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Abstract—We consider the optimal quantization of compressive We show that the relaxed BP method is computationally simple
sensing measurements following the work on generalizatioof and, with quantized measurements, provides significantly i

relaxed belief propagation (BP) for arbitrary measurementchan-  oed performance over traditional CS reconstructioretias
nels. Relaxed BP is an iterative reconstruction scheme ingpd by .
on convex relaxations.

message passing algorithms on bipartite graphs. Its asymetic Lo . . )
error performance can be accurately predicted and tracked ~ Our second contribution concerns the quantizer desigrin Wit

through the state evolution formalism. We utilize these reslts linear reconstruction and mean-squared error distortibe,
to design mean-square optimal scalar quantizers for relaxe BP  optimal quantizer simply minimizes the mean squared error
signal reconstruction and empl_rlcally de_monstrate the suprior (MSE) of the transform outputs. Thus, the quantizer can be op
error performance of the resulting quantizers. - . .
timized independently of the reconstruction method. Havev
|. INTRODUCTION when the quantizer outputs are used as an input to a nonlinear
By exploiting signal sparsity and smart reconstructiogstimation algorithm, minimizing the MSE between quantize
schemes, compressive sensing (C3) [1], [2] can enablelsigit@ut and output is not necessarily equivalent to minimgzin
acquisition with fewer measurements than traditional sarthe MSE of the final reconstruction. To optimize the quanmtize
pling. In CS, ann-dimensional signak is measured through for the relaxed BP algorithm, we use the fact that the MSE
m random linear measurements. Although the signal may beder large random transforms can be predicted accurately
undersampled7¢ < n), it may be possible to recover from a set of simple state evolution (SE) equations [19]].[20
assuming some sparsity structure. Then, by modeling the quantizer as a part of the measurement
So far, most of the CS literature has considered sigreftannel, we use the SE formalism to optimize the quantizer
recovery directly from linear measurements. However, imynato asymptotically minimize distortions after the reconstion
practical applications, measurements have to be disecktidy relaxed BP.
to a finite number of bits. The effect of such quantized I
measurements on the performance of the CS reconstruction ) .
has been studied i J[3][][4]. IN[5[E[7] the authors adagt- COMPressive Sensing
CS reconstruction algorithms to mitigate quantizatioreef. In a noiseless CS setting the signak R™ is acquired via
In [8], high-resolution functional scalar quantizatioretiny m < n linear measurements of the type
was used to design quantizers for LASSO reconstructibn [9]. Y — Az L
The contribution of this paper to the quantized CS problem ’
is twofold: First, for quantized measurements, we propogéere A € R™*™ is the measurement matrixThe objective
reconstruction algorithms based on Gaussian approximgtidés to recoverz from (z, A). Although the system of equations
of belief propagation (BP). BP is a graphical model-basddrmed is underdetermined, the signal is still recoverable
estimation algorithm widely used in machine learning angbme favorable assumptions about the structure ahd A
channel coding[10],[T11] that has also received significante made. Generally, in CS the common assumption is that the
recent attention in compressed sensing [12]. Although texatgnal is exactly or approximately sparse in some orthoabrm
implementation of BP for dense measurement matrices biasis?, i.e., there is a vectar = ¥~z € R™ with most of its
generally computationally difficult, Gaussian approxiibas elements equal or close to zero. Additionally, for certaiarg
of BP have been effective in a range of applications [13]}-[18&ntees on the recoverability of the signal to hold, the matri
We consider a recently developed Gaussian-approximated BBst satisfy theestricted isometry propert{RIP) [21]. Some
algorithm, calledelaxed belief propagatiofil6], [19], that ex- families of random matrices, like appropriately-dimemsid
tends earlier method5[115], [18] to nonlinear output chémnematrices with i.i.d. Gaussian elements, have been denatedtr
This material is based upon work supported by the NationaérBe to satisfy the RIP with high prOb.ablllty' .
Foundation under Grant No. 0729069 and by the DARPA InPharpro A common method for recovering the signal from the mea-
through the US Army Research Office award W911-NF-10-1-0404 surements is basis pursuit. This involves solving the Vuaithg
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optimization problem: distributed i.i.d. according t@x(x;). Then we can construct
the following conditional probability distribution oveandom

