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Abstract—We consider correlated and distributed sources with-
out cooperation at the encoder. For these sources, we derive the
best achievable performance in the rate-distortion sense of any
distributed compressed sensing scheme, under the constraint of
high–rate quantization. Moreover, under this model we derive
a closed–form expression of the rate gain achieved by taking
into account the correlation of the sources at the receiver and
a closed–form expression of the average performance of the
oracle receiver for independent and joint reconstruction. Finally,
we show experimentally that the exploitation of the correlation
between the sources performs close to optimal and that the
only penalty is due to the missing knowledge of the sparsity
support as in (non distributed) compressed sensing. Even if the
derivation is performed in the large system regime, where signal
and system parameters tend to infinity, numerical results show
that the equations match simulations for parameter values of
practical interest.

Index Terms—Compressed sensing, rate–distortion function,
distributed source coding, Slepian–Wolf coding.

I. INTRODUCTION

D ISTRIBUTED sources naturally arise in wireless sensor
networks, where sensors may acquire over time several

readings of the same natural quantity, e.g., temperature, in
different points of the same environment. Such data must be
transmitted to a fusion center for further processing. However,
since radio access is the most energy–consuming operation in
a wireless sensor network, data transmission among sensors
needs to be minimized in order to maximize sensors’ battery
life. This calls for lossy compression techniques to find a
cost–constrained representation in order to exploit data redun-
dancies. In particular, following the example above, sensor
readings may vary slowly over time, and hence consecutive
readings have similar values, because of the slow variation of
the underlying physical phenomenon. Moreover, inter–sensor
correlations also exist, as the sensors may be located in the
same environment, in which the temperature is rather uniform,
leading to compressibility of each single signal and of the set
of signals as an ensemble. The question hence arises of how
to exploit such correlations in a distributed way, i.e., without
communication among the sensors, and employing a low–
complexity signal representation in order to minimize energy
consumption.
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In this framework, compressed sensing (CS) [1], [2] has
emerged in past years as an efficient technique for sensing a
signal with fewer coefficients than dictated by classic Shan-
non/Nyquist theory. The hypothesis underlying this approach
is that the signal to be sensed must have a sparse – or at least
compressible – representation in a convenient basis. In CS,
sensing is performed by taking a number of linear projections
of the signal onto pseudorandom sequences. Therefore, the
acquisition presents appealing properties. For example, it has
low encoding complexity, since no sorting of the sparse signal
coefficients is required. Moreover, the choice of the sensing
matrix is blind to the source distribution.

Using CS as signal representation requires to cast the
representation/coding problem in a rate–distortion (RD) frame-
work, particularly regarding the rate necessary to encode the
measurements. For single sources, this problem has been
addressed by several authors. In [3], a RD analysis of CS
reconstruction from quantized measurements was performed,
when the observed signal is sparse. Instead, [4] considered the
RD behavior of strictly sparse or compressible memoryless
sources in their own domain. [5], [6] considered the cost of
encoding the random measurements for single sources. More
precisely, RD analysis was performed and it was shown that
adaptive encoding, taking into account the source distribution,
outperforms scalar quantization of random measurements at
the cost of higher computational complexity. However, in the
distributed context, adaptive encoding may loose the inter-
correlation between the sources since it is adapted to the
distribution of each single source or even the realization of
each source.

On the other hand, the distributed case is more sophisticated.
Not only one needs to encode a source, but also to design a
scheme capable of exploiting the correlation among different
sources. Therefore, distributed CS (DCS) was proposed in [7]
and further analyzed in [8]. In those papers, an architecture
for separate acquisition and joint reconstruction was defined,
along with three different joint sparsity models (which where
merged into a single formulation in the latter paper). For each
model, necessary conditions were posed on the number of
measurement to be taken on each source to ensure perfect
reconstruction. An analogy between DCS and Slepian–Wolf
distributed source coding was depicted, in terms of the neces-
sary conditions about the number of measurements, depending
on the sparsity degree of sources, and the necessary conditions
on encoding rate, depending on conditional and joint entropy,
typical of Slepian–Wolf theory. Moreover, it was shown that
a distributed system based on CS could save up to 30% of
measurements with respect to separate CS encoding/decoding
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of each source. On the other hand, [7] extended CS in the
acquisition part, but, like CS [1], [2], was mainly concerned
with the performance of perfect reconstruction, and did not
consider the representation/coding problem, which is one of
the main issues of a practical scheme and a critical aspect of
CS.

In [9], we proposed a DCS scheme that takes into account
the encoding cost, exploits both inter- and intra–correlations,
and has low complexity. The main idea was to exploit the
knowledge of side information (SI) not only as a way to
reduce the encoding rate, but also in order to improve the
reconstruction quality, as is common in the Wyner–Ziv context
[10]. The proposed architecture applies the same Gaussian
random matrix to information and SI sources, then quantizes
and encodes the measurements with a SW source code.

In this paper, we study analytically the best achievable RD
performance of any single–source and distributed CS scheme,
under the constraint of high–rate quantization, providing sim-
ulation results that perfectly match the theoretical analysis.
In particular, we provide the following contributions. First,
we derive the asymptotic (in the rate and in the number of
measurements) distribution of the measurement vector. Even
if the analysis is asymptotic, we show that the convergence to a
Gaussian distribution occurs with parameter values of practical
interest. Moreover, we provide an analytical expression of
the rate gain obtained exploiting inter–source correlation at
the decoder. Second, we provide a closed–form expression
of the average reconstruction error using the oracle receiver,
improving the results existing in literature, consisting only
in bounds hardly comparable to the results of numerical
simulations [11], [12]. The proof relies on recent results on
random matrix theory [13]. Third, we provide a closed–form
expression of the rate gain due to joint reconstruction from
the measurements of multiple sources. We compare the results
obtained by theory both with the ideal oracle receiver and
with a practical algorithm [9], showing that the penalty with
respect to the ideal receiver is due to the lack of knowledge of
the sparsity support in the reconstruction algorithm. Despite
this penalty, the theoretically–derived rate gain matches that
obtained applying distributed source coding followed by joint
reconstruction to a practical reconstruction scheme. With re-
spect to [7], [8], we use information theoretic tools to provide
an analytical characterization of the performance of CS and
DCS, for a given number of measurements and set of system
parameters.

This paper is organized as follows. Some background in-
formation about source coding with side information at the
decoder and CS is given in section II. Novel analytical results
are presented in sections III and IV. These results are validated
via numerical simulations that are presented in section V.
Finally, concluding remarks are given in section VI.

