

Cutts, Q., Esper, S. and Simon, B. (2011) Computing as the 4th “R”: a

general education approach to computing education. In: Sanders,

K. (ed.) Proceedings of the Seventh International Workshop on Computing

Education Research, Providence, RI, USA, 8-9 Aug 2011.ACM: New York,

NY, USA, pp. 133-138. ISBN 9781450308298

(doi:10.1145/2016911.2016938)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/72037/

Deposited on: 31 July 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk33640

http://eprints.gla.ac.uk/view/author/10215.html
http://dx.doi.org/10.1145/2016911.2016938
http://eprints.gla.ac.uk/72058/
http://eprints.gla.ac.uk/72058/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

This is a pre-publication version of this paper.

Computing as the 4th “R”:
A General Education Approach to Computing Education

Quintin Cutts

School of Computing Science
University of Glasgow

Glasgow, Scotland
+44 141 330 5619

quintin.cutts@glasgow.ac.uk

Sarah Esper Beth Simon
Computer Science and Engineering Dept.

University of California, San Diego
La Jolla, CA USA
+1 858 534 5419

{sesper,bsimon}@cs.ucsd.edu

ABSTRACT

Computing and computation are increasingly pervading our lives,

careers, and societies – this is a change that is driving interest in

computing education at secondary level. But what should define a

“general education” computing course at this level? That is, what

would you want every person to know, assuming they never take

another computing course? We identify possible outcomes for such

a course through the experience of designing and implementing a

general education university course utilizing best-practice

pedagogies. Though we nominally taught “programming”, the

design of the course led students to report gaining core, transferable

skills and the confidence to employ them in their future. We discuss

how the various aspects of the course likely contributed to these

gains, particularly in contrast with similar courses. Finally, we

encourage the community to embrace the challenge of teaching

general education computing in contrast to and in conjunction with

existing curricula designed primarily to interest students in the

field.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]: Literacy.

General Terms

Human Factors.

Keywords

general education, peer instruction.

1. INTRODUCTION
Computing education is seen as increasingly important, with Wing

and others arguing that the entire population requires a grounding

in fundamental principles of computation [24]. Actions are being

taken to improve school computing education. For example, the

UK Royal Society has been commissioned to report on the state of

computing education in UK schools [19], and the US National

Science Foundation and the College Board are supporting a team

of CS educators to develop an Advanced Placement course, CS

Principles, which aims to "broaden participation in computing and

computer science."[8]

In Fall 2010, we ran a pilot of the CS Principles course at a US R1

institution. Among a number of pilots being run, ours was unique

in that it also served the needs of a university general education

(GE) course for 570 students. This raised the question of how a GE

computing course should be defined, or, put another way, what

should every person know, assuming they never take another

computing course? In this report, we tell the story of our

experiences in putting together a GE course grounded in the CS

Principles framework, and of how it impacted on students and on

our views of GE computing.

The most honest beginning to this story is that we made a “best

guess” at what would define a GE curriculum and used that to

generate the course design for Fall 2010. Our guess was based

around:

 existing university needs for an academically-rigorous digital

literacy course involving logical thinking and the ability to

create digital artifacts in subsequent courses,

 the CS Principles framework, particularly the six defined

computational thinking practices of analyzing effects of

computation, creating computational artifacts, using

abstractions and models, analyzing problems and artifacts,

communicating processes and results, and working

effectively in teams, and

 published experiences in teaching CS0-type courses.

These sources led us to develop a programming course including 7

weeks of Alice programming [5] and 2 weeks of Microsoft Excel.

Most critically, we designed the course around a best-practice

pedagogy, Peer Instruction (PI) [13], to engage students in deep

learning of computing concepts, rather than in an overview of a

broad range of technology. In our design, students prepared for

lecture by “playing around” with Alice (implementing what was

discussed in the textbook). In class they spent time, for example,

analyzing code snippets to figure out what they did and why, or

justifying why a line of code inserted into skeleton code would

correctly implement a desired behavior. Via the PI process,

students discussed their thinking in small peer groups and could

compare their experience with that of the larger class and the

instructor through class-wide discussion.

As we taught the course we paid close attention to the student

experience, with all authors attending all lectures and listening-in

directly to students’ discussions in the class. When prompted (in

Week 8) the vast majority of students self-reported a range of

mailto:addressquintin.cutts@glasgow.ac.uk

This is a pre-publication version of this paper.

long-term gains as a result of taking the course. Analysis of their

open-ended responses shows students reporting increased

confidence, changed views of technology in the world around them,

increased technical problem solving skills, transfer of computing

skills to other areas of their life and increased communication skills.

Reports of “learning to program” were very rare (and mostly

limited to computing majors). These results were very compelling

to us as computing educators, with the following examples being

representative:

We learned in Alice that computers do exactly what you have

them do.

