
 

Joaquim André Sena Martins Pereira 

Graduate in Electrical and Computer Engineering 

Enabling IoT in Manufacturing: from device 

to the cloud 

Dissertation for Master Degree in  

Electrical and Computer Engineering 

 

Supervisor: Doutor Ricardo Luís Rosa Jardim Gonçalves,  

Professor Associado com Agregação, Faculdade Ciên-

cias e Tecnologia (FCT), Universidade Nova de Lisboa 

Co-supervisor: Doutor Carlos Manuel de Melo Agostinho, 

Investigador, Centro de Tecnologia e Sistemas (CTS), 

UNINOVA 

 

 Dissertation committee  

President: Anikó Katalin Horváth da Costa, Doutora, FCT/UNL 

Opponents: António Carlos Bárbara Grilo, Doutor, FCT/UNL 

Members: Ricardo Luís Rosa Jardim Gonçalves, Doutor, 

FCT/UNL 

 

September, 2016 

 



 



i 

Enabling IoT in Manufacturing: from Device to the Cloud. 

Copyright © Joaquim André Sena Martins Pereira, Faculdade de Ciências e Tecnologia, Uni-

versidade Nova de Lisboa. 

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo 

e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impres-

sos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que 

venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia 

e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja 

dado crédito ao autor e editor. 

 





iii 

To Manuela Sena, 

 





v 

Acknowledgments 

 

I would like to thank all the people who, in some way, supported me during the realiza-

tion of my course and this dissertation.  

To my supervisor Professor Doctor Ricardo Gonçalves and co-supervisor Doctor Carlos 

Agostinho by believing in my capabilities and giving me advices towards the successful com-

pletion of this work, and the great opportunity to work in their group.  

To all my colleagues at UNINOVA GRIS, especially to José Ferreira that helped and be-

lieved in me all this time, pushing me to do a better work and to successfully complete this dis-

sertation.  

To my family, that never gave up on me during the end of this phase of my life, which 

supported me all these years. To my brother that helped me during the time I was writing this 

dissertation.  

Finally, to my colleagues and friends, who shared all the hard work during the course. 

Thank you André Coelho, João Nuno, João Lourenço, João Ralo, Nuno Ramos, Renato Paulino, 

Gonçalo Oliveira and Flávio Silva for all these years together and the great events we passed 

together.  

The research leading to these results has received funding from the European Union 

HORIZON 2020 Programme under grant agreement n° 636909 (www.c2net-project.eu). 





vii 

Abstract 

Industrial automation platforms are experiencing a paradigm shift. With the new technol-

ogies and strategies that are being applied to enable a synchronization of the digital and real 

world, including real-time access to sensorial information and advanced networking capabilities 

to actively cooperate and form a nervous system within the enterprise, the amount of data that 

can be collected from real world and processed at digital level is growing at an exponential rate. 

Indeed, in modern industry, a huge amount of data is coming through sensorial networks em-

bedded in the production line, allowing to manage the production in real-time. This dissertation 

proposes a data collection framework for continuously collecting data from the device to the 

cloud, enabling resources at manufacturing industries shop floors to be handled seamlessly. The 

framework envisions to provide a robust solution that besides collecting, transforming and man-

aging data through an IoT model, facilitates the detection of patterns using collected historical 

sensor data. Industrial usage of this framework, accomplished in the frame of the EU C2NET 

project, supports and automates collaborative business opportunities and real-time monitoring 

of the production lines. 

 

Keywords: Internet of Things, Cloud Computing, Data Collection, Virtualization





ix 

Resumo 

As plataformas de automação industrial estão a sofrer uma mudança de paradigma. Com as no-

vas tecnologias e estratégias que estão a ser aplicadas para permitir a sincronização do mundo 

digital e real, incluindo acesso em tempo real à informação sensorial e a recursos rede avança-

dos a cooperar ativamente formando um sistema nervoso dentro da empresa, a quantidade de 

dados que podem ser coletadas de mundo real e tratados a nível digital está a crescer a uma taxa 

exponencial. De facto, na indústria moderna, a enorme quantidade de dados que entra através 

das redes sensoriais incorporados na linha de produção, permite gerir a produção em tempo real. 

Esta dissertação propõe uma framework de recolha de dados para coletar continuamente dados 

de dispositivos para a cloud, permitindo que os recursos na linha de produção da industria sejam 

facilmente integrados. A framework prevê que para fornecer uma solução robusta que, além de 

coletar, transformar e gerir os dados através do uso de um modelo que suporta a Internet das 

Coisas, facilitará também a deteção de padrões usando os dados históricos recolhidos pelos sen-

sores. O uso industrial desta framework, realizada no âmbito do projeto europeu C2NET, tem 

como objetivo suportar e automatizar oportunidades de negocio de colaboração e de monitorizar 

em tempo real as linhas de produção. 

 

Palavras-chave: Internet das Coisas, Cloud Computing, Coleção de Dados, Virtualização. 





xi 

Table of Contents 

Acknowledgments ....................................................................................................................... v 

Abstract ...................................................................................................................................... vii 

Resumo ........................................................................................................................................ ix 

Table of Contents ....................................................................................................................... xi 

Table of Figures ........................................................................................................................ xiii 

Table of Tables .......................................................................................................................... xv 

Acronyms ................................................................................................................................. xvii 

1 Introduction ............................................................................................................................ 1 

1.1 Research Method ............................................................................................................................ 2 

1.2 Research Framework and Questions .............................................................................................. 3 

1.3 Hypothesis ...................................................................................................................................... 4 

1.4 Dissertation Outline ........................................................................................................................ 4 

2 State-of-the-Art ...................................................................................................................... 5 

2.1 Internet of Things ........................................................................................................................... 5 

2.1.1 IoT Models ................................................................................................................................. 8 

2.1.1.1 Internet of Things - Architecture ........................................................................................................... 8 
2.1.1.2 Semantic Sensor Network Ontology .................................................................................................. 11 
2.1.1.3 OSMOSE Model ............................................................................................................................................ 12 

2.1.2 Service Management in IoT ............................................................................................ 13 

2.1.2.1 Event-Driven Architecture ..................................................................................................................... 13 
2.1.2.2 Service Oriented Architecture .............................................................................................................. 14 
2.1.2.3 Service Oriented Architecture 2.0 ...................................................................................................... 15 

2.2 Middleware for IoT ...................................................................................................................... 16 

2.2.1 Device-Embedded Middleware ..................................................................................... 18 

2.2.2 Middleware on the Cloud ................................................................................................. 19 

2.3 Cloud Computing ......................................................................................................................... 20 

2.3.1 Cloud Characterization .................................................................................................... 20 

2.3.2 Service Models ...................................................................................................................... 21 



xii 

2.3.3 Deployment Models ............................................................................................................ 22 

2.3.4 Cloud Solutions ..................................................................................................................... 23 

2.4 Fog Computing ............................................................................................................................. 24 

3 Framework to Enable IoT in Manufacturing .................................................................... 27 

3.1 Conceptual Solution ..................................................................................................................... 27 

3.1.1 Company Middleware ....................................................................................................... 29 

3.1.1.1 IoT Hub ............................................................................................................................................................ 29 

3.1.2 Data Collection Framework ........................................................................................... 31 

3.1.2.1 Resource Management ............................................................................................................................. 31 
3.1.2.2 Complex Event Processing ..................................................................................................................... 33 
3.1.2.3 Cloud Message Broker .............................................................................................................................. 34 

3.1.3 Backend Module .................................................................................................................. 34 

3.1.4 User Interface Module ....................................................................................................... 35 

3.2 Implementation of the Proof of Concept ...................................................................................... 35 

3.2.1 Industrial Scenario: An example from Metalworking Sector ......................... 36 

3.2.2 Technologies Selection ..................................................................................................... 37 

3.2.3 Resource Management Implementation .................................................................. 39 

3.2.3.1 IoT Model for the backend module .................................................................................................... 39 
3.2.3.2 Resource Virtualization Functionality.............................................................................................. 41 

3.2.3.3 Application Programming Interface (API) ..................................................................................... 43 
3.2.3.4 User Interface ............................................................................................................................................... 45 

3.3 Validation of the solution ............................................................................................................. 47 

3.3.1 The Three and Tabular Combined Notation (TTCN) ......................................... 47 

3.3.2 Functional Tests ................................................................................................................... 49 

3.3.2.1 Test 1: Create Device ................................................................................................................................ 49 
3.3.2.2 Test 2: Add Property to Device ............................................................................................................ 49 

3.3.2.3 Test 3: Configuration of the CM ........................................................................................................... 50 
3.3.2.4 Test 4: IoT Data Exchange with CM ................................................................................................... 50 
3.3.2.5 Test 5: Discovery of all the virtual resources ................................................................................ 51 

3.3.2.6 Test Results ................................................................................................................................................... 51 

3.3.3 Scientific Validation ........................................................................................................... 52 

3.3.4 Industrial Validation ......................................................................................................... 52 

3.3.5 Hypothesis Validation ....................................................................................................... 53 

4 Conclusions and Future Works .......................................................................................... 55 

4.1 Conclusions .................................................................................................................................. 55 

4.2 Future Works ................................................................................................................................ 56 

References .................................................................................................................................. 57 

Annex A – Cloud Service Providers: Service List .................................................................. 61 

 

 



xiii 

Table of Figures 

Figure 1-1 - Adopted Research Method .................................................................................... 3 

Figure 2-1 - Hype Cycle for Emerging Technologies, 2015 ..................................................... 6 

Figure 2-2 - Potential economic impact of IoT in 2025. ........................................................... 7 

Figure 2-3 - IoT-A Domain Model  ............................................................................................ 9 

Figure 2-4 - Virtual Entity Information Model  ..................................................................... 10 

Figure 2-5 - Functional Model  ................................................................................................. 10 

Figure 2-6 - Overview of the SSNO ontology .......................................................................... 11 

Figure 2-7 - Osmose Process for Inter-World Communication ............................................ 12 

Figure 2-8 - Osmose Entity Model ........................................................................................... 13 

Figure 2-9 - SOA IoT Middleware ........................................................................................... 15 

Figure 2-10 – IoT Architecture Requirements ....................................................................... 16 

Figure 2-11 - Cloud Computing Five Characteristics ............................................................ 20 

Figure 2-12 - Cloud Computing Service Models .................................................................... 22 

Figure 2-13 - Cloud Deployment Models ................................................................................ 23 

Figure 2-14 - Fog Computing Layer ........................................................................................ 25 

Figure 3-1 - Platform Architecture .......................................................................................... 28 

Figure 3-2 - Company Middleware .......................................................................................... 29 

Figure 3-3 - Data Collection Framework ................................................................................ 31 

Figure 3-4 - Backend Module ................................................................................................... 34 

Figure 3-5 - User Interfaces ...................................................................................................... 35 

Figure 3-6 - Platform Developed Component ......................................................................... 36 

Figure 3-7 - Storyboard for Management of Non-Conformity Scheduling Plans. .............. 37 

Figure 3-8 - Ontology for IoT Resource Management ........................................................... 40 

Figure 3-9 - Database model for handling dynamic ontology generation ............................ 41 

Figure 3-10 - Sequence diagram for addition of new resources ............................................ 42 

Figure 3-11 - Sequence diagram for resource creation .......................................................... 43 

Figure 3-12 - Communication API .......................................................................................... 43 



xiv 

Figure 3-13 - Knowledge API ................................................................................................... 44 

Figure 3-14 - Company API ..................................................................................................... 44 

Figure 3-15 - Monitoring API .................................................................................................. 44 

Figure 3-16 - Main Management Interface ............................................................................. 45 

Figure 3-18 - Device Management Interface ........................................................................... 46 

Figure 3-19 - Virtual Device Management Interface ............................................................. 46 

Figure 3-20 - C2NET Goals ...................................................................................................... 53 



xv 

Table of Tables 

Table 2-1 - IoT Advantages and Challenges ............................................................................. 7 

Table 2-2 - Services and Architectural Requirements ........................................................... 17 

Table 2-3 - Cloud Analysis........................................................................................................ 24 

Table 3-1 - TTCN Table Example ........................................................................................... 48 

Table 3-2 - TTCN Create Device ............................................................................................. 49 

Table 3-3 - TTCN Add Property to Device ............................................................................. 49 

Table 3-4 - TTCN Configuration of the CM ........................................................................... 50 

Table 3-5 - TTCN IoT Data Exchange with CM .................................................................... 50 

Table 3-6 - TTCN Search Device ............................................................................................. 51 

Table 3-7 - Tests Analysis ......................................................................................................... 51 

Table 4-1 - Bluemix Services .................................................................................................... 61 

Table 4-2 - Microsoft Azure Services ...................................................................................... 63 

Table 4-3 - Google Cloud Services ........................................................................................... 65 

Table 4-4 - Digital Ocean Services ........................................................................................... 66 

Table 4-5 - Amazon Cloud Services ......................................................................................... 67 

Table 4-6 - OpenStack Services ................................................................................................ 68 

Table 4-7 - WSO2 Services ....................................................................................................... 69 





xvii 

Acronyms 

 

Acronyms Definition 

API Application Programming Interface 

CEP Complex event processing 

CM Company Middleware 

DCF Data Collection Framework 

EDA Event Driven Architecture 

HTTP Hypertext Transfer Protocol 

IaaS Infrastructure-as-a-service 

IaaS Infrastructure as a Service 

ICT  Information and Communication Technologies 

IETF  Internet Engineering Task Force 

IoS Internet of Services 

IoT Internet of things 

IoT-A Internet of Things – Architecture 

IP Internet Protocol 

JSON JavaScript Object Notation 

M2M Machine to Machine 

MQTT Message Queuing Telemetry Transport 

MVC Model-View-Controller 

MVVM Model-View-Viewmodel 

NIST National institute of Standards and Technologies 

OWL Web Ontology Language 

PaaS Platform as a Service 

RM Resource Management  

RM UI Resource Management User Interface 

SaaS Software as a Service 

SensorML Sensor Model Language  

https://pt.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://www.ietf.org/


xviii 

SME Small Midium Enterprises 

SOA Service Oriented Architecture 

SPA Single page application 

SSNO Semantic Sensor Network Ontology 

SUT System Under Test 

SWE Sensor Web Enablement  

TCP Transmission Control Protocol 

TTCN Three and Tabular Combined Notation 

UI User Interface 

W3C  World Wide Web Consutium 

WWW World Wide Web 

https://pt.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.w3.org/


1 

1 Introduction 

The potential benefits of Internet of Things (IoT) are almost limitless and its application 

is changing how we see our future. The Internet of Things is incorporating more and more our 

private and public-sector organizations to manage assets, optimize performance, and develop 

new business models. As a vital instrument to interconnect devices and act as generic enabler of 

the hyper-connected society, the Internet of Things has great potential to support an advanced 

society, to improve the energy efficiency and to optimize production processes. 

