1,484 research outputs found

    THE ROLE OF SCRATCH VISUAL PROGRAMMING IN THE DEVELOPMENT OF COMPUTATIONAL THINKING OF NON-IS MAJORS

    Get PDF
    The study explored the role of Scratch in developing the computational thinking (CT) abilities of Non-IS majors. Literature shows that abstraction, parallelism, logical thinking, data representation, flow control, pattern generalization and systematic processing of information produce computational thinking. Using a survey (n = 92) analyzed through PLS-SEM, the study explored and validated computational thinking definitions and constructs based on the other constructs. A final conceptual model shows the relationships between the constructs. The results of the survey indicated that Scratch played a significant role in abstraction for developing computational thinking. Further analysis concluded that Scratch also played a role in developing logical thinking by acting through abstraction and the other CT constructs. Nevertheless, these were not observed to influence computation thinking significantly. Further research is required to link logical thinking to computational thinking and to determine if flow control has a mediating or moderating impact on computational thinking

    Attitudes of Pre-service Teachers Toward Computational Thinking in Education

    Get PDF
    The purpose of the study was to examine the attitudes of pre-service teachers toward computational thinking, before and after an intervention, to convey the importance of integrating computational thinking into K-12 curricula. The two-week, course-embedded intervention introduced pre-service teachers, with varying academic specialties, to computational thinking practices and their utility. The intervention employed the Scratch programming language tool including Scratch flashcards, everyday and interdisciplinary examples of computational thinking, and unplugged activities. The findings indicated that the intervention was an effective new way to convey the value of computational thinking to all sampled pre-service teachers, no matter their academic specialties or GPAs. Further research is recommended to investigate potential increases in pre-service teachers’ own computational thinking skills following from the intervention

    Defining the Competencies, Programming Languages, and Assessments for an Introductory Computer Science Course

    Get PDF
    The purpose of this study was to define the competencies, programming languages, and assessments for an introductory computer science course at a small private liberal arts university. Three research questions were addressed that involved identifying the competencies, programming languages, and assessments that academic and industry experts in California’s Central Valley felt most important and appropriate for an introduction to computer science course. The Delphi methodology was used to collect data from the two groups of experts with various backgrounds related to computing. The goal was to find consensus among the individual groups to best define aspects that would best comprise an introductory CS0 course for majors and non-majors. The output would be valuable information to be considered by curriculum designers who are developing a new program in software engineering at the institution. The process outlined would also be useful to curriculum designers in other fields and geographic regions who attempt to address their local education needs. Four rounds of surveys were conducted. The groups of experts were combined in the first round to rate the items in the straw models determined from the literature and add additional components when necessary. The academic and industry groupings were separated for the remainder of the study so that a curriculum designer could determine not only the items deemed most important, but also their relative importance among the two distinct groups. The experts selected items in each of the three categories in the second round to reduce the possibilities for subsequent rounds. The groups were then asked to rank the items in each of the three categories for the third round. A fourth round was held as consensus was not reached by either of the groups for any of the categories as determined by Kendall’s W. The academic experts reached consensus on a list of ranked competencies in the final round and showed a high degree of agreement on lists of ranked programming languages and assessments. Kendall’s W, values, however, were just short of the required 0.7 threshold for consensus on these final two items. The industry experts did not reach consensus and showed low agreement on their recommendations for competencies, programming languages, and assessments

    Learning to communicate computationally with Flip: a bi-modal programming language for game creation

    Get PDF
    Teaching basic computational concepts and skills to school children is currently a curricular focus in many countries. Running parallel to this trend are advances in programming environments and teaching methods which aim to make computer science more accessible, and more motivating. In this paper, we describe the design and evaluation of Flip, a programming language that aims to help 11–15 year olds develop computational skills through creating their own 3D role-playing games. Flip has two main components: 1) a visual language (based on an interlocking blocks design common to many current visual languages), and 2) a dynamically updating natural language version of the script under creation. This programming-language/natural-language pairing is a unique feature of Flip, designed to allow learners to draw upon their familiarity with natural language to “decode the code”. Flip aims to support young people in developing an understanding of computational concepts as well as the skills to use and communicate these concepts effectively. This paper investigates the extent to which Flip can be used by young people to create working scripts, and examines improvements in their expression of computational rules and concepts after using the tool. We provide an overview of the design and implementation of Flip before describing an evaluation study carried out with 12–13 year olds in a naturalistic setting. Over the course of 8 weeks, the majority of students were able to use Flip to write small programs to bring about interactive behaviours in the games they created. Furthermore, there was a significant improvement in their computational communication after using Flip (as measured by a pre/post-test). An additional finding was that girls wrote more, and more complex, scripts than did boys, and there was a trend for girls to show greater learning gains relative to the boys

