
Volume 18 Number 1

¡ T ^
x SZEGED S-J

I 'Si

It.

ACTA
CYBERNETICA

Editor-in-Chief: János Csirik (Hungary)

Managing Editor: Zoltan Kato (Hungary)

Assistant to the Managing Editor: Boglárt

Associate Editors:

Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Stephen L Bloom (USA)
Hans L Bodlaender (The Netherlands)
Wilfried Brauer (Germany)
Lothar Bud ach (Germany)
Horst Bunke (Switzerland)
Bruno Courcelle (France)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Ésik (Hungary)
Zoltán Fülöp (Hungary)

Ferenc Gécseg (Hungary)
Jozef Gruska (Slovakia)
Helmut Jürgensen (Canada)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Páun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged, 2007

A C T A C Y B E R N E T I C A

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the
time it takes to locate qualified reviewers. Usually, a review process takes 6 months to
be completed. There are no page charges. Fifty reprints are supplied for each article
published.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements:

• title of the paper
• author name(s) and affiliation
• name, address and email of the corresponding author
• An abstract clearly stating the nature and significance of the paper. Abstracts must

not include mathematical expressions or bibliographic references.
References should appear in a separate bibliography at the end of the paper, with

items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single attachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text. When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in LM ĵK format.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, €40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: actaQinf.u-szeged.hu

Web access. The above informations along with the contents of past issues are available
at the Acta Cybernetica homepage http://wot. inf .u-szeged.hu/actacybernetica/ .

http://wot

EDITORIAL BOARD

Editor-in-Chief: János Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
csirik@inf.u-szeged.hu

Managing Editor: Zoltan Kato
Department of Image Processing
and Computer Graphics
University of Szeged
Szeged, Hungary
kato@i nf. u-szeged. h u

Assistant to the Managing Editor:

Boglárka Tóth
Research Group on Artificial Intelligence
University of Szeged, Szeged, Hungary
boglarka@inf.u-szeged.hu

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Stephen L. Bloom
Computer Science Department
Stevens Institute of Technology
New Jersey, USA
bloom@cs.stevens-tech.edu

Lothar Budach
Department of Computer Science
University of Potsdam
Potsdam, Germany
lbudach@haiti.cs.uni-potsdam.de

Horst Bunke
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

Bruno Courcelle
LaBRI
Talence Cedex, France
courcell@labri.u-bordeaux.fr

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Wilfried Brauer
Institut für Informatik
Technische Universität München
Garching bei München, Germany
brauer@informatik.tu-muenchen.de

J á n o s D e m e t r o v i c s
MTA SZTAKI
Budapest, Hungary
demetrovics@szta ki. h u

Bálint Dömölki
IQSOFT
Budapest, Hungary
domolki@iqsoft.hu

mailto:csirik@inf.u-szeged.hu
mailto:boglarka@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:bloom@cs.stevens-tech.edu
mailto:lbudach@haiti.cs.uni-potsdam.de
mailto:bunke@iam.unibe.ch
mailto:courcell@labri.u-bordeaux.fr
mailto:hansb@cs.uu.nl
mailto:brauer@informatik.tu-muenchen.de
mailto:domolki@iqsoft.hu

Zoltán Ésik
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
ze@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg@inf.u-szeged.hu

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Helmut Jiirgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
helmut@csd.uwo.ca

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Aliea.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Paun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

András Prékopa
Department of Operations Research
Eötvös Loránd University
Budapest, Hungary
prekopa@cs.elte.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
VOgler@inf.tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

o

mailto:ze@inf.u-szeged.hu
mailto:fulop@inf.u-szeged.hu
mailto:gecseg@inf.u-szeged.hu
mailto:gruska@savba.sk
mailto:helmut@csd.uwo.ca
mailto:Aliea.Kelemenova@fpf.slu.cz
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.elte.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:VOgler@inf.tu-dresden.de
mailto:gwoegi@win.tue.nl

KALMÁR WORKSHOP
ON LOGIC AND

COMPUTER SCIENCE

Guest Editors:

Ferenc Gecseg

Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg@i nf. u-szeged. h u

György Turän

Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences
University of Szeged
Szeged, Hungary
turan@inf.u-szeged.hu

Department of Mathematics, Statistics
and Computer Science
University of Illinois at Chicago
Chicago, USA
gyt@uic.edu

mailto:turan@inf.u-szeged.hu
mailto:gyt@uic.edu

Foreword

This collection of papers is dedicated to László Kalmár (1905 - 1976), a pioneer in
mathematical logic, the founder of computer science in Hungary and, among many
other accomplishments, the founding editor of Acta Cybernetica. It contains the
list of his publications, two papers written in his memory and the complete versions
of four papers presented at the Kalmár Workshop on Logic in Computer Science.
The workshop was held in Szeged, October 1-2, 2003. Its complete program can be
found at http://www . inf .u-szeged.hu/kutatas/konferenciak/kalmar2003/ .
The workshop was co-located with the 13th International Conference on Inductive
Logic Programming (ILP 2003). The papers in this collection deal with automata
theory, universal algebra, algorithms and computational logic, and thus they are
all connected to Kalmár's many-faceted research. We thank the authors for their
contributions and Balázs Szörényi for his help.

Ferenc Gécseg and György Túrán

Guest Editors

3

http://www.inf.u-szeged.hu/kutatas/konferenciak/kalmar2003/

László Kalmár
(1905-1976)

In memory of László Kalmár

András Hajnal*

The following text was presented by Péter Kornjáth at the Kalmár Work-
shop on Logic and Computer Science on October 2, 2003.

Ladies and Gentlemen,

First, I want to apologize for not being able to attend this meeting.
I was a graduate student of László Kalmár. I arrived to Szeged fifty years ago,

almost to the day, having completed my obligatory two months military service
after my graduation from the Eötvös University of Budapest. I was supposed to
arrive by the morning train and take the tram from the railway station. Professor
Kalmár, or Uncle Laci as all the students called him, already wrote me two long
letters to the army base describing future plans for the enormous curriculum he
planned for me. He was already impatiently waiting for me at the door of the
University building. He hardly gave me time to put down my luggage and took
me to all the rooms of the Bolyai Institute, introducing me to everybody, while
explaining to me Gödel's proof of the consistency of the Generalized Continuum
Hypothesis, politely and absent mindedly knocking on all the doors whether we
entered the room or left it.

Having described him above as the amiable old professor, let me remind you
that he was not yet quite fifty, the same age as your present lecturer Péter Komjáth,
my former student, who is supposed to carry on the banner of mathematical logic
we handed to him.

To talk seriously, Kalmár was a scientist of enormous authority, a contemporary
of Gödel, who was among the very few present at the cradle of Mathematical Logic,
who completely understood both the mathematics involved and the significance of
it. He had an unparalleled knowledge of contemporary mathematics and he could
explain the main points of a subject with deep insight.

Paul Erdős, whose early papers he helped to write, often said that he was a
mathematician of von Neumann's caliber. He added that he should have lived in
a more fortunate country, where he could have devoted his energies entirely to
science.

I am not sure Paul was right. I think and hope that Uncle Laci enjoyed his life,
the struggle for his beliefs. His active mind always led him to new discoveries of

" Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13-15,
H-1053, Budapest, Hungary

7

science and that is how he became the founder of Hungarian Computer Science. I
think that that is what this conference will mainly be about, so I could stop here,
but I want to finish on a personal note.

I am very thankful for all the care and love he and his family gave me while I
lived here. I will always cherish the memory of our long mathematical conversations.
Later in my life, whenever I did or heard something interesting, I wanted to tell it
to him. Sometimes I succeeded, sometimes I did not. I remember, I learned about
his death, when returning from abroad I wanted to tell him, that contrary to our
earlier intuition there are nontrivial inequalities on cardinal exponentiation.

I am sure this will be the first thing I will tell him when we meet at the place I
do not believe in.

8

Acta Cybernetica 18 (2007) 9-14.

The activities of László Kalmár in the world of
information technology

Árpád Makay*

Abstract

Since the end of the 1950s László Kalmár has been interested in the in-
formation technology. During a 20 years period he designed several variants
of computers interpreting high-level programming languages on architectural
levels.

Keywords: logical'machine, formula-driven computer, high-level language
interpreter machine

Towards the end of the 1950s, information technology (IT) became one of the
fields in which László Kalmár was highly interested. He was clearly aware of the
rapid spread of computers and their excellent applicability for numeral computa-
tions. It is nevertheless extremely likely that the links between mathematics and
IT were what caught his interest and shaped his views of this field. It is undoubted
that he tackled problems from the aspect of a mathematician, always attempt-
ing to apply mathematical methods in a world, which at that time was virtually
purely technical and technological. It soon became obvious that IT requires and
makes wide use of the laws and methods of mathematics: it may suffice merely
to mention the inspiring role of automata theory or coding theory. The exactness
of mathematics is reflected in the problem solving of IT, the precise understand-
ing of the problems and their detailed analysis, which often demands considerable
work. Kalmár's interdisciplinary knowledge played a significant role in his continu-
ous search for new areas of use of IT, defining concrete problems for which he often
found solutions and attracted the interest of researchers and developers.

It should .be remembered that the freedom of researchers to carry out effec-
tive work in Hungary in that period was restricted by a number of factors. The
technical resources in the country were rather poor. For understandable reasons,
most of the resources were placed in the service of the economy and the running
of the state, only a minor part being made available for teaching and research.
Kalmár's wide-ranging contacts and (from the 1960s) his nationwide recognition in
the world of IT helped him overcome many of the technical obstacles, especially

'University of Szeged, Árpád tér 2, Szeged, Hungary.

9

10 Árpád Makay

in the practical teaching area. Nonetheless, the need to adapt to the external con-
straints certainly influenced his thoughts and plans. One of the main areas of his
interest, the combination programming languages and mathematics, and especially
the formal language of logic, was restricted from the outset, the limitations being
set by his ambition for the availability of the necessary resources.

Kalmár was unceasingly convinced that the already considerable development
of the IT world could benefit still further from the innovative work of Hungarian
researchers. In consequence of his international reputation, the leading journals and
technical books were at his disposal, often as complimentary copies. The world was
generally open to him. At conferences, he was able to meet internationally respected
researchers and to set out his ideas and achievements. In this way he acquired up-
to-date information on the areas of perspective research and development, which
he readily shared with his students and colleagues.

When an effective tool such as the computer becomes available to an individ-
ual, his or her imagination suddenly catches wings. And this is what happened to
the early IT researchers, engineers and end-users in Hungary, among them László
Kalmár. As an example, the machine translation of natural languages seemed
attainable from the very beginning. Kalmár closely watched and supported the
Hungarian group working on this project. We now know that this goal was reached
in párt only much later. For that group at that time, the objective appeared
unattainable, though their activities furnished important information and knowl-
edge relating to the field of linguistics.

László Kalmár was no stranger to philosophy. Perhaps this was one of the rea-
sons why he became interested in some of the unanswered questions of mathematical
logic which (with full mathematical exactness) touched on the limits of reliability of
mathematics. Questions often arose in IT (also referred to as cybernetics) such as
those concerning the relationship of man and a "thinking" machine, the ability of
a machine to reproduce itself, and the controllability of computers. Kalmár devel-
oped his own concepts of these issues and often put forward his ideas at appropriate
forums. He did this mainly as a mathematician, a stranger to exaggeration and
science fiction.

László Kalmár worked in the purely theoretical realm of mathematical logic;
it may be stated that he was a real theoretical researcher. In the world of IT,
however, he strived towards concrete instruments. The technology was limited, but
he designed tools that could be constructed.

The first project that was achieved was a by-product of a departmental seminar.
The theme was the technical implementation of mathematical logic (propositional
logic). This is an exciting topic if it is considered that the active parts of computers
are logical circuits, the tasks of which are logical calculations. The decision was
taken to build a "logical machine" that computes the values of logical formulae [1].

The formula applied could contain a maximum of 8 variables, and all the basic
operators of calculus could be used. A double contact switch represented the value
of a variable or a component formula. One pole had the value TRUE, and the other
one the value FALSE. Accordingly, an operator of two variables needed two input
and one output switches. Special cables connected the poles. These connections

The activities of László Kalmár in the world of information technology 11

had to be set according to the logical operators; it may be said that the operators
were programmed. The input and output poles of the boxes, already programmed
for the basic operators, were appropriately connected to each other so that formula«
of desired length became computable. Operator priority and the use of parentheses
were enabled. It is obvious that the machine did not tackle the problem by reducing
the formula to some kind of normal form. The values of the maximum 8 operands
were set by a simple series of switches, their values and that of the formula being
indicated by lamps on the display.

The logical machine was a demonstrative tool, but it led to a degree of self-
confidence necessary for more difficult challenges to be tackled. Every creator feels
the need to explain what his or her creation is good for: the formula built up
from the boxes is a circuit that is being tested by the machine. This activity was
supported by a relayed "memory", together with the potential for the simultane-
ous handling of a number of formulae. By 1959 the machine had received a new
application (one necessary in most computers): it had become a binary adder.

It was roughly at this time that the training of " programming mathematicians"
started at the University of Szeged, and these courses became increasingly more
popular. The characteristic features of the courses were very thorough training
in mathematics and programming, first in assembly, and later in higher-level lan-
guages. While providing several mathematical courses, László Kalmár was the
professor of machine programming.

In the 1960s, he experienced that programs written in assembly (or in direct
code) were more effective than the codes generated by the compilers, not to mention
the time and memory requirements of the compilation process. The effectiveness
was a result of the work of the programmer in searching for the memory and time
optimum. He also observed that the programming work, i.e. the human energy
invested in problem solving, is more effective if a higher-level language is used. This -
latter is nowadays held to be of greatest importance. At that time, Kalmár could
not predict that within 25 years the memory and computing capacity of computers
would have become virtually limitless, and that the abilities of compilers would have
been enhanced considerably as a consequence of theoretical results. He believed
that the solution lay in the approach of machine code to the syntax and semantics
of higher-level languages.

During his productive IT activities, Kalmár often returned to this idea of a
formula-driven machine. The possibilities available in the various periods are re-
flected by some of the versions planned throughout the years. In parallel, his
goal was a definition of the computer as an algebraic structure, his plans being
constructed on this precise theory. As an example, he looked upon a computer
operation as (amongst others) a transformation in the memory state. However,
because of the large number and complexity of the operations, the characteristics
of this transformation could not be written with mathematical exactness. In order
for this to be done, the model should have been brought into a much simpler level,
e.g. to the level of Turing machine theory, but the practical demands did not allow
this. Accordingly, the algebraic model rather played the role of a general approach
and was not used directly in the design.

12 Árpád Makay

The first plans involved the use of the Ljapunov operational language inter-
preter machine [2]. The language allowed the use of a limited number of variables,
expressions built up with the applications of arithmetical operations, and a few
algorithmic tools: conditional clauses and cycles. The syntax was straightforward.
Lexical analysis was barely needed. Because of the lack of block structures and
program segmentation, there was no need for the most difficult techniques applied
in modern interpreters, which at that time were probably impossible to implement
with the technical support available then.

The computational unit of the machine was a stack-like structure built up from
register quartets. These were designed to handle the arithmetical and logical oper-
ations of two operands; they stored the two operands, the operation and (once the
values of the operands were available) the result. The result register of the register
quartet was connected to both operand registers of the higher-level register quartet
through gates. At most one of the gates was open, in order to receive the result of
the operation computed at the lower level.

The program was run through the sequential reading of the characters in one
pass. At all times there was one active register quartet and one of its registers was
active. In one step, the value (if any) of the next variable from the sequence was
placed.in the active register. In every step, the state of activation of the current
register quartet and its register was refreshed, and the states of the gates were set.
If the operation could be computed (both operands present in a register quartet),
the operation was performed and the result flowed upwards through the open gate.

An analysis of the system reveals that simple cycles can be implemented with
the described register hierarchy, since the repeating condition is also an expression.
Apart from this, a control unit was needed, with the role of interpretation of the
sequential,.conditional and cyclic clauses. The memory assignments and the in-
dexed variable handling demanded a special design. Kalmar's plans included all of
these features, but the result of prime importance was the technically applicable,
special stack architecture. The conditions for the building of the machine could not
be met within Hungary, but parts of his machine plans were utilized in the MIR
machine of the Ukrainian Academy of Sciences, built in 1966.

By the beginning of the 1960s, it was evident that the stack was an extremely
powerful tool in IT. If the traditional infix expressions were converted to postfix
form and put into the stack, their interpretation was child's play. The use of a stack
simplified the conversion too. If the algorithmic parts of programming languages
such as ALGOL-6O could be converted to postfix form, then (by means of a one-
pass compilation) the program could be run several times without being compiled
in the classical machine language. This was more or less achieved, and extremely
efficient interpreters were developed on the basis of this theory. The efficiency was
further increased by building the stack into the hardware level of the architecture
of the computer, together with the technique of microprogramming.

In the meantime, theoretical results were obtained that gave a definitive direc-
tion to the evolution of .IT. The design of efficient lexical analysis algorithms was
based on the theory of finite automata. The theory of pushdown automata and their
special classes defined the limits to be taken into consideration within the syntax

The activities of László Kalmár in the world of information technology 13

of programming languages for the building of efficient compilers and interpreters.
The limitations were loose, and the requirements of the programmers concerning
the programming languages could therefore be fully satisfied. The main direction of
IT therefore became the use of high-level programming languages (supporting both
general needs and special requirements) and the construction of efficient compilers
and interpreters for them.

In 1973, László Kalmár was requested by the Hungarian Academy of Sciences to
examine the situation regarding computers and higher-level programming languages
(including machine languages) and the progress to be expected in these fields. The
goal was for Hungarian IT to find its place and to play an appropriate role in the
bright future of IT research and development. It was becoming increasingly more
obvious that, like all other countries in Eastern Europe, Hungary had failed to
recognize the importance of IT in time, and had not allocated sufficient funds for
IT research. This invitation was a sign of appreciation of the leader of one of the
few research groups which had been producing results and which had come up with
constructive ideas despite the inadequate support.

The development of the various generations of computers up to that time, and
the methods of constructing computer architectures, were reviewed in a series of
monographs [3]. Naturally, the emphasis was on programming languages and their
interpretational possibilities, one of Kalmár's main interests. In the final edition,
some 15 years after the planning of the first formula-driven machine he put forward
a new proposal for a computer that could be programmed through the use of a
high-level machine language.

What were the challenges, to which the new plan was intended to respond?
A look at the algorithmic (problem-oriented) languages reveals that the parts

building up the syntax have become clear, and new languages can be designed .by
combining these parts at will. The block structure and the use of modules were
necessities. Prom the aspect of semantics, the notion of the expression had become
very clear, mainly as a result of the increased number of data structures. The pro-
grams themselves defined complex data types, and the classical sets of values could
no longer be used without appropriate care. The definition and implementation
were separated, a situation regarded as normal by today's C + + or Java program-
mer. It was now obvious that the handling of reference types needed extensive
redesigning, a feature applied earlier only for indexed variables and memory as-
signments. It cannot be claimed that the new plan provided adequate answer to
all these questions, but it did so for most of them.

The technology too had been evolving. The problems involving the hardware-
manipulated stack had been eliminated. The technique of microprogramming was
available, a tool that raised the programming level above that of the architecture.
The implementation of a redesigned architecture with high-level machine language
again seemed feasible.

In the design stage, it became obvious to Kalmár that a single algorithmic lan-
guage running on a given architecture could no longer satisfy the users. Compilers
were clearly needed. The suggested high-level language was designed to be close to
more general programming languages, particularly from the aspect of syntax. This

14 Árpád Makay

could result in easier compiling, less human work, and lower hardware requirements.
The research group led by Kalmár devised the proposed language. He did not

develop a technical plan for the implementation of this language as he had earlier
done with the formula-driven machine. He hoped that the various Hungarian work-
groups would share their knowledge and that his plans would materialize via such
collaboration. In order to verify the language and prove its suitability, he suggested
simulation methods. His research group did not lack the necessary knowledge, but
the simulator was not built. It is probable that Kalmár's energy was wasted to some
extent by his intent on publishing his conceptions in academic and technical circles.
The reception was appropriate, and the observations were professional. However,
it was at this time that Eastern Europe started planning great developments in the
field of IT, and Hungary did not want to be left behind; it therefore adapted to the
tendencies determined by " the greats".

What can be said today about formula-driven issues?

Some 30 years ago, IT developed at a very rapid, but quite unexpected tempo.
Economizing with hardware resources now belongs to the past; the pace is dictated
by the application needs. Many criticize this attitude. Not only has the lowest
programming level not risen but it has even become lower, e.g. as a consequence
of the RISC technology. The need for the portability of applications over various
architectures has nevertheless given rise to a shared-language machine, the Java
virtual machine. This has taken place with a different objective and by different
means, but its roots are common with those of the formula-driven machine.

References
[1] L. Kalmár, A new principle of construction of logical machines, in Proceedings

of 2-e Congres Unternat. de Cybernetique, Namur (1958) 458-463. See in PDF
form: http://www.inf.u-szeged.hu/kalmar2005/tcs/kalmarl958.pdf

[2] L. Kalmár, On a digital computer which can be programmed in a mathemat-
ical formula language, in Proceedings of 2nd Hungarian Congress of Mathe-
matics, Budapest (1960) Vol. 5, 3-16. See in PDF form: http://www.inf.u-
szeged.hu/kalmar2005/tcs/kalmarl960.pdf

[3] Manuscript series under the title "Belső gépi nyelvek", Szeged (1973) (ed.:
László Kalmár). Only available in Hungarian.