Manufacturing corporations have a huge amount of data and complex business process. 

The necessity of handle and integrate this amount of data brings huge opportunities for compa-

nies to improve their line of production, monitoring capabilities, collaborative opportunities and 

also to support their real-time decision making skills. With this in mind, companies generally 

use private solutions that are closed from collaborative networks such as supply chains, and 

where instead of taking advantage of that data, emails still play the big role of information ex-

change. However, because of their production and distributions units’ enterprises and their in-

formation systems require more and more resources that may face compatibility issues with new 

IT software and systems (Gubbi, Buyya & Marusic 2013).  

The emergence of new technical solutions is creating a shift from basic manufacturing 

towards technology based and value added production which encourages manufacturers to re-

consider how they operate. Rather than performing all task in-house, companies are building the 

capabilities to design and integrate system, for collaboration with networks of suppliers and dis-

tributors. Along the past few years, simple solutions of cloud computing provided the necessary 

computing services for this change, supporting also in massification of Internet of Things (IoT) 



2 

devices in manufacturing machines, facilities and fleets. Hence Industrial automation platforms 

are re-experiencing a paradigm shift. With these new technologies and strategies that are being 

applied to enable a synchronization of the digital and real world, including real-time access to 

sensorial information and advanced networking capabilities to actively cooperate and form a 

nervous system within enterprises and outside, the amount of data that can be collected from 

real world and processed in a digital level is growing tremendously (Hermann et al. 2015). 

The industrial shift of paradigm where the Internet of Things has become a reality, coined 

a new concept: “Industry 4.0” that describes the organization of production processes based on 

technology and devices autonomously communicating with each other along the value chain. 

The impact of the Industry 4.0 and how benefits are realized will fluctuate among industries, but 

increased adoption of the concept by the industry will force traditional business models to 

change, leading to the emergence of new models. Hence Industry 4.0 brings new technological 

opportunities with interoperability, virtualization, decentralization, service orientation and mod-

ularity as the six main features expected to be provided (European Parliamentary Research 

Service 2015). This is the motivation behind of this dissertation, contributing to advance the 

research on the Industry 4.0 and IoT paradigms by proposing a cloud based framework to sup-

port a real time data collection and virtualization from real world devices, in order to evidence 

how IoT can enhance production lines and also lead to a shift of business model.  

1.1 Research Method 

Before any approach can be taken towards the solution of a given problem, it is important 

for an adequate research method to be defined. For the purposes of this work and the develop-

ments here presented, a methodology based on the scientific method is used, which consists in a 

set of techniques used to gather information related to a pre-defined subject, the formulation and 

testing of hypotheses according to the information obtained, and finally the retrieval of conclu-

sions concerning the tests performed (Murray 1999). Although there are several variations con-

cerning the scientific method, these form the basic set of elements upon which all the variants 

are based on. 

After evaluating the subject presented in this master dissertation work, a research meth-

odology was followed as suggested in (Schafersman 1997) and is displayed on Figure 1-1. 

In the introduction of this dissertation, it is presented the Problem Characterization, 

which comprises the identification of a meaningful question or problem, the type of factors that 

may be involved, and possible ways to address the issue. It is a significant part of the methodol-

ogy as all the research work will be centred on the selected problem. Then in the state of the art 

chapter comes the Information Gathering which, as the name implies, consists in gathering 

and retrieving relevant information about the issue being treated, enabling, consequently, the 

Formulation of Hypotheses described in the conceptual solution. This step consists in analys-

ing the retrieved information and proposing a valid and testable solution to the problem. Once a 



3 

solution is proposed, it is time to validate it by Testing. This produces the necessary results that 

allow the Evaluation of the proposed answer and whether it serves its purpose or not. If it fails 

to do so, then it may be needed to perform further testing or to go back and re-formulate a new 

hypothesis. If it succeeds, then the solution is valid and final Conclusions can then be retrieved. 

 

Figure 1-1 - Adopted Research Method 

1.2 Research Framework and Questions 

This work envisages to discuss and propose an architecture and the creation of a frame-

work for developing key functionalities to the IoT paradigm in the manufacturing environment, 

as indicated in the dissertation title. The research framework addresses the technical issues to 

gather manufacturing data using IoT and its real-time availability to the cloud so that it can be 

used to optimize collaborations and provide real-time monitoring capabilities. 

Consequently, the questions that arise in relation to the chosen subject are associated with 

the capability and feasibility to provide a IoT framework to factories, that integrates and scales 

easily, allowing an easy adaptation in order to improve process inside and outside factories. 

Considering modern factories where human hand has been the pillar of its success and the lack 

of trust from manufactories in IoT technologies, the following question arises:  



4 

 How is it possible to design and develop a framework that endow production lines with 

real time data collection technologies and how they can benefit from the use of cloud 

solutions?  

As this dissertation seeks to contribute to the development of the IoT paradigm in indus-

try, this question forms the base on which the research work here presented is based on. 

1.3 Hypothesis 

Considering the research questions previously identified and the state of the art analysis 

of section 2, it is conceivable to anticipate that if IoT solutions could be implemented and used 

to improve production lines through real time monitoring and adaptability capabilities, could 

lead to a shift of paradigm where terms like cloud computing and automation will be key for 

improve and monitor quality over the production and increase collaboration opportunities. 

1.4 Dissertation Outline 

This master dissertation strives to develop an architecture to aid IoT data collection from 

the device to the cloud in manufacturing, and address possible improvements that its adoption 

can bring. This dissertation is outline according to the following topics: 

 Chapter 1 introduces the main context and motivations behind this work, as well as the 

research methods used to approach it;  

 Chapter 2 describes the concepts of Internet of Things, Middleware, Cloud and Fog 

computing;  

 Chapter 3 discusses an architecture for supporting data collection and management of 

IoT and describes an implementation of one of its modules from the technologies cho-

sen to the validation across a manufactory real scenario;  

 Chapter 4 discusses the conclusions obtained in regard to the results, and propose some 

future work that should be performed to further validate and progress on the develop-

ments here achieved. 

 



5 

2 State-of-the-Art 

In order to propose a solution, the problem of the IoT management and data collection in 

manufacturing environments, is necessary to define main concepts and analyse the last proposed 

methodologies and solutions for issues concerning IoT. This chapter research and analyses con-

cepts such as Internet of Things, Middleware, Cloud and Fog Computing are highlighted, facing 

their challenges regarding the research framework and research questions. 

2.1 Internet of Things 

The Internet of Things (IoT) is one of the most exciting trends in the recent history of 

technology (see Figure 2-1), and has become a common paradigm of modern Information and 

Communication Technologies (ICT) (Gubbi, Buyya, Marusic, et al. 2013). Following the chain 

of personal computers, World Wide Web (WWW) and mobile phones on the way that society 

works and communicate. The IoT is currently at the top of the Gartner’s hype of expectations, 

promising to unlock several advancements to both end users and industrials (e.g. Industry 4.0). 

Gershenfeld and et al. (2004) defined IoT as a concept and a paradigm that considers per-

vasive presence in the environment of a variety of things/objects/devices, which through wire-

less and wired connections and unique addressing schemes, are able to interact with each other 

and cooperate with other things/objects/devices to create new applications/services and reach 

common goals. 



6 

 

Figure 2-1 - Hype Cycle for Emerging Technologies, 2015 (Gartner’s 2015) 

The adoption of the IoT paradigm promises to bring huge benefits (Figure 2-2), to the in-

dustry and to the cities. With the continuous acceptance of this paradigm new technologies are 

appearing, enabling applications to synchronize the digital and real world, including real-time 

access to sensorial information and advanced networking capabilities to actively allow coopera-

tion between industries (Agostinho et al. 2015). With the rise of these technologies, industry is 

encouraged to reconsider how to assembly, manage and operate their production lines.  

Rather than performing all tasks in-house, companies are building collaboration systems 

with the network of suppliers (Thornton 2010). With this in mind, Evans & Annunziata (2012), 

have presented the view of the IoT paradigm on industry, where intelligent machines are ena-

bled with new ways of connecting to other machines, facilities, fleets and networks though ad-

vanced sensors/actuators, controllers and software applications. 



7 

 

Figure 2-2 - Potential economic impact of IoT in 2025. (Manyika et al. 2015) 

Although, is possible to identify by the literature, the in numerous advantages of the use 

of these paradigm and technologies to nowadays high societies, it is also possible to identify 

some challenges of its use (see Table 2-1). For instance, in manufacturing company’s benefits 

such as communication, automation, control and monitoring are considered a huge benefit al-

lowing to improve the production quality and to spare in human and material resources, alt-

hough it also brings questions such as: “Who can access the information?”; “Where is the hu-

man intervention?”; “How is possible to create these type of systems since the automation pro-

cess is to complex?”; “Why should I change if now my production is working correctly?”. 

Table 2-1 - IoT Advantages and Challenges 

Advantage Challenges 

Communication - physical devices are 

able to stay connected with total availabil-

ity and lesser inefficiencies. 

Complexity - As with all complex systems, there are 

more threats and possibilities of failure. 

Automation and Control - Without hu-

man intervention, the machines are able to 

communicate with each other leading to 

Privacy/Security – Constant monitoring and analysis of 

our data can bring huge breach of our privacy and also 

security problems in the data exchange. 



8 

faster and interrupted results. 

Information and Monitoring - more in-

formation can be collected and awareness 

helps making better decisions. 

Safety/Trust – Since is nearly impossible to give 100% 

automation, trust and safety over the process, there is 

still the need to use the consumer/operator to veri-

fy/monetarized if the desired behaviour occurs. 

Efficient -The M2M interaction provides 

better efficiency, hence; accurate results 

can be fast obtained.  

Technology Controlling Life – Our lives will be in-

creasingly controlled by technology, and will be depend-

ent on it. There is no way to know where it will stop. 

In the next chapters, some models and technologies are presented and discussed envision-

ing to maximize the advantages and tackle the challenges of the use of future IoT systems. 

2.1.1  IoT Models 

OASIS foundation defined, reference model has an “abstract framework for understand-

ing significant relationships among the entities of some environment, and for the development of 

consistent standards or specifications supporting that environment. A reference model is based 

on a small number of unifying concepts and may be used as a basis for education and explain-

ing standards to a non-specialist”(Anon 2016). Envisioning the IoT paradigm, some reference 

models are already suggested (e.g. IoT-A, Semantic Sensor Network Ontology (SSNO), etc.). 

These models, despite trying to answer the challenges presented by IoT, tackle them from dif-

ferent perspectives: a more generic perspective, as IoT-A, an information/data exchange per-

spective as SSNO, and other works in progress. 

2.1.1.1 Internet of Things - Architecture 

Internet of Things – Architecture (IoT-A) is a European Lighthouse Integration Project 

addressing the standardization of an IoT architecture and model. It mainly focuses on develop-

ing an architectural reference model, along with security, management, and protocol-level inter-

action of the various components of the architecture for fostering a future Internet of Things 

(EC 2013). 

This reference model aims to establish interoperability for IoT architectures and IoT sys-

tems. It consists of four sub-models Figure 2-3 (IoT-A 2011): 

 Domain Model: it is the foundation of the reference model that introduces the main 

concepts of the IoT objects and the relations between these. It also defines basic attrib-

utes of these objects, such as name and identifier. Furthermore, the domain model de-

fines relationships between objects, for instance “instruments produce data sets”. In the 

proposed model (Figure 2-3), through the colour scheme is possible to categorize con-

cepts/objects (green colour) such has “Virtual Entity”, “Resource” and “Service”, etc., 

that are more focused on IoT software, hardware concepts (blue colour), like “Devices”, 

“Actuators”, “Tag” and “Sensors” and the representation of concepts such as “User”, 



9 

“Physical Entity” and “Augmented Entity” that can be present both on hardware or/and 

software (beige colour), also in the user concept is present the distinction of usage by an 

human user or by a device usage; 

 

Figure 2-3 - IoT-A Domain Model  (IOT-A 2011) 

 Information Model defines the structure (e.g. relation, attributes) of all data that is 

handled in a system at a conceptual level. This includes the modelling of the main con-

cepts for information flow, storage and how they are related, which allows us to model 

all the concepts that are explicitly represented and manipulated in the domain model 

(Figure 2-4); 



10 

 

Figure 2-4 - Virtual Entity Information Model (IOT-A 2011) 

 Functional Model, has two main purposes, the first one is to allow the complexity of a 

system to be decomposed in smaller and more manageable parts, the second one is to 

understand and illustrate their relations. Figure 2-5 depicts the details of the virtual en-

tity functionalities such as the characterization of the services, attributes and also the 

values collected by these type of entities; 

 

Figure 2-5 - Functional Model (IOT-A 2011) 

 Communication Model describes the main communication paradigm for connecting 

entities, as defined in the domain model, as well as to manage them in order to achieve 

the communication features required for the IoT. 



11 

Through the reference model, IoT-A provides guidelines to design and implement IoT 

systems that answer challenges such as heterogeneity, interoperability, scalability, manageabil-

ity, mobility, security, privacy and reliability. 

2.1.1.2 Semantic Sensor Network Ontology 

Semantic Sensor Network Ontology (SSNO), is a W3C project (OGC 16-079), that an-

swers the need for a domain-independent and end-to-end model for sensing applications by 

merging sensor-focused, observation-focused and system-focused views. It covers the IoT sub-

domains which are sensor-specific such as the sensing principles and capabilities. Also it can be 

used to define how a sensor will perform in a particular context to help characterize the quality 

of sensed data or to better task sensors in unpredictable environments (Cox 2016).  

 

Figure 2-6 - Overview of the SSNO ontology (Anon 2011) 

The SSNO, as presented in Figure 2-6, can be seen from four main perspectives:  

 A sensor perspective, with focus on what it senses, how it senses, and what is sensed;  

 A data or observation perspective, with a focus on observations and related metadata;  

 A system perspective, with a focus on systems of sensors and there’s deployments; 

 Feature and property perspective, focusing on what senses a particular property or 

what observations have been made about a property. 