Programming allows a person to think more logically,

thinking in order and debugging allows the user to gain

valuable problem solving skills. Aspiring to go to law

school, thinking logically is extremely important and I think

this has helped.

It has given me confidence that I’m able to figure things out

on a computer that I never would have thought that I could

do.

We will argue later that the gains reported by the students form an

excellent definition of a general education course in computing.

In discussion, we compare and contrast this course against others

considered as general education or “non-majors” computing

courses, in order to consider whether we think they would produce

the same student reports. We assess the design of the course in the

light of the student reports, to better understand the aspects of the

course that are leading to the reported experiences. Notably we

believe that engaging students in “learning programming” is critical

to the experience – as it provides students very direct control over

the computer. Utilization of a programming language such as Alice

where the entire execution model is visible (e.g., graphically acted

out) is clearly beneficial. Furthermore, the instructional design

based around PI enabled considerable practice, analysis, discussion

and feedback to take place. Finally, we draw conclusions on the

ordering of computing courses at the introductory level to

maximize opportunity of access to computational thinking skills

development for all students.

The paper is structured as follows. The instructional design of our

course is described first, followed by the analysis of the students'

open-ended feedback. The lengthy discussion section first draws

out the argument that the student responses define a sound general

education in computing. Effectively, the related work section

follows, as related courses are compared with our own. We draw

out aspects of the instructional design contributing to the students'

responses, and close with observations about how introductory

computing courses should be ordered.

2. INSTANTIATING A CS GENERAL

EDUCATION COURSE
Here, we briefly overview the instructional design of our course –

though we refer the reader to full details in [20].

As already noted, the content of the course featured seven weeks of

programming in Alice and two weeks of Excel. Alice is a beginners

graphical programming environment: graphical both in the sense

that programs create and manipulate 3D worlds, and that writing

programs consists of snapping visual tiles together on screen. The

weekly progression through programming constructs made it look

much like the start of a typical CS1 course.

The instructor (author Simon) chose to focus the instructional

design of the course around the use of Peer Instruction [13]. She

made this decision a) based on the evidence from physics and other

disciplines that its use dramatically increases learning [7] and b)

because it had worked well in previous programming courses [21].

Author Cutts closely collaborated in the design and development of

the course, having himself previously developed PI-related course

designs. As experienced programming teachers, we were aware of

common issues in programming courses such as lack of sufficient

feedback (e.g., relatively few programming assignments), lack of

timely feedback (e.g. a week or longer turnaround in grading of

assignments), and, perhaps most importantly, students’ tendency to

focus on getting programs to work, not necessarily on

understanding how they work or how they, the student, got them to

work. This further supported our interest in using PI and, overall,

in our implementation of supporting structural components, the

most important of which is the "explanatory homework" format.

In the standard PI model, before class, students gain preparatory

knowledge typically by reading the textbook and then complete a

pre-lecture quiz on the material. While in some courses, simple

reading might be enough to prepare students for a

discussion/analysis oriented PI class, our experience dictated that

students in a programming class would need more significant

engagement with the material than reading alone can provide.

Hence in this class, students completed an “exploratory homework”

before class that engaged them in building Alice programs by

following the directions in the textbook. Furthermore, meta-

cognitive training appropriate to computational thinking was

provided by asking students to make small changes to textbook

code as they went along – prompting them to predict what the effect

would be, then run the code to test their prediction. A short quiz of

3-5 questions, for credit, was given using clickers at the beginning

of the class, to incentivize exploratory homeworks and to provide

feedback to students on whether they had learned sufficiently from

the homeworks to be ready to engage in lecture.

Figure 2. In-class MCQ assessing code understanding

During class, lecture was largely replaced by a series of multiple

choice questions (MCQs) designed to engage students in deepening

their understanding of the material. As shown in the example of

Figure 2, concerning nested if statements, these typically focused

on deep conceptual issues or common student misconceptions or

problems. Note that this question does not simply require students

to trace the code with suitable inputs to determine the

corresponding output. Instead, the student is required to understand

deeply how all the code components work together, and to predict

all possible paths through the code and how these relate to the state

of the system. Only then can the student correctly answer the

question. Students followed a process by which they answered a

This is a pre-publication version of this paper.

question individually (using a clicker), discussed in an assigned

group of 3, and answered a second time. This was followed by a

class-wide discussion led by both the students and the instructor.

This is the core of the PI pedagogy.

Students completed a 2-hour closed-lab format programming

assignment each week, covering the content of the previous week.

There was one midterm, one final, and a multi-week (outside of lab)

Alice programming project where students were directed to “make

a digital contribution to communicate your views on an issue facing

society.”

While the course had traditional elements such as lab and project

work, we hoped the PI methodology, with its focus on analysis and

discussion, would influence the students' experience positively.

