306 research outputs found

    Deterministic Real-Time Tree-Walking-Storage Automata

    Full text link
    We study deterministic tree-walking-storage automata, which are finite-state devices equipped with a tree-like storage. These automata are generalized stack automata, where the linear stack storage is replaced by a non-linear tree-like stack. Therefore, tree-walking-storage automata have the ability to explore the interior of the tree storage without altering the contents, with the possible moves of the tree pointer corresponding to those of tree-walking automata. In addition, a tree-walking-storage automaton can append (push) non-existent descendants to a tree node and remove (pop) leaves from the tree. Here we are particularly considering the capacities of deterministic tree-walking-storage automata working in real time. It is shown that even the non-erasing variant can accept rather complicated unary languages as, for example, the language of words whose lengths are powers of two, or the language of words whose lengths are Fibonacci numbers. Comparing the computational capacities with automata from the classical automata hierarchy, we derive that the families of languages accepted by real-time deterministic (non-erasing) tree-walking-storage automata is located between the regular and the deterministic context-sensitive languages. There is a context-free language that is not accepted by any real-time deterministic tree-walking-storage automaton. On the other hand, these devices accept a unary language in non-erasing mode that cannot be accepted by any classical stack automaton, even in erasing mode and arbitrary time. Basic closure properties of the induced families of languages are shown. In particular, we consider Boolean operations (complementation, union, intersection) and AFL operations (union, intersection with regular languages, homomorphism, inverse homomorphism, concatenation, iteration). It turns out that the two families in question have the same properties and, in particular, share all but one of these closure properties with the important family of deterministic context-free languages.Comment: In Proceedings NCMA 2023, arXiv:2309.0733

    Tree-Structured Problems and Parallel Computation

    Get PDF
    Turing-Maschinen sind das klassische Beschreibungsmittel für Wortsprachen und werden daher auch benützt, um Komplexitätsklassen zu definieren. Dies geschieht zum Beispiel durch das Einschränken des Platz- oder Zeitaufwandes der Berechnung zur Lösung eines Problems. Für sehr niedrige Komplexität wie etwa sublineare Laufzeit, werden Schaltkreise verwendet. Schaltkreise können auf natürliche Art Komplexitäten wie etwa logarithmische Laufzeit modellieren. Ebenso können sie als eine Art paralleles Rechenmodell gesehen werden. Eine wichtige parallele Komplexitätsklasse ist NC1. Sie wird beschrieben durch Boolesche Schaltkreise logarithmischer Tiefe und beschränktem Eingangsgrad der Gatter. Eine initiale Beobachtung, die die vorliegende Arbeit motiviert, ist, dass viele schwere Probleme in NC1 eine ähnliche Struktur haben und auf ähnliche Art und Weise gelöst werden. Das Auswertungsproblem für Boolesche Formeln ist eines der repräsentativsten Probleme aus dieser Klasse: Gegeben ist hier eine aussagenlogische Formel samt Belegung für die Variablen; gefragt ist, ob sie zu wahr oder zu falsch auswertet. Dieses Problem wird in NC1 gelöst durch den Algorithmus von Buss. Auf ähnliche Art können arithmetische Formeln in #NC1 ausgewertet oder das Wortproblem für Visibly-Pushdown-Sprachen gelöst werden. Zu besagter Klasse an Problemen gehört auch Courcelles Theorem, welches Berechnungen in Baumautomaten involviert. Zu bemerken ist, dass alle angesprochenen Probleme gemeinsam haben, dass sie aus Instanzen bestehen, die baumartig sind. Formeln sind Bäume, Visibly-Pushdown-Sprachen enthalten als Wörter kodierte Bäume und Courcelles Theorem betrachtet Graphen mit beschränkter Baumweite, d.h. Graphen, die sich als Baum darstellen lassen. Insbesondere Letzteres ist ein Schema, das häufiger auftritt. Zum Beispiel gibt es NP-vollständige Graphprobleme wie das Finden von Hamilton-Kreisen, welches unter beschränkter Baumweite in P fällt. Neuere Analysen konnten diese Schranke weiter zu SAC1 verbessern, was eine parallele Komplexitätsklasse ist. Die angesprochenen Probleme kommen aus unterschiedlichen Bereichen und haben individuelle Lösungen. Hauptthese dieser Arbeit ist, dass sich diese Vielfalt vereinheitlichen lässt. Es wird ein generisches Lösungskonzept vorgestellt, welches darauf beruht, dass sich die Probleme auf ein Termevaluierungsproblem reduzieren lassen. Kernstück ist daher ein Termevaluierungsalgorithmus, der unabhängig von der Algebra, über welche der Term evaluiert werden soll, ist. Resultat ist, dass eine Vielzahl, darunter die oben angesprochenen Probleme, sich auf analoge Art lösen lassen, und dass sich ebenso leicht neue Resultate zeigen lassen. Diese Menge an Resultaten hätte sich ohne den vereinheitlichten Lösungsansatz nicht innerhalb des Rahmens einer Arbeit wie der vorliegenden zeigen lassen. Der entwickelte Lösungsansatz führt stets zu Schaltkreisfamilien polylogarithmischer Tiefe. Es wird jedoch auch die Frage behandelt, wie mächtig Schaltkreisfamilien konstanter Tiefe noch bezüglich Termevaluierung sind. Die Klasse AC0 ist hierfür ein natürlicher Kandidat; sie entspricht der Menge der Sprachen, die durch Logik erster Ordung beschreibbar sind. Um dieses Problem anzugehen, wird zunächst das Termevaluierungsproblem über endlichen Algebren betrachtet. Dieses wiederum lässt sich in das Wortproblem von Visibly-Pushdown-Sprachen einbetten. Daher handelt dieser Teil der Arbeit vornehmlich von der Beschreibbarkeit von Visibly-Pushdown-Sprachen in Logik erster Ordnung. Hierbei treten ungelöste Probleme zu Tage, welche ein Indiz dafür sind, wie schlecht die Komplexität konstanter Tiefe bisher noch verstanden ist, und das, trotz des Resultats von Furst, Saxe und Sipser, bzw. Håstads. Die bis jetzt beschrieben Inhalte sind Teil einer kontinuierlichen Entwicklung. Es gibt jedoch ein Thema in dieser Arbeit, das orthogonal dazu ist: Automaten und im speziellen Cost-Register-Automaten. Zum einen sind, wie oben angedeutet, Automaten Beispiele für Anwendungen des hier entwickelten generischen Lösungsansatzes. Zum anderen können sie selbst zur Beschreibung von Termevaluierungsproblemen dienen; so können Visibly-Pushdown-Automaten Termevaluierung über endlichen Algebren ausführen. Um über endliche Algebren hinauszugehen, benötigen die Automaten mehr Speicher. Visibly-Pushdown-Automaten haben einen Keller, der genau dafür geeignet ist, die Baumstruktur einer Eingabeformel zu verifizieren. Für nichtendliche Algebren eignet sich ein Modell, welches hier vorgestellt werden soll. Es kombiniert Visibly-Pushdown-Automaten mit Cost-Register-Automaten. Ein Cost-Register-Automat ist ein endlicher Automat, welcher mit zusätzlichen Registern ausgestattet ist. Die Register können Werte einer Algebra speichern und werden in jedem Schritt in Abhängigkeit des Eingabezeichens und des Zustandes aktualisiert. Dieser Einwegdatenfluss von Zuständen zu Registern sorgt dafür, dass dieses Modell nicht nur entscheidbar bleibt, sondern, in Abhängigkeit der Algebra, auch niedrige Komplexität hat. Das neue Modell der Cost-Register-Visibly-Pushdown-Automaten kann nun Terme evaluieren. Es werden grundlegende Eigenschaften gezeigt, einschließlich Komplexitätsaussagen