12 

These four perspectives allow to describe, classify and reasoning about a sensor, and to 

check the provenance of measurement and connections of sensors. Also SSNO extends the Sen-

sor Model Language (SensorML) to support semantic annotation of sensor descriptions, ser-

vices that support the data exchange and the network management (Compton et al. 2012), and 

IoT-Lite ontology., that proposes a lightweight representation and use of IoT platforms to opti-

mize the excessive processing consuming time when querying the ontology (W3C 2015). 

2.1.1.3 OSMOSE Model 

The OSMOSE project proposed is an ongoing initiative to design and develop a reference 

architecture model for managing sensing-liquid enterprises integration. In the scope of OS-

MOSE project three key concepts are defined (Marques-Lucena et al. 2016): 

 

Figure 2-7 - Osmose Process for Inter-World Communication (Felic et al. 2014) 

Sensing enterprise, i.e. its smart objects, equipment and infrastructures are able to coop-

erate actively in order to react to stimuli and form a sort of 'nervous system' with decentralized 

intelligence. Virtual and physical objects form an ad hoc sensor network in order to fuse multi-

dimensional information captured from different devices and merge the real and the virtual 

world and to anticipate future decision making (Santucci et al. 2012). 

Liquid enterprise, boundaries are fuzzy and blurred in terms of human resources (e.g. 

employees and partners), markets, products and processes. Its strategies and operational models 

will make it difficult to distinguish the 'inside' and the 'outside’ of the company, such as shared 

resources between different companies (E. Commission, 2012). 

Sensing-Liquid enterprise is described has a composition of the sensing and liquid en-

terprise concepts. The sensing-liquid enterprise encompasses the real, digital and virtual world 

each of them enclosed by a semipermeable membrane. These membranes allow controlled ex-

change of information between worlds. The information flow, presented on Figure 2-7, is char-

acterized into three pairs of basic process. 



13 

Also, in order to enable communication between different worlds the project presented 

three different models to unify the representation of heterogeneous “things”, valid both in the 

real, virtual and digital world. The entity model of Figure 2-8, comprises concepts such as 

“Agents”, “Sensor”, “Actuators”, “Probes”, etc., representing the structure of the sensing-liquid 

enterprise. The event model enables to handle all the event structure details and the process 

model that is mainly design for support the osmiotic process. 

 

Figure 2-8 - Osmose Entity Model (Felic et al. 2014) 

2.1.2 Service Management in IoT 

OASIS defines service as “a mechanism to enable access to one or more capabilities, 

where the access is provided using a prescribed interface and is exercised consistent with con-

straints and policies as specified by the service description” (MacKenzie et al. 2006a). Ser-

vices, in the scope of IoT, helps customers connect the core of their business to the edge of the 

network, gain operational efficiencies and drive the creation of new revenue models, products 

and other services. In order to develop IoT distributed systems, service oriented architecture 

(SOA) and event-driven architecture (EDA) are proposed to manage IoT services. They are a 

natural fit due to many of their key characteristics, such as modularity, loose-couplings, and 

adaptability to support the complexity and constant growing of the systems. 

2.1.2.1 Event-Driven Architecture 

An event represents something that happens or takes place. It is usually prompted by a 

change of circumstance or a statement about the world. For example, a sensor value, some piece 

of information becoming available, an absence of something within a certain time frame, etc. 

This architecture enables to design and implement almost all the behaviours of a simple IoT 



14 

system but in order to design and create a complex manufacturing systems, is also needs to 

combine the ability to provide services and interfaces to each system component, instead of re-

lying only in event triggered actions. 

Event-driven architecture (EDA) defines a methodology for designing and implementing 

applications and systems in which events transmit between loosely coupled software compo-

nents and services. An event-driven system is typically comprised of event consumers and event 

producers. The first subscribe to an intermediary event manager, and the second publish to this 

manager in order to trigger an action in all the clients subscribed to that specific type of event 

(Maréchaux 2006). EDA based systems need to support at least three key functions:  

 Allow for a component to register the events that it can publish; 

 Allow to a component to see what events are being published by other components and 

allow them to subscribe events they are interested in; 

 Provide efficient even handling. 

Also, it is possible to characterize the EDA system through three different types of event pro-

cessing (Michelson 2006): 

 Simple Event Processing to initiating downstream action(s). Simple event processing 

is commonly used to drive the real-time flow of work following notable events; 

 Stream Event Processing both ordinary and notable events happen. Ordinary events 

are both screened for notability and streamed to information subscribers. Stream event 

processing is commonly used to drive the real-time flow of information in and around 

the enterprise enabling in time decision making; 

 Complex Event Processing (CEP) deals with evaluating a confluence of events and 

then taking action. The events (notable or ordinary) may cross event types and occur 

over a long period of time. The event correlation may be casual, temporal, or spatial. 

CEP requires the employment of sophisticated event interpreters, event pattern defini-

tion and matching, and correlation techniques. CEP is commonly used to detect and re-

spond to business anomalies, threats, and opportunities. 

2.1.2.2 Service Oriented Architecture 

A service, in the Service Oriented Architecture (SOA) context, is a mechanism to provide 

access to one or more capabilities through a known interface and is executed consistent with 

constraints and policies as specified by the service description. Despite the benefits of this archi-

tecture is possible to anticipate that it not covers all the IoT necessities since unless it is com-

plemented with the mechanism to interact with events. 



15 

OASIS (MacKenzie et al. 2006) defines Service Oriented Architecture as a paradigm for 

organizing and utilizing distributed capabilities that may be under the control of different own-

ership domains. SOA offers a powerful framework for matching and combining needs to capa-

bilities. Concepts, such as visibility, that refers to the capacity for those with needs and those 

with capabilities to be able to see each other; interaction, the activity of using capabilities; and 

effect, the consequence of using that capability, are key perceptions for the SOA paradigm. 

The main drivers for choosing SOA-based architectures are to facilitate the manageable 

growth of large-scale enterprise systems, to facilitate Internet-scale provisioning and use of ser-

vices and to reduce costs in organization to organization cooperation. Therefore, SOA means 

organizing solutions that promotes reuse, growth and interoperability, providing a solid founda-

tion for business agility and adaptability, these are key features for creating an IoT system that 

envision to support the development of the never ending demand of new feature requests 

(Huhns & Singh 2005). 

2.1.2.3 Service Oriented Architecture 2.0 

SOA 2.0 is the term that used to describe the combination of service-oriented architecture 

and event-driven architecture (Kohli & Silicon 2008). SOA 2.0 is nothing more than a combina-

tion between SOA and EDA architectures to form a new event pattern, which provides a richer 

and more robust level of knowledge and structure. This new business intelligence pattern trig-

gers further autonomous human or automated processing that adds exponential value to the en-

terprise by injecting value-added information into the recognized pattern which could not have 

been achieved previously. State of the art project working towards the IoT paradigm frequently 

adopt SOA 2.0. 

 

Figure 2-9 - SOA IoT Middleware (Atzori et al. 2010) 

 



16 

Middleware’s for IoT as we know it today are designed only with client-server relation-

ship between software modules, with services being subroutines serving clients. However, with 

the constant growing of IoT this model is not enough due to the lack of real time event commu-

nication capabilities. In order to solve this, SOA 2.0 an event-driven architecture (see Figure 

2-9) was proposed with the objective of deploying software modules related to business compo-

nents enabling a notification system where alerts and event notifications are transmitted.  

2.2 Middleware for IoT 

As introduced before, the integration of the IoT concept into the real world is possible 

through the integration of several enabling technologies. In order to handle with these technolo-

gies, a division of the IoT concept through a technical architecture perspective is proposed 

(Razzaque et al. 2015), dividing it into physical layer, middleware layer and application layer 

(Figure 2-10): 

 

Figure 2-10 – IoT Architecture Requirements (Razzaque et al. 2015) 

 Physical or infrastructure layer (in the bottom) is the basic networking hardware, 

such as sensors, actuators, computers that provide the raw data and transmit it to the ap-

plication layer through the middleware; 

 Middleware layer (in the middle) or just middleware is a software interposed between 

the technological and the application level that abstracts the complexities of the system 

or hardware allowing the developer to focus all his effort on the development of the ap-



17 

plication layer. In the IoT paradigm, this layer is endowed with strong management ca-

pabilities in order to allow an easy integration between the use of device and the cloud 

platform; 

 Application layer (in the top) is a set of interfaces or/and services responsible for dis-

playing received information, from the middleware, to the user and handles all the user 

interaction with the network. 

In order to design an IoT middleware solutions is necessary to develop management ser-

vices, which consider real time, availability or scalability concepts, and follow IoT architectural 

design guide lines (Table 2-2). This approach allow to archive a more robust architecture that 

envision to tackle challenges such as heterogeneity of the communication technologies and sys-

tem level technologies (Soma Bandyopadhyay et al. 2011).  

Table 2-2 - Services and Architectural Requirements 

S
er

v
ic

es
 

F
u

n
ct

io
n

a
l 

Resource 

discovery 

IoT resources details and services should be discovered automati-

cally without human intervention. For that, when there is no infra-

structure network, every device must announce its presence and the 

resources it offers. Also the discovery mechanisms need to scale 

well, and there should be efficient distribution of discovery load, 

given the IoT’s composition of resource-constrained devices. 

Resource  

management 

Provide services that manages IoT resources. This means that ser-

vices such monitoring, allocation/provisioning and management of 

conflicts in the resource usage are required. 

Data management 

Data management should handle the services of data acquisition, 

data processing, and data storage. This processing may include data 

filtering, data compression, and data aggregation. 

Event  

management 

Event management transforms simple observed events into mean-

ingful events. It should provide real-time analysis of high-velocity 

data so that downstream applications are driven by accurate, real-

time information, and intelligence. 

Code management 
Code management should be supported since is necessary to auto-

mate code deployment or perform updates in the device network. 

N
o

n
-F

u
n

ct
io

n
a

l 

Scalability 
An IoT middleware needs to be scalable to accommodate growth in 

the IoT’s network and applications/ services 

Real Time 

A middleware must provide real-time services when the correctness 

of an operation that supports depends not only on its logical cor-

rectness but also on the time in which it is performed. 

Reliability 
All the middleware components should remain operational for the 

duration of a mission, even in the presence of failures. 

Availability 

An IoT middleware must be available, or appear available, at all 

times. Even if there is a failure somewhere in the system, its recov-

ery time and failure frequency must be small enough to achieve the 

desired availability. 



18 

Security and  

Privacy 

In IoT middleware, security needs to be considered in all the func-

tional and non-functional blocks including the user level application 

Ease-of-

deployment 

Complicated installation and setup procedures must be avoided 

A
rc

h
it

ec
tu

ra
l 

D
es

ig
n

 G
u

id
e 

L
in

e
s 

Programming  

abstraction 

The middleware should provide an API for application developers. 

This API needs to isolate the development of the applications or 

services from the operations provided by the underlying, heteroge-

neous IoT infrastructures. 

Interoperable 

A middleware should work with heterogeneous devic-

es/technologies/applications, without additional effort from the ap-

plication or service developer. 

Service-Based 

A middleware architecture should adopt a service-based develop-

ment to offer high flexibility when new and advanced functions 

need to be added 

Adaptive 
A middleware needs to be adaptive so that it can evolve to fit itself 

into changes in its environment or circumstances 

Context-aware 

The IoT’s middleware architecture needs to be aware of the context 

of users, devices, and the environment and use these for effective 

and essential services’ offerings to users. 

Autonomous 

Devices/ technologies/applications are active participants in the 

IoT’s processes and they should be enabled to interact and com-

municate among themselves without direct human intervention. 

Distributed 
A middleware implementation needs to support functions that are 

distributed across the physical infrastructure of the IoT. 

Although there are many approaches to design and develop a middleware, there are two 

that stand: embedded and the cloud middleware. 

2.2.1 Device-Embedded Middleware 

Embedded system is an engineering artefact involving computation that is subject to 

physical constraints (reaction constrains and execution constraints) arising through interactions 

of computational process with the physical world. The key to embedded systems design is to 

obtain desired functionality under both kinds of constraints. Also embedded system is character-

ized by running in loop specific and single functioned application; optimization of energy, code 

size, execution time, weight and dimensions and cost; designed to meet real time constraints; 

and for the interaction with external world through sensors and actuators to increase the reac-

tivity of the system (Chaqfeh & Mohamed 2012). 

Embedded middleware, one of the types of embedded system, allows to control equip-

ment’s such as automobiles, home appliances, communication, control and office machines due 

to their small size and low battery consumption. This type of component is particularly evident 

in immersive realities, i.e., scenarios in which invisible embedded systems need to continuously 

interact with human users, in order to provide continuous sensed information and to react to 

service requests from the users themselves. Since the users are at the centre of the requirement, 



19 

this poses many challenges to the current embedded middleware and service technologies for 

embedded systems designed for simple, static and non-reconfigurable processes (Baldoni et al. 

2009), in terms of: 

 Dynamicity: since devices are no more static and distributed system need to continu-

ously adapt on the basis of the user context, habits, etc., by adding/removing/composing 

on-the-fly basic elements; 

 Scalability: in order to support the continuously growth of sensors/devices/appliances 

that the system need to support;  

 Dependability:  thrust on the system itself in order to users be dependent of it;  

 Security and Privacy: user are the main focus of the services, so they need to feel that 

they security and privacy is assured by the system. 

Combining large number of sensor allow us to create sensor networks, where is possible 

to have sensor behaving like embedded middleware, distributed network, or one specific device 

working like the coordinator of the network, centralized network.  

2.2.2 Middleware on the Cloud 

Infrastructure-as-a-service (IaaS) provides huge amounts of computing power (e.g. CPU, 

memory, storage, and bandwidth) on-demand via Web services or APIs (E. Michael Maximilien 

et al. 2009). Middleware deployed on the cloud is a software platform that sits between an ap-

plication/device. It makes connections between any two clients, servers, databases or even ap-

plications possible (Razzaque et al. 2015). It responds to challenges such as deploy and manage 

applications, cloud-agnostic application development, and cross-cloud interoperation on a cloud 

computing platform: 

 Manage deployments in the cloud feature should enable easy deployments, redeploy-

ments, and removal of applications in the cloud using known best practices for hetero-

geneous application types and development frameworks; 

 Cloud-agnostic application development allows all application frameworks and li-

braries to be supported hence supporting the development on many different Web ap-

plication frameworks and languages; 

 Cross-cloud interoperation feature allow interoperation across any cloud heterogene-

ous application framework. That is, small and large enterprises can choose to use many 

cloud providers rather than standardizing on any one. Enabling redundancy in case of 

one cloud provider suffers a catastrophic failure allowing your entire operation to be 

loose couple of the consequence. 