Rather than seeing programming in Alice as something they played

around with until they got something “cool” to work, we believed

that the PI activities would engage them in the authentic practices

[3] that underlie actual computing experts’ thinking and activities;

that by asking them to analyze code and discuss it with each other,

they would experience via legitimate peripheral participation what

actually happens in software developers’ cubical walls, or in the IT

support center of a major company.

3. STUDENT EXPERIENCE
Because this was the first offering of the course, because it was an

AP pilot, and because author Cutts was visiting on a sabbatical, we

spent significant time and effort in ongoing observation,

assessment and reflection on the course’s impact. We found

ourselves focusing on the following key questions: “What if this is

the last computing course these students ever take? What are they

getting out of it? Does this satisfy us with regards to what an

informed populace should know to move society forward?”

Although we were spending our time in class having them analyze,

develop and explore Alice programs, we personally would not have

been satisfied if students told us “This class taught me how to

program.” We don’t believe that programming, per se, should be

of topmost value for all humans – regardless of their future.

However, our curriculum did spent 7 weeks teaching students Alice

and 2 weeks on Excel. So what would our students say? Based on

informal observations and interactions with students, we asked

students to formally reflect on the issue with an open-ended, written

reflection question at the end of the week 8 lab (the first one in

Excel). Although required for a grade, students were informed that

any thoughtful answer (positive or negative) would receive full

credit. This is the question we asked:

Learning computing concepts may have opened many doors for you

in your future work. Although you may not ever use Alice again,

some of the concepts you have learned may become useful to you.

Some examples include:

 Understanding that software applications sometimes don’t do

what you expect, and being able to figure out how to make it

do what you want.

 Being able to simulate large data sets to gain a deeper

understanding of the effects of the data.

 Understanding how software works and being able to learn

any new software application with more ease, i.e. Photoshop,

Office, MovieMaker, etc.

Aside from the examples given, or enhancing the examples given,

please describe a situation in which you think the computing

concepts you have learned will help you in the future.

Through analysis of this data, we consider students’ perceptions of

the “general education in computing” effect of the course.

3.1.1 Methodology
We analyzed all responses to the lab question (N=521). After

preliminary ad-hoc review of the responses by two of the authors,

one author developed a set of descriptive categories that reflected

the commonly observed themes. Next that author and one other

separately coded a random 10% sampling of the dataset, discussed

the results, and refined the categories and descriptions until

reaching agreement on that sampling. Then both individually

coded a new 10% sampling, and reached an 85% inter-rater

reliability (counting matches for agreement on each code for each

response). Then one of those authors and the third author coded the

remaining data (with the third author reviewing the first 10%

sample as a training set)).

3.1.2 Results
The categories used to code students’ responses regarding how the

class would help them in the future are shown in the first column

of Table 1, along with the frequency with which students’ responses

were coded into those categories (a single student response could

be coded into more than one category, the average number of codes

per response was 2.1). The description used to define each category

is given in the second column, and the third column contains an

example response.

Table 1. How The Course Will Help in Your Future: Categories of Student Responses ordered by Prevalence.

Category Category Description Example Response

Transfer, Near

64%

Student indicates how their skills can be used in another

technical project and how they have already done this.

Student may indicate their ability to now learn new software

or technology, i.e. for other courses or for fun (websites,

animations).

Using new machinery like sound editing equipment …

will require the ability to manipulate and design using

the basic commands to form unique creation. Similar to

Alice we will be restricted to the amount of actions we

can perform sometimes but through our creativity we

can manipulate the basic commands of the music

program to create variations not standard to the system.

Like how we mad[e] frogs appear to be hopping when in

actuality the Alice program does not have a specific

method that makes frogs hop.

This is a pre-publication version of this paper.

Personal Problem

Solving Ability:

Debugging

39%

Student indicates their ability (or ability to attempt) to deal

with unexpected behaviors or issues in any situation

(technical or non-technical). Student identifies that they can

use logic skills they have learned to help solve problems by

“logic-ing it out”. Students may also describe their ability to

use trial and error to gain a deeper understanding of the

problem to be able to solve it (inductive reasoning).

I have learned how to target problems when I am

working on a computer and use the process of

elimination to try to fix the problem instead of just

restarting the computer like I used to. This skill partially

developed from taking CSE3 and becoming more

comfortable with working with new computer programs

and dealing with bugs in Alice.

Personal Problem

Solving Ability:

Problem Design

29%

Student indicates that when faced with any problem

(technical or non-technical) they can come up with a plan to

solve it. Student may specifically mention concepts they

have learned (ordering, step-wise refinement, functions,

loops, etc.) that they would use to solve the problem.

Students express a greater understanding of how to approach

problems. Student focuses on requirements, analysis and

design of a problem, not execution.

We learned in Alice that computers do exactly what you

have them do. Using this knowledge, we can understand

how programs like Excel and Numbers work and learn

that when we are using these programs, we need to

specify and be exact with what we are doing in order for

the programs to meet our needs and plans.