. -1 . o
min ||z, - subject toz = Az, (@) vectorx given the measuremengs
where || - ||o, is the ¢;-norm of the signal. Although it is Lo m
possible to solve basis pursuit in polynomial time by cagtin pxly (2 |y) == pr (24) H Pylz (Ya | Za) s (5)
it as a linear program (LP)_[22], its complexity has motivhte Z i=1 a=1

researchers to look for even cheaper alternatives like nouse where Z is the normalization constant and — (Az),. By

- i i D B
recently pr_oposed lterative methofisl[12]. [10]’. [17].1i434]. marginalizing this distribution it is possible to estimatach
Moreover, in real applications CS reconstruction schemstmu . S .
Although direct marginalization ofy (z | %) is compu-

be able to mitigate imperfect measurements, due to noise’4f . . . ” :
limited precision [3], [5], [6]. tationally |ntragtable ln practice, we app_roxmate maajpn
through BP [[12], [[16], [[17]. BP is an iterative algorithm
B. Scalar Quantization commonly used for decoding of LDPC codés|[11]. We apply
A quantizer is a function that discretizes its input by pelBP by constructing a b|part|te_factor gragh = (V. F, E)
forming a mapping from a continuous set to some discrete s&P™ () and passing the following messages along the edges

More specifically, consideN-point regular scalar quantizerE of the graph:

Q, defined by its output level§ = {¢;;i = 1,2, ..., N}, t+1 (. _ At _

decision boundarie$(b;_1,b;) C R;i =1,2,..., N}, and Pissa (T1) o P (xz)lgpb_’i (), ©
a mappinge; = Q(s) whens € [b;—1,b;) [25]. Additionally

define the inverse image of the output levglunderQ as a Pl () o /py|z (Ya | 2a) sz-%a (w;) dx,  (7)
cell Q7 1(¢;) = [bi—1,b;). Fori =1, if by = —co we replace j#i

the closed intervalbo, b1) by an open intervalbo, by). where o« means that the distribution is to be normalized so

Typically quantizers are optimized by selecting deCiSio{hat it has unit integral and integration is over all the etahs
boundaries and output levels in order to minimize the dis;

. . . Bt = exceptz;. We refer to message®; .a}(;,a)cp as vari-
m El
tortion between the random vectsre R™ and |'_[s guantized able updates and to messadgs ..} ; .,z as measurement
representatios = Q(s). For example, for a given vecter ’

. : . L updates. We initialize BP by setting' ., (z;) = px(z:)-
gcr;l(\j/i:\r;:]e MSE distortion metric, optimization is performed by Earlier works on BP reconstruction have shown that it

& ) 5 is asymptotically MSE optimal under certain verifiable con-
Q" = argémnE{HS_ Q(S)”éz}’ (3) ditions. These conditions involve simple single-dimensio
S recursive equations callestate evolution (SEwhich predicts
where minimization is done over alV-level regular scalar hat Bp is optimal when the corresponding SE admits a unique
quantizers. One standard way of optimizifigs via theLloyd fixeq point [15], [20]. Nonetheless, direct implementatioin
algorithm, which iteratively updates the decision boundarigsp s still irﬁprac}ical due to the dense structuredfwhich
and output levels by applying necessary conditions for quafplies that the algorithm must compute the marginal of
tizer optimality [25]. o _ a high-dimensional distribution at each measurement node.
However, for the CS framework finding the quantizer thafiowever, as mentioned in Sectiéh |, BP can be simplified
minimizes MSE between ands is not necessarily equivalentinrough various Gaussian approximations, including rie
to minimizing MSE between the sparse vectorand its |axed BPmethod [15], [15] anchpproximate message passing
_CS reconstruction f_rom guantized measurem@n(BJ._Thls (AMP) [17], [19]. Recent theoretical work and extensive
is due to the nonlinear effect added by any particular Ggymerical experiments have demonstrated that, in the dase o
reconstruction function. Hence, instead of solviag (3)isit certain large random measurement matrices, the errorperfo

more interesting to solve mance of both relaxed BP and AMP can also be accurately
. . o2 predicted by SE. Hence the optimal quantizers can be olataine
@7 = argmin & {”x x”b} ’ ) in parallel for both of the methods, however in this paper we

where minimization is performed over alV-level reqular concentrate on design for relaxed BP, while keeping in mind
P 9 that identical work can be done for AMP as well.