Szeged, 10 December 2004

http://www.inf.u-szeged.hu/kalmar2005/tcs/kalmarl958.pdf

Publications of László Kalmár*

1. On interpolation. Math, és Phys. Lapok 33 (1926), 120-149. (In Hungárián.)

2. Zur Theorie der abstrakten Spiele. Acta Sei. Math. 4 (1928), 65-85.

3. Über die Abschätzung der Koeffizientensumme Dirichletscher Reihen. Acta
Sei. Math. 4 (1929), 155-181.

4. Eine Bemerkung zur Entscheidungstheorie. Acta Sei. Math. 4 (1929), 248-
252.

5. On the problem of "factorisatio numerorum". Mat. és Fiz. Lapok 38 (1931),
1-15. (In Hungárián.)

6. Uber die mittlere Anzahl der Produktdarstellungen der Zahlen. I. Acta Sei.
Math. 5 (1931), 95-107.

7. Ein Beitrag zum Entscheidungsproblem. Acta Sei. Math. 5 (1932), 222-236.

8. Ein Beweis des Ruffini-Abelschen Satzes. Acta Sei. Math. 6 (1932), 59-60.

9. Zum Entscheidungsproblem der mathematischen Logik. Verhandlungen des
Internationalen Mathematiker-Kongresses (Zürich, 1932), II. 337-338.

10. Über die Erfüllbarkeit derjenigen Zahlausdrücke, welche in der Normalform
zwei benachbarte Allzeichen enthalten. Math. Ann. 108 (1933), 466-484.

11. Über einen Löwenheimschen Satz. Acta. Sei. Math. 7 (1934), 112-121.

12. Über die Axiomatisier bar keit des Aussagenkalküls. Acta Sei. Math. 7 (1935),
222-243.

13. Zurückführung des Entscheidungsproblems auf den Fall von Formeln mit einer
einzigen binären Funktionsvariablen. Compositio Math. 4 (1936), 137-144.

14. On the fundamental theorem of arithmetic. Mat. és Fiz. Lapok 43 (1936),
27-45. (In Hungárián.)

15. Zur Reduktion des Entscheidungsproblems. Norsk Mat. Tidsskrift 19 (1937),
121-130.

"Compiled by András Ádám and Pál Dömösi. Originally appeared in: Our giants in technology,
6. Gépipari Tudományos Egyesület, Budapest, 1986. 84-88. (Edited by István Pénzes.) (In
Hungárián.)

15

16. 1938 annual report on the Gyula König Prize. Mat. és Fiz. Lapok 45 (1938),
1-17. (In Hungarian.)

17. On the reduction of the decision problem, I: Ackermann prefix, a single binary
predicate. J. Symbolic Logic 4 (1939), 1-9.

18. On the possibility of definition by recursion. Acta Sei. Math. 9 (1940),
227-232.

19. The objectives, methods and achievements of Hilbert's proof theory. Mat. és
Fiz. Lapok 48 (1941), 65-119. (In Hungarian.)

20. The development of mathematical exactness from the intuitive to the ax-
iomatic approach. 1 A másik ember felé, Debrecen (Exodus) (1942), 39-58.
(In Hungarian.)

21. A simple example of an undecidable problem in arithmetic. Mat. és Fiz.
Lapok 50 (1943), 1-23. (In Hungarian.)

22. A few words about mathematics to those who always hated it, I—II. (In Hun-
garian.)

I.: Pro Christo 8/4 (1943), 7-9.
II.: Pro Christo 9/3 (1944), 3-5.

23. "Am I hopeless?" Pro Christo 8/6 (1943), 7-9. (In Hungarian.)

24. (with János Surányi) On the reduction of the decision problem, II: Gödel
prefix, a single binary predicate. J. Symbolic Logic 12 (1947), 65-73.

.25. On the sum of powers of numbers, I—III. (In Hungarian.)

I.: Középisk. Mat. Lapok 1 (1947-48), 5-10.
II.: Középisk. Mat. Lapok 1 (1947-48), 39-47.

III.: Középisk. Mat. Lapok 1 (1947-48), 169-176.

26. Come, let us prove Chebyshev's theorem!, I—III. (In Hungarian.)

I.: Középisk. Mat. Lapok 1 (1947-48), 89-90.
II.: Középisk. Mat. Lapok 1 (1947-48), 127-128.

III.: Középisk. Mat. Lapok 1 (1947-48), 176-182.

27. Mathematics and dialectical materialism. Magyar Technika 3 (1948), 100-
102. (In Hungarian.)

28. On unsolvable mathematical problems. Proceedings of the Tenth Interna-
tional Congress of Philosophy (Amsterdam, 1948), 1949, 1. 534-536.

29. Une forme du théorème de Gödel sous des hypothèses minimales. Comptes
Rendus Acad. Sei. Paris 229 (1949), 963-965.

1The printed version of the paper appeared erroneously with "to the axiomatic system" in the
title.

16

30. Quelques formes générales du théorème de Gödel. Comptes Rendus Acad.
Sci. Paris 229 (1949), 1047-1049.

31. Let us prove Chebyshev's theorem, I—III. (In Hungarian.)

I.: Középisk. Mat. Lapok 2 (1949-50), 7-13.
II.: Középisk. Mat. Lapok 2 (1949-50), 90-91.

III.: Középisk. Mat. Lapok 2 (1949-50), 121-124.

32. (with János Surányi) On the reduction of the decision problem, III: Pepis
prefix, a single binary predicate. J. Symbolic Logic 15 (1950), 161-173.

33. Eine einfache Konstruktion unentscheidbarer Sátze in formalen Systemen.
Methodos 2 (1950), 220-226.

34. Another proof of the Gödel-Rosser incompletability theorem. Acta Sci.
Math. 12 (1950), 38-43.

35. Contributions to the reduction theory of the decision problem, I: Prefix
(xi)(x2)(Ex^) ... (Exn-i)(xn) a single binary predicate. Acta Math. Acad.
Sci. Hungar. 1 (1950) 64-73.

36. Uber die Cantorsche Theorie der reellen Zahlen. Publ. Math. 1 (1950),
150-159.

37. On Cauchy's convergence test. Acta Math. Acad. Sci. Hungar. 1 (1950),
109-112.

38. Report on the 2nd World Peace Congress. Mat. Lapok 1 (1950), 317-318.
(In Hungarian.)

39. Contributions to the reduction theory of the decision problem, 2 III: Prefix
(x\)(Ex2). •. (Exn-2){xn-i)(xn) a single binary predicate. Acta Math. Acad.
Sci. Hungar. 2 (1951) 19-38.

40. Contributions to the reduction theory of the decision problem, IV: Reduction
to the case of a finite set of individuals. Acta Math. Acad. Sci. Hungar. 2
(1951), 125-142.

41. (with János Aczél and J. G. Mikusinski) Sur l'équation de translation. Studia
Math. 12 (1951), 112-116.

42. Another proof of the Markov-Post theorem. Acta Math. Acad. Sci. Hungar.
3 (1952), 1-27.

43. Recent results on the foundations of mathematics. A Magyar Tud. Akad.
Mat. Fiz. Oszt. Közi 2 (1952), 89-112. (In Hungarian.)

44. Reduction of the decision problem to the question of satisfiability of logi-
cal formulas over finite sets. Az I. Magyar Mat. Kongr. (Budapest, 1950)
Közleményei, 1952, 163-190. (In Hungarian.)

2The second part of the series was written by Janos Suranyi.

17

45. The influence of Bolyai-Lobachevsky geometry on the development of the
axiomatic method. A Magyar Tud. Akad. Mat. Fiz. Oszt. Közi 3 (1953),
235-242. (In Hungarian.)

46. The methods of analysis in high school education, I-IV. (In Hungarian.)

I.: A mat. tanítása 1 (1953), 22-32.
II.: A mat. tanítása 1 (1953), 40-50.

III.: A mat. tanítása 1 (1953), 74-80.
IV.: A mat. tanítása 1 (1954), 109-112.

47. L'influence de la géométrie de Bolyai-Lobatchevsky sur le développement
de la méthode axiomatique. Acta. Math. Acad. Sei. Hungar. 5 (1954),
supplementum, 117-126.

48. The solution of a problem of K. Schröter on the definition of the notion of a
general recursive function. A Magyar Tud. Akad. Mat. Fiz. Oszt. Közi. 5
(1955), 103-127. (In Hungarian.)

49. Über ein Problem, betreffend die Definition des Begriffes der allgemein-
rekursiven Funktion. Zeitschr. f. Math. Logik und Grundlagen d. Math.
1 (1955), 93-96.

50. On universal algebra—on the borderline between algebra and mathematical
logic (abstract of a talk). Mat. Lapok 6 (1955), 63-65. (In Hungarian.)

51. A direct proof of the unsolvability of the decision problem by a general recur-
sive algorithm. A Magyar Tud. Akad. Mat. Fiz. Oszt. Közi. 6 (1956), 1-25.
(In Hungarian.)

52. (with András Hajnal) A remark on Gödel's axiom system for set theory, I—II.
(In Hungarian.)

I.: Mat. Lapok 7 (1956), 26-42.
II.: Mat. Lapok 7 (1956), 218-229.

53. (with András Hajnal) An elementary combinatorial theorem with an appli-
cation to axiomatic set theory. Publ. Math. 4 (1956), 431-449.

54. Ein direkter Beweis für die allgemein-rekursive Unlösbarkeit des Entschei-
dungsproblems des Prädikatenkalküls der ersten Stufe mit Identität. Zeitschr.
f. Math. Logik und Grundlagen d. Math. 2 (1956), 1-14.

55. Об одной гипотезе, применяемой в исследованиях о так называемых
неразрешимых арифметических задачах. Труды Третьего Всесоюзного
Математического Съезда (Москва, 1986), 1959, 4, 227-231.

56. On mathematical logic. Magyar Tudomány 1 (1956), 369-391. (In Hungar-
ian.)

57. On Church's hypothesis, the foundation of research on so-called unsolvable
mathematical problems. A Magyar Tud. Akad. Mat. Fiz. Oszt. Közi. 7
(1957), 19-38. (In Hungarian.)

18

58.

59.

6 0 ,

61

62

63

64

65

66

67

68

69

70

71

72

73.

A remark on the lecture of Rezső Tarján on "Trends in the development of
fast automatic computing machines". A Magyar Tud. Akad. Mat. Fiz. Oszt.
Közi. 7 (1957), 76-82, 85. (In Hungarian.)

Uber arithmetische Funktionen von unendlich vielen Variablen, welche an
jeder Stelle bloss von einer endlichen Anzahl Von Variablen abhängig sind.
Colloq. Math. 5 (1957), 1-5.

The logic machine of Szeged (abstract of a talk). Mat. Lapok 9 (1958), 165.
(In Hungarian.)

An argument against the plausibility of Church's thesis. Constructivity in
Mathematics (Proc. Coll. Amsterdam, 1957), North-Holland, 1959; 72-80.

A new principle of construction of logical machines. 2-е Congrès Internat,
de Cybernétique (Namur, 1958), 458-463.

A practical infinitistic computer. Infinitistic Methods in the Foundations of
Mathematics (Proc. Sympos. Warsaw, 1959), 1961; 347-362.

On a digital computer which can be programmed in a mathematical formula
language. A II. Magyar Matematikai Kongresszus (Budapest, 1960), Ab-
stracts, Volume 5., 3-16. (Russian translation: Кибернетический Сборник,
новая серия 1 (1965), 215-226.)

On some graph theoretic problems related to the theory of switching circuits
(abstract of a talk). Mat. Lapok 11 (1960), 211. (In Hungarian.)

Einige philosophische Probleme der Kybernetik. Naturwissenschaft und
Philosophie (Internat. Symp. Leipzig, 1960), 381-401.

Uber einen Rechenautomaten, der eine mathematische Sprache versteht.
Zeitschr. Angew. Math. Mech. 40 (1960), T, 64-65.

Wissenschaftliche Abstraktion und die Anwendung mathematischer Metho-
den in Biologie und Medizin. Arzt und Philosophie, Berlin, 1960; 132-133,
150, 164.

Questions of content of the task of university department chairs. Felsőoktatási
Szemle 10 (1961), 573-580. (In Hungarian.)

A contribution to the translation of arithmetical operators (assignment state-
ments) into the machine language of the computer M-3. Shuxue Jinzhan 6
(1963), 321-338. (The paper was written in English, but appeared in Chi-
nese.)

Algorithmische Sprachen und Programmierung von Rechenautomaten. Math-
ematische und Physikalisch-Technische Probleme der Kybernetik (Vorträge
der Konferenz, Berlin, 1962), 1963; 147-176.

Uber eine Variante des Neumannschen selbstreproduzierenden Auto-
maten. Mathematische und Physikalisch- Technische Probleme der Kybernetik
(Vorträge der Konferenz, Berlin, 1962), 1963; 522-528.

Problems of qualitative information theory. A Magyar Tud. Akad. Mat. Fiz.
Oszt. Közi. 12 (1962), 293-301. (In Hungarian.)

19

74. Über eine erkenntnistheoretische Wurzel des "Anti-Kybernetismus". Kyber-
netik in Wissenschaft, Berlin, 1962; 53-56.

75. "Conjecture and prove!"? Magyar Tudomány 8 (1963), 816-823. (In Hun-
garian.)

76. Mathematical and linguistic structures. Altalános nyelvészeti tanulmányok,
II. Budapest, 1964; 11-74, 166-172, 295-304. (In Hungarian.)

77. On the problem of the foundation of our knowledge. The Foundation of
Statements and Decisions, Warsaw, 1965; 13-19.

78. Les calculatrices automatiques comme structures algébriques. Prévisions,
Calcul et Réalités, Paris, 1965 9-22.

79. О вложении теории автоматических цифровых вычислительных машин
в алгебраическую теорию автоматов Мура, Мили и Грушкова. Теория
Конечных и Вероятностных Автоматов, Москва 1965; 93-99. (A short
abstract of this work: On the algebraic theory of automatic digital comput-
ers. Colloquium on the Foundations of Mathematics, Mathematical Machines
and their Applications (Tihany, 11-15 September 1962), Akadémiai Kiadó,
Budapest, 1965; 129.)

80. Un modèle algébrique de calculatrice. Électronique Troisième Congrès de
Calcul et de Traitement de l'Information (Toulouse, 1963), Paris, 1965; 381-
387.

81. Foundations of mathematics—whither now? Problems in the Philosophy of
Mathematics, (Proc. Coll. London, 1965), North-Holland, Amsterdam, 1967;
187-207.

82. Results of mathematical linguistics in the teaching of languages. Modern
Nyelvoktatás 5 (1967), 25-29. (In Hungarian.)

83. Meaning, synonymy and translation. Comput. Linguist. 6 (1967), 27-39.

84. Le langage comme structure algébrique. Cahiers Linguist. Théor. Appl. 4
(1967), 73-82.

85. (with Ferenc Obál, István Madarász, Dániel Muszka and György Such) Cy-
bernetical model of the regulation of the homeostasis of the organism. Ab-
stracts of First Joint Congr. of Hung. Societies of Biochem. Biophys. and
Physiol. (Pécs, 1967), Budapest, 1967, 42.

86. R. Péter's work in the theory of recursive functions. Les fonctions recursives
et leurs applications (Coll. Internat. Tihany, 1967), 1969; 1-11.

87. Pattern recognition and conditional reflexes (general problems). 5-e Congrès
Internat, de Cybernétique (Namur, 1967), 1968; 136-140.

88. Значение, синонимия и перевод. Разработка Машинных (Автомати-
чевских) Систем Перевода с Одного Языка на Другой и их Применение,
Budapest, 1967; 374-390.

89. On the problem of full utilization of the technical possibilities of computers
in devising appropriate approximation methods for the solution of numerical
problems. Bull. Math. Soc. Sci. Math. R. S. Roumanie 12/2 (1968), 75-79.

20

90. Future tasks concerning programming languages. Információ és Elektronika
4 (1968), 251-254. (In Hungarian.)

91. Application of digital computers and special purpose machines in medical
diagnostics. Orvos és Technika 7 (1969), 14-18. (In Hungarian.)

92. Introduction to cybernetics. A TIT Fiz. Kém. Mat. Szakosztályának
Tájékoztatója 15 (1969), 55-71.' (In Hungarian.)

93. An intuitive representation of context-free languages. Internat. Conf. Corn-
put. Linguist. Stockholm, 1969. Preprint 66. (10 pages).

94. On cybernetics. Fiz. Szemle 20 (1970), 129-134. (In Hungarian.)

95. 1st ALGOL wirklich eine algoritmische Sprache? Automatentheorie und, For-
maié Sprachen (Tagung, Oberwolfach, 1969), 1970; 305-315.

96. "Fahnendiagramme"—ein anschauliches Hilfsmittel zur Angabe von Pro-
grammiersprachen. Formale Sprachen und Programmiersprachen. (Tagung,
Oberwolfach, 1971).

97. An algebraic model of systems of digital computers. Internat. Symp. and
Summer School on Math. Foundations of Computer Set. Warsaw, Jablonna,
1972; 1-12.

98. Problems of the university education of computer scientists. Felsőoktatási
Szemle 21 (1972), 548-552. (In Hungarian.)

99. Conversations on mathematics. (Interviewer: Özséb Horányi.) Természet
Világa 103 (1972), 351-356. (In Hungarian.)

100. On a measure of divergence of a context-free language from finite state lan-
guages. Recueil Linguist, de Bratislava IV., Proc. Symp. Algebraic Linguist.
(Smolenice, 1970), 1973; 93-106.

101. The development of electronic digital computers and the directions of their
future development. (Study edited by Kalmár for Section I of the Natural
Sciences of the Hungarian Academy of Sciences in 1972. Contributors: Péter
Hunya, Ádám Kertész, Pál Quittner, Attila Sára, Sándor Székely.) 1-70. (In
Hungarian.)

102. Internal machine languages, including high-level languages. 3 (Study edited
by Kalmár for Section I of the Natural Sciences of the Hungarian Academy
of Sciences in 1973. Contributors: Eva Gyurkovics, Péter Hunya, Tamás
Komor, Árpád Makay, Dániel Muszka, György Révész, Attila Sára, Endre
Simon, Sándor Székely, Antal Varga, Tibor Varga.) 1-140. (In Hungarian.)

103. Problems of the education of computer scientists. A számítástechnikai oktatás
a hazai felsőoktatási intézményekben (Conference, Visegrád, 1974), Budapest,
1974. 25-30. (In Hungarian.)

3Let us mention Chapter 3 of this work and its Appendix. Their titles are: "Proposals for the
design of the modern form of Kalmár's formula-directed computer, with special emphasis on its
internal langugage", "Syntax of the programming language FCCL-4".

21

104. Developing a machine independent approach in the education of program
designers. A számítástechnikai oktatás a hazai felsőoktatási intézményekben.
(Conference, Visegrád, 1974), 142-146. (In Hungarian.)

105. The educator in the age of computers. (Interviewer: László N. Sándor.)
Köznevelés 30/20 (1974), 3-5. (In Hungarian.)

106. An alternative of the stack-like memory of a computer. (Lecture intended
for a conference held in Turku. This posthumous work was edited by Árpád
Makay.)

107. Introduction to mathematical analysis, / - / / . Tankönyvkiadó, Budapest, 1982.
(442 -)- 406 pages). (Edited by Károly Tandori with Piroska Csúri Józsefné
Paár, Rozália Dúró Lajosné Lévay, József Németh, Antal Varga.) (In Hun-
garian.)

22

Acta Cybernetica 18 (2007) 23-46.

Groups and Semigroups Defined by some Classes of
Mealy Automata

Alexander S. Antonenko* and Eugene L. Berkovich*

Abstract

Two classes of finite Mealy automata (automata without branches, slow-
moving automata) are considered in this article. We study algebraic prop-
erties of transformations defined by automata of these classes. We consider
groups and semigroups defined by automata without branches.

Keywords: Finite automata; Groups defined by automata; Semigroups de-
fined by automata; Finite automaton transformations.

Introduction
In this paper we study finite state Mealy automata over two-symbol alphabet and
finite state automata transformations defined by them. We shall examine algebraic
properties of these transformations, various groups and semigroups of automata
transformations and groups defined by noninitial automata of special types.

Groups of automaton transformations have been already investigated in the
early sixties of the 20th century (see [l]-[4]). Recent result in the field of semigroups
and groups are presented in [6]-[7]. The papers [5] and [8] present reviews of the
main results of the theory of automaton transformation groups and semigroups.

Mealy automata turned out to be a convenient tool of defining groups and
semigroups. The thing is that small (in number of states and alphabet symbols)
Mealy automata generate complex groups.

Those of particular interest are groups with extremal properties, for example,
periodic groups of Burnside type, groups of intermediate growth, etc. Mealy au-
tomata are used to construct examples of such groups. With their help, Burnside's
problem was solved, as well as the problem of intermediate growth groups existence,
posed by Milnor in 1968 (the solution of the latter belongs to Grigorchuk).

