807 research outputs found

    Service-Oriented Reference Architecture for Smart Cities

    Get PDF
    The trend towards turning existing cities into smart cities is growing. Facilitated by advances in computing such as Cloud services and Internet of Things (IoT), smart cities propose to bring integrated, autonomous systems together to improve quality of life for their inhabitants. Systems such as autonomous vehicles, smart grids and intelligent traffic management are in the initial stages of development. However, as of yet there, is no holistic architecture on which to integrate these systems into a smart city. Additionally, the existing systems and infrastructure of cities is extensive and critical to their operation. We cannot simply replace these systems with smarter versions, instead the system intelligence must augment the existing systems. In this paper we propose a service oriented reference architecture for smart cities which can tackle these problems and identify some related open research questions. The abstract architecture encapsulates the way in which different aspects of the service oriented approach span through the layers of existing city infrastructure. Additionally, the extensible provision of services by individual systems allows for the organic growth of the smart city as required

    Semantic-Driven Architecture for Autonomic Management of Cyber-Physical Systems (CPS) for Industry 4.0

    Get PDF
    International audienceToday we are living a new industrial revolution, which has its origin in the vertiginous deployment of ICT technologies that have been pervasively deployed at all levels of the modern society. This new industrial revolution, known as Industry 4.0, evolves within the context of a totally connected Cyber-Physic world in which organizations face immeasurable challenges related to the proper exploitation of ICT technologies to create and innovate in order to develop the intelligent products and services of tomorrow's society. This paper introduces a semantic-driven architecture intended to design, develop and manage Industry 4.0 systems by incrementally integrating monitoring, analysis, planning and management capabilities within autonomic processes able to coordinate and orchestrate Cyber-Physical Systems (CPS). This approach is also intended to cope with the integrability and interoperability challenges of the heterogeneous actors of the Internet of Everything (people, things, data and services) involved in the CPS of the Industry 4.0

    A Framework for Industry 4.0

    Get PDF
    The potential of the Industry 4.0 will allow the national industry to develop all kinds of procedures, especially in terms of competitive differentiation. The prospects and motivations behind Industry 4.0 are related to the management that is essentially geared towards industrial internet, to the integrated analysis and use of data, to the digitalization of products and services, to new disruptive business models and to the cooperation within the value chain. It is through the integration of Cyber-Physical Systems (CPS), into the maintenance process that it is possible to carry out a continuous monitoring of industrial machines, as well as to apply advanced techniques for predictive and proactive maintenance. The present work is based on the MANTIS project, aiming to construct a specific platform for the proactive maintenance of industrial machines, targeting particularly the case of GreenBender ADIRA Steel Sheet. In other words, the aim is to reduce maintenance costs, increase the efficiency of the process and consequently the profit. Essentially, the MANTIS project is a multinational research project, where the CISTER Research Unit plays a key role, particularly in providing the communications infrastructure for one MANTIS Pilot. The methodology is based on a follow-up study, which is jointly carried with the client, as well as within the scope of the implementation of the ADIRA Pilot. The macro phases that are followed in the present work are: 1) detailed analysis of the business needs; 2) preparation of the architecture specification; 3) implementation/development; 4) tests and validation; 5) support; 6) stabilization; 7) corrective and evolutionary maintenance; and 8) final project analysis and corrective measures to be applied in future projects. The expected results of the development of such project are related to the integration of the industrial maintenance process, to the continuous monitoring of the machines and to the application of advanced techniques of preventive and proactive maintenance of industrial machines, particularly based on techniques and good practices of the Software Engineering area and on the integration of Cyber-Physical Systems.O potencial desenvolvido pela Indústria 4.0 dotará a indústria nacional de capacidades para desenvolver todo o tipo de procedimentos, especialmente a nível da diferenciação competitiva. As perspetivas e as motivações por detrás da Indústria 4.0 estão relacionadas com uma gestão essencialmente direcionada para a internet industrial, com uma análise integrada e utilização de dados, com a digitalização de produtos e de serviços, com novos modelos disruptivos de negócio e com uma cooperação horizontal no âmbito da cadeia de valor. É através da integração dos sistemas ciber-físicos no processo de manutenção que é possível proceder a um monitoramento contínuo das máquinas, tal como à aplicação de técnicas avançadas para a manutenção preditiva e pró-ativa das mesmas. O presente trabalho é baseado no projeto MANTIS, objetivando, portanto, a construção de uma plataforma específica para a manutenção pró-ativa das máquinas industriais, neste caso em concreto das prensas, que serão as máquinas industriais analisadas ao longo do presente trabalho. Dito de um outro modo, objetiva-se, através de uma plataforma em específico, reduzir todos os custos da sua manutenção, aumentando, portanto, os lucros industriais advindos da produção. Resumidamente, o projeto MANTIS consiste num projeto de investigação multinacional, onde a Unidade de Investigação CISTER desenvolve um papel fundamental, particularmente no fornecimento da infraestrutura de comunicação no Piloto MANTIS. A metodologia adotada é baseada num estudo de acompanhamento, realizado em conjunto com o cliente, e no âmbito da implementação do Piloto da ADIRA. As macro fases que são compreendidas por esta metodologia, e as quais serão seguidas, são: 1) análise detalhada das necessidades de negócio; 2) preparação da especificação da arquitetura; 3) implementação/desenvolvimento; 4) testes e validação; 5) suporte; 6) estabilização; 7) manutenção corretiva e evolutiva; e 8) análise final do projeto e medidas corretivas a aplicar em projetos futuros. Os resultados esperados com o desenvolvimento do projeto estão relacionados com a integração do processo de manutenção industrial, a monitorização contínua das máquinas e a aplicação de técnicas avançadas de manutenção preventiva e pós-ativa das máquinas, especialmente com base em técnicas e boas práticas da área de Engenharia de Software

