
Duquesne University
Duquesne Scholarship Collection

Electronic Theses and Dissertations

Fall 1-1-2016

Attitudes of Pre-service Teachers Toward
Computational Thinking in Education
Bekir Mugayitoglu

Follow this and additional works at: https://dsc.duq.edu/etd

This One-year Embargo is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact
phillipsg@duq.edu.

Recommended Citation
Mugayitoglu, B. (2016). Attitudes of Pre-service Teachers Toward Computational Thinking in Education (Doctoral dissertation,
Duquesne University). Retrieved from https://dsc.duq.edu/etd/58

https://dsc.duq.edu?utm_source=dsc.duq.edu%2Fetd%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd/58?utm_source=dsc.duq.edu%2Fetd%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phillipsg@duq.edu

ATTITUDES OF PRE-SERVICE TEACHERS TOWARD COMPUTATIONAL

THINKING IN EDUCATION

A Dissertation

Submitted to the School of Education

Duquesne University

In partial fulfillment of the requirements for

the degree of Doctor of Education

By

Bekir Mugayitoglu

December 2016

Copyright by

Bekir Mugayitoglu

2016

 iii

ATTITUDES OF PRE-SERVICE TEACHERS TOWARD COMPUTATIONAL

THINKING IN EDUCATION

By

Bekir Mugayitoglu

Approved October 24, 2016

Joseph Kush

Professor of Instruction and

Leadership in Education

(Committee Chair)

David D. Carbonara

Assistant Professor of Instruction and

Leadership in Education

(Committee Member)

Gibbs Kanyongo

Associate Professor of Foundations and

Leadership

(Committee Member)

Cindy M. Walker

Dean and Professor

School of Education

Misook Heo

Director, Doctoral Program in

Instructional Technology

 iv

ABSTRACT

THE ATTITUDES OF PRE-SERVICE TEACHERS TOWARD COMPUTATIONAL

THINKING IN EDUCATION

By

Bekir Mugayitoglu

December 2016

Dissertation supervised by Dr. Joseph Kush

The purpose of the study was to examine the attitudes of pre-service teachers

toward computational thinking, before and after an intervention, to convey the

importance of integrating computational thinking into K-12 curricula. The two-week,

course-embedded intervention introduced pre-service teachers, with varying academic

specialties, to computational thinking practices and their utility. The intervention

employed the Scratch programming language tool including Scratch flashcards, everyday

and interdisciplinary examples of computational thinking, and unplugged activities. The

findings indicated that the intervention was an effective new way to convey the value of

computational thinking to all sampled pre-service teachers, no matter their academic

specialties or GPAs. Further research is recommended to investigate potential increases

in pre-service teachers’ own computational thinking skills following from the

intervention.

 v

DEDICATION

To My Dearest Parents, Nese and Mehmet

 vi

ACKNOWLEDGEMENT

Though only my name appears on the cover of this dissertation, a great many

people have contributed to the research on this dissertation.

First, I would like to express my deepest gratitude to my dissertation chair, Dr.

Joseph Kush, for his excellent guidance, caring, patience, providing me with excellent

atmosphere for doing research and also on-going support through communications.

I have greatly benefited from the guidance of the remainder of my dissertation

committee for their insightful comments and encouragement, but also the hard question,

which incented me to widen my research from various perspectives. I would like to thank

to my dissertation committee members: Dr. Carbonara, and Dr. Kanyongo.

Dr. Carbonara was not only my dissertation committee member, but also

tremendously helpful in completing my dissertation and developing the beginnings of my

teaching academic career. He served as a teaching mentor through my doctoral program

based on my dissertation topic.

I would be very remiss if I did not thanks to the generous stipend from my

department allowed me to work with professors who I was research assistant with and

gained experience from: Dr. Kush, Dr. Polat, Dr. Mahalingappa, and Dr. Reis.

 vii

My sincere thanks also goes to Mr. Shoop, Mr. Mckenna, Mr. Friez, and Dr.

Alfieri who provided me an opportunity to join Carnegie Mellon Robotics Academy and

Robomatter as an intern, and who gave access to practice about my dissertation.

 Most importantly, none of this would have been possible without the love and

patience of my family, I would like to thank my family: my parents; Nese and Mehmet,

my brothers; Hakan and Hilmi sister; Dervisan, brother-in-law, Hilmi; sisters-in-law;

Havva and Serife, nieces; Aysenur, Beyza, Elif, and Nisanur, nephews; Mehmet and Efe.

My immediate family, to whom this dissertation is dedicated to, has been a constant

source of love, sacrifice, support and strength all these years. I would like to express my

heart-felt gratitude to my family.

Last but not least, many friends have provided much needed emotional support

and encouragement. Thank you to everyone who has made this dissertation possible.

 viii

TABLE OF CONTENTS

Page

Abstract .. iv

Dedication ..v

Acknowledgement ... vi

List of Tables .. xii

List of Figures .. xiii

Chapter I Introduction ..1

 Definition of Programming Language…………...……………….…………………..1

 Overview of Programming Language………………………………………………...2

 Why K-12 Students……….……………………………………...…………………...2

 Why Pre-service teachers……………………………………………………………..6

 Importance of Educational Programming Language………………...………………5

 Significance of the study………………………………………...…………………...8

 Purpose Statement and Research Questions………………………...……………….8

 Summary………………………………………………………………...………….10

Chapter II Literature Review…………………………………………………………….11

 History of Programming Languages…….…………………………………...……...11

 Punched card machines……………………………………………..……………11

 Object-Oriented Programming Languages………………………………..……..14

 Visual Based Programming Languages…………………………………..……...18

 Report on the Programming Language……….……………………………...….......26

 Learning Theories that Relate to Computational Thinking…………....……………29

 ix

 TABLE OF CONTENTS (continued)

Theory of Behaviorism…………………………………………..………………30

 Theory of Constructivism and Constructionism……...….……………..………..30

 Why Constructionism?...32

 Computational Thinking…...……………………………………………...……….34

 Computational Thinking Concepts…...………………...………………………….37

 Sequences……………………………...……….……………………………….37

 Loops………...……………………………………….…………………………38

 Parallelism……………...………………………………….……………………39

 Events………………………...………………………………….……………...40

 Conditionals………..…………………………………………………..……….41

 Computational thinking practices…..………...…………………………………...42

 Summary……………..…………………………...……………………………….42

 Chapter III Methodology…..……………….…………………………………………...44

 Introduction…….…………………...…………………………………………….44

 Research Questions and Hypothesis…..……...…………………………………...44

 Participants………………..………………...……………………………………..45

 Instruments………………..……………………...………………………………..47

 Procedure………………………..…………………...……………………………49

 Statistical Analysis …..……………………...…………………………..………...51

 Summary………………………………..………………………...……………….51

Chapter IV Results……………………………………………………………………….52

 Introduction……………..……………………...………………………………….52

 x

 TABLE OF CONTENTS (continued)

 Response Rate……………...………...……………...…………………………….52

 Pre-service Teachers’ Demographics………………..…...……………………….52

 Cumulative GPA Responses and Attitudes…….……………....……………….55

 Age and Gender Responses………………..…………………………....……...55

 Research Purpose and Results…………..……………………………………...…55

 First Research Hypothesis….…………………………………………...……...56

 Second Research Hypothesis………….……………………….……..………...59

 Third Research Hypothesis………….………………………,..………………..66

 Fourth Research Hypothesis…….………………………….…..………………73

 Summary………………….………………………………….………...………….79

Chapter V Discussion……………………………………………………………………80

 Introduction………………………………...………………...…………………....80

 Summary of the Procedure…………..……………...……………………………..80

 Summary of the Findings………..……………………...…………………………81

 Research Question One…………..……………………………………………..81

 Research Question Two………………..……………………………………….83

 Research Question Three……………..………………………………………...85

 Research Question Four…………………………..…………………………….88

 Limitations…………………..………………………………………………….…89

 Recommendations for Future Research…………………..……………………….90

 Summary…………………………………………………………………………93

Appendix A: Demographics Survey……………………………………………………104

 xi

TABLE OF CONTENTS (continued)

Appendix B: Pre-Survey & Post Survey………………………………………………..112

Appendix C: Letter of Consent…………………………………………………………113

Appendix D: Module 1 Lesson Plan……………………………………………………116

Appendix E: Module 2 Lesson Plan……………………………………………………121

 Appendix F: Scratch Debugging activities…………………………………………….125

Appendix G: Scratch Cards…………………………………………………………….127

Appendix H: Image Permissions…………………………………………………….…133

Appendix I: Survey Permission……………………….……………………………….136

 xii

LIST OF TABLES

Page

Table 1. Demographics and Attitude Information……………………………………….48

Table 2. Sample Sizes for the Total Population by GPA, Gender, Content Area, and

Race/Ethnicity……………………………………………………………………………54

Table 3. Descriptive Statistics of Mean Scores on Attitudes Following the Computational

Thinking………………………………………………………………………………….57

Table 4. Analysis of Variance of Pre-test, Post-test and Delayed Post-test Attitude Scores

toward Computational Thinking for 3.5. to 4.0 range and 3.0 to 3.49 range GPAs…......61

Table 5. Descriptive Statistics for 3.5 to 4.0 range and 3.0 to 3.49 range GPAs………...62

Table 6. Pre-test, Post-test and Delayed Post-test Mean Scores of Items for 3.5 to 4.0

range GPAs…………………..........……………………………………………………..64

Table 7. Pre-test, Post-Test and Delayed Post-Test Mean Scores of Items for 3.0 to 3.49

range GPAs………………………………………………………………………………65

Table 8. Analysis of Variance of Pre-test, Post-test and Delayed Post-test Attitude Scores

toward Computational Thinking for STEM and non-STEM…………………………….68

Table 9. Descriptive Statistics for STEM and non-STEM………………………………69

Table 10. Pre-test, Post-test and Delayed Post-test Mean Scores of Items for STEM..…71

Table 11. Pre-test, Post-test and Delayed Post-test Mean Scores of Items for

non-STEM………………………………………………………………………………..72

Table 12. Analysis of Variance Pre-test, Post-test and Delayed Post-test Attitude Scores

toward Computational Thinking for Male and Female……………………………..........75

Table 13. Descriptive Statistics for Mean Scores Male and Female…………………….76

Table 14. Pre-test, Post-test and Delayed Post-test Mean Scores of Items………………78

 xiii

LIST OF FIGURES

Page

Figure 1. Punched Card..12

Figure 2. Object-oriented Programming Language……....……………………………...15

Figure 3. Logo and the Turtle……………………………………………………………20

Figure 4. Alice…………………………………………………………………………...21

Figure 5. Scratch…………………………………………………………………………23

Figure 6. Hopscotch……………………………………………………………………...24

Figure 7. ScratchJr……………………………………………………………………….26

Figure 8. Alice Sequences Program Example…………………………………………....38

Figure 9. Hopscotch Loops Program Example……………………………......................39

Figure 10. ScratchJr Paralellism Program Example……………………………………..40

Figure 11. ScratchJr Events Program Example………………………………………….41

Figure 12. Scratch Conditionals Program Example……………………………………...42

Figure 13. Changes in Attitudes Following the Computational Thinking Unit………….58

Figure 14. Changes in Attitudes Following the Computational Thinking Unit with

Respect to GPA…………………………………………………………………………..63

Figure 15. Changes in Attitudes Following the Computational Thinking Unit with

Respect to Content Area…………………………………………………………………70

Figure 16. Changes in Attitudes over the Course of the Computational Thinking Unit

with Respect to Gender………………………………………………………………….77

1

 CHAPTER I

INTRODUCTION

Thinking, playing, and learning are the occupational activities for young learners to apply

in their daily life – in school as well as outside the classroom. However, thinking, playing, and

learning do not often happen in the traditional classroom (Papert, 2005). Programming language

makes it possible for young learners to play while thinking and learning and they learn without

even realizing they are learning. Learning a programming language has been shown to be one

potential solution to assist students develop these skills however many pre-service teachers are

not taught how to teach programming (Basawapatna, Koh, Repenning, Webb, & Marshall, 2011;

Ottenbreit-Leftwich, Glazewski, Newby, & Ertmer, 2010).

Barack Obama has a statement to encourage those American youth to move quickly on

programming, “Don’t just play on your phone, program it”. Brennan and Resnick (2012a) noted

that young learners connect with computer for different reasons such as use social platforms to

chat with their friends, watch various videos on YouTube, read articles on websites, and listen

music, however, they do not have a chance to engage in creating and making via computer.

Definition of programming language

A programming language is a way to communicate ideas in a language between sender

and receiver via codes that computer can understand such as languages that people speak to

communicate with each other - English, Swahili, and Serbo-Croatian (Tipps, 1987). Computers

speak multiple languages just like humans. A programming language is the way to speak to a

computer with instructions that are understandable for both the computer and humans (Briggs,

2012). Programming language is the set of instructions that directs the computer hardware. It is

2

not the hardware, such as the wires, microchips, cards and hard drive, but the program that runs

the hardware (Briggs, 2012).

Overview of Programming Language

Programming languages allow learners to create various projects such as games,

animated stories, online news shows, book reports, greeting cards, music videos, science

projects, tutorials, simulations, and sensor-driven art and music projects (Maloney, Resnick,

Rusk, Silverman, & Eastmond, 2010). Almost all devices are we use on a daily basis are run by

programming languages. If there is a lack of programming, they would completely stop or

function less efficiently. Programming languages are used not just for personally owned

computers but also for video game systems, cell phones, and the GPS, as well as our house

devices we use everyday such as LCD TVs, remote controllers, DVD players, ovens, and

refrigerators. Also, they are used for transportation devices such as car engines, traffic lights,

street lamps, train signals, electronic billboards, and elevators.

Why K-12 students

 Learning computer programming has been shown to have a positive impact on STEM

education (Grover & Pea, 2013; Honey, Pearson, & Schweingruber, 2014). Children who learn

computer-programming skills as part of a STEM curriculum have been shown to experience

benefits to their education. For example, children may not understand or grasp the purpose of

why they do math, as they are involved in the process of creating formulas for their

projects. However, they can do just that with computer programming. Additionally, children are

becoming more familiar, knowledgeable, articulated, and sophisticated about improving formal

systems and are interacting with themselves and doing hands-on activity by thinking (Papert,

3

1980; Papert, 1993). Even for children who do not end up in STEM-related jobs, the inclusion of

STEM curriculum in education will allow students to develop literacy in Science, Technology,

Engineering, and Math and the critical thinking skills that are demonstrated by scientists,

mathematicians, and engineers (Honey, Pearson, & Schweingruber, 2014).

 Over the past decade, STEM-related (Science, Technology, Engineering, and

Mathematics) jobs have increased at a rate greater than ever before (Langdon et al., 2011).

