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ABSTRACT 

 

THE ATTITUDES OF PRE-SERVICE TEACHERS TOWARD COMPUTATIONAL 

THINKING IN EDUCATION 

 

 

 

By 

Bekir Mugayitoglu  

December 2016 

 

Dissertation supervised by Dr. Joseph Kush 

The purpose of the study was to examine the attitudes of pre-service teachers 

toward computational thinking, before and after an intervention, to convey the 

importance of integrating computational thinking into K-12 curricula. The two-week, 

course-embedded intervention introduced pre-service teachers, with varying academic 

specialties, to computational thinking practices and their utility. The intervention 

employed the Scratch programming language tool including Scratch flashcards, everyday 

and interdisciplinary examples of computational thinking, and unplugged activities. The 

findings indicated that the intervention was an effective new way to convey the value of 

computational thinking to all sampled pre-service teachers, no matter their academic 

specialties or GPAs. Further research is recommended to investigate potential increases 

in pre-service teachers’ own computational thinking skills following from the 

intervention.  
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       CHAPTER I 

 

INTRODUCTION 

Thinking, playing, and learning are the occupational activities for young learners to apply 

in their daily life – in school as well as outside the classroom. However, thinking, playing, and 

learning do not often happen in the traditional classroom (Papert, 2005). Programming language 

makes it possible for young learners to play while thinking and learning and they learn without 

even realizing they are learning. Learning a programming language has been shown to be one 

potential solution to assist students develop these skills however many pre-service teachers are 

not taught how to teach programming (Basawapatna, Koh, Repenning, Webb, & Marshall, 2011; 

Ottenbreit-Leftwich, Glazewski, Newby, & Ertmer, 2010).  

Barack Obama has a statement to encourage those American youth to move quickly on 

programming, “Don’t just play on your phone, program it”. Brennan and Resnick (2012a) noted 

that young learners connect with computer for different reasons such as use social platforms to 

chat with their friends, watch various videos on YouTube, read articles on websites, and listen 

music, however, they do not have a chance to engage in creating and making via computer.   

Definition of programming language 

A programming language is a way to communicate ideas in a language between sender 

and receiver via codes that computer can understand such as languages that people speak to 

communicate with each other - English, Swahili, and Serbo-Croatian (Tipps, 1987). Computers 

speak multiple languages just like humans. A programming language is the way to speak to a 

computer with instructions that are understandable for both the computer and humans (Briggs, 

2012). Programming language is the set of instructions that directs the computer hardware.  It is 
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not the hardware, such as the wires, microchips, cards and hard drive, but the program that runs 

the hardware (Briggs, 2012). 

Overview of Programming Language 

Programming languages allow learners to create various projects such as games, 

animated stories, online news shows, book reports, greeting cards, music videos, science 

projects, tutorials, simulations, and sensor-driven art and music projects (Maloney, Resnick, 

Rusk, Silverman, & Eastmond, 2010). Almost all devices are we use on a daily basis are run by 

programming languages. If there is a lack of programming, they would completely stop or 

function less efficiently. Programming languages are used not just for personally owned 

computers but also for video game systems, cell phones, and the GPS, as well as our house 

devices we use everyday such as LCD TVs, remote controllers, DVD players, ovens, and 

refrigerators. Also, they are used for transportation devices such as car engines, traffic lights, 

street lamps, train signals, electronic billboards, and elevators.  

Why K-12 students 

 Learning computer programming has been shown to have a positive impact on STEM 

education (Grover & Pea, 2013; Honey, Pearson, & Schweingruber, 2014). Children who learn 

computer-programming skills as part of a STEM curriculum have been shown to experience 

benefits to their education. For example, children may not understand or grasp the purpose of 

why they do math, as they are involved in the process of creating formulas for their 

projects.  However, they can do just that with computer programming. Additionally, children are 

becoming more familiar, knowledgeable, articulated, and sophisticated about improving formal 

systems and are interacting with themselves and doing hands-on activity by thinking (Papert, 
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1980; Papert, 1993). Even for children who do not end up in STEM-related jobs, the inclusion of 

STEM curriculum in education will allow students to develop literacy in Science, Technology, 

Engineering, and Math and the critical thinking skills that are demonstrated by scientists, 

mathematicians, and engineers (Honey, Pearson, & Schweingruber, 2014).  

 Over the past decade, STEM-related (Science, Technology, Engineering, and 

Mathematics) jobs have increased at a rate greater than ever before (Langdon et al., 2011). 

STEM jobs are growing three times as fast as non-STEM jobs, with STEM workers also 

experiencing lower rates of unemployment. STEM jobs not only facilitate the growth of the 

American economy, but also provide new industries with a way to attract highly qualified 

workers. In a global market, STEM jobs pave the way for innovation and cutting-edge 

technological advances that make STEM jobs arguably the jobs of the future (Langdon et al., 

2011).  

Computational thinking reformulates complex and difficult problems into smaller and 

more manageable problems, which make it easier to solve (Wing, 2006). Computational thinking 

enhances human thinking by using imaginative ideas to create new things by using the computer 

or without computer. Computational thinking impacts many daily living skills and activities. 

Computational thinking is the most beneficial source to give children priceless power to invent 

and carry out projects with technological devices using through programming language (Papert, 

1980). Computational thinking offers opportunities for students to engage in, “solving problems, 

designing systems, and understanding human behavior” through the same concepts as found in 

programming languages. It is impossible to not be affected by computational thinking while 

doing daily work (Voskoglou & Buckley, 2012; Wing, 2008a). Learning computational thinking 
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also teaches individuals problem-solving and logical thinking skills, which can generalize to 

many other areas, including reading and writing. However, students who are not strong problem 

solvers, despite having taken algebra and pre-calculus, can improve their problem-solving 

abilities through engaging in coding. Engaging in computational thinking is shown to increase 

the analytical and mathematical problem-solving ability of students (Wing, 2006). 

Computer programming is best learned if introduced at a young age (Utting, Cooper, 

Ko ̈lling, Maloney, & Resnick, 2010). Children who learn programming languages at an earlier 

age are better at problem solving, decision-making, and computational thinking skills (Flannery, 

Silverman, Kazakoff, Bers, Bontá, & Resnick, 2013). Additionally, children who learn a 

programming language go through a similar process as those children learning a second 

language, with these skills leading them to become increasingly fluent with new 

technology.  Having achieved fluency, children will better be able to express themselves and 

start expressing new ideas. It is paramount for coding teachers to begin teaching their students at 

an early age as a result of this process so closely mirroring the learning of a second language at 

that age. At an early age, children are becoming increasingly familiar with programming through 

hands-on and activities, which in turn shape the children’s programming abilities. Moreover, it 

provides them with the foundation to explore programming language concepts, practices, and 

perspectives.  They don’t just learn the basics of programming, but become increasingly 

comfortable to use them and transfer these knowledge sets, knowledge, skills, and abilities to 

advanced programming, block-based. While learning programming, these children are also able 

to have fun exploring, playing, and creating their own products at early age (Wing, 2006).  
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Importance of Educational Programming Language 

Learning a programming language provides young learners opportunities to create while 

expressing their thoughts, beliefs, and feelings in digital environments (Resnick et al., 2009; 

Wing, 2006; Wing, 2008b). With the knowledge, skills and hands-on activities of programming 

languages, young learners have a freedom in creating. Creativity skills develop and foster 

through programming language when a young learner builds various projects such as animations 

and simulations; designs interactive games; or makes a dynamic presentation. With hard work 

and practice, young learners build proficiency in their questioning skills and create projects with 

their self-expression. In the process of experimenting, young learners put their ideas into action 

and learn from their mistakes. For example, young learners are able to create individualized 

projects because possibilities are endless, they can create exciting things they want to program.  

Young learners not only learn how to do programming, they learn other things with 

programming language (Resnick, 2013). For example, having young learners do programming to 

learn various contents such as math, science, art and other subject areas. They design games, 

simulations, animations, simulations or interactive stories by programming for peers that focus 

on the content they are learning. Similarly, utilizing the idea of programming in real life 

applications. As telling computer what to do, young learners can help other students learn 

procedures by giving peer commands (Wing, 2006). With this knowledge, young learners use 

computational thinking skills via concepts (sequence, loops, etc.) practices (testing, debugging, 

remixing, etc.), and perspectives to help them in real life. They increase their computational 

thinking skills via animations, simulations, dynamic and interactive content presentations, 

interactive stories, and games. A programming mindset will help students to tackle complex 
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problems by dividing them into smaller, more manageable sized units. In particular, tinkering 

with these activities improves their fluency of computational thinking and problem solving. 

Programming is not an end by itself; students can use computational thinking to design 

iterative experiences, and become makers of technology products instead of consumers (Brennan 

& Resnick, 2013). Young people often do not engage in designing, but they like spending time 

on computers to watch videos, participate in social platforms to chat with their friends, and play 

games. Learning a programming language will empower young learners to create either their 

own project or software, and they will be able to create within an iterative design process 

(imagining, creating, playing, sharing, and reflecting). These students may no longer play games 

that were designed by somebody else, they would instead design the game they are interested in 

playing. Similarly, they would not merely watch an animation that was designed by somebody 

else, they will instead design their own personally interesting animations.  

Why Pre-service teachers 

At the present time, there are not enough teachers available to adequately teach 

programming languages to students (Stephenson, 2009; Tondeur, Van, Sang, Voogt, Fisser, & 

Ottenbreit-Leftwich, 2012). Programming languages are a part of a Computer Science major, but 

Computer Science graduates often prefer not to teach programming languages in the schools 

since it pays more to get a job in industry than it does to teach in a K-12 environment. And while 

most educators recognize the importance of incorporating programming or computational 

thinking into K-12 curricula, most classroom teachers are not adequately prepared to implement 

these activities. In fact, 9 out of 10 U.S. K-12 schools don’t offer programming language classes 

(Partovi, 2015). To teach K-12 students in the beginning of their elementary school, computer 

programmers and software engineers are encouraged to teach them how to write and design 
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source code. According to the Code.org, there will be 1.4 million coding, engineering, and data 

mining jobs available by 2020 in the United States. Additionally, programming languages offer 

pre-service teachers the chance to become familiar with the essentials of programming concepts, 

practices, and perspectives and increases fluency with the thinking process of how to design, 

create, and express themselves (Kim et al., 2012). There is research to indicate that after learning 

how program, pre-service teachers are more knowledgeable and have more self-confidence (Al-

Bow et al., 2009).   

Although students have the opportunity to learn programming through technology and 

online resources, the importance of having teachers available cannot be overestimated (Utting, 

Cooper, Ko ̈lling, Maloney, & Resnick, 2010). Teachers not only teach and reinforce the 

fundamentals of computer programming, but also serve as catalysts to motivate, inspire, and 

guide students as they begin their computer programming journeys. Rather than serving as the 

sole educational guide, the wide variety of computer-based and iPad-based computer language 

programs should serve as supplemental resources in the classroom. Students all learn at different 

rates and through different means, which could be addressed through interactive and dynamic 

content taught by engaged teachers who are invested in their students. Having programming 

experts serving in a teaching capacity allows students access to those who have gone through the 

same process before them. As students work through tasks of increasing difficulty, from writing 

new code for their projects, to encountering and fixing bugs to run the program successfully, 

they need passionate and talented individuals in the field for students to learn programming on 

their own with online tutorials, but not everybody learns the same way and dedicated to keep at 

programming language. In particular, when students are required to write a new code for their 

projects, or encounter bugs to debug it, they subsequently might be less anxious and instead 
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become more passionate and dedicated. For this to occur, these students will need a teacher to 

show some hints or clearly explain where the problems are.    

Significance of the study 

This study examined the ways in which pre-service teachers understood the fundamentals 

of programming languages. Specifically, pre-service teachers were asked to design given hands-

on and minds-on, learning activities with the goal of improving their ability to teach 

programming languages. Moreover, this research examined how higher education institutions 

provided programming course-training for pre-service teachers. It was expected that this study 

would assist pre-service teachers in their ability to integrate computational thinking concepts and 

practices into their curricula in support local and state school districts mandates. 

Purpose Statement and Research Questions 

The purpose of this study was to examine whether pre-service teachers attitudes and 

understanding would change if they were given computational thinking instruction. To this end, 

a computing survey was executed among pre-service teachers. Pre-service teachers were 

instructed in the computational thinking unit. 