scalar quantizers aridis obtained through a CS reconstruction N . : N
Due to space limitations, in this paper we will limit our

met::g?,\,lcl,l:ﬁ relaxed BP or AMP. This is the approach tal(e|c|;]resentation of relaxed BP and SE equations to the setting in

Figure[1. See[[16] for more general and detailed analysis.

C. Relaxed Belief Propagation

Consider the problem of estimating a random vectoe IIl. QUANTIZED RELAXED BP

R™ from noisy measurementg € R™, where the noise is Consider the CS setting in Figuré 1, where without loss of
described by a measurement chammgl (v, | z.), which acts generality we assumed thadt = I,,. The vectorx € R" is
identically on each measuremeny of the vectorz obtained measured through the random matAxto result inz € R™,
via (@). Moreover suppose that elements in the vest@re which is further perturbed by some additive white Gaussian



x€R” z € R™ XeR"
 ——

A Q(.) -~ RBP

neR™

Fig. 1: Compressive sensing set up with quantization of
noisy measuremenis The vectorz denotes noiseless random’”

measurements.

noise (AWGN). The resulting vectar can be written as

s=z+n=Ax+r, (8)

where{n,} are i.i.d. random variables distributed &0, o%).
These noisy measurements are then quantized byvttevel
scalar quantizer) to give the CS measuremengs € R™.

The relaxed BP algorithm is used to estimate the signal

from the corrupted measuremegtsgiven the matrixA, noise
variances? > 0, and the quantizer mappin@. Note that
under this model each quantized measuremgnindicates

that s, € Q~(y,), hence our measurement channel can ¥ the random variable ~ N (2,

characterized as
Py|z (ya | Za) = / ¢ (t — Ra 02) dt,
Q- (ya)

fora=1,2,...,

)

m and wherep(-) is Gaussian function

t2
exp <_5) .

o) (tv V) = (10)

1
V2w

Relaxed BP can be implemented by replacing probability

of the prior px(z;). The nonlinear functiongi, and &, are
the conditional mean and variance

Fin(q,v) =E{x[q=4},

gin (q7 ) :V&I‘{X | q= Q}v
hereq = x + v, x ~ px (z;), andv ~ N (0,v). Note that
these functions admit closed-form expressions and catyeasi

be evaluated for the given values @fand v. Similarly, the
functions D; and D, can be computed via

(16)
(17)

Dy (y,2,v) = % (2 — Fout(y, 2,v)), (18)
Ds (y,2,v) = % (1 — M) , (19)

where the functiongy,: and&,y: are the conditional mean and
variance

FOUt(ya'évV)EE{Z|Z€Q_1(y)}a (20)
Eout(y, 2,v) =var{z |z2€ Q7" (1)}, (21)
v). These functions admit
closed-form expressions in terms aff (z) = % I e~ dt.

IV. STATE EVOLUTION FOR RELAXED BP

The equations[(11)E(1L5) are easy to implement, however
they provide us no insight into the performance of the algo-
rithm. The goal of SE equations is to describe the asymptotic
behavior of relaxed BP under large measurement matrices. Th
SE for our setting in Figurgl 1 is given by the recursion

= &n (Eout (B, 0%)), (22)

7S]

densities in[(B) and{7) by two scalar parameters each, which

can be computed according to the following rules:

t
[i‘t-’_l = En Zb;ﬁa Abiub%i 1 (11)
e Zb;ﬁa ApTi Zb;ﬁa ApTi
t
A1 a Zb;&a Apiuy,_,; 1 (12)
e Zb;ﬁa AL Zb;ﬁa AT
ufz*n' =-D Ya, Z Aa] j—ar Z Aig A]t%a ’
JFi Jj#i
(13)
=Dy | Yo, 3 Aajdl 0, Y AL, +07 ], (14)

JFi JFi

whereo? is the variance of the components. Additionally,
at each iteration we estimate the signal via

At+1 F (Z;ﬂ 1 Ablub—n 1 > (15)
i Zb 1 Angb—n Zb 1 Al271 To—i
foreachi =1,2, ..., n.