View of

Technology

25%

Student has a new appreciation and/or understanding of how

technologies work. May mention specific technologies and

how their view of them as changed, i.e. more appreciative of

the work that went into building them. Student may mention

specific concepts that they recognize, i.e. that computers do

what you tell them to do, but mentions them in appreciation

and not in their ability to use them. Student may describe an

“Aha!” moment when their view changed.

Now, every time I find myself playing a video game, I

actually understand what makes it work. That these

games are not magically produced, that it takes time,

skill, and sufficient funds to create these games. I

appreciate these games more than before taking this

class.

Transfer, Far

23%

Student describes how their skills can transfer outside of a

computing or technology context. May describe their ability

to use their new skills to help them in the real world

(organization, problem solving, logic).

I feel that learning the language of computing definitely

helps you understand dense reading a lot more

efficiently. I personally have noticed that my in-depth

understanding of Computer Science wording has helped

me understand my mathematical theorems and proofs

more regularly than before.

Confidence

21%

Student describes an increased belief in their ability to do

things on the computer, i.e. having a new ability or an

increased ability to solve computer errors or try new

software. Student expresses a “can do” attitude when

discussing using the computer. Students indicate viewing

themselves as more prepared for a job or more capable, i.e.

able to put new skills on a resume.

The things I learned in Alice can help me not to be so

frightened in general when dealing with technology.

Although I am not certain I have absolutely mastered

every concept in Alice, I am certain that I have learned

enough to bring me confidence to apply these ideas in

the technological world. This is a big deal for me, as I

do consider myself quite technologically challenged. I

think this class has given me tools for life, that can be

applied to both my life at home, socially, and at work.

Communication

7%

Student describes how they will now be able to communicate

better (in writing and speech) with people about technology,

i.e. describing an issue to tech support. Student may also

describe being able to communicate better (in writing and in

speak) with others regarding any matter, i.e. being more

specific or seeing other viewpoints.

In today’s technologically-centered world, using a

program like Alice gives us valuable exposure to

discussing things technically with other people and

explaining clearly what we are trying to do.

4. DISCUSSION
Overall, we were satisfied at the ways in which the students felt the

course experiences had impacted them. We patently did not want

students to think they were “made to learn programming” and we

specifically tried to differentiate the course from one seeking to

attract students into the CS major or prepare them to take another

programming course. Although the content of our syllabus doesn’t

differ much from such courses, we utilized the course design to

engage students in a different experience - specifically through the

in-class peer instruction discussions.

4.1 The Student Responses Define General

Education Computing
We will argue first that the students' statements form the core of an

understanding about what general education in computing should

be.

We recognize the students' descriptions as a set of transferable

skills and attitudes: confidence to have a go with technology; a new

appreciation/awareness of that technology; problem solving skills

to plan out solutions to problems and then to enact them, detecting

and correcting bugs along the way; and communication skills

appropriate for discussing issues about computing systems.

To rate the value of these skills, consider the typical knowledgeable

IT person, the colleague any office worker calls over when they're

having trouble with their PC. He or she is the confident problem

This is a pre-publication version of this paper.

solver who can talk to you about your problem. Even though they

may not know directly about your software or your issue, they

know they'll get there with some educated exploration. These are

the unpaid IT support staff across the length and breadth of the land.

And their skills and attitudes bear a striking similarity to those

described by our students.

As to whether such skills should form part of a general education

requirement, there are two pertinent questions: do all citizens need

this skill/attitude set; and is it necessary to formally teach it? The

recent push for a broader computing education indicates that

society is beginning to accept the importance of computing skills

for all; and we use Turkle [23] to argue that the blocks to acquiring

computing skills have become inherent in our society, and thus a

concerted effort is required to break the cycle.

In [23], Turkle argues that the adoption of computing technology

to support our thinking processes has in fact shaped the way we

think. Specifically, the Apple Macintosh-style direct-manipulation

interfaces introduced in the 1980s encourage us not to look under

the surface and not to attempt to understand or appreciate systems

deeply. She argues that we have been seduced into an expectation

that systems will be easy to use and we are surprised and

unprepared when they aren't.

As an example, consider a modern word processing package. This

has evolved out of all recognition from the glorified text editor

MacWrite, an early WYSIWYG word processor from the 1980s.

The underlying document model of the modern version would have

been the domain of a professional typesetter in years gone by, yet

users expect to be able to intuit the model largely via direct

manipulation with what they see on screen. We contend that the

document model has become too complex for this.

The combination of increasing complexity with incorrect

expectations can only lead to frustration. When the software does

something unexpected, most users have no training in how to go

about understanding what is going on, and few skills in identifying

or correcting the problems they are experiencing. Consequently, to

them, software has become something magical and beyond their

control.