II. BACKGROUND

A. Notation and definitions

We denote (column-) vectors and matrices by lowercase
and uppercase boldface characters, respectively. The (m,n)-th
element of a matrix A is (A)m,n. The m-th row of matrix A

is (A)m. The n-th element of column vector v is (v)n. The
transpose of a matrix A is AT.

The notation ‖v‖0 denotes the number of nonzero elements
of vector v. The notation ‖v‖1 denotes the `1-norm of the
vector v and is defined as ‖v‖1 ,

∑
i |(v)i| . The notation

‖v‖2 denotes the Euclidean norm of the vector v and is

defined as ‖v‖2 ,
√∑

i |(v)i|2 . The notation A ∼ N (µ, σ2)
means that the random variable A is Gaussian distributed, its
mean is µ, and its variance is σ2. Additional notation will be
defined throughout the paper where appropriate.

B. Source Coding with Side Information at the decoder

Source Coding with SI at the decoder refers to the problem
of compressing a source X when another source Y , correlated
to X , is available at the decoder only. It is a special case of
distributed source coding, where the two sources have to be
compressed without any cooperation at the encoder.

For lossless compression, if X is compressed without
knowledge of Y at its conditional entropy, i.e., RX >
H(X|Y ), it can be recovered with vanishing error rate ex-
ploiting Y as SI. This represents the asymmetric setup, where
source Y is compressed in a lossless way (RY > H(Y )) or
otherwise known at the decoder. Therefore, the lack of SI at
the encoder does not incur any compression loss with respect
to joint encoding, as the total rate required by DSC is equal to
H(Y )+H(X|Y ) = H(X,Y ). The result holds for i.i.d. finite
sources X and Y [14] but also for ergodic discrete sources
[15], or when X is i.i.d. finite, Y is i.i.d. continuous and is
available at the decoder [16, Proposition 19].

For lossy compression of i.i.d sources, [17] shows that
the lack of SI at the encoder incurs a loss except for some
distributions (Gaussian sources, or more generally Gaussian
correlation noise). Interestingly, [16] shows that uniform scalar
quantization followed by lossless compression incurs a sub-
optimality of 1.53 dB, in the high–rate regime. Therefore,
practical solutions (see for example [18]) compress and de-
compress the data relying on an inner lossless distributed
codec, usually referred to as Slepian–Wolf Code (SWC), and
an outer quantization–plus–reconstruction filter.

C. Compressed Sensing

In the standard CS framework, introduced in [1], [2], a
signal x ∈ RN×1 which has a sparse representation in some
basis Ψ ∈ RN×N , i.e.:

x = Ψθ, ‖θ‖0 = K, K � N

can be recovered by a smaller vector of linear measurements
y = Φx, y ∈ RM×1 and K < M < N , where Φ ∈ RM×N
is the sensing matrix. The optimum solution, requiring at least
M = 2K measurements, would be

θ̂ = arg min
θ
‖θ‖0 s.t. ΦΨθ = y .

Since the `0 norm minimization is an NP-hard problem,
one can resort to a linear programming reconstruction by
minimizing the `1 norm

θ̂ = arg min
θ
‖θ‖1 s.t. ΦΨθ = y (1)
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and x̂ = Ψθ̂, provided that M = O(K log(N/K)) [2].
When the measurements are noisy, i.e. when y = Φx + e,

where e ∈ RM×1 is the vector representing additive noise such
that ‖e‖2 < ε, `1 minimization with inequality constraints is
used for reconstruction:

θ̂ = arg min
θ
‖θ‖1 s.t. ‖ΦΨθ − y‖2 < ε (2)

and x̂ = Ψθ̂, known as Basis Pursuit DeNoising (BPDN),
provided that M = O(K log(N/K)) and that each submatrix
consisting of K columns of ΦΨ is (almost) distance preserv-
ing [19, Definition 1.3]. The latter condition is the Restricted
Isometry Property (RIP). Formally, the matrix ΦΨ satisfies
the RIP of order K if ∃δK ∈ (0, 1] such that, for any θ with
‖θ‖0 ≤ K:

(1− δK) ‖θ‖22 ≤ ‖ΦΨθ‖22 ≤ (1 + δK) ‖θ‖22 , (3)

where δK is the RIP constant of order K. It has been shown
in [20] that when Φ is an i.i.d. random matrix drawn from
any subgaussian distribution and Ψ is an orthogonal matrix,
ΦΨ satisfies the RIP with overwhelming probability.

III. RATE–DISTORTION FUNCTIONS OF
SINGLE–SOURCE COMPRESSED SENSING

In this section, we derive the best achievable performance
in the RD sense over all CS schemes, under the constraint of
high–rate quantization. The novel result about the distribution
of the measurements derived in Theorem 4 allows to write a
closed–form expression of the RD functions of the measure-
ment vectors. In Theorem 5, we derive a novel closed–form
expression of the average reconstruction error of the oracle
receiver, which will use the results from Theorem 4 to present
the RD functions of the reconstruction.

A. System Model

Definition 1. (Sparse vector). The vector x ∈ RN is said to
be (K,N, σ2

θ ,Ψ)-sparse if x is sparse in the domain defined
by the orthogonal matrix Ψ ∈ RN×N , namely: x = Ψθ, with
‖θ‖0 = K, and if the nonzero components of θ are modeled
as i.i.d. centered random variables with variance σ2

θ <∞. Ψ
is independent of θ.

The sparse x vector is observed through a smaller vector of
Gaussian measurements defined as

Definition 2. (Gaussian measurement). The vector y is called
the (M,N, σ2

Φ,Φ)-Gaussian measurement of x ∈ RN , if y =
1√
M

Φx, where the sensing matrix Φ ∈ RM×N , with M < N ,
is a random matrix1 with i.i.d. entries drawn from N (0, σ2

Φ)
with σ2

Φ <∞.

We denote as yq the quantized version of y. To analyze
the RD tradeoff, we consider the large system regime defined
below.

1This definition complies with the usual form y = Φx where the variance
σ2

Φ of the elements of Φ depends on M . Here, we wanted to keep σ2
Φ

independent of system parameters.