We refer to messagest; sa, Ti—a }(i,a)cr @S variable up-

wheret > 0 is the iteration number3 = n/m is a fixed
number denoting the measurement ratio, ahds the variance
of the AWGN components which is also fixed. We initialize
the recursion by settingy = 7init, Wwheresini; is the variance
of x; according to the priopx (z;). We define the functioi,
as

&n (v) =E{&n (¢ v)},

where the expectation is taken over the scalar random Variab
q = x+v, with x ~ px(z;), andv ~ N(0,v). Similarly, the
function &, is defined as

(23)

1
E{Ds (y,2,v+0%)}’
where D- is given by [I9) and the expectation is taken over
Pylz(Ya | 2a) @and(z,z) ~ N(0, P.(v)), with the covariance
matrix .
Binit

Binit
P, (v) = N . .
= () ( BTinit — v BTinit — v
One of the main results af [16], which we present below for
completeness, was to demonstrate the convergence of tive err

performance of the relaxed BP algorithm to the SE equations
under large sparse measurement matrices. Denoté $ym

Eout (1/, 02) = (24)

(25)

dates and to messag€s,—,, raﬂ-}(m)eE as measurementthe number of nonzero elements per colummotn the large

updates. The algorithm is initialized by setting ,, = Zinit
and??,

sparse limit analysis, first let — oo with m = gn and

. = Tinit WhereZiny andin; are the mean and variancekeepingd fixed. This enables the local-tree properties of the



factor graphG. Then letd — oo, which will enable the use R, = 1 bits/component
of a central limit theorem approximation.

e Optimal RBP
Theorem 1. Consider the relaxed BP algorithm under the I e Uniform RBP ||
large sparse limit model above with transform matrixand

index i satisfying the Assumption 1 df [16] for some fixed
iteration numbert. Then the error variances satisfy the limit

2le o @ o 0 © 0 @ o 0 0 o ¢ o o

Quantizer

lim lim IE{|X1 —XHZ} = Iy, (26)

d— o0 n—>00

wherer; is the output of the SE equatidn {22). 1r ¢ e00000000000 0 o

Proof: See [16]. ]
Another important result regarding SE recursion[in] (22) is
that it admits at least one fixed point. It has been showed that ‘

ast — oo the recursion decreases monotonically to its largest -5 0 _ 5
fixed point and if the SE admits a unique fixed point, then Quantizer Boundaries
relaxed BP IS asymp;oucally mean-square op_t|ma [16]. Fig. 2: Optimized quantizer boundaries forbits/component
Although in practice measurement matrices are rare(I% . : : - .
? . . . x. Optimal quantizer is found by optimizing quantizer
sparse, simulations show that SE predicts well the beha¥ior . . -
I .~ boundaries for each and then picking the result with smallest
relaxed BP. Moreover, recently more sophisticated tealasq distortion
were used to demonstrate the convergence of approxima&e
message passing algorithms to SE under large i.i.d. Gaussia

matrices [[18], [[18]. assumep = 0.1. We form the measurement matrik from
V. OPTIMAL QUANTIZATION i.i.d. Gaussian random variables, i.é,; ~ N(0,1/m); and

We now return to the problem of designing MSE-optimal/€ assume that AWGN with varianee? = 10~ perturbs
quantizers under relaxed BP presentedln (4). By modeliag tiéasurements before quantization.
quantizer as part of the channel and working out the regultin Now, we can formulate the SE equatiénl(22) and perform
equations for relaxed BP and SE, we can make use of tRiimization [27). We compare two CS-optimized quantizers

convergence results to recast our optimization problem to Uniform and Optimal We fix boundary pointshy = —oo
andby = +oo, and compute the former quantizer through
QSE= arngin {tli)rgo Dt} ) (27)  optimization of type[(B). In particular, by applying the te

