 5: It calculate the weighted average for the global output of the system.  

 

Figure 52 Anfis Model Structure (adapted from (Jang, 1993)) 

Two main missions have been assigned to Anfis developed modules of the postural 
control architecture. The first one is the sensorial evaluation. The development of robot 
perceptual evaluation system has profit from the available dataset from acquired 
measurements.  In this case, the evaluation of sensorial raw data accomplishes, at the 
same time, the filtering and interpretation processes to produce directly an applicable 
output.   The second mission of the developed Anfis modules is the evaluation of the 
sensorial evaluation outputs to take postural control decisions. In summary, the Anfis 
tool is very useful for system modelling, evaluation of information and decision making 
processes for human inspired artificial systems.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER	5 	
 

Human	Versus	Humanoid	
	
	

5.1 Physiology	of	Humanoid	Control	System	 	
Chapter 2 established the foundations about human postural control. Following a 
bottom up process, the description explains the human postural control architecture 
from perceptions to motor responses, presenting each one of the architecture 
components, their function and their interactions. But Chapter 2 was more focused on 
the high level functions and the overall operation of the postural control system. 
Therefore, this chapter describes the physiological components that support the 
behaviour of the human postural control system. 

The physiological components review performed in this chapter has been organized 
taking into account the postural control process flow and the organs involved in each 
stage. This control process starts when the sensorial information is captured by the 
corresponding receptors of the peripheral nervous system. Then, the sensorial 
information is transmitted by means of the afferent sensitive neurons of the peripheral 
nervous system, arriving to Central Nervous System where it is processed. The 
processing centres evaluate all information and decide about the most appropriate 
action to take. The resulting action is transmitted to the motion system by means of the 
efferent neurons to perform the movement. 

Thus, the review starts with the description of the sensorial organs and how they 
capture the sensations. It continues with the description of the integration centres in 
which the sensorial information is converted in perceptions, which are more adequate 
inputs for complex postural control. Besides, these processing centres decide about 
the postural control action, if required. The last part of the review is related to the 
description of the motion actuators, which execute the postural reactions, and to the 
communication channels among systems. 

In the same way than Chapter 2 described the human postural control foundations, 
Chapter 3 and Chapter 4 presented the foundations for humanoid postural control. The 
systems described in these chapters were inspired by the knowledge acquired during 
the study of the human case. The humanoid postural control architecture established 
has two main characteristics: human inspiration and task orientation.  

The exposition of the humanoid postural control system has followed the same 
guidelines followed by description of the human case. Because of that reason, this 
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chapter presents in parallel the components involved in humanoid postural control. 
Thus, in each section, the human organ is presented and then the humanoid device 
that tries to accomplish the same function. In this way, it is possible to compare the 
performance of both cases. 

In summary, this chapter compares basic systems from the human physiology with the 
mechatronic systems integrated in the humanoid robot TEO. 

5.2 Sensorial	System		
In Chapter 4, the control foundations for postural control of humanoid robots were 
described. But control theories and architectures are based on ‘perceptions’ or 
information provided by sensing devices.  

As stated before, the sensorial system is composed by two main perception types 
depending of the origin of the sensed stimulus. The exoceptive perception is composed 
by the information about environmental circumstances or external stimuli. This 
perception is the result of the combination of the information coming from the vestibular 
and visual sensorial systems. Nevertheless, the proprioceptive system collects the 
information of the body state itself (i.e. joint angles). 

5.2.1 Exoceptive	Perception	
As described in Chapter 2, exoceptive human perception is composed by the vestibular 
system and the visual system. Both of them provide complementary information to 
keep the body balance. The vestibular apparatus is the non-auditory portion of the 
inner ear. It serves three primary purposes in human (Hain & Helminski, 2000; Mann, 
1997):  

1) It plays the dominant role in the subjective sensation of motion and spatial 
orientation of the head, acting on the musculature of the neck (VestibuloCollic 
Reflex or VCR).  
 

2) It adjusts muscular activity and body position to maintain posture 
(VestibuloSpinal Reflex or VSR). 
 

3) It stabilizes in space the fixation point of the eyes when the head moves, 
providing a stable image upon the retina (Vestibulo-Ocular Reflex or VOR). 

The sensors located at the vestibular system are composed mainly by two structures. 
The former, the hair cells of the maculae (otolith system) that signal head position and 
linear acceleration in two directions (Benson et al., 1986; Fernández & Goldberg, 
1976a, 1976b; Guedry, 1974). The later, the cupula located inside the semicircular 
canals sense angular rotation (velocity and acceleration).  

For the study of the vestibular system implications in postural control, it is important to 
consider the response and thresholds of the vestibular organs as individual inertial 
sensors. The postural and movement perception are the result of the integration of the 
information of each sensor in the Central Nervous System. 



90 Sensorial System
 

 
 

Another important consideration is the subjectivity of the presented data, that is, not all 
humans have identical perception values: they depend of physical limitations, 
environment, test conditions, etc. The vestibular response information is the result of 
statistical studies of data obtained from different experiments. 

Regarding to the response to rotational movement perception, it has been found that 
the minimum threshold of perception is  established by the Mulder’s Law (DeHart & 
Davis, 2002), which describes the level below which accelerations are not sensed by 
this system (called Mulder’s Constant). This value is calculated as the product of the 
intensity or magnitude of acceleration (º/s2) and time(s).  

To perceive an angular acceleration during a movement in any direction, the mentioned 
product must reach the Mulder’s Constant as a threshold value. For instance, a large 
acceleration of 20°/s2 during 0.1s, assuming a Mulder’s Constant of 2.5°/s, will not be 
felt. The same acceleration will be perceived for durations higher than 0.125s. The 
most commonly accepted minimum threshold values of the: 

 Stapleford (Stapleford, 1968): 3.2°/s for roll; 2.6°/s for pitch; and, 1.1°/s for yaw. 
 

 Oman (Oman & Young, 1969): 1.5°/s for all three axes. 
 

 Mulder (Guedry, 1974): 2.5°/s for all three axes. 

Recent studies have documented the range of detection for angular velocities and 
acceleration from 0.5°/s to 500°/s (maximum threshold). This perceptions were sensed 
in a range of frequencies from 0.1Hz to 10Hz (Aw et al., 1996; Ciaravella et al., 2006). 
Table 4 summarizes the limitations of the semicircular canals to detect movement (see 
Figure 53).  

Table 4 Rate of turn and angular acceleration thresholds from vestibular system 

 Rate of Turn Angular Acceleration 

Dimensions Roll / Pitch / Yaw 

Min. Threshold 0.5º/s 0.03º/s2 

Max. Threshold 500º/s 0.065º/s2 

Bandwidth 10Hz 10Hz 

 

 

Figure 53 Semicircular canals detection scheme 



Chapter 5. Human Versus Humanoid  91 
 

 

The linear acceleration perception senses the initiation and variation of movement as 
well as the gravity. The minimum variation of movement that can be detected depends 
of the principal axis of perception. In the Z (vertical axis) the threshold is 0.15m/s2; for 
both X (roll) and Y (pitch) axes the threshold is 0.06m/s2 (Jones & Young, 1976; Previc 
& Ercoline, 2004).  

The maximum threshold for linear acceleration detection is about 4g (Patane et al., 
2004). Due to the inertial characteristics of the otolith organ, the bandwidth of the 
system is about 2Hz (Benson, 1990; Benson et al., 1986; Hoeman & Van Der Vaart, 
1978). Table 5 shows the limitations of the otolith sensing operation shown in Figure 
54. 

Table 5 Linear acceleration thresholds of the vestibular system 

 Linear Acceleration 

Dimensions X Y Z 

Min. Threshold 0.06m/s2 0.06m/s2 0.15m/s2 

Max. Threshold 40m/s2 (4g) 40m/s2 (4g) 40m/s2 (4g) 

Bandwidth 2Hz 2Hz 2Hz 

 

 

Figure 54 Otolith organ detection scheme 

All these perception characteristics correspond to each sensing organ but the 
information they provide must be integrated by the Central Nervous System. This 
sensor fusion is shown in Figure 55. The inputs of the model are the resulting data from 
the otolith and canals systems: rate of turn (ω), linear velocity and acceleration 
(aୋ୧	, aሶ ୋ୧). After different processing steps, the result of canal–otolith fusion are the 
estimated of rate of turn (ωෝ ), the estimate of head attitude (gො) and the estimate 
translational acceleration (aనෝ ) (Mergner & Glasauer, 1999).  

 

Figure 55 Human sensor fusion scheme (from (Mergner & Glasauer, 1999)) 
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Sometimes the information processed has a mismatch with the inputs from the 
environment. This produces the so called vestibular illusions. There are two types. The 
first one, the somatogyral illusions are produced when the semicircular canals receive 
wrong data. It includes the Leans, the Graveyard Spin & Spiral and the Coriolis 
illusions (Gillingham & Previc, 1993; Sipes & Lessard, 1999). The second type, the 
somatogravic illusions produced by wrong linear acceleration perception, includes the 
Inversion, Head-Up and Head-Down illusions (Gillingham &  Previc, 1993; Tokumaru et 
al., 1998). 

Another aspect influencing vestibular perceptions is the inability to distinguish 
translational motion from changes in orientation relative to gravity (tilt/translation 
ambiguity) (Angelaki et al.,1999; Angelaki & Yakusheva, 2009; Merfeld et al., 1999). 
The mentioned ambiguity is resolved in the brain merging all signals of the vestibular 
perception (Angelaki & Cullen, 2008). 

Because the vestibular apparatus provides this information only with respect to the 
head, it cannot accomplish postural adjustments on its own or encode sustained 
constant velocity motion (Bütner & Waespe, 1981; Fernández & Goldberg, 1976a; 
Fetsch et al., 2010; Si et al., 1997). Sensors in the neck, visual perception and perhaps 
other postural muscles (somatosensation and proprioception) are extremely important 
in signalling to the central nervous system body changes like active movements 
(Mittelstaedt & Mittelstaedt, 2001; Sun et al., 2004), which comprise most natural self-
motion.  

These two systems operate in conjunction with the visual one to form an outstanding 
control system that maintains us in a wide variety of stable and unstable postures. 
Numerous studies have shown the implication of the visual stimulation in postural 
control. (Van Asten et al., 1988; Berthoz et al., 1979; Dijkstra et al., 1994; Lee & 
Lishman, 1975). In a well-lit environment with a firm base of support, healthy persons 
rely on somatosensory (70%), vision (10%) and vestibular (20%) information for upright 
postural control (Fay B Horak, 2006; Peterka et al., 2002).  

Light is electromagnetic radiation to which eyes respond. In light of a single 
wavelength, or spectrally pure light, the extreme range is from 380nm to 740nm. The 
sensitivity of the eye falls off at the ends of this range, so that 400nm to 700nm is a 
good approximation. The retina is the light-sensitive part of the eye composed by a 
dual organ, a rod network and a cone network. The rods are sensitive to weak light, 
inoperative in strong light, have maximum sensitivity at about 507nm and are very 
sensitive to motion, but give no colour discrimination. The cones are sensitive to strong 
light, insensitive to weak light, have a maximum sensitivity at 555nm and are 
responsible of the acute and colour vision.  

Regarding focusing, the eyes can resolve two sources separated by about 6' of arc in 
everyday life and it can be exceptionally resolved down to about 4' or 3' of arc, 
depending on the object viewed. The absolute limit of visual acuity, under laboratory 
conditions with fine gratings, seems to be between 1' and 2' of arc.  

The refractive index of the eye medium varies with wavelength similarly to water, so 
that n=1,3318 at 656nm (red) and n=1,3435 at 405nm (blue). This gives the eye a 
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difference in power of about 1.5D over the visual spectrum, where D is the focal 
distance. The effect is to focus blue light at a shorter distance than red light.  

Fechner found that the minimum difference of brightness that can be sensed is a ratio 
of physical intensity of about 1-2% (Fechner, 1858). At very low or very high levels of 
illumination, this property fails 

The visual system is tolerant of errors in the retinal image, correcting them when it is 
possible. The eye has considerable spherical and chromatic aberration, so the image 
produced on the retina is quite poor. The mental image is much sharper, refined by the 
visual system. Other relevant visual features are: 

 Accommodation: It is the capacity of the eye to obtain a clear image from an 
object at a specific distance. It is produced by the variation in the curvature of 
crystalline lens. It depends of luminance, the reflection of light, the age, etc. 
(Bruce et al., 1996) 
 

 Visual acuity: It is the spatial resolving capacity of the visual system. This may 
be thought of as the ability of the eye to see fine detail. Visual acuity is limited 
by diffraction, aberrations and photoreceptor density in the eye (Smith & 
Atchison, 1997). 
 

 Adaptation: It is the response of the eye against different luminance levels. Its 
adjustment is produced by the opening and closing of the pupil. The velocity of 
adaptation is faster if there is a change from low to high luminance than the 
change from high to low luminance level.  
 

 Contrast: Object perception depends of the difference of luminance and colour 
between the observed object and the background. Contrast is an important 
parameter in assessing vision. In reality, objects and their surroundings are of 
varying contrast. Therefore, the relationship between visual acuity and contrast 
allows a more detailed understanding of our visual perception (Capó-Aponte et 
al., 2009).  
 

 Motion detection: It is related with the Dynamic Visual Acuity (DVA). It is the 
capacity of the eye to discern fine detail in a moving object (Aznar-Casanova et 
al., 2005). Belonging to a more general class of  visual perception, it can be 
differentiated the real motion (Goldstein, 2009), the apparent motion (Anstis & 
Mackay, 1980), induced motion or motion contrast (Nawrot & Sekuler, 1990) 
and motion aftereffects (MSEs) (Anstis et al., 1998). The additional classes of 
motion perceptions are demonstrations that continuous motion is not necessary 
for the experience of visual motion. Humans can render changes in reality at 
roughly 13-15 frames per second (fps, or Hz)(Kent, 2010). Any event which 
happens faster than 1/60th of a second (16.6ms) falls between perceptual 
frames and is considered to be subliminal or imperceptible to human 
consciousness (Marcel, 1983). 
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 Visual Field: It is the extension of view captured by the retina. Some 
calculations establish the maximum field of view varied horizontally from -59° to 
+110°, and vertically from -70° to +56° (Grigsby & Tsou, 1994). 

Similarly to vestibular system, the visual perception is conditioned by some illusions 
caused by the environment. Some of these visual illusions are (Gibb, 2007; Oman & 
Young, 1969; Whiteside et al., 1965): 

 Linear perspective illusions 
 

 Upsloping terrain or narrow or long runway  
 

 Downsloping terrain or wide runway  
 

 Black-hole illusion 
 

 Autokinetic illusion 
 

 False visual reference illusions 
 

 Vection illusion 

In that way, the experimental results in (Fukuoka et al., 1999) suggest that the visual 
feedback system contains a large time delay and, consequently, it only complements 
the vestibular system to maintain postural control. Numerous analyses of the 
relationship between visual stimuli and postural responses have been carried out 
(Dichgans et al., 1976; Diener et al., 1982). These analyses reveal that the visual 
feedback system primarily utilizes information in a relatively low frequency range (up to 
0.4Hz). However, the role of the visual system in postural control is still under study 
(Nagata et al., 2001). 

Once the main features of the exoceptive perception systems of the human body 
involved in postural control have been outlined, the corresponding systems that capture 
the same information in humanoid robotics will be exposed. The vestibular system 
behaviour is reproduced by the so called inertial system. This system is in charge of 
angular position, velocities and accelerations sensing. Complementing the information 
for postural control, the modern visual systems based on stereo cameras provide 
image sequence that must be post-processed to obtain useful data for such control. In 
following sections the devices integrated in TEO robot for vestibular and visual 
perceptions are described. 

 Inertial	System	5.2.1.1

The human vestibular system can be correlated with an inertial measurement system in 
a humanoid robot. As described before, the vestibular system is located in the head 
and senses its position, linear acceleration and angular rotation (velocity and 
acceleration). Meanwhile, in humanoid robotics, the inertial sensor position can vary 
among different robot developments but mainly are located in the torso (Buschmann et 
al., 2009; Gienger et al., 2005; Kajita et al., 2003; Kim et al., 2005; Xia et al., 2007). Its 
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position is related to simplified robot models and different body reference points like the 
Centre of Mass or the Zero Moment Point (Popovic et al., 2005). In this way, the inertial 
sensor provides information to enable the computation of these models and reference 
points inside the control loop.  

The inertial system used in TEO robot is the Inertial Measurement Unit (IMU) MTiTM 
from the company XsensTM (Xsens, 2009). It is important to remark that an IMU is not 
just a sensor. These kinds of unit comprise 3D accelerometers, 3D gyroscopes, 
commonly abbreviated to gyros, and 3D magnetometers (compass), as sensor 
devices. They also integrate electronics to process and communicate the sensed 
information in a proper format. 

An accelerometer measures specific force applied to a body that produces its 
movement and, consequently, it senses the body acceleration. The transducer usually 
acts following an axis of detection. These transducer can be classified according to the 
nature of the sensor element in (Sensr, 2011):   

 Capacitive accelerometers: The accelerometer senses the electrical 
capacitance change between a static condition and the dynamic state. 
 

 Piezoelectric accelerometers: They use materials such as crystals, which 
generate electric potential from an applied stress (acceleration). 
 

 Piezoresistive accelerometers: (strain gauge accelerometers) work through 
measuring the electrical resistance of a material when acceleration is applied.  
 

 Hall Effect accelerometers: They measure voltage variations stemming from a 
change in the magnetic field around the accelerometer. 
 

 Magnetoresistive accelerometers: They work through measuring changes in 
resistance due to a magnetic field. The structure and function is similar to a Hall 
Effect accelerometer except that instead of measuring voltage, the 
magnetoresistive accelerometer measures resistance. 
 

 Heat transfer accelerometers: They measure internal changes in heat transfer 
due to acceleration.  
 

 MEMS-Based Accelerometers: MEMS (Micro-Electro Mechanical System) 
technology is based on a number of tools and methodologies, which are used to 
form small structures with dimensions in the micrometre scale.  

The gyroscope measures angular rate or orientation, both without an external 
reference. The main classes of gyroscopes are (Groves, 2008): 

 Spinning-mass gyros: They operate on the principle of conservation of angular 
momentum. Part of Newton’s second law of dynamics, this states that the 
angular momentum of a body with respect to inertial space will remain 
unchanged unless acted upon by a torque (force x distance). Therefore, if a 
spinning mass is mounted in an instrument case such that it is free to rotate 
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about both of the axes perpendicular to its spin axis, it will remain aligned with 
respect to inertial space as the case is rotated. Such a device is known as a 
gyrocompass.  
 

 Optical gyros: They are based on the principle that, in a given medium, light 
travels at a constant speed in an inertial frame. They work measuring the 
change of the path length of a light beam. 
 

 Vibratory gyros: A vibratory gyroscope comprises an element that is driven to 
undergo simple harmonic motion. The vibrating element may be a string, beam, 
pair of beams, tuning fork, ring, cylinder, or hemisphere. All operate on the 
same principle, which is to detect the Coriolis acceleration of the vibrating 
element when the gyro is rotated.  

A magnetometer is used to measure the strength and/or direction of a magnetic field, 
usually the Earth magnetosphere. Common types include: 

 Fluxgate magnetometers: The fluxgate magnetometer is based on what is 
referred to as the magnetic saturation circuit. Two parallel bars of a 
ferromagnetic material are placed closely together. The susceptibility of the two 
bars is large enough so that even the Earth's relatively weak magnetic field can 
produce magnetic saturation in the bars (Primdahl, 2002).  
 

 Resonance magnetometers: make use of the resonant response of an atomic 
(or molecular) system subjected to the static magnetic field to be measured, 
generally in the presence of an auxiliary oscillating field (Hartmann, 1972).  
 

 SQUIDS (Superconducting Quantum Interference Devices): It is a magnetic 
field sensor converting the magnetic flux threading the SQUID loop into a 
voltage across the device (Drung et al., 2007). 

Independently of the technology used in the transducers of the unit, the IMU is capable 
of calculating roll, pitch and yaw in real time, as well as outputting calibrated 3D linear 
acceleration, rate of turn (gyro) and (Earth) magnetic field data. 

Table 6 IMU sensing thresholds 

 Rate of Turn Linear Acceleration Magnetic Field 

Dimensions Roll/Pitch/Yaw X/Y/Z --- 

Min Threshold 0.05º/s 0.015m/s2 0.1mGauss 

Max Threshold 300º/s 50m/s2 (5g) 750mGauss 

Bandwidth 40Hz 30Hz 10Hz 

 

This IMU implements a sensor fusion algorithm where the measurement of gravity (by 
the 3D accelerometers) and Earth magnetic north (by the 3D magnetometers) 
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compensate drift errors from the integration of rate of turn data (angular velocity from 
the rate gyros). This system is often called an Attitude and Heading Reference System 
(AHRS).  

This inertial measurement enables movement assessment at a single point without the 
requirement of a reference but the output quantities are represented in one signal. 
(Veltink et al., 2001) 

 Force/Torque	Sensor	System	5.2.1.2

Another complementary system used in humanoid robotics to sense external forces 
and torques are the F/T sensors. Although they could be considered as part of the 
proprioceptive system, they measure external forces (i.e. gravity effects). The main 
difference with the vestibular system and the inertial devices are that an F/T sensor has 
the capacity of static forces and torques perception. 

In the case of the upper limbs, F/T sensors usually are located in the wrists. These 
devices measure the forces and torques produced when manipulating objects or when 
in contact with the environment (Zhang et al., 2005). In the lower limbs, the sensors 
commonly are located in the ankle joints. They sense the reaction forces of the ground 
(Nishiwaki et al., 2002) and the forces exerted in the ankle joint by the body movement 
itself. Due to this, this kind of devices is not clearly mapped with any human sensorial 
organ.  

In postural control, F/T sensors are used to determine the margin of stability of the 
humanoid robot. According to the Vukobratovic theory of stability, ensuring the stability 
of the movement consist basically of keeping the ZMP reference point inside the 
effective area of support (Vukobratovic & Borovac, 2004):  

PZ	 ൌ 	
୬	ൈ୑ౌ

ౝ౟

୊ౝ౟⋅୬
																																					 	 			ሺ5.1ሻ	

Where P is the normal projection of the ankle on the ground. 

The mechanical structure of TEO robot integrates two F/T sensors in the wrists and 
another two in the ankles. These sensors from the company JR3, Inc. has the main 
features shown in Table 7. 