Middleware on the cloud and embedded are considered complementary approaches. This 

complementarity is necessary since each of one do not fully cover problems such as connectivi-



20 

ty, scalability and availability that are necessary for supporting the never ending growth of the 

IoT devices in the nowadays society.  

2.3 Cloud Computing 

In this era of Internet of Services (IoS) (Vermesan et al. 2009), enterprises need to change 

their paradigm to meet the ever changing demand of customers. In response to this, cloud com-

puting paradigm appeared, providing a dynamic infrastructure to build several kinds of services 

(music, movies, storage, etc.) to customers, allowing each person to customize according to 

their wishes and needs. The National Institute of Standards and Technologies (NIST) (Mell & 

Grance 2011) defines cloud computing “as model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction”. Also NIST divided the cloud 

model in five essential characteristics (Figure 2-11), three service models (Figure 2-12), and 

four deployment models (Figure 2-13), which will be used to further describe the state of the 

art. 

2.3.1 Cloud Characterization 

 

Figure 2-11 - Cloud Computing Five Characteristics (OpenGroup 2013) 

On-demand self-service - One of the key features of cloud computing is that computing 

resources can be obtained and released on the fly, this means that a consumer can unilaterally 

provision computing capabilities, such as server time and network storage, as needed automati-

cally without requiring human interaction with each service provider which can considerably 

lower the operating cost. 



21 

Geo-distribution and ubiquitous network access - Clouds are generally accessible 

through the Internet and use the Internet as a service delivery network. With this in mind, capa-

bilities are available over the network and accessed through standard mechanisms that promote 

use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets, laptops, and 

workstations).  

Resource pooling - The provider’s computing resources are pooled to serve multiple 

consumers using a multi-tenant model, with different physical and virtual resources dynamically 

assigned and reassigned according to consumer demand. Such dynamic resource assignment 

capability provides much flexibility to infrastructure providers for managing their own resource 

usage and operating costs. 

Rapid elasticity - Since resources can be allocated or deallocated on-demand, service 

providers are empowered to manage their resource consumption according to their own needs. 

To the consumer, the capabilities available for provisioning often appear to be unlimited and 

can be appropriated in any quantity at any time.  

Measured service - Cloud computing employs a pay-per-use pricing model. So, for that 

cloud systems automatically control and optimize resource use by leveraging a metering capa-

bility at some level of abstraction appropriate to the type of service (e.g., storage, processing, 

bandwidth, and active user accounts), these allow to monitored, controlled, and reported re-

source usage, providing transparency for both the provider and consumer of the utilized service. 

2.3.2 Service Models 

Software as a Service (SaaS) - Is a model that provides the capability to the consumer to 

use the provider’s applications running on a cloud infrastructure. These applications are acces-

sible from various client devices through either a thin client interface, such as a web browser, or 

a program interface. The consumer does not manage or control the underlying cloud infrastruc-

ture including network, servers, operating systems, storage, or even individual application capa-

bilities, with the possible exception of limited user-specific application configuration settings 

(Jacobs 2005).  

Platform as a Service (PaaS) - Is a model where the consumer deploys, his application, 

onto the cloud infrastructure consumer-created or acquired applications created using program-

ming languages, libraries, services, and tools supported by the provider. The consumer does not 

manage or control the underlying cloud infrastructure including network, servers, operating sys-

tems, or storage, but has control over the deployed applications and possibly configuration set-

tings for the application-hosting environment. Also the PaaS definition implies that the service 

provider is responsible for run-time monitoring and management (Keller & Rexford 2010). 



22 

 

Figure 2-12 - Cloud Computing Service Models (Zhang et al. 2010) 

Infrastructure as a Service (IaaS) - This model allows the consumer to provision pro-

cessing, storage, networks, and other fundamental computing resources where the consumer is 

able to deploy and run arbitrary software, which can include operating systems and applications. 

The consumer does not manage or control the underlying cloud infrastructure but has control 

over operating systems, storage, and deployed applications; and possibly limited control of se-

lect networking components (e.g., host firewalls). This model due the availability of high-

bandwidth data communications over the Internet makes consumer to instead of owning, man-

aging, and operating your own computer hardware, to use computers that someone else owns, 

manages, and operates (Bhardwaj et al. 2010). 

2.3.3 Deployment Models 

Private Cloud - The cloud infrastructure is provisioned for exclusive use by a single or-

ganization comprising multiple consumers. It may be owned, managed, and operated by the or-

ganization, a third party, or some combination of them, and it may exist on or off premises. Alt-

hough this solution provides, companies, the benefits of cloud computing, without the re-

strictions of network bandwidth, security exposures, and legal issues that using external re-

sources might entail, it also carries some disadvantages, such as capital investment, time-to-

market since the infrastructure can take up to 6-36 months to be established, and the learning 

curve that cloud vendors hide it (De Chaves et al. 2011). 

Public Cloud - The cloud infrastructure is provisioned for open use by the general pub-

lic. It may be owned, managed, and operated by a business, academic, or government organiza-

tion, or some combination of them. It exists on the premises of the cloud provider. The main 

benefit of using a public cloud, as opposed to creating a private cloud, is easy and inexpensive 

set-up. The provider has done the work needed to create the cloud, the consumer just needs to 

do an additional amount to configure the resources to be used (Kui et al. 2012). 



23 

 

Figure 2-13 - Cloud Deployment Models (Cloud Computing Types 2016) 

Community Cloud - The cloud infrastructure is provisioned for exclusive use by a spe-

cific community of consumers from organizations that have shared concerns. It may be owned, 

managed, and operated by one or more of the organizations in the community, a third party, or 

some combination of them, and it may exist on or off premises. Community cloud, as defined 

here, has similarities to both private and public cloud. Like private cloud, it can avoid network 

bandwidth, security exposures, and legal issues that arise from using external resources, and its 

use can be controlled and managed. Like public cloud, it makes set-up easy for individual or-

ganizations, and it provides more efficient use of pooled resources for the whole community 

than any of its members could achieve individually (Dillon et al. 2010). 

Hybrid Cloud - The cloud infrastructure is a composition of two or more distinct cloud 

infrastructures (private, community, or public) that remain unique entities, but are bound to-

gether by standardized or proprietary technology that enables data and application portability 

(e.g., cloud bursting for load balancing between clouds). In this model customers typically host 

non-business-critical information and processing in the public cloud, while keeping business-

critical services and data in their control in the private part of the hybrid (Zhang et al. 2009). 

2.3.4 Cloud Solutions 

In this sub-chapter and referring to Annex A, a comparison between different cloud ser-

vices, such as IBM Bluemix, Microsoft Azure, Google Cloud, Digital Ocean, Amazon, Open-

Stack and WSO2 solutions is presented following the different service models and services pro-

vided.  

 

 

 

 



24 

Table 2-3 - Cloud Analysis 

 

IB
M

  

B
lu

e
m

ix
 

M
ic

ro
so

ft
 

A
zu

re
 

G
o

o
g

le
 

C
lo

u
d

 

D
ig

it
a

l-

O
ce

a
n

 

A
W

S
 

O
p

en
S

ta
ck

 

W
S

O
2

 

Service Model 

PaaS X X X  X  X 

SaaS X X X  X X X 

IaaS X X  X X   

Services 

Application/Mobile Services X X   X  X 

Virtual Machines/Containers X X X X X X  

Business Intelligence X X      

Big Data and Analytics X X X  X  X 

Storage/Database X X X  X X X 

Machine Learning X X X    X 

Internet of Things X X   X  X 

Table 2-3 shows that the solutions provided by the IBM and Microsoft offer a full stack of ser-

vices to the cover all the developer’s needs to fulfil their applications, hence this brings a lack of 

personalization and a rigid use of their services. Platforms such as OpenStack and WSO2 are 

open source and highly parameterized, there so more oriented to the developer community that 

envisions to use a set of base functionalities essential to design their new frameworks and cloud 

solutions. 

2.4 Fog Computing 

In the past few years, Cloud computing has provided many opportunities for enterprises 

by offering their customers a range of computing services. However, with the IoT getting more 

involve in people’s life, current Cloud computing paradigm can hardly satisfy their require-

ments of mobility support, location awareness and low latency. Over the next 10 years, current 

system architectures will grow increasingly due to the increasing need for high computing ca-

pacity. Fog computing architectures will be adopted to analyse timeliness and critical data in 

edge nodes with the aim of minimizing latency and offloading large amounts of traffic 

(Bonomi et al. 2014). 

Fog Computing, as illustrate in Figure 2-14, a concept recently coined by Cisco, extend-

ing the Cloud Computing paradigm to be closer to the things that produce and act on IoT data 

(Bonomi et al. 2012). These devices, called fog nodes, can be deployed anywhere with a net-

work connection: on a factory floor, on top of a power pole, alongside a railway track, in a vehi-

cle, or on an oil rig behaving like middleware devices. Any device with computing, storage, and 



25 

network connectivity can be a fog node. Examples include industrial controllers, switches, rout-

ers, embedded servers, and video surveillance cameras. 

 

Figure 2-14 - Fog Computing Layer (Cisco Systems 2016) 

 In contrast to the Cloud, the Fog not only performs latency-sensitive applications at the 

edge of network, but also performs latency-tolerant tasks efficiently at powerful computing 

nodes at the intermediate of network. At the top of the Fog, Cloud computing with data centres 

can be still used for deep analytics (Stojmenovic & Wen 2014). Key Features of Fog Computing 

including: 

 Edge location, location awareness, and low latency; 

 Geographical distributed systems (Large-scale sensor networks, Smart Grids); 

 Support for mobility; 

 Real-time interactions.





27 

3 Framework to Enable IoT in            

Manufacturing 

In the previous chapters, a detailed analysis over the manufacturing companies constant 

search to enhance and improve their line of production with real-time monitoring and optimize 

collaboration capabilities is discussed along with the new trends that envision to give an answer 

to it. Concepts such as cloud and fog computing are in the centre of the IoT revolution in the 

manufactory. They create the base to build platforms and frameworks that allow to explore the 

sensing and actuating capabilities of the IoT paradigm, creating nervous system inside produc-

tion lines and outside company boundaries. 

In this chapter, following the SOA and EDA paradigm, an architecture for a platform to 

manage and collect data from IoT devices is presented, envisioning to handle IoT requirements 

such as device registration, virtualization, data collection, filtering, aggregation, and security 

and trust of the data exchanged. Also the architecture designed to be a cloud solution, allowing 

this way to provide key functionalities, such as scalability, availability and interoperability nec-

essary for handle the continuous growth of the IoT needs. 

3.1 Conceptual Solution 

A Data Collection Framework (DCF) conceptual solution is designed to be hosted into a 

cloud-based service ecosystem. Thus to work properly, easy access protocols, data representa-

tion formats, well-defined interfaces, user interfaces, and efficient data storage are needed in 



28 

order to provide usage of the real-time data collection capability of the IoT devices. Also one of 

the main considerations in the design of the solution, is that nowadays manufactories request a 

solution were part of it should be deployed in their physical installations instead of a full cloud 

solution. 

 

Figure 3-1 - Platform Architecture 

Figure 3-1 depicts the proposed architecture to handle IoT needs. It is composed by two 

components, the first one, called Data Collection Framework (DCF), is deployed in the cloud 

and is divided in three modules, data collection; backend; UI. The second, Company Middle-

ware, is deployed in the premises of the companies and is composed by a single module, IoT 

Hub. The design of the architecture is based on the concept of embedded middleware since 

manufacturing companies see a full cloud computing solution as a possible loss of control of 

their operations. IoT operation, such as registration, data exchange and event detection, de-

scribed in IoT-A and SSNO are key functional features handled, also it respects non-functional 

requirements such as interoperability, adaptability, security and trust in order to provide support 

to the ever changing necessities of the manufacturing companies and IoT networks. This pro-

posed architecture answers the goal of providing a scalable real-time architecture that support 

real data collection and monitoring capabilities to the manufacturing production lines.  



29 

3.1.1 Company Middleware 

The Company middleware(CM) is a collection of physical devices (the IoT Hub) that are 

deployable in the factory to different systems to cloud components, with the mission of gather-

ing, structure and provide data from the IoT resources in the shop floor with the expected format 

to DCF. In the scope of the company middleware a data stream is a set of timestamped rela-

tions, i.e., each element of the data stream consists of a set of tuples with the data collected by 

different devices (for instance temperature, humidity, light sensors). The order of the data 

stream is derived from the ordering of the timestamps and the IoT Hub module provides support 

to manage and manipulate the timestamps. In this way it is always possible to trace the temporal 

history of data stream elements collected through it. This allows company middleware to be the 

central observation tool for the physical world. Due to the dimension of factories multiple IoT 

Hubs modules can be deployed in is private infrastructure, with direct connection to their IoT 

networks and systems, but all of them are contained inside the company middleware. 

 

Figure 3-2 - Company Middleware 

3.1.1.1 IoT Hub 

IoT Hub is the device inside the company middleware which collects data from physical 

devices and forwards it to the platform. It allows multiple external/internal devices to be con-

nected at the same time and provides a dedicated communication channel to allow continuous 

data collection from all the devices. The main responsibility of the hub is to take the messages 

from devices and restructure it in the cloud communication and data model, hence enabling 

communication between cloud and the IoT devices. In general devices are classified as IoT Hub 



30 

Compliant when communicating in the communication standard defined by IoT Hub and Non-

compliant when communicating only through their own communication standard. IoT Hub will 

allow communication through two standards i.e. HTTP 1.1 and MQTT. 

 HTTP 1.1: First supported protocol is HTTP 1.1 protocol, as defined by IETF RFC-

2616. Devices capable of communication via HTTP can directly connect to IoT hub;  

 MQTT: Second supported protocol is MQTT. The MQTT protocol is based on top of 

TCP/IP and both client and broker need to have a TCP/IP stack. MQTT connection it-

self is always between one client (device) and the broker (IoT Hub). 

