1,769 research outputs found

    Analysis-by-Synthesis-based Quantization of Compressed Sensing Measurements

    Full text link
    We consider a resource-constrained scenario where a compressed sensing- (CS) based sensor has a low number of measurements which are quantized at a low rate followed by transmission or storage. Applying this scenario, we develop a new quantizer design which aims to attain a high-quality reconstruction performance of a sparse source signal based on analysis-by-synthesis framework. Through simulations, we compare the performance of the proposed quantization algorithm vis-a-vis existing quantization methods.Comment: 5 pages, Published in ICASSP 201

    Graded quantization for multiple description coding of compressive measurements

    Get PDF
    Compressed sensing (CS) is an emerging paradigm for acquisition of compressed representations of a sparse signal. Its low complexity is appealing for resource-constrained scenarios like sensor networks. However, such scenarios are often coupled with unreliable communication channels and providing robust transmission of the acquired data to a receiver is an issue. Multiple description coding (MDC) effectively combats channel losses for systems without feedback, thus raising the interest in developing MDC methods explicitly designed for the CS framework, and exploiting its properties. We propose a method called Graded Quantization (CS-GQ) that leverages the democratic property of compressive measurements to effectively implement MDC, and we provide methods to optimize its performance. A novel decoding algorithm based on the alternating directions method of multipliers is derived to reconstruct signals from a limited number of received descriptions. Simulations are performed to assess the performance of CS-GQ against other methods in presence of packet losses. The proposed method is successful at providing robust coding of CS measurements and outperforms other schemes for the considered test metrics

    An Overview of Multi-Processor Approximate Message Passing

    Full text link
    Approximate message passing (AMP) is an algorithmic framework for solving linear inverse problems from noisy measurements, with exciting applications such as reconstructing images, audio, hyper spectral images, and various other signals, including those acquired in compressive signal acquisiton systems. The growing prevalence of big data systems has increased interest in large-scale problems, which may involve huge measurement matrices that are unsuitable for conventional computing systems. To address the challenge of large-scale processing, multiprocessor (MP) versions of AMP have been developed. We provide an overview of two such MP-AMP variants. In row-MP-AMP, each computing node stores a subset of the rows of the matrix and processes corresponding measurements. In column- MP-AMP, each node stores a subset of columns, and is solely responsible for reconstructing a portion of the signal. We will discuss pros and cons of both approaches, summarize recent research results for each, and explain when each one may be a viable approach. Aspects that are highlighted include some recent results on state evolution for both MP-AMP algorithms, and the use of data compression to reduce communication in the MP network

    Operational Rate-Distortion Performance of Single-source and Distributed Compressed Sensing

    Get PDF
    We consider correlated and distributed sources without cooperation at the encoder. For these sources, we derive the best achievable performance in the rate-distortion sense of any distributed compressed sensing scheme, under the constraint of high--rate quantization. Moreover, under this model we derive a closed--form expression of the rate gain achieved by taking into account the correlation of the sources at the receiver and a closed--form expression of the average performance of the oracle receiver for independent and joint reconstruction. Finally, we show experimentally that the exploitation of the correlation between the sources performs close to optimal and that the only penalty is due to the missing knowledge of the sparsity support as in (non distributed) compressed sensing. Even if the derivation is performed in the large system regime, where signal and system parameters tend to infinity, numerical results show that the equations match simulations for parameter values of practical interest.Comment: To appear in IEEE Transactions on Communication

    Optimal Quantization for Compressive Sensing under Message Passing Reconstruction

    Get PDF
    We consider the optimal quantization of compressive sensing measurements following the work on generalization of relaxed belief propagation (BP) for arbitrary measurement channels. Relaxed BP is an iterative reconstruction scheme inspired by message passing algorithms on bipartite graphs. Its asymptotic error performance can be accurately predicted and tracked through the state evolution formalism. We utilize these results to design mean-square optimal scalar quantizers for relaxed BP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers.Comment: 5 pages, 3 figures, submitted to IEEE International Symposium on Information Theory (ISIT) 2011; minor corrections in v

    Compression Ratio Learning and Semantic Communications for Video Imaging

    Full text link
    Camera sensors have been widely used in intelligent robotic systems. Developing camera sensors with high sensing efficiency has always been important to reduce the power, memory, and other related resources. Inspired by recent success on programmable sensors and deep optic methods, we design a novel video compressed sensing system with spatially-variant compression ratios, which achieves higher imaging quality than the existing snapshot compressed imaging methods with the same sensing costs. In this article, we also investigate the data transmission methods for programmable sensors, where the performance of communication systems is evaluated by the reconstructed images or videos rather than the transmission of sensor data itself. Usually, different reconstruction algorithms are designed for applications in high dynamic range imaging, video compressive sensing, or motion debluring. This task-aware property inspires a semantic communication framework for programmable sensors. In this work, a policy-gradient based reinforcement learning method is introduced to achieve the explicit trade-off between the compression (or transmission) rate and the image distortion. Numerical results show the superiority of the proposed methods over existing baselines
    • …
    corecore