To address this research objective, the following research questions and hypotheses 

guided study:  

Research Question 1: Can an embedded intervention that teaches about the importance and 

utility of computational thinking, change the attitudes of pre-service teachers enrolled in 

Instructional Technology courses?   
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H1: There is a statistically significant change in mean attitude scores toward computational 

thinking after receiving an embedded intervention on computational thinking within their 

Instructional Technology courses (One-way repeated measures ANOVA). 

Research Question 2: Would the intervention on computational thinking affect the attitudes of 

pre-service teachers differently depending on their GPAs? 

H1: The computational thinking intervention will show different patterns of effects that depend 

on whether the pre-service teachers in question have 3.5 – 4.0 range or 3.0 – 3.49 range GPAs 

(Split-plot repeated measures ANOVA). 

Research Question 3: Are the attitude scores of pre-service teachers with STEM concentrations 

more subject to change after the computational thinking intervention than are the attitude scores 

of pre-service teachers with non-STEM concentrations? 

H1: The computational thinking intervention will show different patterns of effects that depend 

on whether the pre-service teachers in question have STEM or non-STEM concentrations (Split-

plot repeated measures ANOVA).  

Research Question 4: Is the effect(s) of the computational thinking intervention on attitudes 

related to the gender of the pre-service teachers?  

H1: The computational thinking intervention will show different patterns of effects that depend 

on whether the pre-service teachers in question are male or female (Split-plot repeated measures 

ANOVA).  
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Summary 

Digital media offers children learning environments, like personal, real world, 

disciplinary and assessable. “Technology and education,” often means creating gadgets to teach 

the something with a little bit twist (Papert, 1980). Technology is not only a way for children to 

develop, but also influence and control them to apply for their projects so that they can be 

creator, designer, and problem-solver. 

 Programming and computational thinking allow them to create their own projects such as 

games, animations, and simulations. One reason of why there is less enrollment and diversity in 

CS (Computer Science) is that people believe only those people who are skilled at it could 

handle it (Burke & Kafai, 2010). Programming languages are difficult to learn and cope with it, 

but it can be fun. Most expert programmers are dedicated to learn and passionate about 

programming language (Hillegass & Ward, 2013).  
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CHAPTER II 

LITERATURE REVIEW  

History of Programming Languages 

Punched card machines 

Prior to the advent of modern programming languages, Herman Hollerith created the first 

punched card machine in the late 1880s (Driscoll, 2012; Kaur, Kumar, & Singh, 2014; Trikha, 

2010). These machines were designed to encode information within each punched card for the 

United States government, which used punched cards for the first time for its census in 1890. 

The U.S. Constitution requires a census of its citizens to take place every 10 years, but it the 

process of using pen and paper was becoming quite difficult with the growing U.S. population 

and the process for conducting a comprehensive census was becoming increasingly difficult. The 

solution was to create a punched card system to collect the data, tabulate the count, and sort the 

information. Instead of the cumbersome pen-and-paper process, the new process was streamlined 

to be completed within a year, with punched card machines used to complete the census. 

Hollerith’s design became widely adopted across the country, and has served as the 

foundation of modern punched card technology (Allen, 1981; Elgamel & Sarrab, 2014). The first 

modern punched card technology began appearing in the late 1950’s, beginning with the 

International Business Machines Corporation (IBM)’s development of the Formula Translating 

System (FORTRAN). FORTRAN punched card technology was specifically designed for 

scientific computing and was used mostly for math, science, and engineering purposes. It was 

particularly well-suited for scientific formulas, numerical analysis and technical applications due 

to its ability to express the way of complex mathematical functions similar with algorithmic 
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form, efficiently process mathematical equations, and incorporate complex number data type. 

Compared to the Hollerith system of the 1880’s, FORTRAN was considered to be more efficient 

and easier. It provided punched cards that users could read easily with metal tabulators, because 

FORTRAN punched cards had rectangular holes, unlike, the round holed, Hollerith punched 

cards which were much more prone to reading errors. A final advantage was FORTRAN’s larger 

storage capacity compared with the Hollerith system. FORTRAN had a storage capacity of 12 

rows and 80 columns, whereas Hollerith only offered a restricted capacity of 12 rows and 24 

columns. 

Figure 1.  Punched card  

 

 

Although FORTRAN’s simplicity greatly revolutionized punched card technology, the 

design was not conducive to business computing because FORTRAN was not dealing with a 

large amount of data (Wiemer, 2011). As a result, the Common Business Oriented Language 
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(COBOL) system was designed to explicitly meet this need. COBOL was created in 1959 by the 

Conference on Data Systems Languages (CODASYL) as a simple technology with a greater ease 

of use than FORTRAN. COBOL is considered to be a fairly easy to learn due to it containing an 

English-like syntax, compared to FORTRAN’s non English-like grammar which made it is 

difficult to learn. Additionally, COBOL was considered to be more reliable than FORTRAN, 

while managing a larger amount of data information. Despite both systems having similar 

processes and portable features, COBOL punched card machines were smaller and faster than the 

FORTRAN predecessor. Finally, FORTRAN punched card machines were good at handling 

numbers, but was not good at handling input/output like COBOL punched card machines. 

Punched card machines were replaced with computers in the 1960s (Black, 2013). 

However, the logic behind punched card machines encouraged people to develop object-oriented 

programming. Although punched card machines were easier to use in the early days than pen and 

paper, it was frustrating for programmers for several reasons. The first concern was that spending 

countless hours to locate punched cards and fix bugs was a time consuming process. 

Programmers weren’t immediately informed about the bug when a problem occurred in the 

sequencing, thus the problems weren’t addressed in a timely way. Also, punched card machines 

weren’t suitably efficient to store and transform a large amount of data so it was necessary to 

have a large amount of machine memory. In addition, punched cards were vulnerable to repeated 

usage and the cards could easily get bent or damaged or the punched holes could become too 

large for the machine to read. For all these reasons, punched card machines were gradually 

replaced with more contemporary computing methods, such as object-oriented programming 

languages. 
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Object-Oriented Programming Languages 

Object oriented programming is a language paradigm that one or more entities interact 

with one another to create models based on the real world.  The goal is to provide reusable 

solutions for complex programs (Laffra, Blake, de Mey, & Pintado, 1995; Stroustrup, 1988). 

Although they solve same problems, object oriented programming languages are more efficient 

and faster than punched card technologies (Severance, 2012). Punch card technology does not 

allow the user to see the commands individually, while object oriented languages are written and 

shown line by line. This makes the read and write functions much easier for users.  Moreover, 

debugging is simpler than object-oriented programming. That is, the process of debugging can be 

frustrating in punched card machines because if even one card contains an error or is out of 

sequence the program will crash.  Object oriented languages, in contrast, provide feedback 

instantly.  

 

 

 

 

 

 

 



 

15 

Figure 2. Object-oriented programming language  

 

 The object-oriented, programming language movement started in the early 1960s with 

Simula-67, which is known as the first object oriented programming language (Perez, Jansen, & 

Martins, 2012). Simula-67 was designed and implemented by Dahl, Myhrhaug, and Nygaard at 

the Norwegian Computing Center in Oslo particularly for the creation of simulations, computer 

graphics, and algorithms. Simula-67 introduced object-oriented programming concepts such as 

classes, objects, inheritance, and dynamic binding. When Simula-67 first appeared, it was 

elegant, powerful and very useful for software development, but it was too slow for practical use. 

Also, it was not open code and considered too complicated and had limited file access. Although 

the original concept of object orientation was simple and inspired with Simula-67, it soon gave 

way for more advanced, easier to use object-oriented programming languages.  
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Following Simula-67, other well-known object-oriented programming languages 

successfully combined the object-oriented approach with procedures such as C++ (Stroustrup, 

1988). Simula-67’s object-oriented features were a heavy influence in the development of C++ 

and later Java object-oriented programming language. Although Simula-67 was a 

groundbreaking object oriented programming language, it was not accepted as widely as C++ in 

the marketplace. Class structure in Simula-67 helped organize user’s code, but the memory of 

program was not enough, so C++ was designed to be simplified and became beneficial with 

increased memory of program. In addition, C++ was seen as an improvement over Simula-67 in 

terms of making the code easier to get right so it avoided the ambiguities and was less error 

prone and easier to understand since semi dependent on machine. C++ was created at Bell 

Laboratories by the Danish Computer Scientist, Bjarne Stroustrup in 1983 for the UNIX system 

environment. It was so beneficial for programmers to improve the quality of code that reusable 

and produced code was easier to write by them. C++ was powerful and useful language created 

for specific reasons such as word processors, graphics, and spreadsheets. For this reason, C++ is 

a well-known object oriented programming language in worldwide. 

Another current, well-known, object-oriented programming language is the 

Java programming language that was developed in 1995 by Canadian computer scientist James 

Gosling at Sun Microsystems. Java combined many of the features from the object oriented 

languages of its time such as Simula-67 and C++ (Singh & Abraham, 2014). For example, 

control flow constructs are totally identical in C++ and Java. While C++ is not platform 

independent, Java’s object oriented programming language is platform independent, meaning 

that the written application or algorithms written for one platform will work just as well on other 
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platforms, such as PC, Windows and Linux. Additionally, Java contains an automatic debugging 

module, e.g., “garbage collector” that simplifies the process of cleaning bugs. Moreover, Java 

contains a larger library than C++ has a lot undefined behavior than Java so in Java debugging is 

significantly easier than C++ because it throws errors immediately and it is easier to trace bugs. 

C++. Java is also currently the most widely used object oriented programming language 

(Viennot, Garcia, & Nieh, 2014). 

Text based programming language environments made major improvements to learning 

programming language in comparison to punch-card technology. For example, text-based 

programming language provided simplicity with syntax that was similar to English-like so that 

programmers could easily read and program it. In addition, it was easier to access with text based 

programming than punched card technology because cheaper to afford so that more people had a 

chance to learn programming and also took up less space such as punched card machines took up 

a whole room. However, text-based programming language was not easy enough for non-

technological people, such as beginners and novice programmers who don’t have any prior 

programming knowledge and experience (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). For 

all these reasons, text based programming language were slowly replaced with more user 

friendly and intuitive technological environment, such as visual based programming languages. 
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Visual Based Programming Languages 

The Visual based programming language is a paradigm that allows programmers to create 

projects by dragging and dropping blocks of code onto an editing center. As the name implies, 

visual based programming relies on GUI (graphical user interface). Its target audience is novice 

programmers and most visual based languages introduces the concepts of programming using the 

behaviors of simple elements such as movements, turns, loops, etc. Projects can be anything, 

such as animated stories, greeting cards, music videos, science projects, simulations, and music 

projects (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). 

Visual based programming language provides a more suitable and simpler environment 

for young learners to express their interests than text-based programming language (Cooper, 

Dann, & Pausch, 2003; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008; Resnick, 2007). In 

contrast to text-based programming languages, with visual-based programming languages, users 

do not just write tedious lines of code. Instead, they basically snap together a block of codes, 

without worrying about unfamiliar symbols such as semicolons, brackets, and parentheses. 

Moreover, the visualization of event-based programming is an easier way for children to 

understand the importance of events than text-based programming language. For example, as a 

program runs, users can observe which command is being executed, because the block of code is 

highlighted. Additionally, text-based programming language is complex by nature, and it is often 

difficult to debug code after it is written. In contrast, visual-based programming language is 

designed to be simple, because block of codes snap together in ways that make sense. Despite 

this simplicity, visual based programming language is still a powerful tool (Kelleher & Pausch, 

2005). Programming language concepts (sequence, loops, parallelism, events, and conditionals) 

and practices (experimenting, iterating, testing, and debugging) are fundamentals of any 
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programming language regardless of whether it is visual based or text based. For this reason, 

visual based programming language helps learners to develop an intuitive sense of how 

sequences, parallelisms, and debugging work. 