    The AC0\mathsf{AC}^0-Complexity Of Visibly Pushdown Languages

    Full text link
    We study the question of which visibly pushdown languages (VPLs) are in the complexity class AC0\mathsf{AC}^0 and how to effectively decide this question. Our contribution is to introduce a particular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the best of our knowledge our research community is unaware of containment or non-containment in AC0\mathsf{AC}^0 for any intermediate VPL. Our main result states that there is an algorithm that, given a visibly pushdown automaton, correctly outputs either that its language is in AC0\mathsf{AC}^0, outputs some m2m\geq 2 such that MODm\mathsf{MOD}_m is constant-depth reducible to LL (implying that LL is not in AC0\mathsf{AC}^0), or outputs a finite disjoint union of intermediate VPLs that LL is constant-depth equivalent to. In the latter case one can moreover effectively compute k,lN>0k,l\in\mathbb{N}_{>0} with klk\not=l such that the concrete intermediate VPL L(Sεack1Sb1acl1Sb2)L(S\rightarrow\varepsilon\mid a c^{k-1} S b_1\mid ac^{l-1}Sb_2) is constant-depth reducible to the language LL. Due to their particular nature we conjecture that either all intermediate VPLs are in AC0\mathsf{AC}^0 or all are not. As a corollary of our main result we obtain that in case the input language is a visibly counter language our algorithm can effectively determine if it is in AC0\mathsf{AC}^0 -- hence our main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter language is in AC0\mathsf{AC}^0 (when restricted to well-matched words). For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are closely related to forest algebras (introduced by Boja\'nczyk and Walukiewicz), and use Green's relations.Comment: 81 page

    From computability to executability : a process-theoretic view on automata theory