Table 7 JR3 Force/Torque sensors characteristics 

 Model Fx, Fy Fz Tx, Ty, Tz

Wrists 50M31A 100N 200N 5Nm 

Ankles 85M35A 250N 500N 212Nm 

 

The JR3 F/T sensors are monolithic titanium device containing analogue and digital 
electronics systems. Foil strain gages sense the loads imposed on the sensor. The 
strain gage signals are amplified and combined to become analogue representations of 
the force loads on the three axes (Fx, Fy, Fz) and the moments or torques about the 
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three axes (Tx, Ty, Tz).These sensors provide a serial RS-485 data stream at 2Mb/s 
which contains complete 6 axis data. The axes on standard JR3 sensors are oriented 
with the X and Y axes in the plane of the sensor body, and the Z axis perpendicular to 
the X and Y axes. The reference point for all loading data is the geometric centre of the 
sensor. When viewed from the Robot Side of the sensor the forces and moments are 
related by the Right Hand Rule (JR3, 2011). 

 Visual	System  5.2.1.3

Vision is important for postural control and many studies have demonstrated its 
relevance performing experiments with open or closed eyes (Edwards, 1946; Travis, 
1945). The influence of vision in postural control depends of its efficiency regarding 
monocular or binocular vision (Isotalo et al., 2004), visual acuity (Paulus et al., 1984), 
visual contrast (Leibowitz et al., 1979), object distances and room illumination (Brandt 
et al., 1986).  

Vision seems to influence balance by reacting to motion and it also triggers the muscle 
activation required for postural corrections (Brandt et al., 1986). Originally, peripheral 
areas of the retina have been considered involved in self-motion perception meanwhile 
central areas have been related to external motion perception. Moreover, recent 
studies have confirmed that the central retina contributes to balance control as well, 
particularly for lateral sway reduction (Bardy et al., 1999; Paulus et al., 1984). The best 
performance in postural balance is achieved in distances less than 2m (Brandt et al., 
1986) and  the fast integration of visual information cues enables muscular reactions 
within 100ms from perturbation (Nashner, 1978).  

Vision systems in humanoid robotics try to replicate the functions of the human vision. 
Performance on an artificial system will depend of its components, whether they are 
hardware or software. A computer vision system could be classified into two 
categories: 

 Task oriented: In this kind of systems the environment conditions are well 
known and the system components are selected to accomplish a specific 
function (object detection, inspection, classification, etc.) 
 

 General purpose: The main difference of these systems is the variability of the 
environment conditions. Due to this, the hardware system is composed by 
general purpose components and the software processing increases its 
complexity. 

In this case, the goal is to imitate the human vision in order to integrate visual 
perception in the postural control system. Due to this, the vision system selected must 
accomplish the following conditions: 

 Binocular vision (3D perception) 
 

 Colour perception 
 

 Frame rate above 15Hz 
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 Ranges of vision as much closer to human as possible 
 

 Fully programmable for motion detection, object classification, etc. 

Taking into account these desirable characteristics the vision system selected for TEO 
robot is the Microsoft KinectTM. This low cost device, combined with an external image 
processing, provides TEO robot with the capacity to detect moving objects, optical 
flows, self-motion, etc. and apply the resulting information to improve postural control. 

This device is composed by two different vision sensor systems:  

 An infrared laser projector combined with a monochrome CMOS sensor, which 
captures video data in 3D under any ambient light conditions. 
 

 2D colour 640 x 480 pixels VGA camera 

The operation of the 3D sensor consist of the projection of an infrared structured light 
that is captured by the monochrome camera and therefore, through software 
processing, reconstruct a 3D scene. Thanks to the open source application 
programming interfaces (API) available, such as Openkinect (OpenKinect, 2012) or 
(Manctl, 2012), it is possible to make gesture recognition, movement analysis, etc. 
Table 8 shows the summary of the KinectTM main features compared with the human 
ones. 

Table 8 Comparison between human and artificial vision systems 

 KinectTM Human 

Frame Rate 30Hz 13-15Hz 

Colour Resolution 8-bit VGA (640×480 pixels) 
576Mpixels 

Mono. Resolution 11-bit VGA (640×480 pixels) 

Nominal Range 1.2m – 3.5m 
0.25m – ∞ 

Extended Range 0.7m – 6m 

Field of View 
±57° horizontally 

±43° vertically 

-59° to +110°, horiz. 

-70° to +56° vert. 

Movement Range 
±27° vertical 

0º horizontal 

±30º vertical 

±35º horizontal 

5.2.2 Proprioceptive	Perception	
As described in Chapter 2, in humans the proprioceptors organs are located in 
muscles, joints and skin. They give information about the position of the limbs and the 
body, the distension of the respective muscles, vibrations, pressure, etc. Table 9 
summarizes the main characteristics of the proprioceptors located in the skin and the 
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second, Table 10 summarizes some properties of the sensor organs involved in the 
perception of muscle and joint movement. 

Table 9 Human skin proprioceptors 

Type Sensor Sensation Signals Adaptation 

Mechano 
receptors 

 

Meissner 
corpuscle 

Flutter &  Stroke 
Frequency/Velocity  

& Direction 
Rapid 

Pacinian 
corpuscle 

Vibration Freq.: 50-700Hz Rapid 

Ruffini 
ending 

Skin Stretch Direction & Force Slow 

Merkel 
receptor 

Steady 
pressure, 

texture 

Location & 
Magnitude 

Slow 

Free nerve 
ending 

Touch, Pressure
Location & 
Magnitude 

Slow 

Thermo 
receptors 

Free nerve 
ending 

Temperature 
Temperature   

change 
Rapid 

Nocio 
receptors 

Free nerve 
ending 

Temperature Tissue damage Rapid 

Mechanical Contact Slow 

Polymodal Tissue damage Slow 

 

Table 10 Human articular proprioceptors 

Type Sensor Sensation Signals Adaptation 

Mechano 

receptors 

Free nerve 
ending 

Muscle 
stretch 

Muscle  
length & velocity

Rapid initial transient 
and slow sustained 

Golgi Tendon 
Organ 

Muscle 
tension 

Muscle  
contraction 

Slow 

Pacini 
corpuscles 

Joint 
Movement

Direction & 
velocity 

Rapid 

Ruffini 
endings 

Joint   
pressure 

Pressure &    
Angle 

Slow 

Golgi 
corpuscles 

Joint       
torque 

Twisting         
force 

Slow 
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There are some essential inputs for postural control produced by proprioception. 
Regarding the cutaneous proprioception, it has been explored the role of skin 
mechanoreceptors to detect body sway during standing. Cutaneous perception 
information contributes to reflex regulation of balance encoding the direction of the 
ankle movement (Kavounoudias et al., 2001; Roll et al., 2002). It also contributes to 
awareness of our body in space and specify the support on which the feet are resting 
(Maurer et al., 2001). Various studies have shown the stabilizing influence of tactile 
information from any body part on human stance. For instance, posture equilibrium is 
improved by only a light active touch of a finger on an external support (Jeka & 
Lackner, 1994) or even when the leg or shoulder is passively touched (Rogers et al., 
2001). 

The proprioceptors located in joint capsules give information about the movements and 
positions of the body parts regarding to each other. This information is integrated in the 
postural control but their role has not been fully defined yet (Kejonen, 2002). Any 
change in muscle length and tension is measured by the muscle spindles, 
independently if the change is caused by internal or external forces (passive or active 
movement). Recent findings suggest that the perception from the trunk and the hip may 
be more important in triggering human balance corrections than ankle proprioception. 
The perceptive input from the lower legs mainly helps with the final shaping and inter-
muscular coordination of postural and gait movements (Allum et al., 1998). 

Summing up, tactile and proprioceptive feedbacks from skin and muscles would 
operate complementarily for maintaining postural control: low level perception would be 
assigned predominantly to tactile inputs whereas larger amplitude body perturbations, 
needing muscle contractions to restore balance, would involve predominantly muscle 
proprioception. 

 Joint/Muscles	 	5.2.2.1

The proprioceptive perception in humanoid robotics deals, as in the human case, with 
the perception of the kinematic chain position and how it is moving. The human body 
movements are originated by a combination of linear motors (muscles) and rotational 
or spherical joints. There are two main differences between humans and TEO 
humanoid robot regarding the components that produce the movement. The first one is 
the use of rotary motors instead of linear ones to produce the movement and, the 
second one, is the use of only rotary joints. Another difference regarding limb positions 
is the location of the sensors. In the human case, sensors are located in actuators 
(muscles) and joints meanwhile, in TEO humanoid robot, the position sensors are only 
located in joints. 

The position of the human body links is sensed by means of both proprioceptive and 
exoceptive perceptions even though, with only proprioceptive perception, positions 
could be measured. The information of muscle spindles are populated to obtain the 
actual position of the limbs in every moment (Ribot-Ciscar et al., 2003). Taking this in 
consideration, the information of each joint sensor of the mechanical chain in TEO 
robot must be processed to obtain the extremities’ position. This is performed by 
means of solving the direct and inverse kinematic problems. 
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The movement of each mechanical part of the humanoid robot is sensed by means of 
absolute and incremental (relative) encoders located in the joints. The incremental 
encoder is located at the joint input (motor/actuator) and it measures motor position 
and velocity. The absolute encoder, located at the joint output, senses its angle (limb 
position).  

The incremental rotary encoder provides cyclical outputs (only) when the encoder is 
rotated. The device used in TEO robot is the low profile RENCO RCML15 optical 
encoder. It has 1024 line count resolution with A/B output format in phase quadrature. 
Its operating frequency is 500KHz. The encoder provides 1024 pulses each motor turn.  

The relative position of every link is sensed by the AVAGO 7500 AEAS single-turn 
absolute optical encoder.  This device generates a unique code for each position. 
When powered up, the absolute encoder does not require a home cycle even if the 
shaft was rotated while the power was switched-off. It has 11 digital tracks plus 2 
sine/cosine tracks to generate a precise 16 bit Gray code. The information is provided 
by means of a serial output at 16MHz. 

 Cutaneous  5.2.2.2

The cutaneous perception in TEO robot is circumscribed to the robot feet sole.  It has 
been designed a flexible sole with embedded hall sensors and magnets to sensed 
rough terrains (Balaguer et al., 2011). 

The irregularities of the ground are perceived by a matrix of this kind of sensor in each 
footstep. The result is a digital map of the ground stepped. It can be used to 
complement the information of the ground reaction captured by the ankle force/torque 
sensors. The system performing this perception is under development but it could be 
integrated into the postural control systems as soon as it will be ready. 

5.3 Integration	Centres		
As stated in Section 2.2.2, the information provided by body sensors are processed by 
different parts of the Central Nervous System. The place where the information is 
processed depends of the nature of the response. The responses can be classified 
according to the reaction time or latency from reflex reactions to voluntary movements, 
passing through automatic behaviours. The fastest response is the reflex reaction but it 
is close related to the automatic behaviours because both of them are processed in the 
spinal cord.  The reflex actions can be classified according to four aspects (Dubuc, 
2011; Purves et al., 2008): 

1) How the reflex was developed: 
a. Innate reflex: genetically determined. 
b. Learned reflex: acquired through experience. 

 
2) The nature of the resulting motor response: 

a. Somatic: control skeletal muscles 
i. Superficial reflexes (skin and mucous membranes) 
ii. Stretch reflexes (deep tendon reflexes) 
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b. Autonomic reflexes: control visceral muscles  
 

3) The complexity of the neural circuit involved: 
a. Monosynaptic: sensory neuron synapses directly onto motor neuron 
b. Polysynaptic: include one or more interneurons between the 

communication pathways. 
 

4) The site of information processing: 
a. Spinal reflexes: not requiring input from the brain  
b. Cranial reflexes: integrated within the brain  

The interesting reflex acts for postural control are those somatic, monosynaptic or 
polysynaptic, processed in the spinal cord. The information produced by a stimulus 
follows a neural pathway called reflex arc. The reflex arc typically consists of five 
components: 

1) The receptor at the end of a sensory neuron that reacts to a stimulus. 
 

2) The sensory neuron conducts nerve impulses along an afferent pathway 
towards the Central Nervous System. 
 

3) The integration centre consists of one or more synapses in the Central Nervous 
System (monosynaptic/polysynaptic). 
 

4) A motor neuron conducts a nerve impulse along an efferent pathway from the 
integration centre to an effector. 
 

5) An effector responds to the efferent impulses by contracting. 

 

Figure 56 Human reflex arc 

The spinal cord integrates spinal reflexes and contains central pattern generators. 
These are fast responses with a latency of 20-60ms. The brainstem and cerebellum 
control postural reflexes with a medium reaction time about 130-170ms. 
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The slowest response against a stimulus is the voluntary movement. Voluntary 
movements require a high level processing of the brain and associated areas 
(cerebellum and basal ganglia). The basic function of the brain cortex areas is to 
produce behaviours, which in postural control are, first and foremost, movements. The 
role of the basal ganglia is to select and trigger well-coordinated voluntary movements. 
Finally, the cerebellum regulates the sequence and duration of the elementary 
movements that compounds the posture control behaviour. On average, humans have 
a reaction time of 250ms to a visual stimulus, 170ms for an audio stimulus and 150ms 
for a touch stimulus.  

TEO robot architecture divides posture control processing between the Central Process 
Unit (CPU) and one intelligent servo-drive that control each joint.  Both systems are 
interconnected by means of a CANBus, described in Section 5.5.1. 

5.3.1 CPU’s	 	
The mainboard integrated in TEO robot has an IntelTM Core 2 Duo E6400 (2 x 
2.13GHz) processor. It is the ‘brain’ of the robot in which posture reactions and 
movement control is calculated. Table 11 shows the comparison between CPU and 
brain capacities (Intel, 2008; Merkle, 1988, 1989): 

Table 11 Comparison between human brain and CPU processing capacities 

 CPU Brain 

Transistors 291 Millions 100 Billions (neurons) 

L1 Cache Code and Data. 32KBx2 
7 chunks ± 21 

L2 Cache 2MB shared cache 

Memory 2GB at 1066MTransfers/s  
1015 synapses at about 

10 impulses/s 

Power Cons. 45 watts avg. 25 watts avg. 

 

The most determinant difference between human brain and artificial CPU’s is the huge 
capacity of the brain to perform multitude of parallel processes. Different approaches 
has been performed or are still running to replicate human brain (Pearn, 1999) but they 
doesn’t reach the human brain cognitive capacity and, as well, they are not market 
available. Nevertheless, the gap between human brain and artificial processing 
systems can be reduced by the use of simplified kinematic models that reduce the 
number of computations (see Section 4.2). 

                                                 

1 Chunk: fragment of information 
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5.3.2 ISCM8005	Intelligent	Drives	
In the described reflex arc, the fastest responses involve the minimum amount of 
neurons and the integration of the information at the spinal cord level. These reactions 
are ‘pre-programmed’ patterns transmitted to joints, performing a low level control of 
position, velocity, etc. The use of intelligent servo-drives tries to emulate this low level 
reflex arc. This kind of drivers has a built-in Digital Signal Processor (DSP) that enables 
control with the minimum CPU involvement. In this case, the driver can maintain the 
desired joint angle against external disturbances (see Figure 57). This behaviour 
corresponds to the fastest reflex arc in which only one motoneuron is involved and the 
reaction is processed in the spinal cord. 

 

Figure 57 TEO robot reflex arc 

Taking into account the transmission rate and the amount of information, the artificial 
reflex arc established has 128µs of latency per joint. The total transmission delay per 
limb is not linear and it will depend on the task performed. 

5.4 Action	System	  

Postural muscles act predominantly to sustain posture against gravity. Control of 
posture is a prerequisite for efficient motion performance. Posture control depends of 
muscles capable of supporting continuous contractions, meanwhile voluntary 
movements often require fast and forceful muscle actions. 

Due to this double nature of the muscle activity, muscles contain fibres that meet these 
different tasks. Muscles with strong postural functions mainly consist of slow response 
muscle fibres with a great resistance against fatigue. Nevertheless flexor muscles, 
responsible of voluntary motion (i.e. legs), are mainly composed of fast response fibres 
producing relatively large forces and rapid fatigue.  

Basic mechanics of movement explain how the muscles in combination with the 
skeleton generate motion. The musculoskeletal system follows the mechanical 
principle of the lever to move or lift a load against another force. The component parts 
that are used in a lever are as follows: 

 Lever: the bone 
 

 Fulcrum (F):pivot point of the lever, which is usually the joint 
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 Muscle Force (M): force that draws the opposite ends of the muscles together 
 

 Resistive Force (R): force generated by a factor external to the body (e.g. 
gravity, friction etc.) that acts against muscle force 
 

 Torque: the degree to which a force tends to rotate an object about a specified 
fulcrum 

There are different types of levers dependent upon the position of fulcrum, effort and 
resistive force (Figure 58). 

 First Class lever (a): Muscle force and resistive force is on different sides of the 
fulcrum (i.e. the head resting on the vertebral column).  
 

 Second Class lever (b): Muscle force and resistive force act on the same side of 
the fulcrum, with the muscle force acting through the level longer than that 
through which the resistive force acts (i.e. raising the body up onto the toes).  
 

 Third Class lever (c): Muscle force and resistive force act on the same side of 
the fulcrum, with the muscle force acting through the lever shorter than that 
through which the resistive force acts (i.e. flexion of the forearm).  

Most of the limbs of the human body are articulated by third class levers. 

 

Figure 58 Human joints lever: (a) Class I, (b) Class II and (c) Class III 

Muscles play four roles in producing joint movements: agonist (prime mover), 
antagonist, synergist, and fixator. A given muscle can play any of these roles, often 
moving from one to the next in a series during an action. Agonists and antagonists are 
opposing muscles. This means that when an agonist creates tension, the antagonist 
produces an opposing tension, thereby contributing to control at the joint. Synergists 
aid the motion of an agonist.  

Although every musculotendinous unit (muscle belly and tendons attaching it to the 
bone) has a specific name, it is common to group muscles according to the motion they 
create. Flexors create motion that would bring the distal segment closer to the torso, 
while abductors cause a limb to move laterally, away from the body.  

This movement scheme can be replicated using linear actuators but, in TEO robot 
extremities, it has been applied a classical robotic joint design. Each joint has been 
designed with a rotary motor with a transmission to reduce velocity and increase 
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torque. In this way, measurements related to joint movement cannot be directly 
mapped with human joint parameters. 

5.4.1 Motor	and	Transmission	
The joint design is different in the lower limbs than in the upper limbs. The bigger 
demand of torque of the leg joints forces the use of an elevated transmission rate 
design. For this reason, the lower extremities joints use a transmission composed by a 
Harmonic DriveTM and a pulley/belt train (Figure 59 (a)). The upper limbs use only 
Harmonic DriveTM with fixed reduction rate to increase the output torque (Figure 59 (b)).  

 

Figure 59 Lower limbs joint (a) and upper limbs joints (a) design 

The articular joints were designed considering an estimated TEO body weight about 
65Kg and a step velocity of 0.75m/s. The resulting features of each joint are shown in 
Table 12.  

Table 12 TEO robot joints features 

Joint Reduction
Max. 

Torque  
Max.  

Velocity  
Joint Angle 

Limits 

Ankle Sagittal 235.2 19,83 Nm 28 rpm -20º / +20º 

Ankle Frontal 270.4 25,50 Nm 12 rpm -85º / +85º 

Knee 235.2 19,83 Nm 28 rpm 0º / +150º 

Hip Sagittal 523.2 49,34 Nm 6 rpm -120º / +45º 

Hip Frontal 192 16,19 Nm 34 rpm -40º / +30º 

Hip Axial 400 37,72 Nm 8 rpm -30º / +24º 

Waist Frontal 480 45,26 Nm 7 rpm -15º / +60º 

Waist Axial 160 15,09 Nm 21 rpm -180º / +180º 

Shoulder Frontal 160 15,09 Nm 21 rpm -180º / +180º 

Shoulder Sagittal 160 15,09 Nm 21 rpm -45º / +120º 

Arm 160 13,49 Nm 41 rpm -60º / +60º 

Elbow 160 13,49 Nm 41 rpm -100º / +100º 

Forearm 160 11,30 Nm 29 rpm -40º / +55º 

Wrist 160 11,30 Nm 29 rpm -105º / +105º 
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5.5 Communication	Channels	 	
The information sensed by the proprioceptive and exoceptive systems must be 
transmitted to the described processor centres. This communication is performed by 
the afferent and efferent channels.  

Sensory or afferent neurons carry the captured information towards the central nervous 
system. They transmit sensations experienced on or within the body, such as, 
pressure, pain and temperature amongst other sensations. 

Motor or efferent neurons take signals from the central nervous system to the muscles 
and glands. Most Motor neurons are stimulated by interneurons, although some are 
stimulated directly by sensory neurons. These interneurons are found exclusively within 
the spinal cord and the brain. 

In this way, there is a closed loop in the nervous system of sensation, decision and 
reactions. The elapsed time from perception to action is called the response time and it 
is composed by:  

Response Time = Reaction Time (RT) + Movement Time (MT)

 

Figure 60 Human reaction time 

The Reaction Time is the elapsed period between the presentation of a stimulus 
(premotor time) and the initial movement response (motor time).  

The Movement Time begins with the start of physical movement to completion of 
movement. This time is modelled using Fitts’ Law (Fitts, 1954), which value is highly 
task dependant: 

MT ൌ a ൅ b ∙ logଶ ቀ
ଶୈ

୛
ቁ																																					 					ሺ5.2ሻ	

Where:  

 a represents the start/stop time of the device (intercept)  
 

 b stands for the inherent speed of the device (slope).  
 

 logଶ ቀ
ଶୈ

୛
ቁ is the Index of Difficulty of the movement. 

 
 D is the distance from the starting point to the centre of the target. 
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 W is the width of the target measured along the axis of motion. 

The nerves of the skeletal muscles and large sensory nerves (temperature, touch, 
pressure, joint position) have a transmission rate between 12m/s and 120m/s. These 
velocities depend of the morphology of the neurons of the communication channel and 
the distance. The longer distance to transmit a stimulus, the faster the transmission 
velocity is. Considering a maximum pathway of 1m, the maximum delay time is about 
8ms per transmission channel in the case of the reflex arc in the lower limbs. The total 
delay time due to neuronal channel communication is 16ms both direction 
(perception/reaction). 