STEM jobs are growing three times as fast as non-STEM jobs, with STEM workers also

experiencing lower rates of unemployment. STEM jobs not only facilitate the growth of the

American economy, but also provide new industries with a way to attract highly qualified

workers. In a global market, STEM jobs pave the way for innovation and cutting-edge

technological advances that make STEM jobs arguably the jobs of the future (Langdon et al.,

2011).

Computational thinking reformulates complex and difficult problems into smaller and

more manageable problems, which make it easier to solve (Wing, 2006). Computational thinking

enhances human thinking by using imaginative ideas to create new things by using the computer

or without computer. Computational thinking impacts many daily living skills and activities.

Computational thinking is the most beneficial source to give children priceless power to invent

and carry out projects with technological devices using through programming language (Papert,

1980). Computational thinking offers opportunities for students to engage in, “solving problems,

designing systems, and understanding human behavior” through the same concepts as found in

programming languages. It is impossible to not be affected by computational thinking while

doing daily work (Voskoglou & Buckley, 2012; Wing, 2008a). Learning computational thinking

4

also teaches individuals problem-solving and logical thinking skills, which can generalize to

many other areas, including reading and writing. However, students who are not strong problem

solvers, despite having taken algebra and pre-calculus, can improve their problem-solving

abilities through engaging in coding. Engaging in computational thinking is shown to increase

the analytical and mathematical problem-solving ability of students (Wing, 2006).

Computer programming is best learned if introduced at a young age (Utting, Cooper,

Ko ̈lling, Maloney, & Resnick, 2010). Children who learn programming languages at an earlier

age are better at problem solving, decision-making, and computational thinking skills (Flannery,

Silverman, Kazakoff, Bers, Bontá, & Resnick, 2013). Additionally, children who learn a

programming language go through a similar process as those children learning a second

language, with these skills leading them to become increasingly fluent with new

technology. Having achieved fluency, children will better be able to express themselves and

start expressing new ideas. It is paramount for coding teachers to begin teaching their students at

an early age as a result of this process so closely mirroring the learning of a second language at

that age. At an early age, children are becoming increasingly familiar with programming through

hands-on and activities, which in turn shape the children’s programming abilities. Moreover, it

provides them with the foundation to explore programming language concepts, practices, and

perspectives. They don’t just learn the basics of programming, but become increasingly

comfortable to use them and transfer these knowledge sets, knowledge, skills, and abilities to

advanced programming, block-based. While learning programming, these children are also able

to have fun exploring, playing, and creating their own products at early age (Wing, 2006).

5

Importance of Educational Programming Language

Learning a programming language provides young learners opportunities to create while

expressing their thoughts, beliefs, and feelings in digital environments (Resnick et al., 2009;

Wing, 2006; Wing, 2008b). With the knowledge, skills and hands-on activities of programming

languages, young learners have a freedom in creating. Creativity skills develop and foster

through programming language when a young learner builds various projects such as animations

and simulations; designs interactive games; or makes a dynamic presentation. With hard work

and practice, young learners build proficiency in their questioning skills and create projects with

their self-expression. In the process of experimenting, young learners put their ideas into action

and learn from their mistakes. For example, young learners are able to create individualized

projects because possibilities are endless, they can create exciting things they want to program.

Young learners not only learn how to do programming, they learn other things with

programming language (Resnick, 2013). For example, having young learners do programming to

learn various contents such as math, science, art and other subject areas. They design games,

simulations, animations, simulations or interactive stories by programming for peers that focus

on the content they are learning. Similarly, utilizing the idea of programming in real life

applications. As telling computer what to do, young learners can help other students learn

procedures by giving peer commands (Wing, 2006). With this knowledge, young learners use

computational thinking skills via concepts (sequence, loops, etc.) practices (testing, debugging,

remixing, etc.), and perspectives to help them in real life. They increase their computational

thinking skills via animations, simulations, dynamic and interactive content presentations,

interactive stories, and games. A programming mindset will help students to tackle complex

6

problems by dividing them into smaller, more manageable sized units. In particular, tinkering

with these activities improves their fluency of computational thinking and problem solving.

Programming is not an end by itself; students can use computational thinking to design

iterative experiences, and become makers of technology products instead of consumers (Brennan

& Resnick, 2013). Young people often do not engage in designing, but they like spending time

on computers to watch videos, participate in social platforms to chat with their friends, and play

games. Learning a programming language will empower young learners to create either their

own project or software, and they will be able to create within an iterative design process

(imagining, creating, playing, sharing, and reflecting). These students may no longer play games

that were designed by somebody else, they would instead design the game they are interested in

playing. Similarly, they would not merely watch an animation that was designed by somebody

else, they will instead design their own personally interesting animations.

Why Pre-service teachers

At the present time, there are not enough teachers available to adequately teach

programming languages to students (Stephenson, 2009; Tondeur, Van, Sang, Voogt, Fisser, &

Ottenbreit-Leftwich, 2012). Programming languages are a part of a Computer Science major, but

Computer Science graduates often prefer not to teach programming languages in the schools

since it pays more to get a job in industry than it does to teach in a K-12 environment. And while

most educators recognize the importance of incorporating programming or computational

thinking into K-12 curricula, most classroom teachers are not adequately prepared to implement

these activities. In fact, 9 out of 10 U.S. K-12 schools don’t offer programming language classes

(Partovi, 2015). To teach K-12 students in the beginning of their elementary school, computer

programmers and software engineers are encouraged to teach them how to write and design

7

source code. According to the Code.org, there will be 1.4 million coding, engineering, and data

mining jobs available by 2020 in the United States. Additionally, programming languages offer

pre-service teachers the chance to become familiar with the essentials of programming concepts,

practices, and perspectives and increases fluency with the thinking process of how to design,

create, and express themselves (Kim et al., 2012). There is research to indicate that after learning

how program, pre-service teachers are more knowledgeable and have more self-confidence (Al-

Bow et al., 2009).

Although students have the opportunity to learn programming through technology and

online resources, the importance of having teachers available cannot be overestimated (Utting,

Cooper, Ko ̈lling, Maloney, & Resnick, 2010). Teachers not only teach and reinforce the

fundamentals of computer programming, but also serve as catalysts to motivate, inspire, and

guide students as they begin their computer programming journeys. Rather than serving as the

sole educational guide, the wide variety of computer-based and iPad-based computer language

programs should serve as supplemental resources in the classroom. Students all learn at different

rates and through different means, which could be addressed through interactive and dynamic

content taught by engaged teachers who are invested in their students. Having programming

experts serving in a teaching capacity allows students access to those who have gone through the

same process before them. As students work through tasks of increasing difficulty, from writing

new code for their projects, to encountering and fixing bugs to run the program successfully,

they need passionate and talented individuals in the field for students to learn programming on

their own with online tutorials, but not everybody learns the same way and dedicated to keep at

programming language. In particular, when students are required to write a new code for their

projects, or encounter bugs to debug it, they subsequently might be less anxious and instead

8

become more passionate and dedicated. For this to occur, these students will need a teacher to

show some hints or clearly explain where the problems are.

Significance of the study

This study examined the ways in which pre-service teachers understood the fundamentals

of programming languages. Specifically, pre-service teachers were asked to design given hands-

on and minds-on, learning activities with the goal of improving their ability to teach

programming languages. Moreover, this research examined how higher education institutions

provided programming course-training for pre-service teachers. It was expected that this study

would assist pre-service teachers in their ability to integrate computational thinking concepts and

practices into their curricula in support local and state school districts mandates.

Purpose Statement and Research Questions

The purpose of this study was to examine whether pre-service teachers attitudes and

understanding would change if they were given computational thinking instruction. To this end,

a computing survey was executed among pre-service teachers. Pre-service teachers were

instructed in the computational thinking unit.

To address this research objective, the following research questions and hypotheses

guided study:

Research Question 1: Can an embedded intervention that teaches about the importance and

utility of computational thinking, change the attitudes of pre-service teachers enrolled in

Instructional Technology courses?

9

H1: There is a statistically significant change in mean attitude scores toward computational

thinking after receiving an embedded intervention on computational thinking within their

Instructional Technology courses (One-way repeated measures ANOVA).

Research Question 2: Would the intervention on computational thinking affect the attitudes of

pre-service teachers differently depending on their GPAs?

H1: The computational thinking intervention will show different patterns of effects that depend

on whether the pre-service teachers in question have 3.5 – 4.0 range or 3.0 – 3.49 range GPAs

(Split-plot repeated measures ANOVA).

Research Question 3: Are the attitude scores of pre-service teachers with STEM concentrations

more subject to change after the computational thinking intervention than are the attitude scores

of pre-service teachers with non-STEM concentrations?

H1: The computational thinking intervention will show different patterns of effects that depend

on whether the pre-service teachers in question have STEM or non-STEM concentrations (Split-

plot repeated measures ANOVA).

Research Question 4: Is the effect(s) of the computational thinking intervention on attitudes

related to the gender of the pre-service teachers?

H1: The computational thinking intervention will show different patterns of effects that depend

on whether the pre-service teachers in question are male or female (Split-plot repeated measures

ANOVA).

10

Summary

Digital media offers children learning environments, like personal, real world,

disciplinary and assessable. “Technology and education,” often means creating gadgets to teach

the something with a little bit twist (Papert, 1980). Technology is not only a way for children to

develop, but also influence and control them to apply for their projects so that they can be

creator, designer, and problem-solver.

 Programming and computational thinking allow them to create their own projects such as

games, animations, and simulations. One reason of why there is less enrollment and diversity in

CS (Computer Science) is that people believe only those people who are skilled at it could

handle it (Burke & Kafai, 2010). Programming languages are difficult to learn and cope with it,

but it can be fun. Most expert programmers are dedicated to learn and passionate about

programming language (Hillegass & Ward, 2013).

11

CHAPTER II

LITERATURE REVIEW

History of Programming Languages

Punched card machines

Prior to the advent of modern programming languages, Herman Hollerith created the first

punched card machine in the late 1880s (Driscoll, 2012; Kaur, Kumar, & Singh, 2014; Trikha,

2010). These machines were designed to encode information within each punched card for the

United States government, which used punched cards for the first time for its census in 1890.

The U.S. Constitution requires a census of its citizens to take place every 10 years, but it the

process of using pen and paper was becoming quite difficult with the growing U.S. population

and the process for conducting a comprehensive census was becoming increasingly difficult. The

solution was to create a punched card system to collect the data, tabulate the count, and sort the

information. Instead of the cumbersome pen-and-paper process, the new process was streamlined

to be completed within a year, with punched card machines used to complete the census.

Hollerith’s design became widely adopted across the country, and has served as the

foundation of modern punched card technology (Allen, 1981; Elgamel & Sarrab, 2014). The first

modern punched card technology began appearing in the late 1950’s, beginning with the

International Business Machines Corporation (IBM)’s development of the Formula Translating

System (FORTRAN). FORTRAN punched card technology was specifically designed for

scientific computing and was used mostly for math, science, and engineering purposes. It was

particularly well-suited for scientific formulas, numerical analysis and technical applications due

to its ability to express the way of complex mathematical functions similar with algorithmic

12

form, efficiently process mathematical equations, and incorporate complex number data type.

Compared to the Hollerith system of the 1880’s, FORTRAN was considered to be more efficient

and easier. It provided punched cards that users could read easily with metal tabulators, because

FORTRAN punched cards had rectangular holes, unlike, the round holed, Hollerith punched

cards which were much more prone to reading errors. A final advantage was FORTRAN’s larger

storage capacity compared with the Hollerith system. FORTRAN had a storage capacity of 12

rows and 80 columns, whereas Hollerith only offered a restricted capacity of 12 rows and 24

columns.

Figure 1. Punched card

Although FORTRAN’s simplicity greatly revolutionized punched card technology, the

design was not conducive to business computing because FORTRAN was not dealing with a

large amount of data (Wiemer, 2011). As a result, the Common Business Oriented Language

13

(COBOL) system was designed to explicitly meet this need. COBOL was created in 1959 by the

Conference on Data Systems Languages (CODASYL) as a simple technology with a greater ease

of use than FORTRAN. COBOL is considered to be a fairly easy to learn due to it containing an

English-like syntax, compared to FORTRAN’s non English-like grammar which made it is

difficult to learn. Additionally, COBOL was considered to be more reliable than FORTRAN,

while managing a larger amount of data information. Despite both systems having similar

processes and portable features, COBOL punched card machines were smaller and faster than the

FORTRAN predecessor. Finally, FORTRAN punched card machines were good at handling

numbers, but was not good at handling input/output like COBOL punched card machines.

Punched card machines were replaced with computers in the 1960s (Black, 2013).

However, the logic behind punched card machines encouraged people to develop object-oriented

programming. Although punched card machines were easier to use in the early days than pen and

paper, it was frustrating for programmers for several reasons. The first concern was that spending

countless hours to locate punched cards and fix bugs was a time consuming process.

Programmers weren’t immediately informed about the bug when a problem occurred in the

sequencing, thus the problems weren’t addressed in a timely way. Also, punched card machines

weren’t suitably efficient to store and transform a large amount of data so it was necessary to

have a large amount of machine memory. In addition, punched cards were vulnerable to repeated

usage and the cards could easily get bent or damaged or the punched holes could become too

large for the machine to read. For all these reasons, punched card machines were gradually

replaced with more contemporary computing methods, such as object-oriented programming

languages.

14

Object-Oriented Programming Languages

Object oriented programming is a language paradigm that one or more entities interact

with one another to create models based on the real world. The goal is to provide reusable

solutions for complex programs (Laffra, Blake, de Mey, & Pintado, 1995; Stroustrup, 1988).

Although they solve same problems, object oriented programming languages are more efficient

and faster than punched card technologies (Severance, 2012). Punch card technology does not

allow the user to see the commands individually, while object oriented languages are written and

shown line by line. This makes the read and write functions much easier for users. Moreover,

debugging is simpler than object-oriented programming. That is, the process of debugging can be

frustrating in punched card machines because if even one card contains an error or is out of

sequence the program will crash. Object oriented languages, in contrast, provide feedback

instantly.

15

Figure 2. Object-oriented programming language

 The object-oriented, programming language movement started in the early 1960s with

Simula-67, which is known as the first object oriented programming language (Perez, Jansen, &

Martins, 2012). Simula-67 was designed and implemented by Dahl, Myhrhaug, and Nygaard at

the Norwegian Computing Center in Oslo particularly for the creation of simulations, computer

graphics, and algorithms. Simula-67 introduced object-oriented programming concepts such as

classes, objects, inheritance, and dynamic binding. When Simula-67 first appeared, it was

elegant, powerful and very useful for software development, but it was too slow for practical use.