Main Functionalities Envisaged: 

 Provide an interface for communication with the IoT devices; 

 Conception and management of necessary communication channels and provide mes-

sage routing; 

 Provide implementation for communication protocol conversion between the external 

protocols and the internal communication protocol; 

 Registration and status of the device to provide awareness to the platform; 

 Security rules for IoT devices connected to the platform; 

 Data pre-processing, filtering, aggregating and merging from different sources, in real 

time; 

 Message representation transformations i.e. creation of data streams. 

Sub-Modules: 

 Protocol Adaption: component is responsible for providing seamless communication 

between IoT devices located at Shop floor and other components of IoT Hub. Major 

functionalities to be provided by this component are to allow connectivity for various 

devices with different communication standards and publish/subscribe paradigm for de-

vices integration; 

 Device Management: contains much of the core management functionality of the IoT 

hub and handles communication channels between devices and IoT Hub and IoT Hub 

and DCF. The respective details of the device like native communication protocol, de-

vice type, data type etc. are collected from the meta-data of the device from the details 

stored in the data base through the DCF resource management module. At the same 

time other important objective of this component is to guarantee status awareness, secu-



31 

rity and trust over the connected IoT devices; 

 Data Handler Factory: module will consume the huge amount of data coming from 

external sources, filtering, aggregating and merging it in real-time allowing applications 

to consume only to specific/value-added data or pre-processed. 

3.1.2 Data Collection Framework 

The Data Collection Module, Figure 3-3, provides unified services and operational sup-

port management functionalities, enabling different applications and end-users to discover, use 

and activate/deactivate resources, manage their properties and detect events/patterns in the data 

sent by the CM. In the scope of this dissertation, resources are the entities capable of producing 

data, i.e. IoT devices such as sensors and actuators. To do so, this module will focus on global 

model schemes for resources, i.e. IoT-A and SSNO, providing an infrastructure to link them 

with relevant system/devices and developing a common management tool for configuring, oper-

ating, maintaining. These operations are provided by resource management (RM), and detect 

events from the resources through the complex event processing(CEP) sub-module. 

 

Figure 3-3 - Data Collection Framework 

3.1.2.1 Resource Management 

This module is responsible for providing core management functionalities over the data 

sources. It delivers the details of all registered data sources through an interface. It aims to re-

duce the distance between the physical world and their virtualized representation objects in the 

network, following three major administrative functionalities:  

 Resource sharing: users can modify/remove/add virtual resources on the fly during 

runtime. The component needs to keep track of all on-site physical/computation re-

sources; 



32 

 Failure management: In case the faults are detected in the physical resource or virtual 

resources e.g., by runtime exceptions, the Resource Management component should 

communicate it to the Complex Event module to perform the exception respective con-

tra action. This action should be immediately notified to the end-user so that the effect 

on the business processes can be monitored; 

 Explicit resource control: The admin user should be given the rights to specify explic-

itly computing resources (e.g. memory and processing requirements and restrictions) for 

the virtualized real resource.  

Besides these administrative functionalities, this component will provide the functionali-

ties related to data sharing, creation of new virtualized resourced by aggregating existing re-

sources and manage CEP rules for each device, at the same time this component provides inte-

grated security over data sources. 

Main Functionalities Envisaged: 

 Allow construction and management of virtual resources; 

 Creation of output data streams based on the inputs from the IoT hub to be forwarded to 

CEP; 

 Allow discovery of all the virtual resources based on the requirements of the end-user; 

 Provide run-time adaptation on security polices by analysing the behaviour of resources 

to respond to new and unusual threats in critical services. 

Sub-Modules: 

Resource Virtualization: provides the implementation for creating, managing, and shar-

ing the virtualization and the configuration of each devices to be shared with the IoT Hub. The 

configuration details of a virtual resource provide all necessary information required for deploy-

ing and using it, including: 

 Metadata used for identification and discovery; 

 The structure and properties of the data streams which the virtual sensor consumes and 

produces; 

 A declarative SQL-based specification of the data stream processing and aggregation 

performed by the virtual sensor; 

 And additional functional properties related to stream quality management, persistency, 

error handling and life-cycle management. 



33 

At runtime this sub-component is also the point of communication for cloud message 

broker of the data produce by the virtualized resources. 

Resource directory: this provides the API for end-users to persistently store the details 

about the virtual resources and offers functionalities to discover all virtualized resources based 

on the requirements of business processes. If the end-user does not find the resources that fulfil 

the business needs, then new virtual resources are created through the resource virtualization 

sub-module. 

Security: is responsible for providing security and trust in a real-time environment, thus 

extending the method for building trust and improving security policies. It detects malicious 

behaviors at runtime due to the learning, adaptation, prevention, identification and answering 

approaches to achieve adaptive security. This strategy is achieved by the ontology-based securi-

ty framework.  

Data Stream Builder: transforms Hubs data collected and pass it through the backend 

API. 

3.1.2.2 Complex Event Processing 

This module deals with the detection and processing of composite events coming from 

the cloud message broker data streams. It provides a declarative way to detect complex events 

in real-time and for specifying the interesting event patterns including time, causality, and pat-

tern matching features. Detected patterns are then stored in a knowledge base. 

Main Functionalities Envisaged: 

 Event pattern detection; 

 Event filtering; 

 Event aggregation; 

 Event transformation; 

 Event relationship analysis. 

Sub-Modules: 

Data stream manager: it is used to manage continuous data streams by handling poten-

tially infinite and rapidly changing. It provides an interface for incoming data feeds then con-

verts the data into event types that the CEP understands, also provides a flexible query pro-

cessing system, in form of rules, to detect interesting patterns. 

Event dispatcher: it acts as a virtual pipe or channel, connecting components that send 

events with components that receive events. 

Event Processors: executes user-defined event processing rules against streams and de-

livers its results.  



34 

3.1.2.3 Cloud Message Broker 

The cloud message broker is the access point for remote connections, it provides message 

validation, transformation and routing, minimizing the mutual awareness that devices should 

have about the cloud solution in order to be able to exchange messages. Cloud message broker 

will also provide a publish-subscribe pattern for each company middleware connected, allowing 

to provide an easy pluggable interface that ensures an easy interoperability and scalability be-

tween the hubs, deployed in the shop floor, and the framework deployed on the cloud. 

Main Functionalities Envisaged: 

 Route messages to one or more of many destinations; 

 Transform messages to an alternative representation. 

3.1.3 Backend Module 

Backend Module, Figure 3-4, is a centralized module that provides storage capability to 

the platform, it is designed with two sub-models that allow to handle the real-time data collec-

tion and a more dynamic storage to infer knowledge and provide semantics rules to the plat-

form. 

 

Figure 3-4 - Backend Module 

Main Functionalities Envisaged: 

 Store Information regarding the IoT device; 

 Store data collected by IoT devices; 

 Extract knowledge from the data collected by the IoT devices; 



35 

 Provide enriched semantics to the platform. 

Sub-Modules: 

 Data Storage, store in real-time all raw data collected from the IoT devices; 

 Knowledge Base, store semantics and apply rules for extracting knowledge from the 

data stored in the Data Storage model. 

3.1.4 User Interface Module 

User Interface Module, Figure 3-5, is responsible to provide to the platform a centralized 

and standardized way to interact with the end-user over the web. Also it is the only module that 

establishes a public API to allow external developers to extend all the views that the end-user 

need. 

 

Figure 3-5 - User Interfaces 

Main Functionalities Envisaged: 

 Centralized and standardized User Interfaces repository and design; 

 Display information and manage interactions with the end-user. 

3.2 Implementation of the Proof of Concept 

The previous section introduced the concepts to design the architecture for collecting data 

from the IoT devices, as well as the main functionalities envisaged for each module. However, 

in order to properly achieve the formerly referred functionalities, namely those concerning the 

resource management module, several technologies had to be evaluated and selected for appli-

cations.  



36 

 

Figure 3-6 - Platform Developed Component 

The work developed in this dissertation, Figure 3-6, is part of an ongoing research pro-

ject (C2NET1) and due to the size and complexity of the proposed architecture, the following 

sections describing the dissertation proof of concept implementation will be mainly focused on 

the resource management module and in its validation. Thus, this section introduces the tech-

nologies and how they are used to implement the resource management module, presenting a 

hypothetical scenario in order to improve readers understanding of module’s validation. 

3.2.1 Industrial Scenario: An example from Metalworking Sector 

Nowadays manufactory is recognizing the lack of real time monitoring systems is a reali-

ty, so with this in mind it was choose to validate the proposed framework, focusing on the re-

source management module, in a real life scenario. The use of the manufacture industry scenar-

io, in particular the metalworking SME’s, is suggested due to their particular characteristics. 

They typical are small companies, with little resources and a little or none IoT technologies. As 

an example, in the Metalworking SME’s it is necessary to reduce time detection of non-

conformity products during the production process. This mechanism can help the companies 

reduce the quantities of waste and non-conforming products that may arise from errors in the 

setup of machines. Figure 3-7 illustrates a set of steps to be conducted as a validation story 

board: 

                                                      

1 http://c2net-project.eu/ 



37 

 

Figure 3-7 - Storyboard for Management of Non-Conformity Scheduling Plans. 

 Step 1: The framework will allow to configure the sensors and actuators in order to 

start the production and to define parameters to detect non-conformities in real-time; 

 Step 2: The framework collects information about the shop-floor production directly 

via sensor network; 

 Step 3: If non-conformities are detected in the quality control by direct matching be-

tween what was expected in the production and what is actually being produced, the ar-

chitecture will rise an event; 

 Step 4: The framework will allow to re-configure the sensors and actuators in order to 

correct non-conformities detected in real-time. 

This validation scenario is expected to be translated into a reduction of waste and non-

conform products that are created during the production that derivate from flaws in the machin-

ery setups, or that arise from faulty materials, etc. Also this scenario, in future steps, could rise 

collaborative opportunities with other companies (garbage, transportation, logistics, mainte-

nance, etc), for instance when the production finish a notification could be automatically send to 

the garbage company to collect the debris produced by the production process, or a negotiation 

process may be triggered to transport the final product to the customer.  

3.2.2 Technologies Selection 

In this section core technologies for implementing the resource management, such as 

nodeJS, ExpressJS, and AngularJS, along with technologies suggested to implement other mod-

ules, such as Apache Stream for the CEP module and the RabbitMQ for both the cloud broker 

module and the CM are presented. These technologies are suggested based on an event oriented 

technologies, to answer IoT architecture needs, and grounded on the fact that state of the art 

technologies are more oriented to it than standardized and well established ones.  

NodeJS2: is a JavaScript runtime built on Chrome's V8 JavaScript engine, it uses an 

event-driven, non-blocking I/O model that makes it lightweight and efficient. Also Node.js pro-

                                                      
2 https://nodejs.org/en/ 

https://developers.google.com/v8/


38 

vides with him a package ecosystem, npm3. Node.js specializes in performing and scaling well 

for low-CPU, highly I/O-bound operations comparing with JAVA4 or C#5 runtimes. 

ExpressJS6: Express is a minimal and flexible Node.js web application framework that 

provides a robust set of features for web and mobile applications. This allowed to create the re-

source management API and provide endpoint for each of its functionalities. This technology 

choice is strongly coupled with the choice of the native develop language, if your choice was 

JAVA you should consider Spring 7or Play8 frameworks or in case of C# you should consider to 

use the .NET WebAPI framework9. 

AngularJS10: is a front-end web application framework to address many of the challeng-

es encountered in developing single-page applications (SPA). It aims to simplify both the de-

velopment and the testing of such applications by providing a framework for client-side model–

view–controller (MVC) and model–view–viewModel (MVVM) architectures, along with com-

ponents commonly used in rich Internet applications. This allowed to enrich and endow the RM 

UI with dynamic capabilities regarding present static content to the user. Other ways of devel-

oping SPA’s are ember.js11 or backbone.js12, however angular was chosen due to his innovative 

approach for extending HTML13 and easy use. 

Apache Stream14: is suggested to the CEP module, brings Spark's language-integrated 

API to stream processing, letting the user write streaming jobs the same way he writes batch 

jobs, also spark streaming lets the user join streams against historical data, or run ad-hoc queries 

on stream state and is design to supports fault tolerance capabilities. These features and the per-

formance that apache stream shares made it the best fit for answering the requirements of the 

CEP module, leading to his adoption instead of solutions such as Storm15 or Flink16 that only 

offer a partial cover 

RabbitMQ17: has a broad adoption and a lot of community support. It proposes an adapt-

er for MQTT making it suitable for an IoT project. It also has a good interoperability with 

Spark, which is another advantage regarding integration of the different components of architec-

ture. With this reason in mind, this technology is suggested for supporting the development of 

                                                      
3 https://www.npmjs.com/ 
4 http://java.com/ 
5 https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx 
6 https://expressjs.com/ 
7 https://spring.io/ 
8 https://www.playframework.com/ 
9 http://www.asp.net/web-api 
10 https://angularjs.org/ 
11 http://emberjs.com/ 
12 http://backbonejs.org/ 
13 https://developer.mozilla.org/pt-PT/docs/Web/HTML 
14 http://spark.apache.org/streaming/ 
15 http://storm.apache.org/ 
16 https://flink.apache.org/ 
17 https://www.rabbitmq.com/ 

https://www.npmjs.com/
https://en.wikipedia.org/wiki/Web_application_framework
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model_View_ViewModel
https://en.wikipedia.org/wiki/Rich_Internet_application


39 

the cloud broker and the Hub protocol adaption module, since it is a light implementation com-

paring with Kafka18 and ActiveMQ 19. 

After the core technologies being decided it is necessary to define the deployment envi-

ronment. Through the analysis in section 2.3.4, IBM Bluemix20 and Microsoft Azure21 cloud 

solutions provide the largest set of services and functionalities, however their prices are to ele-

vated and their solutions to closed for the requirements of the architecture proposed, leading this 

way to use more economic and customizable solutions with a more selective set of features such 

as OpensStack22 and WSO223. 