One important aspect to take in account is the existence of multiple communication 
channels in the human body. In this way, the communication and processing of the 
information in human body is performed in parallel in different areas of the Central 
Nervous System, improving exponentially the reaction performance. 

The perception information in TEO robot has been divided depending of the importance 
of the perceptual information for postural control. High velocity CANBus networks are 
used to transmit the main proprioceptive information from all joints. The exoceptive 
perceptions (visual and inertial) are transmitted using USB 2.0 interfaces, meanwhile 
F/T information is transsmited by RS-485 interface. The communication between the 
two mainboards (the brain) of the robot is implemented by means of a high-speed 
Ethernet connection. The whole communication architecture is shown in Figure 61. 

 

Figure 61 TEO robot communication architecture 

5.5.1 CANBus	 	
Controller Area Network (CAN or CANBus) is a field bus standard designed to allow 
devices to communicate with each other without a host computer. It is a message-
based protocol, multi-master broadcast serial bus (Pazul, 1999). 

The CAN Bus interface uses an asynchronous transmission scheme controlled by start 
and stop bits at the beginning and the end of each message. The information is passed 
from transmitters to receivers in a data frame composed by an Arbitration field, Control 
field, the Data field, a field for error control (CRC), the confirmation of read message 
(ACK field). The frame begins with a 'Start Of Frame' (SOF), and ends with an 'End Of 
Frame' (EOF) space. The data field may be from 0 to 8 bytes (see Figure 62).  
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Figure 62 CAN Message Frame 

The transmission data rate selected for TEO robot communication is 1Mbps, being this 
velocity the top end. In this case, the transmission time of complete frame (128 bits) is 
128 microseconds. Each lower limb has six devices attached to one CANBus 
communication channel and the upper limbs have seven CAN devices attached to two 
buses. Taken this into account, the time to communicate 8 bytes to one whole lower 
limb in the worst case would be about 768 microseconds. This time doesn’t consider 
possible communication delays neither the responses from the CAN devices to the 
CPU controller.  

It can be compared the reaction time of the human reflex arc with TEO reflex arc 
(Figure 57). In the case of the robot, the communication of the position perceived only 
travels in one direction and, after processing (tP), the motor is directly commanded 
because it is directly connected to the driver. Delays appear when more than one joint 
is connected to the CANBus and the hardware controls the message priority of the 
different transmitters. 

Table 13 Comparison of the reflex arc latency 

 Human Reflex Arc TEO Reflex Arc 

Time (one joint)  16ms max.  128μs + tP 

5.5.2 Ethernet	
Ethernet is a family of computer networking technologies for local area networks 
(LANs) commercially introduced in 1980. Systems communicating over Ethernet divide 
a stream of data into individual packets called frames. Each frame contains source and 
destination addresses and error-checking data so that damaged data can be detected 
and re-transmitted (Seifert, 2001). 

This kind of communication channel is used to inter-communicate the CPU controller of 
upper body with the controller of the lower body. The connexion has a transmission 
rate of 1Gbps.  

5.5.3 USB	serial	bus	 	
Secondary devices with information such as visual perception or inertial measurements 
communicate with postural controllers by means of USB (Universal Serial Bus) with a 
maximum transmission data rate of 125Mbps (Intel et al. , 2000). 



 

 

 



 

 

CHAPTER	6 	
 

Low	Level	TEO	Robot	Architecture		
	
	

6.1 Low	Level	Postural	Control	Architecture	
Section 3.3 exposed the human inspired and task oriented novel postural control 
architecture developed for the humanoid robot TEO. It presents three main modules. 
The first one is the task database with all the abilities that TEO robot can perform. The 
second one is the feedback control module, which supervises the normal operation of 
the robot and its equilibrium when walking on even terrains. The last module 
corresponds to the key point of this PhD Thesis: the feedforward postural control loop. 

The study of the human postural control system reveals the existence of the two kinds 
of control loop mentioned. Previous postural control systems developed for humanoid 
robots in the RoboticsLab research group were based only on one of them for different 
reasons. The development of the new TEO robotic platform has brought the 
opportunity of improving the previous works.  

Chapter 3 exposed the feedforward module architecture and its operation from a high 
level. Taking this into account, the aim of Chapter 6 is the study in depth of each part 
presented in Chapter 3. Here, each feedforward module component and its low level 
operation are explained more in detail. The expanded module architecture is presented 
in Figure 63. That chart shows the perception evaluation module in its left side. This 
module is in charge of capturing sensations and, as well, transforming them into usable 
information by the control system called perceptions.  

In the middle position, the surprise generation module is in charge of processing the 
perceptual information. The sensorial information is converted in two kinds of surprise 
events: active and passive. The active events are related with predictions about the 
future status of a determined variable. The passive surprise is related, by the other 
hand, with the actual state of the variable under study. 

The last module, at the right side, is the behaviour decision system. It must deal with all 
surprise produced and decide whether a reaction should be elicited. This module is 
close related with the task structure defined in Figure 22, because of its main outcome 
is the parameterization of reactions and the modification of the task execution flow 
when it is needed.    
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Figure 63 Feedforward module low level architecture 

Next sections will describe all these modules: their inputs, how the system processes 
them and their outcomes. 
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6.2 Sensorial	Evaluation	
Sensations can be divided in two main groups attending to the location of the source. If 
stimuli come from an external source the sensation is called exoceptive. Otherwise, the 
sensation relative to internal body parts, their conditions, etc. is called proprioceptive.  
The sensation capturing system is composed by highly specialized sensory organs that 
are an extension of the Central Nervous System. The result of the brain’s 
interpretations of the sensations is called perception and, attending to the classification 
made before, there exist two main perceptions: exoception and proprioception.  

These perceptions explain to the body how to respond to the stimuli. In the same way, 
the humanoid robot processing system must evaluate the information coming from the 
mentioned sensorial sources. The human inspiration of this PhD Thesis favours the 
searching of methods and systems that made robot behaviour more natural and 
human-like. Another important factor to select a sensorial evaluation system is the 
fuzzy nature of the sensations. Due to these reasons, the evaluation of complex 
perceptions for the robot TEO has been based in the implementation of neuro-fuzzy 
sensation inference systems. This method combines the human-like reasoning style of 
fuzzy systems with the learning and connectionist structure of the neural network.  

Other reasons to use this technique are the non-dependence from the human 
experience to generate the inference system and its ability to generate the resulting 
system from a training process, knowing only system input and output data, as 
described in Chapter 4. Therefore, it is possible to construct a sensorial evaluation 
system having a set of sensorial input data and the perceptual output it causes. 
Following, the proprioceptive and exoceptive perceptions developed for humanoid 
robot TEO are explained in detail. 

6.2.1 Proprioceptive	perception	
For robots to become effectively used in a wide range of application, they may gain the 
ability to work in unpredictable and changing environments. The locomotion and 
manipulation problems presented before cover the most of this range. In both 
problems, proprioceptive perception resulting from absolute encoder information 
evaluation will help to reach this aim. 

Proprioceptive perception in TEO humanoid robot is composed by the knowledge 
about the relative angle between adjoin links. Limb location is related to the solution of 
the forward kinematic problem, where  a rigid body location is calculated using the joint 
angles of the kinematic chain connected to it. These devices measure the absolute 
angle (qk) of the joint when moving  in relation to the pre-established zero position. The 
upright posture has been used to establish the initial condition of the absolute encoder. 
That is, it corresponds with a zero angle measurement in each joint.  This posture is 
the basis for modelling the system by means of the application of Denavit-Hartenberg 
algorithm. The kinematic model for TEO humanoid robot is presented in Figure 64. 
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Figure 64 TEO robot kinematic chain 

The Denavit-Hartenberg algorithm is the most used method to solve forward kinematics 
problem. Unfortunately, forward kinematics do not stay so simple. The kinematics of 
serial chains of manipulators become increasingly difficult due to the number of links 
added. Because of this, the computation kinematics is divided into sub-problems easier 
and faster to solve. Table 14 shows this sub-problem division and the desired outputs 
that are calculated by means of homogeneous transformations. It is important to note 
that the origin reference frame has been located at the waist of the robot. It is also 
aligned with the cross point of the hip rotation axes. But this approach does not meet 
the bio-inspired conception of the perception system due to the nature of the algorithm 
and the methods needed to calculate the desired output. 
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Table 14 Sub-problem division 

 Output Location Homogeneous Transformations 

Upper 

Body 

(16 DOF)

Torso 0T14 = 0T13
13T14 

Right Hand 0T20 = 0T14
0T15

15T16
16T17

17T18
18T19

19T20 

Left Hand 0T26 = 0T14
0T21

21T22
22T23

23T24
24T25

25T26 

Head 0T28 = 0T14
0T27

27T28 

Lower 

Body 

(14 DOF)

Right Foot 0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 

Left Foot 0T12 = 0T7
7T8

8T9
9T10

10T11
11T12 

 

The corresponding Denavit-Hartenberg parameters of TEO humanoid robot and the 
homogeneous transformation matrix have been detailed in Annex I. 

Sensation is captured by means of absolute encoders integrated in every joint and its 
processing must be as fast as possible due to the high number of joints. Proprioception 
evaluation in humans is a fast parallel process due to the multiple communication 
channels and processor centres in charge of this task.  

The first bottleneck in TEO robot proprioceptive perception evaluation is the 
communication architecture. Proprioceptive sensors are connected to four CANBus 
communication nets. At least, six sensor devices and other motion devices are 
connected to each net. The other aspect of perception evaluation is related to 
processing issues. TEO robot processing system is composed by two CPUs in charge 
of sensation process, balance control, etc. Due to this, the proprioceptive perception 
evaluation has been divided into upper body (manipulator) and lower body (locomotive) 
sub-problems. It reduces the number of degrees of freedom for processing and it is 
also conditioned by the double processor system architecture. 

Then, the required time to evaluate the proprioceptive perception will depend on the 
communications delay, and the processing time will depend on the variable CPU 
processing time (tCPU) and the communication latency (tcom). It has been proved that the 
communication loop for controlling 6DoF per limb cannot be less than 7ms. Thus, the 
minimum processing time will be at least equal to this value. It is expressed by 
equation (6.1). The main objective of the novel proprioceptive evaluation module will be 
the minimization of the processing time (tCPU). 

tevalൌ	tcom	൅	tCPUൌ2	x	0,007	൅	tCPUൌ0,014ms	൅	tCPU		 		 					ሺ6.1ሻ	

Due to the communications bottleneck imposed, the way to improve system 
performance can be achieved by the implementation of a bio-inspired parallel 
sensation processing system.  The application of neuro-fuzzy evaluation of perceptive 
information can help to achieve this goal.  According to the sub-problem division 
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commented before and the process to build a neuro-fuzzy inference system, the upper 
body and lower body TEO proprioception’s have been created.  

 Lower	body	proprioception	modelling	6.2.1.1

The aim of the lower body proprioceptive perception evaluation is to determine the 
location of both feet (f) in relation with the reference frame (o) of the humanoid robot. 
This reference point was selected as origin to obtain the Denavit-Hartenberg 
parameters of the robot. It is located in the same level of the hip frontal joint, in the 
middle of both legs (lWL1) and under the waist link (lWL2). The scheme for waist and feet 
location evaluation is shown in Figure 65 and it is described in detail in Annex I. 

 

Figure 65 Feet location (XF, YF, ZF) and waist location (XW, YW, ZW) 

Every foot location is calculated solving the forward kinematic problem of each leg from 
the reference o-frame, located at the every leg hip joint. The legs can be considered as 

two ‘manipulators’ with six DoF and their end effector location is defined by vector (L୊ሬሬሬሬԦ) 
from equation (6.2). As well, the selected location of the reference o-frame simplifies 
the waist location computation, which can be obtained only considering the movement 
of hip joints. Nevertheless, waist location is very constrained by mechanical and 
operational conditions. During even upright locomotion task, for instance, waist 
orientation must have the same Z component direction (ZW) than gravity acceleration.  

L୊ሬሬሬሬԦ ൌ ofሬሬሬԦ		 	 	 			 														ሺ6.2ሻ	

Therefore, the constraint of the vertical orientation of the waist causes the necessity of 
evaluating waist roll and pitch.  Roll deviations are caused by turning on sagittal plane 
joints (Figure 66 (a)) and pitch deviations by turning on frontal plane joints (Figure 66 
(b)). The influence of each leg or joint will also depend on the phase of the locomotion 
task. The three possible cases that can occur: 

1) During single support phase, only turns on sagittal plane joints of the supporting 
leg roll the waist.  
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2) During double support phase, the movement of any sagittal plane joint can 
cause the elevation of the one of the legs. Then, this case is converted in the 
single support one. 
 

3) Joints in the frontal plane can pitch the waist. The movement of this kind of joint 
must be coordinated to avoid waist pitch unless it was a requirement of a 
specific task. 

 

Figure 66 Roll (a) and pitch (b) Z axis possible deviations 

Once the system model is known, the starting point for the development of the neuro-
fuzzy proprioceptive evaluation is to obtain the input and output datasets that models 
the system behaviour. The input dataset is firstly constrained by the locomotion task 
conditions. They impose the commented waist orientation. As well, joint turn angle 
constraints were considered with the aim of reducing the range of each input for the 
neuro-fuzzy system and improving the training process Table 15. 

Table 15 Lower body joint angle limits 

 JOINT JOINT NUMBER ANGLE LIMITS 

L
E

G
S

 

Hip Axial 1 / 7 -30º to +24º 

Hip Sagittal 2 / 8 -120º to +45º 

Hip Frontal 3 / 9 -40º to +30º 

Knee 4 / 10 0º to +150º 

Ankle Frontal 5 / 11 -20º to +20º 

Ankle Sagittal 6 / 12 -85º to +85º 
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Taking into account the constraints mentioned before, it is necessary to build one 
dataset to train the neuro-fuzzy network and, another one to check it. Both datasets are 
composed by the combination of a serial of inputs and outputs previously calculated. 
The input data is composed by random values of the joint angles, within their 
movement range. The output data is obtained solving the forward kinematic problem of 
the TEO lower body for each set of the random inputs. Both datasets are shown in 
Table 16. 

Table 16 Lower body datasets 

 Input Dataset Output Dataset

Right Leg 
q1 q2 q3 

q4 q5 q6 

XRF 

YRF 

ZRF 

Left Leg 
q7 q8 q9 

q10 q11 q12 

XLF 

YLF 

ZLF 

Waist 

q1 q2 q3 

q4 q5 q6 

q7 q8 q9 

q10 q11 q12 

WP 

WR 

 

The result of the training is eight neuro-fuzzy systems for lower body proprioception 
evaluation. Figure 67 scheme summarizes this proprioception evaluation. 

 

Figure 67 Lower body proprioceptive perception evaluation scheme 
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 Upper	body	proprioception	modelling	6.2.1.2

In the upper body case, the aim of the proprioceptive perception evaluation is to 
determine the location and orientation of hands (h) and torso (s) regarding the bottom 
waist (o) of the system. Every coordinate of each hand is composed by the sum of the 
torso location and the corresponding arm joint configuration Figure 68.  

 

Figure 68 Torso location (XT, YT, ZT) and hand location (XH, YH, ZH) 

It is important to remark that it is only valid for manipulation tasks without locomotion. 
Including locomotion, it would be necessary the addition of the waist position and the 
orientation related to the Base of Support.  Thus, in this case, the vector for torso 

location (L୘ሬሬሬሬԦ) is expressed by equation (6.3) and the vector for hands location (LୌሬሬሬሬԦ) by 
equation (6.4).  

L୘ሬሬሬሬԦ ൌ osሬሬሬሬԦ		 	 	 	 	 ሺ6.3ሻ	

LୌሬሬሬሬԦ ൌ osሬሬሬሬԦ ൅ shሬሬሬሬԦ	 	 				 	 	 				ሺ6.4ሻ	

As commented before, the first step is to calculate the input and output datasets that 
models the system behaviour. They are obtained from the offline solution of the upper 
body kinematic equations, taking into account the premise of no lower body movement. 
Furthermore, other constraints applied in calculating these datasets are the joint 
mechanical turn limitations from Table 17.  

Table 17 Upper body joint angle limits 

 Joint Joint number Angle limits 

Body
Waist Axial 13 -45º to 45º 

Waist Frontal 14 -15º to 15º 

Arms

Shoulder Frontal 15 / 21 -180º to +180º 

Shoulder Sagittal 16 / 22 -45º to +120º 

Arm 17 / 23 -60º to +60º 

Elbow 18 / 24 -100º to +100º 

Forearm 19 / 25 -40º to +55º 

Wrist 20 / 26 -105º to +105º 



122 Sensorial Evaluation
 

 
 

As in the case of the lower body, the input dataset was obtained generating joint angles 
within the constraints, and the output data were calculated solving the forward 
kinematic problem for the previously computed inputs. This output dataset is composed 
by the X, Y and Z coordinates of each hand (Table 18). 

Table 18 Upper body datasets 

 Input Dataset Output Dataset 

Torso q13 q14 XRH 

YRH 

ZRH Right Hand q15 q16 q17 q18 q19 q20

Torso q13 q14 XLH 
YLH 
ZLH Left Hand q21 q22 q23 q24 q25 q26

 

Figure 69 summarizes the seven neuro-fuzzy evaluation systems for right/left hands. 
The estimation of limb location by means of processing the absolute encoder 
information through these neuro-fuzzy networks produces the upper-body 
proprioception. 

 

Figure 69 Upper body proprioceptive perception evaluation scheme 

In conclusion, this proprioception evaluation permits to know limb location. This 
knowledge can be used directly or applied in the parameterization of the humanoid 
robot simplified models exposed in Chapter 4. 

6.2.2 Exoceptive	perception	
Studies exposed in Chapter 2 reveal how humans employ exoceptive sensorial 
information. Sensorial processor centres generate appropriate exoceptive perception 
parameters according to the body posture and the task performed. Later, neural 
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reaction centres apply this information to evaluate different parameters that are 
extracted from ‘simplified models of the human body’. The result of this evaluation 
would be any kind of postural adjustment if it were necessary. These adjustments are 
usually performed by means of parameterizing and executing postural strategies. 

In the same way, exoceptive sensorial information in TEO humanoid robot must be 
processed. Appropriate use of exoceptive sensorial information can help to improve 
task performance. To achieve this, it is important to recall that this perceptive 
information evaluation must be human inspired and task oriented. 

Thus, neuro-fuzzy inference system was the method selected to evaluate exoceptive 
sensorial information, as well applied in proprioceptive perception generation. As it was 
seen before, neural networks and fuzzy inference systems are two human-inspired 
techniques used to evaluate information from TEO robot sensorial sources.  

Three exoceptive sensorial systems have been integrated in TEO humanoid robot. The 
first one is the inertial measurement system composed by an Inertial Measurement Unit 
(IMU). This sensorial system is in charge of detecting changes in velocity and 
acceleration of the body like the human vestibular system does. The second sensorial 
system is composed by the ankle and wrist joints torque/force sensors. In humans, this 
function appears to involve sensors inside the muscle tendons. They measure forces 
exerted directly to the humanoid body because of close interaction (manipulation, 
ground reaction force, etc.) The vision system is the last sensorial system integrated in 
TEO humanoid robot. Human vision has many roles in tasks performance. For 
instance, it is used to measure object distance and relative movement or, as well, it 
plays a significant role in human balance control. These functions, among others, have 
been integrated in TEO humanoid robot.  

Human perception processing is performed in different neural centres depending on 
the stimulus. This process is also performed in different areas of these neural centres 
depending on the task. As well, the exoception processing in TEO robot is task 
oriented because its information sources are highly influenced by the task performed. 
The division into manipulative and locomotive tasks helps the system to classify, to 
process and to apply the information in the proper way. Therefore, the neuro-fuzzy 
evaluation results of sensations have been established depending of this task oriented 
nature.  

Another important issue to take into account about processing the exoceptive 
perceptions are the constraints of TEO electromechanical system. As reviewed in 
Chapter 5, exoceptive sensorial devices have, in many of their characteristics, better 
performance than human organs with the same function. Because of this, sensor 
devices do not constitute a constraint by themselves. Dynamics of the humanoid robot 
body are determined by the movement of its parts. The knowledge of 
electromechanical limitations and their interaction with exoceptive perception 
evaluation is determinant. 

Opposite to proprioceptive case, the communication of sensed information to process 
centres is not a bottleneck due to each exoceptive source transmits its information 
through independent communication pathways.   
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In conclusion, the main constraint in exoceptive perception evaluation is the capacity of 
the processing centres and how the resulting information is employed. Next topics 
related with the exoceptive systems will expose more in detail the constraints that 
determine the information processing and its output.  

 Force/Torque	system	6.2.2.1

Forces and torques are perceived by the human body by means of multiple sensitive 
organs. Those have in common that sensation is generated when several physical 
components interact. That is, these sensor organs need physical contact with the 
source of the captured magnitude.  For instance, sensors allocated in muscle tendons 
measure the force exerted directly by the muscles attached to them or pressoceptors 
from skin measures contact when handling. It would be possible to think that the 
vestibular system acts in the same way but it has a little difference. Vestibular system 
measures fictitious or inertial forces with or without direct contact.  

TEO humanoid robot possesses as well this kind of perception’s capability but only in 
ankles and wrists. Sensors incorporated to the ankle subassembly measure reaction 
forces and torques with the ground. By other hand, sensors in the wrist substructure 
measure direct contact when manipulating. These devices capture information in three 
dimensions in the indicated joints (Figure 70 (a) and (b)). 

 

Figure 70 Force frames (a) and torque frames (b) of the F/T sensors 

 Ankle	sensors	6.2.2.1.1

The F/T sensors allocated in the ankles capture the information produced when feet 
contact ground. They measure the reaction forces and torques produced during the 
locomotive movement of the robot or stance. Taking this into account, the use of this 
information will be restricted to locomotion tasks.  

The information from these sensors can be interpreted and applied in different ways. 
The first one is the determination of the locomotion stage. During locomotion two main 
phases are considered: double and single support phases. The direction of the vertical 
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reaction force in each foot, which is defined by the sign of the force, reveals whether 
the corresponding foot is on the ground or in the air (see Table 19). 