Also, it was not open code and considered too complicated and had limited file access. Although

the original concept of object orientation was simple and inspired with Simula-67, it soon gave

way for more advanced, easier to use object-oriented programming languages.

16

Following Simula-67, other well-known object-oriented programming languages

successfully combined the object-oriented approach with procedures such as C++ (Stroustrup,

1988). Simula-67’s object-oriented features were a heavy influence in the development of C++

and later Java object-oriented programming language. Although Simula-67 was a

groundbreaking object oriented programming language, it was not accepted as widely as C++ in

the marketplace. Class structure in Simula-67 helped organize user’s code, but the memory of

program was not enough, so C++ was designed to be simplified and became beneficial with

increased memory of program. In addition, C++ was seen as an improvement over Simula-67 in

terms of making the code easier to get right so it avoided the ambiguities and was less error

prone and easier to understand since semi dependent on machine. C++ was created at Bell

Laboratories by the Danish Computer Scientist, Bjarne Stroustrup in 1983 for the UNIX system

environment. It was so beneficial for programmers to improve the quality of code that reusable

and produced code was easier to write by them. C++ was powerful and useful language created

for specific reasons such as word processors, graphics, and spreadsheets. For this reason, C++ is

a well-known object oriented programming language in worldwide.

Another current, well-known, object-oriented programming language is the

Java programming language that was developed in 1995 by Canadian computer scientist James

Gosling at Sun Microsystems. Java combined many of the features from the object oriented

languages of its time such as Simula-67 and C++ (Singh & Abraham, 2014). For example,

control flow constructs are totally identical in C++ and Java. While C++ is not platform

independent, Java’s object oriented programming language is platform independent, meaning

that the written application or algorithms written for one platform will work just as well on other

17

platforms, such as PC, Windows and Linux. Additionally, Java contains an automatic debugging

module, e.g., “garbage collector” that simplifies the process of cleaning bugs. Moreover, Java

contains a larger library than C++ has a lot undefined behavior than Java so in Java debugging is

significantly easier than C++ because it throws errors immediately and it is easier to trace bugs.

C++. Java is also currently the most widely used object oriented programming language

(Viennot, Garcia, & Nieh, 2014).

Text based programming language environments made major improvements to learning

programming language in comparison to punch-card technology. For example, text-based

programming language provided simplicity with syntax that was similar to English-like so that

programmers could easily read and program it. In addition, it was easier to access with text based

programming than punched card technology because cheaper to afford so that more people had a

chance to learn programming and also took up less space such as punched card machines took up

a whole room. However, text-based programming language was not easy enough for non-

technological people, such as beginners and novice programmers who don’t have any prior

programming knowledge and experience (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). For

all these reasons, text based programming language were slowly replaced with more user

friendly and intuitive technological environment, such as visual based programming languages.

18

Visual Based Programming Languages

The Visual based programming language is a paradigm that allows programmers to create

projects by dragging and dropping blocks of code onto an editing center. As the name implies,

visual based programming relies on GUI (graphical user interface). Its target audience is novice

programmers and most visual based languages introduces the concepts of programming using the

behaviors of simple elements such as movements, turns, loops, etc. Projects can be anything,

such as animated stories, greeting cards, music videos, science projects, simulations, and music

projects (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008).

Visual based programming language provides a more suitable and simpler environment

for young learners to express their interests than text-based programming language (Cooper,

Dann, & Pausch, 2003; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008; Resnick, 2007). In

contrast to text-based programming languages, with visual-based programming languages, users

do not just write tedious lines of code. Instead, they basically snap together a block of codes,

without worrying about unfamiliar symbols such as semicolons, brackets, and parentheses.

Moreover, the visualization of event-based programming is an easier way for children to

understand the importance of events than text-based programming language. For example, as a

program runs, users can observe which command is being executed, because the block of code is

highlighted. Additionally, text-based programming language is complex by nature, and it is often

difficult to debug code after it is written. In contrast, visual-based programming language is

designed to be simple, because block of codes snap together in ways that make sense. Despite

this simplicity, visual based programming language is still a powerful tool (Kelleher & Pausch,

2005). Programming language concepts (sequence, loops, parallelism, events, and conditionals)

and practices (experimenting, iterating, testing, and debugging) are fundamentals of any

19

programming language regardless of whether it is visual based or text based. For this reason,

visual based programming language helps learners to develop an intuitive sense of how

sequences, parallelisms, and debugging work.

Visual based programming languages were inspired by the Logo turtle robot, created by

Seymour Papert, Daniel G. Bobrow, Wally Feurzeig, and Cynthia Solomon in the late 1960s. It

encouraged young learners to explore their ideas visually instead of typing (Bers, 2010; Papert,

1980) and was designed to be usable by both non-programmers and beginner programmers. Logo

incorporated turtle graphics and offered instructions for movement and drawing line graphics

either on the screen or with a small robot called a “turtle”. The underlying rationale behind Logo

was to understand the turtle’s motion by asking users to imagine what they would do if they were

a turtle.

20

Figure 3. Logo and the Turtle

 All visual based programming languages originated from Logo, but each language has

developed its own strengths and weaknesses, while still sharing some core commonalities. Late

in the 1990s, a second visual based programming language was designed for novices who have

little or no prior programming background by a research team at the CMU led by Randy Pausch

(Dann et al., 2012). Alice allows novice learners to create games and animations with drag-and-

drop blocks in an intuitive and user-friendly environment. Alice is an interactive 3-D graphical

model and terrain visual programming language environment that lets users to drag and drop

graphical tiles to create programs. The graphical tiles consist of the statements for the programs.

Users have the options to pick the characters that occur on the stage, and then users add various

rules to each character to build its behaviors, moves, and directions. The Alice programming

environment was designed for several reasons: to teach programming concepts and theory, to

support object-oriented flavor, and to encourage people to do programming with storytelling for

21

novice programmers and to complete programming practices such as sequencing, parallelism,

automation, multimedia, program logic. Functions of Alice were built and inspired by object

oriented programming language (Cooper, Dann, & Pausch, 2003). Logo was a powerful and

fairly advanced programming language in its time, but it was often viewed as intimidating, not

kid-friendly, and partly text-based so children and novice programmers were still had to worry

about syntax error since spelling. In addition, Turtle was the only character, which was not

interesting for some users and didn’t give them a chance to choose different characters to design

various projects. However, Alice made it easier and allowed users to choose the characters they

wanted. Moreover, Logo had a few activities that users were limited to and it was not connected

with their interests, needs and experience; for example, drawing simple geometric shapes. In

contrast, Alice allowed users to do whatever they were willing to design that related with their

interest and needs.

Figure 4. Alice

22

Scratch was created shortly after Alice. The Scratch software project was developed by

the Lifelong Kindergarten group at the MIT Media Lab in 2007. Scratch was designed to foster

collaborative work on a web browser platform. Accessing the platform through a web updates

more projects instantly available for users so users always have the latest projects to remix.

Novice programmers can use Scratch with visual block-based and drag-and-drop style to create

animation stories, games, interactive presentations, music videos, and greetings.

 Alice has a similar interface to Scratch, however Alice features slightly more advanced

editing features and blocks of codes, so it is not easier for novice programmers and children to

pick up programming concepts (Cooper, Dann, & Pausch, 2003; Resnick et al., 2009). Scratch is

more widely used than Alice due to its simplified blocks, interface, and 2-D graphical

environment that Scratch took from logo, and also replaced typing code style with a drag-and-

drop block-based technique. Scratch is much easier to use than Alice because most novice

programmers focus on 2-D, rather than 3-D graphical tools and terrain to create, import and

personalize 2-D graphical tools (Burke & Kafai, 2012; Maloney, Resnick, Rusk, Silverman, &

Eastmond, 2010). Moreover, Alice has not yet been translated into other languages so only

English-speakers can use it, however, Scratch has been translated to around 50 different

languages so that not only English speakers can learn, but non-English speakers, too (Resnick et

al. 2009). Scratch allows users to share with other users, whereas Alice users can’t share their

projects with others since it has to be downloaded. Scratch online environment provides

opportunity for users to develop sharing and socialization skills. Users can create their own

projects, but also remix projects shared to the Scratch website by other users. Moreover, users

make comments and answer questions to help other users.

23

Figure 5. Scratch

Hopscotch is one of the first visual, tablet based programming languages. Hopscotch was

designed in 2013 by Jocelyn Leavitt and was inspired by Scratch. The Hopscotch interface is

very similar to Scratch, (e.g., Hopscotch works by dragging and dropping blocks of codes from

the toolbox into the editing center) however, Hopscotch is specifically aimed at empowering and

educating young males and females ages 8 to 12 them to teach how to create games and

animation (Amer & Ibrahim, 2014). Hopscotch lets children share their projects within the

Hopscotch community, which is an online environment where users connect with other users and

write comments about projects. Hopscotch offers colorful blocks of code with which to execute a

program on what is basically a blank slate so that it can be as easy or as difficult as users make it,

but it also works under the assumption that they already know some programming basics.

24

Hopscotch smoothed the way with its kid-friendly interface, pre-built blocks, and tapping

function, unlike Scratch, teaching younger children programming is difficult with computer

interface since pointing and clicking are difficult for them to manipulate (Brennan, & Resnick,

2012b). Moreover, This visual based tablet based programming languages provide value for

younger beginners at various stages of the learning process. Children become familiar with

dragging and dropping coding blocks via various types of input, such as shaking an iPad, tapping

the screen, and tilting the tablet.

Figure 6. Hopscotch

25

Another current tablet based programming language, ScratchJr, was developed by Tufts

University as free source in 2014 (Portelance & Bers, 2015). ScrathJr allows young children

between the ages of 5 to 7 to easily learn programming with a system based on Scratch.

Hopscotch has many noticeable similarities to ScratchJr but also many different features. First of

all, ScratchJr is highly focused on educating younger children who do not even know how to

read and providing them the capability to communicate technologically in the modern world.

Therefore, it is easier to use for young children with ScratchJr the basic skills for programming

concepts, practices and debugging. For example, the graphic interface is very inviting and clear;

the block of codes appears as colored icons that look like a jigsaw puzzle and link them together

so that programs can be created. Colored icons are organized into color-coded categories such as

one group of colored icons controls character looks. However, children have to know how to

read in order to learn programming with Hopscotch. In addition, even though Hopscotch and

ScratchJr are free to download and provide a rich selection of characters, not all characters are

free in Hopscotch. For example, there are five additional characters (Mandrill, Miss Chief,

Mosquito, Jeepers, and Venus) that can be purchased for $0.99 each. Unlike ScratchJr, all

objects are free so that children have more objects to use they are interested in. Moreover,

Hopscotch is available on iPad tablets, while ScratchJr is available on both iPad and Android

tablets.

26

Figure 7. ScratchJr

Report on the programming language

According to the 2015 Searching for Computer Science: A Google Research Report:

Access and Barriers in U.S. K-12 Education report indicates that K-12 teachers, parents,

administrators, and superintendents think it is significant for students to learn programming.

Students and parents also think learning to program helps them to find jobs. Ninety one percent

of parents want their children to learn computer science and programming languages and

approximately 66 percent of surveyed parents believe that computer science and programming

should be mandatory in school, not elective or after school course. Based on U.S. Bureau of

Labor Statistics data, the number of computer and mathematical jobs is expected to increase by

18% in the next 10 years. This means that 1.3 million job openings will be available by 2022.

27

Although K-12 teachers, parents, administrators, and superintendents agree that programming

should be taught in K-12, most students don’t have the opportunity to learn programming at

schools in the United States for several reasons.

First of all, in-service teachers are often not qualified to teach computer science. Most K-

12 in-service teachers either have not participated in a computer science coursework program or

only a little bit of knowledge and experience (Google for Education, 2015; Ragonis, Hazzan, &

Gal-Ezer, 2010). There are two options for qualifying to teach computer science: Earning a

bachelor’s degree in computer science or a relevant degree, or getting a certification. Computer

science majors are qualified to teach, but they often prefer not to teach in K-12 settings as they

typically get paid more at private companies as a programmer or developer. In addition, the

benefits of working as a programmer are attractive since they don’t have to take work home

everyday and also they may receive double the pay. Some teachers are willing to get certified,

but there is no path for them to apply to get certified. Thus, they don’t know how to get

certification for teaching computer science.

Moreover, school districts don't offer extensive training for their teachers who lack

computer science skills since they don’t have enough money. Therefore, teachers are not able to

learn necessary computer science skills to teach their students computer science. Teachers are

asked by administrators to teach programming to their students even if they aren’t trained. Thus,

teachers don’t know how to teach programming language, they don’t know what programming

language to teach based on their grade level, and they don’t know how to engage and motivate

their students.

28

In addition, computer science courses are not mandatory at schools. Students are offered

computer science courses as an elective or after school activity. Because computer science isn’t

one of the required courses for the graduation, students who take computer science don’t pay the

same attention as students who take core courses such as math, science, and social studies.

Making computer science courses a mandatory rather than an elective or after school activity is a

gateway to computer science and computer science related jobs. Additionally, mandatory

computer science courses provide a great opportunity for schools to meet the STEM (science,

technology, engineering, mathematics) requirements.

 Next, there are not enough computers and tablets for students and teachers to access

computer technology at home and school due to the shortage in budgets. In particular, poor

districts don’t have enough money to buy computers. Due to students not having computers and

tablets, they don’t have opportunities to explore programming language tools. Not only that,

teachers don’t have computers and tablets to access, in and out of school, to practice

programming before teaching their students. Without this practice, teachers don’t have a chance

to create hands-on activities and see sample projects. They also don’t have an opportunity to

access important resources to share with their students, such as programming language flash

cards, quizzes, and articles.

In addition to that, there are inequalities between students’ economical situations. In

particular, underrepresented groups such as women, lower-income, Hispanic and black students

have less access to computer science out of school than white students. Moreover, Hispanic and

black students have less opportunity to access the Internet out of the classroom setting than white

students. In particular, underrepresented groups are not able to get resources, activities, and

29

sample projects. For these reasons, underrepresented groups are not provided with computer

science out of classroom settings. Therefore, underrepresented groups are much less likely than

white males to major in STEM or STEM-related fields. Women especially are underrepresented

in most science, technology, engineering and mathematics majors (Google for Education, 2015;

Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014).

Finally, programming is not taught as a part of computer science class in K-12 since it is

not part of computer science curriculums. Most computer science classes are not taught

programming, but basic computer keyboarding skills such as Microsoft word and Microsoft

power point rather than programming language. Therefore, computer science curriculums focus

on how to use software tools, but computer science curriculums don’t focus on creating, making,

and designing new projects such as animations, simulations, and games.