Visual based programming languages were inspired by the Logo turtle robot, created by 

Seymour Papert, Daniel G. Bobrow, Wally Feurzeig, and Cynthia Solomon in the late 1960s. It 

encouraged young learners to explore their ideas visually instead of typing (Bers, 2010; Papert, 

1980) and was designed to be usable by both non-programmers and beginner programmers. Logo 

incorporated turtle graphics and offered instructions for movement and drawing line graphics 

either on the screen or with a small robot called a “turtle”. The underlying rationale behind Logo 

was to understand the turtle’s motion by asking users to imagine what they would do if they were 

a turtle.  
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Figure 3. Logo and the Turtle   

 

 All visual based programming languages originated from Logo, but each language has 

developed its own strengths and weaknesses, while still sharing some core commonalities. Late 

in the 1990s, a second visual based programming language was designed for novices who have 

little or no prior programming background by a research team at the CMU led by Randy Pausch 

(Dann et al., 2012). Alice allows novice learners to create games and animations with drag-and-

drop blocks in an intuitive and user-friendly environment. Alice is an interactive 3-D graphical 

model and terrain visual programming language environment that lets users to drag and drop 

graphical tiles to create programs. The graphical tiles consist of the statements for the programs. 

Users have the options to pick the characters that occur on the stage, and then users add various 

rules to each character to build its behaviors, moves, and directions. The Alice programming 

environment was designed for several reasons: to teach programming concepts and theory, to 

support object-oriented flavor, and to encourage people to do programming with storytelling for 
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novice programmers and to complete programming practices such as sequencing, parallelism, 

automation, multimedia, program logic. Functions of Alice were built and inspired by object 

oriented programming language (Cooper, Dann, & Pausch, 2003). Logo was a powerful and 

fairly advanced programming language in its time, but it was often viewed as intimidating, not 

kid-friendly, and partly text-based so children and novice programmers were still had to worry 

about syntax error since spelling. In addition, Turtle was the only character, which was not 

interesting for some users and didn’t give them a chance to choose different characters to design 

various projects. However, Alice made it easier and allowed users to choose the characters they 

wanted. Moreover, Logo had a few activities that users were limited to and it was not connected 

with their interests, needs and experience; for example, drawing simple geometric shapes.  In 

contrast, Alice allowed users to do whatever they were willing to design that related with their 

interest and needs. 

 

Figure 4.  Alice 
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Scratch was created shortly after Alice. The Scratch software project was developed by 

the Lifelong Kindergarten group at the MIT Media Lab in 2007. Scratch was designed to foster 

collaborative work on a web browser platform. Accessing the platform through a web updates 

more projects instantly available for users so users always have the latest projects to remix. 

Novice programmers can use Scratch with visual block-based and drag-and-drop style to create 

animation stories, games, interactive presentations, music videos, and greetings.   

  Alice has a similar interface to Scratch, however Alice features slightly more advanced 

editing features and blocks of codes, so it is not easier for novice programmers and children to 

pick up programming concepts (Cooper, Dann, & Pausch, 2003; Resnick et al., 2009). Scratch is 

more widely used than Alice due to its simplified blocks, interface, and 2-D graphical 

environment that Scratch took from logo, and also replaced typing code style with a drag-and-

drop block-based technique. Scratch is much easier to use than Alice because most novice 

programmers focus on 2-D, rather than 3-D graphical tools and terrain to create, import and 

personalize 2-D graphical tools (Burke & Kafai, 2012; Maloney, Resnick, Rusk, Silverman, & 

Eastmond, 2010). Moreover, Alice has not yet been translated into other languages so only 

English-speakers can use it, however, Scratch has been translated to around 50 different 

languages so that not only English speakers can learn, but non-English speakers, too (Resnick et 

al. 2009). Scratch allows users to share with other users, whereas Alice users can’t share their 

projects with others since it has to be downloaded. Scratch online environment provides 

opportunity for users to develop sharing and socialization skills. Users can create their own 

projects, but also remix projects shared to the Scratch website by other users. Moreover, users 

make comments and answer questions to help other users.   
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Figure 5. Scratch 

 

  

Hopscotch is one of the first visual, tablet based programming languages. Hopscotch was 

designed in 2013 by Jocelyn Leavitt and was inspired by Scratch. The Hopscotch interface is 

very similar to Scratch, (e.g., Hopscotch works by dragging and dropping blocks of codes from 

the toolbox into the editing center) however, Hopscotch is specifically aimed at empowering and 

educating young males and females ages 8 to 12 them to teach how to create games and 

animation (Amer & Ibrahim, 2014). Hopscotch lets children share their projects within the 

Hopscotch community, which is an online environment where users connect with other users and 

write comments about projects. Hopscotch offers colorful blocks of code with which to execute a 

program on what is basically a blank slate so that it can be as easy or as difficult as users make it, 

but it also works under the assumption that they already know some programming basics.     
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Hopscotch smoothed the way with its kid-friendly interface, pre-built blocks, and tapping 

function, unlike Scratch, teaching younger children programming is difficult with computer 

interface since pointing and clicking are difficult for them to manipulate (Brennan, & Resnick, 

2012b). Moreover, This visual based tablet based programming languages provide value for 

younger beginners at various stages of the learning process. Children become familiar with 

dragging and dropping coding blocks via various types of input, such as shaking an iPad, tapping 

the screen, and tilting the tablet.  

Figure 6. Hopscotch 
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Another current tablet based programming language, ScratchJr, was developed by Tufts 

University as free source in 2014 (Portelance & Bers, 2015). ScrathJr allows young children 

between the ages of 5 to 7 to easily learn programming with a system based on Scratch. 

Hopscotch has many noticeable similarities to ScratchJr but also many different features. First of 

all, ScratchJr is highly focused on educating younger children who do not even know how to 

read and providing them the capability to communicate technologically in the modern world. 

Therefore, it is easier to use for young children with ScratchJr the basic skills for programming 

concepts, practices and debugging. For example, the graphic interface is very inviting and clear; 

the block of codes appears as colored icons that look like a jigsaw puzzle and link them together 

so that programs can be created. Colored icons are organized into color-coded categories such as 

one group of colored icons controls character looks. However, children have to know how to 

read in order to learn programming with Hopscotch. In addition, even though Hopscotch and 

ScratchJr are free to download and provide a rich selection of characters, not all characters are 

free in Hopscotch. For example, there are five additional characters (Mandrill, Miss Chief, 

Mosquito, Jeepers, and Venus) that can be purchased for $0.99 each. Unlike ScratchJr, all 

objects are free so that children have more objects to use they are interested in. Moreover, 

Hopscotch is available on iPad tablets, while ScratchJr is available on both iPad and Android 

tablets.    
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Figure 7. ScratchJr  

 

 

Report on the programming language 

According to the 2015 Searching for Computer Science: A Google Research Report: 

Access and Barriers in U.S. K-12 Education report indicates that K-12 teachers, parents, 

administrators, and superintendents think it is significant for students to learn programming. 

Students and parents also think learning to program helps them to find jobs. Ninety one percent 

of parents want their children to learn computer science and programming languages and 

approximately 66 percent of surveyed parents believe that computer science and programming 

should be mandatory in school, not elective or after school course. Based on U.S. Bureau of 

Labor Statistics data, the number of computer and mathematical jobs is expected to increase by 

18% in the next 10 years. This means that 1.3 million job openings will be available by 2022. 
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Although K-12 teachers, parents, administrators, and superintendents agree that programming 

should be taught in K-12, most students don’t have the opportunity to learn programming at 

schools in the United States for several reasons. 

First of all, in-service teachers are often not qualified to teach computer science. Most K-

12 in-service teachers either have not participated in a computer science coursework program or 

only a little bit of knowledge and experience (Google for Education, 2015; Ragonis, Hazzan, & 

Gal-Ezer, 2010). There are two options for qualifying to teach computer science: Earning a 

bachelor’s degree in computer science or a relevant degree, or getting a certification. Computer 

science majors are qualified to teach, but they often prefer not to teach in K-12 settings as they 

typically get paid more at private companies as a programmer or developer. In addition, the 

benefits of working as a programmer are attractive since they don’t have to take work home 

everyday and also they may receive double the pay. Some teachers are willing to get certified, 

but there is no path for them to apply to get certified. Thus, they don’t know how to get 

certification for teaching computer science. 

Moreover, school districts don't offer extensive training for their teachers who lack 

computer science skills since they don’t have enough money. Therefore, teachers are not able to 

learn necessary computer science skills to teach their students computer science. Teachers are 

asked by administrators to teach programming to their students even if they aren’t trained. Thus, 

teachers don’t know how to teach programming language, they don’t know what programming 

language to teach based on their grade level, and they don’t know how to engage and motivate 

their students.  
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In addition, computer science courses are not mandatory at schools. Students are offered 

computer science courses as an elective or after school activity. Because computer science isn’t 

one of the required courses for the graduation, students who take computer science don’t pay the 

same attention as students who take core courses such as math, science, and social studies. 

Making computer science courses a mandatory rather than an elective or after school activity is a 

gateway to computer science and computer science related jobs. Additionally, mandatory 

computer science courses provide a great opportunity for schools to meet the STEM (science, 

technology, engineering, mathematics) requirements.  

 Next, there are not enough computers and tablets for students and teachers to access 

computer technology at home and school due to the shortage in budgets. In particular, poor 

districts don’t have enough money to buy computers. Due to students not having computers and 

tablets, they don’t have opportunities to explore programming language tools. Not only that, 

teachers don’t have computers and tablets to access, in and out of school, to practice 

programming before teaching their students. Without this practice, teachers don’t have a chance 

to create hands-on activities and see sample projects. They also don’t have an opportunity to 

access important resources to share with their students, such as programming language flash 

cards, quizzes, and articles. 

In addition to that, there are inequalities between students’ economical situations. In 

particular, underrepresented groups such as women, lower-income, Hispanic and black students 

have less access to computer science out of school than white students. Moreover, Hispanic and 

black students have less opportunity to access the Internet out of the classroom setting than white 

students. In particular, underrepresented groups are not able to get resources, activities, and 
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sample projects. For these reasons, underrepresented groups are not provided with computer 

science out of classroom settings. Therefore, underrepresented groups are much less likely than 

white males to major in STEM or STEM-related fields. Women especially are underrepresented 

in most science, technology, engineering and mathematics majors (Google for Education, 2015; 

Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014).   

Finally, programming is not taught as a part of computer science class in K-12 since it is 

not part of computer science curriculums. Most computer science classes are not taught 

programming, but basic computer keyboarding skills such as Microsoft word and Microsoft 

power point rather than programming language. Therefore, computer science curriculums focus 

on how to use software tools, but computer science curriculums don’t focus on creating, making, 

and designing new projects such as animations, simulations, and games. 

Learning Theories that Relate to Computational Thinking 

Learning theories (behaviorism, constructivism, and constructionism) are sets of ideas to 

explain pedagogical approach to effectively and efficiently teach students how to think 

computationally while programming (Bers, 2008; Brennan, & Resnick, 2012a; Stetsenko, & 

Arievitch, 2004; Vygotsky, 1978; Wing, 2006). According to these theories, students 

automatically engage in computational thinking while programming. Moreover, these 

theories help teachers encourage students to use tangible programming language tools and 

intangible computational thinking steps. Therefore, these theories demonstrate how 

computational thinking and programming language tools can be used and taught to students in 

classroom environments. 
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Theory of Behaviorism 

Behaviorism is a learning theory that frames learners as passive recipients of stimuli, who 

are responding the environmental in the process of learning (Cautili, Rosenwasser, & Hantula, 

2003). Behaviorism was coined by John Watson in 1913 and then popularized by B. F. Skinner 

in 1948. According to behaviorism, learners begin life with a tabula rasa or blank slate. This 

means that the mind lacks experience, so learners have a fresh start. Behavior can be impacted by 

both positive and negative stimuli provided by the environment. Behaviorism is focused more on 

observable behavior, and minimizes the importance of intrinsic processes, such as thinking, 

understanding, interpreting and knowing. 

In behaviorism, the process of learning and classroom instruction is teacher-centric and 

emphasizes rote memorization (Zeidler, 2002). Behaviorism doesn’t encourage learners to 

understand concepts deeply, but rather, rewards students that give correct answers when assessed 

by teacher. In a behaviorist approach, students practice to avoid giving false answers on drill and 

practice activities during class time.  

Theory of Constructivism and Constructionism 

Behaviorism was replaced by constructivism in the twenty-first century because 

it was unable to address intangible computational thinking steps. More importantly, with 

constructivism, students become more active in the learning process and were taught to construct 

their own understanding and knowledge. In other words, constructivism encourages students to 

construct knowledge in their head (Alessi & Trollip, 2001).  