We can relate each one of our students' major response categories

to the manner in which this interpretation of present-day computer

use suggests most computer users are likely to think.

 Confidence: Software systems are too complex for me to

understand. When they don't do what I want, I don't

know what to do. I can't have an effect.

 Appreciation: I don't have any insight into how the

technology works and I've never been encouraged to look

"under the hood".

 Problem solving: Software and computers are meant to

be easy to use – I shouldn't need to plan ahead to

complete my task; when the software does something I

don't expect, I haven't a clue where to start – I have to get

someone to help me.

 Transfer: I've only just mastered Word. Now I've got to

start all over again with Excel. Nightmare! It's a

different world.

 Comms: I can't get the systems person to understand my

problem at all. It's as if he's from a different planet.

We are not advocating extensive training in every complex

computer package or system for every user, as a panacea for these

woes. Nor are we insisting that every citizen be able to examine

the innards of a computer system. Instead, we suggest that the

skilled IT user balances the inherent complexity of much software

against the knowledge that, with effort and use of appropriate skills,

they can understand the software or "figure it out". In particular,

they can understand the complex models underlying software via a

process of inductive reasoning based on experimenting with the

software.

We contend therefore that a training developing or honing these

skills and attitudes is a genuine general education for all who use

computers – now, effectively, the entire population.

4.2 Comparison with Existing “First”

Computing Courses
We see in school education a range of course styles that could

possibly be viewed as a GE in computing, varying from training in

the use of IT, through programming courses, to the introduction of

computer science concepts. We assess now whether these other

course styles are likely to deliver similar GE characteristics as have

been described by our students.

Before exploring the current course styles, we acknowledge

Papert's early radical general intellectual training based around

programming in Logo [16]. We find much commonality between

the skills he describes his students developing and those described

by our students. A key difference is that of scale – our students are

in a traditional mass education system whereas Papert describes a

more personalized self-exploratory learning environment.

4.2.1 IT training courses.
IT training is typically centered on the direct use of typical office-

oriented packages like Microsoft's PowerPoint, Word and Excel.

For example, the Scottish education system has had for many years

a 5-14 Information and Communication Technologies (ICT) strand

in its national curriculum [11]. This kind of IT training typically

involves follow-the-steps worksheets. Assessment is most likely

via simple factual recall or by the production of artifacts. Since the

training is often very concrete, associated with specific packages, it

is hard to practice or assess the transferability of the skills

developed. Crucially, such courses drive towards outcomes such

as "I can create a PowerPoint presentation", rather than anything to

do with the understanding of or communication about how to be an

effective IT user. In a survey of over 2000 Scottish school pupils

[14], it was clear that this curriculum was found to be both boring

and a totally inappropriate forerunner to later computing courses.

Worse, anecdotal evidence suggests that many incoming university

students are barely-adequate IT users. Furthermore, contrary to

popular opinion, Bennett [2] demonstrates that the evidence for

Digital Natives [17] is far weaker than is widely reported.

4.2.2 Preparation for programming courses
These courses introduce the pupils to the excitement of creating

programmed artifacts without going into the traditional

heavyweight programming detail of a university-level CS1 course.

Examples are courses that use robots or the Scratch [18], Alice, or

Greenfoot [10] programming environments.

We are unable to ascertain whether students taking these classes

have also experienced changes similar to those our students report

– though published work does not seem to report such findings. In

[15], students’ attitudes regarding interest in computing increases

in an elective Alice-based CS0 course. Our students were given the

same survey, but no statistically significant increase in attitudes

occurred – perhaps because students' interpretation of the terms in

the questions changed from pre-test to post-test, perhaps because

they did not choose to take the course and were not as likely to be

pre-disposed to come to like computing. In future work, we seek

to better understand this result.

This is a pre-publication version of this paper.

We speculate that the focus in these courses is typically on the

excitement of getting programs working, rather than on the deep

understanding and articulation of what the students did. For

example, in [18], the digital fluency associated with Scratch

involves "designing, creating and inventing". Teachers of course do

want the deep understanding, but much of the student activity and

assessment, where there is any, is most-likely focused on "can you

do it?" As Section 4.3 shows, we view the core difference between

our course and other programming-oriented courses is the emphasis

on articulating deep understanding.

4.2.3 Non-programming introduction to computer

science: Excite programs
There is a wide range of programs that aim to introduce computer

science without involving programming at machines. The most

well-known of these is CS Unplugged [1], and author Cutts has run

a similar scheme mainly in Scotland called CS Inside [9]. Both the

US and the UK are considering adopting aspects of these programs

into nascent school curricula. We refer to these as excite programs,

because a key aim of such programs is to excite participants about

core aspects of CS in order to increase take-up of CS courses.