Learning Theories that Relate to Computational Thinking

Learning theories (behaviorism, constructivism, and constructionism) are sets of ideas to

explain pedagogical approach to effectively and efficiently teach students how to think

computationally while programming (Bers, 2008; Brennan, & Resnick, 2012a; Stetsenko, &

Arievitch, 2004; Vygotsky, 1978; Wing, 2006). According to these theories, students

automatically engage in computational thinking while programming. Moreover, these

theories help teachers encourage students to use tangible programming language tools and

intangible computational thinking steps. Therefore, these theories demonstrate how

computational thinking and programming language tools can be used and taught to students in

classroom environments.

30

Theory of Behaviorism

Behaviorism is a learning theory that frames learners as passive recipients of stimuli, who

are responding the environmental in the process of learning (Cautili, Rosenwasser, & Hantula,

2003). Behaviorism was coined by John Watson in 1913 and then popularized by B. F. Skinner

in 1948. According to behaviorism, learners begin life with a tabula rasa or blank slate. This

means that the mind lacks experience, so learners have a fresh start. Behavior can be impacted by

both positive and negative stimuli provided by the environment. Behaviorism is focused more on

observable behavior, and minimizes the importance of intrinsic processes, such as thinking,

understanding, interpreting and knowing.

In behaviorism, the process of learning and classroom instruction is teacher-centric and

emphasizes rote memorization (Zeidler, 2002). Behaviorism doesn’t encourage learners to

understand concepts deeply, but rather, rewards students that give correct answers when assessed

by teacher. In a behaviorist approach, students practice to avoid giving false answers on drill and

practice activities during class time.

Theory of Constructivism and Constructionism

Behaviorism was replaced by constructivism in the twenty-first century because

it was unable to address intangible computational thinking steps. More importantly, with

constructivism, students become more active in the learning process and were taught to construct

their own understanding and knowledge. In other words, constructivism encourages students to

construct knowledge in their head (Alessi & Trollip, 2001).

 Constructivism, which was first developed by Jean Piaget in the 1930s, asserts that

learners actively construct their own learning experience, understanding, and knowledge

31

(Jonassen, 2000). Constructivism offers a sharp contrast with behaviorism, as the learner is more

actively engaged in the learning process. With a constructivist approach, learners synthesize their

own understanding and knowledge with real life experiences and reflect on them. In the long run,

learners develop their own point of view, and unique interpretation of the world. Constructivism

is a learning theory that builds upon learner’s prior knowledge and experiences (Bednar et al.,

1992; Bers, 2008; Mascolo & Fischer, 2005; Piaget & Indelder, 1969).

 Constructionism is also a theory of “Learning by doing” where the learner relies on tacit

knowledge, such as programing on computers, tablets, program robots (Papert, 1980; Papert &

Harel, 1991; Resnick, Bruckman, & Martin, 1996). The theory of Constructionism was coined by

Seymour Papert in the 1980s. This method focuses on the belief that students learn best when

working on project with peers, learning from their peers, and interacting with the real world.

Constructionism brings both constructivism and tangible programming language tools

into the process of constructing understanding and knowledge and then

thinking computationally (Bers, 2008; Resnick, 2007; Resnick et al., 2009). In particular,

constructionism empowers students in the use of programming language tools so that they can

create and design artifacts based on their interests (Papert & Harel, 1991). Thus, constructionism

encourages students in creative artifacts with the programming tools.

 Both theories of learning believe that individuals create meaning from different

experiences and previous knowledge (Kafai & Resnick, 1996). Constructivism and

constructionism are similar learning theories, but they also have differences. The main difference

between them is that Piaget believes that learning is dependent on the development of mental

functions, however, Papert believes that learning is depend on the development of physical

objects with hands-on activities such as programming, robotics. Hence, Piaget focused on

32

learning process by more mental constructions, Papert focused on learning process more by

physical. According to the Papert (1980), children “learn by doing”, involves collaboration and

interaction between teacher and students that projects can be shared with peers and get feedback

from peers as a way to build meaning. A similarity between two theories, however, is that both

emphasize discovery methods of learning that let learner explore and experience projects by

himself based on their interests. Moreover, students are facilitated and coached by their teacher

while working on their projects instead of getting the correct answer. Therefore, teachers are not

dictating their ideas, but rather discussing them with their students.

Why Constructionism?

The application of behaviorist principles in education began to wane in the twentieth

century, and constructionist principles began to replace behaviorism in the twenty-first century

(Duit & Treagust, 1998; Jenkins, 2000). The principles of behaviorism don’t work well for

computational thinking for several reasons, including the role of the teacher, the role of the

student, and collaborative learning. The principles of constructionism bridge this gap for

students, who can use computational thinking and develop new knowledge with coaching by

teacher with their peers (Honebein, 1996; Papert, 1980; Rummel, 2008).

Behaviorism becomes teacher-oriented (Bush, 2006). In contrast, constructionism can

play an important role for teachers and students in the classroom environment. According to

constructionism, teaching becomes learner-oriented. Learners are active participants, not passive

recipients in the process of learning, therefore offering learners a more active role in the

classroom setting (Fosnot, 1996). Hence, learners are more engaged and motivated (Papert,

1993). In behaviorism, teachers dictate and lecture. Whereas, in constructionism, the teacher

does not give too much information at one time, but acts as facilitator, mentor, and listener

33

(White-Clark, DiCarlo, & Gilchriest, 2008). In this method, the main role of teacher is coaching

for learners through the process of learning (Papert, 1980; 1993). In addition to that, learners are

not creative in the process of learning in behaviorism since they have no chance expressing their

creativity. However, constructionism, learners have a deep understanding and know information

better than behaviorism since constructionism encourages learners to try out new things, and

draw conclusions (Bers, 2008; 2010). In behaviorism, learners are doing what they are told to do

by teacher. The teacher provides the correct answer directly without scaffolding when students

are not able to solve problems. However, in constructionism, if learners are struggling with given

project, teachers don’t give them the right answer directly, but scaffolding them if they have any

problems or questions (Sutton, 2003). This process is known as scaffolding, which is the way

that teachers help students to move from the inability to perform given project to being able to so

through coaching or facilitating (Blake & Pope, 2008; Stetsenko, & Arievitch, 2004; Vygotsky,

1978). For example, a student is struggling to learn how to create a game. By working with

student to teach how to add blocks of code and add a new character, the student is able to learn to

create a game. Therefore, teacher let students make their projects based on their creativity,

imagination, and ideas in constructionism.

Behaviorist teachers give information in front of a classroom to tell students what to do

for specified project and how to design project (Shield, 2000). Each student listens and repeats

what the teacher told them to do step-by-step. Projects are revised based on feedback of their

teacher. Therefore, the students don’t interact with peers to brainstorm and come up with the new

ideas. As opposite to behaviorism, constructionism, the teacher offers opportunities for learners

to work and interact with peers on a collaborative team environment (Draper, 2002; Rogoff,

1994; Slavin, 1990). Teachers encourage learners to work with peers in an authentic

34

environment. Therefore, learners are allowed to interact with each other, exchange big ideas,

share different experiences, and construct meaningful knowledge together. In this environment,

they discuss and debate, connects the dots of project parts, discover new things, and draw

conclusions. For these reasons, the behaviorist approach is not really the most efficient and

beneficial way to teach. However, there is one positive factor of behaviorism that is rote

memorization. There are many strategies of learning, but rote memorization is the best way and

easiest way to learn fundamental terms and facts. Once learners memorize fundamentals, they

are able to use their information for building meaningful learning. For example, memorizing a

bunch of vocabulary words, alphabet or verb forms are the fundamental concepts and terms build

on four skills, speaking, writing, reading and writing for second language learners and also

memorizing the basic math facts in addition, subtraction, multiplication, and division are the

essential ingredients for learners to make an animation.

Computational thinking

Constructivism, constructionism, and behaviorism are the gateways for helping students

learn about computational thinking concepts and steps. But most importantly, constructionism

invites students to participate in creating, making, and designing while programming to think

computationally (Papert & Harel, 1991). Therefore, students have an opportunity to build and

develop a strong mindset. In other words, students develop a deeper understanding of

computational thinking.

The term "computational thinking" was first coined by Jeannette Wing in 2006 (Wing,

2006). The meaning of “Computational thinking involves solving problems, designing systems,

and understanding human behavior, by drawing on the concepts fundamental to computer

science”. Brennan and Resnick (2012a) described computational thinking with dimensions of

35

computational thinking concepts and practices. Computational concepts are the fundamentals of

computational thinking. Computational practices put computational thinking concepts together to

design projects. For example, Computational thinking concepts sequence, loops, events,

parallelism, and conditionals are used for projects to make program runnable with computational

practices such as iterating, debugging, testing, remixing, abstracting.

Computational thinking is the new literacy technique of the twenty-first century to teach

children the process of thinking abstractly. Computational thinking consists of many aspects,

such as problem decomposition, pattern abstraction, and algorithm design (Google for Education,

2015; Wing, 2006). Computational thinking not only plays an important role as a fundamental

part of computer science, but also influences problem solving in all disciplines such as economy,

art, and engineering and in the real-life world (Bundy, 2007).

Wing, Google for Education and The Computing at School (CAS) all addressed how

computational thinking should be approached. Wing created the idea of a computational thinking

approach (Google for Education, 2015; Wing, 2006; Wing, 2008a). However, Google for

Education and CAS builds on Wing’s work in the practical world. They developed a plan to lay

out the steps of computational thinking for integrating into K-12 classrooms (Google for

Education, 2015). Google for Education has four basic steps that include decomposition, pattern

recognition, abstraction, and algorithm design. Additionally, based on CAS, there are six basic

steps that include decomposition, patterns, abstraction, algorithms, logical reasoning, and

evaluation.

CAS and Google for Education are approach computational thinking steps through

similar processes (Google For Education, 2015). However, the numbers of steps are different.

36

Critics argue that the number of steps CAS is better than Department for Education because it is

more deeper. These two extra steps allow students to make a prediction of output and also review

their process.

 The first step of computational thinking is decomposition: taking a big, difficult, and

complex problem and breaking it down into smaller, more manageable sub-problems. When

problems are broken down into smaller pieces, the next step is patterns. This step allows people

to identify common similarities and differences, the next step is abstraction. This step provides

people with a way to create step-by-step techniques for solving problems. Finally, algorithm

design provides significant instructions with a step-by-step solution for a problem and pulling

out significant details to find one solution that applies multiple similar problems. Logical

reasoning allows students to predict what the result will look like after following 4 steps. In

other words, the sequence of instructions will let students know the results. Evaluation allows

students to make sure each step of Computational thinking works well. If the evaluation doesn’t

show what students predicted, it allows students to restart process (Department for Education,

2013).

For example, cargo companies go to several locations to drop off goods for people. When

a company has a bunch of goods that must be delivered to numerous customers, it needs to

effectively and efficiently deliver them. Effectively and efficiently means finding the shortest

route so that the company can travel the shortest time as well. There are too many streets, houses,

offices, and so on. The first aspect of computational thinking, which is decomposition, is the first

step to approach the problem. In the city, there are fifty districts, so it would be difficult to solve

the problem since there are too many districts. The decomposition approach breaks the large

number, fifty districts, into smaller pieces, one district, which is easier to concentrate on. But

37

even one district has too many houses, offices, places, and so on. They need to be abstracted to

ignore irrelevant details and to focus on the key parts. Next aspect of computational thinking is

the creation of a series of instructions for this problem and the solving of similar problems with

other districts. The next aspect of computational thinking is what an output exactly will do. The

final step of computational thinking is if a series of instructions are still not working

appropriately while evaluating, return back the first aspect of computational thinking, which is

decomposition.

Computational thinking concepts

Sequences

 A sequence is a list of code blocks that are put in a specific order to be run by a

computer. As an example, the figure below, presents an Alice project and includes a list of code

blocks. Each block code manipulates the alien based on the sequence. There are

4 code blocks on the list to produce the program. The first action instructs the alien to

say, “Hello”, and the second block code instructs the alien to turn left. After

turning left, the alien turns right. The last block code has the alien disappearing.

38

Figure 8. Alice sequences program example

Loops

A loop allows a programmed sequence of instructions to repeat multiple times.

In the figure below, the project is designed by Hopscotch. The C shape is the

repeat block that lets the character run the same instructions or block code

stack several times based on the number in the blank box. In this example, the

C loop has three blocks in which the instructions “Leave a trail color orange and

10 width”, “Move forward”, and “Turn 60 degrees repeat 6 times” occur in

sequence when the play button is tapped.

39

Figure 9. Hopscotch loops program example

Parallelism

Parallelism allows several tasks to run at the same time. In the figure below,

the project is designed by ScratchJr. There are two green flags for the same character. When the

user clicks the green flag, both instructions start at the same time. Therefore, the sounds play

forever while the giraffe moves 5 pixels 6 at the same

time.

40

Figure 10. ScratchJr parallelism program example

Events

One thing starts happening because another thing is triggered. In the figure below, the

project is designed by ScratchJr. When the yellow fish is tapped by the

user, the yellow fish says, “Hello”. If the yellow fish is not tapped by user, there

is no greeting by the yellow fish.

41

Figure 11. ScratchJr events program example

Conditionals

One thing occurs depending on the situations of other things. In the figure below, the

project is designed by Scratch. The character has four events; when the

right arrow key is pressed, when the left arrow key is pressed, when the up

arrow key is pressed, and when the down arrow key is pressed. Each of them has

a conditional statement which is an “if then” statement. If the user presses the

right arrow, the character moves right. If the user presses the left arrow, the

character moves left. If the user presses down, the character moves down. If the

user presses the up arrow, the character moves up.

42

Figure 12. Scratch conditionals program example

Computational thinking practices

Computational thinking practices allow learners to experiment. They use

computational thinking concepts to arrange a specified instruction.

Computational thinking practices provide learners the opportunity to try the

instruction out to see whether it works or not. Also, learners have an

opportunity to debug the program since it might not be the result he wants.

Summary

I began this dissertation with a history of programming languages. In this history,

computational thinking evolved recently with the research by Jeannette Wing. Computational

thinking is a technique in which, students and teachers use different programming language tools

such as Logo, Alice, Scratch, Hopscotch, and ScratchJr. Computational thinking pushes students

to solve complex problems by working through them with a variety of strategies and steps. This

dissertation was built on constructionist theory principles because computational thinking is the

43

best fit for this theory. This study offered significant information for pre-service teacher

educators exploring computational thinking. In other words, this study could aid teacher

educators who will become the models for students of tomorrow. In addition, this study provided

recommendations for how institutions could provide training in computational thinking for pre-

service teachers. It served as a future reference for teaching programming languages and

computational thinking to pre-service teachers. The following chapters would demonstrate how

this dissertation would help me advance this aspect of the education field and examined the

attitudes of pre-service teachers and their understanding of computational thinking.