    Massive-Scale Automation in Cyber-Physical Systems: Vision & Challenges

    Get PDF
    The next era of computing is the evolution of the Internet of Things (IoT) and Smart Cities with development of the Internet of Simulation (IoS). The existing technologies of Cloud, Edge, and Fog computing as well as HPC being applied to the domains of Big Data and deep learning are not adequate to handle the scale and complexity of the systems required to facilitate a fully integrated and automated smart city. This integration of existing systems will create an explosion of data streams at a scale not yet experienced. The additional data can be combined with simulations as services (SIMaaS) to provide a shared model of reality across all integrated systems, things, devices, and individuals within the city. There are also numerous challenges in managing the security and safety of the integrated systems. This paper presents an overview of the existing state-of-the-art in automating, augmenting, and integrating systems across the domains of smart cities, autonomous vehicles, energy efficiency, smart manufacturing in Industry 4.0, and healthcare. Additionally the key challenges relating to Big Data, a model of reality, augmentation of systems, computation, and security are examined

    Enabling IoT in Manufacturing: from device to the cloud

    Get PDF
    Industrial automation platforms are experiencing a paradigm shift. With the new technol-ogies and strategies that are being applied to enable a synchronization of the digital and real world, including real-time access to sensorial information and advanced networking capabilities to actively cooperate and form a nervous system within the enterprise, the amount of data that can be collected from real world and processed at digital level is growing at an exponential rate. Indeed, in modern industry, a huge amount of data is coming through sensorial networks em-bedded in the production line, allowing to manage the production in real-time. This dissertation proposes a data collection framework for continuously collecting data from the device to the cloud, enabling resources at manufacturing industries shop floors to be handled seamlessly. The framework envisions to provide a robust solution that besides collecting, transforming and man-aging data through an IoT model, facilitates the detection of patterns using collected historical sensor data. Industrial usage of this framework, accomplished in the frame of the EU C2NET project, supports and automates collaborative business opportunities and real-time monitoring of the production lines

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Internet of things: Conceptual network structure, main challenges and future directions

    Get PDF
    Internet of Things (IoT) is a key technology trend that supports our digitalized society in applications such as smart countries and smart cities. In this study, we investigate the existing strategic themes, thematic evolution structure, key challenges, and potential research opportunities associated with the IoT. For this study, we conduct a Bibliometric Performance and Network Analysis (BPNA), supplemented by an exhaustive Systematic Literature Review (SLR). Specifically, in BPNA, the software SciMAT is used to analyze 14,385 documents and 30,381 keywords in the Web of Science (WoS) database, which was released between 2002 and 2019. The results reveal that 31 clusters are classified according to their importance and development, and the conceptual structures of key clusters are presented, along with their performance analysis and the relationship with other subthemes. The thematic evolution structure describes the important cluster(s) over time. For the SLR, 23 documents are analyzed. The SLR reveals key challenges and limitations associated with the IoT. We expect the results will form the basis of future research and guide decision-making in the IoT and other supporting industries.Coordenaç~ao de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001 and the Spanish Ministry of Science and Innovation under grants PID2019-105381 GA-100 (iScience)Consejo Nacional de Ciencia y Tecnología (CONACYT) and Direcci on General de Relaciones Exteriores (DGRI

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Internet of services-based business model: a case study in the livestock industry

    Get PDF
    Purpose – Considering the relevance of innovative business models in the digitally transformed market andthe lack of clarity on the internet of services (IoS) contribution for a business model deployment in currentliterature, this study aims to fill this gap by evaluating a business model that converges to an IoS adoption ina direct sale of free-range eggs from farmers to consumers.Design/methodology/approach – From the bibliographical research regarding the IoS and businessmodel, the authors developed an IoS-based model framework. The framework has been evaluated in a realbusiness scenario by using a single case study through an interview with the entrepreneur and documentalanalysis.Findings – As the main result, a framework with the attributes can be considered a tool for an IoS-basedbusiness model deployment. The case study concluded that the business is aligned with the IoS adoption, andthe framework presents adherence to it.Research limitations/implications – The case study was limited to only one company owing to theIoS’s novelty and the lack of correlated business models. Although the case study limits to the agriculturefield, the proposed framework may be broadly applied.Originality/value – Considering that the lack of a comprehensive business model causes newbusinesses to face challenges, it is relevant bringing up the present case study of the IoS-based businessmodel, which correlates these two subjects, still poorly explored in the scientific literature: IoS andbusiness models
    • …
    corecore