In the work [10] semigroups and the growth functions of two state automata
over two-symbol alphabets are investigated. The question on what groups and
semigroups are defined by three state automata over two-symbol alphabets remains
unsolved. Therefore, we consider two special classes of automata.

'Odessa I. I. Mechnikov National University. E-mail: {aantonenko,eberk}8mail.ru

23

24 Alexander S. Antonenko and Eugene L. Berkovicii

The first part of this study sets out the basic definitions and results of Mealy
automata theory and gives the definitions of groups and semigroups defined by
automata.

The second part is dedicated to Mealy automata over two-symbol alphabets,
and a classification of states of such automata is suggested. Two special types of
automata are defined on this basis: automata without branches and slow-moving
automata.

We obtain results for automata without branches which characterize the groups
defined by them for any number of states. Also we study semigroups defined by
automata without branches.

The class of slow-moving automata is very wide, and this is why we have limited
our investigation to its subclass, namely slow-moving automata of finite type. We
have studied the algebraic properties of transformations defined by slow-mowing
finite state automata. We have also found family of slow-moving transformations
of finite type such that any other one is a composition of members of this family.

1 Preliminaries
Definition 1 ([11, 12]). A finite Mealy automaton is an ordered quintuple A =
(X, y, Q, 7r, A), where X is the input alphabet, Y is the output alphabet, Q is the
finite nonempty set of states, 7r : X x Q —> Q is the transition function and A :
X x Q —> Y is the output function. X and Y are finite nonempty sets.

We will consider only finite automata whose input and output alphabets coincide
(X — Y). We denote such automata by the quadruples A = (X, Q, tt, A). Mainly
we will consider automata over the two-symbol alphabet X = {0,1}.

Let Tx = {f\ f X —> X} be the semigroup of all transformations of the set X
(the full transformation semigroup), Sx = {/| / •' X —» X, f is bijective} the group
of all bijective transformations of the set X (the full symmetric group), X* the set
of all finite words over X and Xu the set of all infinite words (w-words) over X.

It is convenient to describe finite automata by the Moore diagrams. We will
use the following modification of it. The Moore diagram of an automaton A is an
edge-labelled and vertex-labelled directed multigraph Da with the set of vertices Q.
Vertices <?, and qj of the graph Da are connected by the oriented edge in direction
from qi to qj marked by the label x, if tt(x, Qi) = qj. Here x G X, qi,qj 6 Q.
Every vertex q is labelled by the transformation Xq € Tx of the alphabet X that
corresponds to the output function at the state q, i.e. \{x) = A(x,q), where
x € X, q&Q.

The functions IT and A can be extended naturally to mappings of the set X* x Q
into the sets Q and X* by the following equalities [12]:

tt(A ,q) = q, Tr(wx,q) = ir(x,n(w,q)),
A(A, q) = A, \{wx, q) = \(w, q)A (x, TT(W, q)),

where A £ X* is the empty word, q € Q, w £ X* and x € X. The function A

Groups and Semigi'oups Defined by some Classes of Mealy Automata 25

can also be extended in a natural way to a mapping A : Xw x Q —» Xu (see for
example, [12]).

Definition 2 ([12]). The transformation fq : Xu —» Xu defined by the equality
fq(u) = X(u,q), where u £ Xu, is called the automaton transformation defined by
the automaton A = (X, Q, n, A) at state q.

The Mealy automaton A = (X,Q,n,X), where Q = {90, 9i, • •• ,<j„-i} , defines
the set Fa = {/«>> /<»>••• > fqn-i} automaton transformations over X u .

Definition 3. The Mealy automaton A is called invertible if all transformations
from the set FA are bisections.

It is easy to show (see for example [5]) that A is invertible if and only if the
transformation Xq is a permutation of X for each state q £ Q.

Definition 4 ([12]). The Mealy automata Ai = (X,Qi,iTi,Xi), i = 1,2, are called
isomorphic if there exist two permutations ip € S\- and a one-to-one mapping
0 Q\ * Q2 such that

0TTi(x,q) - ir2(£x,6q), ipX^x^) = X2{£x,9q)

for all x £ X and q € Q\.

Definition 5 ([12]). The Mealy automata Ai, i = 1,2, are called equivalent if
FAi =FA2.

Proposition 6 ([12]). Each class of equivalent Mealy automata over the alphabet
X contains, up to isomorphism, a unique automaton that is minimal with respect
to the number of states (such an automaton is called reduced).

The minimal automaton can be found using the standard algorithm of mini-
mization.

Definition 7 ([13]). Fori = 1,2, let Ai = (X,Qi,TTi,Xi) be arbitrary Mealy au-
tomata. The automaton A = (X,Qi x A) whose transition and output func-
tions are defined by

7T (a;, (91,92)) = (ti (A2 (x,q2) ,qi) ,ir2 (x,q2)),

M z , (91,92)) = Ai (A2 (x,<?2) ,<?i),

where x € X and (91,92) € Qi x Q2, is called the product of the automata A\ and
A2.

Proposition 8 ([13]). For any states 91 € Q\, q2 € Q2 and arbitrary word u € X*
the following equality holds:

/(9i,92M(U) = /«i.A, {fq2,AAu)) •

Definition 9. The semigroup generated by the set Fa = {fq0, fqi, • • •, fq,Ui} °f
transformations defined by a Mealy automaton A in all of its states is called the
semigroup defined by the automaton A. In the case of an invertible automaton A
the group generated by Fa is called the group defined by the automaton A.

26 Alexander S. Antonenko and Eugene L. Berkovicii

2 Two special classes of automata
In this section we consider two special classes of automata. We will use the following
classification of automata states.

Definition 10. Let A = (X, Q,tt, A) be a finite automaton. Let us call a state
q£Q

1. a rest state if for each x £ X, ir(x,q) = q (the automaton will stay in this
state)

2. an unconditional jump state if there exists a q' £ Q, such that q' / q and for
each x € X, TT(X, q) = q'

3. a waiting state if there exists an x £ X such that ir(x,q) = q', q' ^ q and
for each symbol x' £ X with x' ^ x, ir(x',q) = q. We will also call this state
x-waiting state

4- a multi-waiting state if there exist X' C X andq' ^ q such that 2 < \X'\ < |A'|
and for each x' £ X', ir(x', q) = q' and for each x X', TT(X, q) = q

5. a conditional jump state or branch state if there exist two distinct symbols
xi / X2 such that ir(x\,q) ^ n(x2,q) q

Definition 11. We say that an automaton A is an automaton without branches if
all of its states are rest states or unconditional jump ones.

In other words, the transition function of an automaton without branches de-
pends only on the current state and is independent of input symbols. So for all
q £ Q and x £ X, we denote n(x, q) by s(q).

Definition 12. We call an automaton A slow-moving if all of its states are rest
states or waiting ones.

In other words, for every state q, there is at most one symbol x such that
(2, q) ± q-

Definition 13. We call a transformation f : Xu —> slow-moving (without
branches) if it can be defined by a slow-moving automaton (without branches).

Example 14. Consider an example of a slow-moving automaton over the two-
symbol alphabet X = {0, 1} shown in Figure 1. We will consider an infinite input
word w £ X^ as a 2-adic integer. Let f denote the slow-moving transformation
defined by this automaton at the state q\. Then / adds one to any input 2-adic
integer. Therefore this automaton is called "adding machine".

Consider the transformation f2 = f° f- It is clear that f2 adds two to an input
2-adic integer.

Therefore f2 does not change the first input symbol, and then, not depending
on what the first symbol was, acts as transformation / again. Thus, the second
symbol is changed, in any case. So the initial state of the automaton defining
such transformation can be neither the state of waiting nor the one of rest and the
transformation f 2 is not slow-moving.

Groups and Semigi'oups Defined by some Classes of Mealy Automata 27

qi _ _
< s L) (u

1

Figure 1: The adding machine

So the product of two slow-moving automata (transformations) is not a slow-
moving automaton (transformation) in general.

3 Automata without branches
Definition 15. We call the word transformation f : Xw —> X" symbol-by-symbol
one, if

f (xixz ...xn...)=gi (xi) g2 (x2) ...gn (xn)...

where gj : X —> X.
Lemma 16. The transformation defined by an automaton without branches is a
symbol-by-symbol transformation.

The proof is clear.

Thus, the transformation / is completely defined by a word g £ (Tx)u, g =
(j\(j2 • • • • Let us denote the corresponding transformation by Fg:

Fg (xix2 ...xn...)=gi (i i) 52 ...gn (xn) •••, 9 & Xu, g = gxg2 ... gn ...

In case / is defined by an invertible automaton over the two-symbol alphabet,
each map gi is either the identity permutation, or transposition. In the first case,
we consider gi = 0, in the second one gt = 1.

Lemma 17. Let the transformation f be defined by an automaton without branches
with n states. Then f = Fuw, where |u| = n, and w £ (Tx)w is a periodic word.
Moreover, the length of the period does not exceed n.

Proof. Let A = (X, Q, n,X) be an automaton without branches. Then the transfor-
mation corresponding to the state qk £ Q is Fg, where g = g\g2 • • •, gi+i = Xsi(Vky
Recall that s (qi) = ir(x, qi).

Let us consider the sequence sl (qk) where i — 0,1,2, Members of this
sequence belong to the set Q = {90, Qi, • • •, Qn-i}, which consists of n elements.
Hence there are two equal elements sp (qk) = sp+i (qk) among the first n + 1 ones,
where p < n + 1, I > 0, I < n.

Let r = n — p > 0. Fix an arbitrary i > 0. Applying sp (qk) — sp+l (qk), we
obtain s r + i (sp (qk)) = sr+i (s p + l (qk)). Hence s n + i (qk) = sn+i+l (qk).

28 Alexander S. Antonenko and Eugene L. Berkovicii

So the sequence s1 (<jt) is periodic beginning from the member sn (qk). It follows
that the sequence (ji+\ — \s< (qk) is periodic beginning from the member gn+1- The
length I of the period does not exceed n. •

3.1 Groups defined by invertible automata without branches
over a two-symbol alphabet

Let us remark that the output function of an invertible automaton over a two-
symbol alphabet corresponding to a state is either the identical permutation or
the transposition. In the first case we write Agi = 0 G Z2. In the second case
we write Xqi = 1 £ Z^. Since the transition function n of an automaton without
branches is independent of any input symbols, we use the notation S(QI) = TT(X, qCj.
Let us consider (Z2)° as the trivial group. The following theorem is applicable:

Theorem 18. Let U be an invertible automaton without branches over a two-
symbol alphabet and let n be the number of its states. Then the group defined by it
is isomorphic to the group (Z2)r, where r = rank .A,

/ A, •go A

V \

s(«o)

W)

\

A G Mn(Z2), s{qi) = n(x, qi), x G X.

We first prove some auxiliary lemmas. Let v* — vvv..., where v € (Z2)n , v* G
(Z2)u. We can associate each word uv having the length n + m (|u| = n, = m)
with the map Puv — Fuv •

Lemma 19. The composition of invertible TTIIvps Puv CLTid Psw the map Puv+sw ?
where u,s £ (^2)"; vyw £ {Z<ifx, addition is taken modulo 2 like in the group
(. Z 2) n + m •

Proof. The proof is straightforward. •
Lemma 20. Let U be an invertible automaton without branches over a two-symbol
alphabet, n the quantity of its states and m the least common multiple of all lengths
of the periods of sequences {s1 (?Jt)}i=J , fc = 0 , . . . ,n — 1, I = n + m.

Then the group defined by U is isomorphic to the group (Z2)r, where r = rank A!,

(A,

A' =

go

V A Qn—1

^s(go)
A s (q i)

A s l - 1

A.»!-i
(go)

(9i)

\

^ ' - ' (in - l) /

A! G Mni(Z2), s{qi) = ir{x, q¿), x G X.

Groups and Semigi'oups Defined by some Classes of Mealy Automata 29

Proof. Let us denote by G the group defined by U. Note that all the transformations
commute with each other and their orders are equal to 2. So every element of G is
a composition-of certain transformations / ; . Transformation fk = Pu , where u is
the fc-th row of the matrix A! (m is a period for any sequence s1 (qk) beginning from
n-th member). The composition of these transformations fi is the transformation
Pw, where w is the sum of the corresponding rows.

Thus, every element of G is a map Pw, where w is a linear combination of rows of
A' in the linear space (Z2)n+m over the field Z2 . There are r linearly independent
rows among rows of the matrix A'. The vector w is uniquely representable in the
form of linear combination of r linearly independent rows of the matrix A!.

Set one-to-one correspondence between the elements 5 G G, g = Pw, and r-
vectors of coefficients of linear combination of linear independent rows of the matrix
A! representing the vector w. Composition operation corresponds to the operation
of addition of the coefficient vectors from (Z^Y •

Thus, G is isomorphic to (Z2Y• •

Proof of Theorem 18. To prove the theorem we need to show that rank A =
rank A!. For this, let k be the minimal number such that the first k-1 columns
of the matrix A' are linearly independent, but the first k ones are linearly depen-
dent.

Then the k-th column is a linear combination of previous columns:

Ak = b1A1 + b2A2 + ... + bk-1Ak~1, (1)

where A1 is a ¿-th column of the matrix A!. We can write (1) in a more detailed
form:

= + fo^siqi) H 1"
As<=- 1(Q2) = bi\Q2 + 62-^(52) -+• 1- bk-l\sk~Hq2)

^sk~i(qn) = + b2Xs(9„) + 1- h-1 \sk-2(qn)

Let us prove that

Ap+k = h Ap+1 + b2Ap+2 + ... + bk^Ap+k-\ (2)

for all p from 0 to I — k.
Really, fix an arbitrary i between 1 and n. Let sp(qi) = qr. Then

bl^sr(qi) +^2Asp+i(9i) + ... + 6fc_lAsp+fc-2(9.) = bi\qr +b2\s(qr) + ... +6fc_iAsJ=-2(9r)
= Asfc-i(9r) = AgP+fc-i(9.)

Thus (2) has been shown. From (2) we can conclude, by induction, that the
column Ap+k for any p = 0 , . . . , I — k is a linear combination of the columns A1,
A2, ..., Ak~l. Since k < n + 1, we conclude that rank A = rank A'. •

30 Alexander S. Antonenko and Eugene L. Berkovicii

X
X X

1,2
X X

\
•o

2 X
• < —
0,1 o9 J

Scheme 1 Scheme 2 Scheme 3 Scheme 4

2 x

S \
0,1

I>

\
0 1

Scheme 5 Scheme 6 Scheme 7

Figure 2: Schemes of transition functions of invertible automata without branches
with three states

Theorem 18 allowed us to describe the groups defined by invertible automata
without branches with three states.

Definition 21. We call two transition functions ni, n2 : X x Q —» Q equivalent, if
there exists a permutation 9 G SQ such that

•nl(x,q)=e-1n2{x,e{q)) Vx€X,q£Q

For automata without branches this equation is s(qi) = 6~1s(6(qi)).
There are 7 equivalence classes of transition functions of invertible automata

without branches with three states. They can be described with the help of schemes
(see Figure 2). The cross signs denotes rest states; the dot signs denotes uncondi-
tional jump states. The arrows indicate action of transition function. Consider for
example automata with transition function corresponding to Scheme 7.

Scheme 7. Let U = Xqi G Z2.

(to t\ to \
U to h
t2 ti t0 J

If to = 0, 11 = 0, t2 = 1, then the rank equals 1.

If to = 0» tl = 1, *2 = 0, then the rank equals 2.
If to = 0, h = 1, t2 = 1, then the rank equals 3.
If to = 1, ti = 0, t2 = 0, then, the rank equals 2.
If to = 1, ti = 0, t2 = 1, then the rank equals 2.
If to = 1, h = 1, ti = 0, then the rank equals 2.
If to = 1, ti = •1, «2 = 1, then the rank equals 1.

Groups and Semigroups Defined by some Classes of Mealy Automata 31

3.2 Semigroups defined by automata without branches
Let v* = vvv ... , where v G (Tx)n , v* 6 (Tx)u • We can associate each word uv
having the length n + m (|u| = n, |u| = m) with the map Puv = Fuv..

Lemma 22. The composition of the invertible maps Puv and Psw is the map
Puvosw, where u,s £ (Tx)n ,v,w € (Tx)m, and by o we denote element by ele-
ment composition of vectors.
Proof. The proof is straightforward. •

For semigroups defined by automata we can formulate a theorem being a rough
analogue to Lemma 20.
Theorem 23. Let U be an automaton without branches and let n be the number of
its states. Let m be the least common multiple of all lengths of periods of sequences
{s l (<?fc)}°^n, k = 0 , . . . , n — 1, and let I = n + m.

Then each transformation defined by U is representable in the form Pw, where
w = As(g),..., A3i-i(g)) £ (Tx)1 • Therefore, the semigroup defined by U is
isomorphic to the semigroup

s9 ((V> • • • > ^S'-Mqo)) '••'•> ' • • • > ^'"'(in)))
where sg (go, • • • ,gn) is the semigroup generated by go,... ,gn.

Proof The semigroup defined by U is generated by the transformations /¿, which,
by Lemma 17, are representable in the form Fuw where |u| — n, w 6 X " is a
periodic word, uw = (Aqi, Xs(qi), • • •, X3i-\(qi),...). By the definition of m, fi are
representable in the form Puv, where |u| = n, |i>| = m. Finally, the isomorphism
follows from Lemma 22. •

3.3 Semigroups defined by automata without branches over
two-symbol alphabets

Automaton transformations over the two-symbol alphabet X = {0,1} are uniquely
determined by vectors u of length I the components of which belong to

;)./>-(; !).«-•-($ I) ;) }
By Lemma 22, the composition of transformations corresponds to the element-

by-element composition of vectors. So we reduce study of semigroups defined by
automata without branches to study of semigroups of vectors the elements of which
belong to T2.

Let / , g be transformations defined by an arbitrary automaton without branches
over two-symbol alphabet. The relationships f f f — f , f g f f = f g are true.

We established by numerical experiments that the semigroups of automaton
transformations defined by automata without branches with 3 states over the two-
symbol alphabet have the following 19 orders (numbers of elements): 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 20, 22, 25, 31. Note that the groups defined by
such invertible automata have only one of the following orders: 1, 2, 4, 8.

i

32 Alexander S. Antonenko and Eugene L. Berkovicii

4 Slow-moving automata
The class of slow-moving automata is very wide and it is a rather complicated
thing to investigate algebraic properties of transformations defined by slow-moving
automata in a general form. That is why we shall consider one more class of au-
tomata, namely automata of finite type and investigate the transformations defined
by slow-moving automata of that class.

4.1 Automata of finite type
Definition 24. We call a finite automaton A a finite type automaton if the se-
quence of automaton states for any infinite input word and for any initial state will
stabilize.

Definition 25. A transformation of infinite words f : X" —> X" we call a finite
automaton transformation of finite type if there is a finite type automaton defining
the transformation f in some initial state.

It is rather easy to determine whether the given automaton is a finite type one
by its Moore diagram.

Proposition 26. A finite automaton is an automaton of finite type if and only if
its Moore diagram is an oriented graph containing no oriented cycles besides the
loops.

Proof. Necessity. Let us suppose that the Moore diagram of a finite automaton
contains an oriented cycle:

Qii i Qi2 J • • • i Qik > Qii

Let the automaton start work from the state q . Then there is a sequence of
input symbols such that the automaton will subsequently be in the states

Qh i Qi? i • • • > Qik i Qii i Qi21 • • •: Qik 1 i • • •

Therefore, the sequence of states is not stabilized.
Sufficiency. Let us take an initial state and a sequence of input symbols. Denote

the respective sequence of automaton states by {qik}kLi- If the automaton was in
some state q and then went to some other state then it will not be able to return
to the state q (since its Moore diagram does not contain oriented cycles besides
the loops). Consequently, for each state q there is at most one number n such that
q = qin ^ 9i„+1 , which means that there are only finitely many numbers n for
which qin / 9i„+1J that is the sequence {qik is stabilized. •

Note that the product of two slow-moving automata (transformations) is not
necessarily a slow-moving automaton (transformation), see Example 14. In contrast
to the class of slow-moving automata the class of automata of finite type is closed
with respect to the product.

Groups and Semigi'oups Defined by some Classes of Mealy Automata 33

Proposition 27.

1. The product of two automata of finite type is an automaton of finite type
again.

2. The automaton inverse to an invertible automaton of finite type will be of
finite type

Proof. Statement 1 follows from the definition of the automata product: if the
sequence of the first automaton states is stabilized at the state 91 at the n-th step,
and that of the second one is stabilized at the state 92 at the m-th step, then the
sequence of the states of the product is stabilized at the state (91,92) at the step
with number max (m,n).

Statement 2 Let A be an invertible automaton of finite type. By Proposition 26
its Moore diagram contains no oriented cycles besides the loops. Then the Moore
diagram of the inverse automaton of A contains no oriented cycles besides the loops,
so it is also an automaton of finite type. •

Corollary 28. The set of all finite automaton transformations of finite type is a
subsemigroup of the semigroup of all finite automaton transformations.

Corollary 29. The set of all invertible finite automaton transformations of finite
type is a subgroup of the group of all invertible finite automaton transformations.

4.2 Transformations Defined by Invertible Slow-moving Au-
tomata of Finite Type over Two-symbol Alphabets

In this section we shall consider only invertible slow-moving automata of finite type
over the two-symbol alphabet X = {0,1}. We have studied the algebraic properties
of transformations defined by such automata. We have also found a family of slow-
moving transformations of finite type such that any other one is a composition of
members of this family.