44

CHAPTER III

METHODOLOGY

Introduction

This chapter describes the methodology that was used in this study. The research

questions and hypotheses are followed by a description of participants, research instruments, and

procedures that were instituted to carry out the study, and the statistical procedures that were

used to analyze the data. The purpose of this study was to examine pre-service teachers’ attitudes

toward computational thinking.

Research questions and Hypotheses

Research Question 1: Can an embedded intervention that teaches about the importance and

utility of computational thinking, change the attitudes of pre-service teachers enrolled in

Instructional Technology courses?

H1: There is a statistically significant change in mean attitude scores toward computational

thinking after receiving an embedded intervention on computational thinking within their

Instructional Technology courses (One-way repeated measures ANOVA).

Research Question 2: Would the intervention on computational thinking affect the attitudes of

pre-service teachers differently depending on their GPAs?

H1: The computational thinking intervention will show different patterns of effects that depend

on whether the pre-service teachers in question have 3.5 – 4.0 range or 3.0 – 3.49 range GPAs

(Split-plot repeated measures ANOVA).

45

Research Question 3: Are the attitude scores of pre-service teachers with STEM concentrations

more subject to change after the computational thinking intervention than are the attitude scores

of pre-service teachers with non-STEM concentrations?

H1: The computational thinking intervention will show different patterns of effects that depend

on whether the pre-service teachers in question have STEM or non-STEM concentrations (Split-

plot repeated measures ANOVA).

Research Question 4: Is the effect(s) of the computational thinking intervention on attitudes

related to the gender of the pre-service teachers?

H1: The computational thinking intervention will show different patterns of effects that depend

on whether the pre-service teachers in question are male or female (Split-plot repeated measures

ANOVA).

Participants

Participants for this study were pre-service undergraduate students, enrolled in an

Instructional Technology course, within the School of Education, at a private university in the

Eastern, U.S. during the spring semester of 2016. Class size was dependent upon enrollment for

the semester and ranged between 15 to 20 students. Ten classes of pre-service teachers were

invited to participate in the computational thinking unit.

The computational thinking instructional unit was presented to all pre-service teachers in

each of the classes. Pre-service teachers who do not agree to participate in the research aspect of

the project were still participated in the computational thinking unit instruction but were not

46

asked to complete either of the pre- or post-test questionnaires. The purpose of the study was

explained during the first unit instruction and all pre-service teachers received consent forms

indicating that their participation was entirely voluntary and would in no way influence their

grade in the class. Pre-service teachers were also informed that all data collected would maintain

confidentiality and anonymity.

Over the semester’s computational thinking unit, pre-service teachers were instructed for

a total of two 50-minute sessions. Pre-service teachers who withdrew from the Instructional

Technology course during the experimental period or who did not complete the pre- and post-

survey were excluded from the analyzed data.

Participants were asked to give informed written consent form before experimentation

occurs (Appendix C). All participants were instructed that their participation was voluntary and

that they could withdraw at any time. There was no penalty for choosing not to complete the

survey. If they chose not to participate, they were informed that participation in the instructional

component is a course requirement but following this computational thinking instructional unit

they should return blank questionnaires and unsigned consent forms along with the remainder of

the class at the completion of the allotted time. During all aspects of this procedure, the

researcher was present in the classroom to provide the computational thinking instructional unit

and to answer questions related to the research aspect. However, the course instructor was not

present in the room.

The researcher assigned a random number to each participant. The researcher wrote

numbers from 1 to number of participants in the classroom on their surveys. The researcher

handed out pre-test surveys to participants and asked them to note their numbers on the part of

47

survey the marked “code number.” The researcher asked participants to answer the pre-test

questions. When participants have finished, the researcher collected the pre-tests and the

researcher gave them a two-week unit.

At the end of the second week unit, the researcher handed out post-tests and asked

participants to write their code numbers on the top. The researcher reminded participants that

their codes are unknown to the researcher, but they were reminded to use their same unique code

on both the pre- and post-tests. The researcher asked participants to answer the post-test

questions. When participants were finished, the researcher collected post-tests.

Instruments

Two surveys were administered, one survey was focusing on demographics (Appendix

A) and one survey focused on pre-service teacher attitudes (Appendix B). In the first survey, pre-

service teachers were asked to provide demographics information indicating their gender,

race/ethnicity, age, and content area.

In the second survey, pre-service teachers were asked about their attitudes towards

computational thinking; participants completed the survey twice, both before and after

completing the unit. Pre-service teachers completed a single 21-question survey that was

developed by Hoegh and Moskal (2009) and then later a survey was adapted by Yadav,

Mayfield, Zhou, Hambrusch, and Korb (2014). This survey was used to measure teachers’

attitudes toward computational thinking. The paper-based survey contained questions based on a

5-point Likert Scale: “Strongly Agree,” “Agree,” “Neutral,” “Disagree,” and “Strongly

48

Disagree.” The survey has produced a Cronbach’s alpha internal reliability of 0.76 (Yadav,

Mayfield, Zhou, Hambrusch, & Korb, 2014).

Table 1

Demographics and Attitude information

 Construct Operational

Definition

Measurement

Demographic

Variables

 Age How old a student is. Numeric self-report

18 to 24 year

25 to 34 years

35 to 44 years

45 to 54 years

55 to 64 years

65 to older

 Gender What gender a student

self-identifies as.

Male or Female

 Educational specialty The student’s area of

focus for his or her

educational training.

Self-reported

specialty STEM

versus non-STEM.

The researcher made

classification based on

student’s content

areas.

Pre-K4

Interdisciplinary

English

Math

Science

Social Studies

Art or Music

Other (Please specify)

49

GPA The student’s

cumulative average

Value provided by

students

Dependent Variable

 Attitude about

computational

thinking

The degree to which

the survey that has

five categories:

Definition, Comfort,

Interest, Use in

classroom, and Career

future use.

Likert-type scale

(Interval – treated) on

the 21 items

(Computing attitudes

scale)

Procedure

Prior to the initiation of the study, the researcher met pre-service teachers to instruct them

during a two-week computational thinking unit in a required Instructional Technology course

within the School of Education. The researcher synthesized a lesson plan for a two-week

computational thinking unit with Google For Education Computational thinking online lecture

and Scratch Computing Curriculum. The module was presented during the middle of spring

semester, and computational thinking content was not introduced in the earlier lectures.

Computational thinking sessions introduced pre-service teachers to an overview of

computational thinking and also gave them a chance to complete hands-on activities.

The data collection was explained to pre-service teachers first during the initial face-to-

face classroom meeting. The researcher made clear that all participants in the computational

thinking experience would listen to lectures, participate in class discussions, and engage in

hands-on activities as part of the course requirements, but only those who provided written

consent forms would have their data analyzed as part of the research study.

50

Data collected from pre-service teachers were de-identified by the investigator, using

codes and pseudonyms. Pre-service teachers were assigned codes by the researcher for the

purpose of connecting pre- and post-survey results. Names were never collected from any

student participant. Only the researcher had access to codes that connected individual pre-service

teachers to the data.

The researcher explained the purpose of the study, the survey and informed consent form.

For this study, two paper-based surveys were used. Pre-service teachers were asked to respond to

the pre-survey. Participants should be able to complete the surveys in approximately 15 minutes.

Participants were instructed that they can withdraw from the study at any time without penalty or

loss of benefits. All data was coded with an anonymous ID to ensure anonymity and

confidentiality. Participants were not put their names or any identifying information on the

survey. The informed consent form was read instructor to the pre-service teachers and

participants were given time to sing the agreement before proceeding to the surveys. The pre-

service teachers were instructed for a total of two 50-minutes sessions consecutive weeks. At the

end of the two 50-minutes sessions, pre-service teachers were asked to respond to the post-

survey.

Any information obtained from this research was kept confidential. Data and results were

not shared or made public in a way that indicates the identity of the individual pre-service

teachers; only group outcomes were reported. Data about individual pre-service teachers were

not shared with the pre-service teachers, peers or course instructors. It was expected that

information gathered in research became part of a dissertation and subsequent published reports.

In written descriptions and in reports of what was learned from the study, the researcher removed

any information that identifies individuals.

51

Statistical Analysis

 Descriptive statistics were gathered from the study and then analyzed with Statistical

Package for Social Sciences (SPSS) Graduate Pack. The study was based on four research

questions and the analysis of these included descriptive statistics.

Summary

This study examined pre-service teachers attitudes of computational thinking at a private

university in the Eastern, U.S. Pre-service teachers completed surveys that examine attitudes of

computational thinking. After all data has been completed, responses were examined to answer

the research questions. This study of computational thinking findings will help teachers and

researchers.

52

CHAPTER IV

RESULTS

Introduction

The purpose of this study was to examine pre-service teachers’ attitudes toward

computational thinking before and after an intervention that was designed to convey the

importance of teaching computational thinking at the K-12 level. This chapter presents the

results of the statistical analyses seeking to address the four research questions. Included in those

analyses are investigations of the survey responses and pre-service teachers’ demographics.

Results were examined in light of the research hypotheses, and summarized for clarity.

Survey Response Rate

The survey data were collected between February 28, 2016 and April 21, 2016. There

were 167 participants who completed surveys but 48 participants were removed from analyses

because they did not complete all of the required surveys: the pre-survey, post-survey

(immediate), or delayed post-survey. Participants who failed to answer one or two demographic

items were included within overall analyses. This resulted in a total of 119 participants.

Pre-service teachers’ Demographics

The first five survey questions (Appendix A) requested information regarding pre-service

teachers’ demographics: gender, race/ethnicity, age, content area, and cumulative GPA. Only

gender, content area (concentration of study), and cumulative GPA are considered within the

analyses.

53

Table 1 shows participants’ GPAs, genders, and content area. Of the 118 respondents to

the Content area item, 71 respondents from the Pre-K4 pre-service teachers, 21 respondents from

the pre-service English teachers, 12 respondents from the Math pre-service teachers, and 14

respondents from the Social Studies pre-service teachers.

54

Table 2

Sample Sizes for the Total Population by GPA, Gender, Content Area, and Race/Ethnicity

Measure n

GPA 112 39 (3.0 to 3.49)

73 (3.5 to 4.0)

Gender 118 104 females, 14 males

Content area 118 83 STEM 35 non-STEM

Race/Ethnicity

117

110 White

1 African-American/Black

3 Asian/Pacific Islander

1 Hispanic/Latino

1 Multiracial

1 Native American /

American Indian

55

 Cumulative GPA Responses and Attitudes

The last question in the demographic survey asked, “What is your current cumulative

GPA?” and allowed respondents to write in an answer. Because GPA is used as an indication of

academic achievement, pre-service teachers with a 3.5 to 4.0 range GPA were assumed to have a

more positive attitude toward computational thinking than those with a 3.0 to 3.49 range GPA.

Seven participants chose not to give information about cumulative GPA.

Age and Gender Responses

There were more female participants than male participants within this sample. However,

it is roughly proportionate to the numbers of each gender who pursue pre-service studies at the

college. Of the respondents, 88.1% were female and 11.9% were male. One participant chose

not to give information about gender. The small number of male pre-service teachers meant that

analyses of gender differences would need to be considered tentatively. The entire sample

reported their ages to be between 18 and 24.

Research Purpose and Results

To assess the internal consistency of survey responses, Cronbach's alpha was calculated

(alpha = 0.77), which indicated a more than acceptable rate of reliability between responses. That

alpha was also similar to that for the initial use of the survey (alpha = 0.76; Yadav, Mayfield,

Zhou, Hambrusch, & Korb, 2014).

First research hypothesis. Attitude scores were assessed using the attitudes survey and submitted

to one-way repeated measures ANOVA to determine if attitude scores changed between the

56

times prior and immediately after the unit on computational thinking, or between the times

immediately after and three weeks later.

The intervention elicited statistically significant changed in attitude pre-test, post-test,

and delayed-post test, F(2,236) = 15.175, p < .0005. As a result of the computational thinking

unit, it was confirmed there was a statistically significant increased in positive attitudes toward

computational thinking from pre-survey to post-survey. Additionally, there was a second,

statistically significant increase in positive attitudes from the post-survey to the delayed survey.

Table 2 displays measures of attitudes before and after the computational thinking unit for the

pre-service teachers.

57

Table 3

Descriptive Statistics of Mean Scores on Attitudes Following the Computational Thinking

 Pre-test Post-test Delayed-post test

 M SD M SD M SD

Attitudes toward

computational

thinking

70.44

8.48

72.71

8.58

75.31

10.71

58

Figure 13

Changes in Attitudes Following the Computational Thinking Unit

59

Second research hypothesis. A series of split-plot repeated measures ANOVA were performed to

determine if any significant differences between 3.5 to 4.0 range and 3.0 to 3.49 range GPAs

existed among testing intervals. The intervention elicited statistically significant increased in

attitude pre-test, post-test, and delayed-post test. It was confirmed that the patterns of change

differed between participants with 3.5 to 4.0 range and 3.0 to 3.49 range GPAs. For statistical

analysis, this measure was categorized into binary conditions (3.5 to 4.0 range and 3.0 to 3.49

range GPA). The results demonstrated that there was a positive relationship between having a 3.5

to 4.0 range cumulative GPA and a positive attitude toward computational thinking. Whereas

pre-service teachers with both 3.5 to 4.0 range and 3.0 to 3.49 range GPAs increased in their

attitude scores following the unit (pre-survey vs. post-survey), only teachers with 3.5 to 4.0 range

GPAs continued to increase in attitudes from post-test to delayed post-test.

60

Table 3 presents the sums of squares, degrees of freedom, mean squares, and F-ratios for

level for 3.5 to 4.0 range and 3.0 to 3.49 range GPAs. The analysis of variance (ANOVA) for

Pre-Test did not reveal a significant difference [F(1,110) = 2.83, p = 0.095] between 3.5 to 4.0

range and 3.0 to 3.49 range GPAs. Nor did the ANOVA reveal a significant difference between

3.5 to 4.0 range and 3.0 to 3.49 range GPAs for Post-Test [F(1,110) = 3.18, p = 0.077] or for

Delayed Post-Test [F(1,110) = 1.33, p = 0.251].

61

Table 4

Analysis of Variance of Pre-test, Post-test and Delayed Post-test Attitude Scores toward

Computational Thinking for 3.5 to 4.0 range and 3.0 to 3.49 range GPAs

 Sum of

Squares

df Mean

Square

F Sig. ηp
2

Pre-test Between

Groups

186.18

1

186.18

2.83

.095

Within

Groups

7226.24

110

65.69

Total

7412.42 111

Post-test Between

Groups

230.66

1

230.66

3.18

.077

Within

Groups

7983.06

110

72.57

Total

8213.72

111

Delayed

Post-test

Interaction
(GPA*Time)

Error

Corrected

Total

Between

Groups

151.53

1

151.53

1.33

.251

Within

Groups

12524.04

110

113.86

Total

12675.56

336.82

5757.61

111

1

110

336.82

52.34

6.43

.013 .049

 .078

62

Table 5

Descriptive Statistics for 3.5 to 4.0 range and 3.0 to 3.49 range GPAs

 Pre-test Post-test Delayed Post-test

 M SD M SD M SD

3-3.49

GPA

72.48

8.69

74.82

7.90

73.84

10.72

3.5-4.0

GPA

69.78

7.77

71.80

8.82

76.28

10.64

63

Figure 14

Changes in Attitudes Following the Computational Thinking Unit with Respect to GPA.