    Computing as the 4th “R”: a general education approach to computing education

    Get PDF
    Computing and computation are increasingly pervading our lives, careers, and societies - a change driving interest in computing education at the secondary level. But what should define a "general education" computing course at this level? That is, what would you want every person to know, assuming they never take another computing course? We identify possible outcomes for such a course through the experience of designing and implementing a general education university course utilizing best-practice pedagogies. Though we nominally taught programming, the design of the course led students to report gaining core, transferable skills and the confidence to employ them in their future. We discuss how various aspects of the course likely contributed to these gains. Finally, we encourage the community to embrace the challenge of teaching general education computing in contrast to and in conjunction with existing curricula designed primarily to interest students in the field

    Developing customised computer science courses for non-major students in informatics, computer science, or media: a case study on health psychologists

    Get PDF
    Learning how to effectively communicate in our media-centered digital world is crucial for all professionals. However, it holds even greater importance for health professionals, given their primary objective of improving people's health. Therefore, it is imperative to dedicate significant effort to designing Computer Science (CS) courses that cater to the specific needs of these professionals, equipping them with the skills and capabilities of modern digital communication. Developing CS courses specifically tailored for non-CS majors is particularly significant, as it reduces the likelihood of failure. In this study, I aim to outline the process of identifying relevant directions and tools, and designing a comprehensive course plan that enables professionals to acquire the necessary CS skills. By pinpointing topics that are directly applicable to their future professions, the course will teach professionals how to effectively utilize and design digital systems. To conduct this research, the doctoral degree course "Informatics for the Psychology of Health" at the University of Cagliari has been selected as a case study. Using qualitative methods, I assessed the satisfaction levels and perceived usefulness of the course among students. Through this investigation, numerous valuable directions were identified, along with a concise collection of free and open-source tools that will provide students with the knowledge they require to independently create and design digital interactive media. By adopting this approach, courses tailored to professionals can be designed, effectively reducing high dropout and failure rates

    Computational Thinking in Education: Where does it fit? A systematic literary review

    Get PDF
    Computational Thinking (CT) has been described as an essential skill which everyone should learn and can therefore include in their skill set. Seymour Papert is credited as concretising Computational Thinking in 1980 but since Wing popularised the term in 2006 and brought it to the international community's attention, more and more research has been conducted on CT in education. The aim of this systematic literary review is to give educators and education researchers an overview of what work has been carried out in the domain, as well as potential gaps and opportunities that still exist. Overall it was found in this review that, although there is a lot of work currently being done around the world in many different educational contexts, the work relating to CT is still in its infancy. Along with the need to create an agreed-upon definition of CT lots of countries are still in the process of, or have not yet started, introducing CT into curriculums in all levels of education. It was also found that Computer Science/Computing, which could be the most obvious place to teach CT, has yet to become a mainstream subject in some countries, although this is improving. Of encouragement to educators is the wealth of tools and resources being developed to help teach CT as well as more and more work relating to curriculum development. For those teachers looking to incorporate CT into their schools or classes then there are bountiful options which include programming, hands-on exercises and more. The need for more detailed lesson plans and curriculum structure however, is something that could be of benefit to teachers

    Mobile App Development to Increase Student Engagement and Problem Solving Skills

    Get PDF
    This paper describes a project designed to promote problem solving and critical thinking skills in a general education, computing course at an open access institution. A visual programming tool, GameSalad, was used to enable students to create educational apps for mobile platforms. The students worked on a game development project for the entire semester, incorporating various skills learned throughout the semester. Pre and post quiz analysis showed a significant improvement in students’ ability to design comprehensive solutions to a given problem. Survey results also showed increased student engagement, high interest in computing and a “better” understanding of information technology

    Computational thinking and online learning: A systematic literature review

    Get PDF
    This paper introduces research concerned with investigating how Computational Thinking and online learning can be successfully married to help empower secondary teachers to teach this subject. To aid this research, a systematic literature review was undertaken to investigate what is currently known in the academic literature on where Computational Thinking and online learning intersect. This paper presents the findings of this systematic literature review. It outlines the methodology used and presents the current data available in the literature on how Computational Thinking is taught online. Using a systematic process eight hundred articles were initially identified and then subsequently narrowed down to forty papers. These papers were analysed to answer the following two questions: 1. What are the current pedagogical approaches to teaching Computational Thinking online? 2. What were the categories of online learning observed in the teaching of Computational Thinking? Our findings show that a wide range of pedagogical approaches are used to teach Computational Thinking online, with the constructivist theory of learning being the most popular. The tools used to teach Computational Thinking were also varied, video game design, playing video games, competitions, and unplugged activities, to name a few. A significant finding was the dependency between the tool used and the definition of the term Computational Thinking. Computational Thinking lacks consensus on a definition, and thus the definition stated in the literature changed depending on the tool. By considering a significant body of research up to the present, our findings contribute to teachers, researchers and policy makers understanding of how computational thinking may be taught online at second level
    corecore