To describe the transformations defined by such automata we shall need spe-
cial operators acting on the set of all transformations of infinite words =
{ / 1 / : Xu —> Let p be some substitution from the set S.\ = {id, inv} (here
id is an identical substitution, inv is a transposition). For convenience of notation
extend the action of p substitution to the sets X*, Xu symbol by symbol:

p(x 1X2 . . . X n) = p(xi)p(x2) • • .p(xn) , p(x\x2 ...xn...) ~p(xi)p(x 2).. .p(xn) . . .

Let / £ Tx". We will denote by p0]f the mapping which acts on an input word
as a p substitution up to the first occurrence of zero (including it), and then as an
/ transformation. We can consider pO] as the operator of the form

pO] : T x „ - T x *

Definition 30. Let f £ TxThen pO]/ = g is the transformation which acts by
the •rule

g (ln0iu) = p (ln0) f(w),VweX",n>0, g(l*) = l*

34 Alexander S. Antonenko and Eugene L. Berkovicii

1 0

Figure 3: A slow-moving finite state automaton defining the transformation
invO]idl]inv.

Here 1* is the infinite word composed of the symbol 1. In other words g acts
up to the first zero (including it) by p substitution, and then by / transformation.

The operators
pi] : —* T x "

are defined similarly.

Definition 31. Let f 6 Tx<-> • Then pl\f = g is the transformation which acts by
the rule

g (Onlu;) = p (0n l) / (to), Vw G Xw, n> 0, g (0*) = 0*

Let us denote the set of all such operators by WG — {p0],pl]|p € SX}•

Example 32. A slow-moving transformation s — invO]idl]inv transforms the
words from X w as follows. All the symbols up to the first zero (inclusive) are
inverted, then until the first one (after the first zero), inclusively, all symbols will
remain unchanged, and the rest of the symbols will be inverted again.

This transformation is defined by the automaton shown in Figure 3.

Any transformations defined by invertible slow-moving finite state automata
can be represented with the help of the above-mentioned operators.

Proposition 33. Let A be a slow-moving invertible finite state automaton. Then
any transformation f defined by it can be represented in the form

f = h\h2 • •. hkp, where hi G WG, p G SX, K > 0. (3)

The converse is also true: if the transformation f can be represented in the form
(3), then it can be defined by a slow-moving invertible automaton of finite type.

Proof. Let A be an invertible slow-moving- automaton of finite type. Remove from
its Moore diagram all the loops. Then there will be no more than one arc going
from each vertex (since all the states are waiting states or rest states).

In addition the obtained graph will not contain any oriented cycles (since A is
an automaton of finite type).

Let us fix some initial state q\ of the automaton. Let us move along the graph
beginning from its vertex qo until we reach the vertex without edges coming fr om
it (sooner or later it will happen since the number of vertices is finite and we
cannot be twice in one and the same vertex). While doing it we shall visit vertices

Groups and Semigi'oups Defined by some Classes of Mealy Automata 35

corresponding to the waiting states q\, q2, • • • 1 Qk and to the rest state qk+i, where
k > 0. Let qi be the xt-waiting state and let the corresponding output function
be given by the permutation pi, where 1 < i < k. Let p be the output function
corresponding to the rest state qk+\. Then the transformation / defined by the
automaton A in its initial state qi can be represented in the form / = h\h2 • • • hkp,
where hi = piXi].

Let us prove the converse statement. Let the transformation / be represented
in the form / = h\h2 • • • hkp, where hi = PiXi). Then the automaton with the
ij-waiting states qi (1 < i < k) and output functions pi together with the rest state
qic+i and the output function p will define the transformation / . •

To formulate the properties of the introduced operators we shall need one more
denotation for them. Let p S S\, x & X. Set

Let us agree that p° = id, and p1 — p, p S Sx-

Example 34. A slow-moving transformation

s = invO]idl]idO]invl]idl]inv (4)

may also be represented in the form

From notation (4) it is clear how exactly the transformation acts, and what
automaton defines it. However, notation in the form (5) turns out to be more
convenient in many cases, for example, when one has to find a composition of two
transformations or turn to the inverted transformation.

Proposition 35. The operators from the set Wg have the following properties:

1. Bijeetive transformation under the action of the operator in the form p0\ or
pi] turn into a bijeetive one, and a finite automaton transformation into a
finite automaton one.

2. pxi}px2]... pxk]p = p, Vp £ Sx, Xi £ X, i = 1, k.

3. (^jfoQg=(^j(fog),\/f,geTx^,a,b,c£X.

J f~l, V/ G Tx", f is bijeetive.

36 Alexander S. Antonenko and Eugene L. Berkovicii

6. invx o (£) /o invv
a + x
b + y (invx o / o invv), V/ £ T\u,a,b,x,y £ X,

addition here and further on is taken modulo 2.

Proof. Property 2 follows directly from the definition of the operator px].

Let us prove Property 3. Let — pib], that is a = pi(b), and ^ ^ = pic],

that is b = p2(c). Let us consider the action of the transformation (7) / ° \ n \ g

on the word w £ X ^ in the next two cases

1) w FciVi and 2) w = c*,

Here and further on c is the symbol which is not equal to c, i. e. 1 — c, c* is an
infinite word consisting only of the symbol c, c £ X, wi £ Xu

1) (Fewi) = fab]/ op2c]g) (Fcwi) =

= (Pi&]/) fa (<?c)g(w{)) = fab]/) (p2 (c)n
P2(c)g(w1)) = (*)

Note that p2(c) = b, therefore p2(c) = b (since p2 is injective). Then (*)
fab]/)(bHg(Wl)) = Pi{b)n

Pl(b)f(g(w1)) = P l (p2(c))n P l fa (c)) / (g (Wl))

l(pi°P2)c](fog)} (Fcwi) = Pl fa (c))
(.f°9) (Few i) (fog) (Fcw\)

2) ab)fo[c^ (c*) = (Pib}fop2c]g) (?) = fab]/) (P2 (£)*) =

• fab}/) (b*) = Pi (by = Pl fa (£))• = (fa O pa) c] (/ O 5)) (£•)

((Pl(Pc2(c)))(/o g))(n (f°ff))(c*)

Properties 4 and 5 follow directly from Property 3.
To prove Property 6 we shall use the relationships (6), which follow from Prop-

erty 1:
a + x mv" =| | mv" invy =

b + y
mv" (6)

From (6), applying Property 3, we obtain the required relationship.
The first statement of Property 1 follows from the already proved Pfoperty 5.
Let us prove that a finite automaton transformation / under the action of the

operator px] £ WQ- turns into a finite automaton one. Let / be defined by some
finite initial automaton Aq (with initial state q).

Let us add to the set of states of this automaton a new state qo. At the same
time let us extend the transition function at this state by n(x, qo) = qo', 7t(.t , qo) — q
and the output function by \(x,qo) = X(x,qo) = p(x). It is evident that qo will be
an x-waiting state. Let us choose this state the initial one. Then the obtained
initial automaton A'qo will determine the transformation / . •

Groups and Semigi'oups Defined by some Classes of Mealy Automata 37

It follows from Property 2 of Proposition 35 that the representation (3) for slow-
moving transformation of finite type is not single-valued but it could be always
brought to the form:

pixi]p2x2]. ..pkXk]p, where p ± pk p,pi € Sx, Xi £ X, i-l,k (7)

Let us call the representation (7) canonical.

Proposition 36. Every slow-moving transformation of finite type has exactly one
canonical representation.

Proof. Assume that the transformation / have two different canonical representa-
tions:

/ = P\X\}P2X2) .. .pkxk]p = pWi\P2x2] • • •P'k>x'k-]P'

Let us suppose that there exists a number I such that Vi < I : pi = p\, Xj = x\, and
pi ^ p\ or x/ ^ x[. Otherwise we have k ^ k' (without loss of generality we may as-
sume k < k') and Vi = l,k : p^ = p<, Xj = x\. This case will be considered later.

Note that the situation k = k', Vi = l,fc : pi = p'it Xj = x\ and p ^ p' is
impossible since one of the representations will not be canonical.

If pi ± p[, it is easily seen that <

f (xix2 .. • xi-iaw) = {pixi]p2x2) • • .pkxk}p) (xix2 ...xi-iaw) =

= Pi(xi)p2{x2) • ..pi-i(xi-i)pi(a)u
f (X1X2 . . . Xl-\aw) = {p'1x'1)p2x'2\...p'kx'k}p')(x1x2...x[-iaw) =

= p'l (x 1)P2 (x2) • • • p'l-1 (xi-1)p[(o)u'

where a £ X,w, u, u' £ Xu. This is impossible since pi (a) ^ p[(a). If pi = p{ = po,
then we shall find a maximal number m such that po = p/ = Pi+\ = ... = p m , m <
k (if m < k, then pm ^ p m + i) .

Similarly, rn' is a maximal number such that p{ — p'l+l = ... = p'rn,. Let us
assume that m — I < m' — I, the case m — I > m' — I can be treated in a similar
way. Then it is not difficult to see that

f (xxx2 ... x;_ixi... xmaw) = (pixi]p2z2] • • -PkXkjp) (xxx2 ... x ;_ixi... xmaw) =

= pi(xi)p2(x2) • • .pi-i(xi_i)p0 (xi...xm)r(a)u,

where r pm+i if m < fc, and r = p if m = k (a £ X, w, u, u' £ Xw). On the other
hand

/ (xix2 ...xi-ixi... xmaw) = (pixijpa^l • • •p'k>x'k']p') (xix2 • • • xi-ixi • • • xmaw) =

= P'I(XI)P'2(X2) • • -p'^iixi-^po (xi.. ,xm)p0(a)w' (8)

which is impossible since po (a) ^ r (a).
We need only consider the case when k < k' and Vi = l,k : Pi = p'it x< = x\.

There are two subcases:

38 Alexander S. Antonenko and Eugene L. Berkovicii

1. 3s > k : p'3 p and

2. (Vs>k:p's=p)k(p'¿p)

In the first subcase let s be the minimal number such that p'a ̂ p. In the word
/ (x[x2 • • . x'saw) the symbol with number s+1 will be p's (a) on one side and p (a)
on the other side. In the second subcase in the word / (x\x'2 ... x'kaw) the symbol
with number fe+1 will be p' (a) on one side and p(a) on the other side. Therefore,
in any cases we obtain a contradiction. •

Let us consider a family of slow-moving transformations of finite type:

c*o = inv, ai = idO]inv, a2 = idO]idO]inv, ..., an = idO]ninv,

All the a, are the involutions, that is af — id. We will show that all the slow-moving
transformations of finite type can be represented in the form of compositions of a*.

Theorem 37. The following equality holds

— /T,°o_,ao+ai ai+a2 an-2+On-i an_i+a„+f>n_i f>n-i+i>n-2 nb2+bi b,+bn bn — a 0 a x a 2 . . . a n _ 1 a n a n - i •••"2 "1 "0
n > 1 (9)

Proof. The proof will be made by induction on n.
Base of induction: n = 1.

Applying Property 6 of Proposition 35, we obtain

I mva> = inva° o inva° o l ? invai o invb° o invb° =
bo

0
bo + bo

1
0

(inva° O inv0,1 O invb°) O i = mvao O I ?0 + j (inva° O invai O invb°) O invbo =

= »0° 0 (T) (invao+ai+b°) o ab0° = off O a?0 + Q l + i , n o ab0"

If ao+ai+6o = 0, then ^ (inva°+ai+bo) = id, otherwise ^ (im>a°+0 l+60) = ai .
Transition of induction: Suppose that the statement of the theorem is valid for
n = k — 1. Let us prove it for n = k:

= invao O invao O fab° J U1 J • • •) inv<i" 0 invbo 0 invbo =

Groups and Semigi'oups Defined by some Classes of Mealy Automata 39

Applying Property 6 of Proposition 35, we obtain

fa o + ao
bo + b o

inva° o ' a i
bi

] mD"' o invbo
Ofc-l

o mv " =

Applying the assumption of induction:

£*n o

mv u oft„'a "I „01+02 ̂ "2 +a-3 o "1 a0 ... a: ot-2+ofc-i ak-i+aic+bk-i
fc-2 a fc-1

o a pk-l+bk-2
fc-2 ,. a b3+b2ab2+bi/^bl L>j oil ,,bo

ao+ai aj +a2 o2+a3 a,

o a

' a a0 . a

a0 ' o inv J | oinv =

fc-2 a fc-i

i>fc-l+f)fc-2
fc-2

i>3+i>2 _,f>2 +61 +6() a a, 0 o a. bo _

Applying Property 4 of Proposition 35 and the relationship c^ = a i + 1 , we

obtain

— "0 "1 'a; ... a fc-i OLu a fc-i . . . a ¡>2+(>!„, i>l+f>0.-,i>0 'a a. 0

•
Thus, a slow-moving transformation of finite type can be represented as follows:

s = a^a^-.a^, (10)

where

(10.1) ir ir+1 for all r — l,k and
(10.2) there exists an m, so that iv < iq, if p < q < m, and ip > iq, if m < p < q.

On the contrary, if {¿r}^=1 is the sequence of nonnegative integers satisfying
conditions (10.1) and (10.2), then it follows from Theorem 37 that the transforma-
tion s — ail ai2... ailc is slow-moving of finite type (it is not difficult to select the
corresponding ai, bi € Z2).

4.3 Noninvertible slow-moving automata of finite type
Let us consider the slow-moving automata of finite type over the two-symbol al-
phabet X — {0,1} being a generalization of the corresponding invertible automata
studied in Section 4.2. To describe the transformations defined by such automata,
we need to extend the set of the operators considered in Section 4.2.

Let p be some transformation from the set T\ = T2 = {id — e,inv = a, a, /3}.
Extend the action of the transformation p to the sets X* and Xw symbol by symbol
as in Section 4.2.

40 Alexander S. Antonenko and Eugene L. Berkovicii

The operators pO] and pi] are introduced similarly as in Section 4.2:

pO}:Tx„ ^Tx», pO]/ = g,

where g acts according to the rule

g (1"0V) - p (ln0) / H ,Vw€X",n> 0, g (1*) = p (1*)

and
pl] : Tx" —» Tx", pl]f = g,

where g acts according to the rule

g (0"lu>) = p (0n l) / (tu), Vu; G X", n > 0, g (0*) - p (0*) -

Set Ws = {px]\p&T2,x G X) = {p0],pl]|p GT2}. It is evident that WG C Ws.

Proposition 38. Let A be a slow-moving automaton of finite type. Then any
transformation f defined by it can be represented in the form

f = hih2 ... hkp, where hi G Ws,p &T2,k>0 (11)

The inverse statement is also true: if the transformation f can be represented
in the form (11), then it can be defined by a slow-moving automaton of finite type.

Proof. The proof is similar to that of Proposition 33. •

Let us introducé one more notation for the operators from Wg:

px) = ^p(x)j ,a = 1, P € { a , / ? }
p G {id, inv}

M y V
The notation of the form I a I corresponds to the notation px] = (,) G Wg of

W KJ
Section 4.2. Set p° = id, and p1 = p, p G T2. Let x = 1 - x, x G X - {0,1} .

Proposition 39. The following properties hold for the operators from VF5:
1. Finite automaton transformations turn into finite automaton transformations

under the action of. operators of the form pO] or pl].

2. px\]px2].. .pxk]p =p, for all p E T2,Xi e X,i = 1, k.

3. for all g G Tx», a,be X, x€ X", n > 0

(V*bx^j = a^ag (x),

Groups and Semigi'oups Defined by some Classes of Mealy Automata 41

4. for all g G Tx», a,be X,xG r , n > 0

a\g\ (Tbx)=an+lg(x), f i a) p) (5*) = a*

5. ^ a j / 0 g = ^ a j (f o g) , V f , g e T x » , a , b , c e X .

fd\ / d \
6. invxo I a foinvy = a + x (invx 0 / 0 invv), V / G T\-*>, a, b,x,y G X,

\bj \b + yj
the addition here and further on is taken modulo 2.

Proof.

1. The proof is similar to that of Property 1 for the operators from WQ

2. The proof follows from the definition of px).

W

3. Let p G {id, inv}, p(b) = a, p(b) = a. Then pb] = [a j , hence from the

definition of pb] the property follows.
A\

4. Let p G {a,P},p(b) = p(b) = a. Then pb) = l a] , hence from the definition w
of pb) the property follows.

5. Let us consider the action of the left and right sides of equality on words of
the form c"cx, where n > 0, x G Xu and c* = c c . . .
Using properties 3 and 4 we obtain:

/<e\
a- J f° I b | g (cncx) = | a | /

'0>
b I g(cncx) = 0 /(r6 f f(x))

(anaf(g(x)), d = 0 _ fa"a (/ o g) (x), d = 0 _ (f \
\an+1f (g (x)) , .d = l-\a»+1(fog)(x), d = 1 ~ 1")

a | (fog)(?)
Cj

42 Alexander S. Antonenko and Eugene L. Berkovicii

0 \ / 0
6. By Property 2, | a + i I invx = invxa]invx — invc; I b | invv

a J \b + Vj
/d\ fd\ / 0 \

invvb]inyv = invv. We have a / o invv = I a I / o I b I invv =

W W V+y)
d \
a I (/ o invy). If x = 0, then Property 6 turns into the last equality.

yb + y)
Otherwise, if d = 0 then Property 5 gives

/0\ / 0 \ / 0 \
invx o I a I / o invy — I a + x I invx o I a I (/ o invy) —

W \ a J \ b + y)
(° \ = a + x (invx o / o invy)
\b + yj

(l\ (1 \ If d = l , x = 1, then inv o I a / o invy = inv o I a I (/ o invv). By
W \b + yJ

(M (M the definitions of the operators a and a + 1 we obtain inv o
\b + yj \b + y)

1 \ (M a I (/ o invv) = I a + 1 I (inv o f o invv), which proves Property 6.
^b + yj \b + y)

•
Similarly as in Section 4.2, we can introduce the notion of the canonical repre-

sentation of an arbitrary (not necessarily invertible) slow-moving finite automaton
transformation of finite type which is unique.

Let

ao = inv, a\ = id0]inv, = id0]id0]inv, ..., an = idQ]ninv,

PI = a0}id,p2 = id0}a0]id,p3 = id0]id0]a0]id, ...,PN= idO^aOjid,...

7i = a0]inu,72 = id0]o:0]inw,73 = ¿d0]id0]a0]im;,... ,7„ = idO]n-1aO]m'u,...
50 = a, = idOja, 62 = ¿d0]ici0]a, ..., 6n = idO]na,

= cci, \2ii = Pi+i,\3,i = 7i+ii = Si,i > 0

° (°\
It is evident that we have Aj^+i = irfO]Aj i = 0 I Xj ¿, i > 0,1 < j < 4.

\oJ

Groups and Semigi'oups Defined by some Classes of Mealy Automata 43

All cti are involutions, a2 = id, all /3t, Si are idempotents, that is Pf = Pi,S2 — ¿¿.
It is clear that ccg = id, <5q = ¿o- Let us prove the idempotency of Pi. We have
Pi (ln0x) = 0 n + 1 x, p\ (ln0x) = Pi (0n + 1x) = pi (00"x) = 00nx = px (ln0x),
px (1*) = 0* = 00*,/?? (1*) = Pi (00*) = 00* = Pi (1*). Then, a2 = id0]i (a2) =
id0}Hd = id, pf = idOY'1 (Pi) = idOY^pi = pu 8f '= idO]' (Jg) = idOj^o = <*«• It
is evident that 7, are not idempotents.

Theorem 37 can be generalized to the following: all the slow-moving transfor-
mations of finite type can be represented in the form of compositions of «¿, A , 7t,
(or which is the same Aj,t, i > 0,1 < j < 4).

Theorem 40. Any slow-moving transformation of finite type f = hih2... hup,
where hi 6 Wg, p &T2, k > 0, can be represented in the form

f = /1 o /2 o • • • o fr, r > 0, f j € {Aai<|t > 0,1 < s < 4}, j = Î~F (12)

More exactly, if hi
'Ci-1
bi-i I , ai-i,bi-i,Ci-i £l, i — l,k then

<CLi-lj

f = L0 (co, a0, b0) o Lx (ci, ai, 61) o • • • o Lk-\(ck-i,ak-i,bk-i) o Ck (p) o
O Rk_i (bk-i) o • • • o Ri (bi) O Ro (bo) (13)

where

Li (c, a, b)
a? o a.
a
a

R i (b) = a h o a b

id,

i+1>
opi+i oabi+l,
o 7 i + 1 o a J + 1 ,

if c — 0
if c = l,a + b — 0

if c = l,o + b = 1

Ci(p) =

if p = id
if p = inv
if p = a

„ atioSi, ifp = P

ai,
Si,

The form of the function (13) turns into the form of the function (12) by throw-
ing id from the composition (13), except for the case f — id.