Note. GPA range 3.0 – 3.49

 GPA range 3.5 – 4.0

64

Table 6 Pre-test, Post-test and Delayed Post-test Mean Scores of Items for 3.5 to 4.0 range GPAs

Item Pre-test Post-test Delayed Post-test

1 3.37 3.50 3.71

2 4.03 4.09 4.25

3 3.66 3.82 3.99

4 3.81 4.03 4.07

5 2.83 2.97 4.07

6 2.71 2.97 3.70

7 3.99 3.89 3.89

8 4.04 3.96 3.99

9 2.93 2.88 3.96

10 2.83 2.94 3.82

11 2.82 3.04 3.00

12 2.70 2.83 2.75

13 2.73 2.96 2.94

14 2.38 2.74 2.68

15 3.68 3.86 3.75

16 3.85 4.01 3.88

17 3.89 3.89 3.81

18 2.97 3.00 3.50

19 3.79 3.60 3.67

20 2.71 2.83 2.82

21 4.04 3.96 4.04

65

Table 7 Pre-test, Post-test and Delayed Post-test Mean Scores of Items for 3.0 to 3.49 range

GPAs

Item Pre-test Post-test Delayed Post-test

1 3.43 3.74 3.51

2 3.95 4.20 4.23

3 3.90 3.90 3.79

4 3.90 4.08 3.97

5 2.87 3.08 3.92

6 3.08 3.18 3.69

7 4.10 4.08 3.69

8 4.08 4.13 3.87

9 2.90 2.77 3.51

10 2.92 2.85 3.56

11 2.97 3.08 2.90

12 2.87 3.05 2.79

13 3.00 3.10 2.85

14 2.85 2.97 2.72

15 4.05 4.05 3.77

16 4.02 4.10 3.82

17 4.05 4.00 3.87

18 2.92 3.13 3.36

19 3.64 4.00 3.46

20 2.92 3.18 2.87

21 4.05 4.15 3.67

66

Third research hypothesis. A series of Split-plot repeated measures ANOVA were performed to

determine if any significant differences between STEM and non-STEM majors existed between

testing intervals. The intervention elicited statistically significant changed in attitude pre-test,

post-test, and delayed-post test. It was confirmed that patterns of change differed between STEM

and non-STEM majors. For statistical analysis, this measure was categorized into binary

conditions (STEM or non-STEM). Whereas both STEM and non-STEM pre-service teachers

increased in their attitudes from pre-survey to post-survey, only the STEM pre-service teachers

increased again from post-survey to delayed post-survey.

67

Table 7 presents the sums of squares, degrees of freedom, mean squares, and F-ratios for

level for STEM and non-STEM. The analysis of variance (ANOVA) for Pre-Test did not reveal a

significant difference [F(1,116) = 3.01, p = 0.085] between STEM and non-STEM. Nor did the

ANOVA reveal a significant difference between STEM and non-STEM for Post-Test [F(1,116)

= 2.60, p = 0.110] or for Delayed Post-Test [F(1,116) = 0.40, p = .530].

68

Table 8

Analysis of Variance of Pre-Test, Post-Test and Delayed Post-Test Attitude Scores toward

Computational Thinking for STEM and non-STEM

 Sum of

Squares

df Mean

Square

F Sig. ηp
2

Pre-test Between

Groups

198.266

1

198.27

3.01

.085

Within

Groups

7638.18

116

65.85

Total

7836.44

117

Post-test Between

Groups

188.48

1

188.48

2.60

.110

Within

Groups

8416.64

116

72.56

Total

8605.12

117

Delayed

Post-test

Interaction
(Content

area*Time)

Error

Corrected

Total

Between

Groups

45.86

1

45.86

.40

.530

Within

Groups

13430.01

116

115.78

Total

13475.87

217.42

6371.90

117

1

116

217.42

54.93

3.96

.050 .027

 .064

69

Table 9

Descriptive Statistics for STEM and non-STEM

 Pre-test Post-test Delayed Post-test

 M SD M SD M SD

STEM

69.81

7.40

71.97

7.21

75.65

9.67

Non-

STEM

72.65

9.62

74.74

11.03

74.28

13.00

Note. STEM = Science, Technology, Engineering, and Math

70

Figure 15

Changes in Attitudes Following the Computational Thinking Unit with Respect to Content Area

Note. STEM = Science, Technology, Engineering, and Math

71

Table 10 Pre-test, Post-test and Delayed Post-test Mean Scores of Items for STEM

Item Pre-test Post-test Delayed Post-test

1 3.38 3.63 3.67

2 4.07 4.16 4.24

3 3.67 3.90 3.89

4 3.82 4.06 4.07

5 2.57 2.69 4.04

6 2.65 2.83 3.77

7 4.05 3.91 3.88

8 4.14 3.99 4.02

9 2.82 2.61 3.75

10 2.75 2.70 3.79

11 2.95 3.02 2.97

12 2.71 2.93 2.71

13 2.73 3.06 2.88

14 2.57 2.87 2.72

15 3.83 3.94 3.82

16 3.97 4.04 3.90

17 3.89 3.97 3.79

18 2.70 2.95 3.42

19 3.73 3.76 3.58

20 2.75 2.97 2.81

21 4.05 3.97 3.90

Note. STEM = Science, Technology, Engineering, and Math

72

Table 11 Pre-test, Post-test and Delayed Post-test Mean Scores of Items for non-STEM

Item Pre-test Post-test Delayed Post-test

1 3.40 3.51 3.54

2 3.86 4.11 4.26

3 3.91 3.71 3.97

4 3.86 3.97 3.94

5 3.48 3.83 3.94

6 3.28 3.57 3.43

7 3.97 4.03 3.74

8 3.86 4.06 3.80

9 3.23 3.43 3.80

10 3.28 3.46 3.43

11 2.77 3.20 2.94

12 2.71 2.77 2.80

13 2.91 2.86 3.00

14 2.48 2.68 2.66

15 3.77 3.77 3.63

16 3.77 4.00 3.74

17 4.08 3.86 3.86

18 3.43 3.37 3.51

19 3.77 3.66 3.62

20 2.80 2.86 2.80

21 4.00 4.03 3.86

73

Fourth research hypothesis. A series of split-plot repeated measures ANOVAs were performed

to determine if any significant differences between genders existed between testing intervals.

The intervention elicited did not lead to any statistically significant changes in attitude pre-test,

post-test, and delayed-post test.

 With only 12 male participants, it was difficult to conclude whether differences were

found between the patterns of change in respect to gender. However, those 12 male participants

did not show significant increases in attitudes at post- or delayed post-surveys. For statistical

analysis, this measure was categorized into binary conditions (male or female).

74

Table 11 presents the sums of squares, degrees of freedom, mean squares, and F-ratios

for male and female. The analysis of variance (ANOVA) for Pre-Test did not reveal a significant

difference [F(1,116) = 1, p = 0.319] between male and female. Nor did the ANOVA reveal a

significant difference between male and female for Post-Test [F(1,116) = 0.241, p = 0.624] or for

Delayed Post-Test [F(1,116) = 1.040, p = 0.310].

75

Table 12

Analysis of Variance of Pre-test, Post-test and Delayed Post-test Attitude Scores toward

Computational Thinking for Male and Female

 Sum of

Squares

df Mean

Square

F Sig. ηp
2

Between

Groups

66.97

1

66.97

1

.319

Within

Groups

7769.47

116

66.98

Total

7836.44

117

Between

Groups

17.87

1

17.87

.241

.624

Within

Groups

8587.25 116 74.03

Total

8605.12

117

Between

Groups

119.76

1

119.76

1.040

.310

Within

Groups

13356.11

116

115.14

Total

Interaction
(Gender*Time)

Error

Corrected

Total

13475.87

182.92

6406.41

117

1

116

182.92

55.23

3.31

.07 .020

 .016

76

Table 13

Descriptive Statistics for Mean Scores Male and Female

 Pre-test Post-test Delayed Post-test

 M SD M SD M SD

Male

72.71

5.68

73.85

8.88

72.50

9.23

Female

70.38

8.44

72.65

8.56

75.61

10.90

77

Figure 16

Changes in Attitudes over the Course of the Computational Thinking Unit with Respect to

Gender

78

Table 14 Pre-test, Post-test and Delayed Post-test Mean Scores of Items

Item Pre-test Post-test Delayed Post-test

1 3.38 3.59 3.64

2 3.99 4.14 4.25

3 3.73 3.84 3.92

4 3.81 4.03 4.04

5 2.82 3.01 4.01

6 2.83 3.04 3.67

7 4.01 3.94 3.84

8 4.05 4.00 3.95

9 2.93 2.85 3.76

10 2.89 2.91 3.68

11 2.89 3.09 2.96

12 2.70 2.87 2.73

13 2.77 2.98 2.90

14 2.52 2.79 2.69

15 3.79 3.89 3.76

16 3.89 4.01 3.86

17 3.93 3.93 3.81

18 2.89 3.07 3.45

19 3.73 3.72 3.59

20 2.76 2.92 2.80

21 4.02 3.99 3.89

79

Summary

This chapter presented statistical analyses of the data collected during a computational

thinking unit in an Instructional Technology course. The data were collected via paper-based

survey with a return rate of 71%. The survey measured pre-service teachers’ attitudes towards

computational thinking, and also asked them to supply demographic information.

A summary of pre-service teachers’ demographics indicated that a majority of the

respondents were female and white. Respondents further indicated various content areas of focus

(Pre-K4, Interdisciplinary, English, Math, Science, Social Studies, Art or Music, and Other).

The results of the study demonstrated that the computational thinking unit’s intervention

increased the attitudes of pre-service teachers both immediately afterward and again after a

three-week interval. This was generally true of both STEM and non-STEM teachers with both

3.5 to 4.0 range and 3.0 to 3.49 range GPAs. However, there was not a secondary increased in

attitudes for those with non-STEM content areas nor 3.0 to 3.49 range GPAs. The small sample

of male pre-service teachers made it difficult to determine whether they follow the same trends.

80

CHAPTER V

DISCUSSION

Introduction

The purpose of this chapter is to summarize and discuss the results of this study of pre-

service teacher perceptions of an intervention aimed at improving their attitudes toward

computational thinking in education. Moreover, this chapter presents the findings as they relate

to previous research literature, important conclusions, and limitations. Finally, the chapter

provides recommendations for further research.

Summary of the Procedure

Within the study, pre-service teachers were invited to participate in an instructional unit

on computational thinking. Undergraduate, pre-service teachers first completed demographic

information and attitude surveys during a regularly scheduled class within their School of

Education curriculum. This first attitude survey (pre-test) asked teachers for their familiarity with

computational thinking. After two subsequent, 50-minute training sessions, participants

completed a second attitude survey (post-test) and then again following a three-week lapse,

completed the third and final attitude survey (delayed post-test).

81

Summary of the Findings

The current investigation was motivated by four research questions. Each of the four

research questions is presented below, along with a summary of the findings.

Research Question One: Can an embedded intervention that teaches about the importance and

utility of computational thinking, change the attitudes of pre-service teachers enrolled in

Instructional Technology courses?

The first research question examined pre-service teachers’ attitudes toward computational

thinking before and after an intervention. Analyses of the responses from the attitude survey

indicated that the intervention was effective in changing the attitudes of the aggregate group or

pre-service teachers toward computational thinking. Specifically, attitude increased from pre-test

to post-test and then again from post-test to delayed post-test. All pre-service teachers started out

at about the same level of attitude generally positive toward computational thinking and ended

with increased attitudes mostly positive toward computational thinking.

Previous research has found that pre-service teachers’ attitudes toward computational

thinking increased following in-service training. Moreover, the current study provided

preliminary evidence that this increase may extend beyond the completion of the instructional

training period. The current findings extended research by Harmbrusch and colleagues (2009),

who found benefits when computational thinking was integrated into a variety of subject areas

for pre-service teachers. In addition, in this study, the computational thinking instructional unit

included Scratch programming language tool, examples of Scratch flash cards, computational

thinking examples, and unplugged activities to all pre-service teachers. This is important because

82

these examples and activities allowed teachers to develop their own computational thinking

skills, as well as gain experience in implementing computational thinking concepts and practices

through the use of the Scratch programming language tool.

Hands-on activities in the current study were aligned with the theory of constructionism

to teach students how to think computationally (Bers, 2008; Brennan, & Resnick, 2012a; Wing,

2006). According to constructionism, students-centered learning in computational thinking while

doing hands-on activities (Papert, 1980; 1993) Additionally, pre-service teachers were becoming

familiar, knowledgeable, articulated, and sophisticated about improving computational thinking

concepts, practices and perspectives and are interacting with peers and doing hands-on activity

by thinking. To date, however, research identifying hands-on activities based on computational

thinking has not previously been completed in a pre-service education program with the

programming language tool Scratch. Therefore, the findings demonstrated a new way to teach

computational thinking with using a programming language tool Scratch to pre-service teachers

who may not have recognized the value of computational thinking before. Moreover, the

constructionist design of this unit empowered pre-service teachers in their use of computational

thinking by fostering their own computational thinking skills through activities that could also be

adapted to meet the needs of their own classrooms. As a result, this theory demonstrates how

computational thinking can be used and taught to students in classroom environments.

83

Research Question Two: Would the intervention on computational thinking affect the

attitudes of pre-service teachers differently depending on their GPAs?

The second research question examined pre-service teachers’ patterns of attitude change

and whether they differed between participants with 3.5 to 4.0 range and 3.0 to 3.49 range GPAs.

In this study, analyses revealed that pre-service teachers with both 3.0 to 3.49 range and 3.5 to

4.0 range GPA showed patterns of attitude increases following the unit. They had generally

positive attitude that increased to mostly positive attitudes, and investigation of this research

question confirmed that the intervention, as intended, increased their attitudes toward

computational thinking.

While past studies have investigated pre-service teachers’ attitudes toward computational

thinking units, no similar research has been conducted to investigate the influence of having a

3.5 to 4.0 range and 3.0 to 3.49 range GPA (Hoegh & Moskal, 2009; Wing, 2006; Wing, 2008b;

Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014). In this study, analyses revealed that 3.5 to

4.0 range and 3.0 to 3.49 range GPAs pre-service teachers showed patterns of attitude increases

from generally positive attitude scores to mostly positive attitude scores following the

instructional unit. The findings revealed that the instructional unit increased the attitudes of all

pre-service teachers, regardless of their GPAs. Moreover, this study found that the instructional

unit worked for all of pre-service teachers equally.