Definition 3. (Large system regime, overmeasuring and spar-
sity rates). Let x be (K,N, σ2

θ ,Ψ)-sparse. Let y be the
(M,N, σ2

Φ,Φ)-Gaussian measurement of x. The system is said
to be in the large system regime if N goes to infinity, K and
M are functions of N and tend to infinity as N does, under the
constraint that the rates K/N and M/K converge to constants
called sparsity rate (γ) and overmeasuring rate (µ) i.e.:

lim
N→+∞

K

N
= γ, lim

N→+∞

M

K
= µ > 1 (4)

The sparsity rate is a property of the signal. Instead, the
overmeasuring rate is the ratio of the number of measurements
to the number of non zero components and is therefore a
property of the system [3].

B. Rate–distortion functions of measurement vector

The information RD function of an i.i.d. source X defines
the minimum amount of information per source symbol R
needed to describe the source under the distortion constraint
D. For an i.i.d. Gaussian source X ∼ N (0, σ2

x), choosing as
distortion metric the squared error between the source and its
representation on R bits per symbol, the distortion satisfies

Dx(R) = σ2
x2−2R. (5)

Interestingly, the operational RD function of the same Gaus-
sian source, with uniform scalar quantizer and entropy coding
satisifies, in the high–rate regime:

lim
R→+∞

1

σ2
x

22RDEC
x (R) =

πe

6
(6)

where EC stands for entropy–constrained scalar quantizer.
This leads to a 1.53 dB gap between the information and the
operational RD curves. (6) can be easily extended to other
types of quantization adapting the factor πe

6 to the specific
quantization scheme.

Theorem 4. (CS: Asymptotic distribution of Gaussian
measurements and measurement RD function). Let x be
(K,N, σ2

θ ,Ψ)-sparse. Let y be the (M,N, σ2
Φ,Φ)-Gaussian

measurement of x, s.t. K < M < N . Consider the large
system regime with finite sparsity rate γ = limN→∞

K
N and

finite overmeasuring rate µ = limN→∞
M
K > 1.

The Gaussian measurement converges in distribution to an
i.i.d. Gaussian, centered random sequence with variance

σ2
y =

1

µ
σ2

Φσ
2
θ . (7)

Therefore, the information RD function satisifies

lim
N→+∞

1

σ2
y

22RDy(R) = 1, (8)

where R is the encoding rate per measurement sample, and
the entropy–constrained scalar quantizer achieves a distortion
DEC
y1 that satisfies

lim
R→+∞

lim
N→+∞

1

σ2
y

22RDEC
y (R) =

πe

6
. (9)

Sketch of proof. The distribution of the Gaussian matrix Φ
is invariant under orthogonal transformation. Thus, we obtain



IEEE TRANSACTIONS ON COMMUNICATIONS 4

y = 1√
M

ΦΨθ = 1√
M

Uθ, where U is an i.i.d. Gaussian
matrix with variance σ2

Φ. Then, we consider a finite length
subvector y(m) of y. From the multidimensional Central
Limit theorem (CLT) [21, Theorem 7.18], y(m) converges
to a Gaussian centered vector with independent components.
Then, as m → ∞, the sequence of Gaussian measurements
converges to an i.i.d. Gaussian sequence. See Appendix A for
the complete proof. �

Theorem 4 generalizes [3, Theorem 2], which derives the
marginal distribution of the measurements, when the observed
signal is directly sparse. Instead, we derive the joint distri-
bution of the measurements and consider transformed sparse
signals.

We stress the fact that, even if the RD curves for measure-
ment vectors do not have any “practical” direct use, they are
required to derive the RD curves for the reconstruction of the
sources, which can be found later in this section.

C. Rate–distortion functions of the reconstruction

We now evaluate the performance of CS reconstruction with
quantized measurements. The performance depends on the
amount of noise affecting the measurements. In particular, the
distortion ‖x̂− x‖22 is upper bounded by the noise variance
up to a scaling factor [22], [23].

‖x̂− x‖22 ≤ c
2ε2 , (10)

where the constant c depends on the realization of the measure-
ment matrix, since it is a function of the RIP constant. Since
we consider the average2 performance, we need to consider
the worst case c and this upper bound will be very loose [19,
Theorem 1.9].

Here, we consider the oracle estimator, which is the esti-
mator knowing exactly the sparsity support Ω = {i|θi 6= 0} of
the signal x. For the oracle estimator, upper and lower bounds
depending on the RIP constant can be found, for example in
[11] when the noise affecting the measurements is white and
in [12] when the noise is correlated. Unlike [11], [12], in this
paper the average performance of the oracle, depending on
system parameters only, is derived exactly.

As we will show in the following sections, the charac-
terization of the ideal oracle estimator allows to derive the
reconstruction RD functions with results holding also when
non ideal estimators are used.

Theorem 5. (CS: Reconstruction RD functions). Let x be
(K,N, σ2

θ ,Ψ)-sparse. Let y be the (M,N, σ2
Φ,Φ)-Gaussian

measurement of x, s.t. K + 3 < M < N . Consider the large
system regime with finite sparsity rate γ = limN→∞

K
N and

finite overmeasuring rate µ = limN→∞
M
K > 1. R denotes

the encoding rate per measurement sample.
Assume reconstruction by the oracle estimator, when the
support Ω of x is available at the receiver. The operational RD
function of any CS reconstruction algorithm is lower bounded

2The average performance is obtained averaging over all random variables
i.e. the measurement matrix, the non-zero components θ and noise, as for
example in [12].

by that of the oracle estimator that satisfies

DCS
x (R) ≥ Doracle

x (R) = γ
µ

µ− 1

1

σ2
Φ

Dy(R) =
γ

µ− 1
σ2
θ2−2R.

(11)
Similarly, the entropy-constrained RD function satisfies in the
high-rate regime

DEC−CS
x (R) ≥ DEC oracle

x (R) =
γ

µ− 1
σ2
θ

πe

6
2−2R. (12)

Sketch of proof. We use a novel result about the expected
value of a matrix following a generalized inverse Wishart
distribution [13, Theorem 2.1]. This result can be applied
to the distortion of the oracle estimator for finite–length
signals, depending on the expected value of the pseudo inverse
of Wishart matrix [24]. The key consequence is that the
distortion of the oracle only depends on the variance of the
quantization noise and not on its covariance matrix. Therefore,
our result holds even if the noise is correlated (for instance
if vector quantization is used). Hence, this result applies to
any quantization algorithm. This result improves those in
[11, Theorem 4.1] and [12], where upper and lower bounds
depending on the RIP constant of the sensing matrix are given,
and it also generalizes [3, section III.C], where a lower bound
is derived whereas we derive the exact average performance.
See Appendix B for the complete proof. �

It must be noticed that the condition M > K + 3 is not
restrictive since in all cases of practical interest, M > 2K.