Indeed the origins of both these programs lie firmly in the outreach

activities of two universities. The activities of the programs were

originally designed for one-off, non-assessed sessions where

excitement is the core goal, with learning as a secondary goal. They

do use active and often kinaesthetic learning methods that

undoubtedly are highly engaging for the participants.

We speculate that the learning activities of these programs will not

form an effective general education, as our students' responses

define it, for a number of reasons:

 Their main focus is to raise awareness of a broad range of

computer science topics, for example, data representation,

algorithms, cryptography, intractability and so on, rather than

on a narrower core set of transferable skills and attitudes.

 Whilst the active learning embedded in the activities does

foster core skills such as problem solving and group work, or

core attitudes such as the deterministic nature of algorithms

(and hence programs and computers), the rather self-

contained nature of each learning activity goes against on-

going step-wise development of these skills.

 Their separation from the world of software and machines is

likely to make transfer of core generic realisations about the

structure and use of computer systems difficult.

4.2.4 A matter of speculation
We have been able to speculate only here that alternative course

formats considered for introductory computing do not effectively

fulfill a general education role. We urge those teaching any of the

course formats covered here to replicate our open-ended reflection

question, presented in Section 3, with their students. Particularly

interesting would be the effect on students taking such courses as a

requirement, as ours did, and not by elective choice.

4.3 Key Effects of the Instructional Design
The Peer Instruction Effect. We believe the instructional design

centered in analyzing code (in homeworks, discussion questions in

class, and (naturally) programming labs) impacted students.

Certainly, instructors hope students in programming courses with

standard lecture develop code analysis skills, but it is rare that we

focus class time engaging students in that practice for themselves.

Even in lab-based lecture environments, students’ work with live

programming may not engage them in analysis. As Stephen Cooper

advised us [4], some students may just play around randomly trying

things until they get the desired result. From our classroom

observations (two authors observed and engaged students in their

group discussions during lectures), the use of PI gave students the

opportunity to viscerally develop the understanding that computers

are, likely contrary to their previous experiences, deterministic,

precise, and comprehensible. Through vigorous, constant

engagement in the struggle to not just create programs or learn to

use computing concepts like looping and abstraction, but instead to

analyze, debug, and critique Alice code, students seem to have

internalized these three core attributes of computational systems.

We see evidence of this in some students’ responses in discussing

their experiences when something goes wrong on the computer.

They now recognize the problem might be the fault of the computer

or it might the fault of the user. This stands in contrast to their

stated previous beliefs that it was always their fault (or in some

cases always the computers’ fault). This seems a critical first step

in an increased sense of empowerment that may stem from their

deeper understanding that a computer’s behavior can be analyzed.

Furthermore, the general education literature provides strong

evidence in support of the PI process as a way of promoting deep

learning. Teasley [22] demonstrates that speaking out one's

understanding improves learning, and articulating it to a peer

improves learning even more. Craig et al. [6] show that paired

learners gain as much from watching a video of a tutor at work with

a single student as from one-to-one tutoring – and we see the peer

groups discuss the content of the class wide discussion (a form of

dialogue between individuals in the class and the instructor) as it

unfolds. Finally, Karpicke has shown in a number of studies, e.g.

[12], that testing promotes more learning than studying. We are

testing students in every class session, both with the quiz and

discussion questions.

Programming – and with a Visual Execution Model. Could we

provide students an equivalent experience by teaching a PI-based

course in using Excel or other computing applications? Our

experience suggests that the value in using a visual, scaffolded

novice programming environment like Alice is that it provides

students the most direct form of interaction with the computer

possible – programming-language-level control without the

distraction of syntax errors and in a way such that every part of their

program’s execution is visible to them (we didn’t cover the topic of

variables). Crucially, the mapping from their program code to an

observable execution model is very straightforward. To the extent

that other existing or future environments meet these criteria, we

believe they would work effectively, too. The key is that students

have control over a basic programming interface that manages

cognitive load enabling them to focus solely on core computational

concepts.

Instructor Recommendations. Specifically because the technical

content of this course matches that of typical introductory

programming courses, it is especially important for the instructor

to stay focused on the GE goals of the course. It is challenging to

change one’s habits from rewarding and assessing success in

creating programs to success in analyzing and communicating

about programs. How does this challenge play out in class? While

clicker questions in class may ask students to select a line of code

to complete a program, or to read a program and select a description

of what the code does – the manner in which the instructor must

interpret students' clicker votes to the question must reflect the goal

of analysis, not correctness. Even if more than 95% of the class

gets a question correct, that doesn’t mean that students have a

thoroughly correct understanding of why the answer is right.

Moreover, they must still be given the opportunity to practice

This is a pre-publication version of this paper.

discussion of the question, providing their explanations to each

other, engaging in interactive questioning and justification, and

modeling for each other methods of thinking about the problem. In

class-wide discussions, as many students as possible should be

asked to explain in their own words, both why the correct answer

is correct, but also how they figured out the other answers were

wrong.