Table 19 Robot support phase obtained from force evaluation 

 Right Foot Left Foot Phase 

FZ 

Direction 

+ - Right Foot Single Support (SSR) 

- + Left Foot Single Support (SSL) 

+ + Double Support (DS) 

 

The second way of using F/T sensors information is the evaluation of each foot 
orientation related to the vertical direction. It could be a correction factor to evaluate the 
stability margin of the robot. The results of this evaluation are α (pitch) and β (roll) 
angles of the ground reaction force vector (Figure 71). Assuming the complete surface 
contact between ground and foot, it will determine the angle of the ground under each 
foot independently.  

 

Figure 71 Ankle pitch (α) and roll (β)  

α ൌ cosିଵ
୊ౖ

ට୊౔
మା୊ౖ

మ
	 	 	 	 							ሺ6.5ሻ	

ߚ ൌ cosିଵ
୊ౖ

ට୊ౕ
మା୊ౖ

మ
		 	 	 	 							ሺ6.6ሻ	

The third way of evaluation of the F/T sensor sensation is the stability margin based on 
ZMP computation. As described in Chapter 4, ZMP is one indicator of the robot 
balance. When the foot is placed on the ground, the reaction force vector can be used 
to determine the local ZMP. In this case, local ZMP indicator is not a reference of the 
robot’s global stability. The ZMP related with the whole body is the result of the position 
weighted average from both feet local ZMP. The prediction of the evolution of ZMP 
position in relation with the support convex hull can be used to preview the evolution of 
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the robot balance. Taking into account that each foot could be placed in uneven terrain, 
the computation of the support area envelope and the ZMP turns into complex task.  

Because of that, the use of a Virtual Horizontal Plane (VHP) makes these computations 
easier (Figure 72). The VHP is located at a HVHP distance from the waist to the lowest 
foot on the ground. The foot projection has been assumed to have circular shape with 
constant radius (rF). Then, considering the waist projection (gwo) as the origin of the 
projected coordinates, the convex hull of the supporting area can be determined using 
the proprioceptive information about foot location. 

 

Figure 72 Virtual Horizontal Plane: projected support convex hull and ZMP  

Therefore, taking into account the inputs from the F/T sensors, the mechanical 
capacities and the local ZMP coordinates, this exoceptive perception can be evaluated 
in the way shown in Figure 73. 

 

Figure 73 ZMP F/T sensors exoception scheme 

The computation of the ZMP location using force and torque values is performed by 
two neuro-fuzzy inference systems. The input and output datasets necessary to train 
and obtain the inference system are presented in Table 20. 
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Table 20 ZMP F/T exoception input/output datasets 

 Input Dataset 
Output 
Dataset 

Force Torque 

Right Foot FX FZ TY 
XZMP 

Left Foot FX FZ TY 

Right Foot FY FZ TX 

YZMP 

Left Foot FY FZ TX 

 

 Wrists	sensors	6.2.2.1.2

On the other hand, the information coming from wrists F/T sensors is only used for 
manipulation tasks. This exoception is related to object handling and the forces and 
torques caused by this interaction Figure 74.  

 

Figure 74 Wrist F/T sensors 

The information about manipulation can be applied in different ways but it is only used 
for robot safety during handling. This mission is achieved evaluating the modulus of 
force and torque vectors from interaction (equations (6.7) and (6.8)). 

|ܨ| ൌ ඥܨ௑
ଶ ൅ ௒ܨ

ଶ ൅ ௓ܨ
ଶ	 	 	 						 											ሺ6.7ሻ	

|ܶ| ൌ ඥ ௑ܶ
ଶ ൅ ௒ܶ

ଶ ൅ ௓ܶ
ଶ	 	 	 					 												ሺ6.8ሻ	

Then, the human inspired force and torque exoceptive sensation evaluation scheme is 
represented in Figure 75.  

 

Figure 75 Wrists F/T sensors exoception scheme 
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From previous scheme, the input and output datasets that compose the base for neuro-
fuzzy training are exposed in Table 21. 

Table 21 Wrists F/T exoception input/output datasets 

 
Input Dataset 

Output 
Dataset 

Right Wrist Force FX FY FZ

FW 

Left Wrist Force FX FY FZ

Right Wrist Torque TX TY TZ

TW 

Left Wrist Torque TX TY TZ

 

 Inertial	system	6.2.2.2

The Inertial Measurement Unit (IMU) is a device with a similar role than the human 
vestibular system but also with very important functional differences. The inertial 
sensor device integrated in TEO robot mechanics is a complex system that performs 
by itself more than the vestibular apparatus’ functions. The main feature that favours 
the use of this kind of devices is their processing capabilities. In the human case, all 
evaluation of the input information is performed by the Central Nervous System but the 
IMU has some processing capacity. In addition to more complex outputs, the IMU 
provide raw data regarding angular rate and linear accelerations (Figure 76). The 
combination of all output data is exclusively applied in locomotion tasks to keep robot 
balance.  

 

Figure 76 Inertial exoceptive output  

Three main outputs from this exoception evaluation have been established combining 
the IMU information. The first one is related with the rotational robot movement 
tendency. This perceptual outcome is obtained from computation of the period for one 
rotation (TR) with the determined angular rate (ωX, ωY). This measured rotation angle 
(Roll and Pitch) relates the angular velocity with the angular position of the robot body 
(equations (6.9) and (6.10)).  

Tୖ ൌ
ன౔,ౕ

ଶ஠
										 	 	 	 	 		ሺ6.9ሻ	

Rଡ଼,ଢ଼ ൌ Tୖ ∙ θଢ଼,ଡ଼										 	 	 	 				ሺ6.10ሻ	
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The evaluation of the rotational tendency of the robot during locomotion (RX and RY) is 
performed by neuro-fuzzy networks in both of the directions under study (see Figure 
77). 

 

Figure 77 Robot body rotational tendency  

The neuro-fuzzy networks must be trained using as input dataset the inertial 
information. The output dataset will be composed by the required rotational tendency 
value caused by a determined input. Both datasets are established in Table 22. 

Table 22 IMU rotational tendency evaluation input/output datasets 

 
Input Dataset 

Output 
Dataset 

INERTIAL 

MEASUREMENT 

UNIT 

Angular Rate ωX 
RX 

Orientation θY 

Angular Rate ωY 

RY 

Orientation θX 

 

The second exoceptive outcome from the inertial measurements is the linear 
movement tendency of the robot. The linear acceleration vector measured by the IMU 
(aX, aY, aZ) must be rotated, using the inverted rotation matrix (RRPY), to obtain the 
linear movement tendency in the principal axes (LX, LY, LZ). This operation is expressed 
by equation (6.11).  

൭
Lଡ଼
Lଢ଼
L୞
൱ ൌ Rୖ୔ଢ଼

ିଵ ൭
aଡ଼
aଢ଼
a୞
൱					 	 	 																		ሺ6.11ሻ	

The complexity of the inversion of the rotation matrix is avoided applying once again a 
trained neuro-fuzzy system for this computation. The result of this evaluation is the 
robot linear movement tendency in the frontal plane (LX) and the sagittal plane (LY), 
shown in Figure 78. 
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Figure 78 Robot body linear movement tendency 

In the same way than the rotational tendency case, the neuro-fuzzy networks for linear 
motion must be trained using as input dataset the inertial information. The output 
dataset will be composed by the required linear movement tendency obtained from 
equation (6.11). The set of information used for the training process is shown in Table 
23. 

Table 23 IMU linear movement tendency evaluation input/output datasets 

 
Input Dataset 

Output 
Dataset 

INERTIAL 

MEASUREMENT 

UNIT 

Linear Acceleration Vector 
aଡ଼
aଢ଼
a୞

 

LX 

Orientation Vector 
θଡ଼
θଢ଼
θ୞

 

Linear Acceleration Vector 
aଡ଼
aଢ଼
a୞

 

LY 

Orientation Vector 
θଡ଼
θଢ଼
θ୞

 

 

The third and last exoceptive inertial evaluation is related to the prediction of body 
balance. Classical feedback balance control methods use vestibular information to 
prevent falling after the cause has been detected. But human postural control system 
also uses the vestibular exoceptive perception to preview postural balance lost, 
preparing the motor system to react. The feedforward mechanism enables faster 
reactions and, if it was necessary, it triggers higher level reaction systems (i.e. complex 
balance strategies). 

Therefore, the aim of the robot inertial sensation evaluation is to enhance the postural 
control providing information, related with body balance, for reaction prediction. The 
output information from the IMU device is robot movement consequence, which can be 
caused by voluntary actions or external forces exerted on it. The study of the robot 
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balance can be simplified to the study of the movement of its CoM and, by extension, 
with the localization of the ZMP. Thus, this perception will be used for predicting the 
future ZMP position taking into account the sensation of the dynamics captured by the 
sensor.  

The study of the ZMP location has been decoupled in the two principal coordinates and 
it is also profited from the simple inverted pendulum simplification for the locomotion. 
Based on this simplification, the movement of the CoM can be assumed circular and 
with constant acceleration during the period of time established to perform predictions 
(equation (6.12)). This will be explained more in detail further on. Then, equation (6.13) 
shows the evolution of one ZMP component depending on time. 

∆ω ൌ
୶ሷి౥౉
୞౒ౄౌ

∙ t						 	 							 															ሺ6.12ሻ 

∆x୸୫୮ ൌ ωେ୭୑
୷ ∙ t െ

ଵି୞౒ౄౌ∙ሺ୲ሻమ

ሺ୥ା୸ሷి౥౉ሻ∙୞౒ౄౌ
xሷ େ୭୑ 						 	 									ሺ6.13ሻ 

Therefore, it can be used information directly from the IMU device and it can be applied 
in the subsequent ZMP prediction module. Figure 79 shows the five datasets used to 
ZMP prediction. 

 

Figure 79 IMU outputs for ZMP prediction 

 Vision	system	6.2.2.3

The information captured by the vision sensors is used to extract distant objects 
movement characteristics. The output comes from the vision sensor KinectTM installed 
in the robot TEO head. This device enables a fast object detection making easier the 
feature extraction process by means of the integration of third party software tools. 
Figure 80 shows the robot kinematic scheme to perform perceptual composition.  

 

Figure 80 Model for visual perception 
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The vision sensor is used to extract the object location (XOBJ, YOBJ, ZOBJ) with respect to 
its reference system (KR). But this information is not useful for a manipulative task. This 
location must be related to the manipulation tools, that is, to the hands. This will be 
performed afterwards by means of kinematic transformations (equation (6.14)). 

OTH	ൌ	OTK	KTH						 	 	 	 		ሺ6.14ሻ	

In summary, the outcome from visual perception is the object location in a determinate 
time instant (Figure 81). The relation of the object location with the hand location will be 
a previous step in the surprise generation process.   

 

Figure 81 Objects movement evaluation

6.3 Surprise	Generation	
After sensation analysis was performed and the corresponding perceptions were 
generated, it is necessary to take decisions about postural control supported by this 
perceptual income. This decision process is based on the concept of surprise events 
driven by perceptual evaluation under determined context constraints. 

Following the psychophysical principles exposed in Chapter 2, the surprise events are 
elicited by means of the comparison between the knowledge about the action and 
perceptions during its performance. When the comparison produce an unexpected 
result or exceeds any kind of threshold, a surprise event could be generated. That is, 
the result of the comparison process is produced by an expectation failure.  

Two types of expectation failure could be produced. The passive expectation failure is 
produced when the actual perception exceeds any established threshold. This kind of 
limitations represents values affecting the proper action performance. The second type 
of failure is the active expectation failure. It is produced when some prediction about 
the future status of an action is established and it is not accomplished at any time.   

Therefore, after the sensorial evaluation performed by the humanoid robot, the next 
step is the generation of surprise events, which will support the decision making 
system for the selection of the proper mechanism to react. As well, due to the task 
context dependence, this generation has been classified following the manipulative and 
locomotive task division.  



Chapter 6. Low Level TEO Robot Architecture  133 
 

 

6.3.1 Passive	Expectation	Failure	
According to the Signal Detection Theory (SDT), the act of sensorial signal evaluation 
consists of providing quantitative information about a continuous physical variable. This 
information is compared with a threshold at which such stimulus is noticed by a subject. 
As well, this evaluation depends of a lot of factors than only the nature of the stimuli 
such as the subject’s conditions, the task context, etc.  

Different thresholds have been established for manipulation and locomotion tasks 
taking into account the goals for each one.  

 Manipulation	Tasks	6.3.1.1

The passive expectation failure for manipulation tasks is related to the assumption 
about the behaviour of the ball when it is thrown upwards. It has been assumed that 
the normal execution of this task implies a straight ball trajectory when it goes up and 
falls down.  

At any execution time period, this assumption is considered and the possible location 
to catch the ball can be computed. The difference between hand location and the 
assumed ball location will be used to evaluate the passive expectation failure. The 
surprise event should be elicited when this distance exceeds a pre-established 
threshold and its intensity will depend on the module of the distance.  

The object location characteristics are generated by the analysis of the visual 
perception. It provides information about object location by means of the geometrical 
analysis of the captured frame. This information relates the object location regarding to 
the camera reference frame. 

Thus, it is necessary to transform the coordinate frame to relate the object location to 
the hand position, based on relations from Figure 80. This transformation is performed 
by the module from Figure 82 in which three neuro-fuzzy networks obtain the 
transformed coordinates by inference. 

 

Figure 82 Object location reference frame transformation  

After the working object has been properly related to the working hand reference 
frame, it is possible to evaluate the distance between hand and object. If any of the 

object coordinates (Xୌ
୓୆୎, Yୌ

୓୆୎, Zୌ
୓୆୎) exceed the minimum distance threshold the 

surprise event would be elicited (SX, SY, SZ). Figure 83 illustrates the module 
established to generate the corresponding surprise event related with object location.  



134 Surprise Generation
 

 
 

 

Figure 83 Manipulation passive expectation failure 

 Locomotion	Tasks	6.3.1.2

During a locomotion task, inertial stimuli perceived are related to the change of the 
motion tendency of the body, from upright stance until running. Commonly the motion 
study is simplified to the investigation of the behaviour of the body CoM. Then, every 
motion condition is characterized by the dynamics of this point and its relation with its 
environment. 

These conditions are measured by means of the IMU, which captures CoM motion 
behaviour. Then, the CoM movement evolution can be related with its rotational and 
linear motion tendency. 

The rotational tendency of the robot can be determined comparing the information 
about rotational movement in the same way than human’s,  applying concepts like the 
Mulder’s Law (DeHart & Davis, 2002). As described in Chapter 5, it determines the 
sensation of rotational movement taking into account angular acceleration and time. Its 
minimum threshold fixes the value at which rotation starts to be perceived by human 
vestibular system (Mulder’s Constant=2,5º/s).  

There is no immediate translation of this method to the humanoid robot system due to 
the characteristics of the IMU device. Therefore, the surprise evaluation gains the 
advantage from the use of the simple inverted pendulum model.  

Taking it into account, the surprise evaluation is performed attending to equation (6.10) 
and resulting in equation (6.15). In this equation, the rotational tendency from 
perception evaluation (RX,Y) is considered constant during the evaluation period (Teval).   

ܵ ோܲ ൌ ௘ܶ௩௔௟ ∙ ܴ௑,௒ ൌ ்ܭ ∙ ܴ௑,௒ ൌ ்ܭ ∙ ܴܶ ∙  (6.15)       ܺ,ܻߠ

Then, the result of this operation must be compared with the pre-established thresholds 
to generate a graded surprise event (SPRX, SPRX). The basic scheme of this module is 
shown in Figure 84.  
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Figure 84 Rotational surprise evaluations 

The method used to identify all thresholds levels has been based on the study of TEO 
robot simplified to a simple inverted pendulum for locomotion tasks. This simplification 
is useful to characterize the mean angular velocity by means of the relation from 
equations (6.7) and (6.14), which is task dependant. This angular velocity relates the 
simple pendulum with one of the main features for defining a locomotion task: the step 
time.  Then, the ‘Rotational Motion Constant’, that is given in equation (6.15), will 
depend on the linear velocity imposed by the task step time. As a design constraint, 
TEO humanoid robot has been designed for a maximum step time of 0,75m/s, which is 
the value shown in Table 24.	

ωෝ୘ ൌ V୘/Rୗ୔	 	 	 	 										ሺ6.16ሻ	

Tୖ ൌ
୚౐/ୖ౏ౌ
ଶ஠

										 			 	 									ሺ6.17ሻ	

Another parameter related with the task is the named ‘Task Constant’. In this case, it 
corresponds to the angular feature of the task (θY,X) introduced in equation (6.10). It 
has been established as the maximum angles (pitch and roll) considered as normal 
during the current task performance. In the case of upright locomotion, these angles 
should be within 0º to 5º range. Values above these thresholds should cause certain 
degree of surprise. Therefore, the upright locomotion ‘Task Constant’ is fixed in 5º in 
Table 24. 

The last constant defined is imposed by sensory device limitation. It is related to the 
sensation capture and its transmission to the processor centre. The ‘IMU’s Constant’ is 
the latency time (KT) needed to have the sensed information available (5ms).   

Then, the minimum rotational sensation that can be detected by TEO system  is related 
to the minimum sensor performance. This value is the ‘absolute minimum threshold’. 
Next, the minimum threshold from which any grade of surprise should be elicited is the 
‘minimum threshold’.  

As well, the maximum level of surprise should be produced when the ‘maximum 
threshold’ is reached. All kind of values exceeding this last threshold can cause 
instantaneous robot falling. Table 24 shows the constants for a maximum speed 
locomotion tasks and the thresholds obtained from this tasks conditions and IMU 
sensor limitations. 
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Table 24 Rotational tendency  

IMU’s Constant 0,005s

Rotational Motion Constant 1,57s-1

Task Constant 5deg 

Abs. Min. Threshold 0,12 

Min. Threshold 0,4 

Max. Threshold 40 

 

Regarding linear movement tendency, the perception of the CoM acceleration senses 
the initiation and variation of movement. The IMU device is able to sense these 
accelerations but its measurements are also affected by gravity and rotation. The 
evaluation perception eliminates these deviations from linear acceleration sensation.  

Then, the surprise evaluation (Figure 85) will be performed taking into account this 
corrected acceleration values (LX, LY).  The resulting surprise (SPLX, SPLY) is graded 
taking into account as the same concepts explained for rotational movement tendency.  

 

Figure 85 Linear surprise evaluations 

In this specific case, equation (6.18) exposes how the linear surprise thresholds have 
been obtained. The linear movement perception and the ‘IMU’s Constant’ are multiplied 
by the ‘Tasks Constant’ (KD). Moreover, equation (6.19) relates this established 
constant with the ‘Linear Motion Constant’ that, in this case, is the locomotion velocity 
(VT). 

SP୐ ൌ
୘౛౬౗ౢ∙୐౔,ౕ
୴౐/ୈ౐

ൌ K୘ ∙ Kୈ ∙ Lଡ଼,ଢ଼										 			 														ሺ6.18ሻ	

Kୈ ൌ D୘/V୘	 			 	 	 							ሺ6.19ሻ	

In this way, Table 25 shows thresholds values and the task dependant constants for 
the locomotion task with linear velocity of 0,75m/s.  
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Table 25 Linear tendency  

IMU’s Constant 0,005s 

Linear Motion Constant 0,75m/s

Task Constant 0,087s 

Abs. Min. Threshold 0,33 

Min. Threshold 32,7 

Max. Threshold 163,6 

6.3.2 Active	Expectation	Failure	
The active expectation failure is based on predictions about task performance. In such 
case, predictions are related with task main goals. For instance, the main goal of the 
manipulation task established is to catch a ball and the prediction may be related with 
the proper hand position to accomplish the goal.  

For the locomotion task, one important goal is to keep balance to be able to perform 
stable motion. The predictions regarding balance evolution will help the system to 
improve equilibrium and anticipate reactions against higher level perturbations. 

 Manipulation	Tasks	6.3.2.1

It was stated in Chapter 5 that there are different classes of motion tracking 
perceptions. As well, it was established through the review of different works that a 
continuous motion tracking is not necessary for the experience of visual motion.  
Human can capture images at about 15fps and the perception is lost when changes 
occur faster than 16.6ms. These thresholds are related only with the visual sensation, 
that is, with the capturing of raw data. The power of the human visual system lies in the 
brain process of each frame. 

In the case of TEO robot, continuous visual perception analysis is not possible. The 
process capacity of microcomputer systems limits highly the visual analysis 
performance. Therefore, the aim of the active expectation evaluation of the visual 
perception is to predict the conditions to carry out properly the manipulation task.  

In the manipulation task proposed, the main goal is to catch a moving object that is 
falling down. In order to achieve this task, the grasping location may be predicted to 
compare it with the actual location of the hand. The bigger is the difference of locations, 
the higher active surprise should be elicited. This operation corresponds with Figure 
86. 

 

Figure 86 Manipulation active expectation failure inference system 
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In Figure 86 chart, the visual perception (OBJ୲ౡ) is used to predict the landing location 

(OBJୋ୓୅୐). It is performed making the assumption of considering the equations of 
movement of a vertical shot to predict the goal location. This predictiive operation is 
performed by module from Figure 87.  

 

Figure 87 Object landing location prediction module 

Once the grasping location has been predicted, the distance from hand location 

(HAND୲ౡ) to the predicted location is computed (Dଢ଼,୞
୓୆୎) in all coordinates (Figure 88). 

 

Figure 88 Distance from hand to grasping location 

The last step to generate the manipulation active surprise is to compare it with a 
reference value. In this case, the surprise is proportional to the computed distances 
(Figure 89). The modulus of the surprise value indicates its level and the sign could be 
used to indicate the reaction movement direction. 

 

Figure 89 Manipulation active surprise inference module 

 Locomotion	Tasks	6.3.2.2

Keeping balance and fall avoidance is one of the most studied problems about 
humanoid robot locomotion. Classical balance control techniques are based on 
feedback loops in which a reaction is triggered after balance perturbation occurred. 
This reactive nature of the system limits the reaction time, the level of permissible 
perturbations, etc. It is important to recall that the human control system possesses this 
kind of reactive loops but, as well, it is able to predict future consequences of 
perturbations, anticipating reactions or preparing the body to act. 

In the case of TEO postural control system, the active expectation failure inference 
system integrated in the feedforward loop has the capacity of predicting the ZMP 
evolution (Figure 90). The inference system uses the information from perceptions 
regarding ZMP and the interaction of the robot with the base of support. The actual 
ZMP (ZMP୲ౡ) and the inertial information help the system to predict possible future ZMP 

locations after different time periods (ZMP୲ౡା୘). Then, the distance from each predicted 
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ZMP location to the Leak Point (D୲ౡା୘
୐୔ ) is used to take a decision about the balance 

status in a specific time period (t୩ ൅ T), enabling an anticipatory reaction when 
necessary.  

