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Abstract 

This brief commentary on the general topic of "body schema" is focused on its computational role, as 

an internal model that integrates proprioceptive information, for allowing embodied cognitive agents 

to carry out the neural simulation of covert and overt actions in a unitary manner. The discussion takes 

inspiration from the vintage but still valid seminal observation by Marr and Poggio that, in order to 

understand cognitive agents, both human and artificial, we should consider them as Generalized 

Information Processing Systems, to be analyzed along three levels: computational, algorithmic, and 

implementation. Accordingly, the body schema concept is briefly analyzed along this line, with the 

purpose of outlining a cognitive architecture that links embodied cognition with motor control through 

the body schema. 

 

 

  



Introduction: the body schema as a generalized information processing system 

The hypothesis that human purposive behavior requires some form of body representation, based on 

proprioceptive information, has been around for more than a century [1], supported by clinical observations that 

also suggested a multiplicity of representations [2-4]: Body Schema proper, Body Image, and Superficial Schema. 

Although such descriptive multiplicity is associated with a variety of clinical findings, we suggest that it highlights 

the multiple facets of a complex but unitary computational process: a somatotopically organized, extended body 

schema model, whose main function is the neural simulation of both real (overt) or imagined (covert) actions 

[5]. In this framework, such an extended body schema concept plays the crucial role of a bridge between 

embodied cognition [6] and motor control, enabling goal-directed actions guided by prospection [7,8]. 

In general, cognitive agents — human or artificial — are characterized by the persistent need to link purposive 

actions to the prediction of their outcomes [9], a feature that was originally captured by Norbert Wiener with 

the invention of Cybernetics [10]. Such legacy was unfolded over the years and is still running through the 

contemporary developments of robotics and artificial intelligence, on one side, and neuroscience/cognitive 

science, on the other. In both cases, we can take inspiration from a seminal observation by Marr and Poggio [11] 

that, in order to understand cognitive agents, we should regard them as Generalized Information Processing 

Systems. This means, in particular, to articulate our investigation into three nearly independent but 

complementary levels  of analysis, avoiding a widespread tendency to mix them: 1) the computational level that 

should clarify what needs to be computed and why; 2) the algorithmic level, focused on how the computation is 

carried out, in terms of the used representations and the processes employed to build and manipulate the 

representations; 3) the implementational/physical level, related to the selection and activation of the specific 

neural hardware used to carry out the computation. Although this epistemic approach was applied mostly to 

vision, there is ground to believe that the view of David Marr included motor cognition as well, considering his 

early work on theories of cerebellum, hippocampus, and neocortex: probably, he simply did not have time to do 

it for his premature death.   

The computational level  

A computational theory of the body schema may stem from the fact that a cognitive agent is continually involved 

in prospectively-guided, goal-directed actions and thus is faced by the challenge of choosing an action course on 

the basis of the predictable outcome. The literature on motor imagery, with particular emphasis on the studies 

related to the body schema [12-14], has clearly shown that overt actions are just the tip of an iceberg because, 

‘under the surface’, is hidden a vast territory of covert counterparts, i.e. actions ‘without movement’. The 

purpose of covert actions is to predict the likely outcome of a course of action, for understanding and deciding: 

for example, to restrain from acting, if the predicted result is dangerous and/or clearly leading to failure, or to 

analyze the anticipated failure for obtaining hints about a change of plan, and so on [15]. Consequently, the body 

schema should not be conceived as a passive and static representation of the body but as an active and dynamic 

mechanism, including the plastic extension to the skilled usage of tools [16] recruited and animated in a task-

oriented manner. At this level of analysis, it is also necessary to consider the vexing question about the high-

degree of redundancy of the human body that forces the cognitive/control system to choose action synergies 

among an infinite number of solutions: consider, in particular, Bernstein’s Degrees of Freedom problem [17] and 

Lashley’s Principle of Motor equivalence [18].  



Shortly, what needs to be computed by the body schema, as a generalized information processing system driven 

by proprioceptive information, is a detailed prediction of the possible outcome of whole-body actions, generated 

according to a combination of goals and task constraints. Such predictions, while being fundamental for the 

skilled behavior of cognitive agents, also play a role in anticipating others’ actions/goals, a capability that is crucial 

for imitation and skill transfer.   