IV. RATE–DISTORTION FUNCTIONS OF
DISTRIBUTED COMPRESSED SENSING

In this section, we derive the best achievable performance
in the RD sense over all DCS schemes, under the constraint
of high–rate quantization. Note that [9] (see Fig. 1) is one
instance of such a scheme. Novel results about the distribution
of the measurements in the distributed case are presented in
Theorem 8. Hence, Theorem 9, will combine the results of
Theorem 8 and previous section to derive the RD functions of
the reconstruction in the distributed case.

A. Distributed System Model

Definition 6. (Correlated Sparse vectors).
J vectors xj ∈ RN×1, j ∈ {1, . . . , J} are said to be
({KI,j}Jj=1,KC, {Kj}Jj=1, N, σ

2
θC
, {σ2

θI,j
}Jj=1,Ψ) -sparse if:

i) Each vector xj = xC + xI,j is the sum of a common com-
ponent xC shared by all signals and an innovation component
xI,j , which is unique to each signal xj .
ii) Both xC and xI,j are sparse in the same domain defined
by the orthogonal matrix Ψ ∈ RN×N , namely: xC = ΨθC
and xI,j = ΨθI,j , with ‖θC‖0 = KC, ‖θI,j‖0 = KI,j and
KC,KI,j < N .
iii) The global sparsity of xj is Kj , with max {KC,KI,j} ≤
Kj ≤ KC +KI,j .
iv) The nonzero components of θC and θI,j are i.i.d. centered
random variables with variance σ2

θC
< ∞ and σ2

θI,j
< ∞,

respectively.

The correlation between the sources is modeled through a
common component and their difference through an individual
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Fig. 1. The Distributed Compressed Sensing scheme in [9]

innovation component. This is a good fit for signals acquired
by a group of sensors monitoring the same physical event
in different spacial positions, where local factors can affect
the innovation component of a more global behavior taken
into account by this common component. Note that the Joint
Sparsity Model-1 (JSM-1) [7] and the ensemble sparsity
model (ESM) in [8] are deterministic models. Instead, the
sparse model (Def. 6) is probabilistic, since we look for the
performance averaged over all possible realizations of the
sources.

Focusing without loss of generality on the case J = 2,
we assume that x1 and x2 are (KI,1,KI,2,KC,K1,K2, N,
σ2
θC
, σ2
θI,1
, σ2
θI,2
,Ψ)-sparse. x1 is the source to be compressed

whereas x2 serves as SI. y1 and y2 are the (M,N, σ2
Φ,Φ)-

Gaussian measurements of x1 and x2, and yq,j is the quan-
tized version of yj .

The large system regime becomes in the distributed case:

Definition 7. (Large system regime, sparsity andovermeasur-
ing rates, and overlaps).
Let the J vectors xj ∈ RN×1, ∀j ∈ {1, . . . , J} be
({KI,j}Jj=1,KC, {Kj}Jj=1, N, σ

2
θC
, {σ2

θI,j
}Jj=1,Ψ) -sparse. For

each j, let yj ∈ RM×1 be the (M,N, σ2
Φ,Φ)-Gaussian

measurement of xj . The system is said to be in the large system
regime if:
i) N goes to infinity.
ii) The other dimensions KI,j ,KC,Kj ,M are functions of N
and tend to infinity as N does.
iii) The following rate converges to a constant called sparsity
rate as N goes to infinity:

Kj

N
→ γj . (13)

iv) The following rate converges to a constant called over-
measuring rate as N goes to infinity:

M

Kj
→ µj > 1. (14)

v) All following rates converge to constants called overlaps of
the common and innovation components as N goes to infinity:

KC

Kj
→ ωC,j ,

KI,j

Kj
→ ωI,j . (15)

Note that max {ωC,j , ωI,j} ≤ 1 ≤ ωC,j + ωI,j ≤ 2.

B. Rate–distortion functions of measurement vector

The information RD function can also be derived for a
pair (X,Y ) ∼ N (0,Kxy) of i.i.d. jointly Gaussian distributed

random variables with covariance matrix

Kxy =

(
σ2
x ρxyσxσy

ρxyσxσy σ2
y

)
. (16)

Interestingly, when the SI is available at both encoder and
decoder or at the decoder only, the information RD function
is the same:

Dx|y(R) = σ2
x(1− ρ2

xy)2−2R = Dx(R+R∗), (17)

where R∗ = 1
2 log2

1
1−ρ2xy

≥ 0 is the rate gain, measuring
the amount of rate we save by using the side information Y
to decode X . This result holds for optimal vector quantizer
[17] but also for scalar uniform quantizers [16, Theorem 8
and Corollary 9] by replacing Dx in (17) by the entropy
constrained distortion function DEC

x (R), defined in (6).
To derive the RD curves for the reconstruction of the

sources, we first generalize Theorem 4 and derive the asymp-
totic distribution of pairs of measurements.

Theorem 8. (Distributed CS: Asymptotic distribution of the
pair of Gaussian measurements and measurement RD func-
tions). Let x1 and x2 be (KI,1,KI,2,KC,K1,K2, N, σ

2
θC
, σ2
θI,1
,

σ2
θI,2
,Ψ)-sparse. x2 serves as SI for x1 and is available at the

decoder, only. Let y1 and y2 be the (M,N, σ2
Φ,Φ)-Gaussian

measurements of x1 and x2. Let (Y1, Y2) be the pair of random
processes associated to the random vectors (y1,y2). In the
large system regime, (Y1, Y2) converges to an i.i.d. Gaussian
sequence with covariance matrix

K12 =

(
σ2
y1 ρ12σy1σy2

ρ12σy1σy2 σ2
y2

)
, (18)

σ2
yj =

σ2
Φ

µj

[
ωC,jσ

2
θC

+ ωI,jσ
2
θI,j

]
(19)

ρ12 =

[(
1 +

ωI,1

ωC,1

σ2
θI,1

σ2
θC

)(
1 +

ωI,2

ωC,2

σ2
θI,2

σ2
θC

)]− 1
2

. (20)

Let R be the encoding rate per measurement sample. When
the SI is not used, the information RD function satisifies

lim
N→+∞

1

σ2
y1

22RDy1(R) = 1, (21)

and the entropy–constrained scalar quantizer achieves a dis-
tortion DEC

y1 that satisfies

lim
R→+∞

lim
N→+∞

1

σ2
y1

22RDEC
y1 (R) =

πe

6
. (22)