 

Figure 90 Locomotion active expectation failure inference system 

This surprise inference system is composed by four main modules: 

1) ZMP prediction 
 

2) Leak Point evaluation  
 

3) Predicted ZMP-LP distance evaluation 
 

4) The active surprise inference module. 

The ZMP prediction module (Figure 91) is in charge of the computation of the future 
ZMP locations in different temporal horizons (Ti).  

 

Figure 91 ZMP prediction module 

This evaluation is based on the assumption of the robot operating like a simple inverted 
pendulum. The computation of ZMP, based on this simplification, is given by equations 
(4.14) and (4.15) which enable the prediction of future ZMP location. This prediction is 
constraint by the following assumptions: 

1) The predictions are based on the establishment of several prediction horizons. 
 

2) The acceleration is constant during the time period under study. 
 

3) Predictions are only a tool for taking postural control decisions. 

Thus, the equation for ZMP prediction is given by (6.20) in which H=tk+T is the 
prediction horizon and ZVHP is the distance of the waist to the Virtual Horizontal Plane 
that will be explained later on. 
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ZMPୌ ൌ ZMP୲ౡ ൅ ω୲ౡ
େ୭୑ ∙ H െ

ଵି୞౒ౄౌ∙ሺୌሻమ

ሺ୥ା୸ሷి౥౉ሻ∙୞౒ౄౌ
∙ a୲ౡ

େ୭୑			 				 				ሺ6.20ሻ	

Hence, it is necessary the establishment of these prediction horizons. They may be 
determined by different parameters such as the architecture of the system, the delay 
time to process all sensorial information or, due to the human inspiration of this Thesis, 
the latency time for the different kinds of reaction (see Table 1). The materialization of 
these horizons is supported by the establishment of the concept of ‘Reaction 
Boundaries’. Taking the ZMP position as reference for body balance, two concentric 
circumferences could be established around it. The circumferences correspond to 
future ZMP positions, moving with constant acceleration (aሬԦ), after a specific temporal 
horizon (Ti) for each boundary. The acceleration vector defines a Leak Line (LL) that 
crosses the Base of Support (BoS) through the Leak Point (LP).  Figure 92 illustrates 
the concept for two boundaries based on two types of human reactions.  

 

Figure 92 Reaction Boundaries 

Reflex reactions are those triggered when a stimulus causes a high level of surprise 
and a rapid movement is required. These reactions are fast, simple and their latency is 
very short (see Table 13). As well, this kind of reaction is used as the starting point for 
others more complex movements. Then, the time to decide that a reflex reaction is 
needed is very restrictive. It was decided to establish the time for generating a surprise 
event for a reflex reaction in H=40ms, which is a mean value inside the human latency 
range.  

The area between the inner reflex response boundary and the outer boundary has 
been assigned for the generation of surprise events related with automatic reactions. 
These types of reaction are medium latency responses against high level perturbations 
that cannot be counteracted by reflex movements. Then, the time to trigger an 
automatic reaction surprise event is H=120ms.  The automatic responses may be 
selected among a set of strategies, such as the ankle or the step synergies, based on 
the parameterization of movement patterns. 

It is important to recall that these surprise events do not trigger reactions by 
themselves. They are mere indicators of the possible evolution of the ZMP and, 
hereafter, they must be used by the system in conjunction with other information to 
take a postural control decision. 

Parallel to the ZMP prediction, it must be computed the Leak Point as the intersection 
between the Leak Line and the Base of Support. This point will be the place of the 
support polygon through which the ZMP could leave the BoS convex hull, turning the 
posture of the robot into potentially unstable. As will be shown hereafter, the LL can 
intersect the BoS in different points. The selected LP will be the most distant 
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intersection point to the ZMP in the same direction of the acceleration vector (Figure 
92). Then, the module in charge of the Leak Point evaluation, shown in Figure 93, 
computes the location of LP point and, as well, its distance to the ZMP. 

 

Figure 93 Leak Point evaluation 

All these evaluations are supported by the definition of a Virtual Horizontal Plane (VHP) 
that simplifies computations, such as the ZMP, when the robot walks on uneven 
terrains.  In (Sugihara, Nakamura, & Inoue, 2002) this concept was exposed but here 
the application is slightly different, due to inherent problems related with Sugihara 
definition such as: 
 

1) The VHP is located under the robot foot and its depth depends on the precise 
knowledge of feet location. 
 

2) It is necessary the knowledge of the CoM location and the feet dimensions to 
compute the support polygon.  
 

The VHP defined in this Thesis is related to the robot lower ankle position and the 
origin of the F/T sensor measurements. Thus, no extra knowledge about external 
conditions is necessary. The definition of the support polygon is based on the 
assumption of circular foot shapes. This footprint pattern is more related with the F/T 
sensor measurement area around its origin. It also facilitates the computing of the Base 
of Support envelope depending on the step phase. Figure 94 and Figure 95 show the 
double and simple support phases respectively.  

 

Figure 94 Double support phase  
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Figure 95 Single support phase 

The next step on this generation process of surprise events is the evaluation of the 
distance from each boundary to the LP (Figure 96). The comparison of each one of 
these distances and the corresponding from ZMP to LP determines if LP is inside one 
of the established boundaries or not. 

 

Figure 96 LP to boundaries distance evaluation 

The last stage for active surprise event generation is performed by the inference 
module (Figure 97). It is in charge of comparing all the distances computed before and 
it outputs are a surprise vector for postural behaviour decision. 

 Based on the concept of reaction boundaries, meanwhile the distance from ZMP to LP 
is higher than the distance from the LP to any boundary, the robot will remain in a 
stable posture at least until another prediction was performed.  

 

Figure 97 Active surprise inference module
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6.4 Behaviour	Decision	System	
The high level operation of the behaviour decision module, described in Chapter 3, 
exposed how surprise can be used to carry out motor reactions. This section describe 
more deeply the process flow involved in the evaluation of surprise event during task 
performance. This description follows the task classification established and it links the 
decision with the corresponding reaction to carry out. 

As general guideline, the process to evaluate surprises should start with those that 
indicate the worst possible consequences when any kind of event is elicited. Usually, it 
occurs when predictive/active expectation fails and, hence, the process might start with 
the evaluation of active surprise.  The predictive expectation failure is based on the 
establishment of some future situation that has to be accomplished. Nevertheless, the 
assumption expectation is more related to the actual state of the task. Then, time 
horizon gives more priority to predictions than to assumptions during the surprise 
evaluation process. 

Other issue influencing the surprise evaluation process is the nature of the task. It has 
been mentioned before that manipulation task achievement is surprise driven 
meanwhile, during locomotion task, the surprise events are responses to perturbations 
perceived that can disturb the normal task performance. In the first case, the process of 
evaluation is performed sequentially. Prediction is usually performed once at the 
beginning of the task. The performance of more predictive actions will depend on the 
duration of the task. After prediction has been evaluated, surprise generated by goal 
assumption failure starts to drive the reaction. In the locomotion case, the sequence of 
surprise evaluation can output a reaction or not, depending on surprise levels. 
Following, the mechanism and process flow involved in the evaluation of surprises is 
developed for each specific case.  

6.4.1 Manipulation	Tasks	
Recalling the behaviour during a manipulative task (Figure 36), it performance has 
been split in a voluntary movement phase and a surprise driven movement phase. 
After voluntary movement has concluded, the trajectory of the shoot object begins to be 
tracked and object location information is provided by visual perception. This location 
information joint with the proprioceptive perception of the hand location is the base to 
formulate a prediction. The object trajectory will follow a straight vertical trajectory or a 
parabolic trajectory depending on its angle of departure. Taking this into account, the 
system can predict an approximate location to catch the object using only two points of 
the trajectory.  

The first one is assumed to be coincident with the last hand location during the 
shooting action and the second one is measured by the visual perception. Then, 
applying physics of movement, one possible goal location can be computed. Whether a 
difference between hand and possible goal location is detected, the active surprise 
event is elicited and an appropriate movement synergy will be triggered. The success 
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on the achievement of catching the object only evaluating the active expectation is 
related to the error committed in the prediction.  

Although the arm movement after active surprise evaluation was enough to complete 
the task, passive surprise evaluation is as well performed. This case is supported by 
the assumption of a vertical descendent trajectory of the object.  Meanwhile prediction 
is performed at the beginning of the object flight, passive expectation failure system is 
continuously evaluating perceptual incomes and eliciting new surprise events. It seeks 
two main objectives. The first goal is the minimization of the error committed by 
prediction and, the second one, is driving the arm movement when low or medium 
active surprise levels were elicited. If no one of these cases is presented the passive 
surprise event will not take effect over the robot system. Figure 98 presents the 
graphical representation for the decision module operation explained. 

 

Figure 98 Manipulation behaviour decision process 

The decision system is supported, besides the surprise generation system, by the 
establishment of the different movement patterns or synergies to perform reactions. 
Taking in account the kind of reactions described in previous chapters and the 
operation described before, the reactive movements caused after active surprise 
evaluation could be considered as reflexes. The longer latency reactions activated after 
passive surprise evaluation could be classified as automatic reactions. But in the 
manipulation case, this classification is only possible attending to the latency of the 
reaction because the established synergies could be triggered by both passive and 
active surprise events. It seems obvious that the more complex is the synergy the more 
time to set it up will be needed. Then, because of the manipulation task proposed has 
short execution time, the reaction movements should be set up and executed as fast as 
possible. This behaviour fits better with the reflex reaction type.  

Figure 99 shows the movement patterns established to perform reactions based on 
surprise evaluation. These synergies are: 
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1) X_MOVE: movement along X axis hand coordinate. 
 

2) Y_MOVE: movement along Y axis hand coordinate. 
 

3) Z_MOVE: movement along Z axis hand coordinate. 

 

Figure 99 Manipulation synergies 

Each synergy definition, which is out of the scope of this work, has been made 
attending to the underlying philosophy of this kind of movement. They involve the least 
number of joints to speed up the synergy setting up process. Such process is based on 
the application of a linear parameter to the command sequence of each involved arm 
joint. The result is a movement with a modulated amplitude or movement range.   

6.4.2 Locomotion	Tasks	
The decision making system for locomotive tasks is highly influenced by their 
dynamics, as it was exposed previously. Nevertheless, their foundations appear to be 
the same for anticipative reactions. Thus, the static upright posture and dynamic 
walking tasks have been included in the same group named ‘locomotion tasks’.  

These tasks are composed by sequences of successive postures. Each one of these 
postures can be considered as quasi-static whether the environmental conditions 
remain constant during a considered period of time. Therefore, perturbations are 
actions that modify the dynamical characteristics of the quasi-static posture.     

In this case, the foundations of the active and passive surprises generation are the 
tracking of those dynamical features of the task. The decision procedure follows the 
same philosophy than the manipulation decision system. The first type of surprise 
evaluated is the active expectation failure. It is based on the prediction of the possible 
future location of the Zero Moment Point, considering those quasi-static conditions and 
different prediction horizons. Another difference with the manipulative case is that this 
evaluation does not generate any kind of reaction. Instead of performing a reaction, the 
value of the surprise event is combined with the passive surprise events that indicate 
the movement tendency of the robot in each considered direction. The operation of this 
decision module is represented in Figure 100. In this scheme, it also can be observed 
that the decision and surprise evaluations are performed continuously and this 
evaluation only finishes when the task has been indicated as complete. This decision 
process flow is performed for the sagittal and frontal plane directions because the 
locomotion passive surprise has been divided in these components. Furthermore, the 
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passive surprise value is determined by the maximum level of surprise between SPL 
and SPR, having more priority linear movement tendency if equal. 

 

Figure 100 Locomotion behaviour decision process 

Then, the decision system will trigger a graded reaction based on both kind of surprises 
and the decision chart from Table 26. 

Table 26 Locomotive reaction decision chart 

  ACTIVE SURPRISE 

  LOW MEDIUM HIGH

PASSIVE 

SURPRISE 

LOW NR NR R 

MEDIUM NR R+ R+ 

HIGH R R+ R++ 

 

In this chart, NR corresponds with no reaction; R and R+ with a reaction based on the 
fastest and simplest synergies available and, the last type, R++ will be performed by 
means of complex synergies activation such as the step strategy. 

Figure 101 presents three synergies available for perturbation compensation during 
locomotion tasks: 

1) AN_MOVE: it performs the ankle synergy based on the behaviour of the simple 
inverted pendulum model (R). 
 

2) AH_MOVE: this synergy is the combination of the ankle and hip movement, 
acting like a double inverted pendulum (R+). 
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3) ST_MOVE: it consist of the performance of a step and it is the most complex 
strategy available (R++). 

 

Figure 101 Locomotion synergies 

The synergies established for locomotion tasks are, as well, close related with 
dynamics. They have been established taking into account the simplified robot models, 
such as the simple inverted pendulum, to perform a matching process between the 
captured robot behaviour and the CoM movement of the simplified model.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER	7 	
 

Implementation	of	the	Human	
Inspired	Postural	Control	System	

		

7.1 Task	Frame	Overview	
In previous chapters, the novel human inspired TEO humanoid robot postural 
architecture has been exposed. Chapter 3 presented the high level architecture 
scheme, each one of its modules and their behaviour. After that, the theoretical and 
hardware foundations for supporting those modules development were presented in 
Chapter 4 and 5.  Then, each component and system unit were explained more in 
detail in Chapter 6. 

Once TEO feedforward postural control loop has been designed, it must be developed 
and tested. The procedure followed to accomplish the experimental stage has been 
based on the task orientation of the control architecture.  

Thus, experiments and developments have been performed following the two main 
premises maintained during all the Thesis description: 

1) Human inspiration: the behaviour of each part of the feedforward loop has been 
established to replicate the corresponding one found in the human case. Thus, 
the expected result of each experiment must be considered in terms of correct 
behaviour and not in terms of high accuracy, minimum error, maximum 
performance, etc. That is, postural control performance is inherent to each 
individual. The final result will depend of the individual dexterity, experience or 
training, which is related with learning skills. In the same way, the proposed 
postural architecture will have a minimum level of correctness from which, 
applying machine learning techniques, it could be improved. 
 

2) Task orientation: the human being acquires new abilities by means of 
experience during the growth process. The result is a database of skills or tasks 
an individual is able to carry out, with better or worse performance. Taking this 
into consideration, it seems adequate to relate postural control and tasks. Thus, 
experiments have been focused on the most general tasks: manipulation and 
locomotion. Within this task oriented frame, the postural control architecture has 
been developed and tested to carry out two tasks cases correctly. 

Next, the task frame established is revisited focusing its description on the 
experimental development. The initial hypotheses and constraints will be established 
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for each task case, as well as its expected behaviour related with each one of the 
modules composing the postural control architecture.  

7.1.1 Locomotion	Framework	
Bipedal upright locomotion is considered one of the most important factors for the 
development of the human being. This quality allowed the use of the free limbs for 
manipulative tasks. During the growth process, new locomotive skills are added by 
experience. 

As well, humans learn to keep in balance during locomotion or upright stance in 
response to sensorial inputs. All mechanisms learned during this process are stored 
and, afterwards, converted to unconscious actions or synergies. In this way, when 
humans face similar situations, the postural control system anticipates and triggers 
actions automatically without the help of complex cognitive processes, improving 
balance control.  

This anticipative behaviour is performed by means of a feedforward control loop that 
evaluates sensorial inputs to predict future task evolution. It allows the selection of the 
most appropriate strategy to maintain postural control in advance. This predictive 
process has been extensively studied and it has been used in this work to inspire the 
operation of TEO humanoid robot postural control. 

In the humanoid robot case, the locomotive task problem is usually faced on even flat 
ground. Classic reactive feedback control systems are designed and calibrated to keep 
balance only in this case. Then, when different kind of disturbance happens than those 
pre-studied, the feedback control loop fails. 

In addition, delays during the perturbation identification and reaction decision process 
limit the reaction performance triggered by this control loop. These two problems of the 
feedback control loop, joint with the fact that classical humanoid control architectures 
lack of human inspiration, favour the development and integration of this novel 
feedforward postural control loop.    

Therefore, the even flat locomotion task has been considered as the basic 
experimental scenario to develop all experimental jobs. The inputs to the control 
system are composed by sensorial signals classified depending on their origin. 

The voluntary movements from the locomotion task, captured by internal robot sensors, 
are one of the main sources of instability (Figure 102 (a)). Another input for the postural 
control system is originated by external forces exerted on the robot body (Figure 102 
(b)). The last input considered is caused by the reaction forces when walking on rough 
terrains or slopes (Figure 102 (c)).  



Chapter 7. Implementation of the Human Inspired Postural Control System  151 
 

 

 

Figure 102 Locomotion perturbation sources 

With these sensorial inputs, the postural control system must anticipate any kind of 
balance lost. The outputs of the feedforward postural control loop will be a 
parameterized movement pattern and the decision of executing it or not.  

The development and operation of the postural control system is constrained and, at 
the same time, simplified by some assumptions which were explained in Chapter 4. 
These assumptions are:    

1) It has been considered pure locomotion. That is, any kind of manipulation task 
must not be performed during locomotion.  
 

2) The body dynamics have been modelled using a simple inverted pendulum 
simplification of the robot mechanical structure. 
 

3) The predictive system behaviour is based on the study of the evolution of some 
balance margin indicators, such as the ZMP. 

In summary, this locomotion framework is the basis for any simulation or experiment 
about balance loss prediction during locomotion tasks. 

7.1.2 Manipulation	Framework	
The dexterous manipulation skill is, with upright locomotion, one fundamental 
characteristic that defines the human being. It is well known that the manipulation 
capacity has been a determinant factor for the human being evolution. Thanks to their 
manipulation ability human beings are able to build tolls, modify their environment and 
improve their quality of life.   

In the same way than locomotive skills, the manipulation dexterity is a process of 
learning and training carried out continuously since birth day. The main difference is 
the sensorial sources that the human control system uses to look out for manipulation 
activities. Besides, the treatment of these inputs and its consequences rely on similar 
processes.  

All movement tasks are based on two kinds of action. The nature of the movement can 
be voluntary or driven by sensorial events. In the case of the locomotion task, the 
voluntary action corresponds to the whole task (every step) and the action driven by 
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the result from a sensorial event evaluation is considered a reaction. The voluntary 
movement and the reaction can be mixed and considered as a task adaptation. But the 
manipulation case is a bit different. The whole manipulation task can be a sequence of 
a voluntary movement plus an action driven by some kind of unexpected event. This 
case can be easily illustrated by the explanation of the scenario established for the 
manipulative postural control experiments.  

The framework scenario established for the development of the postural control during 
manipulation is based on the action of throwing an object (ball) and then catching it 
before it falls down the ground. In this case, the voluntary movement ends when the 
hand reaches its final pre-programmed location where the ball starts going up. Then, 
the action of modify the hand location moving the arm is driven by the stimulus 
generated by the visual system. With this sensorial information, the system is able of 
estimate an approximate location to catch the ball. The movement action is a reaction 
driven by a sensorial input. The whole task will be composed then by a voluntary 
movement plus a reaction (Figure 103).  

 

Figure 103 Manipulation task phases 

Meanwhile the locomotion task involves feedback and feedforward loops for postural 
control, this kind of manipulation tasks favours mainly the control action produced by 
the feedforward loop. The demanding time requirements for the postural control system 
performance favour the use of predictive mechanisms to anticipate movements. 
Therefore, in the human inspired postural control architecture, the anticipation is 
performed with the help of the feedforward loop proposed in this PhD Thesis.  

In this task scenario, the input of the postural control system comes from the visual 
system and the body location sensation. The visual sensation provides an estimation of 
the ball location. Comparing the humanoid and human visual systems, the electronic 
device selected has better performance in distance measurement than the biologic 
visual system because its image processing capacity. This advantage is reduced when 
other levels of visual process and task planning must be carried out.  Then, the visual 
information is merged with the perception of the hand location to drive the arm 
movement. 

Then, the main outcome from the system, after sensorial input evaluation, is the hand 
positioning. The motion of the arm is based on pre-programmed patterns that must be 
fulfilled with the error distance between hand and object. These synergies correspond 
with the reactions that complete the manipulation task.  

The achievement of this kind of task has been constrained to improve its performance 
and its study. The main assumptions established in this process are: 
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1) The manipulation task must be performed in a static robot location. That is, the 
development is related only with manipulation and any kind of locomotion 
should be allowed. 
 

2) The nature of the task implies that only upper body systems will be used. This 
will improve the computing time.  
 

3) Movements for hand location correction are based on established synergies 
which will be activated depending on the perceptual evaluation results.   
 

4) In case task could not be achieved because ball will be out of the arm range, 
task might be stopped. 

The manipulation framework completes the main set of skills a humanoid robot should 
have. It complements locomotion and could be combined with it in order transport 
objects, to perform collaborative works, etc. 

7.2 The	Human	Inspired	Postural	Control	System	
Previous Chapters described the framework of the postural control system developed 
in this PhD Thesis, from the high level architecture to the detailed description of each 
one of its modules. Besides, the postural control architecture has been developed 
following a bottom up procedure. Figure 104 illustrates the development pathway 
followed. The basis architecture of the architecture is the perceptual evaluation 
composed by the proprioceptive and exoceptive module. Following, the outcome from 
perceptions is the input of the surprise evaluation composed by the active and passive 
surprise modules. The last part is the decision system in which surprise events are 
evaluated and reactions are composed using predefined movement patterns or 
synergies. 

 

Figure 104 Development of the postural control architecture 
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This architecture has been developed applying human inspired techniques. The 
development of the low level modules has been based on the neuro-fuzzy hybrid 
method that imitates the inference reasoning performed by human brain. Next section 
will describe the development of this kind of systems following all the steps of the 
process and illustrating it by means of an example from the proprioceptive perception 
module.   

7.2.1 Neuro‐Fuzzy	Modules	Development	Procedure	
It has been intensively remarked during the exposition of this PhD Thesis the 
imperative premise of human inspiration of the system. In Chapter 4, different 
techniques inspired in human behaviours or reasoning were presented. Due to its 
versatility and power, the neuro-fuzzy methodology has been considered the most 
appropriate one to develop each module of the system.  