Even more challenging for the instructor is to consider completely

different kinds of questions than one traditionally asks on

introductory programming exams; questions that ask what is the

best explanation of why something is (e.g. why do we used a

counted (for) loop instead of a while loop) and even questions (on

exams) that ask students to not only give an answer, but to explain

their analysis that led them to that answer. Testing whether

students can merely “write code”, with no other explanation or

analysis required, seems to be of limited importance.

4.4 General Education First: An Issue of

Equity?
From our experiences of deep reading of students’ reports on the

impact of the class, we propose that one feature underlies many of

our coded categories: the experience of coming to a new

understanding of what a computer is and how one can interact with

it. Overall students seem to grasp that computers are:

1. Deterministic – they do what you tell them to do

2. Precise – they do exactly what you tell them to do, and

3. Comprehensible – the operation of computers can be

analyzed and understood.

Is it possible that this visceral understanding (compared to

acceptance of telling or quasi-belief) lies at the core of the

development of computational thinking skills? Moreover, if one

does not yet have this core understanding (as it seems many of our

highly-selected college students did not), what is the impact of, for

example, a CS Unplugged activity on cryptography, or a course on

using Excel effectively for data analysis?

Author Cutts has extensive experience of working with Scottish

school teachers and pupils to instill discipline-appreciation through

activities similar to those found in CS Unplugged. From his

experiences, students may overwhelmingly report increased

excitement or interest from these experiences, but measurements of

learning reflect a range of abilities – including a large portion of

students who seemed to have missed even the basic points of the

session. This is reflective of learning reports in introductory

computing courses. Even in those courses (perhaps CS0) targeted

to work with students of any ability, the performance gap for some

students seems unassailable. Every instructor has anecdotes of

students trying earnestly to master programming, but still failing, if

not the course, then failing to develop deep understanding of the

core concepts. It is only natural, given repeated experiences, that

this may lead instructors to adopt a fixed mindset regarding some

students’ abilities to program. The myth of the programming gene

is not so easily dismissed by any experienced instructor.

We posit that lack of understanding that computers are

deterministic, precise and comprehensible may be a key factor

leading many to struggle, seemingly in vain. Certainly, many

students might enter our courses lacking this belief. But some may

come to develop it on their own and others may simply be willing

to accept yet more incomprehensible magic in the process of

programming. We suggest that only some students, with a possibly

indefinable set of life experiences, enter our classrooms believing

computers can make sense and be reasoned with. Reiterating

Turkle’s argument [23], as computing has advanced to embrace

“more intuitive” human interfaces, we have likely, in fact, actively

discouraged any attempt to reason about interactions with the

computer.

Core Competencies Before Appreciation. We propose that the

community further study the effect of combinations of general

education and excite or discipline-appreciation courses. Based on

our students’ claims of the confidence and ability they will have in

future engagement with computers and in their increased

understanding of where computing concepts exist in their everyday

technology use, we propose excite and discipline-appreciation

courses will be much more effective when preceded by a GE

computing course. As a comparison, multiplication (let alone any

advanced mathematical concept) is likely a mystery when taught to

students lacking understanding of the concept of addition.

It’s true, as outreach instructors, we may not have as much fun or

personal excitement in teaching a course with the design and goals

as outlined here. Not surprisingly, English teachers usually prefer

to teach specializations such as poetry or Shakespearean Literature

over basic composition. This may be a combination of the fact that

students have already moved a bit up the expertise ladder making

them easier to communicate and work with. It may be because

these courses allow an instructor to better share their passion for a

deeper and more nuanced engagement with their subject. It may be

that students are more likely to be in such courses based on their

own choice, rather than as a requirement. But we suggest that

instructors consider the deeply rewarding contribution that lies in

opening the eyes of all to the skills and attitudes required to live in

the computing age.

Where Have You Left Them? Is 7 weeks of Alice and 2 weeks of

Excel, with a carefully supporting instructional design, sufficient to

define the grounding in the fundamental principles of computation

that Wing and others call for? Perhaps not. This course didn’t even

cover variables. Yet students seem to feel they have been given the

keys to do something useful, something meaningful – with an

absolute minimum subset of computational elements. Given more

than 10 weeks, one can start to prioritize more experiences or

understandings we want all citizens to have. However, without

starting with programming first, these efforts will be hamstrung.

We look with interest to those seeking to adopt and expand this

curriculum to see what next makes the most contribution to GE

outcomes. Interestingly, by the end of this course, students not only

change their views on computing, but they get a significant

springboard into traditional introductory programming education.

In the short term, this seems a valuable component of any

computing course taken by many.