Proof. We will prove the theorem by induction on the number k.
The base of induction. Let k = 0. Then / =p € {id, inv,a,P}, and

id = Co (id) =ao° <20, inv = ao = Co (inv), a — 5o = Co (a),
P — inv o a = ao o So = Co (P)

that is / can be represented in forms (12) and (13).
Suppose that the statement of the theorem holds for k = I and prove it for

k — I + 1. Let g = h2hz... hkp. Then / = hig and by the induction hypothesis g

44 Alexander S. Antonenko and Eugene L. Berkovicii

can be represented as g = LQ (ci, oi , 6i)oLi (02,02,62)°- • -°Lk-2 (cjk-i, a t - i , bfc-i)o
Cfc-i (p) 0 -Rfc-2 (bk-1) ° • • • 0 Ro (M - Note that idO]Li (c, a, 6) = Li+1 (c, a, 6),
idO]Ri (b) = (6), idO]Ci (p) = Ci+1 (p), therefore

zdOjg = L\ (ci,ai,6i) o L2 (c2,a2,b2) o • •• o Lfc_i (cfc_i,Ofc_i A - i) o Ct (p)o
o J R f c _ 1 (6 f c _ 1) o . . . o / ? 1 (6 1)

There are two cases to consider:
(°\

Let /11 = a . Then w
'0\ / . /0\ \

a I g = inva o I inva o I a I g o m n ' o invb =

V W /
a ° \ \ •

= ira;a o [a + a I (¿nva 0 5 0 ¿ra;6) I oinvb = ag o (idO] (a^ ogoag)) o invb =
\\b + bj J

= ag o a? o idO}g o a^ o a£ = L0 (0, a, 6) o id0]g o i?o (6)

from which (13) follows.

Let hi — l a . Then w
/1\ M

a) g = I a i d O 6 g =
>bj \b] \bj

/ /1\ \ I M \
= ¿nt)" o I int;a o I a I id o znub I o mt)b o invb o I invb o I b I g o invb I o invb —

V w / V W /
/A /o\

= infa o I 0 I (inva o id o mu6) o I 0 1 (invb o g o invb) o invb =

W W
= ag o a0]ira;a+b o a j o o a j ° «o = ¿0 (1, a, b) o id(% o Rq (b)

from which (13) follows. •

The form (13) is not necessarily minimal. To reduce the number of its elements
we can remove from it fragments of the form cti o on being equal to id.

Conclusions
In this article we describe groups defined by automata without branches over two-
symbol alphabets. Study of semigroups defined by automata without branches

Groups and Semigi'oups Defined by some Classes of Mealy Automata 45

is reduced to that of vectors over finite full transformation semigroups. We also
study algebraic properties of the transformations defined by slow-moving automata
of finite type. We prove that such invertible transformations can be expressed as
compositions of members of the family {ai } . In the general case, any slow-moving
transformation of finite type can be expressed as a composition of a*, ft, 7¿, <5,.
Further we need to investigate properties of these transformation families and find
all relations between these transformations.

References
B. Csákány, F. Gécseg, On the groups of automaton permutations, Kibernetika
(Kiev), 1965, No 5, pp. 14-17. (in Russian)

F. Gécseg, On the groups of one-to-one mappings defined by finite automata,
Kibernetika, Kiev, 1965, No 1, pp. 37-39. (in Russian)

J. Hofejs, Transformations defined by finite automata, Probl. kibernetiki, 9
(1963), 23-26. (in Russian)

V. P. Zarovnyi, Automatonie permutations and group interlacings, Kiber-
netika, Kiev, 1965, No. 1, pp. 29-36. (in Russian)

Rostislav I. Grigorchuk, Volodimir V. Nekrashevich, and Vitaliy I. Sushchan-
sky, Automata, dynamical systems, and groups, Proceedings of the Steklov
Institute of Mathematics, 231 (2000), 128-203.

S.V. Aleshin, Free semigroup of automata, Vest. Mosk. Univer. Ser. 1. matem.,
meh, 1983, 4, pp. 12-14. (in Russian)

A.S. Oliynyk, On free semigroups of automaton transformations, Matem. zam,
1998, 63, 2, pp. 248-259. (in Russian)

A.S. Oliynyk, I.I. Reznykov, V.I. Sushchansky, Transformation semigroups
defined by Mealy automata over finite alphabet, Algerbraic structures and their
application: Works of Ukrainian mathematical congress, 2001, pp. 80-99. (in
Russian)

I.I. Reznykov, Mealy automata with two states over two-symbol alphabet, which
define finite transformation semigroups, Visn. Kiyv. Univer. Ser. fiz.-mat.
nauk, 2001, 4, pp. 78-86. (in Ukrainian)

I.I. Reznykov, V.I. Sushchansky, Growth functions of automata with two states
over two-symbol alphabet, Dop. NAN Ukraine, 2002, 2, pp. 76-81. (in Russian)

George H. Mealy, A method for synthesizing sequential circuits, Bell System
Tech. J. 34, (1955), 1045-1079

V. M. Glushkov, The abstract theory of automata, Russ. Math. Surv., 1961,
16 (5), 1-53.

46 Alexander S. Antonenko and Eugene L. Berkovicii

[13] Ferenc Gecseg, Products of automata, EATCS Monographs on Theoretical
Computer Science, 7, Springer-Verlag, Berlin, 1986, viii+107 p.

[14] A.S. Antonenko, E.L. Berkovich, On some algebraic properties of Mealy au-
tomata in: Kalmar Workshop on Logic and Computer Science, Szeged, 2003,
pp. 59-68.

Acta Cybernetica 18 (2007) 47-60.

A Classification Scheme for Bin Packing Theory

Edward G. Coffman, Jr.* and Janos Csirik*

Abstract
Classifications of published research place new results in a historical con-

text and in so doing identify open problems. An example in wide use classi-
fies results in scheduling theory according to a scheme originated by Graham,
Lawler, Lenstra and Rinnooy Kan [10]. A similar effort was made by Dy-
ckhoff [6] for cutting and packing problems. Such classification schemes can
be combined with comprehensive bibliographies, e.g., the one provided for
scheduling theory by Bruckner1. This paper describes a novel classification
scheme for bin packing which is being applied by the authors to an extensive
(and growing) bibliography of the theory. Problem classifications are supple-
mented by compact descriptions of the main results and of the corresponding
algorithms. The usefulness of the scheme is extended by an online search en-
gine. With the help of this software, one is easily able to determine whether
results already exist for applications that appear to be new, and to assist in
locating the cutting edge of the general theory.

1 Introduction
For given positive reals a\,... ,an and b\, b2,..., classical bin packing algorithms
partition some subset of { a i , . . . , a n } into blocks B\,B2, • • • ,Bj such that the levels
£(Bi) := flfc satisfy the sum constraints i(Bi) < bi, 1 < i < j. This
definition embraces several packing problems, depending on the way the subset of
the ai's and the integer j are chosen. In bin packing terms, the ai are called items,
the blocks Bi are called bins with respective capacities or sizes bi, and the partitions
are called packings; the notion of packing items into a sequence of initially empty
bins helps visualize algorithms for constructing partitions. It is also helpful in
classifying algorithms according to the various constraints under which they must
operate in practice. The items are normally given in the form of a sequence or list
L= (ai,..., an), although the ordering in many cases will not have any significance.
To economize on notation, we adopt the harmless abuse whereby ai denotes both
the name and the size of the i-th item. The generic symbol for packing is V\ the

•Department of Electrical Engineering, Columbia University, 1312 S.W. Mudd, 500 West 120th
Street, New York, NY 10027, USA. E-mail: egcaee.columbia.edu

t Department of Computer Science, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary.
E-mail: csirikainf.u-szeged.hu

1 Available at http://www.mathematik.uni-osnabrueck.de/research/OR/class/

47

http://www.mathematik.uni-osnabrueck.de/research/OR/class/

48 Edward G. Coffman, Jr. and Janos Csirik

number of items in V is denoted by \P\ and the norm of the packing is defined as
the sum of the sizes of the nonempty bins: Ĥ H :— Y ,̂e(Bi)>o majority
of problems being classified, the entire list is packed, so 1̂ 1 = n and the index j
of the last occupied bin is the packing measure of interest. It is also common to
have all bin sizes the same, in which case the bin size is denoted simply by b and
a,i < b is assumed for all i. Further,' when b functions only as a scale factor, it
is usually normalized to 1; in this case, the norm reduces simply to the number of
bins in the packing, i.e., j = HPy. The term wasted space has the obvious meaning,
WN-ZI^ai-

With bin sizes given by context, let VA(L) denote the packing of L produced by
algorithm A. In the literature, one finds the notation A(L) representing properties
such as IIT̂ C^OH; but since A(L) may denote different properties for different prob-
lems (the same algorithm A may apply to problems with different objective func-
tions), we will need the alternative notation on occasion. The more general forms
with b specified are V(L, b) and A(L, b), but the bin size will be omitted whenever
it has been normalized to 1. The minimum of ^(LJU over all partitions of L sat-
isfying the sum constraints will have the notation: OPT(L) := minp||'P(L)||, the
notation OPT(L) suffering from the same ambiguity as before, i.e., the objective
function to which it applies is determined by context. Moreover, in contrast with
other algorithm notation, OPT does not denote a unique algorithm.

The classical theory refers to the study of algorithms satisfying various operating
constraints which try to minimize, usually only approximately, the number of bins
\\V{L)\\ under the sum constraints £(Bi) < 1. Dual bin packing changes the sum
constraints to ¿(Bi) > 1 and asks for a packing which maximizes the number of bins
under these new constraints. Dual bin packing is often called bin covering, a term
that we will use here. These combinatorial optimization problems are NP-hard;
with problems defined on restricted item sizes or number of items per bin being the
major exceptions, this will be the case for nearly all problems in the classifications
below.

To fix ideas, consider the Next Fit (NF), First Fit (FF), and Best Fit (BF)
approximation algorithms for classical bin packing. Each algorithm packs all the
items of L one by one in the sequence ai, a2,. • •, an. NF packs items in B\ until it
encounters an item, say a*, for which â > 1 — Yli<j<i a,-; that is, al does not fit in
the space left over by a i , . . . , aj_i. At that point ~BX is closed in the sense that no
further items can be packed in B\, and aj is placed as the first item in B2. This
bin-by-bin process repeats, packing the items ait ai+i,... ,an into B2, B3,..., and
continues until no items remain to be packed. The bin being packed at any given
step is called the open bin. Under FF and BF all bins remain open throughout the
packing process. At the i-th step under FF, ai is packed in the lowest indexed bin
with sufficient space (of course, this may have'to be the empty bin just beyond the
last nonempty bin). At the i-th step under BF, a» is packed into a bin in which it
fits best, i.e., with the least space left over. In case two or more bins satisfy this
criterion, the lowest indexed of these bins is chosen.

Another dual of classical bin packing, called multiprocessor or makespan schedul-
ing, takes the number, m, of bins to be constant and minimizes the capacity b such

A Classification Scheme for Bin Packing Theory 49

that L can be packed into m bins of capacity 6; again, the norm ||P(L)j| = rnb is
minimized, but in this case via b for fixed m. List scheduling (LS) is a classical
algorithm for this problem and is organized like WORST FIT (a misnomer in the
makespan context): the next item to be packed is put in a least-full bin, with ties
resolved in favor of lower indexed bins.

Problems fixing the number of bins fall within scheduling theory whose origins
in fact predate those of bin packing theory. In scheduling theory, which is very large
in its own right, makespan scheduling is more likely to be described as scheduling
a list of tasks or jobs (items) on m identical processors (bins) so as to minimize
the schedule length or makespan (bin capacity). Our incursion into scheduling
problems will be limited to the most elementary duals and applications of bin
packing problems, such as the one above.

The most common approach to the analysis of approximation algorithms has
been worst-case analysis by which the worst possible performance of an algorithm is
compared with optimal performance. (Detailed definitions will be provided shortly.)
The term performance guarantee puts a more positive slant on results of this type2 .
Probability models also enjoy wide use, and are growing in popularity, as they bring
out typical, average-case behavior rather than the, normally quite rare, worst-case
behavior. In probabilistic or stochastic analysis, algorithms have random inputs;
the items are usually assumed to be independent, identically distributed random
variables. For a given algorithm A, A(Ln) is a random variable whose distribution
becomes the goal of the analysis. Because of the difficulties inherent to these
problems, even for elementary algorithms, one must often settle for weaker results,
such as bounds on tail probabilities and asymptotic (large-n) estimates of expected
values.

An analysis combining aspects of both the combinatorial and probabilistic ap-
proaches is that of stochastic bin packing, in which a typical problem is to find a
packing algorithm that optimizes the expected value of some performance measure.
These problems are almost always substantially more difficult extensions of prob-
lems that are already quite difficult. The classification scheme will have very few
opportunities to cite such results.

The scheme for classifying problems and solutions will take the form of five fields:
arena, objective function, class of algorithms, results, and constraints. The arena
field describes the nature of the bins3, such as whether they have variable capacities;
the objective function to be minimized or maximized under sum constraints refers
to the number of bins of fixed capacity, the capacity of a fixed number of bins,
etc.; the class of algorithms refers to paradigms such as online, offline, bounded
space, etc. as well as to algorithmic approaches such as grouping and fitting, to be
described in Section 3; the results field specifies performance in terms of absolute
or asymptotic worst case ratios, problem complexity, etc.; and constraints refer

2 So also does the term competitive analysis, which usually refers to a worst case analysis
comparing an on-line approximation algorithm with an optimal offline algorithm.

3The present classification of one dimensional problems will eventually be extended to higher
dimensions, in which case the arena field will also specify problem dimensionality (e.g., packing
2-dimensional bins and strip packing.

50 Edward G. Coffman, Jr. and Janos Csirik

to limitations in problem parameters, such as a minimum placed on item sizes,
a restriction of all data to be integers, and so on. The classification scheme is
intended for general use as a compact means for referring to packing problems;
however, in the entries of the bibliography, the classification will be supplemented
by a brief description of the algorithms studied and the results (typically, but not
always, bounds of some kind) derived for the algorithms.

In what follows, Section 2 covers typical results and performance measures,
Section 3 describes fundamental algorithms, and then Section 4 contains the details
of the classification scheme. The many annotated examples in Section 5 are meant
to familiarize the reader with classification criteria and their limitations.

An updated, classified bibliography with a search engine will be available at
http: / /www. inf. u-szeged. hu/~csirik.

2 Results
There are many forms results take, but the most common in combinatorial anal-
ysis are performance ratios or guarantees, which give the performance of an ap-
proximation algorithm relative to an optimal algorithm. Hereafter, dependence of
performance ratios on a means that all item sizes satisfy a* < a; this dependence
is omitted if there is no upper bound on item size, i.e. a = b. For classical bin
packing, the asymptotic worst-case ratio (or bound) for algorithm A is defined as

R%(a) :=lim sup R™ (a)
k—*oo

with
« " („) : - sup № }

L-.OPT(L)=k I « J

where OPT(L) refers to the optimal offline result. A less formal but more instruc-
tive definition describes R ^ (a) as the smallest multiplicative constant such that
for some additive constant K < oo,

A{L) <R%(a)-OPT(L) + K

for all L.
The absolute worst-case ratio is simply

The comparison of algorithms by asymptotic bounds can be strikingly different
from that by absolute bounds. Generally speaking, the number of items n must
be sufficiently large (how large will depend on the algorithm) for the asymptotic
bounds to be the better measure for purposes of comparison. Note that the ratios
are bounded below by 1; the better algorithms have the smaller ratios.

A Classification Scheme for Bin Packing Theory 51

The performance guarantees for covering have a complementary form. The
asymptotic ratio is

:= liminf RA(k)
k—>oo

where
RA(k):= inf

L-.OPT(L)=k [k J
and the absolute ratio is

L \ OPT(L) J
Note that the covering ratios are bounded above by 1; the better algorithms have
the larger ratios.

Similar performance guarantees are defined for scheduling and a number of
other problems. As can be seen, the ratio notation above is generic; the context
will determine which definition is in force. When all item sizes are at most the item
size parameter a, these bounds are denoted by R'A(a) and RA(oi)-

The determination of time complexities of fundamental algorithms and their
extensions or adaptations is usually routine. The analysis of parallel algorithms for
computing packings is an example where deriving time complexities is not routine.
However, the research in this area, in which results take the form of complexity
measures, has been very limited.

Several results quantify the trade-off between the running time of algorithms and
the quality of the packings. They produce Polynomial Time (or Fully Polynomial
Time) Approximation Schemes [9], denoted by PTAS (or FPTAS). In simplified
terms, a typical form of such results is illustrated by: "Algorithm A produces
packings with 0(e) expected wasted space and has a running time polynomial in
1/e."

Average-case results may be in the form of expected ratios like 1ERA(L) or
simply expected performance ~EA(L), usually in terms of EOPT(L) . (These com-
parisons need not be the same of course.) In many cases, tails of the distributions
are estimated in the process of deriving estimates for expected values.

3 Fundamental algorithms
A number of such algorithms will be incorporated directly into the classification
notation. These include the FIT algorithms FF, BF, and WF which we have
already described. In some cases only the algorithmic approach or structure will
be described, with extensive details omitted. The four structures most often used
in defining algorithms are described below.

3.1 Fitting algorithms
These refer not only to those just mentioned, but also their offline decreasing coun-
terparts denoted by NFD, FFD, BFD, and WFD, where the D stands for decreasing.

52 Edward G. Coffman, Jr. and Janos Csirik

In each case, the algorithm begins with an ordering of L by decreasing item size.
The respective algorithms are then applied to the reordered list. The notation for
the corresponding increasing counterparts simply replaces the D by an I.

Bounded-space algorithms are a subcategory of fitting algorithms and are speci-
fied in many cases by a fitting rule, either FF or BF, and a closing rule. The closing
rule is invoked when the next item to be packed does not fit into any of the open
bins, in which case one of the open bins must be closed and a new bin opened. The
choices for the bin to close are the lowest indexed bin (the First bin) and a bin with
the highest level (a Best bin).

•3.2 Grouping algorithms

Grouping is a standard technique that has been studied at great length with many
variations. Essentially, it refers to schemes that pack/schedule items based on
group membership, where groups are defined by item size. A primary example
called HARMONIC and denoted by is based on a partition of the interval (0,1]
into k subintervals, where the partitioning points are 1 /2 ,1 /3 , . . . , 1/k. Each of
these subintervals corresponds to a different group, and.each has its own open bin;
items belonging to a given group/subinterval are packed only into the corresponding
open bin. If a new item arrives that does not fit into the open bin of its group,
the bin is closed and a new bin of that type is opened. Thus, the packing of
items in each group is an NF packing. Grouping has been defined on other than
the Hk intervals, and it has been combined with various greedy fitting algorithms.
HARMONIC has received so much coverage in the literature that we adopt, along
with the FIT acronyms, the symbol Hk as part of the notation.

3.3 Iterative algorithms

Iterating an algorithm designed for good performance under one objective function
may be an effective algorithm under another objective function. For example, con-
sider approximation algorithms for the'problem of minimizing schedule makespans.
One could iterate BFD on an increasing sequence of "candidate" makespans (bin
capacities) until one is tried with success, which then yields the desired approxima-
tion of the minimum makespan. For iterative versions of fundamental algorithms
we use the prefix I. Thus, the algorithm just mentioned would be called IBFD. In a
similar approach, IWFD could be used as an approximation algorithm for classical
bin packing.

3.4 Limiting item sizes or the number packed per bin

If the number of distinct item sizes is limited, to N say, then when N is relatively
small, substantial improvements in algorithm design and performance are possible.
Moreover, finite (if not actually small) N loses no generality in practice. This as-
sumption leads naturally to integer-program formulations. For example, consider

A Classification Scheme for Bin Packing Theory 53

classical bin packing and define a configuration as any subset of items (with repli-
cation allowed) with a total size at most 1. Let Cjk be the number of items of the
j-th size in the fc-th configuration, and let tk s tk(V) be the number of bins of V
with the k-th configuration. If there is a total of M possible configurations, and
if there are mj items of the j-th size in an instance I of the bin packing problem,
then finding the size (norm) of an optimal packing is solving the following integer
program for I: minimize Yl!k=\ tk subject to X^fcli tkCjk — nij, j = 1 , . . . , N, and
tk > 0, k = 1,. . .M.

Limiting the number of items per bin is a similar restriction, one that has often
been used to greatly simplify average-case analysis. For example, for classical bin
packing, there are simple algorithms packing at most 2 items per bin which yield
smallest possible asymptotic estimates of expected wasted space, when item sizes
are drawn independently and uniformly at random from [0,1].

4 Classification scheme
The notation takes the form

arena| objective Junction | algor ithm.class | results | constraints

This section gives the current lists of entries for each field, with definitions where
needed. The special terms or abbreviations adopted for entries will be given in bold
face.

4.1 Arena
The basic arena as a sequence of one-dimensional bins has already been described.
When sum constraints apply, and all bins have the same size b, then the arena field
will be empty. When this field is not empty, terms like the following will appear.

1. variable bi means that there is more than one bin size and that there is an
unlimited supply for each size.

2. open_end refers to problems in which sum constraints are relaxed as follows:
bin Bi can always accommodate an item if ¿(Bi) < bi but it is closed as soon
as ¿(Bi) > bi. Other notions of exceeding bin capacity will fall under the
general term overfill.

4.2 Objective function
This function will most often be implicit in a term adopted for the corresponding
combinatorial optimization problem.

1. pack refers to the classical problem of minimizing ||7>(L)|| subject to the sum
constraints ¿(Bi) < 1.