Thus, this section illustrates the development of an inference system supported by the 
study of the right hand ‘X’ coordinate for proprioceptive perception. The following 
workflow, represented in Figure 105, can be extrapolated to all other modules.  The 
method exposed is supported by the ANFIS tool from the MatlabTM Fuzzy Logic 
toolbox. 

 

Figure 105 FIS development workflow 

The neuro-fuzzy system produces an inferred output depending of its inputs. Due to 
that only one input can be inferred, it will be necessary to build as much fuzzy inference 
systems (FIS) as outputs has each module.  

The starting point for the FIS development is the capturing of the robot behaviour to be 
modelled by the inference system. In the case of the proprioceptive perception used as 
example, the offline kinematic equations are used to obtain the datasets needed in the 
training process (see Figure 105) related to the forward kinematics of the robot.    

These datasets are composed by the inputs joint angles, the output coordinate 
corresponding with each input set and a checking dataset to validate the resulting 



Chapter 7. Implementation of the Human Inspired Postural Control System  155 
 

 

system. Table 27 presents an example extracted from the training and checking 
datasets for the right hand ‘X’ coordinate. 

Table 27 Datasets for right hand ‘X’ coordinate neuro-fuzzy network development 

 Right Arm Joint Angles 

(INPUT) 

Coordinate 
(OUTPUT) 

q15 q16 q17 q18 q19 q20 ‘X’ 

Training 

Dataset 
-0,21º -1,26º 0,02º -1,24º 0,66º -1,27º 0,22 m 

Checking 
Dataset 

0º -1,57º 0º -1,57º 0º 0º 0,21 m 

 

The following phase is the neuro-fuzzy system development itself. It comprises three 
main steps using the ANFIS toolbox: 

1) Automatic FIS framework generation (‘genfis1’ MatlabTM function) 
 

2) Neuro-fuzzy network training (‘anfis’ MatlabTM function) 
 

3) Evaluation of the resulting fuzzy inference system (‘evalfis’ MatlabTM function). 

‘GENFIS1’ was selected to build the basic FIS structure from training dataset using grid 
partitioning of the input work space. It creates all necessary elements that compose the 
FIS inference system:  

 Input/output membership functions. 
 

 IF-THEN rules. 
 

 Initial ANFIS structure with parameters prepared for training (Figure 46). 

Regarding membership functions (MF), this tool allows different combinations of input 
and output MF’s. Each input/output value is mapped to a parameter (degree of 
membership) that is generated by one specific correlation function.  For instance, 
‘gaussmf’ input correlation function performs this mapping using Gaussian distributions.  
ANFIS tool needs a minimum of two MFs for each input to enable the later training 
process. In the case of the output, only constant o linear correlation functions are 
allowed. 

The IF-THEN rules are generated by enumerating all possible combinations of 
membership functions of all inputs. Rules increase its number exponentially (2n) with 
the number of inputs (n). Large number of inputs is not practical for any learning 
method using grid partitioning. It is possible to use this method due to the low number 
of inputs established in each TEO module. Table 28 presents the parameters available 
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to construct by combination the 64 rules for the inference system of this example. Each 
rule follows this pattern:  

IF (q15 is in1mf1) … AND (q20 is in6mf1) THEN (X is out1mf1) 

Table 28 Rule parameters for combination 

 Input 
Input Member 

Functions  Output 
Output Member 

Function 

IF 

q15 is 
in1mf1 

T
H
E
N 

X is out1mf1 

in1mf2 

q16 is 
in2mf1 

in2mf2 

q17 is 
in3mf1 

in3mf2 

q18 is 
in4mf1 

in4mf2 

q19 is 
in5mf1 

in5mf2 

q20 is 
in6mf1 

in6mf2 

 

Table 29 summarizes the input parameters for ‘genfis1’ function and some features of 
the resulting FIS structure in the case of right hand ‘X’ coordinate evaluation. 

Table 29 Example of right hand parameters genfis1 

Inputs n=6 (q15 q16 q17 q18 q19 q20) 

Type of input MFs ‘gaussmf’ 

Output 1 (X coordinate) 

Type of output MFs ‘linear’ 

Number of Input MFs 12 (2 per input) 

Number of Output MFs 64 (2n) 

Number of Rules 64 (2n) 

 

At this stage the training process could start. Such process consists of updating the 
node parameters of an adaptive multilayer feedforward network, according to given 
training data and a gradient-based learning procedure. This training task is performed 
by the ‘anfis’ function from the MatlabTM Fuzzy Logic toolbox. The ‘anfis’ function 



Chapter 7. Implementation of the Human Inspired Postural Control System  157 
 

 

applies a recursive method for tuning the parameters of the initial FIS according to the 
training and checking datasets. It is important that the number of training data points be 
several times larger than the number parameters being estimated. Table 30 shows the 
parameters used for training with 200 epochs and an error goal of 0,001. 

Table 30 Training parameters of right hand X coordinate FIS  

Training method Hybrid (default)

Training epoch number 200 

Training error goal 0,001 

Initial step size 0,01 (default) 

Step size decrease rate 0,9 (default) 

Step size increase rate 1,1 (default) 

 

The training process ends after a number of learning loops (epochs) is reached or, as 
well, if the pre-established maximum output error level is achieved. The statistics from 
one of these training loops are presented in Table 31. It can be observed that some 
default parameters were used during the training process which stopped at epoch 22 
after error below 0.001. 

Table 31 Example training error evolution  

Epoch Output Error (m)

1 0,00336826 

5 0,00291183 

10 0,00233490 

15 0,00173527 

20 0,00115504 

22 0,000950358 

 

Finally, the output of the command ‘anfis’ is the ‘X’ right hand coordinate FIS structure 
with the minimum checking error. At this stage, customized member function may be 
added if it was necessary. The last step would be the use of the FIS structure to 
perform fuzzy inference by means of a compatible inference engine or embedding it 
into an application. 
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7.2.2 Perceptions	Development	Results	
The development of perceptual evaluation systems is the basis for the feedforward 
human inspired system development. The modules and systems developed follow the 
same structure from Chapters 3 and 6. Moreover, this development and the description 
presented in subsequent sections are supported by several assumptions and 
simplifications: 

1) The development is simplified taking in account the robot symmetries.  
  

2) Possible mechanical errors or misalignments have been disregarded. Virtual 
model and real robot have been considered identical. Posterior calibration 
process could be necessary depending on the task performance 
 

3) The results presented in following sections are extracted from one of the 
perceptual components developed. It is possible because the perceptual 
evaluation is based on the same technique and the development process differs 
only in the input and output data sets.  
 

In this way, the description of the results from proprioception evaluation is based on the 
right hand, for the upper body proprioception related to manipulation task, and on the 
right foot, for lower body proprioception related to locomotive tasks. The case of 
exoceptive perception development profits from the same premises. Thus, the force 
and torque sensorial system evaluation are based on the study of the same limbs than 
exposed in the proprioceptive evaluation. The inertial and vision sensations depend 
only on one device respectively but previous assumptions are as well valid for them.  
Next, results obtained from all human inspired perceptual systems developed, following 
the workflow described on Section 7.3.1, are presented. 

 Proprioceptive	Perception	Results	7.2.2.1

The fuzzy inference system is a human inspired mechanism highly appropriate for 
MISO (Multiple Inputs Single Output) or MIMO (Multiple Inputs Multiple Outputs) 
systems, that is, when multiple input data in parallel is presented to the evaluation 
system. The case of the neuro-fuzzy inference system corresponds with a MISO 
evaluation system. Figure 106 represents the structure of the proprioceptive system on 
a tree form. The bottom side correspond to the outputs of the system. It can be easily 
observed that it has twelve outputs. Attending to the MISO nature of the system and 
the characteristics of the neuro-fuzzy system (see Chapter 4), it is necessary to 
develop twelve neuro-fuzzy systems. In this section only the results from right foot and 
right hand are presented. 
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Figure 106 Proprioceptive system structure 

The aims of the proprioceptive tasks experiments are:  

1) Measuring the absolute angle of each under study limb joints during the task 
and obtaining the hand locations by means of: 

a. Classical forward kinematics calculation. 
b. FIS evaluation. 

 
2) With the datasets obtained, a comparison process may be performed to 

determine the under study extremity location in the following cases: 
a. Comparison of commanded positions against the kinematical evaluation 

of the angular data measured in each limb under study. 
b. Comparison of extremity location commanded against the fuzzy inferred 

location obtained after the evaluation of the angles measured. 

 Manipulation	Tasks	7.2.2.1.1

The proprioceptive information used in manipulative tasks is regarded to hands 
location. The experiment carried out to evaluate the FIS developed consisted of the 
generation of three trajectories of throwing a ball with the right hand in three different 
arm configurations. Each task or experiment uses the initial and final arm configuration 
exposed in Table 32. 

Table 32 Initial and final commanded configurations of the right arm 

 
Task

Right Arm Joint Angles (rad) 

J15 J16 J17 J18 J19 J20 

Initial Configuration 

1 0,087 -0,174 0 0 0 0 

2 0,087 0 0 0 0 0 

3 0,087 0,174 0 0 0 0 

Goal Configuration 
1 -0,511 -0,517 0 -1,283 0 -0,513 

2 -0,511 0 0 -1,283 0 -0,513 
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3 -0,511 0,174 0 -1,283 0 -0,513 

 

Figure 107 represents a sequence of frames obtained from the simulation of the 
experiment number three.  This task is carried out in 1s, starting from the arm 
configuration on the left to the final goal position on the right of the figure. 

 

Figure 107 Manipulation task sequence 

Table 33 summarizes the humanoid robot right arm initial and final configurations 
measured by the absolute encoders from each joint. Comparing the values from Table 
32 and Table 33, it is easy to note the deviations caused by measurement tolerances 
of the sensors. 

Table 33 Initial and final measured configurations of the right arm 

 
Task 

Measured Right Arm Joint Angles (rad) 

J15 J16 J17 J18 J19 J20 

Initial 
Configuration 

1 0,088 -0,174 0 0,0005 0 0 

2 0,087 0 0 0,0005 0 0,0005 

3 0,087 0,174 0 0,0005 0 0 

Goal 
Configuration 

1 -0,511 -0,516 0 -1,289 0 -0,513 

2 -0,511 0 0 -1,289 0 -0,513 

3 -0,511 0,174 0 -1,282 0 -0,513 

 

The proprioceptive evaluation for lower body is the computing of the foot location that 
can be performed through forward kinematics computations or applying the human-
inspired FIS modules developed.  

The inference systems, developed by means of neuro-fuzzy techniques, have the 
mission of inferring X-Y-Z location components from each hand. Figure 108 exposes 
an example representation from the resulting inference surfaces for each foot location 
coordinate.  
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Figure 108 Right hand location inference surfaces 

Applying both the kinematic and the inference methods, it is possible to evaluate the 
precision of approximate computing of the hand location achieved by the FIS 
perceptive modules, which is the main objective of the proprioceptive evaluation for the 
upper body.  

Therefore, this comparison allows, as well, the assessment of results coming from 
human inspired and non-human inspired methods. In this way, the results of both robot 
hand position evaluations are shown in Table 34. 

Table 34 Final evaluated right hand location 

Task 

Goal Position  Kinematic 
Evaluation (m) 

Goal Position FIS Evaluation 
(m) 

X Y Z X Y Z 

1 0,3444 -0,5359 0,3900 0,3443 -0,5360 0,3896 

2 0,3697 -0,3400 0,3449 0,3697 -0,3400 0,3446 

3 0,3668 -0,2711 0,3502 0,3667 -0,2711 0,3499 

 

The results exposed in Table 34 determine a mean error around 0,15mm in the 
approximate inferred right hand goal location. This error level is very low and 
demonstrates that this technique is adequate to compose this proprioceptive system.  

The error committed during the complete task performance has been as well tracked. 
Figure 109 presents the error in the case of the kinematical evaluation of the sensed 
data. These charts show the high accuracy of this method.  

 

Figure 109 Right hand position kinematic evaluation error 
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The approximate right hand location is obtained by means of inference. Figure 110 
exposes the error committed using this method in the three spatial coordinates. It is 
important to say that the highest errors are produced in the Task 3, which is physically 
unachievable. This task has a collision trajectory with the trunk of the robot and the 
high error is caused by out of range inputs to the FIS. Then, this kind of error produced 
can be used to predict collisions as well.  

 

Figure 110 Right hand position fuzzy inference error 

 Locomotion	Tasks	7.2.2.1.2

Proprioception involved in locomotion tasks is related with feet location. The 
development of the fuzzy inference system in charge of this evaluation has been tested 
using the same method than the proprioception of the upper body. Considering a set of 
pre-planned locomotion tasks, it has been obtained feet location using classical 
methods and, then, by means of the inference system. This methodology enables a 
comparison process between classical kinematics computations and the fuzzy 
inference systems. In this way, it is possible to determine the error produced by the 
approximate FIS evaluation. 

The aims of the locomotion experiments are the same one exposed before for 
manipulative perception evaluation. The angles for legs joints have been extracted 
from three different pre-planned locomotion tasks. Figure 111 represents the full 
sequence of frames obtained from one of the locomotion tasks. The locomotion 
sequence starts from the double support posture (DS) at the right of the figure. The 
beginning of the steps is produced keeping the left foot on the ground on single support 
phase (SS Left Foot) and advancing the right foot. Following another double support 
phase, the right foot stands on the ground (SS Right Foot) and the left foot moves 
ahead.  
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Figure 111 Locomotion task sequence 

This task is performed in 6s but, taking into account the purpose of testing the 
proprioceptive system, it has been only considered the sequence DS-SS Left Foot-DS. 
In this part of the sequence the most interesting proprioceptive perception corresponds 
to the flying leg (right) that will be the matter of testing.   The initial and final right leg 
configurations are shown in Table 35 for the three different locomotion tasks. 

Table 35 Initial and final commanded configurations of the flying leg 

 
Task 

Flying Leg Joints (rad) 

J1 J2 J3 J4 J5 J6 

Initial Configuration 1 / 2 / 3 0 0,003 0,308 -0,796 0,485 0,028 

Goal Configuration 

1 0 0,233 0,159 -0,655 0,496 -0,233 

2 0 0,259 0,295 -1,055 0,760 -0,259 

3 0 0,259 0,230 -1,014 0,784 -0,259 

 

Then the joint angles measured by the each joint’s absolute encoder are summarized 
in Table 36, in which some measurement deviations can be observed due to sensor 
characteristics and mounting tolerances.   

Table 36 Initial and final measured configurations of the right leg 

 
Task

Measured Right Leg Joint Angles (rad) 

J1 J2 J3 J4 J5 J6 

Initial Configuration 

1 0,0005 0,004 0,308 -0,796 0,485 0,027 

2 0,0005 0,003 0,309 -0,796 0,484 0,028 

3 0,0005 0,003 0,309 -0,797 0,485 0,028 

Goal Configuration 

1 0,0005 0,234 0,159 -0,655 0,496 -0,234

2 0,0005 0,259 0,296 -1,054 0,758 -0,259

3 0,0005 0,259 0,232 -1,015 0,783 -0,259
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It is important to recall that the goal of the proprioceptive evaluation for lower body is 
the computing of the foot location. It is achieved using the measurements of the joint 
angles and performing the forward kinematics computation with them. Applying the 
human inspiration basis of this PhD Thesis, this computing task is performed by an 
inference system. It has been developed three FIS modules using neuro-fuzzy 
development technique to obtain X-Y-Z location components from each foot. Figure 
112 shows some representation of the resulting inference surfaces for each foot 
location coordinate.  

 

Figure 112 Right foot location inference surfaces 

The computing of right foot location applying classical kinematic method compared with 
the results from the fuzzy inference system developed is the first aim of the study. The 
datasets obtained from both kinds of evaluation are shown in Table 37. 

Table 37 Final computed vs. inferred right leg location 

Task 

Goal Position  Kinematic

Evaluation (m) 

Goal Position FIS 

Evaluation (m) 

X Y Z X Y Z 

1 0,0904 0,0230 -0,6899 0,0889 0,0226 -0,6893 

2 0,1098 0,0229 -0,6311 0,1096 0,0226 -0,6318 

3 0,1356 0,0231 -0,6314 0,1350 0,0224 -0,6321 

 

By means of the analysis of the results exposed in Table 37, it is possible to 
determinate a mean error around 0,6mm in the approximate inferred leg goal location. 
This error is lower enough to achieve any kind of locomotion task.  

As well, it is possible to track the error committed during all task performance. The 
following charts present the error between commanded positions and the evaluation of 
the measured data. Figure 113 shows this error in the case of the kinematical 
evaluation of the sensed data. This method is very precise and the error is mainly 
caused by measurement devices.  
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Figure 113 Right foot position kinematic evaluation error 

Evaluating the sensed data by means of the developed FIS modules, it is possible to 
obtain the approximate foot location. Figure 114 shows the error committed using this 
method. The mean level is one order of magnitude higher than the kinematic 
evaluation, but it still remains enough precise for the purpose of perceptual generation. 
The situations in which the error is higher are produced near the zero configuration 
pose of the robot.  

 

Figure 114 Right foot position fuzzy inference error 

 Exoceptive	Perception	Results	7.2.2.2

TEO humanoid robot has set of sensorial devices to capture exoceptive sensations as 
described in previous chapters. The information provided by each one of these devices 
is applied in different ways depending on the kind of task. Thus, the exoceptive 
perception evaluation is highly influenced by the task in which the information is used.  

Then, this description of the exoception development has been organized by task. 
Depending on the task type, its exoceptive perception will be composed by different 
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sensorial sources evaluated. In summary, Table 38 presents the outcomes established 
for each exoceptive evaluation depending on the task. 

Table 38 Exoceptive outcomes summary 

Task Sensorial source Exoceptive Outcome 

Manipulation 
Visual Sensation Object location relative to hands 

F/T Sensation Manipulation Limitations 

Locomotion 

Inertial Sensation 
Rotational Robot Tendency 

Linear Robot Tendency 

F/T Sensation 

Foot Angle 

Foot on Ground 

ZMP 

 

 Visual	Perception	for	Manipulation	Tasks	7.2.2.2.1

The aim of the exoceptive visual information is to extract information about distant 
objects. In the case of the proposed manipulation task, the main goal is the estimation 
of the ball location during its flying the trajectory.  

The humanoid perceptual system process every image provided by the visual sensor to 
extract the features related to the task. The results from image analysis are referred to 

the Kinect camera focus (KOሬሬሬሬሬԦ) but they are not related to the manipulation tool (WHሬሬሬሬሬሬሬԦ), 
being useless. Figure 115 (a) shows the relation of the visualized object with the robot 

origin of reference WOሬሬሬሬሬሬሬԦ as the sum of vectors WKሬሬሬሬሬሬሬԦ (waist-Kinect) and KOሬሬሬሬሬԦ (Kinect-object). 

In the same way (Figure 115 (b)), this relation WOሬሬሬሬሬሬሬԦ can be expressed as the sum of 

hand location vector WHሬሬሬሬሬሬሬԦ with the required reference between hand and object	HOሬሬሬሬሬԦ.  

 

Figure 115 Waist-Kinect-object system (a) and waist-hand-object system (b) 

Therefore, the visual perception evaluation is in charge of computing the object-hand 

vector components (HOሬሬሬሬሬԦ). The considered output from the visual sensor enables the use 
of the object coordinates and tracking its movement.  

Due to TEO upper body robot is under development, it has been established a series of 
trials to prove the FIS performance. These experiments consist of performing the task 

proposed, in which one ball must be thrown up, and capture the visual information (KOሬሬሬሬሬԦ) 
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with the Kinect sensor considering a static robot pose. Figure 116 presents four frames 
captured with the Kinect sensor during one of these trials. The duration of the task is 
about 1,15s and the system is able to process the object location every 35ms. The 
object location obtained for each frame and the right hand positions are shown in Table 
39. 

 

Figure 116 Object location and movement tracking 

Table 39 Object locations to Kinect reference frame 

 ሬሬሬሬሬሬሬሬԦࡴࢃ ሬሬሬሬሬሬԦࡻࡷ 

Frame X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

1 1,02 -0,213 0,187   0,210 -0,340 0,234 

2 1,012 -0,046 0,682   0,210 -0,340 0,234 

3 1,005  0,061 0,715   0,210 -0,340 0,234 

4 1,001  0,300 0,204   0,210 -0,340 0,234 

 

The developed fuzzy inference system computes only the horizontal and vertical 
distances of the hand due to established constraints. Then, the resulting FIS is 
represented by the inference surfaces shown in Figure 117. They relate the Y and Z 
coordinates, corresponding to TEO robot reference frame, of right hand and the object 
to obtain the distance between them.  
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Figure 117 Hand-object distance inference surfaces 

The inputs for the inference systems are the corresponding components from vectors 

KOሬሬሬሬሬԦ and WHሬሬሬሬሬሬሬԦ. The output of each system is the value of the corresponding  HOሬሬሬሬሬԦ vector 
components. Table 40 summarizes the evaluation of the data obtained from the 
experimental example presented. The performance of the Y component inference is 
very accurate, with a mean error around 5mm. Error in the Z component is higher than 
the other component, resulting a mean value about 38mm for this component 
perception. 

Table 40 Results from evaluation of the hand-object relative position 

 ሬሬሬሬሬሬሬԦ Real Distance  Distance FIS۽܅ 

Frame Y (m) Z (m) dY (m) dZ (m) dY (m) dZ (m) 

1 -0,213 0,717 0,127 0,483 0,1226 0,542 

2 -0,046 1,212 0,294 0,978 0,2941 1,0 

3 0,061 1,245 0,401 1,011 0,401 1,056 

4 0,300 0,734 0,640 0,500 0,6396 0,526 

 

 Force/Torque	Perception	for	Manipulation	Tasks	7.2.2.2.2

Force/Torque sensor placed at the robot wrists provide information about the 
interaction with handled objects. The FIS module developed determines the modulus of 
the force and torque sensed by the device from each hand. It is useful to evaluate 
critical parameters during manipulation such as payload limitations, etc. The 
development of the inference system is based on equations (6.7) and (6.8) and the 
measurement limitations of the sensors.  

The resulting FIS module for force evaluation has three inputs (FX, FY, FZ) and its 
output is the force module (FT). The mapping between input and outputs is represented 
in Figure 118. The system uses eight rules to evaluate the resulting force with a target 
error of less than 1N. 