5. Conclusions
We encourage the community to consider the needs of a GE

curriculum in computing – in contrast to and in conjunction with

courses designed to interest students in the field. We provide an

example of engaging best-practice pedagogy in teaching a

supportive programming language (e.g. Alice) and see that students

report gaining long-term skills and confidence as a result of the

course, outcomes that we view as core for a GE in

computing. Based on our experiences, we hypothesize that GE

computing courses should be taken before other computing

courses: including application skills courses, excite courses, or

more mainstream programming courses. Moreover, we posit that

doing so is a key matter of improving the equity of access to

learning in those courses. We encourage the computing education

community to engage with GE courses that lift the veil of secrecy

and elitism from the field and use of computing.

This is a pre-publication version of this paper.

6. ACKNOWLEDGMENTS
This work is supported, in part, by the National Science

Foundation, grant CNS-0938336, and, in part, by the UK's HEA-

ICS. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation or

the HEA. The authors are grateful to Sally Fincher and Steve

Draper for their support.

7. REFERENCES
[1] Bell, T., Alexander, J., Freeman, I. and Grimley, M. 2009.

Computer Science Unplugged: School Students Doing Real

Computing Without Computers. New Zealand J of Applied

Computing and Information Technology, 13(1), 20-29.

[2] Bennett, S., Maton, K. and Kervin, L. 2008. The 'Digital

Natives' Debate: A Critical Review of the Evidence. British

J. Educational Technology, 39(5), 775-786.

[3] Brown, J.S., Collins, A. and Duguid, P. 1989. Situated

Cognition and the Culture of Learning. Educational

Researcher, 18(1) 32-42.

[4] Cooper, S. 2010. Personal communication.

[5] Cooper, S., Dann, W. and Pausch, R. 2000. Alice: a 3-D tool

for introductory programming concepts. J. Computing

Sciences in Colleges. 15(5) 107-116.

[6] Craig, S., Chi, M. and VanLehn, K. 2009. J. Educational

Psychology, 101(4), 779-789.

[7] Crouch, C. and Mazur, E. 2001. Peer Instruction: Ten years

of experience and results. Am. J. Physics. 69 (9) 970-977.

[8] CS Principles website: http://csprinciples.org

[9] Cutts, Q., Brown, M., Kemp, L. and Matheson, C. 2007.

Enthusing and informing potential computer science students

and their teachers. ACM SIGCSE Bulletin 39(3), 196-200.

[10] Henriksen, P. and Kolling, M. 2004. Greenfoot: Combining

Object Visualisation with Interation. Companion to 19th

annual ACM SIGPLAN conference on Object-oriented

programming systems, languages and applications, 73-82.

[11] Information and Communications Technology: 5-14

National Guidelines. 2000. Learning and Teaching Scotland.

[12] Karpicke, J. and Blunt, J. 2011. Retrieval Practice Produces

More Learning than Elaborative Studying with Concept

Mapping. Science Vol 331, no. 6018, 772-775.

[13] Mazur, E. 1997. Peer Instruction: A User's Manual. Prentice

Hall, Saddle River, NJ.

[14] Mitchell, A, Purchase, H.C. and Hamer, J. 2009. Computing

Science: What do Pupils Think? Proc. 14th annual ACM

SIGCSE conference on Innovation and Technology in

Computer Science Education, 353.

[15] Moskal, B., Lurie, D. and Cooper, S. 2004. Evaluating the

Effectiveness of a New Instructional Approach. Proc. 35th

SIGCSE technical symposium on computer science

education, 75-79.

[16] Papert, S. 1980. Mindstorms: Children, Computers and

Powerful Ideas. Basic Books, New York.

[17] Prenksy, M. 2001. Digital natives, digital immigrants. On the

Horizon, 9(5), 1–6.

[18] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.

Silver, J., Silverman, B. and Kafai, Y. 2009. Scratch:

Programming for All. Comm. ACM 52(11), 60-67.

[19] Royal Society. 2010. Current ICT and Computer Science in

Schools – Damaging to UK's Future Economic Prospects?

Press release.

[20] Simon, B., Esper, S. and Cutts, Q. 2011. Experience Report:

an AP CS Principles University Pilot. Technical Report

CS2011-0965. University of California at San Diego.

[21] Simon, B., Kohanfars, M., Lee, J, Tamayo, K., Cutts, Q.

2009. Experience report: Peer instruction in introductory

computing. Proceedings of the 41st SIGCSE technical

symposium on computer science education, 341-345.

[22] Teasley, S. 1997. Talking About Reasoning: How Important

is the Peer in Peer Collaboration? In Discourse, Tools, and

Reasoning: Essays on Situated Cognition. Springer-Verlag,

Berlin, 361-384.

[23] Turkle, S. 2003. From Powerful Ideas to PowerPoint. J.

Research into New Media Technologies, 9(2), 19-28.

[24] Wing, J. 2006. Computational Thinking. Comm. ACM 49(3),

33-35.

http://csprinciples.org/