When the measurement y2 of the SI is used at the decoder,
the information RD function satisifies

lim
N→+∞

1

σ2
y1

22(R+R∗)Dy1|y2(R) = 1 , (23)
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while the entropy–constrained scalar quantizer achieves a
distortion DEC

y1|y2 that satisfies

lim
R→+∞

lim
N→+∞

1

σ2
y1

22(R+R∗)DEC
y1|y2(R) =

πe

6
, (24)

where
R∗ =

1

2
log2

1

1− ρ2
12

. (25)

Therefore, in the large system regime (and in the high–
rate regime for entropy constrained scalar quantizer), the
measurement y2 of the SI helps reducing the rate by R∗ (25)
bits per measurement sample:

Dy1|y2(R) = Dy1(R+R∗). (26)

Sketch of proof. We consider a vector of finite length 2m,
which contains the first m components of y1 followed by the
first m components of y2. The vector can be seen as a sum
of three components, where each component converges to a
Gaussian vector from the multidimensional CLT [21, Theorem
7.18]. Finally, we obtain that (Y1, Y2) converges to an i.i.d.
Gaussian process. Therefore, classical RD results for i.i.d.
Gaussian sources apply. See Appendix C for the complete
proof. �

Theorem 8 first states that the measurements of two sparse
vectors converge to an i.i.d. Gaussian process in the large
system regime. Then, lossy compression of the measurements
is considered and the information and entropy constrained
rate distortion functions are derived. It is shown that if one
measurement vector is used as side information at the decoder,
some rate can be saved, depending on the sparse source
characteristics, only (see (25) and (20)).

C. Rate–distortion functions of the reconstruction

We now derive the RD functions after reconstruction of the
DCS scheme.

Theorem 9. (Distributed CS: Reconstruction RD functions).
Let x1 and x2 be (KI,1 ,KI,2,KC,K1,K2,N , σ2

θC
,σ2
θI,1

,σ2
θI,2

,Ψ)-
sparse. x2 serves as SI for x1 and is available at the
decoder, only. Let y1 and y2 be the (M,N, σ2

Φ,Φ)-Gaussian
measurements of x1 and x2, s.t. K1 + 3 < M < N . Let R be
the encoding rate per measurement sample. The distortion3 of
the source x1 is denoted as DIR

x1
when the SI is not available

at the receiver, DIR
x1|y2 when the measurements of the SI are

available at the SWC decoder (IR stands for independent
reconstruction), and DJR

x1|x2
when the SI is used not only to

reduce the encoding rate but also to improve the reconstruction
fidelity (JR stands for joint reconstruction).
Then, when independent reconstruction is performed, the RD
functions for x1 satisfy, in the large system regime:

DIR
x1

(R) ≥ DIR oracle
x1

(R) = γ1
µ1

µ1 − 1

1

σ2
Φ

Dy1(R), (27)

DIR
x1|y2(R) ≥ DIR oracle

x1|y2 (R) = γ1
µ1

µ1 − 1

1

σ2
Φ

Dy1|y2(R), (28)

3All the RD functions are operational referred to CS reconstruction algo-
rithms, so we omit the CS superscript not to overload the notation

Therefore, in the large system regime, the operational RD
functions satisfy

DIR
x1

(R) ≥ DIR oracle
x1

(R) = γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

µ1 − 1
2−2R,

(29)

DIR
x1|y2(R) ≥ DIR oracle

x1|y2 (R) = γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

µ1 − 1
2−2(R+R∗),

(30)

DIR
x1|y2(R) = DIR

x1
(R+R∗), (31)

where R∗ is defined in (25). In the large system regime and
in the high–rate regime, the entropy constrained RD functions
satisfy:

DIR EC
x1

(R) ≥ γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

µ1 − 1

πe

6
2−2R, (32)

DIR EC
x1|y2 (R) ≥ γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

µ1 − 1

πe

6
2−2(R+R∗). (33)

When joint reconstruction is performed, the RD functions
for x1 satisfy:

DJR
x1|x2

(R) ≥ DJR oracle
x1|x2

(R) = ωI,1γ1
µ1

µ1 − ωI,1

1

σ2
Φ

Dy1|y2(R),

(34)

where, in the large system regime,

DJR oracle
x1|x2

(R) = ωI,1γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

µ1 − ωI,1
2−2(R+R∗), (35)

and in the high rate regime

DJR EC oracle
x1|x2

(R) = ωI,1γ1

ωC,1σ
2
θC

+ ωI,1σ
2
θI,1

µ1 − ωI,1

πe

6
2−2(R+R∗).

(36)

Finally,

DJR
x1|x2

(R) ≥ DIR
x1

(R+R∗ +RJR), (37)

where RJR =
1

2
log2

[
1

ωI,1

µ1 − ωI,1

µ1 − 1

]
(38)

and where R∗ has been defined in (25). Therefore, when the
SI is available at the decoder, it helps reducing the rate by
R∗ +RJR bits per measurement sample.

Sketch of proof. An oracle is considered in order to derive
lower bounds. More precisely, it is assumed that the sparsity
support of x1 is known if independent reconstruction is
performed and that also the support of the common component
xC is known if joint reconstruction is performed. The exact
distortion of the oracles are derived, from which a closed–
form expression of the rate gains are given. See the complete
proof in Appendix D. �

As one would expect, when there is no innovation compo-
nent (ωI,j → 0), the distortion of the oracle is zero and the rate
gain RJR is largest (tends to infinity). On the contrary, when
there is no common component (ωI,j → 1), RJR tends to zero.
Moreover, even if the SI could be exploited also to enhance
the quality of the dequantization of the unknown source,
the gain due to Joint Dequantization becomes negligible in
the high–rate region [9]. For this reason we neglected Joint
Dequantization in this analysis.
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V. NUMERICAL RESULTS

In this section, we validate by simulations the results
obtained in the previous sections, comparing numerical results
to the derived equations. In particular, first we validate the
RD functions of the measurement vector, both in the single–
source and in the distributed case, hence validating at the
same time the rate gain R∗. Then, we validate the RD
functions of independent and joint reconstruction (hence the
rate gain RJR). Finally, we compare the results obtained using
the oracle estimator with the results obtained using practical
reconstruction algorithms, showing that the rate gains hold
also in a practical scenario. For each test, Ψ is the DCT
matrix, each non zero component of θ is drawn from a normal
distribution, and σ2