    Get PDF
    The theory of automata and formal language was devised in the 1930s to provide models for and to reason about computation. Here we mean by computation a procedure that transforms input into output, which was the sole mode of operation of computers at the time. Nowadays, computers are systems that interact with us and also each other; they are non-deterministic, reactive systems. Concurrency theory, split off from classical automata theory a few decades ago, provides a model of computation similar to the model given by the theory of automata and formal language, but focuses on concurrent, reactive and interactive systems. This thesis investigates the integration of the two theories, exposing the differences and similarities between them. Where automata and formal language theory focuses on computations and languages, concurrency theory focuses on behaviour. To achieve integration, we look for process-theoretic analogies of classic results from automata theory. The most prominent difference is that we use an interpretation of automata as labelled transition systems modulo (divergence-preserving) branching bisimilarity instead of treating automata as language acceptors. We also consider similarities such as grammars as recursive specifications and finite automata as labelled finite transition systems. We investigate whether the classical results still hold and, if not, what extra conditions are sufficient to make them hold. We especially look into three levels of Chomsky's hierarchy: we study the notions of finite-state systems, pushdown systems, and computable systems. Additionally we investigate the notion of parallel pushdown systems. For each class we define the central notion of automaton and its behaviour by associating a transition system with it. Then we introduce a suitable specification language and investigate the correspondence with the respective automaton (via its associated transition system). Because we not only want to study interaction with the environment, but also the interaction within the automaton, we make it explicit by means of communicating parallel components: one component representing the finite control of the automaton and one component representing the memory. First, we study finite-state systems by reinvestigating the relation between finite-state automata, left- and right-linear grammars, and regular expressions, but now up to (divergence-preserving) branching bisimilarity. For pushdown systems we augment the finite-state systems with stack memory to obtain the pushdown automata and consider different termination styles: termination on empty stack, on final state, and on final state and empty stack. Unlike for language equivalence, up to (divergence-preserving) branching bisimilarity the associated transition systems for the different termination styles fall into different classes. We obtain (under some restrictions) the correspondence between context-free grammars and pushdown automata for termination on final state and empty stack. We show how for contrasimulation, a weaker equivalence than branching bisimilarity, we can obtain the correspondence result without some of the restrictions. Finally, we make the interaction within a pushdown automaton explicit, but in a different way depending on the termination style. By analogy of pushdown systems we investigate the parallel pushdown systems, obtained by augmenting finite-state systems with bag memory, and consider analogous termination styles. We investigate the correspondence between context-free grammars that use parallel composition instead of sequential composition and parallel pushdown automata. While the correspondence itself is rather tight, it unfortunately only covers a small subset of the parallel pushdown automata, i.e. the single-state parallel pushdown automata. When making the interaction within parallel pushdown automata explicit, we obtain a rather uniform result for all termination styles. Finally, we study computable systems and the relation with exective and computable transition systems and Turing machines. For this we present the reactive Turing machine, a classical Turing machine augmented with capabilities for interaction. Again, we make the interaction in the reactive Turing machine between its finite control and the tape memory explicit

    Acta Cybernetica : Volume 18. Number 1.

    Get PDF

    Weighted pushdown systems and their application to interprocedural dataflow analysis

    Get PDF
    AbstractRecently, pushdown systems (PDSs) have been extended to weighted PDSs, in which each transition is labeled with a value, and the goal is to determine the meet-over-all-paths value (for paths that meet a certain criterion). This paper shows how weighted PDSs yield new algorithms for certain classes of interprocedural dataflow-analysis problems

    MaxSAT Evaluation 2018 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    Numbers and Languages

    Get PDF
    The thesis presents results obtained during the authors PhD-studies. First systems of language equations of a simple form consisting of just two equations are proved to be computationally universal. These are systems over unary alphabet, that are seen as systems of equations over natural numbers. The systems contain only an equation X+A=B and an equation X+X+C=X+X+D, where A, B, C and D are eventually periodic constants. It is proved that for every recursive set S there exists natural numbers p and d, and eventually periodic sets A, B, C and D such that a number n is in S if and only if np+d is in the unique solution of the abovementioned system of two equations, so all recursive sets can be represented in an encoded form. It is also proved that all recursive sets cannot be represented as they are, so the encoding is really needed. Furthermore, it is proved that the family of languages generated by Boolean grammars is closed under injective gsm-mappings and inverse gsm-mappings. The arguments apply also for the families of unambiguous Boolean languages, conjunctive languages and unambiguous languages. Finally, characterizations for morphisims preserving subfamilies of context-free languages are presented. It is shown that the families of deterministic and LL context-free languages are closed under codes if and only if they are of bounded deciphering delay. These families are also closed under non-codes, if they map every letter into a submonoid generated by a single word. The family of unambiguous context-free languages is closed under all codes and under the same non-codes as the families of deterministic and LL context-free languages.Siirretty Doriast

    The Complexity of Bidirected Reachability in Valence Systems

    Get PDF
    corecore