54 Edward G. Coffman, Jr. and Janos Csirik

2. makespan refers to the problem of minimizing the common bin capacity
needed to pack L into a given number of bins. The bin-stretching problem is
a special case of the makespan problem in which the value of the bin size in
the optimal packing is known in advance. For this problem, the term stretch
will be appended to the performance-guarantee notation.

3. deadline abbreviates deadline scheduling and refers to the problem of finding
schedules in which a maximum cardinality subset of the tasks in L finish by
a given deadline (capacity) 6 on a given number m of processors.

4. pack_cover refers to the dual bin packing problem of maximizing \\V(L)||
subject to the dual constraints i(Bi) > 1.

5. schedule.cover refers to the dual makespan scheduling problem of maximiz-
ing the makespan b for fixed m such that £(Bi) > b.
In principle, there are covering versions of deadline scheduling as well, but we
have encountered no research on these problems. One such problem is:

6. deadline_cover names the problem of minimizing the total size of the subset
of tasks needed to cover a given number m of processors with a given deadline
b.

4.3 Algorithm class
1. offline algorithms have no constraints beyond the intrinsic sum constraints;

an offline algorithm simply maps the entire list L into a packing V(L). Ef-
fectively, all items are known in advance, so the ordering of L plays no role.

2. online algorithms sequentially assign items to bins, in the order encountered
in L, without knowledge of items not yet packed. Thus, the bin to which at

is assigned is a function only of o i , . . . , a*. Note that NF, FF, and BF are all
online.

3. bounded space algorithms decide where an item is to be packed based only
on the current contents of at most a finite number k of bins, where k is a
parameter of the algorithm. Note that FF and BF are not bounded space
algorithms, but NF is, with k = 1. A more precise definition and further
discussion of these algorithms appear later.

4. linear-time algorithms have 0(n) running time. In fact, a more precise
statement can be made: all such algorithms classified here take constant time
to pack each item. NF is clearly a linear-time algorithm, but FF and BF are
not.
The three characterizations above are orthogonal. But the literature suggests
that the following convention will allow us to use one term in classifying algo-
rithms most of the time: Bounded space implies linear time and linear time
implies online. Exceptions will be noted explicitly; below (under repack) we
will see how offline algorithms can be linear time.

A Classification Scheme for Bin Packing Theory 55

5. greedy. Any algorithm in a broad class of algorithms variously called rea-
sonable, fair, any-fit, or greedy is required to pack the current item into an
open bin with sufficient space, in case such a bin exists; in particular, it can
not choose to open a new bin in this case. We use the term greedy exclu-
sively to describe such algorithms. Scheduling algorithms satisfying a similar
constraint are sometimes called conservative or work conserving.

6. repack. There have been a number of studies devoted to packing problems
which allow the repacking (possibly limited in some way) of items - moving
an item, say aj, from one bin to another based on the sizes of items aj, j > i.

7. dynamic packing introduces the time dimension; an instance L of this prob-
lem consists of a sequence of triples (dj, rj, di) with r̂ and dt denoting arrival
and departure times, respectively. Under packing algorithm A, A(L,t) de-
notes the number of bins occupied at time t, i.e. the number of bins occupied
by those items at for which ri < t < di.

Conventions: Along with the algorithm class, the algorithm will be spec-
ified when possible. In many cases, the algorithm will be an adaptation or
variant of some well-known algorithm, like FF for example, in which case the
specification will have the form FF variant.

4.4 Results
Almost all results fall into the broad classes mentioned in Section 2.

1. Asymptotic worst case ratios, where R ^ is the general entry with A specified
where appropriate.

2. Absolute worst case, with R a being the entry.

3. Average case: A probabilistic analysis, usually leading only to expected val-
ues, is indicated. The entries adopt standard notation such as ~EiA(Ln) or
Pr{j4(L„) > x} . In parentheses, a distribution or class of distributions will
be given. Examples include (7(0, a) (the uniform distribution on [0,a]) and
A(0,a) (the triangular distribution on [0,a], but if no distribution is spec-
ified then it is assumed to be general. Standard terms like unimodal and
decreasing (referring to a density function), etc. will be encountered. Item
sizes are assumed to be independent random variables in all cases, unless
stated otherwise.

4. Where possible, complexity of the problem will be given in the standard
notation of problem complexity.

5. Complexity of the algorithm refers to running-time complexity and will be
signalled by the entry running-time.

56 Edward G. Coffman, Jr. and Janos Csirik

Conventions: A paper classified as a worst-case analysis may also have
complexity results (but not conversely, unless both types of results figure
prominently in the paper, in which case both classifications will be given),
and a paper given an average case classification may also have worst case
results; here also, both classifications will be noted only if both worst-case and
average-case analysis play major roles in the paper. Approximation schemes
are classified as complexity results and have entries like PTAS, FPTAS as
noted earlier.

4.5 Constraints

These typically introduce further limitations on the problem instance, or further
properties of the algorithm classification.

1. mutex stands for mutual exclusion and introduces constraints in the form of
a sequence of pairs (a,, dj), i ^ j, signifying that at and dj can not be put in
the same bin.

2. items/bin < k gives a bound on the number of items that can be packed in
a bin.

3. a,i < a or a,i > a. These denote bounds on item sizes, the former being far
more common in the literature. In the former case a is usually part of the
result notation (see the next subsection) so in these cases, it is omitted from
the classification. Throughout the bibliography, the symbol a is reserved for
this purpose. These cases are often called parametric cases in the literature.

A constraint that may refer as much to analysis as to algorithm design calls
for discrete sets of items; as such it is not a significant practical constraint.

4. discrete which means that item sizes are all multiples of 1/fc with b = 1.
Equivalently, the bin size could be taken as some integer b and item sizes

. restricted to the set { 1 , . . . , b}.

5. restricted sizes refers to the problem where the number of different item
sizes is finite.

6. The symbol * refers to features or properties not classifiable within the
scheme.

Conventions: There are further interesting extensions which occur only in
a few papers. In these cases we will use a special notation; a short description
in each case will be given as a remark. , .

A Classification Scheme for Bin Packing Theory 57

5 Examples
The following examples should help familiarize the reader with the classification
technique.

1. Reference [4] gives an average-case analysis of the classical, bounded-space
Next Fit algorithm for bin packing:

|pack|bounded_space|E7VF(Ln), U(0,1)

Result: E N F (L) = ^EOPT(L) + 0(1), where item sizes are independent
draws from U(0,1).
Recall that the empty arena component implies that all bin levels are bounded
above by 1, the common bin size.

2. The classification of [13] shows a nonempty arena field:

variable ¿>,|pack|offline| PTAS

3. The classification of [12] gives another such example:

open_endjpack|online; o f f l i n e b o u n d ; FPTAS

Results: For the open-end bin packing problem any online algorithm must
have an asymptotic worst-case ratio of at least 2. Next Fit achieves this ratio.
There is a fully polynomial approximation scheme for this problem.

4. The classification of [2] illustrates a makespan problem:

|makespan|online|ii^ stretch

Results: A combined algorithm achieves a worst case bound of 1.625. The
best lower bound for any online algorithm is 4/3.

5. Reference [3] shows a deadline objective function:

|deadline|offline; WFI, FFL\RA

R e s u l t s : RWFI = \,RFFI = §•

6. Reference [5] is classified as a covering problem.

|pack_cover|onlme|/?5f bound

Results: Asymptotic bound: R°G < 1 / 2 for any online algorithm A. There
exists an asymptotically optimal online algorithm.

58 Edward G. Coffman, Jr. and Janos Csirik

7. The classification of [7] is

|pack|ofHine; combined BF, FFD variant

Algorithm: Combined Best Fit (CBF) which takes the better of the First
Fit Decreasing solution and Best Two Fit (B2F) solution, where the latter
algorithm is a grouping version of Best Fit limiting the number of items per
bin.
Results:

— 5/4> fH < Rcbf < I
Note that the word 'variant' may be simplistic in that it occasionally hides
details of relatively complicated algorithms.

8. Reference [8] shows an example for combination of two algorithm classes:

|pack|bounded_space, repack|i?/i

Algorithm: REP3: an adaptation of FFD using three open bins at any
time.
Result: R^Ep3 « 1.69... .

9. The classification of [11] illustrates a constraint:

|pack|offiine; FF variant|i?y |items/bin < k

Result:
27
10

37 ,00 . , '27 24 \
10A:

where FFfc is the obvious adaptation of FF.

10. For [14], the classification mentions yet another constraint:

|pack|bounded_space; H^ variant|/?^|0(log k) open bins

Result: R's>Hk (k) = R^k, where SH/; is a simplified version of H^ that uses
only 0(log k) open bins at any time.

11. Classification of [1] aggregates several results:

|pack.cover|offline, online; NF, FFD, IWFD v a r i a n t s ^

Algorithms: Adaptation of Next Fit called DNF (a new bin is opened when
the current open bin, say 5 , first overflows with item, say a,, but in this case
a.i stays in B)\ of First Fit Decreasing with a parameter r (FFDr); and of an
iterated version of Worst Fit (IWFD).
Results:

RDNF = FFDR = I f or all r , | < r < and RfWFD = ^

A Classification Scheme for Bin Packing Theory 59

References
[1] S. B. Assman, D. S. Johnson, D. J. Kleitman, and J. Y-T. Leung. On a dual

version of the one-dimensional bin packing problem. J. Algorithms, 5:502-525,
1984.

|pack.cover|offline, online; NF, FFD, IWFD v a r i a n t s ^

[2] Y. Azar and O. Regev. On-line bin-stretching. Theor. Comp. Sci., 268:17-41,
2001.

|makespan|online\RA stretch

[3] E. G. CofFman, Jr., J. Y. Leung, and D. W. Ting. Bin packing: maximizing
the number of pieces packed. Acta Informatica, 9:263-271, 1978.

|deadline|offline;WFI, FF1\RA

[4] E. G. Coffman, Jr., K. So, M. Hofri, and A. C. Yao. A stochastic model of
bin-packing. Inf. and Cont., 44:105-115, 1980.

|pack|bounded_space|EN.F(.Ln), U{ 0,1)

[5] J. Csirik and V. Totik. On-line algorithms for a dual version of bin packing.
Disc. Appl. Math., 21:163-167, 1988.

[pack-cover| online | R^ bound

[6] H. Dyckhoff. A typology of cutting and packing problems. Eur. J. Oper. Res.,
44:145-159, 1990.

[7] D. K. Friesen and M. A. Langston. Analysis of a compound bin-packing algo-
rithm. SI AM J. Disc. Math., 4:61-79, 1991.

pack|offline; combined BF, FFD variant

[8] G. Galambos and G. J. Woeginger. Repacking helps in bounded space on-line
bin-packing. Computing, 49:329-338, 1993.

| pack| bounded-space; repack!^

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness. W. H. Freeman, New York, New York, 1979.

[10] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and scheduling: a
survey. Annals Disc. Math., 5:287-326, 1979.

60 Edward G. Coffman, Jr. and Janos Csirik

[11] K. L. Krause, Y. Y. Shen, and H. D. Schwetman. Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems. J.
ACM, 22:522-550, 1975.

|pack|offline; FF variant|i?^|items/bin < k

[12] J. Y.-T. Leung, M. Dror, and G. H. Young. A note on an open-end bin packing
problem. J. of Scheduling, 4:201-207, 2001.

open.end|pack|online; offline].R^ bound; FPTAS

[13] F. D. Murgolo. An efficient approximation scheme for variable-sized bin pack-
ing. SIAM J. Comput., 16:149-161, 1988.

variable &i|pack|offiine| PTAS

[14] G. J. Woeginger. Improved space for bounded-space, on-line bin-packing.
SIAM J. Disc. Math., 6:575-581, 1993.

|pack|bounded_space; H^ variant|/£~|0(logk) open bins

Acta Cybernetica 18 (2007) 117-134.

Functional Equations, Constraints, Definability of
Function Classes, and Functions of Boolean

Variables*

Miguel Couceirot and Stephan Foldes*

Abstract
The paper deals with classes of functions of several variables defined on an

arbitrary set A and taking values in a possibly different set B. Definability
of function classes by functional equations is shown to be equivalent to defin-
ability by relational constraints, generalizing a fact established by Pippenger
in the case A = B = {0,1}.

Conditions for a class of functions to be definable by constraints of a
particular type are given in terms of stability under certain functional com-
positions. This leads to a correspondence between functional equations with
particular algebraic syntax and relational constraints with certain invariance
properties with respect to clones of operations on a given set.

When A = {0,1} and B is a commutative ring, such B-valued functions
of n variables are represented by multilinear polynomials in n indetermi-
nates in B[X\,..., Xn], Functional equations are given to describe classes of
field-valued functions of a specified bounded degree. Classes of Boolean and
pseudo-Boolean functions are covered as particular cases.

Keywords: Function classes, class composition, stability, functional equa-
tions, relational constraints, function class definability, ring-valued functions,
multilinear polynomial representations, linear equations, field-valued func-
tions of Boolean variables, Boolean functions, pseudo-Boolean functions.

1 Introduction and Basic Definitions

For arbitrary sets B and C, by a C-valued function on B we mean a map

/ : Bn —> C

"The work of the first named author was partially supported by the Graduate School in Math-
ematical Logic MALJA. Supported in part by grant #28139 from the Academy of Finland

t Department of Mathematics, Statistics and Philosophy University of Tampere Kansleririnne
1, 33014 Tampere, Finland E-mail: Higuel.Couceiro8uta.fi

^Institute of Mathematics, Tampere University of Technology PL553, 33101 Tampere, Finland,
E-mail: stephan.foldesatut.fi

61

62 Miguel Couceiro and Stephan Földes

where n > 1 is called the arity of / . The essential arity of an n-ary C-valued
function / : Bn —* C is defined as the cardinality of the set of indices

/ = {1 < i < n : there are ai,... aj_i, a^ bi, a i + i , . . . , an with ai ± bi and
f(ai,... , a j _ i , a i , a i + i , . . . , a n) ^ / (a i , . . . , a j _ i , bi, a i + i , . . . , a n) } .

For each i £ I, we say that the ith variable of f is essential. Note that the essential
arity of / is zero if and only if / is constant. If B — C, then a C-valued function
on B is called an operation on B. Operations on the two-element set B = {0 ,1}
are usually refered to as Boolean functions.

For any maps g\,...,gn '• D —> B, where D is any set and / : Bn —» C,
the composition f(g\,...,gn) is defined as the map from D to C given by
}{9\,---,9n){a) = f(9i(a),...,gn{a)), for every a £ D.

Let A, B and C be arbitrary non-empty sets, X a class (i.e. set) of C-valued
functions on B (of various arities), and J a class of B-valued functions on A (of
various arities). The class composition XJ is defined as the set

1J = {/(5i>- • • ,9n) | n,m > 1 , / n-ary in 1, g\,...,gn m-ary in J}.

If J is a singleton, I = { / } , then we write f j for { f } J . We note that this
construction underlies the various notions of subfunction and minor appearing e.g.
in [13, 12,15, 3, 8, 4].

Consider arbitrary non-empty sets A, B, and C, and let 2 be a class of C-valued
functions on B and J a class of B-valued functions on A. We say that X is stable
under right composition with J if XJ C X. Similarly, we say that J is stable under
left composition with X if XJ C J. Note that a clone on an arbitrary set A is
simply a class. C of A-valued functions on A that contains all projections, and is
stable under (left or right) composition with itself, i.e. CC C C (or equivalently,
CC=C).

Consider arbitrary non-empty sets A and B. A functional equation (for B-
valued function on A) is a formal expression

Mf(si(vi , • • • > vp)) , . . . , f (5 m (v! , . . . , vp))) =
= Mf(s ' i (vi , • • •, vP)), • • •, f(p'tivx,..., Vp))) (1)

where m,t,p>\,h\\ Bm —> C, h2 : Bl —> C, each gi and g'^ is a map Ap —> A, the
v i , . . . , Vp are p distinct symbols called vector variables, and f is a distinct symbol
called function symbol.

For n > 1, we denote by n the set n = { 1 , . . . , n } , so that an n-vector (n-tuple)
v in An is a map v : n —> A. In this way, if g is an p-ary operation on A and
vi,... ,vp are n-vectors in An, then g(v\,... ,vp) denotes the n-vector

(g(vu ..., up)(l),. . . ,g{vi,.. .,vp)(n)) G An.

For an n-ary B-valued function on A, f : An —> B, we say that / satisfies the

Functional Equations, Constraints, Definability of Function Classes 63

equation (1) if, for all vi,..., vp £ An, we have

hi(f(gi(vi,.. -,vp)),..., f(gm{vu vp))) =

= h2(f(g' xK • • •, vp)),..., f(g't(vu..., vp))). (2)

A class (i.e. set) JC of B-valued functions on A is said to be defined, or definable, by
a set £ of functional equations, if K, is the class of all those functions which satisfy
every member of £.

To illustrate, let A = B — {0,1}, m = 2, t = 1, p = 2, and let gi be the
projection function (x,y) >-> x, g2 the conjunction (x,y) i—> xy, hi = g2, and h2

the identity x i—> x. The functional equation (1) so specified defines the clone (Post
class) of monotone Boolean functions. In a more free style of notation, this equation
can be displayed as

f(vi)f(vxv2) = f(viv2).
When the specific context is well understood, we shall present functional equations
in such more informal manner.

Useful functional properties have often been advantangeously expressed by func-
tional equations. Classical examples include the linearity of F-valued functions on
a field F, as well as monotonicity and convexity properties traditionally expressed
by functional inequalities which are obviously equivalent to functional equations in
max-plus language. More contemporary examples include the submodular prop-
erty of real-valued functions {0,1 } n —> R, and Post classes (clones) of Boolean
functions traditionally characterized by relations. Many strong consequences of
submodularity, such as the Hall-Rado theorems, follow directly from the charac-
terizing submodular inequality which is essentially a max-plus functional equation
(see Welsh [14]). For Boolean functions, equations were systematically studied in
[3] and, in a variant form, by Pogosyan [9]. Also, in [5] equations were shown to
provide a measure of complexity, essentially in terms of the syntax of the functional
equations used to define Post classes.

2 Definability of Function Classes by Functional
Equations and Relational Constraints

An m-ary relation on A is a subset R of Arn, and thus the relation R can be viewed
as a class (set) of unary maps from m to A. A function / : An —> A is said to
preserve R, and R is said to be invariant under / , if fR C. R, where fR is the class
composition {f}R as explained above. An m-ary A-to-B constraint (or simply,
m-ary constraint, when the underlying sets are understood from the context) is
a couple (R, S) where R C A"' and S C Brn. The relations R and 5 are called
the antecedent and consequent, respectively, of the relational constraint (Pippenger
[8]). A B-valued function on A, f : An —> B, n > 1, is said to satisfy an m-ary
A-to-B constraint (R, S) if fR C S. A class K, of B-valued functions on A is said
to be defined, or definable, by a set T of A-to-B constraints, if K. is the class of all
those functions which satisfy every constraint in T.

64 Miguel Couceiro and Stephan Földes

As an example, the already mentioned clone of monotone Boolean functions
can be equivalently defined by the single constraint (< , <) , where < denotes the
less-or-equal relation on {0,1}.

In [8], Pippenger has shown that in the Boolean case, i.e. when A = B = {0 ,1} ,
definability of a function class by functional equations is equivalent to definability
by relational constraints. The following theorem is not restricted to the Boolean
case, and not even contingent on the finiteness of the underlying sets.

Theorem 1. Let A be an arbitrary non-empty set, and B any set with at least two
elements. For any class K. of B-valued functions on A, the following are equivalent:

(i) K, is definable by some set of functional equations;

(ii) K, is definable by some set of relational constraints.

Proof. To prove that (i) => (ii), it is enough to show that for every functional
equation (1) there is a relational constraint (R, S), such that the B-valued functions
on A satisfying the equation are exactly the same as those satisfying the constraint.
Indeed, we can define the constraint (R, S) by

R = {(9i{a),---,9m(a),g'i{a),...,g't(a)):aeAp},
S = { (6 i , . . . ,bm, b'i,..., 6't),G Bm+t : h\(b\,..., bm) = h2(b\,..., b't)}.

Conversely, let us show that (ii) => (i). Let T be a set of constraints, and
let K. be the class of B-valued functions on A defined by T. Consider the set
T' of constraints obtained from T by removing all those constraints with empty
antecedent. Clearly, T and T' define the same class K. of B-valued functions on
A. Therefore, the proof will be complete if we can show that for every constraint
(R, S) with R , ¿ 0 there is a functional equation (1) satisfied by exactly the same
functions as those satisfying (R, S).

Let m be the arity of (R, S). The construction of the equation (1) is based on
the following facts.

Fact 1. Given a non-empty relation R C Am, there is ap> 1 and a map g : Ap —>
Am, such that the range of g is R.

Fact 2. Given a relation S C Bm, there exist maps h\,h2 : Bm —» B, such that

S = {b e Bm : fn(b) = h2{b)}.

Using these functions g,h\ and h2, the equation (1) can be defined as follows:
the integer m is the arity of (R, S), t = m, and p is the arity of g : Ap —» Am. For
1 < i < m = t, let gi = g\ be the ith component of g, i.e. we have

9(o) = (9i(a), •••,9m{a))

for all a G Ap. The maps hi, h2 in (1) are given by Fact 2. •

It is not difficult to see that both Fact 2 and Theorem 1 itself would fail if we
allowed B to be a singleton. However, the implication (i) => (ii) in Theorem 1
would continue to hold.

