37 research outputs found

    Practice explains abolished behavioral adaptation after human dorsal anterior cingulate cortex lesions

    Get PDF
    The role of mid-cingulate cortex (MCC), also referred to as dorsal anterior cingulate cortex, in regulating cognitive control is a topic of primary importance in cognitive neuroscience. Although many studies have shown that MCC responds to cognitive demands, lesion studies in humans are inconclusive concerning the causal role of the MCC in the adaptation to these demands. By elegantly combining single-cell recordings with behavioural methods, Sheth et al. [Sheth, S. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218–22 (2012).] recently were able to show that neurons in MCC encode cognitive demand. Importantly, this study also claimed that focal lesions of the MCC abolished behavioural adaptation to cognitive demands. Here we show that the absence of post-cingulotomy behavioural adaptation reported in this study may have been due to practice effects. We run a control condition where we tested subjects before and after a dummy treatment, which substituted cingulotomy with a filler task (presentation of a documentary). The results revealed abolished behavioural adaptation following the dummy treatment. Our findings suggest that future work using proper experimental designs is needed to advance the understanding of the causal role of the MCC in behavioural adaptation.Action Contro

    Deep Brain Stimulation of Nucleus Accumbens Region in Alcoholism Affects Reward Processing

    Get PDF
    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H2[15O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control

    Nature

    Get PDF
    The ability to optimize behavioural performance when confronted with continuously evolving environmental demands is a key element of human cognition. The dorsal anterior cingulate cortex (dACC), which lies on the medial surface of the frontal lobes, is important in regulating cognitive control. Hypotheses about its function include guiding reward-based decision making, monitoring for conflict between competing responses and predicting task difficulty. Precise mechanisms of dACC function remain unknown, however, because of the limited number of human neurophysiological studies. Here we use functional imaging and human single-neuron recordings to show that the firing of individual dACC neurons encodes current and recent cognitive load. We demonstrate that the modulation of current dACC activity by previous activity produces a behavioural adaptation that accelerates reactions to cues of similar difficulty to previous ones, and retards reactions to cues of different difficulty. Furthermore, this conflict adaptation, or Gratton effect, is abolished after surgically targeted ablation of the dACC. Our results demonstrate that the dACC provides a continuously updated prediction of expected cognitive demand to optimize future behavioural responses. In situations with stable cognitive demands, this signal promotes efficiency by hastening responses, but in situations with changing demands it engenders accuracy by delaying responses.1R01EY017658-01A/EY/NEI NIH HHS/United States1R01NS063249/NS/NINDS NIH HHS/United States5R01DP000339/DP/NCCDPHP CDC HHS/United StatesMH086400/MH/NIMH NIH HHS/United StatesP41RR14075/RR/NCRR NIH HHS/United StatesR01 DA026297/DA/NIDA NIH HHS/United StatesR01 EY017658/EY/NEI NIH HHS/United StatesR25 NS065743/NS/NINDS NIH HHS/United StatesR25NS065743/NS/NINDS NIH HHS/United StatesHoward Hughes Medical Institute/United States2013-02-09T00:00:00Z22722841PMC341692

    Computational models of anterior cingulate cortex : at the crossroads between prediction and effort

    Get PDF
    In the last two decades the anterior cingulate cortex (ACC) has become one of the most investigated areas of the brain. Extensive neuroimaging evidence suggests countless functions for this region, ranging from conflict and error coding, to social cognition, pain and effortful control. In response to this burgeoning amount of data, a proliferation of computational models has tried to characterize the neurocognitive architecture of ACC. Early seminal models provided a computational explanation for a relatively circumscribed set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent models have focused on ACC's contribution to effortful control. In parallel to these developments, several proposals attempted to explain within a single computational framework a wider variety of empirical findings that span different cognitive processes and experimental modalities. Here we critically evaluate these modeling attempts, highlighting the continued need to reconcile the array of disparate ACC observations within a coherent, unifying framework

    Does age affect medial prefrontal functions? A behavioral investigation

    Get PDF

    Mode of Effective Connectivity within a Putative Neural Network Differentiates Moral Cognitions Related to Care and Justice Ethics

    Get PDF
    BACKGROUND: Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. METHODOLOGY/PRINCIPAL FINDINGS: Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. CONCLUSIONS/SIGNIFICANCE: These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses

    Are Individual Differences in Media Multitasking Habits Associated with Changes in Brain Activation: An ERP Investigation of Multitasking and Cognitive Control

    Get PDF
    As the number of mobile phone users grows, understanding the impact of multiple streams of media on media multitasking and related neural correlates is especially pertinent. This research aims to understand the association between media multitasking tendencies on the neural correlates underlying cognitive control using event-related potentials (ERPs). Specifically, we were interested in the N2 and P3, ERPs that measure neural activation underlying aspects of cognitive control. Based on the literature, we predicted that participants who have high media multitasking scores would show more negative N2 activation and more positive P3 activation than their low media multitasking counterparts during an AX-CPT task, indicating less efficient neural processing. However, we did not find the expected pattern of results. It is possible that reactive and proactive control are not related to digital media multitasking or it may be that some potential design issues impacted our results. The current paper will explore these issues

    Effects of loss aversion on neural responses to loss outcomes: an event-related potential study

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Loss aversion is the tendency to prefer avoiding losses over acquiring gains of the same amount. To shed light onthe spatio-temporal processes underlying loss aversion, we analysed the associations between individual lossaversion and electrophysiological responses to loss and gain outcomes in a monetary gamble task.Electroencephalographic feedback-related negativity (FRN) was computed in 29 healthy participants as thedifference in electrical potentials between losses and gains. Loss aversion was evaluated using non-linearparametric fitting of choices in a separate gamble task.Loss aversion correlated positively with FRN amplitude (233–263 ms) at electrodes covering the lower face.Feedback related potentials were modelled by five equivalent source dipoles. From these dipoles, strongeractivity in a source located in the orbitofrontal cortex was associated with loss aversion.The results suggest that loss aversion implemented during risky decision making is related to a valuationprocess in the orbitofrontal cortex, which manifests during learning choice outcomes
    corecore