 Constructivism, which was first developed by Jean Piaget in the 1930s, asserts that 

learners actively construct their own learning experience, understanding, and knowledge 
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(Jonassen, 2000). Constructivism offers a sharp contrast with behaviorism, as the learner is more 

actively engaged in the learning process. With a constructivist approach, learners synthesize their 

own understanding and knowledge with real life experiences and reflect on them. In the long run, 

learners develop their own point of view, and unique interpretation of the world. Constructivism 

is a learning theory that builds upon learner’s prior knowledge and experiences (Bednar et al., 

1992; Bers, 2008; Mascolo & Fischer, 2005; Piaget & Indelder, 1969). 

 Constructionism is also a theory of “Learning by doing” where the learner relies on tacit 

knowledge, such as programing on computers, tablets, program robots (Papert, 1980; Papert & 

Harel, 1991; Resnick, Bruckman, & Martin, 1996). The theory of Constructionism was coined by 

Seymour Papert in the 1980s.  This method focuses on the belief that students learn best when 

working on project with peers, learning from their peers, and interacting with the real world.  

Constructionism brings both constructivism and tangible programming language tools 

into the process of constructing understanding and knowledge and then 

thinking computationally (Bers, 2008; Resnick, 2007; Resnick et al., 2009). In particular, 

constructionism empowers students in the use of programming language tools so that they can 

create and design artifacts based on their interests (Papert & Harel, 1991). Thus, constructionism 

encourages students in creative artifacts with the programming tools. 

 Both theories of learning believe that individuals create meaning from different 

experiences and previous knowledge (Kafai & Resnick, 1996). Constructivism and 

constructionism are similar learning theories, but they also have differences. The main difference 

between them is that Piaget believes that learning is dependent on the development of mental 

functions, however, Papert believes that learning is depend on the development of physical 

objects with hands-on activities such as programming, robotics. Hence, Piaget focused on 
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learning process by more mental constructions, Papert focused on learning process more by 

physical. According to the Papert (1980), children “learn by doing”, involves collaboration and 

interaction between teacher and students that projects can be shared with peers and get feedback 

from peers as a way to build meaning. A similarity between two theories, however, is that both 

emphasize discovery methods of learning that let learner explore and experience projects by 

himself based on their interests. Moreover, students are facilitated and coached by their teacher 

while working on their projects instead of getting the correct answer. Therefore, teachers are not 

dictating their ideas, but rather discussing them with their students. 

Why Constructionism? 

The application of behaviorist principles in education began to wane in the twentieth 

century, and constructionist principles began to replace behaviorism in the twenty-first century 

(Duit & Treagust, 1998; Jenkins, 2000). The principles of behaviorism don’t work well for 

computational thinking for several reasons, including the role of the teacher, the role of the 

student, and collaborative learning. The principles of constructionism bridge this gap for 

students, who can use computational thinking and develop new knowledge with coaching by 

teacher with their peers (Honebein, 1996; Papert, 1980; Rummel, 2008).   

Behaviorism becomes teacher-oriented (Bush, 2006). In contrast, constructionism can 

play an important role for teachers and students in the classroom environment. According to 

constructionism, teaching becomes learner-oriented. Learners are active participants, not passive 

recipients in the process of learning, therefore offering learners a more active role in the 

classroom setting (Fosnot, 1996). Hence, learners are more engaged and motivated (Papert, 

1993). In behaviorism, teachers dictate and lecture. Whereas, in constructionism, the teacher 

does not give too much information at one time, but acts as facilitator, mentor, and listener 
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(White-Clark, DiCarlo, & Gilchriest, 2008). In this method, the main role of teacher is coaching 

for learners through the process of learning (Papert, 1980; 1993). In addition to that, learners are 

not creative in the process of learning in behaviorism since they have no chance expressing their 

creativity. However, constructionism, learners have a deep understanding and know information 

better than behaviorism since constructionism encourages learners to try out new things, and 

draw conclusions (Bers, 2008; 2010). In behaviorism, learners are doing what they are told to do 

by teacher. The teacher provides the correct answer directly without scaffolding when students 

are not able to solve problems. However, in constructionism, if learners are struggling with given 

project, teachers don’t give them the right answer directly, but scaffolding them if they have any 

problems or questions (Sutton, 2003). This process is known as scaffolding, which is the way 

that teachers help students to move from the inability to perform given project to being able to so 

through coaching or facilitating (Blake & Pope, 2008; Stetsenko, & Arievitch, 2004; Vygotsky, 

1978). For example, a student is struggling to learn how to create a game. By working with 

student to teach how to add blocks of code and add a new character, the student is able to learn to 

create a game. Therefore, teacher let students make their projects based on their creativity, 

imagination, and ideas in constructionism.  

Behaviorist teachers give information in front of a classroom to tell students what to do 

for specified project and how to design project (Shield, 2000). Each student listens and repeats 

what the teacher told them to do step-by-step. Projects are revised based on feedback of their 

teacher. Therefore, the students don’t interact with peers to brainstorm and come up with the new 

ideas. As opposite to behaviorism, constructionism, the teacher offers opportunities for learners 

to work and interact with peers on a collaborative team environment (Draper, 2002; Rogoff, 

1994; Slavin, 1990). Teachers encourage learners to work with peers in an authentic 
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environment. Therefore, learners are allowed to interact with each other, exchange big ideas, 

share different experiences, and construct meaningful knowledge together. In this environment, 

they discuss and debate, connects the dots of project parts, discover new things, and draw 

conclusions. For these reasons, the behaviorist approach is not really the most efficient and 

beneficial way to teach. However, there is one positive factor of behaviorism that is rote 

memorization. There are many strategies of learning, but rote memorization is the best way and 

easiest way to learn fundamental terms and facts. Once learners memorize fundamentals, they 

are able to use their information for building meaningful learning. For example, memorizing a 

bunch of vocabulary words, alphabet or verb forms are the fundamental concepts and terms build 

on four skills, speaking, writing, reading and writing for second language learners and also 

memorizing the basic math facts in addition, subtraction, multiplication, and division are the 

essential ingredients for learners to make an animation. 

Computational thinking 

Constructivism, constructionism, and behaviorism are the gateways for helping students 

learn about computational thinking concepts and steps. But most importantly, constructionism 

invites students to participate in creating, making, and designing while programming to think 

computationally (Papert & Harel, 1991). Therefore, students have an opportunity to build and 

develop a strong mindset. In other words, students develop a deeper understanding of 

computational thinking. 

The term "computational thinking" was first coined by Jeannette Wing in 2006 (Wing, 

2006). The meaning of “Computational thinking involves solving problems, designing systems, 

and understanding human behavior, by drawing on the concepts fundamental to computer 

science”. Brennan and Resnick (2012a) described computational thinking with dimensions of 
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computational thinking concepts and practices. Computational concepts are the fundamentals of 

computational thinking. Computational practices put computational thinking concepts together to 

design projects. For example, Computational thinking concepts sequence, loops, events, 

parallelism, and conditionals are used for projects to make program runnable with computational 

practices such as iterating, debugging, testing, remixing, abstracting.     

Computational thinking is the new literacy technique of the twenty-first century to teach 

children the process of thinking abstractly. Computational thinking consists of many aspects, 

such as problem decomposition, pattern abstraction, and algorithm design (Google for Education, 

2015; Wing, 2006). Computational thinking not only plays an important role as a fundamental 

part of computer science, but also influences problem solving in all disciplines such as economy, 

art, and engineering and in the real-life world (Bundy, 2007). 

Wing, Google for Education and The Computing at School (CAS) all addressed how 

computational thinking should be approached. Wing created the idea of a computational thinking 

approach (Google for Education, 2015; Wing, 2006; Wing, 2008a). However, Google for 

Education and CAS builds on Wing’s work in the practical world. They developed a plan to lay 

out the steps of computational thinking for integrating into K-12 classrooms (Google for 

Education, 2015). Google for Education has four basic steps that include decomposition, pattern 

recognition, abstraction, and algorithm design. Additionally, based on CAS, there are six basic 

steps that include decomposition, patterns, abstraction, algorithms, logical reasoning, and 

evaluation. 

CAS and Google for Education are approach computational thinking steps through 

similar processes (Google For Education, 2015). However, the numbers of steps are different. 
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Critics argue that the number of steps CAS is better than Department for Education because it is 

more deeper. These two extra steps allow students to make a prediction of output and also review 

their process.  

 The first step of computational thinking is decomposition: taking a big, difficult, and 

complex problem and breaking it down into smaller, more manageable sub-problems. When 

problems are broken down into smaller pieces, the next step is patterns. This step allows people 

to identify common similarities and differences, the next step is abstraction. This step provides 

people with a way to create step-by-step techniques for solving problems. Finally, algorithm 

design provides significant instructions with a step-by-step solution for a problem and pulling 

out significant details to find one solution that applies multiple similar problems. Logical 

reasoning allows students to predict what the result will look like after following 4 steps. In 

other words, the sequence of instructions will let students know the results. Evaluation allows 

students to make sure each step of Computational thinking works well. If the evaluation doesn’t 

show what students predicted, it allows students to restart process (Department for Education, 

2013).  

For example, cargo companies go to several locations to drop off goods for people. When 

a company has a bunch of goods that must be delivered to numerous customers, it needs to 

effectively and efficiently deliver them. Effectively and efficiently means finding the shortest 

route so that the company can travel the shortest time as well. There are too many streets, houses, 

offices, and so on. The first aspect of computational thinking, which is decomposition, is the first 

step to approach the problem. In the city, there are fifty districts, so it would be difficult to solve 

the problem since there are too many districts. The decomposition approach breaks the large 

number, fifty districts, into smaller pieces, one district, which is easier to concentrate on. But 
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even one district has too many houses, offices, places, and so on. They need to be abstracted to 

ignore irrelevant details and to focus on the key parts. Next aspect of computational thinking is 

the creation of a series of instructions for this problem and the solving of similar problems with 

other districts. The next aspect of computational thinking is what an output exactly will do. The 

final step of computational thinking is if a series of instructions are still not working 

appropriately while evaluating, return back the first aspect of computational thinking, which is 

decomposition.   

Computational thinking concepts 

Sequences 

  A sequence is a list of code blocks that are put in a specific order to be run by a 

computer. As an example, the figure below, presents an Alice project and includes a list of code 

blocks. Each block code manipulates the alien based on the sequence. There are 

4 code blocks on the list to produce the program. The first action instructs the alien to 

say, “Hello”, and the second block code instructs the alien to turn left. After 

turning left, the alien turns right. The last block code has the alien disappearing.  
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Figure 8. Alice sequences program example 

 
 

 

Loops 

A loop allows a programmed sequence of instructions to repeat multiple times. 

In the figure below, the project is designed by Hopscotch.  The C shape is the 

repeat block that lets the character run the same instructions or block code 

stack several times based on the number in the blank box. In this example, the 

C loop has three blocks in which the instructions “Leave a trail color orange and 

10 width”, “Move forward”, and “Turn 60 degrees repeat 6 times” occur in 

sequence when the play button is tapped.   
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Figure 9. Hopscotch loops program example  

 

 

Parallelism  

Parallelism allows several tasks to run at the same time. In the figure below, 

the project is designed by ScratchJr. There are two green flags for the same character. When the 

user clicks the green flag, both instructions start at the same time. Therefore, the sounds play 

forever while the giraffe moves 5 pixels 6 at the same 

time. 
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Figure 10. ScratchJr parallelism program example  

 

Events 

One thing starts happening because another thing is triggered. In the figure below, the 

project is designed by ScratchJr. When the yellow fish is tapped by the 

user, the yellow fish says, “Hello”. If the yellow fish is not tapped by user, there 

is no greeting by the yellow fish. 
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Figure 11. ScratchJr events program example  

 

Conditionals  

One thing occurs depending on the situations of other things. In the figure below, the 

project is designed by Scratch. The character has four events; when the 

right arrow key is pressed, when the left arrow key is pressed, when the up 

arrow key is pressed, and when the down arrow key is pressed. Each of them has 

a conditional statement which is an “if then” statement. If the user presses the 

right arrow, the character moves right. If the user presses the left arrow, the 

character moves left. If the user presses down, the character moves down. If the 

user presses the up arrow, the character moves up. 
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Figure 12. Scratch conditionals program example  

 

Computational thinking practices  

Computational thinking practices allow learners to experiment. They use 

computational thinking concepts to arrange a specified instruction. 