Functional Equations, Constraints, Definability of Function Classes 65

3 Definability of Function Classes by Invariant
Constraints

The question of definability of Boolean function classes by constraints (R, S), where
R, S C {0 ,1}" are of a special algebraic kind, was considered in [1]. Specifically, the
relations R and S were required to be affine subspaces of the vector space {0, l } n

over the two-element field GF(2). A subset of {0,1}™ is an affine subspace if and
only if it is closed under the triple sum operation u + v + w, i.e. if and only if it is
invariant under the clone £oi of constant-preserving linear Boolean functions - that
is, functions which are the sum of an odd number of variables. (See e.g. Godement
[6].) Also it is well known that the non-empty affine subspaces can be described
as ranges of affine maps, and that affine hyperplanes can be described as kernels
of affine forms, i.e. as sets on which a given form agrees with the null form. As
shown in [1], this accounts for the definability of certain function classes by linear
equations.

In this section we consider general notions of closure for the antecedent R and
the consequent 5 of a constraint (R, S), and we address the question of definability
of classes of B-valued functions on a set A by such invariant constraints, without
any restriction on the underlying sets A and B.

Associativity Lemma. Consider arbitrary non-empty sets A, B, C and E, and
let I be a class of E-valued functions onC, J a class of C-valued functions on B,
and K, a class of B-valued functions on A. The following hold:

(i) {XJ)K C 1(J1C);

(ii) If J is stable under right composition with the clone of projections on B, then
(IJ)K. = I(J/C).

Proof. The inclusion (i) is a direct consequence of the definition of function class
composition. Property (ii) asserts that the converse inclusion also holds if J is
stable under right composition with projections. A typical function in T(JK) is of
the form

lmx), • • • i gn(hn\ J • • • , hnrrLn))
where / is in Z, the gi's are in J , and the hij's are in /C. By taking appropriate
functions g'i,. • • ,g'n obtained from gi,... ,gn by addition of inessential variables
and permutation of variables, the function above can be expressed as

fig' lCuii • • • > him i, • • • > hni, • • •, hnrrin),... ,g'n(hn,..., himi, • • •, hn i,..., hnrrin))

which is easily seen to be in (IJ)K, . •

Note that statement (ii) of the Associativity Lemma applies, in particular, if J
is any clone on C = B.

Let J- be a set of B-valued functions on A. If V is the clone of all projections on
A, then J-V = T expresses closure under taking minors as in [8], or closure under
simple variable substitutions in the terminology of [2].

66 Miguel Couceiro and Stephan Földes

For a class T of ^-valued functions on A, an m-ary relation R on A is said to
be T-invariant if TR C R. In other words, R is .T-'-invariant if every member of T
preserves R. If two classes of functions T and Q generate the same clone, then the
^-invariant relations are the same as the (/-invariant relations. (See Poschel [10]
and [11].) Observe that we always have R C TR if T contains the projections, but
we can have R C TR even if T contains no projections. (Take the Boolean triple
sum xi + x2 + £3 as the only member of T.)

For a clone C, the intersection of m-ary C-invariant relations is always C-invariant
and it is easy to see that, for an m-ary relation R, the smallest C-invariant relation
containing R in Am is CR, and it is said to be generated by R. (See [10] and [11],
where Poschel denotes CR by Tc(R)-)

Let C\ and C2 be clones on arbitrary non-empty sets A and B, respectively. If
R is Ci-invariant and S is C2-invariant, we say that (/?, S) is a (Ci,C2)-constraint.
The following result generalizes Lemma 1 in [1]:

Lemma 2. Consider arbitrary non-empty sets A and B. Let f be a B-valued
Junction on A, and let C be a clone on A. If every function in fC satisfies an
A-to-B constraint (R,S), then f satisfies (CR,S).

Proof. The assumption means that (fC)R C S. By the Associativity Lemma,
(fC)R = f(CR), and thus f(CR) CS. •

A class K of B-valued functions on A is said to be locally closed if for every
.B-valued function f on A the following holds: if every finite restriction of / (i.e
restriction to a finite subset) coincides with a finite restriction of some member of
1C, then / belongs to K..

Theorem 3. Consider arbitrary non-empty sets A and B and let C\ and C2 be
clones on A and B, respectively. For any class K, of B-valued functions on A, the
following conditions are equivalent:

(i) K. is locally closed and it is stable both under right composition with C\ and
under left composition with C2;

(ii) fC is definable by some set of (C\,C2)-constraints.

Proof. To show that (ii) => (i), assume that K. is definable by some set T of
(Ci,C2)-constraints. For every (R,S) in T , we have ICR C S. Since R is C\-
invariant, ICR = K,(C\R). By the Associativity Lemma, K(C\R) = (K,C{)R, and
therefore (K.C\)R = ICR C S. Since this is true for every (R, S) in T we must have
KCi C /C.

For every (R,S) in T, we have ICR C 5, and therefore C2(fCR) C C2S. By
the Associativity Lemma, (C2K)R C C2{fCR) C C2S, and C2S = S because S is
C2-invariant. Thus (C2K,)R C S for every (R, S) in T, and we must have C2K. C /C.

To see that K is locally closed, consider / £ K., say of arity n > 1, and let
(R, S) be an m-ary (Ci,C2)-constraint that is satisfied by every function g in K
but not satisfied by / . Hence for some a x , . . . , a n in R, f(a},...,an) £ S but

Functional Equations, Constraints, Definability of Function Classes 67

g(al,..., a") £ S, for every n-ary function g in K.. Thus the restriction of / to the
finite set { (a 1 (i) , . . . , an(i)) : i £ m } does not coincide with that of any member of
fC.

To prove (i) => (ii), we show that for every function g not in K, there is a
(Ci, ¿^-constraint № S) which is satisfied by every member of K. but not satisfied
by g. The class K. will then be definable by the set T of those (Ci,C2)-constraints
that are satisfied by all members of fC.

Note that K, is a fortiori stable under right composition with the clone containing
all projections, that is, K. is closed under simple variable substitutions. We may
assume that K. is non-empty. Suppose that g is an n-ary B-valued function on A
which is not in /C. Since K, is locally closed, there is a finite restriction gp of g to
a finite subset F C An such that gp disagrees with every function in K. restricted
to F. Suppose that F has size m, and let a 1 , . . . , an be m-tuples in Am, such that
F = { (a 1 ^) , . . . , a"(i)) : i £ m} . Define Ro to be the set {a 1 , . . . ,a 7 1 } , and let
S = { / (a 1 , . . . , an) : f 6 K, f n-ary}. Clearly, (Ro,S) is not satisfied by g, and
it is not difficult to see that every member of fC satisfies (Ro, S). As K, is stable
under left composition with C2, it follows that S is C2-invariant. Let R be the
Ci-invariant relation generated by Ro, i.e. R = C\RQ. By Lemma 2, the constraint
(R, S) constitutes indeed the desired separating (Ci,C2)-constraint. •

This generalizes the characterizations of closed classes of functions given by
Pippenger in [8] as well as in [1] and [2] by considering arbitrary underlying sets,
possible infinite, and more general closure conditions. In the finite case, we obtain as
special cases of Theorem 3 the characterizations given in Theorem 2.1 and Theorem
3.2 in [8], by taking C\ = C2 = V, and C\ =U and C2 = V, respectively, where
U is a clone containing only functions having at most one essential variable, and
V is the clone of all projections. Taking A — B — {0,1} and C\ = C2 = £oi, we
obtain the characterization of classes of Boolean functions definable by sets of affine
constraints given in [1]. For arbitrary non-empty underlying sets, Theorem 1 in [2]
corresponds to the particular case C\ = C2 = V. In this case, from Theorem 1 and
Theorem 3 we conclude the following:

Corollary 4. Consider arbitrary non-empty sets A and B. The equationally de-
finable classes of B-valued functions on A are exactly those locally closed classes
that are stable under right composition with the clone of projections on A.

In certain cases, given a (Ci,C2)-constraint (R,S), R C Am, S C Bm, the
construction of a functional equation given in the proof of Theorem 1 in the previous
section can be refined to yield a functional equation with special algebraic syntax.
To do this, one may seek to use, instead of arbitrary functions as given by Fact 1 and
Fact 2 in the proof of Theorem 1, functions g\, • • • ,gm,h\,h2 of a particular kind
still satisfying the conditions of these Facts. For example, in [1], the functions were
chosen to be affine maps, based on the range-and-kernel theory of linear algebra.
Another application of this strategy will be given in Section 4.

Also, in certain cases, given a functional equation (1) with a special algebraic
syntax, if the functions g\,... ,gm,g' ... ,g' t,h\,h2 appearing in the equation have

68 Miguel Couceiro and Stephan Földes

particular structure-preserving properties, then it may be possible to conclude that
the construction of the constraint (R, S), as given in the first part of the proof
of Theorem 1, yields relations R and S invariant under certain clones C\ and C2.
Thus the affine functions appearing in the "linear" functional equations defined in
[1] were used to construct affine constraints. The same principle, together with
Theorem 3, will be used in Section 4 to show that certain natural function classes
cannot be defined by a particular type of functional equations.

4 Functions of Boolean Variables Valued in a Ring
In this section we consider functions {0, l } n —> B, where B is a commutative ring.
We view {0,1} as endowed with the two-element field structure, {0,1} = GF(2),
as well as with the lattice structure where 0 < 1. If B is also {0,1} = GF(2),
then these B-valued functions are called Boolean functions. If B is the field R
of real numbers, then the functions under consideration are called pseudo-Boolean
functions, which provide an algebraic representation for set functions V(E) —> R
for finite E (see e.g. [4] for a recent reference).

Every Boolean function {0 ,1 } " —> {0,1} is well known to be representable by a
unique multilinear polynomial in n indeterminates over GF(2), i.e. a polynomial
which is linear in each of its indeterminates, called its Zhegalkin polynomial, Reed-
Muller polynomial or ring-sum expansion. Also, pseudo-Boolean functions can be
uniquely represented by multilinear polynomials in n indeterminates over R (see
Hammer and Rudeanu [7]).

Consider any commutative ring B with null and identity elements 0 b and 1 B,
respectively. For a polynomial p G B[Xi,..., Xn] in n indeterminates, and an n-
tuple (a i , . . . , an) G {0 ,1}" , for each a* let af denote 0b or l g according to whether
aj is 0 or 1, and denote the evaluation p (a f , . . . , a®) simply by p (a i , . . . , an). The
B-valued function on {0,1} given by

(a i , . . . ,an) i-» p (a i , . . . ,a„)

is said to be represented by p. By a method similar to that used by Hammer
and Rudeanu [7] in the case B — R, we show in the next theorem the existence
of a unique multilinear polynomial representation for any B-valued function on
{0,1} , for any commutative ring B with identity. This unifies the Zhegalkin and
pseudo-Boolean polynomial representations.

Theorem 5. Consider any commutative ring B with identity. For any n > 1,
every B-valued function f on {0,1} , f : {0, l } n —> B, is represented by a unique
multilinear polynomial p G B[Xi,..., Xn).

Proof. The existence of representation is proved by induction on essential arity. For
essential arity 0, i.e. for constant functions, representation by constant polynomials
is obvious. For a function / : {0 ,1 } " —» B with essential arity m > 0, assuming the
claim proved for lesser essential arities, and taking any index i such that the zth

Functional Equations, Constraints, Definability of Function Classes
73

variable of / is essential, let /0 and /1 be the n-ary 5-valued functions given by

/ o (a i , . . . ,a„) = / (a i , . . . a i _ i , 0 ,a i + 1 , . . . ,an)
/ i (a i , . . . ,an) = / (a i , . . . aj_i, l , a i + i , . . . ,an).

We have

/(at,... ,a„) = (1 - af)/0(ai,... ,a„) + af/i(ai,... ,an)

and both /0 and /1 have essential arity less than m. By the induction hypothesis, /0
and /1 are represented by polynomials po and pi, respectively. Thus / is represented
by the polynomial

P=(l~ Xi)po + Xipx
and if p had any powers of indeterminates with k > 1, by replacing each such
occurrence by X j we would obtain a multilinear polynomial representing / .

Uniqueness is proved by contradiction. Suppose that / had two distinct multi-
linear polynomial representations p and q. Then the multilinear polynomial p — q
would represent the constant zero function. Let J be a set of indices of smallest
possible size, such that the monomial c\\-€JXj occurs in p — q with coefficient
c ^ Ob: such a J must exist if p — q is not the zero polynomial. But then the
evaluation of p — q at (a i , . . . , an), where cij = lg if j £ J and a,j = Ob otherwise,
would be c Ob, contradicting the fact that p — q represents the constant zero
function. Thus p — q must be the null polynomial, i.e. p = q. •

Let / be a £?-valued function on {0,1}, / : {0, l } n —> B, where B is a com-
mutative ring with identity. The degree of / is the smallest non-negative integer d
such that for every J C { 1 , . . . , n} of size | J |> d the coefficient of Wj^j X j the
multilinear polynomial representation of / is zero. Thus the functions of degree 0
are precisely the constants (including the constant zero function).

Theorem 6. If B is any field of characteristic 2, and k > 1, 'then the class of
B-valued functions on {0,1} having degree less than k is defined by the following
functional equation (with vector variables vi,..., Vfcj.-

£ f (I >) = 0 (3)
/ c { i fc} ¿e/

In (3) the inner summations refer to addition of vectors over the two-element
field GF(2) = {0,1} , while the outer summation refers to addition in the field B.
For 7 = 0, the empty sum J2vi represents the constant zero.

iei

Proof. First we prove that (3) is satisfied by every B-valued function on {0,1}
having degree less than k. From the form of the equation (3), it is easy to see
that the class of functions satisfying (3) is closed under linear combinations with
coefficients in B. Therefore, it is sufficient to prove that, for n > 1, every n-ary B-
valued function / on {0,1} represented by a product of less than k indeterminates,
i.e. of the form I l j e j Xj, \ J \< k, J C {1,..., n}, satisfies (3) .

70 Miguel Couceiro and Stephan Földes

Let v\,... ,Ufc be any n-vectors in {0,1}" . Let wJ be the characteristic vector
of J in { 0 , l } n , i.e. wJ = (a i , . . . ,an) , where a,j = 1 if j € J, and a,j = 0 otherwise.
For every I C { 1 , . . . , k}, consider the vector wJ • (]T)ie/v*) i®' w^ere the
product • is defined componentwise. Observe that there are 2* possible choices for
/ , yet due to the size of | J |< fc, there at most 2 f c _1 distinct vectors of the form
wJ • v i) in ! }"• Therefore, there are distinct subsets I\, /2 of { 1 , . . . , fc},
such that

wJ • (5Z vi) = wJ • (5Z vi)
¿€/1 i€h

and for the symmetric difference D of I\ and / 2 , we have

i&D

The 2fc subsets of { 1 , . . . , k}, are matched into pairs { / , I + D}, where I + D is the
symmetric difference of I and D, and because / is represented by Yij^.i X j , by the
definition of wJ it follows that for each such pair we have

/(][>) = /(«/•(£ = E *)) = /(£
iei iti iei+D ieJ+D

Therefore, due to the fact that the underlying field B has characteristic 2, the terms
in the equation cancel pairwise.

Conversely, suppose now that the n-ary function / is represented by a polyno-
mial of degree greater than or equal to k. We show that / does not satisfy the
equation (3).

Let g be the B-valued function on {0,1} represented by the sum of those mono-
mials in the polynomial representation of / which have degree less than k. By the
first part of the proof, g satisfies (3). Working towards a contradiction, suppose
that / satisfies (3). Given the form of equation (3), this is the case if and only
if the n-ary function h = f + g, represented by the sum of all monomials in the
polynomial representation of / having degree greater than or equal to k, satisfies
(3).

Let J be an inclusionwise minimal subset of { 1 , . . . , n}, such that the monomial
c U j € J X j appears in the polynomial representation of h with coefficient c ^ 0/j.
Note that | J |> k. We claim that if / (or equivalently, h) satisfies (3), then the
function /ik represented by the monomial cEljekXj where k = { l , . . . , f c } , also
satisfies equation (3).

Observe that, by the construction in the proof of Theorem 1, equation (3) is
equivalent to a constraint (R, S) whose antecedent R is the range of a linear map
with codomain GF(2) m , i.e. R is a subspace of the vector space GF(2) m over
GF(2). Thus by Theorem 3 it follows that the class K. of functions satisfying (3)
is stable under right composition with the clone Co of 0-preserving linear Boolean
functions. In particular, K. is closed under permutation and identification of vari-
ables, as well as under fixing variables to 0. It is not difficult to see that hk can be

Functional Equations, Constraints, Definability of Function Classes 71

obtained from h by a combination of these operations. In other words, if h satisfies
the equation (3), then hk also satisfies the equation.

Now, let vi,..., vk be the unit n-vectors e i , . . . , ejt in {0 ,1}" . We have

vi) = O = c ^ 0

/Ck ¿6/ i€k

which shows that hy does not satisfy the equation (3), and yields the desired con-
tradiction. •

In [1] it was shown that, for any positive integer k, the class of Boolean functions
whose Zhegalkin polynomial has degree less than k, can be defined by "linear"
equations. Theorem 6 above explicitly gives such an equation for every k > 1.
For k = 1, the equation (3) can be rewritten as f(v) = f(0), and for k = 2, as
f(v + w) = f (v) + f(w) + f(0).

If B is a field and A = {0,1} = GF(2), then a functional equation (1) is
called linear if the functions g\,..., gm, g\,..., g't are all affine maps from the p-
dimensional vector space GF(2)P to GF(2), and hi,h2 are affine maps from the
5-vector spaces Brn and 5 ' , respectively, to the scalar field B. (Recall that a
function Fn —> F, where F is any field, is affine if and only if it is of the form
(a i , . . . , an) <-> c\a\ + . . . Cnan + c, for fixed scalars c i , . . . , Cn, c in F.) Obviously,
the functional equation (3) in Theorem 6 is linear. Our next result shows that the
requirement on the characteristic of the underlying field is indeed essential.

Theorem 7. For any field B of characteristic different from 2, and any k > 2, the
class of B-valued functions on {0 ,1} having degree less than k is not definable by
any set of linear functional equations.

Proof. As in the proof Theorem 6, if there would be a k > 2 such that the class
K. of B-valued functions on {0,1} having degree less than k is definable by some
set of linear functional equations, then, using the construction given in the proof of
Theorem 1, we would conclude that the class in question is definable by some set
of constraints whose antecedents are affine subspaces of vector spaces over GF(2).
These affine subspaces would be closed under the triple sum u + v + w, i.e. invariant
under the clone £oi of constant-preserving linear Boolean functions. By Theorem 3,
this would imply that K is stable under right composition with the clone £oi- We
show that this is not the case.

Consider the (k — l)-ary function / represented by the monomial X\... XK~I.
Let T be the (k + l)-ary Boolean function in Coi given by

(oi,..., ak+1) ak-1 + ak + ak+i

Note that the B-valued function TB defined on {0,1} which is valued I s on exactly
those vectors (a i , . . . , afc+i) for which r (a i , . . . , ak+1) = 1 and valued 0b otherwise,
is represented by the polynomial

+ XK + XK+I — 2XK-IXK — 2XKXK+I — 2XK-\XK+I + AXK-\XKXK+I

72 Miguel Couceiro and Stephan Földes

where + and — are to be interpreted in B. Thus, the composition f(fi,... ,fk-i),
where FK-I = T and FI is the (k + l)-ary ith projection function

(a i , . . . ,afe+i) >-> aj

for k = 1 , . . . , k — 2, is represented by the polynomial in k + 1 indeterminates

X\... Xk-2{Xk-i + Xk + Xk+i~
— 2Xk-iXk — 2XkXk+i — 2Xk~\Xk+\ + 4Xk-iXkXk+i)

where + and — are to be interpreted in B. Prom the fact that B has characteristic
different from 2, it follows that this polynomial has degree greater than k. •

Note that for k = 1, the class of functions of degree less that k, i.e. the class of
constants, is defined by the linear expression f(v) = f(0). In fact, from Theorem 7
above it follows that, if B is any field of characteristic different from 2, then the
set of constants is the only linearly definable class of B-valued functions on {0 ,1}
of bounded degree. However, Corollary 4 guarantees the existence of equational
characterizations of these classes, because bounded degree classes are stable un-
der right composition with the minimal clone V containing only projections. The
following generalization of Corollary 3.3 in [4] provides an equation characterizing
classes of bounded degree functions of Boolean variables, and whose codomain is
any commutative ring with identity.

Theorem 8. If B is any commutative ring with identity, and k > 1, then the class
of B-valued functions on {0,1} having degree less than k is defined by the following
functional equation (with vector variables vi,..., vkJ:

ftA^ + D-1)"1^ A v<) = ° (4)
¿ek / ck je/iek\{j} /¡¿a

where k = {1 , . . . , k}.

In (4) the summation refers to addition in the commutative ring B. Equation
(4) was obtained in [4] as a combination of two opposite inequalities in the ordered
real field B — R. Inequalities are. not available in general in a commutative ring,
in particular in finite fields. However, the following direct proof, based on the
principles used in establishing the functional inequality in Theorem 3.1 in [4], can
still be used in the arbitrary commutative ring context.