Φ = 1.
First, we test the validity of the RD functions derived for

the measurements. Fig. 2 plots the quantization distortion of
y1, i.e., E

[
1
M

∥∥y1 − yq,1
∥∥2

2

]
versus the rate R, measured in

bits per measurement sample (bpms). The distortion has been
averaged over 104 trials, and for each trial different realizations
of the sources, the sensing matrix and the noise have been
drawn. Fig. 2 shows two subfigures corresponding to different
sets of signal and system parameters (signal length N , sparsity
of the common component KC and of the innovation compo-
nent KI,j , variance of the nonzero components σ2

θC
and σ2

θI,j
,

respectively, and length of the measurement vector M ). Each
subfigure shows two families of curves, corresponding to the
cases in which y2 is (respectively, is not) used as SI. Each
family is composed by 3 curves. i) The curve labeled as (HR)
– standing for high rate – is the asymptote of the operational
RD curves (22) (or (24)). ii) The curve labeled as (Gauss.)
corresponds to the distortion of a synthetic correlated Gaussian
source pair with covariance matrix as in (18), where σ2

yj
is

defined in (19) and ρy1y2
in (20), and quantized with a uniform

scalar quantizer. The rate is computed as the symbol entropy
of the samples yq,1 (the conditional symbol entropy of yq,1
given y2), quantized with a uniform scalar quantizer. Entropy
and conditional entropy have been evaluated computing the
number of symbol occurrences over vectors of length 108.
iii) The curves labeled as (sim.) are the simulated RD for
a measurement vector pair obtained generating x1 and x2

according to Def. 6, measuring them with the same Φ to obtain
y1 and y2 and quantizing y1 and y2 with a uniform scalar
quantizer.

First, we notice that the (HR) equation perfectly matches
the simulated curves when R > 2, showing that the high–rate
regime occurs for relative small values of R. Then, it can be
noticed that (Gauss.) curves perfectly overlap the (sim.) ones,
validating both equations (19) and (20) and showing that the
convergence to the Gaussian case occurs for low values of N ,
M , KC , KI,j .

After validating the RD functions derived for the measure-
ments, we test the RD functions for the oracle reconstruction.
Fig. 3 depicts the performance of the complete DCS scheme,
in terms of reconstruction error, i.e., E

[
1
N ‖x̂1 − x1‖22

]
versus

the rate per measurement sample R. The figure shows two
subfigures corresponding to different sets of signal and system
parameters (N , KC, KI,j , σ2

θC
, σ2

θI,j
, M ). Each subfigure shows
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Fig. 2. Simulated vs. theoretical Rate–Distortion functions of measurement
vectors for two different sets of signal and system parameters. Single–source
and distributed cases.

three pairwise comparisons. First, it compares the RHS of
equation (32) (IR HR – standing for independent reconstruc-
tion high rate) with the oracle reconstruction distortion from
yq,1 vs. the symbol entropy of the samples yq,1 (IR sim. –
standing for independent reconstruction simulated), obtaining
a match for R > 2. Second, it compares the RHS of equation
(33) (IR HR) with the oracle reconstruction distortion from
yq,1 vs. the conditional symbol entropy of yq,1 given y2

(IR sim.), obtaining a match for R > 2.5 and validating
once more the evaluation of the rate gain R∗ due to the
SWC. Third, it compares the RHS of equation (36) (JR HR
– standing for joint reconstruction high rate) with the ideal
(knowing the sparsity support of the common component)
oracle Joint Reconstruction distortion from yq,1 and y2 vs.
the conditional symbol entropy of yq,1 given y2 (JR sim. –
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Fig. 3. Simulated vs. theoretical Rate–Distortion functions of the oracle
reconstruction for two different sets of signal and system parameters. Single–
source, distributed and joint reconstruction cases.

standing for joint reconstruction simulated), obtaining a match
for R > 3, validating the expression of the Rate Gain due to
Joint Reconstruction given in (38).

Finally, we report in Fig. 4 the performance of practical
reconstruction algorithms solving the optimization problem
(2). The curve labelled as (BPDN) reports the RD function of
the independent reconstruction. The curve labelled as (BPDN
+ ideal JR) reports the RD function of the Joint Reconstruc-
tion when the sparsity support of the common component
is known at the decoder. The curve labelled as (BPDN +
Intersect JR), instead, shows the RD performance of a Joint
Reconstruction scheme in which the sparsity support of the
common component is not known a priori, but is estimated
from the measurements y1 and y2 using the JR Algorithm 1
in [9] (Intersect JR). The principle behind the Intersect JR al-
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Fig. 4. Practical Reconstruction Rate–Distortion function. N = 512, KC =
KI,j = 8, σ2

Φ = 1, σ2
θC

= 1, σ2
θI,j

= 10−2 and M = 128

gorithm is that the sparsity support of the common component
is obtained as the intersection between the estimated sparsity
supports of the information source and the SI. Comparing
(BPDN + ideal JR) with the oracle performance curve (JR
HR), it can be noticed that, apart from a penalty due to the
missing knowledge of the sparsity support, the slope of the RD
curve is the same as in the ideal oracle case. Moreover, Fig. 4
shows that the practical JR Algorithm 1 in [9] performs very
close to ideal JR algorithm. Note that a fully practical scheme
will use a real SWC encoder/decoder. In [9] we showed that
a system implementing a real SWC encoder/decoder performs
very close to the lower bound represented by the entropy
and conditional entropy. Finally, in Fig. 4 it can be seen that
R∗+RJR = 3.49 bpms, which roughly corresponds to the sum
of R∗ = 2.83 bpms in Figs. 2a and 3a and RJR = 0.55 bpms
in Fig. 3a, proving that the Rate Gains derived for the Oracle
receiver hold in a practical scenario, as well. Finally, Fig. 4
plots the performance of the γ-weighted `1-norm minimization
algorithm [7, (12)], which for a fair comparison we optimized
to take into account that the measurements of the SI are
perfectly known whereas the measurements of the unknown
source are subject to quantization noise. It can be noticed that
the performance is slightly worse with respect to the Intersect
JR algorithm. Plus, the complexity increase is significant since
the γ-weighted `1-norm minimization algorithm needs the
solution of a problem of size 3N , which means a compexity
increase of 8 times since the complexity of basis pursuit
minimization algorithms is cubic with the size of the problem.