3.2.3 Resource Management Implementation 

In order to provide a more detailed explanation of the implementation of the resource 

management module functionalities, described in Section 3.1.2.1, the contributions provided to 

the implementation of this module were divided in four core concepts: the IoT model where all 

the information regarding the devices and data from it is instantiated; the virtualization flow 

offered by the module; the API to access key functionalities such as creating, deleting and ac-

cess the information of the devices, and also an implementation of a user interface (UI) that al-

low us to offer a visual way to the user to validate the use of the API for the scenario presented 

on section 3.2.1. 

3.2.3.1 IoT Model for the backend module 

The resource management module need to handle the bulk of the data from several sensor 

networks. In order to make sense of the huge amount of data such networks output, and given 

the diversity of possible available sensor systems, there is a need to specify a formal model that 

allows reasoning to scale. This model, inspired in the IoT-A and SSNO design principles, is 

formalized using the language formalism of OWL 224 endowing the model with its advanced 

reasoning capabilities and tools available. Also for reasoning the following major concepts 

where defined: 

                                                      
18 http://kafka.apache.org/ 
19 http://activemq.apache.org/ 
20 http://www.ibm.com/cloud-computing/bluemix/ 
21 https://azure.microsoft.com/ 
22 https://www.openstack.org/ 
23 http://wso2.com/ 
24 https://www.w3.org/TR/owl-primer/ 



40 

 

Figure 3-8 - Ontology for IoT Resource Management 

 Resource: is a hierarchical logical representation of an IoT network component. This 

could be anything from the identification of the company, to a location, to a sensor de-

vice. Constraints on specific classes are defined allowing to inference on a very basic 

level. In this model a location/room is a purely hierarchical resource, a sensor is any re-

source that has a measuring property and a hub is any resource that has sub resources 

associated. It is also possible to specify a resource as virtual; 

 Property: is a known pair key-value of a specific instance resource. It includes the 

measuring capabilities of sensors in this concept and distinguish them from non-

measuring properties; 

 Observation: is any measurement reported by a measuring property. It is classified ob-

servations as sensor readings and status events. 

ss holds a graphical representation of the proposed ontology with the specific classifica-

tion. The ontology is dynamic enough to handle the classification of new resource types. Con-

ceptually, the information kept in the resource management ontology is abstractly divided into 

two categories:  

 General classification that concerns itself with establishing the properties that are shared 

among entities of the same class (typically represented as subclasses in the ontology); 

 Instantiation, which concerns itself with describing the physical deployment of the net-

work and keeping the individual properties of each entity (typically represented as indi-

viduals in the ontology). 

Subclass 

Relationship 



41 

 

Figure 3-9 - Database model for handling dynamic ontology generation 

Thanks to the ontology instantiation, the data extraction of knowledge is possible com-

bining a well-defined set of rules and the Entity-Relationship model, Figure 3-9, describes a 

very generic model for representing the data storage associated with an IoT network. Concern-

ing the virtualization functionality, is possible to divide the model in two sections, one where 

information will be maintained, described with the entities with descriptor suffixed and its asso-

ciated properties, and all other entities that are concerned with the instantiation of the sensor 

network and observed measurements. 

Resource Virtualization Functionality 

The process of resource virtualization involves the resource management module and the 

backend modules. Figure 3-10 shows the high level sequential flow of interaction between dif-

ferent components for addition of new resource. The process of adding a new resource is initiat-

ed at the Resource Management UI by utilizing services provided by Resource Management 

module. The details of steps in between are explained in Figure 3-11. 



42 

 

Figure 3-10 - Sequence diagram for addition of new resources 

When RM receives the details of the resource to be added, a virtual instance of the re-

sources is created, which can henceforth be used for identification and interaction with the actu-

al resource, irrespective of the type of actual resource. The identification and necessary details, 

which include access address/port, data filtering constraints, communication protocol, source 

data format etc. are forwarded to the IoT hubs, so that the hubs can perform identification, au-

thentication and preliminary data pre-processing over the collected data before sending to the 

DCF. The sequence of steps for creating new resource is as shown in Figure 3-11. There are 

two types of virtualized resources i.e. simple and mashup. Simple resource virtualization is de-

pendent on the simple case as shown in the figure and is dependent on the details provided by 

the user via the RM UI. While, the mash up virtualization makes use of existing virtualized re-

sources for creating complex resources by using data mashup rule over the data to be collected 

by two or more resources. Note that even though not shown in the sequence diagrams, the virtu-

alized resources can be edited/deleted/paused etc. to make adapt or change in the functional and 

behavioural features of the resource. For instance, the requirement on constraints and rule for 

data handling and event processing can change over time, which the user with the rights can 

update over the existing virtual instance of the resource. 



43 

 

Figure 3-11 - Sequence diagram for resource creation 

3.2.3.2 Application Programming Interface (API) 

 In order to expose the main functionalities of the resource management module, a pub-

lic application programming interface(API) describing the expected behaviour is pro-

vided. The resource management API is design as a webAPI based on the concept of 

the RESTful concept where all his methods are accessible via standard HTTP methods 

(GET, POST, PUT, DELETE), it is also defined that the main message exchange lan-

guage is JSON25 since it is a more compact and native in the technologies selected. In 

order to simplify the implementation and to provide a better description to the consumer 

the webAPI is divided in four different paths/routes:The communication path, Figure 

3-12, composed by two services one for the interface (‘/com/{hubId}’) where the re-

source management send the configuration file to the hub and the other concerning the 

communication link to each hub; 

 

Figure 3-12 - Communication API 

 The info API, Figure 3-13, describes and provides all the information concerning the 

hubs, devices and companies that already is in the knowledge base. This way is possible 

to build knowledge in a dynamic way, allowing the system to scale; 

                                                      
25 http://www.json.org/ 



44 

 

Figure 3-13 - Knowledge API 

 The company path,  

 Figure 3-14, where all the operations to create, update, delete and search concerning the 

management of the device network, hubs and devices; 

 

Figure 3-14 - Company API 

 The monitoring API, Figure 3-15, where all the monitoring methods should be de-

scribed. In this dissertation there is only one method described, allowing to count how 

many hubs, devices and message are associated to a specific company. 

 

Figure 3-15 - Monitoring API 

The use of this webAPI paths/routes enables to distinguish the method operation without 

the need to read the description, to re-design the UI module according with the needs of each 



45 

manufactory without the changing the core functionalities and also a clear separation for extend 

the monitoring capabilities. 

3.2.3.3 User Interface 

 

Figure 3-16 - Main Management Interface 

User interfaces provide a clear environment for humans to see and use functionalities al-

lowing to being able to understand and validate the events that their systems handle. With this 

in mind it was developed a simple interface with the main functionalities of the resource man-

agement.  

 

Figure 3-17 - Hub Management Interface 

Figure 3-16 depicts the list of hubs that each company has with information regarding 

which type and the information regarding how many hubs, IoT devices a company have. Also in 

this interface is possible to create new hubs associated to a company.  Figure 3-17 and Figure 

3-18 the management view is shown, here is possible to manage all the properties of a hub or 



46 

device, check their monitoring information and in the case of the hub associate new devices to 

it. 

 

Figure 3-18 - Device Management Interface 

At last Figure 3-19, shows the interface that allow to manage the virtual device; here is 

where it is possible to define the aggregation rule for the cep and define what devices will be 

associated inside this logical representation. 

 

Figure 3-19 - Virtual Device Management Interface 

The user interface (UI), presented in this sections, is used in the following section to 

validate the API provided for enabling IoT management capabilities and also the functional and 

non-functional requierment that this module should support. It is also important to denote the 

lack of the resource management monitoring capabilty, but in order to provide them it was 

needed to implement the CM and the cloud broker to handle data to monitoring. 



47 

3.3 Validation of the solution 

In this section the proof of concept implementation testing will be addressed, validating 

the requirements and functionalities of part the system. Testing is the process of trying to find 

errors in a system implementation by means of experimentation. The experimentation is usually 

carried out in a special environment, where normal and exceptional use is simulated. The aim of 

testing is to gain confidence that during normal use the system will work satisfactory: since test-

ing of realistic systems can never be exhaustive, because systems can only be tested during a 

restricted period of time, testing cannot ensure complete correctness of an implementation. It 

can only show the presence of errors, not their absence. Also it is important understand and 

gather feedback from the maturity and complexity of the solution proposed from the scientific 

and the necessities and objectives desired by the industrial communities. This way it is assured 

that the platform will have a better compliance in the Industrial market. 

In the next sections will be presented TTCN methodology and the tests definitions ap-

plied to RM proof-of-concept implementation. In the last section a scientific and industrial con-

text validation is presented. 

 

3.3.1 The Three and Tabular Combined Notation (TTCN) 

The Tree and Tabular Combined Notation is a test notation standardized by the ISO/IEC 

9646-1 (ISO/IEC, 1994), that concerns the specification of tests for communication systems 

developed within the framework of standardized conformance testing (ETSI, 2009). In the 

TTCN, tests behaviour is defined by a sequence of events and specified through tables which 

are divided in general description, constraints, behaviour and verdict. This sequence can be ap-

proached as a tree, containing branches of actions based on the evaluation of the system output 

after one or a series of executed events, which can be of one of two types:  

 Actions, which are preceded by an exclamation point before its brief description, and 

represent actions performed on the System Under Test (SUT);  

 Questions that are preceded by an interrogation point, and represent evaluations of the 

output of the SUT after one or more actions are completed.  

Since the answer can be positive or negative, multiple questions can exist at the same indenta-

tion level, covering all possible outputs of the system. Once the TTCN test table is complete, 

three verdicts based on the sequence of events and the outputs of the system are possible: Suc-

cess, Failure or Inconclusive. To better illustrate the testing procedure, Table 3-1 presents a 

simplified example describing an evaluation description for a phone call. 

 



48 

Table 3-1 - TTCN Table Example 

TTCN table test example. Test Case  

Test:  Basic Phone Call Connection  

Group:  N/A  

Purpose:  Check if a phone call can be estab-

lished.  

Comment:  N/A  

Behaviour  Constraints  Verdict  

! Pick up headphone  

? Dialling tone  

! Dial Number  

? Calling tone  

? Connected line  

! Hung up headphone  Success  

OTHERWISE  Failure  

? Busy tone  

! Hung up headphone  Inconclusive  

OTHERWISE  Failure  

? Dialling tone absent  Failure  

 

Thus, as one can observe, the table test is structured in a hierarchical manner similar to an 

IF-ELSE programming statement, and can be textually read as: 

1. The user picks up the headphone; 

2. Tests if the dialling tone is present; 

3. If the dialling tone is present, then the user dials the phone number. Otherwise, if 

the dialling tone is absent, the verdict is a Failure, due to the inability of estab-

lishing a phone call;  

4. If there is a calling tone after dialling the number, then the user may test if the 

line is effectively connected;  

5. 5If the line is connected, the user may hang up the headphone and the verdict is 

set as Success on establishing a phone call, otherwise the verdict is Failure;  

6. If the dialling tone is not heard, but a busy tone is present instead, then the user 

may hang up the headphone and the verdict is set as Inconclusive;  

7. Finally, if none of the tones corresponds to the calling or busy tone, then the ver-

dict is defined as Failure on establishing a phone call.  

 



49 

3.3.2 Functional Tests 

To address the functional testing of the RM proof-of-concept implementation, in this sec-

tion, according with the TTCN methodology, functional tests are presented in order to validate 

if the main functionalities described in section 3.1.2.1 are present and respected in the imple-

mentation of the resource management. The validation of the functionalites was achived through 

the combination of tests, or by a single test. The contruction and management of virtual 

resources functionality is validated with two tests, as well as the creation of output data streams 

based on the inputs from the IoT hub. The single test validates the discovery of all resources. 

3.3.2.1 Test 1: Create Device 

Table 3-2 shows  the test where the user creates a new device. This interactions concist in 

opening the RM UI and check if the device that the user wants to create already exists, if so it 

will throw a warnig saying that the device already exist otherwise it will be created a new one. 

Table 3-2 - TTCN Create Device 

Construction and management of virtual resources 

Test:  Create Device  

Group:  N/A  

Purpose:  Check if a device can be created.  

Comment:  N/A  

Behaviour  Constraints  Verdict  

! Open RM UI 

? Device not listed 

! Create Device Success  

OTHERWISE  Failure  

 

3.3.2.2 Test 2: Add Property to Device 

In the add property to device test, Table 3-3, the user will open the RM UI, search for the 

device to add the new property. When it is found the user opens the device view adding a new 

property. This operation has a constrain regarding the name of the property this means that each 

device is only allow to have one property with that single name. 

Table 3-3 - TTCN Add Property to Device 

Construction and management of virtual resources 

Test:  Create property  

Group:  N/A  

Purpose:  Check if a property of a device can be 

created and is well associated.  

Comment:  N/A  



50 

Behaviour  Constraints  Verdict  

! Open RM UI 

? Found device  

! Open device view 

! Create new Success  

OTHERWISE  Failure  

 

3.3.2.3 Test 3: Configuration of the CM 

In Table 3-4 is described the steps effectuated to send the configuration from one IoT 

Hub. This operation is done in the device view where by clicking a button you send the configu-

ration to the device address, added in the ENDPOINT property, and if the communication is 

correctly done, a notification is presented to the user in the RM. The conclusion of this test was 

not possible since the IoT hub was not developed under this implementation. 

Table 3-4 - TTCN Configuration of the CM 

Creation of output data streams based on the inputs from the IoT hub 

Test:  Configuration of the CM  

Group:  N/A  

Purpose:  Check if RM pass-through the con-

figuration of the CM 

Comment:  N/A  

Behaviour  Constraints  Verdict  

! Pick up configuration in the device view 

? Try to communicate  

! send to property (endpoint) 

? Receive confirmation  Success  

OTHERWISE  Failure  

! Notify RM UI 

 

3.3.2.4 Test 4: IoT Data Exchange with CM 

Table 3-5 also describes a test where is possible to check the steps necessary to the sys-

tem to executed a data exchange with the IoT Hub. However, since the IoT hub implementation 

was out of the scope of this dissertation, it was impossible to conclude the test and validate the 

create of data streams feature. 

Table 3-5 - TTCN IoT Data Exchange with CM 

Creation of output data streams based on the inputs from the IoT hub 

Test:  IoT Data exchange  



51 

Group:  N/A  

Purpose:  Check if RM receives and stores data 

incoming from the IoT devices in the CM.  