Computational thinking practices provide learners the opportunity to try the 

instruction out to see whether it works or not.  Also, learners have an 

opportunity to debug the program since it might not be the result he wants.   

Summary 

I began this dissertation with a history of programming languages. In this history, 

computational thinking evolved recently with the research by Jeannette Wing.  Computational 

thinking is a technique in which, students and teachers use different programming language tools 

such as Logo, Alice, Scratch, Hopscotch, and ScratchJr. Computational thinking pushes students 

to solve complex problems by working through them with a variety of strategies and steps. This 

dissertation was built on constructionist theory principles because computational thinking is the 
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best fit for this theory. This study offered significant information for pre-service teacher 

educators exploring computational thinking. In other words, this study could aid teacher 

educators who will become the models for students of tomorrow. In addition, this study provided 

recommendations for how institutions could provide training in computational thinking for pre-

service teachers.  It served as a future reference for teaching programming languages and 

computational thinking to pre-service teachers.  The following chapters would demonstrate how 

this dissertation would help me advance this aspect of the education field and examined the 

attitudes of pre-service teachers and their understanding of computational thinking.  
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CHAPTER III 

METHODOLOGY 

 

Introduction 

 

This chapter describes the methodology that was used in this study. The research 

questions and hypotheses are followed by a description of participants, research instruments, and 

procedures that were instituted to carry out the study, and the statistical procedures that were 

used to analyze the data. The purpose of this study was to examine pre-service teachers’ attitudes 

toward computational thinking.   

Research questions and Hypotheses 

Research Question 1: Can an embedded intervention that teaches about the importance and 

utility of computational thinking, change the attitudes of pre-service teachers enrolled in 

Instructional Technology courses?   

H1: There is a statistically significant change in mean attitude scores toward computational 

thinking after receiving an embedded intervention on computational thinking within their 

Instructional Technology courses (One-way repeated measures ANOVA). 

Research Question 2: Would the intervention on computational thinking affect the attitudes of 

pre-service teachers differently depending on their GPAs? 

H1: The computational thinking intervention will show different patterns of effects that depend 

on whether the pre-service teachers in question have 3.5 – 4.0 range or 3.0 – 3.49 range GPAs 

(Split-plot repeated measures ANOVA). 
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Research Question 3: Are the attitude scores of pre-service teachers with STEM concentrations 

more subject to change after the computational thinking intervention than are the attitude scores 

of pre-service teachers with non-STEM concentrations? 

H1: The computational thinking intervention will show different patterns of effects that depend 

on whether the pre-service teachers in question have STEM or non-STEM concentrations (Split-

plot repeated measures ANOVA).  

Research Question 4: Is the effect(s) of the computational thinking intervention on attitudes 

related to the gender of the pre-service teachers?  

H1: The computational thinking intervention will show different patterns of effects that depend 

on whether the pre-service teachers in question are male or female (Split-plot repeated measures 

ANOVA).  

Participants 

Participants for this study were pre-service undergraduate students, enrolled in an 

Instructional Technology course, within the School of Education, at a private university in the 

Eastern, U.S. during the spring semester of 2016. Class size was dependent upon enrollment for 

the semester and ranged between 15 to 20 students. Ten classes of pre-service teachers were 

invited to participate in the computational thinking unit. 

The computational thinking instructional unit was presented to all pre-service teachers in 

each of the classes. Pre-service teachers who do not agree to participate in the research aspect of 

the project were still participated in the computational thinking unit instruction but were not 
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asked to complete either of the pre- or post-test questionnaires. The purpose of the study was 

explained during the first unit instruction and all pre-service teachers received consent forms 

indicating that their participation was entirely voluntary and would in no way influence their 

grade in the class. Pre-service teachers were also informed that all data collected would maintain 

confidentiality and anonymity. 

Over the semester’s computational thinking unit, pre-service teachers were instructed for 

a total of two 50-minute sessions. Pre-service teachers who withdrew from the Instructional 

Technology course during the experimental period or who did not complete the pre- and post- 

survey were excluded from the analyzed data.  

Participants were asked to give informed written consent form before experimentation 

occurs (Appendix C). All participants were instructed that their participation was voluntary and 

that they could withdraw at any time. There was no penalty for choosing not to complete the 

survey. If they chose not to participate, they were informed that participation in the instructional 

component is a course requirement but following this computational thinking instructional unit 

they should return blank questionnaires and unsigned consent forms along with the remainder of 

the class at the completion of the allotted time. During all aspects of this procedure, the 

researcher was present in the classroom to provide the computational thinking instructional unit 

and to answer questions related to the research aspect. However, the course instructor was not 

present in the room. 

The researcher assigned a random number to each participant. The researcher wrote 

numbers from 1 to number of participants in the classroom on their surveys. The researcher 

handed out pre-test surveys to participants and asked them to note their numbers on the part of 
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survey the marked “code number.” The researcher asked participants to answer the pre-test 

questions. When participants have finished, the researcher collected the pre-tests and the 

researcher gave them a two-week unit.  

At the end of the second week unit, the researcher handed out post-tests and asked 

participants to write their code numbers on the top. The researcher reminded participants that 

their codes are unknown to the researcher, but they were reminded to use their same unique code 

on both the pre- and post-tests. The researcher asked participants to answer the post-test 

questions. When participants were finished, the researcher collected post-tests.   

Instruments 

Two surveys were administered, one survey was focusing on demographics (Appendix 

A) and one survey focused on pre-service teacher attitudes (Appendix B). In the first survey, pre-

service teachers were asked to provide demographics information indicating their gender, 

race/ethnicity, age, and content area.  

In the second survey, pre-service teachers were asked about their attitudes towards 

computational thinking; participants completed the survey twice, both before and after 

completing the unit. Pre-service teachers completed a single 21-question survey that was 

developed by Hoegh and Moskal (2009) and then later a survey was adapted by Yadav, 

Mayfield, Zhou, Hambrusch, and Korb (2014). This survey was used to measure teachers’ 

attitudes toward computational thinking. The paper-based survey contained questions based on a 

5-point Likert Scale: “Strongly Agree,” “Agree,” “Neutral,” “Disagree,” and “Strongly 
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Disagree.” The survey has produced a Cronbach’s alpha internal reliability of 0.76 (Yadav, 

Mayfield, Zhou, Hambrusch, & Korb, 2014).  

 

Table 1 

Demographics and Attitude information 

 

 Construct Operational 

Definition 

Measurement 

Demographic 

Variables 

   

 Age How old a student is. Numeric self-report 

 

18 to 24 year 

25 to 34 years 

35 to 44 years 

45 to 54 years 

55 to 64 years 

65 to older 

 

 Gender What gender a student 

self-identifies as. 

Male or Female 

 Educational specialty The student’s area of 

focus for his or her 

educational training. 

 

Self-reported 

specialty STEM 

versus non-STEM. 

The researcher  made 

classification based on 

student’s content 

areas. 

 

Pre-K4 

Interdisciplinary 

English 

Math 

Science  

Social Studies 

Art or Music 

Other (Please specify) 



 

49 

 

 

GPA The student’s 

cumulative average 

Value provided by 

students 

Dependent Variable    

 Attitude about 

computational 

thinking  

The degree to which 

the survey that has 

five categories: 

Definition, Comfort, 

Interest, Use in 

classroom, and Career 

future use.  

 

Likert-type scale 

(Interval – treated) on 

the 21 items 

(Computing attitudes 

scale) 

 

Procedure 

Prior to the initiation of the study, the researcher met pre-service teachers to instruct them 

during a two-week computational thinking unit in a required Instructional Technology course 

within the School of Education. The researcher synthesized a lesson plan for a two-week 

computational thinking unit with Google For Education Computational thinking online lecture 

and Scratch Computing Curriculum. The module was presented during the middle of spring 

semester, and computational thinking content was not introduced in the earlier lectures. 

Computational thinking sessions introduced pre-service teachers to an overview of 

computational thinking and also gave them a chance to complete hands-on activities.  

The data collection was explained to pre-service teachers first during the initial face-to-

face classroom meeting. The researcher made clear that all participants in the computational 

thinking experience would listen to lectures, participate in class discussions, and engage in 

hands-on activities as part of the course requirements, but only those who provided written 

consent forms would have their data analyzed as part of the research study.   
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Data collected from pre-service teachers were de-identified by the investigator, using 

codes and pseudonyms. Pre-service teachers were assigned codes by the researcher for the 

purpose of connecting pre- and post-survey results.  Names were never collected from any 

student participant. Only the researcher had access to codes that connected individual pre-service 

teachers to the data. 

The researcher explained the purpose of the study, the survey and informed consent form. 

For this study, two paper-based surveys were used. Pre-service teachers were asked to respond to 

the pre-survey. Participants should be able to complete the surveys in approximately 15 minutes. 

Participants were instructed that they can withdraw from the study at any time without penalty or 

loss of benefits. All data was coded with an anonymous ID to ensure anonymity and 

confidentiality. Participants were not put their names or any identifying information on the 

survey. The informed consent form was read instructor to the pre-service teachers and 

participants were given time to sing the agreement before proceeding to the surveys. The pre-

service teachers were instructed for a total of two 50-minutes sessions consecutive weeks. At the 

end of the two 50-minutes sessions, pre-service teachers were asked to respond to the post-

survey.  

Any information obtained from this research was kept confidential. Data and results were 

not shared or made public in a way that indicates the identity of the individual pre-service 

teachers; only group outcomes were reported. Data about individual pre-service teachers were 

not shared with the pre-service teachers, peers or course instructors.  It was expected that 

information gathered in research became part of a dissertation and subsequent published reports.  

In written descriptions and in reports of what was learned from the study, the researcher removed 

any information that identifies individuals.   
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Statistical Analysis 

 Descriptive statistics were gathered from the study and then analyzed with Statistical 

Package for Social Sciences (SPSS) Graduate Pack. The study was based on four research 

questions and the analysis of these included descriptive statistics.   

Summary 

This study examined pre-service teachers attitudes of computational thinking at a private 

university in the Eastern, U.S. Pre-service teachers completed surveys that examine attitudes of 

computational thinking. After all data has been completed, responses were examined to answer 

the research questions. This study of computational thinking findings will help teachers and 

researchers. 
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CHAPTER IV 

RESULTS 

Introduction 

The purpose of this study was to examine pre-service teachers’ attitudes toward 

computational thinking before and after an intervention that was designed to convey the 

importance of teaching computational thinking at the K-12 level. This chapter presents the 

results of the statistical analyses seeking to address the four research questions. Included in those 

analyses are investigations of the survey responses and pre-service teachers’ demographics. 

Results were examined in light of the research hypotheses, and summarized for clarity. 

Survey Response Rate 

The survey data were collected between February 28, 2016 and April 21, 2016. There 

were 167 participants who completed surveys but 48 participants were removed from analyses 

because they did not complete all of the required surveys: the pre-survey, post-survey 

(immediate), or delayed post-survey. Participants who failed to answer one or two demographic 

items were included within overall analyses. This resulted in a total of 119 participants.  

Pre-service teachers’ Demographics 

The first five survey questions (Appendix A) requested information regarding pre-service 

teachers’ demographics: gender, race/ethnicity, age, content area, and cumulative GPA. Only 

gender, content area (concentration of study), and cumulative GPA are considered within the 

analyses.  
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Table 1 shows participants’ GPAs, genders, and content area. Of the 118 respondents to 

the Content area item, 71 respondents from the Pre-K4 pre-service teachers, 21 respondents from 

the pre-service English teachers, 12 respondents from the Math pre-service teachers, and 14 

respondents from the Social Studies pre-service teachers.  

  



 

54 

Table 2 

Sample Sizes for the Total Population by GPA, Gender, Content Area, and Race/Ethnicity 

 

Measure n  

GPA 112 39 (3.0 to 3.49) 

73 (3.5 to 4.0) 

 

Gender 118 104 females, 14 males 

 

Content area 118 83 STEM 35 non-STEM 

 

Race/Ethnicity 

 

117 

 

110 White 

1 African-American/Black 

3 Asian/Pacific Islander 

1 Hispanic/Latino 

1 Multiracial 

1 Native American / 

American Indian 
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 Cumulative GPA Responses and Attitudes 

The last question in the demographic survey asked, “What is your current cumulative 

GPA?” and allowed respondents to write in an answer. Because GPA is used as an indication of 

academic achievement, pre-service teachers with a 3.5 to 4.0 range GPA were assumed to have a 

more positive attitude toward computational thinking than those with a 3.0 to 3.49 range GPA. 