VI. CONCLUSIONS

We have studied the best achievable performance in the
RD sense over all single–source and DCS schemes, under the
constraint of high–rate quantization. Closed form expressions
of the RD curves have been derived in the asymptotic regime,
and simulations have shown that the asymptote is reached
for relatively small number of measurements (M'100) and
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small rate (R > 2 bits/measurement sample). The RD curve
computation is based on the convergence of the measurement
vector to the multidimensional standard normal distribution.
This generalizes [3, Theorem 2] that derives the marginal
distribution of the measurement samples when the observed
signal is directly sparse. We have then derived a closed–
form expression of the highest rate gain achieved exploiting
all levels of source correlations at the receiver, along with
a closed–form expression of the average performance of the
oracle receiver, using novel results on random Wishart matrix
theory. Simulations showed that the scheme proposed in [9]
almost achieves this best rate gain, and that the only penalty
is due to the missing knowledge of the sparsity support as in
single–source compressed sensing.

APPENDIX A
PROOF OF THEOREM 4

The Gaussian random matrix Φ is orthogonal invariant [25,
Section 4.3], [26, Ex. 2.4]. Therefore, U = ΦΨ is a random
matrix with i.i.d. entries drawn from N (0, σ2

Φ). Without loss
of generality, we assume that the K non zeros of θ are
placed at the beginning of θ. To show that the infinite length
measurement random variables are asymptotically independent
and Gaussian, we consider a finite length vector y(m) that
contains the m first components of y, and show that, for
each m, y(m) converges to a Gaussian vector with diagonal
covariance matrix, as N grows.

Let Y and U kdenote the random vectors in Rm associated
to the Gaussian measurement vector y(m) and to the k-th
column of the matrix U, restricted to its m first rows. Let
Θk denote the random variable in R associated to the k-th
component of the vector θ. We have

Y =
1√
M

K∑
k=1

U kΘk =

√
K

M

1√
K

K∑
k=1

U kΘk (39)

By definition, U k and Θk are independent, and the sequences
{U k}k and {Θk}k are i.i.d. centered with covariance matrix
σ2

ΦI and variance σ2
θ , respectively. Therefore, each vector

U kΘk is centered with covariance matrix σ2
Φσ

2
θI, where I

is the m × m identity matrix. From the multidimensional
Central Limit theorem [21, Theorem 7.18], Y converges (in
distribution) to a multidimensional Gaussian distribution with
mean vector 0 and covariance matrix 1

µσ
2
Φσ

2
θI. Thus, the

entries of the vector are independent. Letting m grow to∞, we
have that the sequence of Gaussian measurements converges to
a Gaussian i.i.d. sequence with mean 0 and variance 1

µσ
2
Φσ

2
θ .

�

APPENDIX B
PROOF OF THEOREM 5

We derive a lower bound on the achievable distortion by
assuming that the sparsity support Ω of x is known at the
decoder. Let UΩ be the submatrix of U obtained by keeping
the columns of ΦΨ indexed by Ω, and let Ωc denote the
complementary set of indexes. The optimal reconstruction is

then obtained by using the pseudo–inverse of UΩ, denoted by
U†Ω: θ̂Ω =

√
MU†Ωyq :=

√
M
(
UT

ΩUΩ

)−1

UT
Ωyq

θ̂Ωc = 0
(40)

and x̂ = Ψθ̂, where yq is the quantized version of y i.e.
yq = y + e, where e is the quantization noise of variance
σ2
e . Note that in (40) the product by

√
M is a consequence of

Definition 2.

E
[
‖x̂− x‖22

]
= E

[∥∥∥θ̂ − θ
∥∥∥2

2

]
= E

[∥∥∥θ̂Ω − θΩ

∥∥∥2

2

]
(41)

= ME
[∥∥∥U†Ωe

∥∥∥2

2

]
(42)

= ME
[
eTE

[
(UΩUT

Ω)†
]

e
]

(43)

The first equality in (41) follows from the orthogonality of
the matrix Ψ, whereas the second follows from the assumption
that Ω is the true support of θ. (42) derives from the definition
of the pseudo-inverse, and (43) from U† TΩ U†Ω = (UΩUT

Ω)†.
Then, if M > K + 3,

E
[
‖x̂− x‖22

]
= ME

[
eT

K

M(M −K − 1)

1

σ2
Φ

I e

]
(44)

=
MK

M −K − 1

σ2
e

σ2
Φ

(45)

σ2
x̂ =

K

N

M

M −K − 1

σ2
e

σ2
Φ

(46)

where σ2
x̂ stands for the distortion of the oracle estimator at

finite length N . (44) comes from the fact that, since M > K,
UΩUT

Ω is rank deficient and follows a singular M -variate
Wishart distribution with K degrees of freedom and scale
matrix σ2

ΦI [24]. Its pseudo-inverse follows a generalized
inverse Wishart distribution, whose distribution is given in
[24] and mean in [13, Theorem 2.1], under the assumption
that M > K + 3. Note that the distortion of the oracle only
depends on the variance of the quantization noise and not on
its covariance matrix. Therefore, our result holds even if the
noise is correlated (for instance if vector quantization is used).
As a consequence, we can apply our result to any quantization
algorithm. Therefore as N →∞, if µ > 1

Dx(R) ≥ Doracle
x (R) =

γ

1− µ
1

σ2
Φ

Dy(R) (47)

= γ
µ

1− µ
σ2
θ2−2R

where the first equality is obtained by taking the limit N →∞
of (46) and the second equality follows from Theorem 4.
Substituting the entropy-constrained RD function of the mea-
surements (9) in (47) leads to the entropy-constrained recon-
struction RD function (12). �

APPENDIX C
PROOF OF THEOREM 8

We first consider non-overlapping sparse components, i.e.
θC, θI,1 and θI,2 have non overlapping sparsity supports. From
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Theorem 4, U = ΦΨ is a random matrix with i.i.d. entries
drawn from N (0, σ2

Φ). Without loss of generality, we assume
that all non zeros of θ are placed at the beginning of θ, with
first the KC common, then the KI,1 and the KI,2 individual
components.