In this study, the developed computational thinking unit included and relied upon

pedagogy derived from constructionism theory, such as project-based learning, which

encouraged the inclusion of 21st century skills within the activities. According to

constructionism, teaching becomes learner-oriented and that was the format of the unit. Learners

84

were actively involved in hands-on activities, and not passively listening in order to learn. That

format offered learners a more active role in the classroom setting (Fosnot, 1996). Additionally,

pre-service teachers could engage with the materials and in the activities without much, if any,

prior knowledge of broader subject matters or even of computational thinking. And so, it is

understandable that pre-service teachers would equally be affected by the intervention, regardless

of their GPAs. Constructionism prescribes hands-on activities and real life experiences within

the classroom. Those types of hands-on activities and real life experiences within the unit could

be engaged in and recognized as important by even novice or lower-performing pre-service

teachers.

Questions 15 and 16 asked specifically about that process. These items are important

because how teachers conceptualize what it means and what is required to integrate

computational thinking skills can positively or negatively affect their attitudes. Question 2 asked

about whether computer applications are necessary to teach computational thinking. This item is

important because teachers might feel reluctant to learn and introduce a new application within

their classrooms. Asked to respond on a five-point Likert scale, Question 15 posed the following

statement: Computational thinking can be incorporated in the classroom by using computers

within the lesson plan. Question 16 posed the following statement: Computational thinking can

be incorporated into the classroom by allowing students to problem solve. Similarly, Question 2

posed the following statement: Computational thinking involves thinking logically to solve

problems. On all three of these items, pre-service teachers’ responses to these questions became

increasingly similar following the intervention, whereas pre-surveys showed some potential

differences in opinion between those with 3.5 to 4.0 range and 3.0 to 3.49 range GPAs. This is

evidence that the intervention helped to define what it means to integrate computational thinking

85

into a K-12 curriculum. It does not mean adding computers or applications to already

challenging classroom schedules. After pre-service teachers with both 3.5 to 4.0 range and 3.0 to

3.49 range GPAs understood that, attitude scores increased for both groups.

Research Question Three: Are the attitude scores of pre-service teachers with STEM

concentrations more subject to change after the computational thinking intervention than are the

attitude scores of pre-service teachers with non-STEM concentrations?

Unlike previous research, this study examined attitudes by pre-service teachers separately

based upon whether their degrees would be in STEM or non-STEM areas of instruction. In this

study, analyses revealed that STEM and non-STEM pre-service raided their generally positive

attitude scores to mostly positive attitude scores following the instructional unit. The intervention

elicited statistically significant changes in attitude pre-test, post-test, and delayed-post test.

Although for the most part, the current study produced expected results, one area of the study

produced different findings for STEM and non-STEM pre-service teachers. One of the most

important findings of the current study was the result of investigating whether the instructional

unit would be as effective for non-STEM pre-service teachers as for STEM pre-service teachers.

The findings revealed that the instructional unit increased the attitudes of all pre-service teachers,

regardless of their concentrations (STEM or non-STEM). Because of the computational thinking

required within STEM fields, it might be supposed that STEM pre-service teachers would have

more positive attitudes toward computational thinking than non-STEM pre-service teachers

have, but both groups raided their generally positive attitude scores to mostly positive attitude

scores following the instructional unit.

86

The current study provides evidence that both STEM and non-STEM pre-service

teachers can be trained to recognize the value of computational thinking practices, and that a

two-week computational thinking unit is enough to do it. It might be better to train pre-service

teachers in computational thinking during their academic work in order for them to be effective

in teaching computational thinking, than it is to train them later in their careers. This is because,

early in their careers, they would then know how to engage students with hands-on activities in

fun and meaningful ways that could promote computational skills and practices. Importantly, it

would be worth investigating whether there is a link between the teacher’s understanding of, and

attitude toward, computational thinking and the attitudes adopted by her/his students.

Constructionism can play a significant role for STEM and non-STEM teachers and their

future students in the classroom setting. It is important to train STEM and non-STEM pre-service

teachers to get enough knowledge of computational thinking and how to integrate it into for their

curriculum, and incorporate it into their classroom activities (Yadav, Mayfield, Zhou,

Hambrusch, & Korb, 2014). It is likely the inclusion of hands-on activities that allowed both

STEM and non-STEM teachers to be recognize the importance of computational thinking

concepts, practices, and perspectives.

Constructionism prescribes hands-on activities like those in the current computational

thinking unit. Those hands-on activities are more common within STEM subjects than in non-

STEM subjects (Bers, 2010; Resnick et al., 2009). So, STEM pre-service teachers might benefit

more than non-STEM pre-service teachers from this computational thinking that employs such

hands-on activities. However, the current findings revealed that it is not the case, that is, both

STEM and non-STEM pre-service teachers were positively influenced by computational thinking

unit.

87

STEM and non-STEM pre-service teachers were asked to react to a statement about their

attitudes toward computational thinking before and after an intervention. In the current study, the

intervention was a computational thinking unit. During the computational thinking unit,

participants were given opportunities to do hands-on activities with Scratch programming

application Questions 2 and 3 of the survey asked specifically about the definition of

computational thinking to make sure the participants understood exactly what computational

thinking means. Pre-service teachers responded to a twenty-one-item survey before and after an

intervention. Question 2 asked them to respond “Strongly agree,” “Disagree,” “Neutral,”

“Agree,” “Strongly agree” to the following: “Computational thinking involves thinking logically

to solve problems,” and Question 2 asked them to respond to the following: “Computational

thinking involves using computers to solve problems.” Before the intervention, both STEM and

non-STEM pre-service teachers responded with less agreement on the definition of

computational thinking, however after the intervention, both groups responded with more

agreement.

Question 10 of the survey asked specifically about the participants’ comfort with

computational thinking. It indicates how comfortable STEM and non-STEM pre-service teachers

are with using computer applications in the classroom. The question asked them to rate (using

the aforementioned scale of “Strongly agree,” “Disagree,” “Neutral,” “Agree,” “Strongly agree”)

the following statement: “I doubt that I have the skills to solve problems by using computer

application.” Before the intervention, both STEM and non-STEM pre-service teachers responded

with less agreement on their comfort with computational thinking and after the intervention, they

responded with more agreement on their comfort with computational thinking.

88

Research Question Four: Are changes in attitude following the unit related to the gender of the

pre-service teacher?

Findings revealed that there were no differences between the male and female pre-service

teachers in this study. However, there were significantly fewer male participants than there were

female participants. The predominance of women in this study is roughly proportionate to the

numbers of each gender who pursue pre-service studies at the college. Of course, the small

number of male pre-service teachers requires the finding of the lack of gender differences to be

considered tentatively.

Female pre-service teachers are role models since in the theory of constructionism they

teach but they learn with and from the children. Role models are fundamental in K-12 students

life, they are seeing their teachers of STEM or STEM-related field. However, Fewer girls are

involved in programming and other types of computational thinking. It is probably true that if

there are more female role models, more girls will get involved in this type of thinking (Google

for Education, 2015; Google-Gallup, 2005; Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014).

Although fewer women currently work in the computer science field, there were more

female students than male pre-service teachers in my study. It is important to note that most of

the pre-service teachers in the classroom were PreK-4 teachers so that this research also indicates

the importance of early age. In particular, early usage has been shown to increase success in

future computing and STEM classes (Cohoon & Aspray, 2006).

Teachers need to be better taught on how to teach computational thinking to their

students. In particular, female pre-service teachers’ attitudes toward computational thinking play

a major role in how best to teach computational thinking for prospective students (Yadav,

Mayfield, Zhou, Hambrusch, & Korb, 2014; Zhao et al, 2001). Teachers play a critical role in

89

each of these areas as they work to maximize learning outcomes in their students by motivating

and engaging them in computational thinking. An exploration of the role of the teacher in

promoting computational thinking among students is therefore an important step towards

building science literacy in our youth. If they have positive attitudes, they have the power to

influence children at an early age on issues regarding computational thinking and programming.

This study should be replicated with more male students, in order to provide generalized results

for a larger pre-service teacher population than the community represented in this study. In

particular, underrepresented groups are not able to get resources, activities, and sample projects.

Limitations

There are several limitations regarding the current study. One limitation is that there were

fewer male pre-service teachers than female pre-service teachers, which is not surprising,

because more women than men are education majors. It would be interesting to repeat this study

with a larger number of male participants, if not equal numbers.

Another potential limitation of this study was that it incorporated only a two-week

computational thinking unit intended to convey the importance of teaching computational

thinking. Thus, the only dependent measure were pre-service teachers’ attitudes toward

computational thinking. Additional measures should have been planned during pre-unit and post-

unit assessments to investigate learning specifically. Did these pre-service teachers also increase

in their own computational thinking, in their abilities to use the programming language of

Scratch, and in their content knowledge of computer science more generally? To sufficiently

foster such learning, a longer exposure would help pre-service teachers to understand more about

computational thinking and would give pre-service teachers more practice with the programming

90

language tool Scratch. This study has shown that a brief intervention can help teachers to

recognize the importance of computational thinking. But a similar unit could focus more on

teaching computational thinking concepts and skills to pre-service teachers. Future research

should examine how best to teach pre-service teachers about computational thinking concepts

and skills in shorter units like this study’s that do not require an entire course.

Broader implementation of this unit is also a concern. This study was of a unit

implemented at a single university by a single instructor. Although it was implemented in several

class sections with different primary instructors and there is not a reason to believe that the pre-

service teachers enrolled at this university are different from pre-service teachers at other

universities, it was a limitation to only have a single instructor for the unit. This study should be

replicated at other universities or in other contexts and with a variety of instructors in order to

provide more reliably generalizable results. It also would add to the validity of the study because

university classrooms are often taught by more than one instructor.

Recommendations for Future Research

To gain a better understanding of how students progress when they have sustained

explicit training in the use of programming languages and computational thinking, a study of

longer duration is recommended. More than two weeks of the computational thinking unit could

provide more examples and activities to pre-service teachers.

Additionally, more time could be spent helping teachers to adopt best practices for

integrating computational thinking into their teaching by having them draft hypothetical lesson

plans in a variety of subject matter domains. Before teaching in their field, pre-service teachers

91

would then be thoroughly familiar with computational thinking through hands-on activities and

ready to integrate such skills into their classrooms. The current findings suggest that the longer

unit should foster more positive attitudes in pre-service teachers but that would need to be

investigated further.

This study should be replicated with a larger male students population, in order to

provide generalized results for a larger pre-service teacher population than the community

represented in this study. Most importantly, it is uncertain whether any differences between male

and female pre-service teachers should be expected, or if the findings from this predominantly

female sample can be assumed to be true of male pre-service teachers as well. A larger, more

male-inclusive sample would help to answer that question.

 It would also be helpful to include in-service teachers in order to compare their attitudes

about the computational thinking with those of the pre-service teachers. Are pre-service teachers

more open to new content, like computational thinking, and in-service teachers are more often

reluctant to introduce new content? Or, is it that this unit makes a compelling case for

computational thinking’s integration into classes and therefore would increase attitudes toward

computational thinking in both pre-service and in-service teachers? Additionally, it would be

interesting to know whether this unit could be expanded to train both pre-service and in-service

teachers to effectively teach computational thinking.

Future studies could also address the impact of computational thinking on students

learning about different programming language tool. This study focused primarily on pre-service

teachers and their use of the programming language tool Scratch. However, there are many

programming language tools that are now being used within classrooms (e.g., ScratchJr, Alice,

92

etc.). This study might be replicated with ScratchJr because many Pre-K- 4 pre-service teachers

are beginning to use ScratchJr. Alternatively, this study could be replicated with Alice for those

secondary pre-service teachers. It would be important to see whether attitudes increase with both

easier programming languages (ScratchJr) and more challenging programming languages

(Alice).

A final recommendation would be to examine pre-service teachers in more qualitative

ways than changes in their attitudes towards computational thinking. It would be interesting to

administer assessments of critical thinking, problem solving, resourcefulness, teaching style

preferences, and other measures that could give a more holistic profile of the pre-service teachers

involved. Is there a range of profiles that predicts better integration/adaptation of computational

thinking into classrooms, or is it that a teacher needs particular characteristics to successfully

implement those changes? An investigation of a wider variety of teachers and these sorts of

measures might begin to answer those questions. If teachers’ attitudes toward computational

thinking factor largely into the motivations for successful integration of computational thinking

skills into classrooms, then this study has already found a short unit that is effective for instilling

more open and positive attitudes.

Summary

The overall purpose of the study was to help pre-service teachers learn about

computational thinking and how it differs from computer science. Moreover, pre-service teachers

increased their awareness and attitudes of computational thinking, explore examples of

computational thinking integrated into their subject areas, and experiment with examples of

93

computational thinking integrated activities for their subject areas with Scratch programming

language tool.

This final chapter presented discussion, recommendations, and limitations of the study

conducted for this dissertation. This was the first known study that used a computational thinking

unit, which includes Scratch programming language, Scratch flash cards, debugging activities

and Harvard CS50 online lecture unplugged activity. The present investigation expanded the

existing research base by using computational thinking unit.

94

REFERENCES

Al-Bow, M., Austin, D., Edgington, J., Fajardo, R., Fishburn, J., Lara, C., Leutengger, S., &

Meyer, S. (2009). Using game creation for teaching computer programming to high

school students and teachers. SIGCSE Bulletin, 41(3), 104-108. ACM.

Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning: Methods and development (3rd

ed.). Boston, MA: Allyn & Bacon.

Allen, F. E. (1981). The history of language processor technology in IBM. IBM Journal of

Research and Development, 25(5), 535-548.

Amer, H., & Ibrahim, W. (2014). Using the iPad as a pedagogical tool to enhance the learning

experience for novice programming students. Proceeding of the Global Engineering

Education Conference (EDUCON), 178-183. doi: 10.1109/EDUCON.2014.6826087

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C., & Marshall, K. S. (2011).

Recognizing computational thinking patterns. In ACM Technical Symposium on

Computer Science Education (pp. 245-250). Dallas, TX: ACM Press.

Bednar, A. K., Cunningham, D., Duffy, T. M., & Perry, J. D. (1992). Theory into practice: How

do we link? In T.M. Duffy, & D. H. Jonassen (Eds.), Constructionism and the

Technology of Instruction (pp. 17-34). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.

Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom.

New York, NY: Teacher’s College Press.

Bers, M. U. (2010). The TangibleK Robotics Program: Applied Computational Thinking for

Young Children. Early Childhood Research & Practice, 12(2).