Seven participants chose not to give information about cumulative GPA. 

Age and Gender Responses 

There were more female participants than male participants within this sample. However, 

it is roughly proportionate to the numbers of each gender who pursue pre-service studies at the 

college. Of the respondents, 88.1% were female and 11.9% were male.  One participant chose 

not to give information about gender. The small number of male pre-service teachers meant that 

analyses of gender differences would need to be considered tentatively. The entire sample 

reported their ages to be between 18 and 24. 

Research Purpose and Results 

To assess the internal consistency of survey responses, Cronbach's alpha was calculated 

(alpha = 0.77), which indicated a more than acceptable rate of reliability between responses. That 

alpha was also similar to that for the initial use of the survey (alpha = 0.76; Yadav, Mayfield, 

Zhou, Hambrusch, & Korb, 2014). 

First research hypothesis. Attitude scores were assessed using the attitudes survey and submitted 

to one-way repeated measures ANOVA to determine if attitude scores changed between the 
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times prior and immediately after the unit on computational thinking, or between the times 

immediately after and three weeks later. 

The intervention elicited statistically significant changed in attitude pre-test, post-test, 

and delayed-post test, F(2,236) = 15.175, p < .0005. As a result of the computational thinking 

unit, it was confirmed there was a statistically significant increased in positive attitudes toward 

computational thinking from pre-survey to post-survey. Additionally, there was a second, 

statistically significant increase in positive attitudes from the post-survey to the delayed survey. 

Table 2 displays measures of attitudes before and after the computational thinking unit for the 

pre-service teachers.   

 

 

 

 

 

 

 

 

  



 

57 

Table 3 

Descriptive Statistics of Mean Scores on Attitudes Following the Computational Thinking 

 

 Pre-test Post-test Delayed-post test 

 M SD M SD M SD 

Attitudes toward 

computational  

thinking  

 

70.44 

 

8.48 

 

72.71 

 

8.58 

 

75.31 

 

10.71 
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Figure 13  

Changes in Attitudes Following the Computational Thinking Unit 
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Second research hypothesis. A series of split-plot repeated measures ANOVA were performed to 

determine if any significant differences between 3.5 to 4.0 range and 3.0 to 3.49 range GPAs 

existed among testing intervals. The intervention elicited statistically significant increased in 

attitude pre-test, post-test, and delayed-post test. It was confirmed that the patterns of change 

differed between participants with 3.5 to 4.0 range and 3.0 to 3.49 range GPAs. For statistical 

analysis, this measure was categorized into binary conditions (3.5 to 4.0 range and 3.0 to 3.49 

range GPA). The results demonstrated that there was a positive relationship between having a 3.5 

to 4.0 range cumulative GPA and a positive attitude toward computational thinking. Whereas 

pre-service teachers with both 3.5 to 4.0 range and 3.0 to 3.49 range GPAs increased in their 

attitude scores following the unit (pre-survey vs. post-survey), only teachers with 3.5 to 4.0 range 

GPAs continued to increase in attitudes from post-test to delayed post-test.  
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Table 3 presents the sums of squares, degrees of freedom, mean squares, and F-ratios for 

level for 3.5 to 4.0 range and 3.0 to 3.49 range GPAs. The analysis of variance (ANOVA) for 

Pre-Test did not reveal a significant difference [F(1,110) = 2.83, p = 0.095] between 3.5 to 4.0 

range and 3.0 to 3.49 range GPAs. Nor did the ANOVA reveal a significant difference between 

3.5 to 4.0 range and 3.0 to 3.49 range GPAs for Post-Test [F(1,110) = 3.18, p = 0.077] or for 

Delayed Post-Test [F(1,110) = 1.33, p = 0.251].  
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Table 4 

 

Analysis of Variance of Pre-test, Post-test and Delayed Post-test Attitude Scores toward 

Computational Thinking for 3.5 to 4.0 range and 3.0 to 3.49 range GPAs 

  Sum of 

Squares 

df Mean 

Square 

F Sig.      ηp
2     

Pre-test Between  

 

Groups 

 

186.18 

 

 

1 

 

186.18  

 

2.83 

 

.095 

 

Within  

 

Groups 

 

7226.24 

 

 

 

 

110 

 

65.69 

  

Total 

 

7412.42 111    

Post-test Between  

 

Groups 

 

230.66 

 

 

1 

 

230.66 

 

3.18 

 

.077 

 

Within  

 

Groups 

 

7983.06 

 

 

 

110 

 

72.57 

  

 

Total 

 

 

8213.72 

 

111 

   

Delayed 

Post-test 

 

 

 

 

 

 

 

 

Interaction 
(GPA*Time) 

 

Error 

Corrected 

Total 

Between 

 

Groups 

 

151.53 

 

 

1 

 

151.53 

 

1.33 

 

.251 

 

Within  

 

Groups 

 

12524.04 

 

110 

 

113.86 

  

 

Total 

 

12675.56 

 

336.82 

 

 

5757.61 

 

111 

 

1 

 

 

110 

 

 

 

336.82 

 

 

52.34 

 

 

 

6.43 

 

 

 

.013   .049 

      

 

 

 

          .078 
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Table 5 

Descriptive Statistics for 3.5 to 4.0 range and 3.0 to 3.49 range GPAs 

 

 Pre-test Post-test Delayed Post-test 

 M SD M SD M SD 

 

3-3.49 

GPA 

 

72.48 

 

8.69 

 

74.82 

 

7.90 

 

73.84 

 

10.72 

 

3.5-4.0 

GPA 

 

69.78 

 

7.77 

 

71.80 

 

8.82 

 

76.28 

 

10.64 
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Figure 14  

Changes in Attitudes Following the Computational Thinking Unit with Respect to GPA. 

 

Note.                GPA range 3.0 – 3.49 

                         GPA range 3.5 – 4.0 
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Table 6 Pre-test, Post-test and Delayed Post-test Mean Scores of Items for 3.5 to 4.0 range GPAs  

Item  Pre-test  Post-test Delayed Post-test 

1 3.37 3.50 3.71 

2 4.03 4.09 4.25 

3 3.66 3.82 3.99 

4 3.81 4.03 4.07 

5 2.83 2.97 4.07 

6 2.71 2.97 3.70 

7 3.99 3.89 3.89 

8 4.04 3.96 3.99 

9 2.93 2.88 3.96 

10 2.83 2.94 3.82 

11 2.82 3.04 3.00 

12 2.70 2.83 2.75 

13 2.73 2.96 2.94 

14 2.38 2.74 2.68 

15 3.68 3.86 3.75 

16 3.85 4.01 3.88 

17 3.89 3.89 3.81 

18 2.97 3.00 3.50 

19 3.79 3.60 3.67 

20 2.71 2.83 2.82 

21 4.04 3.96 4.04 
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Table 7 Pre-test, Post-test and Delayed Post-test Mean Scores of Items for 3.0 to 3.49 range 

GPAs  

Item  Pre-test  Post-test Delayed Post-test 

1 3.43 3.74 3.51 

2 3.95 4.20 4.23 

3 3.90 3.90 3.79 

4 3.90 4.08 3.97 

5 2.87 3.08 3.92 

6 3.08 3.18 3.69 

7 4.10 4.08 3.69 

8 4.08 4.13 3.87 

9 2.90 2.77 3.51 

10 2.92 2.85 3.56 

11 2.97 3.08 2.90 

12 2.87 3.05 2.79 

13 3.00 3.10 2.85 

14 2.85 2.97 2.72 

15 4.05 4.05 3.77 

16 4.02 4.10 3.82 

17 4.05 4.00 3.87 

18 2.92 3.13 3.36 

19 3.64 4.00 3.46 

20 2.92 3.18 2.87 

21 4.05 4.15 3.67 
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Third research hypothesis. A series of Split-plot repeated measures ANOVA were performed to 

determine if any significant differences between STEM and non-STEM majors existed between 

testing intervals. The intervention elicited statistically significant changed in attitude pre-test, 

post-test, and delayed-post test. It was confirmed that patterns of change differed between STEM 

and non-STEM majors. For statistical analysis, this measure was categorized into binary 

conditions (STEM or non-STEM). Whereas both STEM and non-STEM pre-service teachers 

increased in their attitudes from pre-survey to post-survey, only the STEM pre-service teachers 

increased again from post-survey to delayed post-survey.  
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Table 7 presents the sums of squares, degrees of freedom, mean squares, and F-ratios for 

level for STEM and non-STEM. The analysis of variance (ANOVA) for Pre-Test did not reveal a 

significant difference [F(1,116) = 3.01, p = 0.085] between STEM and non-STEM. Nor did the 

ANOVA reveal a significant difference between STEM and non-STEM for Post-Test [F(1,116) 

= 2.60, p = 0.110] or for Delayed Post-Test [F(1,116) = 0.40, p = .530].  



 

68 

Table 8 

Analysis of Variance of Pre-Test, Post-Test and Delayed Post-Test Attitude Scores toward 

Computational Thinking for STEM and non-STEM 

  Sum of 

Squares 

df Mean 

Square 

F Sig.      ηp
2     

Pre-test Between  

 

Groups 

 

198.266 

 

1 

 

198.27 

 

3.01 

 

.085 

 

Within  

 

Groups 

 

 

7638.18 

 

 

116 

 

 

65.85 

  

 

Total 

 

 

7836.44 

 

117 

   

Post-test Between  

 

Groups 

 

188.48 

 

1 

 

188.48 

 

2.60 

 

.110 

 

Within  

 

Groups 

 

 

8416.64 

 

 

116 

 

 

72.56 

  

 

Total 

 

 

8605.12 

 

117 

   

Delayed 

Post-test 

 

 

 

 

 

 

 

 

Interaction 
(Content 

area*Time)  

Error 

Corrected 

Total 

 

Between 

 

Groups 

 

45.86 

 

1 

 

45.86 

 

.40 

 

.530 

 

Within  

 

Groups 

 

 

13430.01 

 

 

 

116 

 

 

115.78 

 

 

 

 

Total 

 

 

 

 

 

 

13475.87 

 

217.42 

 

 

6371.90 

 

117 

 

1 

 

 

116 

 

 

 

217.42 

 

 

54.93 

 

 

 

3.96 

 

 

 

.050   .027 

 

 

 

 

          .064 
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Table 9 

Descriptive Statistics for STEM and non-STEM 

 

 

 Pre-test Post-test Delayed Post-test 

 M SD M SD M SD 

 

STEM 

 

69.81 

 

7.40 

 

71.97 

 

7.21 

 

75.65 

 

9.67 

 

Non-

STEM 

 

72.65 

 

9.62 

 

74.74 

 

11.03 

 

74.28 

 

13.00 

 

Note.  STEM = Science, Technology, Engineering, and Math   
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Figure 15  

Changes in Attitudes Following the Computational Thinking Unit with Respect to Content Area 

 
Note.  STEM = Science, Technology, Engineering, and Math   
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Table 10 Pre-test, Post-test and Delayed Post-test Mean Scores of Items for STEM  

Item  Pre-test  Post-test Delayed Post-test 

1 3.38 3.63 3.67 

2 4.07 4.16 4.24 

3 3.67 3.90 3.89 

4 3.82 4.06 4.07 

5 2.57 2.69 4.04 

6 2.65 2.83 3.77 

7 4.05 3.91 3.88 

8 4.14 3.99 4.02 

9 2.82 2.61 3.75 

10 2.75 2.70 3.79 

11 2.95 3.02 2.97 

12 2.71 2.93 2.71 

13 2.73 3.06 2.88 

14 2.57 2.87 2.72 

15 3.83 3.94 3.82 

16 3.97 4.04 3.90 

17 3.89 3.97 3.79 

18 2.70 2.95 3.42 

19 3.73 3.76 3.58 

20 2.75 2.97 2.81 

21 4.05 3.97 3.90 

Note.  STEM = Science, Technology, Engineering, and Math   
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Table 11 Pre-test, Post-test and Delayed Post-test Mean Scores of Items for non-STEM  

Item  Pre-test  Post-test Delayed Post-test 

1 3.40 3.51 3.54 

2 3.86 4.11 4.26 

3 3.91 3.71 3.97 

4 3.86 3.97 3.94 

5 3.48 3.83 3.94 

6 3.28 3.57 3.43 

7 3.97 4.03 3.74 

8 3.86 4.06 3.80 

9 3.23 3.43 3.80 

10 3.28 3.46 3.43 

11 2.77 3.20 2.94 

12 2.71 2.77 2.80 

13 2.91 2.86 3.00 

14 2.48 2.68 2.66 

15 3.77 3.77 3.63 

16 3.77 4.00 3.74 

17 4.08 3.86 3.86 

18 3.43 3.37 3.51 

19 3.77 3.66 3.62 

20 2.80 2.86 2.80 

21 4.00 4.03 3.86 
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Fourth research hypothesis. A series of split-plot repeated measures ANOVAs were performed 

to determine if any significant differences between genders existed between testing intervals. 