The algorithmic level 

For the algorithmic level of analysis of the body schema, we suggest to focus on the simulation and emulation 

theories for the representation of prospectively-guided, goal-directed actions. Emulation theory [19,20] assumes 

that an abstract representation of movement kinematics is maintained internally over short periods of time, in 

such a way to support motor imagery, both self-initiated or externally triggered: an emulator typically receives 

input from motor planning and outputs the sensory consequences as though the movement has been executed. 

Simulation theory [5,21] postulates that imagined actions rely on the same set of neural mechanisms as the real 

actions, hence encapsulating in this mechanism the goal, the motor plan and sensory consequences. For 

example, observing someone “drinking a cup of coffee” or paying attention to the sentence “she drinks a cup of 

coffee” entails a simulation recruiting brain structures that overlap with the structures involved when one 

actually” drinks a cup of coffee” [22]. 

Internal emulation or simulation mechanisms, that were also advocated in cognitive robotics [23], may be 

interpreted as dynamic processes that animate the body schema. However, what still needs to be clarified is how 

the internal simulation may actually be organized and carried out. One possibility is that the animation of covert 

actions is carried out by using an internal model separate and independent of the model used for overt actions 

[24-26]. The alternative approach is based on the idea that the internal simulation of covert actions is performed 

by the same neural mechanism normally involved in overt actions, but relying on endogenous rather than 

exogenous sensorimotor signals [15,27,28]. The latter approach is certainly more parsimonious than the former 

one and is supported by a large body of direct and indirect evidence; moreover, it is linked to the still influential 

tradition underlying the ideomotor theories of the 19th century [29,30], namely the concept that the ‘idea’ of an 

action, i.e. the predicted/desired sensory consequences of a covert action, applies as well to goal-directed overt 

actions.  

The question is then to figure out an algorithmic formulation of the ‘idea’ of the ideomotor theory that can tackle 

the redundancy of the motor system, without being stuck by the need to directly solve the inverse kinematic 

problem, i.e. choosing one among the infinite number of joint rotation patterns that are compatible with a 

desired trajectory of the end-effector. The proposed solution is a generalization of the Equilibrium-Point 

Hypothesis (EPH), introduced in the 1960’s and debated ever since [31-33]. The rationale of the EPH is that the 

central nervous system generates overt actions as a shift of the equilibrium posture for both single- and multi-

joint movements, exploiting the spring-like properties of the neuromuscular system. The generalization of EPH, 

for including both covert and overt actions, was carried out by defining the Passive Motion Paradigm (PMP) [34-

35]. The basic idea, along with Jeannerod’s simulation theory, is that overt and covert actions are both generated 

by a simulation process that “animates” the neural body schema. The novelty of PMP is to explain how the 

animation may be carried out: in simple terms, this neural process can be assimilated to the animation of a 

‘passive’ marionette (the body schema) by means of a few wires (the virtual forces), pulled by the puppeteer, 

according to a storyboard (the task plan).  Remarkably, this force-based mechanism solves the “Degrees of 

Freedom problem” in an implicit manner, without explicit kinematic inversion, and it naturally allows to combine 



multiple goals by superimposing the corresponding force fields. It is worth pointing at the analogy between PMP 

and Active Inference [36-37]: in both cases, there is no need to have distinct sensory and motor representations, 

because the ‘proprioceptive predictions’ of the intended action, generated by the simulation process, are 

sufficient to allow the motor controller to produce the basic motor synergies. Such predictions encode beliefs 

about the state of the world, including both proprioceptive and exteroceptive components. The standard 

causality between sensory and motor representations is somehow inverted: motor commands are not 

necessarily intended to cause desired movements – but desired movements may cause motor commands (in the 

form of the predicted consequences of movement). Moreover, the body schema framework also allows an agent 

to address the imitation game with a master, by providing the machinery for simulating the exemplary actions 

of the master and anticipate his intentions. 