Comment:  N/A  

Behaviour  Constraints  Verdict  

? Received data  

! is stored Success  

OTHERWISE  Failure  

3.3.2.5 Test 5: Search Device  

In the add search device test, Table 3-6, the user will open the RM UI, search for a de-

vice. When it is found the basic information of the device is show to the user. 

 

Table 3-6 - TTCN Search Device 

Discovery of all the virtual Resources 

Test:  Search Device 

Group:  N/A  

Purpose:  Find a device   

Comment:  N/A  

Behaviour  Constraints  Verdict  

! Open RM UI 

? User search device 

! User Found device 

! Open Device Detail View Success  

OTHERWISE  Failure  

 

3.3.2.6 Test Results 

Table 3-7 - Tests Analysis 

Test Name % Success Status 

Create Device 100% Approved 

Add Property to Device 100% Approved 

Communicate with CM 73% Need further communication tests and some 

development in the standard way of do it. 

IoT Data exchange with CM 66% Need further communication test and define 

the meta-data to be exchange. 

Search device 100% Approved 

 



52 

Through Table 3-7 is possible to conclude that the device management features, such as 

searching, creating and editing capabilities are implemented and according with the proof of 

concept description. It was not yet possible to archive a verdict regarding the real-time monitor-

ing and communication due to some issues with the development of the IoT Hub (out of the 

scope of the selected proof of concept implementation). Finally, the functionally concerning the. 

Run-time adaptation of security polices envisaged in the scope was not tested because its im-

plementation is still work in progress. 

3.3.3 Scientific Validation 

During the research and developments here presented, one scientific publication was 

made to further contribute to the validation of the proposed architecture. This publication was 

made in the I-ESA Conference being well received by the Enterprise Interop community and is 

acknowledged in the C2NET project dissemination. The publication is described as follow: 

 Carlos AGOSTINHO, Joaquim PEREIRA, Jean-Pierre LORRE, Sudeep GHIMIRE, 

Yazid BENAZZOUZ: “A Distributed Middleware Solution for Continuous Data Col-

lection in Manufacturing Environments” (AGOSTINHO et al. 2016). 

3.3.4 Industrial Validation 

Industrial acceptance and validation is equally important as the acceptance by scientific 

peers. If industry does not approve the concept and the results, most likely they will never be 

used.  

This dissertation is contributing to the developments proposed in the project C2NET pro-

ject, that is a large research project involving 20 partners across the European Union and found-

ed by the European Commission since 1 January 2015 for the duration of 3 years. The goal of 

project is the creation of cloud-enabled tools for supporting the SMEs supply network optimiza-

tion of manufacturing and logistic assets based on collaborative demand, production and deliv-

ery plans (see Figure 3-20). Many discussions with the industrial partners have been carried 

along, both physical and teleconference meetings, involving them in the definition of the con-

cept here proposed, hence providing industrial pilots with data collection functionalities and 

virtualized resource management. The metalworking SME’s case identified in Figure 3-20 has 

been a real test bed for the developments. 



53 

 

Figure 3-20 - C2NET Goals 

3.3.5 Hypothesis Validation  

In section 1.3 the hypothesis of this dissertation was defined, and the objectives of this 

work were presented. The question made in the hypothesis was partial achieved during this dis-

sertation since it was not possible yet to test the full scope of the framework. However, through 

the development of the resource management, the nervous system, is possible to realize that the 

framework is one step closer to the objective to provide real-time data collection to the cloud 

capabilities to the industry, allowing to envision to achieve more complex features such as col-

laborative networks, real-time monitoring and production line optimization. However, the ream-

ing aspects of the proposed solution and hypothesis have scientifically accepted in the enterprise 

interoperability community (section 3.3.3) and thanks to fruitful discussion with the partners of 

c23net project (section 3.3.4).





55 

4 Conclusions and Future Works 

4.1 Conclusions 

This dissertation aims to present a framework architecture that enables real time data col-

lection, especially concerning the connection to IoT devices and the adoption of Industry 4.0 

paradigm. For that, at first a set of concepts related with real world data collection such as “In-

ternet of Things”, “IoT Models”, “Service in IoT”, “Middleware for IoT”, “Cloud Computing” 

and “Fog Computing” are analysed with the purpose to propose a conceptual solution address-

ing the hypothesis. The main objective was to provide an IoT-based continuous data collection 

framework from supply network resources. It considers data representation, IoT communication 

protocols, efficient data storage and user interaction as main requirements. For that the solution 

was structured in four big modules each of them in charge of handle different task and function-

alities: 

 Company Middleware (CM) is the gateway that allow devices to exchange data with 

the Data Collection framework. This data can be configurations from the hub/device or 

data collected by the device from the physical world; 

 Data Collection Framework (DCF) is design to support all the management function-

alities related with the device management and also with the operations, such as detec-

tion patterns over the data collected; 

 User Interface is the module that centralizes all the user experience with the frame-

work, it allows an interaction with the functionalities provided by each module of the 

framework; 



56 

 Backend module that provides a centralized storage capability, through a database or a 

knowledge base system. 

Even though a full proposal for a data collection framework is discussed in the conceptual 

solution, a full implementation was impossible to archive during the time of this dissertation, so 

it was decided that the implementation should focus on the nervous system of the framework, 

i.e., the resource management inside the DCF module. Following this decision, the document 

presents a division of the resource management implementation and validation, where is dis-

cussed the model used to store and infer knowledge from the data collected from the IoT devic-

es, the main functionalities and API that the RM should have, and the user interface used for 

validate the functionalities provided by the RM. This validation consists in a series of functional 

test alongside with a scientific and industrial.  

During the time of the dissertation, many discussions within the C2NET industrial and 

scientific partners have been carried along, this led to the understanding that although the re-

search discussed in this dissertation is already well addressed by the scientific community, the 

SME industrial community is some steps behind, where concepts such as IoT and Cloud Com-

puting are still being understood and their advantages comprehended. They are open to test in a 

closed environment but the lack of standards and regulation, special related with the security, in 

the IoT and Cloud computing paradigm, are one of the key factors that are leading to a mistrust-

ed relationship with the industries at a more open scale. Hence, is possible to conclude that the 

framework presented in this dissertation is a “must” if industry was to move towards the indus-

try 4.0 paradigm and the notion of IoT, where all objects are interconnected and contributing to 

an optimized working environment. However, due to some degree of mistrust, the functions de-

signed to take advantage of Cloud environments, enabling a highly scalable, available and fault-

tolerant solution, and to provide a toolkit that supports real time collaborative manufacturing 

and monitoring capabilities to the production line, are not yet ready to be embraced. Nonethe-

less, it is possible to say that this dissertation also contributes to helping industries move one 

step further, understanding how IoT and cloud technologies can enhance their operations by 

using a production process example to help recognise the benefits of its proof of concept. 

4.2 Future Works 

With the adoption of these types of solutions, that allow real time data collection, the 

manufacturing paradigm will forever change. With these changes will arise huge challenges, 

since industries will demand more intelligent systems. It is from the author's belief that in the 

future, areas such as artificial intelligence and big data real time data analytics will be key com-

plements for any data collection framework. Also, and in a short-term perspective, it is neces-

sary to design and implement standards for security and interoperability in the IoT paradigm, as 

this will provide the necessary means for a faster acceptance of the industry regarding this type 

of solutions. This is a key aspect of the future work, in order to provide to the framework means 

to respond to the ever changing industrial demand.



57 

References 

AGOSTINHO, C. et al., 2016. A Distributed Middleware Solution for Continuous Data 

Collection in Manufacturing Environments. I-ESA 2016, 8th International Conference, 

Interoperability For Enterprise Systems and Applications. 

Agostinho, C. et al., 2015. Model-driven Service Engineering Towards the Manufacturing 

Liquid-sensing Enterprise. Proceedings of the 3rd International Conference on Model-

Driven Engineering and Software Development, ESEO, Angers, Loire Valley, France, 9-

11 February, 2015., pp.608–617. 

Anon, 2016. OASIS SOA Reference Model. Available at: https://www.oasis-

open.org/committees/soa-rm/faq.php [Accessed April 30, 2016]. 

Anon, 2011. Semantic Sensor Network XG Final Report. Available at: 

https://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/#Intent_and_Process 

[Accessed April 30, 2016]. 

Atzori, L., Iera, A. & Morabito, G., 2010. The Internet of Things: A survey. Computer 

Networks, 54(15), pp.2787–2805. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S1389128610001568. 

Baldoni, R. et al., 2009. An embedded middleware platform for pervasive and immersive 

environments for-all. 2009 6th IEEE Annual Communications Society Conference on 

Sensor, Mesh and Ad Hoc Communications and Networks Workshops, SECON Workshops 

2009, (May 2016). 

Bhardwaj, S., Jain, L. & Jain, S., 2010. Cloud Computing : a Study of Infrastructure As a 

Service ( Iaas ). International Journal of Engineering, 2(1), pp.60–63. Available at: 

http://ijeit.org/index_files/vol2no1/CLOUD COMPUTING A STUDY OF.pdf. 

Bonomi, F. et al., 2014. Big Data and Internet of Things: A Roadmap for Smart Environments. 

Studies in Computational Intelligence, 546, pp.169–186. Available at: 

http://link.springer.com/10.1007/978-3-319-05029-4. 

Bonomi, F. et al., 2012. Fog Computing and Its Role in the Internet of Things. Proceedings of 

the first edition of the MCC workshop on Mobile cloud computing, pp.13–16. Available at: 

http://doi.acm.org/10.1145/2342509.2342513\npapers2://publication/doi/10.1145/2342509

.2342513. 

Chaqfeh, M. a. & Mohamed, N., 2012. Challenges in middleware solutions for the internet of 



58 

things. Proceedings of the 2012 International Conference on Collaboration Technologies 

and Systems, CTS 2012, pp.21–26. 

De Chaves, S.A., Uriarte, R.B. & Westphall, C.B., 2011. Toward an architecture for monitoring 

private clouds. IEEE Communications Magazine, 49(12), pp.130–137. 

Cisco Systems, 2016. Fog Computing and the Internet of Things: Extend the Cloud to Where 

the Things Are. Www.Cisco.Com, p.6. Available at: 

http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf. 

Cloud Computing Types, 2016. Best Cloud Deployment Models & Cloud Computing Pricing 

Model. Available at: http://cloudcomputingtypes.com/cloud-computing-models/ [Accessed 

May 22, 2016]. 

Commission, E., 2012. FInES Research Roadmap 2025. 

Compton, M. et al., 2012. Web Semantics : Science , Services and Agents on the World Wide 

Web The SSN ontology of the W3C semantic sensor network incubator group. Web 

Semantics: Science, Services and Agents on the World Wide Web, 17, pp.25–32. Available 

at: http://dx.doi.org/10.1016/j.websem.2012.05.003. 

Cox, S.J.D., 2016. Ontology for observations and sampling features, with alignments to existing 

models. Semantic Web, Preprint(Preprint), pp.1–18. Available at: 

http://content.iospress.com/articles/semantic-web/sw214\nhttp://www.semantic-web-

journal.net/content/ontology-observations-and-sampling-features-alignments-existing-

models-0. 

Dillon, T., Wu, C. & Chang, E., 2010. Cloud Computing: Issues and Challenges. 2010 24th 

IEEE International Conference on Advanced Information Networking and Applications, 

pp.27–33. Available at: 

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5474674. 

E. Michael Maximilien et al., 2009. Toward cloud-agnostic middlewares. , (May), pp.619–626. 

Available at: http://doi.acm.org/10.1145/1639950.1639957. 

EC, I.-A.P., 2013. Internet of Things - Architecture — IOT-A: Internet of Things Architecture. 

Available at: http://www.iot-a.eu/public. 

European Parliamentary Research Service, 2015. Industry 4.0. Digitalisation for productivity 

and growth. , (September), p.10. 

Evans, P. & Annunziata, M., 2012. Industrial internet: Pushing the boundaries of minds and 

machines. General Electric White Paper. 

Felic, A. et al., 2014. First OSMOSE Models and Architecture. 

Gartner’s, 2015. Gartner’s 2015 Hype Cycle for Emerging Technologies Identifies the 

Computing Innovations That Organizations Should Monitor. Available at: 

http://www.gartner.com/newsroom/id/3114217 [Accessed February 3, 2016]. 

Gershenfeld, N., Krikorian, R. & Cohen, D., 2004. The Internet of things., Available at: 

http://www.cba.mit.edu/docs/papers/04.10.i0.pdf. 

Gubbi, J., Buyya, R., Marusic, S., et al., 2013. Internet of Things (IoT): A vision, architectural 

elements, and future directions. Future Generation Computer Systems, 29(7), pp.1645–

1660. Available at: http://dx.doi.org/10.1016/j.future.2013.01.010. 

Gubbi, J., Buyya, R. & Marusic, S., 2013. Internet of Things (IoT): A Vision, Architectural 

Elements, and Future Directions. , (1), pp.1–19. 

Hermann, M., Pentek, T. & Otto, B., 2015. Design Principles for Industrie 4.0 Scenarios: A 

Literature Review. , (1). 



59 

Huhns, M. & Singh, M., 2005. Service-oriented computing: Key concepts and principles. 

Internet Computing, IEEE, 9(1), pp.75–81. Available at: 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1407782. 

IOT-A, 2011. Internet-of-Things Architecture Project Deliverable D1 . 2 – Initial Architectural 

Reference Model for IoT. Architecture, (257521), pp.1–97. 

Jacobs, D., 2005. Enterprise software as service. Queue, 3(6), p.36. 

Keller, E. & Rexford, J., 2010. The “Platform as a service” model for networking. Proceedings 

of the 2010 internet network management conference on Research on enterprise 

networking, (Section 3), p.4. Available at: 

http://dl.acm.org/citation.cfm?id=1863133.1863137. 

Kohli, D. & Silicon, I.B.M., 2008. Understanding Event Driven Architecture. , (1672). 

Kui, R., Cong, W. & Qian, W., 2012. Security Challenges for the Public Cloud. Internet 

Computing, IEEE, 16(1), pp.69–73. 

MacKenzie, C.M. et al., 2006a. Reference model for service oriented architecture. Public 

Review Draft 2, (October), pp.1–31. Available at: http://lists.oasis-open.org/archives/soa-

rm-editors/200511/pdf00001.pdf\nhttp://www.mendeley.com/research/reference-model-

for-service-oriented-architectures/\nhttp://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=soa-rm. 