The intervention elicited did not lead to any statistically significant changes in attitude pre-test, 

post-test, and delayed-post test. 

 With only 12 male participants, it was difficult to conclude whether differences were 

found between the patterns of change in respect to gender. However, those 12 male participants 

did not show significant increases in attitudes at post- or delayed post-surveys. For statistical 

analysis, this measure was categorized into binary conditions (male or female).  
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Table 11 presents the sums of squares, degrees of freedom, mean squares, and F-ratios 

for male and female. The analysis of variance (ANOVA) for Pre-Test did not reveal a significant 

difference [F(1,116) = 1, p = 0.319] between male and female. Nor did the ANOVA reveal a 

significant difference between male and female for Post-Test [F(1,116) = 0.241, p = 0.624] or for 

Delayed Post-Test [F(1,116) = 1.040, p = 0.310].  
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Table 12 

 

Analysis of Variance of Pre-test, Post-test and Delayed Post-test Attitude Scores toward 

Computational Thinking for Male and Female 

 Sum of 

Squares 

df Mean 

Square 

F Sig.    ηp
2      

Between  

 

Groups 

 

66.97 

 

1 

 

66.97 

 

1 

 

.319   

 

Within  

 

Groups 

 

 

7769.47 

 

 

 

116 

 

 

66.98 

  

 

Total 

 

 

7836.44 

 

117 

   

Between  

 

Groups 

 

17.87 

 

 

 

1 

 

17.87 

 

.241 

 

.624 

Within  

 

Groups 

8587.25 116 74.03   

 

Total 

 

 

8605.12 

 

117 

   

Between 

 

Groups 

 

119.76 

 

 

 

1 

 

119.76 

 

1.040 

 

.310 

Within  

 

Groups 

 

13356.11 

 

116 

 

115.14 

 

  

 

Total 

 

Interaction 
(Gender*Time) 

 

Error 

 

Corrected 

Total 

 

13475.87 

 

182.92 

 

 

6406.41 

 

117 

 

1 

 

 

116 

 

 

 

 

 

182.92 

 

 

55.23 

 

 

 

 

 

3.31 

 

 

 

.07     .020 

 

 

 

 

          .016 
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Table 13 

Descriptive Statistics for Mean Scores Male and Female 

 

 

 Pre-test Post-test Delayed Post-test 

 M SD M SD M SD 

 

Male 

 

72.71 

 

5.68 

 

73.85 

 

8.88 

 

72.50 

 

9.23 

 

Female 

 

70.38 

 

8.44 

 

72.65 

 

8.56 

 

75.61 

 

10.90 
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Figure 16  

Changes in Attitudes over the Course of the Computational Thinking Unit with Respect to 

Gender
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Table 14  Pre-test, Post-test and Delayed Post-test Mean Scores of Items  

Item  Pre-test  Post-test Delayed Post-test 

1 3.38 3.59 3.64 

2 3.99 4.14 4.25 

3 3.73 3.84 3.92 

4 3.81 4.03 4.04 

5 2.82 3.01 4.01 

6 2.83 3.04 3.67 

7 4.01 3.94 3.84 

8 4.05 4.00 3.95 

9 2.93 2.85 3.76 

10 2.89 2.91 3.68 

11 2.89 3.09 2.96 

12 2.70 2.87 2.73 

13 2.77 2.98 2.90 

14 2.52 2.79 2.69 

15 3.79 3.89 3.76 

16 3.89 4.01 3.86 

17 3.93 3.93 3.81 

18 2.89 3.07 3.45 

19 3.73 3.72 3.59 

20 2.76 2.92 2.80 

21 4.02 3.99 3.89 
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Summary 

This chapter presented statistical analyses of the data collected during a computational 

thinking unit in an Instructional Technology course. The data were collected via paper-based 

survey with a return rate of 71%. The survey measured pre-service teachers’ attitudes towards 

computational thinking, and also asked them to supply demographic information.                                                                  

A summary of pre-service teachers’ demographics indicated that a majority of the 

respondents were female and white. Respondents further indicated various content areas of focus 

(Pre-K4, Interdisciplinary, English, Math, Science, Social Studies, Art or Music, and Other). 

The results of the study demonstrated that the computational thinking unit’s intervention 

increased the attitudes of pre-service teachers both immediately afterward and again after a 

three-week interval. This was generally true of both STEM and non-STEM teachers with both 

3.5 to 4.0 range and 3.0 to 3.49 range GPAs. However, there was not a secondary increased in 

attitudes for those with non-STEM content areas nor 3.0 to 3.49 range GPAs. The small sample 

of male pre-service teachers made it difficult to determine whether they follow the same trends.  
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CHAPTER V 

DISCUSSION 

Introduction 

The purpose of this chapter is to summarize and discuss the results of this study of pre-

service teacher perceptions of an intervention aimed at improving their attitudes toward 

computational thinking in education. Moreover, this chapter presents the findings as they relate 

to previous research literature, important conclusions, and limitations. Finally, the chapter 

provides recommendations for further research. 

Summary of the Procedure 

Within the study, pre-service teachers were invited to participate in an instructional unit 

on computational thinking. Undergraduate, pre-service teachers first completed demographic 

information and attitude surveys during a regularly scheduled class within their School of 

Education curriculum. This first attitude survey (pre-test) asked teachers for their familiarity with 

computational thinking. After two subsequent, 50-minute training sessions, participants 

completed a second attitude survey (post-test) and then again following a three-week lapse, 

completed the third and final attitude survey (delayed post-test).  
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Summary of the Findings 

The current investigation was motivated by four research questions. Each of the four 

research questions is presented below, along with a summary of the findings. 

   

Research Question One: Can an embedded intervention that teaches about the importance and 

utility of computational thinking, change the attitudes of pre-service teachers enrolled in 

Instructional Technology courses?   

The first research question examined pre-service teachers’ attitudes toward computational 

thinking before and after an intervention. Analyses of the responses from the attitude survey 

indicated that the intervention was effective in changing the attitudes of the aggregate group or 

pre-service teachers toward computational thinking. Specifically, attitude increased from pre-test 

to post-test and then again from post-test to delayed post-test. All pre-service teachers started out 

at about the same level of attitude generally positive toward computational thinking and ended 

with increased  attitudes mostly positive toward computational thinking. 

Previous research has found that pre-service teachers’ attitudes toward computational 

thinking increased following in-service training. Moreover, the current study provided 

preliminary evidence that this increase may extend beyond the completion of the instructional 

training period. The current findings extended research by Harmbrusch and colleagues (2009), 

who found benefits when computational thinking was integrated into a variety of subject areas 

for pre-service teachers. In addition, in this study, the computational thinking instructional unit 

included Scratch programming language tool, examples of Scratch flash cards, computational 

thinking examples, and unplugged activities to all pre-service teachers. This is important because 
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these examples and activities allowed teachers to develop their own computational thinking 

skills, as well as gain experience in implementing computational thinking concepts and practices 

through the use of the Scratch programming language tool.   

Hands-on activities in the current study were aligned with the theory of constructionism 

to teach students how to think computationally (Bers, 2008; Brennan, & Resnick, 2012a; Wing, 

2006). According to constructionism, students-centered learning in computational thinking while 

doing hands-on activities (Papert, 1980; 1993) Additionally, pre-service teachers were becoming 

familiar, knowledgeable, articulated, and sophisticated about improving computational thinking 

concepts, practices and perspectives and are interacting with peers and doing hands-on activity 

by thinking. To date, however, research identifying hands-on activities based on computational 

thinking has not previously been completed in a pre-service education program with the 

programming language tool Scratch. Therefore, the findings demonstrated a new way to teach 

computational thinking with using a programming language tool Scratch to pre-service teachers 

who may not have recognized the value of computational thinking before. Moreover, the 

constructionist design of this unit empowered pre-service teachers in their use of computational 

thinking by fostering their own computational thinking skills through activities that could also be 

adapted to meet the needs of their own classrooms. As a result, this theory demonstrates how 

computational thinking can be used and taught to students in classroom environments. 
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Research Question Two: Would the intervention on computational thinking affect the 

attitudes of pre-service teachers differently depending on their GPAs? 

The second research question examined pre-service teachers’ patterns of attitude change 

and whether they differed between participants with 3.5 to 4.0 range and 3.0 to 3.49 range GPAs. 

In this study, analyses revealed that pre-service teachers with both 3.0 to 3.49 range and 3.5 to 

4.0 range GPA showed patterns of attitude increases following the unit. They had generally 

positive attitude that increased to mostly positive attitudes, and investigation of this research 

question confirmed that the intervention, as intended, increased their attitudes toward 

computational thinking.  

While past studies have investigated pre-service teachers’ attitudes toward computational 

thinking units, no similar research has been conducted to investigate the influence of having a 

3.5 to 4.0 range and 3.0 to 3.49 range GPA (Hoegh & Moskal, 2009; Wing, 2006; Wing, 2008b; 

Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014). In this study, analyses revealed that 3.5 to 

4.0 range and 3.0 to 3.49 range GPAs pre-service teachers showed patterns of attitude increases 

from generally positive attitude scores to mostly positive attitude scores following the 

instructional unit. The findings revealed that the instructional unit increased the attitudes of all 

pre-service teachers, regardless of their GPAs. Moreover, this study found that the instructional 

unit worked for all of pre-service teachers equally.  

In this study, the developed computational thinking unit included and relied upon 

pedagogy derived from constructionism theory, such as project-based learning, which 

encouraged the inclusion of 21st century skills within the activities. According to 

constructionism, teaching becomes learner-oriented and that was the format of the unit. Learners 
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were actively involved in hands-on activities, and not passively listening in order to learn. That 

format offered learners a more active role in the classroom setting (Fosnot, 1996). Additionally, 

pre-service teachers could engage with the materials and in the activities without much, if any, 

prior knowledge of broader subject matters or even of computational thinking. And so, it is 

understandable that pre-service teachers would equally be affected by the intervention, regardless 

of their GPAs. Constructionism prescribes hands-on activities and real life experiences within 

the classroom. Those types of hands-on activities and real life experiences within the unit could 

be engaged in and recognized as important by even novice or lower-performing pre-service 

teachers.  

Questions 15 and 16 asked specifically about that process. These items are important 

because how teachers conceptualize what it means and what is required to integrate 

computational thinking skills can positively or negatively affect their attitudes. Question 2 asked 

about whether computer applications are necessary to teach computational thinking. This item is 

important because teachers might feel reluctant to learn and introduce a new application within 

their classrooms. Asked to respond on a five-point Likert scale, Question 15 posed the following 

statement: Computational thinking can be incorporated in the classroom by using computers 

within the lesson plan. Question 16 posed the following statement: Computational thinking can 

be incorporated into the classroom by allowing students to problem solve. Similarly, Question 2 

posed the following statement: Computational thinking involves thinking logically to solve 

problems. On all three of these items, pre-service teachers’ responses to these questions became 

increasingly similar following the intervention, whereas pre-surveys showed some potential 

differences in opinion between those with 3.5 to 4.0 range and 3.0 to 3.49 range GPAs. This is 

evidence that the intervention helped to define what it means to integrate computational thinking 
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into a K-12 curriculum. It does not mean adding computers or applications to already 

challenging classroom schedules. After pre-service teachers with both 3.5 to 4.0 range and 3.0 to 

3.49 range GPAs understood that, attitude scores increased for both groups.  

 

Research Question Three: Are the attitude scores of pre-service teachers with STEM 

concentrations more subject to change after the computational thinking intervention than are the 

attitude scores of pre-service teachers with non-STEM concentrations? 