Considering that the algorithmic level is supposed to focus on how the computation is carried out, we may 

summarize the discussion above by saying that whole-body, goal-oriented synergies, for both overt or covert 

actions, may be generated by an animation process of the body schema, based on the PMP.   

The implementation/physical level  

The algorithmic hypothesis, that the same body schema is involved in the generation of overt and covert actions, 

can lead to different implementation strategies for transforming a selected covert action into the corresponding 

overt counterpart.  One possibility is that the proprioceptive predictions of a planned action are used as 

reference signals by simple feedback control mechanisms, one for each DoF: such servomechanisms would 

attempt to minimize the difference between the proprioceptive predictions and the measured sensory feedback 

signals. This is an implementation strategy that is frequently used in robotics, relying on the fact that robotic 

technologies allow to provide sensory feedback signals that are virtually noiseless and delay-less. In human 

physiology this is certainly not the case and the real-time control of overt actions is implemented by a 

combination of different control strategies (feedforward, feedback, and stiffness control), tailored to specific 

task and environmental conditions and aimed at compensating noise and delay of sensory signals. 

The crucial point is that synergy formation (of covert actions) and motor control (of overt actions), although 

interrelated and deeply complementary, are logically independent processes, with different computational 

mechanisms, different constraints, and different timelines. Synergy formation prescribes the recruitment of 

different groups of joints and muscles and the basic timing, reflected in the spatio-temporal invariances of 

biological motion [38], but is not and cannot be concerned with the biomechanics of the body, the dynamics of 

the environment, or haptic interaction; moreover, a great part of the covert actions remain unnoticed, inside the 

virtual domain of mental simulations.  

Consider, for example, the act of whole-body reaching while standing [39,40]: this an example of a dual task, 

with a ‘focal subtask’ (reach the designated target with the hand) and a ‘postural subtask’ (keep the projection 

of the center of mass – CoM - inside the basis of support - BoS). For simplicity, let us focus on a planar paradigm, 

related to reaching movements in the sagittal plane: the task is bidimensional, with a constraint about the 

horizontal position of the CoM, and there are 6 available DoFs (ankle, knee, hip, shoulder, elbow, wrist). Thus, 

this is a redundant task, with infinite solutions and a potential interference between the two subtasks: focusing 

only on the former may cause the latter to be violated. The interference problem can be avoided by a task 

manager by applying the PMP to the body schema with two virtual force fields: a force applied to the hand that 

pulls it to the target and a force applied to the CoM for pushing the CoM projection away from the border of the 



BoS. By learning and remembering how to tune the two force fields, the task manager may induce the body 

schema to generate a stable whole-body reaching synergy, in the form of a 6-dimensional proprioceptive 

prediction; the crucial point is that, although such a multi-joint synergy may be statically stable, it is likely to be 

insufficient to activate all the involved muscles in such a way to provide dynamic stability of the body, i.e. avoiding 

a fall. This goal is outside the competence of the synergy formation mechanism and can be achieved by the motor 

controller by combining three control strategies and recruiting them simultaneously: 1) A feedforward strategy, 

namely a bias of the antigravity muscles, driven by the proprioceptive prediction above; 2) A stiffness strategy, 

consisting of the coactivation of antagonist muscles for achieving joint stiffness values sufficient to compensate 

for unaccounted internal and external disturbances; 3) A feedback strategy, driven by delayed sensory 

information of body sway, for consolidating the overall dynamic stability of the action.  

The first control action provides the basic skeleton of muscle recruitment and activation, satisfying the static 

criterion of stability. The second one is simple and functional for most joints of the kinematic chain, but is 

certainly ineffective for the ankle joint, which is critical for the dynamic stability of the standing body: measured 

values of ankle stiffness are indeed smaller than the crucial rate of growth of the gravity toppling torque due to 

body sway [41]. As a consequence, the third control action, limited to the ankle joint, is crucial. The main problem 

to be faced is that the feedback signal about the ongoing sway is delayed by an amount that is comparable to 

the natural falling time constant of the body ‘inverted pendulum’: the risk is that a continuous delayed feedback 

control could enhance rather than eliminate the danger of falling. The solution adopted by the motor controller 

is an intermittent control policy that alternates off-phases and on-phases during postural oscillations [42-44]: 

active feedback control is switched on if the state of the inverted pendulum (tilt angle and angular velocity) is 

departing from the equilibrium condition, whereas it is switched off in the opposite case. In this manner, dynamic 

stability of the standing body is not a rigid equilibrium point but a robust, persistent postural oscillation (sway). 