S limit theorem we approximate elementsof s to be Gaussian
where minimization is done over alV-level regular scalar and determine th&iniform quantizer by solving[{3), but with
quantizers. In practice, about 10 to 20 iterations are seffic an additional constraint of equally-spaced output levéts.
to reach the fixed point of;. Then by applying Theorefd 1, wedetermine Optimal quantizer, we perform[{27) by using a
know that the asymptotic performance@f will be identical standard SQP optimization algorithm for nonlinear cortimsi
to that of @QSE. It is important to note that the SE recursiorpptimization.
the fact that SE is independent of actual output levels apg; the given bit rateRR, over the components of the input
change in the recursion (sek{21)). Although closed-forgy . — R, where = n/m is the measurement ratio.
expressions for the derivatives of for larget's are difficult 1o getermine the optimal quantizer for the given rdte
to obtain, we can approximate them by using finite differengge perform optimization for ali3s and return the quantizer
methods. Finally, the recursion itself is fast to evaluateich \yith the least MSE. As we can see, in comparison with
makes the scheme i {27) practically realizable under st@hdihe yniform quantizer obtained by merely minimizing the
optimization methods like sequential quadratic prograngmi gistortion between the quantizer input and output, the one
(SQP). obtained via SE minimization is very different; in fact, dioks

VI. EXPERIMENTAL RESULTS more concentrated around zero. This is due to the fact that by

We now present experimental validation for our resultd i#Ng SE we are in fact searching for quantizers that

Assume that the signal is generated with i.i.d. elements fromasymptotlcally minimize the MSE qf the relaxeql BP recon-
C o struction by taking into consideration the nonlinear effec
the Gauss-Bernoulli distribution

i - due to the method. The trend of having more quantizer points
X; ~ { N(0,1/p), with probability p; (28) near zero is opposite to the trend shownlin [8] for quantizers
0, with probability 1 — p, optimized for LASSO reconstruction.
wherep is the sparsity ratio that represents the average fractionFigure[3 presents a comparison of reconstruction distustio
of nonzero components &. In the following experiments we for our two quantizers and confirms the advantage of using
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—— Optimal RBP
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Fig. 3: Performance comparison of relaxed BP with othes]

sparse estimation methods.

El

guantizers optimized vid (22). To obtain the results we vaBf]

the quantization rate from to 2 bits per component ok,

[11]

and for each quantization rate, we optimize quantizersgusin

the methods discussed above. For comparison, the figure also 981105-34TM, Bell Laboratories, Lucent Technologies, NIS98.
2] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesiamm@ssive

plots the MSE performance for two other reconstruction met

ods: linear MMSE estimation and the widely-used LASSO

method [9], both assuming a bounded uniform quantizer. TH8]
LASSO performance was predicted by state evolution equa-
tions in [19], with the thresholding parameter optimized b4

the iterative approach in [26]. It can be seen that the pregos
relaxed BP algorithm offers dramatically better perforecer-

15]

more thatl0 dB improvement at low rates. At higher rates, the

gap is slightly smaller since relaxed BP performance stdara
due to the AWGN at the quantizer input. Similarly we can sd¥

that the MSE of the quantizer optimized for the relaxed BP
reconstruction is much smaller than the MSE of the standdtd]

one, with more than 4 dB difference for many rates.

VII. CONCLUSIONS

We present relaxed belief propagation as an efficient al
rithm for compressive sensing reconstruction from the gqual

(18]

o

tized measurements. We integrate ideas from recent genejzal

ization of the algorithm for arbitrary measurement chasnel

to design a method for determining optimal quantizers unq%]

relaxed BP reconstruction. Although computationally denp

experimental results show that under quantized measutemé#?]
relaxed BP offers significantly improved performance ovar t 23]

ditional reconstruction schemes. Additionally, perfonoa of
the algorithm is further improved by using the state evoluti

framework to optimize the quantizers.

24]

[25]

[26]
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