 

Unlike previous research, this study examined attitudes by pre-service teachers separately 

based upon whether their degrees would be in STEM or non-STEM areas of instruction. In this 

study, analyses revealed that STEM and non-STEM pre-service raided their generally positive 

attitude scores to mostly positive attitude scores following the instructional unit. The intervention 

elicited statistically significant changes in attitude pre-test, post-test, and delayed-post test. 

Although for the most part, the current study produced expected results, one area of the study 

produced different findings for STEM and non-STEM pre-service teachers. One of the most 

important findings of the current study was the result of investigating whether the instructional 

unit would be as effective for non-STEM pre-service teachers as for STEM pre-service teachers. 

The findings revealed that the instructional unit increased the attitudes of all pre-service teachers, 

regardless of their concentrations (STEM or non-STEM). Because of the computational thinking 

required within STEM fields, it might be supposed that STEM pre-service teachers would have 

more positive attitudes toward computational thinking than non-STEM pre-service teachers 

have, but both groups raided their generally positive attitude scores to mostly positive attitude 

scores following the instructional unit.  
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The current study provides evidence that both STEM and non-STEM pre-service 

teachers can be trained to recognize the value of computational thinking practices, and that a 

two-week computational thinking unit is enough to do it. It might be better to train pre-service 

teachers in computational thinking during their academic work in order for them to be effective 

in teaching computational thinking, than it is to train them later in their careers. This is because, 

early in their careers, they would then know how to engage students with hands-on activities in 

fun and meaningful ways that could promote computational skills and practices. Importantly, it 

would be worth investigating whether there is a link between the teacher’s understanding of, and 

attitude toward, computational thinking and the attitudes adopted by her/his students.  

Constructionism can play a significant role for STEM and non-STEM teachers and their 

future students in the classroom setting. It is important to train STEM and non-STEM pre-service 

teachers to get enough knowledge of computational thinking and how to integrate it into for their 

curriculum, and incorporate it into their classroom activities (Yadav, Mayfield, Zhou, 

Hambrusch, & Korb, 2014). It is likely the inclusion of hands-on activities that allowed both 

STEM and non-STEM teachers to be recognize the importance of computational thinking 

concepts, practices, and perspectives.  

Constructionism prescribes hands-on activities like those in the current computational 

thinking unit. Those hands-on activities are more common within STEM subjects than in non-

STEM subjects (Bers, 2010; Resnick et al., 2009). So, STEM pre-service teachers might benefit 

more than non-STEM pre-service teachers from this computational thinking that employs such 

hands-on activities. However, the current findings revealed that it is not the case, that is, both 

STEM and non-STEM pre-service teachers were positively influenced by computational thinking 

unit.  
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STEM and non-STEM pre-service teachers were asked to react to a statement about their 

attitudes toward computational thinking before and after an intervention. In the current study, the 

intervention was a computational thinking unit. During the computational thinking unit, 

participants were given opportunities to do hands-on activities with Scratch programming 

application Questions 2 and 3 of the survey asked specifically about the definition of 

computational thinking to make sure the participants understood exactly what computational 

thinking means. Pre-service teachers responded to a twenty-one-item survey before and after an 

intervention. Question 2 asked them to respond “Strongly agree,” “Disagree,” “Neutral,” 

“Agree,” “Strongly agree” to the following: “Computational thinking involves thinking logically 

to solve problems,” and Question 2 asked them to respond to the following: “Computational 

thinking involves using computers to solve problems.” Before the intervention, both STEM and 

non-STEM pre-service teachers responded with less agreement on the definition of 

computational thinking, however after the intervention, both groups responded with more 

agreement. 

Question 10 of the survey asked specifically about the participants’ comfort with 

computational thinking. It indicates how comfortable STEM and non-STEM pre-service teachers 

are with using computer applications in the classroom. The question asked them to rate (using 

the aforementioned scale of “Strongly agree,” “Disagree,” “Neutral,” “Agree,” “Strongly agree”) 

the following statement: “I doubt that I have the skills to solve problems by using computer 

application.” Before the intervention, both STEM and non-STEM pre-service teachers responded 

with less agreement on their comfort with computational thinking and after the intervention, they 

responded with more agreement on their comfort with computational thinking.  
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Research Question Four: Are changes in attitude following the unit related to the gender of the 

pre-service teacher?  

Findings revealed that there were no differences between the male and female pre-service 

teachers in this study. However, there were significantly fewer male participants than there were 

female participants. The predominance of women in this study is roughly proportionate to the 

numbers of each gender who pursue pre-service studies at the college. Of course, the small 

number of male pre-service teachers requires the finding of the lack of gender differences to be 

considered tentatively.  

Female pre-service teachers are role models since in the theory of constructionism they 

teach but they learn with and from the children. Role models are fundamental in K-12 students 

life, they are seeing their teachers of STEM or STEM-related field. However, Fewer girls are 

involved in programming and other types of computational thinking. It is probably true that if 

there are more female role models, more girls will get involved in this type of thinking (Google 

for Education, 2015; Google-Gallup, 2005; Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014).  

Although fewer women currently work in the computer science field, there were more 

female students than male pre-service teachers in my study. It is important to note that most of 

the pre-service teachers in the classroom were PreK-4 teachers so that this research also indicates 

the importance of early age. In particular, early usage has been shown to increase success in 

future computing and STEM classes (Cohoon & Aspray, 2006).  

Teachers need to be better taught on how to teach computational thinking to their 

students. In particular, female pre-service teachers’ attitudes toward computational thinking play 

a major role in how best to teach computational thinking for prospective students (Yadav, 

Mayfield, Zhou, Hambrusch, & Korb, 2014; Zhao et al, 2001). Teachers play a critical role in 
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each of these areas as they work to maximize learning outcomes in their students by motivating 

and engaging them in computational thinking. An exploration of the role of the teacher in 

promoting computational thinking among students is therefore an important step towards 

building science literacy in our youth. If they have positive attitudes, they have the power to 

influence children at an early age on issues regarding computational thinking and programming. 

This study should be replicated with more male students, in order to provide generalized results 

for a larger pre-service teacher population than the community represented in this study. In 

particular, underrepresented groups are not able to get resources, activities, and sample projects.  

Limitations 

There are several limitations regarding the current study. One limitation is that there were 

fewer male pre-service teachers than female pre-service teachers, which is not surprising, 

because more women than men are education majors. It would be interesting to repeat this study 

with a larger number of male participants, if not equal numbers. 

Another potential limitation of this study was that it incorporated only a two-week 

computational thinking unit intended to convey the importance of teaching computational 

thinking. Thus, the only dependent measure were pre-service teachers’ attitudes toward 

computational thinking. Additional measures should have been planned during pre-unit and post-

unit assessments to investigate learning specifically. Did these pre-service teachers also increase 

in their own computational thinking, in their abilities to use the programming language of 

Scratch, and in their content knowledge of computer science more generally? To sufficiently 

foster such learning, a longer exposure would help pre-service teachers to understand more about 

computational thinking and would give pre-service teachers more practice with the programming 
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language tool Scratch. This study has shown that a brief intervention can help teachers to 

recognize the importance of computational thinking. But a similar unit could focus more on 

teaching computational thinking concepts and skills to pre-service teachers. Future research 

should examine how best to teach pre-service teachers about computational thinking concepts 

and skills in shorter units like this study’s that do not require an entire course. 

Broader implementation of this unit is also a concern. This study was of a unit 

implemented at a single university by a single instructor. Although it was implemented in several 

class sections with different primary instructors and there is not a reason to believe that the pre-

service teachers enrolled at this university are different from pre-service teachers at other 

universities, it was a limitation to only have a single instructor for the unit. This study should be 

replicated at other universities or in other contexts and with a variety of instructors in order to 

provide more reliably generalizable results. It also would add to the validity of the study because 

university classrooms are often taught by more than one instructor.  

Recommendations for Future Research 

To gain a better understanding of how students progress when they have sustained 

explicit training in the use of programming languages and computational thinking, a study of 

longer duration is recommended. More than two weeks of the computational thinking unit could 

provide more examples and activities to pre-service teachers.  

Additionally, more time could be spent helping teachers to adopt best practices for 

integrating computational thinking into their teaching by having them draft hypothetical lesson 

plans in a variety of subject matter domains. Before teaching in their field, pre-service teachers 
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would then be thoroughly familiar with computational thinking through hands-on activities and 

ready to integrate such skills into their classrooms. The current findings suggest that the longer 

unit should foster more positive attitudes in pre-service teachers but that would need to be 

investigated further. 

This study should be replicated with a larger male students population, in order to 

provide generalized results for a larger pre-service teacher population than the community 

represented in this study. Most importantly, it is uncertain whether any differences between male 

and female pre-service teachers should be expected, or if the findings from this predominantly 

female sample can be assumed to be true of male pre-service teachers as well. A larger, more 

male-inclusive sample would help to answer that question. 

  It would also be helpful to include in-service teachers in order to compare their attitudes 

about the computational thinking with those of the pre-service teachers. Are pre-service teachers 

more open to new content, like computational thinking, and in-service teachers are more often 

reluctant to introduce new content? Or, is it that this unit makes a compelling case for 

computational thinking’s integration into classes and therefore would increase attitudes toward 

computational thinking in both pre-service and in-service teachers? Additionally, it would be 

interesting to know whether this unit could be expanded to train both pre-service and in-service 

teachers to effectively teach computational thinking. 

Future studies could also address the impact of computational thinking on students 

learning about different programming language tool. This study focused primarily on pre-service 

teachers and their use of the programming language tool Scratch. However, there are many 

programming language tools that are now being used within classrooms (e.g., ScratchJr, Alice, 
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etc.). This study might be replicated with ScratchJr because many Pre-K- 4 pre-service teachers 

are beginning to use ScratchJr. Alternatively, this study could be replicated with Alice for those 

secondary pre-service teachers. It would be important to see whether attitudes increase with both 

easier programming languages (ScratchJr) and more challenging programming languages 

(Alice).  

A final recommendation would be to examine pre-service teachers in more qualitative 

ways than changes in their attitudes towards computational thinking. It would be interesting to 

administer assessments of critical thinking, problem solving, resourcefulness, teaching style 

preferences, and other measures that could give a more holistic profile of the pre-service teachers 

involved. Is there a range of profiles that predicts better integration/adaptation of computational 

thinking into classrooms, or is it that a teacher needs particular characteristics to successfully 

implement those changes? An investigation of a wider variety of teachers and these sorts of 

measures might begin to answer those questions. If teachers’ attitudes toward computational 

thinking factor largely into the motivations for successful integration of computational thinking 

skills into classrooms, then this study has already found a short unit that is effective for instilling 

more open and positive attitudes.    

 

Summary 

The overall purpose of the study was to help pre-service teachers learn about 

computational thinking and how it differs from computer science. Moreover, pre-service teachers 

increased their awareness and attitudes of computational thinking, explore examples of 

computational thinking integrated into their subject areas, and experiment with examples of 
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computational thinking integrated activities for their subject areas with Scratch programming 

language tool.  

This final chapter presented discussion, recommendations, and limitations of the study 

conducted for this dissertation. This was the first known study that used a computational thinking 

unit, which includes Scratch programming language, Scratch flash cards, debugging activities 

and Harvard CS50 online lecture unplugged activity. The present investigation expanded the 

existing research base by using computational thinking unit.   
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Definition of terms 

 

STEM: Acronym for the fields of science, technology, engineering, and math.  

Pre-service teacher: College student who is training to teach, classes provided to student-

teachers before they have any teaching responsibility.  

STEM pre-service teachers: Math, Science, and Computer teacher.   

Non-STEM pre-service teachers: Special Education, Pre-K4, Language Art, Music, Art, and 

Social Studies/History teacher.   

Computational thinking: Computational thinking enhances human thinking by using imaginative 

ideas to create new things by using the computer or without computer. 

Programming language: An artificial language used to write instructions that a computer or tablet 

can understand to do programmer wants.   

iPad-based language program: Any programming language applications whose action of delivery 

is an iPad.  

Computer-based language program: Any programming language tools whose action of delivery 

is a computer.  

Digital media: Computerized tools such as data, animations text, graphics, audio, and video that 

can be transferable and publishable a computer through Internet.   
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