MacKenzie, C.M. et al., 2006b. Reference model for service oriented architecture. Public 

Review Draft 2, (October), pp.1–31. 

Manyika, J. et al., 2015. The Internet of Things: Mapping the value beyond the hype. McKinsey 

Global Institute, (June), p.144. 

Maréchaux, J., 2006. Combining service-oriented architecture and event-driven architecture 

using an enterprise service bus. IBM Developer Works, (April), pp.1–8. Available at: 

http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/IBM/I060328M.pdf. 

Marques-Lucena, C. et al., 2016. Process Modelling Approach for the Liquid-Sensing 

Enterprise. I-ESA’16 Proceedings, (April), pp.1–12. 

Mell, P. & Grance, T., 2011. The NIST Definition of Cloud Computing Recommendations of 

the National Institute of Standards and Technology. National Institute of Standards and 

Technology, Information Technology Laboratory, 145, p.7. Available at: 

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. 

Michelson, B.M., 2006. Event-driven architecture overview. Patricia Seybold Group, 2. 

Murray, R.W., 1999. The scientific method. Analytical chemistry, 71(5), p.153A. Available at: 

http://dx.doi.org/10.1021/ac990210y. 

OpenGroup, 2013. Cloud Computing for Business : What is Cloud? Available at: 

http://www.opengroup.org/cloud/cloud/cloud_for_business/what.htm [Accessed May 22, 

2016]. 

Razzaque, M.A. et al., 2015. Middleware for Internet of Things: a Survey. Internet of Things 

Journal, IEEE, PP(99), p.1. 

Santucci, G., Martinez, C. & Vlad-câlcic, D., 2012. The Sensing Enterprise. , pp.1–14. 

Schafersman, S.D., 1997. An Introduction to Science: Scientific Thinking and the Scientific 

Method. Geology, pp.1–9. Available at: 

http://www.muohio.edu/~schafesd/documents/intro-to-sci.htmlx. 

Soma Bandyopadhyay et al., 2011. Role Of Middleware For Internet Of Things: A Study. 



60 

International Journal of Computer Science & Engineering Survey, 2(3), pp.94–105. 

Stojmenovic, I. & Wen, S., 2014. The Fog Computing Paradigm: Scenarios and Security Issues. 

Proceedings of the 2014 Federated Conference on Computer Science and Information 

Systems, 2, pp.1–8. Available at: https://fedcsis.org/proceedings/2014/drp/503.html. 

Thornton, P., 2010. The Global Manufacturing Sector : Current Issues. Chartered Institute of 

Management Accountants, pp.1–11. 

Vermesan, O. et al., 2009. Internet of Things Strategic Research Roadmap. Internet of Things 

Strategic Research Roadmap, pp.9–52. Available at: 

http://sintef.biz/upload/IKT/9022/CERP-IoT SRA_IoT_v11_pdf.pdf. 

W3C, 2015. IoT-Lite Ontology. W3C. Available at: 

https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/. 

Zhang, H. et al., 2009. Intelligent workload factoring for a hybrid cloud computing model. 

SERVICES 2009 - 5th 2009 World Congress on Services, (PART 1), pp.701–708. 

Zhang, Q., Cheng, L. & Boutaba, R., 2010. Cloud computing: State-of-the-art and research 

challenges. Journal of Internet Services and Applications, 1(1), pp.7–18. 



61 

Annex A – Cloud Service Providers: Service List 

Table 4-1 - Bluemix Services 

Name: Bluemix 

Provider: IBM 

Type: Paid 

Service Model: PaaS, SaaS, IaaS 

Service Name Tools/Services 

Compute 

 Virtual Server 

 Containers 

 CF applications 

 OpenWhisk  

Network 
 Content Delivery 

 Virtual Private Network 

Storage  Object Storage 

Data and Analytics 

 Apache Spark 

 Big Insights for Apache Hoops 

 Cloudant NoSQL DB 

 dashDB 

 DataWorks 

 Elasticsearch 

 Geospatial Analytics 

 IBM DataStage on Cloud 

 IBM DB2 on Cloud 

 IBM Graph 

 IBM Master Data Management Cloud 

 Insights for Twitter 

 Mongo DB 

 PostreSQL 



62 

 Predictive Analytics 

 Redis 

 Streaming Analytics 

 Weather Company Data 

 ClearDB MySQl Database 

 ElephantSQL 

 Namara.io Catalog 

 Redis Cloud 

Watson 

 AlchemyAPI 

 Conversation 

 Document Conversion 

 Language Translation 

 Natural Language Classifier 

 Personality Insights 

 Retrieve and Rank 

 Speech to Text 

 Text to Speadch 

 Tone Analyzer 

 Tradeoff Analytics 

 Visual Recognition 

 Cognitive Commerce 

 Cognitive Graph 

 Cognitive Insights  

Integration 

 Secure Gateway 

 Service Discovery 

 Service Proxy 

 Rocket Mainframe Data 

DevOps 

 Active Deploy 

 Auto-Scaling 

 Availability Monitoring 

 Delivery Pipeline 

 Globalization Pipeline 

 IBM Alert Notification 

 Monitoring and Analytics 

 Track & Plan 

 BlazeMeter 

 jKool 

 Load Impact 

 New Relic 

Security 

 Access Trail 

 Application Security on Cloud 

 Key Protect 

 Single Sign On 



63 

 Adaptive Security Manager 

Mobile 

 Mobile Analytics 

 Mobile Application Content Manager 

 Mobile Client Access 

 Mobile Foundation 

 Mobile Quality Assurance 

 Push Notifications 

 Kinetise 

 Testdroid Cloud 

 Twiio 

Internet of Things 

 Context Mapping 

 Driver Behaviour 

 Internet of Things Platform 

 IoT for Electronics 

 Flowthings.io 

 IQP IoT Code-Free App Development 

 

Table 4-2 - Microsoft Azure Services 

Name: Azure 

Provider: Microsoft 

Type: Paid 

Service Model: PaaS, SaaS, IaaS 

Service Name Tools/Services 

Compute 

 Virtual Machines 

 Virtual Machine Scale Sets 

 Azure Container Service 

 Functions 

 Batch 

 Service Fabric 

 Cloud Services 

 RemoteApp 

Networking 

 Virtual Network 

 Load Balancer 

 Application Gateway 

 VPN Gateway 

 Azure DNS 

 CDN 

 Traffic Manager 

 ExpressRoute 

Storage 

 Azure Storage 

 Data Lake Store 

 StorSimple 



64 

 Backup 

 Site Recovery 

Web & Mobile 

 App Service 

 CDN 

 Media Services 

 Search 

Databases 

 SQL Database 

 SQL Data Warehouse 

 SQL Server Stretch Database 

 DocumentDB 

 Table Storage 

 Redis Cache 

 Data Factory 

Intelligence + Analytics 

 HDInsight 

 Machine Learning 

 Stream Analytics 

 Cognitive Services 

 Data Lake Analytics 

 Data Lake Store 

 Data Factory 

 Power BI Embedded 

Internet of Things 

 Azure IoT Hubs 

 Event Hubs 

 Stream Analytics 

 Machine Learning 

 Notification Hubs 

Enterprise Integration 

 Logic Apps 

 BizTalk Services 

 Service Bus 

 API Management 

 StorSimple 

 SQL Server Stretch Database 

 Data Factory  

Security + Identity 

 Security Center 

 Key Vault 

 Azure Active Directory 

 Azure Active Directory B2C 

 Azure Active Directory Domain Services 

 Multi-Factor Authentication 

Developer Tools 

 Visual Studio Team Services 

 Azure DevTest Labs 

 Visual Studio Application Insights 

 API Management 



65 

 HockeyApp 

 Developer tools and SDKs 

 Xamarin 

 Storage Explorer 

Monitoring & Manage-

ment 

 Microsoft Azure portal 

 Azure Resource Manager 

 Visual Studio Application Insights 

 Log Analytics 

 Automation 

 Backup 

 Site Recovery 

 Scheduler 

 Traffic Manager 

 

Table 4-3 - Google Cloud Services 

Name: Google Cloud 

Provider: Google 

Type: Paid 

Service Model: PaaS, SaaS 

Service Name Tools/Services 

Compute 

 Compute Engine 

 App Engine 

 Container Engine 

 Container Registry 

 Cloud Functions 

Storage and Databases 

 Cloud Storage 

 Cloud SQL 

 Cloud Bigtable 

 Cloud Datastore 

 Persistent Disk  

Networking 

 Cloud Virtual Network 

 Cloud Load Balancing 

 Cloud Content Delivery Network 

 Cloud Interconnect 

 Cloud Domain Name System 

Big Data 

 BigQuery 

 Cloud Dataflow 

 Cloud Dataproc 

 Cloud Datalab 

 Cloud Pub/Sub 

 Genomics 



66 

Machine Learning 

 Cloud Machine Learning Platform 

 Vision API 

 Speech API 

 Natural Language API 

 Translate API 

Management Tools 

 Strackdrive Overview 

 Monitoring 

 Logging 

 Error Reporting 

 Trace 

 Debugger 

 Deployment Manager 

 Cloud Console 

 Cloud Shell 

 Cloud Mobile App 

 Billing API 

 Cloud APIs 

Developer Tools 

 Cloud SDK 

 Deployment Manager 

 Cloud Source Repositories 

 Cloud Endpoints 

 Cloud Tools for Android Studio 

 Cloud Tools for IntelliJ 

 Cloud Tools for PowerShell 

 Cloud Tools for Visual Studio 

 Google Plug-In for Eclipse 

 Cloud Test Lab 

Identity & Security 

 Cloud Identity & Access Management 

 Cloud Resource Manager 

 Cloud Security Scanner 

 Cloud Platform Security Overview 

 

Table 4-4 - Digital Ocean Services 

Name: DigitalOcean 

Provider: DigitalOcean 

Type: Paid 

Service Model: IaaS 

Service Name Tools/Services 

Compute  Droplets 

Storage  Block Storage 

 



67 

Table 4-5 - Amazon Cloud Services 

Name: AWS 

Provider: Amazon 

Type: Paid 

Service Model: PaaS, SaaS 

Service Name Tools/Services 

Compute 

 Virtual Servers 

 Containers 

 1-Click Web App Deployment 

 Event-Driven Compute Functions 

 Auto Scaling 

 Load Balancing 

Networking 

 Virtual Private Cloud 

 Direct Connections 

 Load Balancing 

 DNS 

Storage & Content Deliv-

ery 

 Object Storage 

 CDN 

 Block Storage 

 File System Storage 

 Archive Storage 

 Data Transport 

 Integrated Storage 

Database 

 Relational 

 Database Migration 

 NoSQL 

 Caching 

 Data Warehouse 

Analytics 

 Business Intelligence 

 Data Warehouse 

 Machine Learning 

 Streaming Data 

 Elasticsearch 

 Hadoop 

 Data Pipelines 

Enterprise Applications 

 Desktop Virtualization 

 Email & Calendaring 

 Document Sharing & Feedback 

Mobile Services 

 Mobile Development 

 API Management 

 Identity 

 App Testing 



68 

 Mobile Analytics 

 Development 

 Notifications 

Internet of Things 

 IoT Platform 

 Device SDK 

 Registry 

 Device Shadows 

 Rules Engine 

Developer Tools 

 Source Code Management 

 Code Deployment 

 Continuous Delivery 

Management Tools 

 Monitoring & Logs 

 Resource Templates 

 Usage & Resource Auditing 

 Dev/Ops Resource Management 

 Service Catalog 

 Performance Optimization 

Security & Identity 

 Access Control 

 SSL/TLS Certificates 

 Key Storage & Management 

 Identity Management 

 Security Assessment 

 Web Application Firewall 

Application Services 

 API Management 

 App Streaming 

 Search 

 Transcoding 

 Email 

 Notifications 

 Queueing 

 Workflow 

 

Table 4-6 - OpenStack Services 

Name: OpenStack 

Provider: OpenStack 

Type: Open Source 

Service Model: SaaS 

Service Name Tools/Services 

Object Storage  Swift 

Identity  Keystone 

Compute  Nova 



69 

Networking  Neutron 

Block Storage  Cinder 

Image Service  Glance 

 

Table 4-7 - WSO2 Services 

Name: WSO2 

Provider: WSO2 

Type: Open Source 

Service Model: PaaS, SaaS 

Service Name Tools/Services 

API Management 
 API Manager 

 API Cloud 

Integration 

 Enterprise Service Bus 

 Data Services Server 

 Message Broker 

 Business Process Server 

 Business Rules Server 

Analytics 

 Data Analytics Server 

 Complex Event Processor 

 Machine Learner 

Identity and Security 

Management 

 Identity Server 

Service and Application 

development 

 Application Server 

 App Cloud 

 Microservices Framework for Java 

Management and Gov-

ernance 

 Governance Registry 

 App Manager 

 Process Center 

Mobile and IoT 
 IoT Server 

 Enterprise Mobility Manager 

Foundation Servers and 

Frameworks 

 Dashboard Server 

 Enterprise Store 

 Storage Server 

 Carbon 

 Developer Studio 

http://wso2.com/products/enterprise-service-bus/
http://wso2.com/products/data-services-server/
http://wso2.com/products/message-broker/
http://wso2.com/products/business-process-server/
http://wso2.com/products/business-rules-server/
http://wso2.com/products/data-analytics-server/
http://wso2.com/products/complex-event-processor/
http://wso2.com/products/machine-learner/
http://wso2.com/products/identity-server/
http://wso2.com/products/application-server/
http://wso2.com/cloud/app-cloud/
http://wso2.com/products/microservices-framework-for-java/
http://wso2.com/products/governance-registry/
http://wso2.com/products/app-manager/
http://wso2.com/products/process-center/
http://wso2.com/products/iot-server/
http://wso2.com/products/enterprise-mobility-manager/
http://wso2.com/products/dashboard-server/
http://wso2.com/products/enterprise-store/
http://wso2.com/products/storage-server/
http://wso2.com/products/carbon/
http://wso2.com/products/developer-studio/




71 

 

2016 

E
n

ab
li

n
g

 I
o

T
 i

n
 M

an
u

fa
ct

u
ri

n
g

: 
fr

o
m

 t
h

e 
D

ev
ic

e 
to

 t
h

e 
C

lo
u

d
 

Jo
aq

u
im

 P
er

ei
ra

 

 