 

Figure 118 Wrists Force FIS inference surfaces 

Parallel to the force inference system developed, the FIS module for torque evaluation 
has three inputs (TX, TY, TZ) and its output is the torque module (TT). Two surfaces 
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representing the FIS inputs and output is shown in Figure 119.  The system uses eight 
rules to evaluate the resulting torque with a target error of less than 0,1Nm. 

 

Figure 119 Wrists Torque FIS inference surfaces 

After the FIS development process, the physical system from Figure 120 has been 
used to perform different measurement with the aim of validating the fuzzy inference 
module. This system allows performing measurements in each principal axis 
independently, that is, it is possible to measure only the force or torque exerted in one 
axis, maintaining the measurement in other axis equal to zero. The case of the Z axis 
torque corresponds to the torsional torque exerted on it and, due to that, it produces 
measurements in other axis, has been excluded from the evaluation.      

 

Figure 120 F/T Sensor validation system 

Then, the results of the measurements performed, using a calibrated set of weights, 
are shown in Table 41. These measurements compose the validation dataset from 
which the performance of the inference system can be evaluated. 

Table 41 Wrist F/T sensors measurements 

Mass (Kg) 
F/T Wrist Sensor 

FX (N) FY (N) FZ (N) TX (Nm) TY (Nm) 

0,5 5,11 5,32 5,04 1,11 1,16 

1 10,3 10,26 10,09 2,24 2,23 

1,5 15,06 15,07 15,2 3,28 3,28 

2 20,02 20,04 20,1 4,35 4,36 

 

The values from Table 41 are the inputs for the FIS module. Each force or torque 
value, the output is estimated independently in the same way than the measurement 
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was performed. It implies, for instance, an input vector with only one non-zero 
component (i.e. [FX, 0, 0] for force in X axis). The outputs resulting from force evaluated 
are detailed in Table 42. Considering the evaluation performance, the mean error of the 
system is about 0,53N, which it is acceptable for this kind of perception. 

Table 42 Force FIS evaluation results 

Mass (Kg) 
F/T Wrist Sensor 

FX_T (N) Mean Error FY_T (N) Mean Error FZ_T (N) Mean Error

0,5 4,3 0,80 4,22 1,10 3,83 1,21 

1 10,3 0 9,85 0,41 9,48 0,61 

1,5 15,4 0,34 15,3 0,23 15,4 0,20 

2 20,5 0,48 20,5 0,46 20.6 0,50 

 

Besides, the results from the evaluation of torque values are presented in Table 43. 
The mean error of the torque evaluation is 0,03Nm. This level of error is better than the 
required for manipulation torque perception.  

Table 43 Torque FIS evaluation results 

Mass (Kg) 
F/T Wrist Sensor 

TX_T (Nm) Mean Error TY_T (Nm) Mean Error 

0,5 1,12 0,01 1,03 0,13 

1 2,27 0,03 2,21 0,02 

1,5 3,29 0,01 3,29 0,01 

2 4,34 0,01 4,38 0,02 

 

 Inertial	Perception	for	Locomotion	Tasks	7.2.2.2.3

The Inertial Measurement Unit (IMU) is a complex device with sensor data processing 
capabilities that enables the direct use of the output information about the magnitudes 
measured. Nevertheless, comparing its operation with the human vestibular system, it 
is necessary to evaluate its output information to enrich the perceptual system. 

Therefore, the inertial perception will be the result of the evaluation of the information 
related to kinetics provided by the IMU sensor. Two kinds of perception were 
established regarding motion tendency. 

The first one computes the tendency of the robot to increase, maintain or decrease its 
motion velocity in a global reference frame. It denotes the variation of the translational 
momentum. As well, it can be used to determine the stability evolution and to predict 
the most appropriate reaction.  
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The inference system development related to linear motion tendency has been carried 
out according to equation (6.18). The training and checking datasets has been 
composed using motion information extracted from the IMU device. Then, two 
evaluation modules have been developed to determine the linear movement tendency 
in the sagittal (LX) and frontal (LY) planes. The resulting FIS modules for evaluating this 
perception have four inputs corresponding to the acceleration vector (aX, aY) and its 
rotation (θX, θY).  

The performance of the FIS modules are verified by means of the evaluation of several 
test data sets (Table 44) using equation (6.18) and comparing its results with those 
coming from the FIS evaluation.  

Table 44 Linear motion tendency test datasets 

Test Dataset Number aX (m/s2) aY (m/s2) θX (deg) θY (deg) 

1 -1,03 0,31 1,05 5,57 

2 -6,16 1,21 1,15 34,50 

3 -2,42 1,84 3,28 8,20 

4 -2,07 -3,03 -10,52 5,18 

5 4,5 9,80 60,8 -1,35 

6 -0,33 -8,17 -54,52 1,66 

 

In summary, the each ‘sugeno’ fuzzy inference system obtained has two inputs, one 
output and sixteen rules, which mapping surfaces are shown in Figure 121.    

 

Figure 121 Evaluation surfaces from linear motion tendency FIS 

Then, the comparison between both methods using the previous dataset is presented 
in Table 45. Relative to the linear motion tendency in the sagittal plane direction (LX), 
the mean error of the measurements is about 0,02m/s2. In the case of the frontal plane 
direction (LY), the mean error of the measurements is about 0,08m/s2 and it is higher 
that the sagittal plane direction. It can be tolerated because the stability margin in this 
direction is higher than sagittal direction.  
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Nevertheless, the aim of this perception is to capture the linear component of the robot 
motion and its approximate level. Thus, no high precision is required, being the error 
levels obtained better than expected. 

Table 45 Linear tendency results comparison (values in m/s2) 

Dataset 
Number 

LX_EQ LX_FIS LX_ERR LY_EQ LY_FIS LY_ERR 

1 -1,0251 -1,03 0,0049 0,3099 0.31 0,0001 

2 -5,0166 -5,08 0,0634 1,2097 1,21 0,0003 

3 -2,3953 -2,40 0,0047 1,8370 1,84 0,003 

4 -2,0615 -2,06 0,0015 -2,9791 -2,92 0,0591 

5 4,4988 4,44 0,0588 4,7810 4,71 0,071 

6 -0,3299 -0,33 0,0001 -4,7420 -4,40 0,342 

 

The second inference system developed evaluates the rotational motion tendency of 
the robot. Based on equations (6.9) and (6.10), the rotational tendency constitutes a 
turn over indicator in the principal directions according to the sagittal (RX) and frontal 
(RY) planes of the robot. The development of the FIS modules for both directions has 
been performed using the same data than the linear case. The main difference of this 
development process is the reduction of inputs. Only two inputs by module are used 
(Table 46), corresponding to the angular rate (ωX, ωY) and the angle measured by the 
IMU (θY, θX), respectively.  

Table 46 Rotational motion tendency test datasets 

Dataset Number ωX (rad/s) ωY (rad/s) θX (deg) θY (deg) 

1 0,03 0,016 1,05 5,57 

2 -0,79 1,06 1,15 34,50 

3 -1,14 -2,00 3,28 8,20 

4 0,50 2,59 -10,52 5,18 

5 -0,02 0,14 60,8 -1,35 

6 -1,45 0,47 -54,52 1,66 

 

As in the linear motion FIS case, the each ‘sugeno’ fuzzy inference system obtained 
has two inputs, one output but it only has nine rules. Figure 122 presents the surfaces 
that map the inputs to infer the output.  
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Figure 122 Evaluation surfaces from rotational motion tendency FIS 

The results of the comparison between both methods, using the test dataset, are 
presented in Table 47. The rotational motion tendency FIS mean error in the sagittal 
plane direction (RX) is about 0,07rad/s and, in the case of the frontal plane direction 
(RY), it is approximately 0,1rad/s. In the same way, the result expected from this 
perception evaluation is merely an indicator of the rotational component of the motion. 
Because of that, high precision for the perceptual values are not is required. 

Table 47 Rotational tendency results comparison 

Dataset Number RX_EQ RX_FIS RX_ERR RY_EQ RY_FIS RY_ERR 

1 0,0266 0,0266 0 0,0027 0.0026 0,0001 

2 -4,3378 -4,28 0,0578 0,1940 0,193 0,001 

3 -1,4878 -1,23 0,2578 -1,0441 -1,66 0,6159 

4 0,4122 0,412 0,0002 -4,3365 -4,32 0,0165 

5 0,0043 0,0043 0 1,3547 1,35 0,0047 

6 -0,3831 -0,294 0,0891 -4.0782 -4,08 0,0018 

 

 Force/Torque	Perception	for	Locomotion	Tasks	7.2.2.2.4

Force/Torque sensory devices used in robotics provide information related to actions 
exerted over the robot that can have different origin. During locomotion tasks, the 
perception evaluation will be performed regarding to:  

1) Sensorial information about ‘internal forces’ (i.e. the robot weight). 
 

2) Sensorial information about reactions caused by external forces exerted over 
the robot with direct contact. 

The complexity of the perception will always depend on the output provided by 
sensorial device. From the sensation evaluation outputs exposed on Table 38, the 
simplest perceptive information that can be obtained is relative to the foot-ground 
interaction detection. Taking into account only the sign of vertical force measured by 
the sensor (Fz) it is possible to determine whether the foot is on the ground or not. It is 
equivalent to consider that the sensor measures a compressive force due to the robot 
weight. If the foot is on the air the force sensed is caused by the foot weight, which is 
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much lesser and expansive. This information will be applied further on to determine the 
Base of Support and the walking phase (simple or double support). 

But more complex perceptions can be obtained from these sensorial devices. The first 
one is the foot angles. For each foot, taking into account the vector of reactions 
measured by the sensor, it is possible to determine the angle of the foot in both sagittal 
and frontal planes. The consideration of the forces measured as reactions indicates 
that the angles are evaluated only when foot is on the ground. As well, considering that 
the foot is perfectly parallel to the ground and completely placed on it, the angle 
evaluated denotes the soil inclination under the foot. The last issue considered in the 
development of the system that evaluates this perception is related to the number of 
necessary systems, due to the constructive symmetry of the sensor device. Therefore, 
the same neuro-fuzzy evaluation system can be used to compute the four angles, two 
by foot (Table 48 and Figure 123).  

Table 48 Evaluated feet angles  

Right Foot Left Foot 

αSagittal αFrontal βSagittal βFrontal

 

Then this evaluation is based on the development of only one neuro-fuzzy network to 
perform the evaluation by inference from equations (6.5) and (6.6).  

 

Figure 123 Foot angles FX-Y vs. FZ inference surface 

The second complex perception to evaluate is regarding ZMP computation. This 
indicator of the stability margins can be related to the reaction forces caused in any 
support surface. Specifically, during locomotion tasks, the reaction forces measured 
when feet contact the ground are used to compute ZMP. Then, the module developed 
to evaluate those sensed forces has the mission of providing an approximate value of 
the actual balance status of the robot.  

The development of the neuro-fuzzy ZMP evaluation system is based on the data 
collected from three sources: 

1) The real mechanics mock-up of the robot ankle and leg acting like the simple 
inverted pendulum (Figure 124 (a)).  
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2) The simple inverted pendulum virtual model that provides information of 

reaction forces considering this simplification for robot locomotion (Figure 124 
(b)). The information extracted from this virtual model is used to validate the 
operation of the simple pendulum mock-up. 
 

3) TEO robot platform for collecting data in double support phase (Figure 124 (c)). 
The consideration of robot walking like an inverted pendulum is more suitable to 
the single support locomotion phase. The addition of data collected from the 
sensors in double support phase movements enrich the training dataset of the 
neuro-fuzzy system and it improves the inference results. 

 

Figure 124 Simple inverted pendulum mock-up (a), simple inverted pendulum virtual model (b) 

and TEO lower-body (c) 

Then, two FIS modules were trained to evaluate each component of the ZMP reference 
point. The XZMP component moves along the sagittal plane direction meanwhile the 
YZMP component does it along the frontal plane direction.  Figure 125 (a) and (b) 
presents two examples of the resulting evaluation surfaces that relates two FIS inputs 
with its output. 

 

Figure 125 TY vs. FZ inference surface for XZMP (a) and TX vs. FZ inference surface for YZMP (b) 

By means of a simple movement test, the performance of the developed system has 
been proved. Figure 126 illustrates the pendulum movement in the sagittal plane to the 
left and maintaining double support. 
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Figure 126 Pendulum movement task: (a) Initial position, (b) left movement and (c) final position 

The data captured by the force/torque sensor system has been evaluated by means of 
classical ZMP computation and the fuzzy inference system developed. For XZMP 
component, Table 49 presents a brief set of input values and the ZMP values obtained. 
In this case, the mean error for this component is about 0,025m for the entire task 
values.  

Table 49 Data comparison for XZMP 

TY (Nm) FX (N) FZ (N) Computed XZMP (m) Inferred XZMP (m) 

0 -1,5 -125,8 0,0167 0,0310 

0 -42,25 -56,25 0,107 0,07 

-18,5 -57,75 -88,7 0,289 0,496 

-1,5 -53,25 -125,37 0,0798 0,0817 

 

In the case of the YZMP component, the example extracted from the data captured by 
sensors is shown in Table 50. In the same way, the mean error for this component is 
about 0,05m after the completion of the movement. 

Table 50 Data comparison for YZMP 

TX (Nm) FY (N) FZ (N) Computed YZMP (m) Inferred YZMP (m) 

-0,5 -3 -125,8 0,0034 -0,0290 

-21 -12,75 -56,25 0,217 0,232 

-16 10,25 -88,7 0,1636 0,0444 

3,5 0,75 -125,37 -0,0323 -0,1027 

 

The evolution of the each ZMP component is represented in Figure 127 (a) and (b). 
The computed result (Comp.) and the inferred results (FIS) are represented in the 
same chart for each component. There exist sensor offset errors in both chart but it can 
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be better observed in the sagittal movement. This is one reason why the obtained 
mean error in this component is bigger. As well, the FIS systems have worst 
performance when high variation of measurements is presented in their inputs.  

 

Figure 127 XZMP (a) and YZMP (b) evolution during the pendulum movement 

The error obtained seems to be high but the aim of this perceptual evaluation is the 
determination of an approximate ZMP location. It will be applied in prediction of 
balance evolution and, due to this, it is more important to know the ZMP evolution than 
obtaining an accurate value.  

7.2.3 Surprise	Development	
The perceptual inputs provide information about the humanoid robot status, the 
environment conditions and the task the robot is carrying out. Because of the 
information related to the robot motion depends on the task, it can be established that 
the evaluation process of the huge amount of perceptual information is task driven.  

The perceptual evaluation process followed is based on the human inspired concept of 
surprise. Then, the perceptual information evaluation has been achieved applying two 
basic concepts of the surprisingness theory: the passive and active expectation 
failures. 

Following, the development of these classes of surprise applied in manipulative and 
locomotive tasks is exposed.  

 Passive	Surprise	7.2.3.1

Passive surprise is based on the failure of the some assumption about the task 
performance. For instance, it can be assumed when an object is thrown up that it will 
fall down following a linear vertical trajectory. Whether the evaluation of perceptions 
demonstrates that this assumption has failed, then a passive surprise even could be 
elicited.  

Due to the surprise evaluation is task driven, the assumptions has been established 
considering each task proposed.  

 Manipulation	Tasks	7.2.3.1.1

The assumption made in manipulation tasks is the outlined in the example presented in 
the introduction of this section. The act of catching a ball when it is falling down has 
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been assumed in every time period as linear and vertical. Then, the passive surprise 
event is related to the absolute distance from hand to the object. Taking into account 
the vector from the hand to the object, the surprise will depend on the module of each 
vectorial component like in Figure 128 (a) and (b). 

 

Figure 128 Horizontal plane (a) and vertical plane (b) hand-object components  

Assuming that the proposed task is always performed with the right hand, the surprise 
will consist of the evaluation of the difference between hand and object in each 
coordinate component (Figure 83). The result is the surprise corresponding to the 
component in which the comparison had the highest surprise level (SPX or SPY or SPZ) 

 

Figure 129 Manipulation passive expectation failure 

This computed difference is compared with pre-established thresholds and the output 
‘intensity’ of surprise is fixed.  These thresholds have been established attending to the 
dynamical characteristics of the robot arm movement for each synergy proposed. 
Taking in account these two factors, the computed output surprise levels or ‘intensities’ 
are exposed in Table 51. 

Table 51 Manipulation passive expectation surprise levels 

Passive Surprise Level SPX SPY SPZ 

Low 0,235 0,235 --- 

Medium 0,47 0,47 --- 

High 1,175 1,175 0 

  

These thresholds were obtained evaluating the performance of the reaction synergies 
or pre-programmed movement patterns that can be parameterized to carry out the 
tasks. The surprise level is related to the distance the hand should be moved toward 
and the velocity of the movement. But, there exist kinematical and dynamical limitations 
that constraint the reaction. Therefore, the passive surprise thresholds were 
established considering these constraints. 
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In the case of SZ, the surprise level considered is produced when the object location is 
in the same or under the hand Z component level. Then, the surprise event is used to 
stop the task execution. 

 Locomotion	Tasks	7.2.3.1.2

In the case of locomotion tasks, the assumption was made attending to the dynamical 
characteristics of the straight line walking task. Thus, two main features of locomotion 
were considered related to the orientation of the humanoid robot body during walking: 
the linear and rotational robot movement tendencies. Hence, it was assumed that both 
movement tendencies must be within different limits to maintain robot balance in 
locomotion.  

The passive surprise thresholds, in the case of rotational tendency, were established in 
Section 6.3.3.2. The surprise level depends on the perception of body rotation and the 
duration of the same level of perception (Figure 130). The determination of thresholds 
to establish surprise levels were based on the study of the simple inverted pendulum 
that models the robot body during locomotion. Another constraint considered is related 
to the time period for surprise evaluation, which was considered constant.  

 

Figure 130 Locomotion rotational tendency passive expectation failure 

Hence, Table 52 presents the surprise levels computed for rotational movement 
tendency of the humanoid robot.  

Table 52 Locomotion rotational passive expectation surprise levels 

Passive Surprise Level SPRX SPRY

Low 0,98 0,30 

Medium 3,92 1,21 

High 9,81 3,03 

  

The same concepts to compute rotational tendency are applicable in the linear motion 
tendency case (Figure 131). The simplifications of the operation like an inverted 
pendulum and the consideration of constant evaluation time make easier the surprise 
level establishment.  

 

Figure 131 Locomotion linear tendency passive expectation failure 
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Table 53 exposes the surprise levels computed taking in account the linear thresholds 
from Table 25. 

Table 53 Locomotion linear passive expectation surprise levels 

Passive Surprise Level SPLX SPLY

Low 0,88 1,05 

Medium 2,54 2,91 

High 4,38 5,25 

 Active	Surprise	7.2.3.2

Active surprise, in the opposite, is based on the failure of the predictions about the 
future evolution of any parameter related to the task. Using the same example 
described in the introduction of the passive surprise, whether past information related 
with the visual perception of the ball trajectory are analysed, it is possible to predict the 
location where the robot could catch the ball. Then different predictions can be made 
during object flying trajectory and they can be updated time by time. When two 
consecutive predictions differ, an expectation failure is produced. 

Therefore, different predictive systems have been developed depending on the tasks 
proposed. 

 Manipulation	Tasks	7.2.3.2.1

The prediction in the manipulation task proposed is based on the kinematical equations 
of an object’s vertical shot. The flying trajectory will depend on the initial velocity and 
the angle of the shot. Then, the trajectory could be vertical in straight line or parabolic. 
Considering the scheme from Figure 132, the object flight trajectory can be predicted 
knowing its origin and other near point from the flight trajectory.  

 

Figure 132 Object location prediction scheme 
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The origin is the last hand position obtained from the proprioceptive perception and the 
waypoints on the object flight trajectory are processed by visual perception (Figure 
133). In this case, the use of more than one waypoint will enrich the prediction about 
goal location.  

 

Figure 133 Manipulation active surprise inference system input dataset 

The active surprise module computes the distance between the predicted object final 
location and the hand position and the module elicits a graded surprise event 
depending on this distance (Figure 134).  

 

Figure 134 Manipulation active expectation failure 

The surprise event has been graded taking in account mechanical limitations of the 
robot and the required synergic movement to achieve the task. Then, the surprise 
events scale follows an exponential law depending on the maximum distance to cover 
(d) and the mechanical constant of the synergy (τୱ). Equation (7.1) and Figure 135 
shows this exponential relation. As well, Table 54 exposes the graded values for a 
basic synergic movement of that moves on straight line following the X coordinate of 
the robot frame. 

SAଡ଼,ଢ଼,୞ ൌ e
ୢ த౩ൗ 			 	 	 				 		ሺ7.1ሻ	

 

Figure 135 Exponential law for straight line synergy 
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Table 54 Manipulation active surprise levels 

Manipulation Active Surprise Level

Low 0 - 1,7 

Medium 1,7 - 4 

High > 4 

 

The generation of the surprise event has been implemented thanks to a FIS module 
that comprises the scheme from Figure 132. When the object is launched, the 

prediction about the components of the vector HOሬሬሬሬሬԦୋ୓୅୐ is formed thanks to visual 
exoception and arm proprioception. These components correspond to the orthogonal 
distance between hand and object. Thus, in the same way than passive surprise, the 
active surprise event will depend on the value of the distance. The prediction remains 
valid during task performance unless the object trajectory will be disturbed. In this case, 
the prediction could   be updated or inhibited.   

Then, the surprise event, based on predicted goal position where the thrown object 
should be caught, is generated by inference. Based on the synergy available, the FIS 
module has been trained to generate surprise by means of inferring the output from the 
evaluation of several trajectory waypoints. The more waypoints can be used the best 
the prediction will be but, for simplicity, it has been selected only two waypoints: the 
starting point, obtained by proprioception, and one flight waypoint, measured by 
exoception. Figure 136 represents some of the resulting inference surfaces in which 
the input dataset (XRH, XWP, YWP) are evaluated. 