Black, A. P. (2013). Object-oriented programming: Some history, and challenges for the next

fifty years. Information and Computation, 231, 3-20.

95

Blake, B., & Pope, T. (2008). Developmental psychology: Incorporating Piaget’s and

Vygotsky’s theories in classrooms. Journal of Cross-Disciplinary Perspectives in

Education, 1(1), 59–67.

Brennan, K. (2011). Creative Computing: A design-based introduction to computational

thinking. Retrieved May, 2012, from http://scratched.media.mit.edu/sites/

default/files/CurriculumGuide-v20110923.pdf

Brennan, K., & Resnick, M. (2012a). New frameworks for studying and assessing the

development of computational thinking. Paper presented at the 2012 Annual Meeting of

the American Educational Research Association, Vancouver, Canada.

Brennan, K., & Resnick, M. (2012b). Using artifact-based interviews to study the development of

computational thinking in interactive media design. Paper presented at the 2012 Annual

Meeting of the American Educational Research Association, Vancouver, Canada.

Brennan, K., & Resnick, M. (2013). Imagining, creating, playing, sharing, reflecting: How online

community supports young people as designers of interactive media. In N. Lavigne, & C.

Mouza (Eds.), Emerging technologies for the classroom: A learning sciences perspective

(pp. 253-268). New York, NY: Springer.

Brennan, K., Balch, C., & Chung, M. (2014). Creative Computing. Cambridge, MA: Harvard

Graduate School of Education.

Briggs, J.R., (2012). Python For Children: A Playful Introduction to Programming. San

Francisco, CA: No Starch Press.

Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical

Computing, 1(2), 67-69.

96

Burke, Q., & Kafai, Y.B. (2010). Programming & storytelling: Opportunities for learning about

coding & composition. In Proceedings of the 9th International Conference on Interaction

Design and Children (pp. 348-351). New York, NY: ACM.

Burke, Q., & Kafai, Y.B. (2012). The writers’ workshop for youth programmers: digital

storytelling with Scratch in middle school classrooms. In Proceedings of the 43rd ACM

Technical Symposium on Computer Science Education (pp. 433-438). Raleigh, NC:

ACM.

Bush, G. (2006). Learning about learning: From theories to trends. Teacher Librarian, 34(2), 14-

18.

Cautili, J., Rosenwasser, B., & Hantula, D. (2003). Behavioral science as the art of the 21st

century philosophical similarities between B.F. Skinner’s radical behaviorism and

postmodern science. The Behavior Analyst Today, 4(2), 225.

Cohoon, J.M., & Aspray, W. (Eds.). (2006). Women and Information Technology: Research on

Underrepresentation. Cambridge, MA: MIT Press.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer

science. ACM SIGCSE Bulletin, 35(1), 191-195.

Draper, R. J. (2002). School mathematics reform, constructivism, and literacy: A case for

literacy instruction in the reform-oriented math classroom. Journal of Adolescent and

Adult Literacy, 45, 520-529.

Driscoll, K. (2012). From Punched Cards to “Big Data”: A Social History of Database Populism.

Communication +1, 1(1), 4.

97

Duit, R., & Treagust, D. (1998). Learning in science: From behaviorism towards social

constructivism and beyond. In B. Fraser, & K. Tobin (Eds.), International handbook of

science education (pp. 3-16). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Elgamel, L., & Sarrab, M. (2014). Selection of Programming Languages for Developing

Distributed Systems. World Applied Sciences Journal, 31(10), 1791-1803.

Flannery, L.P., Silverman, B., Kazakoff, E.R., Bers, M.U., Bontá, P., & Resnick, M. (2013).

Designing ScratchJr: Support for early childhood learning through computer

programming. In Proceedings of the 12th International Conference on Interaction Design

and Children. New York, NY: ACM.

Fosnot, C.T. (1996). Constructivism: A psychological theory of learning. In C.T. Fosnot (Ed.),

Constructivism: Theory, Perspectives, and Practice. New York, NY: Teachers College

Press.

Google For Education. (2015). Exploring Computational Thinking. Retrieved from

https://www.google.com/edu/resources/programs/exploring-computational-thinking/

Google-Gallup. (2005). Searching for Computer Science: Access and Barriers in U.S. K-12

Education. Retrieved from http://services.google.com/fh/files/misc/searching-for-

computer-science_report.pdf

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A review of the state of the field.

Educational Researcher, 42(1), 38-43.

Hillegass, A., & Ward, M. (2013). Objective-C Programming: The Big Nerd Ranch Guide.

Atlanta, GA: Big Nerd Ranch.

98

Hoegh, A., & Moskal, B. M. (2009). Examining science and engineering students’ attitudes

toward computer science. Proceeding of the 39th IEEE Frontiers in Education

Conference, 1-6. doi: 10.1109/FIE.2009.5350836

Honebein, P.C. (1996). Seven goals for the design of constructivist learning environments. In B.

Wilson (Ed.), Constructivist learning environments (pp. 11-24). Englewood Cliffs, NJ:

Educational Technology.

Honey, M., Pearson, G., & Schweingruber, H. (2014). STEM integration in K-12 education:

Status, prospects, and an agenda for research. Washington, D.C.: National Academic

Press.

Jenkins, E. W. (2000). Constructivism in school science education: Powerful model or the most

dangerous intellectual tendency? Science & Education, 9, 599-610.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology

Research and Development, 48(4), 63-85.

Kafai, Y. & Resnick, M. (Eds.). (1996). Constructivism in practice: Designing, thinking, and

learning in a digital world. Mahwah, NJ: Lawrence Erlbaum.

Kaur, R., Kumar, P., & Singh, R. P. (2014). A Journey of digital storage from punch cards to

cloud. IOSR Journal of Engineering, 4(3), 36-41.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing

Surveys (CSUR), 37(2), 83-137.

Kim, H., Choi, H., Han, J., So, H. (2012). Enhancing teachers’ ICT capacity for the 21st century

learning environment: three cases of teacher education in Korea. Australasian Journal of

Education Technology (AJET), 28(6), 965-982.

99

Laffra, C., Blake, E. H., de Mey, V., & Pintado, X. (Eds.). (1995). Object-oriented programming

for graphics. Berlin, Heidelberg: Springer-Verlag.

Langdon, D., McKittrick, G., Beede, D., Khan, B., & Doms, M. (2011). STEM: Good jobs now

and for the future (ESA Issue Brief #03-11). Retrieved from U.S. Department of

Commerce Economics and Statistics Administration website:

http://www.esa.doc.gov/Reports/stem-good-jobs-now-and-future

Maloney, J. H., Peppler, K., Kafai, Y.B., Resnick, M. & Rusk, N. (2008). Programming by

choice: Urban youth learning programming with Scratch. In Proceedings of the 39th

SIGCSE Technical Symposium on Computer Science Education (pp. 367-371). New

York, NY: ACM.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The programming

language and environment. ACM Transactions on Computing Education (TOCE), 10(4),

1-15.

Mascolo, M. F., & Fischer, K. W. (2005). Constructivist theories. In Cambridge encyclopedia of

child development (pp. 49-63). Cambridge, UK: Cambridge University Press.

Ottenbreit-Leftwich, A. T., Glazewski, K. D., Newby, T. J., & Ertmer, P. A. (2010). Teacher

value beliefs associated with using technology: Addressing professional and student

needs. Computers & Education, 55(3), 1321-1335.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic

Books.

Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. New

York, NY: Basic Books.

http://www.esa.doc.gov/Reports/stem-good-jobs-now-and-future

100

Papert, S. (2005). Teaching children thinking. Contemporary Issues in Technology and Teacher

Education, 5(3), 353-365.

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36, 1-11.

Partovi, H. (2015). A comprehensive effort to expand access and diversity in computer science.

ACM Inroads, 6(3), 67-72.

Perez, R. E., Jansen, P. W., & Martins, J. R. (2012). pyOpt: a Python-based object-oriented

framework for nonlinear constrained optimization. Structural and Multidisciplinary

Optimization, 45(1), 101-118.

Piaget, J., & Inhelder, B. (1969). The psychology of the child. New York, NY: Basic Books.

Portelance, D. J., & Bers, M. U. (2015). Code and tell: Assessing young children’s learning of

computational thinking using peer video interviews with ScratchJr. In Proceedings of the

14th International Conference on Interaction Design and Children (pp. 271-274). New

York, NY: ACM.

Ragonis, N., Hazzan, O., & Gal-Ezer, J. (2010). A survey of computer science teacher

preparation programs in Israel tells us: Computer science deserves a designated high

school teacher preparation! In Proceedings of the 41st ACM Technical Symposium on

Computer Science Education (pp. 401-405). New York, NY: ACM.

Resnick, M., Bruckman, A., & Martin, F. (1996). Pianos not stereos: Creating computational

construction kits. Interactions, 3(5), 40-50.

Resnick, M. (2007). All I really need to know (about creative thinking) I learned (by studying

how children learn) in kindergarten. In Proceedings of the 6th ACM SIGCHI Conference

on Creativity & Cognition. New York, NY: ACM.

101

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., …

Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60-

67.

Resnick, M. (2013). Learn to code, code to learn. EdSurge. Retrieved from

https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn

Rogoff, B. (1994). Developing understanding of the idea of communities of learners. Mind,

Culture, and Activity, 1, 209-229.

Rummel, E. (2008). Constructing cognition. American Scientist, 96(1), 80-82.

Severance, C. (2012). Bertrand Meyer: Software Engineering and the Eiffel Programming

Language. Computer, 45(9), 6-8.

Shield, G. (2000). A critical appraisal of learning technology using information and

communication technologies. Journal of Technology Studies, 26(1), 71-79.

Singh, J., & Abraham, J. (2014). JAVA Improvised Approach to Java. International Journal of

Research, 1(10), 1138-1144.

Slavin, R. E. (1990). Research on cooperative learning: Consensus and controversy. Educational

leadership, 47(4), 52-54.

Stephenson, C. (2009). IT is a pivotal time for K-12 computer science. Communications of the

ACM, 52(12), 5-5.

Stetsenko, A., & Arievitch, I. M. (2004). Vygotskian collaborative project of social

transformation: History, politics, and practice in knowledge construction. The

International Journal of Critical Psychology, 12(4), 58-80.

Stroustrup, B. (1988). What is object-oriented programming? Software, IEEE, 5(3), 10-20.

102

Sutton, M. J. (2003). Problem representation, understanding, and learning transfer: Implications

for technology education research. Journal of Industrial Teacher Education, 40(4), 47-

63.

Tipps, S. (1987). Beginning with Logo: Terrapin Version. Prentice-Hall. Englewood Cliffs, NJ.

Tondeur, J., Van Braak, J., Sang, G., Voogt, J., Fisser, P., & Ottenbreit-Leftwich, A. (2012).

Preparing pre-service teachers to integrate technology in education: A synthesis of

qualitative evidence. Computers & Education, 59(1), 134-144.

Trikha, B. (2010). A Journey from floppy disk to cloud storage. International Journal on

Computer Science and Engineering, 2(4), 1449-1452.

Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (2010). Alice Greenfoot, and

Scratch—A discussion. ACM Transactions on Computing Education (TOCE), 10(4), 17.

Viennot, N., Garcia, E., & Nieh, J. (2014). A measurement study of Google Play. In The 2014

ACM International Conference on Measurement and Modeling of Computer Systems (pp.

221-233). New York, NY: ACM.

Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computational thinking in a

learning environment. Egyptian Computer Science Journal, 36(4), 28-45.

Vygotsky, L. (1978). Interaction between learning and development. Readings on the

Development of Children, 23(3), 34-41.

White-Clark, R., DiCarlo, M., & Gilcgriest, S. N. (2008). “Guide on the side”: An instructional

approach to meet mathematics standards. The High School Journal, 9(14), 40-44.

Wiemer, S. (2011). Computer history and the movement of business simulations. Proceedings of

the 2011 DIGRA International Conference, 1-7. Retrieved from

http://www.digra.org/wp-content/uploads/digital-library/11310.52587.pdf

103

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008a). Computational thinking and thinking about computing. Philosophical

Transactions of the Royal Society, 366, 3717-3725.

Wing, J. M. (2008b). Five deep questions in computing. Communications of the ACM, 51(1), 58-

60.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking

in elementary and secondary teacher education. ACM Transactions on Computing

Education (TOCE), 14(1), 5.

Zeidler, D. L. (2002). Dancing with maggots and saints: Visions for subject matter knowledge,

pedagogical knowledge, and pedagogical content knowledge in science teacher education

reform. Journal of Science Teacher Education, 13(1), 27-42.

104

APPENDIX A

Demographics

105

106

107

APPENDIX B

Pre-survey & Post-survey

108

109

110

111

(Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014)

112

APPENDIX C

Letter of consent

113

114

115

116

APPENDIX D

Module 1 Lesson Plan

117

118

119

120

121

APPENDIX E

Module 2 Lesson Plan

122

123

124

125

APPENDIX F

Scratch Debugging activities

126

(Brennan, Balch, & Chung, 2014)

127

APPENDIX G

Scratch Cards

128

https://scratch.mit.edu/help/cards/

129

https://scratch.mit.edu/help/cards/

130

https://scratch.mit.edu/help/cards/

131

https://scratch.mit.edu/help/cards/

132

https://scratch.mit.edu/help/cards/

133

APPENDIX H

Image Permissions

134

Permission to use Scratch from Dr. Rusk

Permission to use Alice from Mr. Davidson

135

Permission to use Hopscotch from Mrs. Leavitt

Permission to use ScratchJr from Dr. Bers

136

APPENDIX I

Survey Permission

137

Permission to use Survey from ACM

138

Definition of terms

STEM: Acronym for the fields of science, technology, engineering, and math.

Pre-service teacher: College student who is training to teach, classes provided to student-

teachers before they have any teaching responsibility.

STEM pre-service teachers: Math, Science, and Computer teacher.

Non-STEM pre-service teachers: Special Education, Pre-K4, Language Art, Music, Art, and

Social Studies/History teacher.

Computational thinking: Computational thinking enhances human thinking by using imaginative

ideas to create new things by using the computer or without computer.

Programming language: An artificial language used to write instructions that a computer or tablet

can understand to do programmer wants.

iPad-based language program: Any programming language applications whose action of delivery

is an iPad.

Computer-based language program: Any programming language tools whose action of delivery

is a computer.

Digital media: Computerized tools such as data, animations text, graphics, audio, and video that

can be transferable and publishable a computer through Internet.

	Duquesne University
	Duquesne Scholarship Collection
	Fall 1-1-2016

	Attitudes of Pre-service Teachers Toward Computational Thinking in Education
	Bekir Mugayitoglu
	Recommended Citation

	DISSERTATION OR THESIS TITLE