We would like to stress the separation but also the deep complementarity between body-schema driven synergy 

formation, on one side, and the body-environment interaction, including the specific control action, on the other 

[45]: for example, intermittency characterizes the latter but not the former computational process. Synergy 

formation, that operates on the body schema distributing the action to the redundant set of degrees of freedom 

of the body, incorporates the constraint of static equilibrium in the spatio-temporal patterns of proprioceptive 

predictions; however, the actual dynamic stabilization of the initial and final postures is carried out by a hybrid 

combination of different mechanisms that exploit muscle stiffness and intermittent feedback control. 

In summary, the implementation/physical level of analysis of the body schema concept is mainly concerned with 

the recruitment and tuning of different control mechanisms, that may allow the detailed proprioceptive 

predictions to meet the challenge of the interaction of the body with the physics of the real world.  

Conclusion 

This commentary analyzed the body schema as a Generalized Information Processing System, highlighting the 

fact that it is at the center of a cognitive architecture that supervises and coordinates overt and covert actions 

for skilled behavior. Figure 1 summarizes the separation but deep complementarity between the two main blocks 

of the cognitive architecture, namely the block that carries out muscle-less synergy formation, mainly in charge 

of covert actions, and the motor controller, responsible of the actual generation of muscle synergies. What flows 

from the cognitive to the control block is a continuous pattern of sensory predictions, while a pattern of 

corresponding sensory feedback signals flows in the opposite direction. Both patterns are multimodal, including 



in particular proprioceptive, tactile, and visual components [47-50], with a predominance of the proprioceptive 

component. Although the main function of this bidirectional flow of sensory information is related to the control-

cognitive framework, another critical function, from the implementation point of view, is related to the need of 

calibrating and maintaining/updating the calibration of the body schema. This problem is central in the robotic 

field because multisensory calibration is essential for effective performance of cognitive robots [51,53]. Finally, 

we need to contrast this view of the body schema, as an information processing system for embodied cognition, 

to radically different formulations like the Smart Vehicles of Valentino Braitenberg [54], the refusal of neural 

representations by Rodney Brooks [55] or the reduction of cognition to agent-environmental dynamics by 

Anthony P. Chermero [56]. In particular, let us briefly focus on the criticism of Brooks, who advocates a totally 

bottom-up architecture that is supposed to achieve “intelligence without representation”: this architecture is 

organized in layers, decomposing complicated intelligent behaviors into many “simple” behavioral modules, 

which in turn are organized into layers of simpler behaviors, down to reflex-like reactive mechanisms. Generally, 

the main problem of layered bottom-up architectures is that they scale-up badly when one attempts to deal with 

complex bodies and complex behaviors in a complex environment. Moreover, intelligence without 

representation may capture smart skills but is completely unable of prospective behavior that is based on the 

systematic and cumulatively use of action memory in its different forms: working, procedural, and episodic 

[9,57]. 

 



 

  

 

Figure 1. Schematic diagram of a cognitive architecture built around the body schema 

model as a Generalized Information Processing System. The body schema is a 

somatotopic structure, holding a proprioceptive image of the body, that is animated 

by the Passive Motion Paradigm (PMP), thus generating a flow of sensory predictions 

related to goal-oriented covert actions. Most of them remain hidden, thus carrying 

out the fundamental prospective function of an embodied cognitive system, namely 

foresight and anticipation of future consequences of an action, including assessment 

and re-planning. The selected action plans are transformed by the sensorimotor 

control system, combining the appropriate control strategies, as a function of 

biomechanics and physics of the environment. The animation of the PMP is organized 

by the Task Manager that instantiates task-related Force Fields, recalling and 

exploiting memory traces of previous experiences accumulated during training and 

practice. 
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