 

Figure 136 Manipulation active surprise inference surface 

The evaluation of the FIS module developed to elicit manipulation active surprise has 
been performed by means of acquiring the input dataset from different ball thrown 
trials. The results of this inference process are shown in Table 55. It can be observed 
that the bigger is the coordinate increment, the higher is the surprise. It means that the 
object will follow a longer flight trajectory and the predicted goal location will be far from 
the actual hand position. The maximum height reached by the object is determined by 
the XWP coordinate. This value joined with the increment of the X coordinate denotes 
the range of the shot but, as well, the flight trajectory duration.  
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Table 55 Manipulation active surprise evaluation 

Trial XHand YWP XWP SAX Surprise Elicited 

1 0,077 0,167 0,225 0,1 Low 

2 0,141 0,165 0,093 0,2 Low 

3 -0,277 -0,216 0,167 3,5 Medium 

4 -0,740 -0,594 0,245 8,6 High 

 

In conclusion, this active surprise module helps to decide reaction triggering thanks to 
predictions. It is no necessary a high accuracy of the prediction because the goal of 
this estimation is the activation and parameterization of a movement pattern to 
accomplish the manipulation task. Therefore, this mechanism will be the first one to be 
involved in the reaction process.   

 Locomotion	Tasks	7.2.3.2.2

The performance success of a locomotion task depends mainly on the evaluation of the 
balance during all walking process. Therefore, the prediction of future balance 
evolution can be very useful to avoid possible balance lost. Due to the fast dynamics of 
the locomotion tasks, the prediction about future should be achieved as fast and 
precise as possible. This prediction is based on the use of well-known reference point 
like the Zero Moment Point which constitutes a good indicator of the robot balance. 

The robot has two ways of ZMP measurement. The first one based on force/torque 
sensors computes the actual location of this point by means of the measurement of the 
reaction forces. The second one can be performed using the information coming from 
the Inertial Measurement Unit regarding dynamics of movement. Meanwhile the first 
source gives the actual ZMP location the second source can be used to predict the 
evolution ZMP, within a prediction horizon in which environmental conditions are 
considered invariables. The computation of the perceptual sources outputs the input 
dataset for the FIS regarding ZMP (Figure 137). 

 

Figure 137 Locomotion active surprise inference system ZMP input dataset 

As well, balance control is based on the knowledge of the ZMP position respecting the 
support base convex hull. Therefore, the prediction must be related as well with the 
computation of this convex hull. Its relation with the ZMP has been denoted by means 
of the determination of one point through which the ZMP could go outside the support 
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base. The so called Leak Point (LP) will be the means through which surprise is related 
with the actual and the future ZMP location. The result of the computation of the LP 
constitutes another input for the FIS module (Figure 138). 

 

Figure 138 Locomotion active surprise inference system LP input dataset 

Then, the inference system developed to produce the locomotion active surprise event 
is based on the determination of a couple distance relations (Figure 139): LP- Actual 
ZMP and LP-Future ZMP.  

 

Figure 139 Locomotion active surprise inference system scheme 

Figure 140 shows the means used to perform the surprise event computation during 
the double support phase. This evaluation has been performed considering the 
following constraints: 

1) The prediction has been performed over the Virtual Horizontal Plane (VHP) 
defined in Section 6.3.4.2. It enables to perform the prediction in any kind of 
terrain independently of its irregularities. 
 

2) Feet angles can be used for adjusting the footprint shape. This has been 
simplified considering always circular footprints for each foot on the ground. 
 

3) The future ZMP locations are predicted taking in account the pre-established 
latencies from Section 6.3.4.2. 
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Figure 140 BoS on VHP for double support phase 

The surprise event has been graded linearly taking in account predicted ZMP evolution. 
In this case, the neither task is driven by surprise nor the reaction does and, hence, the 
surprise event doesn’t depend on the mechanical characteristics of the available 
synergies. Figure 141 shows the linear function for locomotion active surprise 
generation. The minimum value has been established in two situations: when the 
distance LP-future ZMP is long or when the ZMP is outside the BoS. In the second 
case, robot balance cannot be ensured and it will depend on dynamical conditions. As 
well, Table 56 exposes the graded values for predicted ZMP evolution  

 

Figure 141 Linear law for locomotion synergies 

Table 56 Manipulation active surprise levels 

Locomotion Active Surprise Level

Low 0 - 2 

Medium 2 - 6 

High > 6 
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Based on the foundations explained until now, the development of the surprise module 
consisted of training the fuzzy inference system that maps the input from stability 
indicators with the surprise output. Figure 142 presents some of the inference surface 
that performs this mapping. Each one of these inference surfaces outputs one 
component of the final surprise value. 

 

Figure 142 Locomotion surprise inference surfaces 

Once the FIS development was concluded, its performance was evaluated with data 
extracted from the steps of the performed by the robot. Specifically, Table 57 exposes 
data from a right step which follows the sequence of support phases: DS1-SSL-DS2. At 
the very beginning of the movement (DS1), the acceleration produced leads a 
prediction of an unstable ZMP future location and the surprise elicited reaches a 
medium level (SADL=2,7). In the single support phase with the left foot (SSL), the level 
of surprise is low but equal to zero. It means that ZMP is outside the BoS. This 
situation is not necessary unstable because dynamical conditions domains the balance 
status. In this case, the ZMP location meets the definition of the Fictitious ZMP (FZMP). 
The last phase (DS2) is a double support situation with the right foot moved forward the 
left foot. In this case, ZMP is inside the BoS and the CoM deceleration leads a change 
on the ZMP movement tendency, producing a low surprise level. 

Table 57 Locomotion active surprise evaluation 

Phase XZMP YZMP 
XZMP 

(40ms) 

YZMP 

(40ms) 
XZMP 

(120ms) 

YZMP 

(120ms) 
XLP YLP SADL 

DS1 0,002 0,032 -0,01 0,0326 -0,012 0,033 0,06 0,03 Med. 

SS_L 0,01 0,218 0,001 0,22 -0,018 0,225 0 0 Low 

DS2 0,15 0,07 0,113 -0,104 -0,019 -0,366 0,40 -0,3 Low 

 

In summary, the surprise events elicited by this predictive system can help to select the 
best strategy to anticipate motor reactions against possible balance loss. 

7.2.4 Decision	System	Development	
The last module integrating the human inspired TEO postural control architecture is the 
surprise driven decision system. This module is in charge of surprise events analysis 
and the generation of a reactive action or a recommendation for producing higher level 
reactions. 
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Because the output of this postural control system is produced in anticipation to the 
consequences, it will be necessary to track the evolution of the prediction. As well, the 
decision is high influenced by the task because, for instance, the level of alert 
necessary for running is higher than the same level for walking.  

Therefore, the development of this module follows the same structure of the previous 
subsystems of the postural control architecture. The decision system has been divided 
as well into manipulative and locomotive parts depending on each kind of task. Each 
one is composed by an inference system developed by means of the neuro-fuzzy bio-
inspired technique. The inputs of the decision system will be the surprise events that 
will be weighted depending on: 

1) The goal of the task. A surprise driven task (i.e. catch the ball) needs the 
highest levels of intervention of the developed postural control system for 
achieving the task and its goal can be anticipated. 
 

2) The dynamics of the task. The faster one task is carried out the higher should 
be the alert level, giving more importance to the final decision.  
 

3) The consequences of actions producing surprise events. Sometimes, it 
necessary to give more importance to lesser surprise events than others 
because the sensorial information producing them informs about some adverse 
effect against correct task achievement. 
 

4) The level of anticipation required. For instance, the robot body integrity can be 
put at risk during task performance whether a fast reaction is not deployed 
when some perturbation is detected. In this case, it should be necessary higher 
level of anticipation than in other kind of tasks. 

Taking in account all these premises, the decision system has been developed for the 
manipulation and locomotion tasks proposed in this Thesis. Following this development 
is described.  

 Manipulation	Tasks	7.2.4.1

The manipulation tasks decision module developed in Chapter 6 presented the 
evaluation of surprises as a sequential process, which output is a numeric parameter 
used to fulfil the reactive movement pattern. 

This decision system evaluates the surprise inputs and generates an output according 
the combination of the surprise values (KMR). The basic scheme representing this I/O 
relation is exposed in Figure 143.  
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Figure 143 I/O Scheme for manipulative reaction generation 

According to Figure 98 from Section 6.4.1, the sequential process to produce the 
decision parameter is a combination of the values from each kind of surprise. This 
combination as well depends on the surprise ‘intensity’.  

The whole range for each surprise has been divided in sub-groups of low, medium or 
high ‘intensities’. Table 58 exposes the combination of surprise intensities 
(Low/Medium/High) with the ranges of aggregated surprise values.  

These ranges of decision parameters were obtained by multiplication of the active and 
passive surprise values exposed in Section 7.2.3. It can be observed that there exists 
an overlapping among decision ranges. The value selected for the decision output 
parameter will be the corresponding to the highest active surprise level. 

 

Table 58 Manipulative decision output chart  

Active 
Surprise 

Passive 
Surprise 

Decision Output Parameter (KMR) 

Low 
Low 0  0,4         

Medium 0   0,8        
High 0          2     

Medium 
Low   0,4  0,94       

Medium    0,8  1,88      
High       2  4,70   

High ----        4   10
 

The process flow exposed in Figure 98 has been modelled by a neuro-fuzzy inference 
system that evaluates the surprise inputs and generates the parameter to fulfil the 
corresponding synergy. Representing the modules developed, Figure 144 presents one 

inference surface for obtaining the decision parameters K୑ୖ
ଡ଼  and	K୑ୖ

ଢ଼ . These 
parameters can be used to create a complete movement sequence from the synergies 
X_MOVE and Y_MOVE established (see Figure 99). 
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Figure 144 Inference surface for manipulative decision parameters K୑ୖ
ଡ଼  and  K୑ୖ

ଢ଼  

Once the inference systems were obtained, they were checked using the input from the 
trials performed during surprise systems evaluation. Figure 145 exposes the results of 
the decision evaluation for three of those trajectories. Trajectory T1 is a vertical 
trajectory which both active and passive surprise levels remain at zero level.  

T2 trajectory corresponds to a trial in which the active surprise has a medium level. In 
this case, the initial surprise level determines an initial value of the decision parameter 

equal to the surprise intensity (K୑ୖ
ଡ଼ ൌ 1,84). If no reaction is triggered and the hand 

keeps its initial location, the decision parameter changes depending on the passive 
surprise level detected (Figure 145 right). This evaluation process is performed until the 
task stops when the ball falls down the hand height.     

The last trajectory (T2) corresponds to a ball shot in which the goal location is predicted 
outside the manipulation range. Then, it is generated a high active surprise event. The 

initial value is also equal to the active surprise intensity (K୑ୖ
ଡ଼ ൌ 6,87). It can be 

observed saturation in the top level of the decision parameter graph because of the 
saturation of the passive surprise level (Figure 145 right).   

 

Figure 145 Trials trajectory and decision parameter (X coordinate component) 
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Then, the numeric values of K୑ୖ
ଡ଼  can be used to perform a proportional reaction 

movement through the activation of the X_MOVE synergy. 

 Locomotion	Tasks	7.2.4.2

The locomotion tasks decision module exposed in Chapter 6 has one important 
difference from the one presented for manipulation tasks. The process exposed only 
finishes when the task is over but not when some kind of surprise is elicited. This 
difference is determined by the surprise driven nature of the execution of the proposed 
manipulation task.  This locomotion decision system is composed by two modules 
working in parallel to evaluate sagittal and frontal plane surprise. Nevertheless, both 
processes have the active surprise value in common. The output of the decision 
making system is a numeric value (KLR) used to fulfil the locomotion synergies 
established as anticipative motor responses. The inputs and the outputs scheme of this 
module is represented in Figure 146. 

 

Figure 146 I/O Scheme for locomotive reaction generation 

Following the same philosophy than the manipulative decision case, the output of this 
module is the combination of the passive surprise level with the active surprise 
intensity. Due to the existence of two different kinds of passive surprise, the decision 
process uses the maximum value obtained after their comparison. Table 59 presents 
the decision ranges for the sagittal plane, according to surprise levels and the process 
flow established.  

Table 59 Locomotive decision output chart (X coordinate) 

 
Passive 
Surprise 

Active 
Surprise 

Decision Output Parameter (KLR) 

SPLX 

Low 

ANY 

0  1,8      

Medium   1,8  15,2    

High     15,2   43,8

SPRX 

Low 

ANY 

0  2     

Medium   2  23,5   

High     23,5   98,1
 

As well, Table 60 exposes the same kind of chart than previous one but it considers the 
frontal plane movement. These ranges of decision parameters were obtained by 
multiplication of the active and passive surprise values exposed in Section 7.2.3. It can 
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be observed that values influenced by linear movement tendency (SPL) produces 
higher decision output values. It is produced because the linear acceleration has 
usually more influence in balance loss and ZMP computations. 

Table 60 Locomotive decision output chart (Y coordinate) 

 
Passive 
Surprise 

Active 
Surprise 

Decision Output Parameter (KLR) 

SPLY 

Low 

ANY 

0  2,1      

Medium   2,1  17,5    

High     17,5   52,5

SPRY 

Low 

ANY 

0  0,6     

Medium   0,6  7,3   

High     7,3   30,3
 

Then, the neuro-fuzzy system designed for locomotion decision making processes all 
the locomotive surprise inputs and produces a decision parameter KLR according to the 
charts exposed in Table 59 and Table 60. The inference surfaces presented in Figure 
147 represents the evaluation of surprise events for the sagittal plane (X coordinate). 
The decision parameters produced fulfil the movement patterns established depending 
on the current locomotive task (see Figure 101). 

 

Figure 147 Inference surface for locomotive decision parameters K୐ୖ
ଡ଼	   

The trained inference systems have been tested with the data obtained from the 
locomotion trials performed during the development. Figure 148 presents the results 
obtained during the performance of one right foot step. This task consists of moving 
forward the right foot from a double support phase and ending with the right foot in an 
advanced position respecting the left foot. Figure 148 left represents the absolute 
values of the inputs for the neuro-fuzzy decision system. It can be observed the highest 
levels of predictive surprise are produced when the robot changes from double support 
to single support phase. This value of surprise leads the medium value decision 

parameter (K୑ୖ
ଡ଼ ൌ 7,12), according to Table 59.  
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Figure 148 Step surprise levels (left) and decision parameter (right)  

Depending on the task conditions, the decision value can lead the selection and 
execution of a movement pattern to keep posture and balance under control.   



 

 



 

 



 

 

CHAPTER	8 	
 

Conclusions	and	Future	Works	
		
	

8.1 Conclusions		
This PhD Thesis has been motivated by one of the most challenging of the humanoid 
robotics field: the human behaviour mimicked by humanoid robots. Because of this, the 
development of this Thesis has been performed trying to not forget three main 
premises: 

 As the whole postural architecture as each one of its parts should be developed 
using human inspired principles.  
 

 The architecture and its components should operate according to the human 
systems that accomplish the same function.  
 

 The robot behaviour should be inspired in human behaviour. That is, the 
development should be task oriented and human tasks should be extrapolated 
to humanoid tasks that TEO humanoid robot could perform. 

Taking in account these premises, a group of general conclusions can be extracted 
from the overall work carried out. These conclusions are: 

 There has been performed a top-down study of the human postural control 
system. This study has stated the existence of two main subsystems integrating 
the high level control architecture with different modus operandi: reactive and 
anticipative. The study has concluded with the description of the features and 
functions of all subsystems and organs involved in the human postural control 
architecture operation. 
 

 It has been established a novel humanoid postural control architecture based 
on the human case studied. Because there was pre-existing reactive balance 
control architecture for TEO humanoid robot, the development of this PhD 
Thesis has been centred in the anticipative subsystem integration, following the 
human inspiration’s premise. 
 

 To enable the human inspired architecture, it has been also studied each one of 
the artificial systems available in the humanoid robot TEO with the aim of 
comparing its features with the human systems performing the same function.  
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 The novel humanoid postural control architecture and subsystems have been 
developed applying state-of-the-art bio-inspired soft computing techniques and 
according to the premise of task orientation. After development completion, all 
components have been proved in simulated environments and, as well, 
validated performing different test with the full size humanoid robot TEO. 

All these accomplished goals fit with the general guidelines proposed at the beginning 
of this work. As well, each general goal has been supported by the achievement of 
wide variety of sub-objectives which have been introduced along the process of 
development. They have been established and described mainly inside the specific 
sections related to them. Therefore, there are a series of specific conclusions that can 
be extracted from the development carried out. 

The operation of the postural control system proposed has been inspired in the 
anticipative system identified in the human case. The anticipative postural action starts 
with the evaluation of any kind of disturbance that could put at risk the correct task 
performance.  

Therefore, the first stage of postural control is the detection of stimuli from diverse 
external or internal sources. The result obtained from each sensor device is a set of 
raw information. Each set of data is not useful independently and it must be processed 
to compose appropriate input information for the postural control system. These 
processed sets are called perceptions and they are classified depending on the origin 
of the stimuli in proprioception (physical self-consciousness) and exoception 
(environmental consciousness).  

There has been studied all sensorial sources, the effects they produce, and the devices 
that captures each stimulus. Then, each perception has been developed by means of 
the application of the bio-inspired neuro-fuzzy methodology. The perception systems 
deal with a huge amount of imprecise sensorial information to produce a well-defined 
and complex perceptual output. The capacity of performing this function as well as the 
ability to model each perceptual subsystem after a training process using sensed data 
has favoured the use of the neuro-fuzzy method.  The resulting perceptions developed 
depend on many parameters: the task being performed, the level and nature of 
disturbances, the systems in which the sensations are processed, and the motor 
response required. This number of parameters influencing the perception generation 
shows its complexity.  

The second stage carried out by the postural control system is the evaluation of the 
complex perceptions generated. Perceptual outputs provide information to the control 
system about the perturbations detected. But perceptions don’t give information about 
the consequences each sensed disturbance can provoke. Due to this, it has been 
developed an evaluation system that analyses perceptual inputs and relates them with 
their possible effects over robot posture. This evaluation process has been based on 
psychophysical principles and, specifically, in the ‘Theory of the Surprise’. A surprise 
event is elicited when the intensity or duration of a perturbation, characterized by the 
outputs from perceptions, reaches some pre-established limit. The evaluation of 
perceptual outputs is carried out by bio-inspired neuro-fuzzy systems that interpret 
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perceptions and output a graded surprise. In this way, this human inspired 
methodology mimics the human behaviour processing unexpected events. 

The last stage achieved during the development of this Thesis is the establishment of a 
surprise driven decision system. The graded surprise events are evaluated to take a 
decision about the execution of postural corrections to keep the task inside its 
performance limits. This corrections or reactions are based on the fulfilment of 
movement patterns called synergies. The parameters used to fill in each pattern are 
usually proportional to the grade of the surprise event and the resulting motor response 
can be considered similar to the reflex and automatic human reactions. All these motor 
responses can be anticipated thanks to a predictive component enabled and 
introduced by the surprise generation. 

The performance modules developed in the exposed stages has been tested and some 
conclusions have been obtained: 

1) The use of neuro-fuzzy technique speed the development process up 
considerably. The use of accurate data for system training enables it. 
 

2) The complex sensorial data analysis can be performed in the same way than  
the process carried out by the human Central Nervous System. The use of 
neuro-fuzzy modules reduces the latency of the evaluation, simplifies the 
operation, and performs in parallel the same operations carried out by classical 
sequential processes.  
 

3) The error committed by the neuro-fuzzy modules can be correlated with the 
errors committed by humans during task performance.  As in the human case, 
these errors can be reducing by training and experience. 
 

4) The application of a determinate kind of surprise events, whose generation is 
based on predictions, governs the anticipatory nature of the postural control 
system developed. 

The integration of each developed module fashions the novel TEO human inspired 
postural control system. 

8.2 Future	Works	
The development carried out in this PhD Thesis has been concluded with the 
establishment of the novel TEO postural control architecture. But some minor issues 
have still pending and other questions have aroused during the development process.   

The novel TEO postural control architecture development has been supported by the 
comparison performed between human and humanoid.  It has been tried to apply 
directly the results extracted from the study of the human capabilities study but, as it 
was expected, these results must be adapted because of inherent TEO robot 
constraints. These limitations are not related to the performance of each individual 
device but the required output to accomplish with the same function than human 
systems. 
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Talking about hardware systems, the compositions of perceptions will gain the 
advantage of the integration of the neuro-fuzzy processing capabilities inside the own 
device. Then, the robot CPUs could be freed of perceptual composition.  

Other important constraint of the robot is related to one of the basic principles of this 
PhD Thesis: the task orientation. Actuation systems based on rigid transmission with 
rotary motors limits the number of DoF and, therefore, the flexibility of the robot for task 
achievement. This issue joint with other mechanical limitations limits mostly the set of 
task the robot can perform. The use of linear actuator, more similar to human muscles 
regarding operation, could avoid some of these mechanical constraints (structural 
angular limits, etc.). As well, the integration of compliant actuators is recommended 
because they also can absorb perturbations, improving the postural control system 
operation.  

These hardware improvements could lead the design of a humanoid robot with 
extended capabilities and enabling a better human inspired hardware design. 

Regarding the software developed improvement, the future works can be oriented in 
two different ways. The first one is related to the design neuro-fuzzy modules and, the 
second one is related to the improvement of the system. 

The design of each inference module has been oriented to the integration of its function 
in only one system neuro-fuzzy. This issue simplifies the overall system design but, as 
well, it has some disadvantages: 

1) The number of inputs increases with the number of functions integrated in the 
inference system. The division of complex neuro-fuzzy evaluation system into 
smaller units would enable a better comprehension its operation. As well, this 
fragmentation could give a better understanding of the structure of the modelled 
system, which the system is inspired in.  
 

2) The less is the number of system inputs the fastest is the training process. The 
design of neuro-fuzzy system with a low number of inputs speed up the tuning 
process, even increasing the number of member functions that evaluates the 
system inputs.  
 

3) The error committed is reduced because of two reasons. The design of small 
inference systems allows a better understanding of the training data and this 
issue usually increases the accuracy of the datasets, which leads the error 
minimization. 

Then, it would be possible to increase the overall system performance by designing 
multilayer inference modules in those with multiple inputs. Furthermore, this suggested 
multilayer structure is more similar to the human neural processing structures.  

The second future work proposed is the implementation of online tuning for the neuro-
fuzzy inference modules. The development of the neuro-fuzzy systems carried out in 
this PhD Thesis was supported by data acquired from TEO robot during a limited 
number of trials. The modelling capacity of the neuro-fuzzy methodology is not based 
on the amount of information but on its variance. The richest and different is the data 
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used in fuzzy training the best performance can be obtained. But, to get this kind of 
datasets depends on performing a great number of task from which data can be 
extracted. 

One way to avoid this huge work is the integration of an online training system. Once 
the basic system has been developed, the implementation of online tuning algorithms 
would improve each neuro-fuzzy system performance. 
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