We build the finite length 2m vector y(2m) that contains
the m first components of y1 concatenated with the m first
components of y2, and let N go to infinity. Let Y denote the
random vector in R2m associated to the Gaussian measurement
vector y(2m) and let U k denote the random vector in Rm
associated to the k-th column of the matrix U , restricted to
its m first rows. Let Θk denote the random variable in R
associated to the k-th component of the vector θ. By definition
of the sparse vectors and their measurements, we have

Y =
1√
M


KC∑
k=1

U kΘk +

KC+KI,1∑
k=KC+1

U kΘk + 0

KC∑
k=1

U kΘk + 0 +

KC+KI,1+KI,2∑
k=KC+KI,1+1

U kΘk


=

√
KC

M
Y C +

√
KI,1

M
Y I,1 +

√
KI,2

M
Y I,2 (48)

where 0 stands for the all zero vector of length m and Y C,
Y I,1and Y I,2 are defined as

Y C :=
1√
KC


KC∑
k=1

U kΘk

KC∑
k=1

U kΘk



Y I,1 :=
1√
KI,1


KC+KI,1∑
k=KC+1

U kΘk

0



Y I,2 :=
1√
KI,2

 0
KC+KI,1+KI,2∑
k=KC+KI,1+1

U kΘk


Each vector U kΘk is centered with covariance matrix

σ2
Φσ

2
θC

I if 1 ≤ k ≤ KC

σ2
Φσ

2
θI,1

I if KC + 1 ≤ k ≤ KC +KI,1

σ2
Φσ

2
θI,2

I if KC +KI,1 + 1 ≤ k ≤ KC +KI,1 +KI,2 ,

where I is the m×m identity matrix.
From the multidimensional CLT [21, Theorem 7.18], Y C

converges (in distribution) to a multidimensional Gaussian
distribution with mean vector 0 and covariance matrix
σ2

Φσ
2
θC

(
I I
I I

)
in the large system regime. Similarly, in the

large system regime, Y I,1 and Y I,2 converge (in distribu-
tion) to a multidimensional Gaussian distribution with mean
vector 0 and covariance matrix σ2

Φσ
2
θI,1

(
I 0
0 0

)
, σ2

Φσ
2
θI,2

(
0 0
0 I

)
respectively, where 0 stands for the all zero m ×m matrix4.
Moreover, Y C, Y I,1 and Y I,2 are independent, since the

4For the sake of brevity and when it is clear from the context, we use 0 to
denote either an m length vector or an all zero m×m matrix.

elements of each sum are all different in (48). Therefore,
Y converges to a Gaussian centered vector with covariance
matrix

σ2
Φ

(ωC,1

µ1
σ2
θC

+
ωI,1

µ1
σ2
θI,1

)
I

√
ωC,1

µ1

ωC,2

µ2
σ2
θC

I√
ωC,1

µ1

ωC,2

µ2
σ2
θC

I
(
ωC,2

µ2
σ2
θC

+
ωI,2

µ2
σ2
θI,2

)
I

 ,

(49)
since ωC,1

µ1
=

ωC,2

µ2
. In the case of overlapping supports, each

entry of the vector θ can either contain the contribution
of only one component (common, or any innovation), or
any combination of at least two components. Therefore, the
support of the non zero components of θ and therefore the
random vector Y , can be decomposed into 7 terms, that
correspond to the number of subsets of a set of 3 elements
(excluding the empty set). Note that each term is a sum of
i.i.d. random vectors such that the multidimensional CLT still
applies and (49) holds.

Letting m grow to ∞, we have that, in the large system
regime, (Y1, Y2) converges to an i.i.d. Gaussian sequence with
covariance matrix

K12 =

(
σ2
y1 ρ12σy1σy2

ρ12σy1σy2 σ2
y2

)
, where

σ2
yj =

σ2
Φ

µj

[
ωC,jσ

2
θC

+ ωI,jσ
2
θI,j

]
and

ρ12 =

[(
1 +

ωI,1

ωC,1

σ2
θI,1

σ2
θC

)(
1 +

ωI,2

ωC,2

σ2
θI,2

σ2
θC

)]− 1
2

,

since ωC,1

µ1
=

ωC,2

µ2
. Therefore, the RD functions are given in

(6), (5), and (17). �

APPENDIX D
PROOF OF THEOREM 9

Let us first consider independent reconstruction. This means
that the measurements of the SI are used at the SWC decoder
only and not to improve the quality of the dequantization or
the reconstruction stages. We derive a lower bound on the
achievable distortion by assuming that the sparsity support Ω1

of x1 is known at the decoder. This receiver is called the oracle
and leads to a variance of estimation σ2

x̂1
:

σ2
x̂1

=
K1

N

M

M −K1 − 1

σ2
e

σ2
Φ

(50)

where the derivation is similar to the non distributed case
(see Appendix B). σ2

e is the quantization noise variance,
i.e. Dy1|y2(R) if the y2 is used as side information at the
SWC decoder and Dy1(R) otherwise. This leads to (27) and
(28). Then, in the large system regime, the measurements are
Gaussian and the RD functions of the measurements have a
closed form expression, which is used to derive (29), (30),
(32), and (33).

Finally, note that the gap between the oracle based lower
bound and the true RD functions, in the IR case, is only due
to the performance of the algorithm chosen to reconstruct x1

from y1. The performance of a deterministic CS reconstruction
algorithm depends only on the density px1|yq,1 , which in the
present Gaussian case is determined by the MSE Dy1(R). In
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the IR case, Dy1(R) depends on the presence of the quanti-
zation/dequantization step, since the source coding/decoding
step is considered a zero–error stage. Hence, the presence
or absence of a (distributed) source encoding and decoding
stage does not alter Dy1(R) since it does not alter the
output of the dequantizer. Conditioning on y2 yields a rate
shift Dy1|y2(R) = Dy1(R + R∗) that will thus be directly
reflected in the CS reconstruction. Hence, it can be written
that DIR

x1
(R) = f(Dy1(R)) and DIR

x1|y2(R) = f(Dy1|y2(R)) =
f(Dy1(R + R∗)) for some f(·) depending on the specific
reconstruction algorithm. This yields (31).

As for the joint reconstruction, the SI is used to reduce
the sparsity level of the unknown signal, and hence the
performance of the reconstruction. More precisely, to give
a lower bound we assume that the receiver perfectly knows
the common component xC and ΩI,1 of the innovation com-
ponent xI,1. Hence, it will use the former to estimate the
measurements of the common component yC = ΦxC and
then subtract them from y1. In this way, the vector to be
reconstructed is the innovation component xI,1 only, which is
sparser than x1 (given the same N and M ). Then, it will use
the latter information to apply the oracle, leading to a variance
of estimation σ2

x̂1
:

σ2
x̂1

=
KI,1

N

M

M −KI,1 − 1

σ2
e

σ2
Φ

(51)

where σ2
e is the measurement distortion, when y2 is used as

side information at the receiver. This leads to (34-36). �
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