Proof. First we show that every B-valued function on {0,1} of degree less than
k satisfies equation (4). As in the proof of Theorem 6, it is enough to show that
every monomial of degree less than k satisfies equation (4), because every linear
combination (with coefficients in B) of functions satisfying (4), also satisfies the
equation.

Let / be an n-ary B-valued function on {0,1} represented by I l j g j Xj, \ J \< k,
J C {1 , . . . ,n}. Let wJ be the characteristic vector of J in {0 ,1}" . Let v\,...

Functional Equations, Constraints, Definability of Function Classes 73

be any n-vectors in { 0 , l } n , and let u denote their conjunction f\i€k Vi. For every
j € k = { l , . . . , k}, let

Uj = f\ Vi
i6k\{j}

and let the vector z(I) be defined by

z{I) = wJ • (\J Uj) for 0 ^ J C k, and z(0) = wJ • u

where the product • is defined componentwise. From the fact that k >| J |, it
follows that there is an I € k such that

wJ • u = wJ • Ul

Fix such an index I. It is not difficult to see that, for every I C k, we have

f(\/uj) = f(z(I)) and z(I) = z(I + {I})

and thus the terms in the sum

/ (A ^ + D - 1) " 1 / ^)
i€k /Ck j€l

cancel pairwise, i.e. the sum is zero, which shows that / satisfies (4).
In order to complete the proof of Theorem 8, we need to show that if / is an

n-ary function of degree greater than or equal to k, then equation (4) is not satisfied
by / . Let g and h be the n-ary functions represented by the sum of monomials, in
the polynomial representation of / , having degree less than k and greater than or
equal to k, respectively. As in the proof of Theorem 6, / satisfies equation (4) if
and only if h satisfies the equation. We prove that h does not satisfy (4).

Let J be an inclusionwise minimal subset of n = { l , . . . , n } , such that the
monomial c n^e J aPP e a r s in the polynomial representation of h, with coefficient
c ^ OB- Note that | J |> k. Let JQ be any subset of J of size k. For every j € Jo,
consider the n-vectors yj — (a i , . . . ,an) , where aj = 0, aj = 0 if i £ J, and a* = 1
if i € J \ { j } . Let vi,..., Vk be defined as the vectors yj, j 6 Jo, in any order. Let
u = Aiek vi> a n d for each j € k, let

Uj = f\ Vi
¿6k\{j}

Observe that for / C k, all monomials in the polynomial representation of h are
evaluated to zero on

V ui

74 Miguel Couceiro and Stephan Földes

except in the case I = k, where the only monomial which has non-zero value is
c rije j Xj, because the n-vector

\J Uj = (oi,... ,an)
;?€k

is given by at = 1 if t € J, and at = 0 otherwise. Therefore, we have

h(f\vi) + £ (- l) m M V = (~l) f cM V «>) = i-Vkc * 0

¿ek /ck jei je k

which shows that h, and thus / , does not satisfy equation (4). •

Theorem 8 provides in particular an alternative equational characterization of
classes of Boolean functions whose Zhegalkin polynomials have degree bounded by
a positive integer k.

References
[1] M. Couceiro, S. Foldes. "Definability of Boolean Function Classes by Linear

Equations over GF(2)", Discrete Applied Mathematics 142 (2004) 29-34.

[2] M. Couceiro, S. Foldes. "On Closed Sets of Relational Constraints and Classes
of Functions Closed under Variable Substitutions", Algebra Universalis, 54
(2005) 149-165.

[3] O. Ekin, S. Foldes, P.L. Hammer, L. Hellerstein. "Equational Characterizations
•of Boolean Functions Classes", Discrete Mathematics 211 (2000) 27-51.

[4] S. Foldes, P.L. Hammer. "Submodularity, Supermodularity and Higher Or-
der Monotonicities of Pseudo-Boolean Functions", Mathematics of Operations
Research 30 2 (2005) 453-461.

[5] S. Foldes, G. R. Pogosyan. "Post classes characterized by functional terms",
Discrete Applied Mathematics 142 (2004) 3551.

[6] R. Godement. Algebra, Kershaw Publishing Company, 1969.

[7] P.L. Hammer. S. Rudeanu. Boolean Methods in Operations Research and Re-
lated Areas, Springer 1968.

[8] N. Pippenger. "Galois Theory for Minors of Finite Functions", Discrete Math-
ematics 254 (2002) 405-419.

[9] G. R. Pogosyan. "Classes of Boolean Functions Defined by Functional Terms",
Multiple - Valued Logic 7 5-6 (2001) 417-448.

Functional Equations, Constraints, Definability of Function Classes 75

[10] R. Pöschel. "Concrete Representation of Algebraic Structures and a General
Galois Theory", Contributions to General Algebra, Proceedings Klagenfurt
Conference, May 25-28 (1978) 249-272. Verlag J. Heyn, Klagenfurt, Austria
1979.

[11] R. Pöschel. "A General Galois Theory for Operations and Relations and Con-
crete Characterization of Related Algebraic Structures", Report R-01/80. Zen-
tralinstitut fur Math, und Mech., Berlin 1980.

[12] C. Wang. "Boolean Minors", Discrete Mathematics 141 (1995) 237-258.

[13] C. Wang, A.C. Williams. "The Threshold Order of a Boolean Function", Dis-
crete Applied Mathematics 31 (1991) 51-69.

[14] D. J. A. Welsh. Matroid Theory, Academic Press, 1976.

[15] I. E. Zverovich. "Characterization of Closed Classes of Boolean Functions in
Terms of Forbidden Subfunctions and Post Classes", Discrete Applied Mathe-
matics 149 (2005) 200-218.

t>

Acta Cybernetica 18 (2007) 1 1 7 - 1 3 4 .

Intuitionistic computability logic*

Giorgi Japaridze*

Abstract
Computability logic (CL) is a systematic formal theory of computational

tasks and resources, which, in a sense, can be seen as a semantics-based
alternative to (the syntactically introduced) linear logic. With its expres-
sive and flexible language, where formulas represent computational problems
and "truth" is understood as algorithmic solvability, CL potentially offers a
comprehensive logical basis for constructive applied theories and computing
systems inherently requiring constructive and computationally meaningful
underlying logics. Among the best known constructivistic logics is Heyting's
intuitionistic calculus INT, whose language can be seen as a special frag-
ment of that of CL. The constructivistic philosophy of INT, however, just
like the resource philosophy of linear logic, has never really found an intu-
itively convincing and mathematically strict semantical justification. CL has
good claims to provide such a justification and hence a materialization of
Kolmogorov's known thesis "INT = logic of problems". The present paper
contains a soundness proof for INT with respect to the CL semantics.

Keywords: computability logic, interactive computation, game semantics,
linear logic, intuitionistic logic

1 Introduction
/

Computability logic (CL), introduced recently in [7], is a formal theory of com-
putability in the same sense as classical logic is a formal theory of truth. It un-
derstands formulas as (interactive) computational problems, and their "truth" as
algorithmic solvability. Computational problems, in turn, are defined as games
played by a machine against the environment, with algorithmic solvability meaning
existence of a machine that always wins the game.

Intuitionistic computability logic is not a modification or version of CL. The
latter takes pride in its universal applicability, stability and "immunity to possible
future revisions and tampering" ([7], p. 12). Rather, what we refer to as intuition-
istic computability logic is just a — relatively modest — fragment of CL, obtained

"This material is based upon work supported by the National Science Foundation under Grant
No. 0208816

t Computing Sciences Department, Villanova University, 800 Lancaster Avenue, Villanova, PA
19085, USA E-mail: giorgi.japaridze8villanova.edu

77

78 Giorgi Japai irl/.c

by mechanically restricting its formalism to a special sublanguage. It was conjec-
tured in [7] that the (set of the valid formulas of the) resulting fragment of CL is
described by Heyting's intuitionistic calculus INT. The present paper is devoted
to a verification of the soundness part of that conjecture.

Bringing INT and CL together could signify a step forward not only in logic
but also in theoretical computer science. INT has been attracting the attention of
computer scientists since long ago. And not only due to the beautiful phenomenon
within the 'formulas-as-types' approach known as the Curry-Howard isomorphism.
INT appears to be an appealing alternative to classical logic within the more tra-
ditional approaches as well. This is due to the general constructive features of its
deductive machinery, and Kolmogorov's [14] well-known yet so far rather abstract
thesis according to which intuitionistic logic is (or should be) a logic of problems.
The latter inspired many attempts to find a "problem semantics" for the language
of intuitionistic logic [5, 13, 16], none of which, however, has fully succeeded in jus-
tifying INT as a logic of problems. Finding a semantical justification for INT was
also among the main motivations for Lorenzen [15], who pioneered game-semantical
approaches in logic. After a couple of decades of trial and error, the goal of obtain-
ing soundness and completeness of INT with respect to Lorenzen's game semantics
was achieved [3]. The value of such an achievement is, however, dubious, as it came
as a result of carefully tuning the semantics and adjusting it to the goal at the cost
of sacrificing some natural intuitions that a game semantics could potentially offer.1

After all, some sort of a specially designed technical semantics can be found for vir-
tually every formal system, but the whole question is how natural and usable such a
semantics is in its own right. In contrast, the CL semantics was elaborated without
any target deductive construction in mind, following the motto "Axiomatizations
should serve meaningful semantics rather than vice versa". Only retroactively was
it observed that the semantics of CL yields logics similar to or identical with some
known axiomatically introduced constructivistic logics such as linear logic or INT.
Discussions given in [7, 8, 10, 11] demonstrate how naturally the semantics of CL
emerges and how much utility it offers, with potential application areas ranging
from the pure theory of (interactive) computation to knowledgebase systems, sys-
tems for planning and action, and constructive applied theories. As this semantics
has well-justified claims to be a semantics of computational problems, the results
of the present article speak strongly in favor of Kolmogorov's thesis, with a promise
of a full materialization of the thesis in case a completeness proof of INT is also
found.

The main utility of the present result is in the possibility to base applied theories
or knowledgebase systems on INT. Nonlogical axioms — or the knowledge base —
of such a system would be any collection of (formulas expressing) problems whose

1 Using Blass's [2] words, 'Supplementary rules governing repeated attacks and defenses were
devised by Lorenzen so that the formulas for which P [proponent] has a winning strategy are
exactly the intuitionistically provable ones'. Quoting [6], 'Lorenzen's approach describes logical
validity exclusively in terms of rules without appealing to any kind of truth values for atoms, and
this makes the semantics somewhat vicious ... as it looks like just a "pure" syntax rather than a
semantics'.

Intuitionistic computability logic 79

algorithmic solutions are known. Then, our soundness theorem for I N T — which
comes in a strong form called uniform-constructive soundness — guarantees that
every theorem T of the theory also has an algorithmic solution and, furthermore,
such a solution can be effectively constructed from a proof of T. This makes I N T
a problem-solving tool: finding a solution for a given problem reduces to finding a
proof of that problem in the theory.

It is not an ambition of the present paper to motivationally (re)introduce and
(re)justify computability logic and its intuitionistic fragment in particular. This
job has been done in [7] and once again — in a more compact way — in [10]. An
assumption is that the reader is familiar with at least the motivational/philosophical
parts of either paper and this is why (s)he decided to read the present article. While
helpful in fully understanding the import of the present results, from the purely
technical point of view such a familiarity, however, is not necessary, as this paper
provides all necessary definitions. Even if so, [7] and/or [10] could still help a less
advanced reader in getting a better hold of the basic technical concepts. Those
papers are written in a semitutorial style, containing ample examples, explanations
and illustrations, with [10] even including exercises.

2 A brief informal overview of some basic concepts
As noted, formulas of CL represent interactive computational problems. Such prob-
lems are understood as games between two players: T, called machine, and J.,
called environment. T is a mechanical device with a fully determined, algorith-
mic behavior. On the other hand, there are no restrictions on the behavior of
_L. A problem/game is considered (algorithmically) solvable/winnable iff there is a
machine that wins the game no matter how the environment acts.

Logical operators are understood as operations on games/problems. One of
the important groups of such operations, called choice operations, consists of
n,U, n , U , in our present approach corresponding to the intuitionistic operators
of conjunction, disjunction, universal quantifier and existential quantifier, respec-
tively. A i f l . . . n A n is a game where the first legal move ("choice"), which should be
one of the elements of { 1 , . . . ,n } , is by the environment. After such a move/choice
i is made, the play continues and the winner is determined according to the rules of
Ai\ if a choice is never made, ± loses. A\U.. .UAn is defined in a symmetric way with
the roles of ± and T interchanged: here it is T who makes an initial choice and who
loses if such a choice is not made. With the universe of discourse being {1 ,2 ,3 , . . . } ,
the meanings of the "big brothers" II and U of n and U can now be explained by
ria:A(a:) = ,4(1) n A(2) n ¿ (3) n . . . and UxA(x) = A (l) U .4(2) U A{3) U

The remaining two operators of intuitionistic logic are the binary o— ("intu-
itionistic implication") and the 0-ary $ ("intuitionistic absurd"), with the intu-
itionistic negation of F simply understood as an abbreviation for F o—$. The
intuitive meanings of and $ are "reduction" (in the weakest possible sense)
and "a problem of universal strength", respectively. In what precise sense is $ a
universal-strength problem will be seen in Section 6. As for o—, its meaning can

80 Giorgi Japasicl'/A)

be better explained in terms of some other, more basic, operations of CL that have
no official intuitionistic counterparts.

One group of such operations comprises negation -> and the so called parallel
operations A, V,—>. Applying -> to a game A interchanges the roles of the two
players: T's moves and wins become J_'s moves and wins, and vice versa. Say, if
Chess is the game of chess from the point of view of the white player, then ->Chess is
the same game as seen by the black player. Playing A\ A.. ,AAn (resp. A\V.. -VAn)
means playing the n games in parallel where, in order to win, T needs to win in
all (resp. at least one) of the components Ai. Back to our chess example, the
two-board game Chess V Chess can be easily won by just mimicking in Chess the
moves made by the adversary in -¡Chess and vice versa. On the other hand, winning
ChessU^Chess is not easy at all: here T needs to choose between Chess and -¡Chess
(i.e. between playing white or black), and then win the chosen one-board game.
Technically, a move a in the kth A-conjunct or V-disjunct is made by prefixing a
with lk.'. For example, in (the initial position of) (A u B) V(CnZ)) , the move '2.1'
is legal for _L, meaning choosing the first n-conjunct in the second V-disjunct of the
game. If such a move is made, the game will continue as (A U B) V C. One of the
distinguishing features of CL games from the more traditional concepts of games
([1, 2, 3, 6, 15]) is the absence of procedural rules — rules strictly regulating which
of the players can or should move in any given situation. E.g., in the above game
(AUB) V (C n D) , T also has legal moves — the moves '1.1' and '1.2'. In such cases
CL allows either player to move, depending on who wants or can act faster.2 As
argued in [7] (Section 3), only this "free" approach makes it possible to adequately
capture certain natural intuitions such as truly parallel/concurrent computations.

The operation —> is defined by A —> B — (->A) V B. Intuitively, this is the
problem of reducing B to A: solving A —> B means solving B having A as an
external computational resource. Resources are symmetric to problems: what is a
problem to solve for one player is a resource that the other player can use, and
vice versa. Since A is negated in (->^4) V B and negation means switching the roles,
A appears as a resource rather than problem for T in A —» B. To get a feel of
—> as a problem reduction operation, the following — already "classical" in CL —
example may help. Let, for any m, n, Accepts(m, n) mean the game where none of
the players has legal moves, and which is automatically won by T if Turing ma-
chine m accepts input n, and otherwise automatically lost. This sort of zero-length
games are called elementary in CL, which understands every classical proposi-
tion/predicate as an elementary game and vice versa, with "true" = "won by T"
and "false" = "lost by T". Note that then \~\x\~\xj(yAccepts(x, y) U -> Accepts(x,y))
expresses the acceptance problem as a decision problem: in order to win, the ma-
chine should be able to tell whether x accepts y or not (i.e., choose the true disjunct)
for any particular values for x and y selected by the environment. This problem
is undecidable, which obviously means that there is no machine that (always) wins

2This is true for the case when the underlying model of computation is HPM (see Section 5),
but seemingly not so when it is EPM — the model employed in the present paper. It should be
remembered, however, that EPM is viewed as a secondary model in CL, admitted only due to the
fact that it has been proven ([7]) to be equivalent to the basic HPM model.

Intuitionistic computability logic 81

the game \~\x\~\y(Accepts(x,y)L}-*Accepts(x,y)). However, the acceptance problem
is known to be algorithmically reducible to the halting problem. The latter can be
expressed by \~\xV~\y(Halts(xiy) LI ~^Halts(x,y)), with the obvious meaning of the
elementary game/predicate Halts(x,y). This reducibility translates into our terms
as existence of a machine that wins

rtany(Halts(x,y) U-iHalts(x,y)) —> V~\x\~\y(Accepts{x, y) \J -*Accepts(x,y)). (1)

Such a machine indeed exists. A successful strategy for it is as follows. At the
beginning, T waits till _L specifies some values m and n for x and y in the conse-
quent, i.e. makes the moves '2.m' and '2.n\ Such moves, bringing the consequent
down to Accepts(m,n) U ->Accepts(m,n), can be seen as asking the question "does
machine m accept input n?". To this question T replies by the counterquestion
"does m halt on n?", i.e. makes the moves ' l .m and 'l .n' , bringing the antecedent
down to Halts(m, n) U -*Halts(m, n). The environment has to correctly answer this
counterquestion, or else it loses. If it answers "no" (i.e. makes the move '1.2' and
thus further brings the antecedent down to -iHalts(m,n)), T also answers "no"
to the original question in the consequent (i.e. makes the move '2.2'), with the
overall game having evolved to the true and hence T-won proposition/elementary
game -*Halts(m,n) —> ->Accepts(m,n). Otherwise, if the environment's answer is
"yes" (move '1.1'), T simulates Turing machine m on input n until it halts, and
then makes the move '2.1' or '2.2' depending whether the simulation accepted or
rejected.

Various sorts of reduction have been defined and studied in an ad hoc man-
ner in the literature. A strong case can be made in favor of the thesis that the
reduction captured by our —• is the most basic one, with all other reasonable con-
cepts of reduction being definable in terms of —>. Most natural of those concepts
is the one captured by the earlier-mentioned operation of "intuitionistic implica-
tion" o—, with Ao—B defined in terms of —> and (yet another natural operation)
o by Ao—B = (¿>1) —» B. What makes o— so natural is that it captures our
intuition of reducing one problem to another in the weakest possible sense. The
well-established concept of Turing reduction has the same claim. But the latter
is only defined for non-interactive, two-step (question/answer, or input/output)
problems, such as the above halting or acceptance problems. When restricted to
this sort of problems, as one might expect, o— indeed turns out to be equivalent
to Turing reduction. The former, however, is more general than the latter as it
is applicable to all problems regardless their forms and degrees of interactivity.
Turing reducibility of a problem B to a problem A is defined as the possibility to
algorithmically solve B having an oracle for A. Back to (1), the role of _L in the
antecedent is in fact that of an oracle for the halting problem. Notice, however,
that the usage of the oracle is limited there as it only can be employed once: after
querying regarding whether m halts of n, the machine would not be able to repeat
the same query with different parameters m' and n', for that would require two
"copies" of r\x\~\y(Halts(x,y) U-*Halts(x,y)) rather than one. On the other hand,
Turing reduction to A and, similarly, our A o— . . . , allow unlimited and recurring
usage of A, which the resource-conscious CL understands as -»-reduction not to A

82 Giorgi Japasicl'/A)

but to the stronger problem expressed by bA, called the branching recurrence
of A.3 Two more recurrence operations have been introduced within the frame-
work of CL ([10]): parallel recurrence A and sequential recurrence A. Common to
all of these operations is that, when applied to a resource A, they turn it into a
resource that allows to reuse A an unbounded number of times. The difference
is in how "reusage" is exactly understood. Imagine a computer that has a pro-
gram successfully playing Chess. The resource that such a computer provides is
obviously something stronger than just Chess, for it allows to play Chess as many
times as the user wishes, while Chess, as such, only assumes one play. The simplest
operating system would allow to start a session of Chess, then — after finishing or
abandoning and destroying it — start a new play again, and so on. The game that
such a system plays — i.e. the resource that it supports/provides — is A Chess,
which assumes an unbounded number of plays of Chess in a sequential fashion.
However, a more advanced operating system would not require to destroy the old
session(s) before starting a new one; rather, it would allow to run as many parallel
sessions as the user needs. This is what is captured by kChess, meaning nothing
but the infinite conjunction Chess A Chess A.... As a resource, kChess is obviously
stronger than kChess as it gives the user more flexibility. But A is still not the
strongest form of reusage. A really good operating system would not only allow
the user to start new sessions of Chess without destroying old ones; it would also
make it possible to branch/replicate each particular session, i.e. create any number
of "copies" of any already reached position of the multiple parallel plays of Chess,
thus giving the user the possibility to try different continuations from the same
position. After analyzing the formal definition of A given in Section 3 — or, better,
the explanations provided in Section 13 of [7] — the reader will see that o Chess is
exactly what accounts for this sort of a situation. A Chess can then be thought of as
a restricted version of A Chess where only the initial position can be replicated. A
well-justified claim can be made that oA captures our strongest possible intuition
of "recycling" / "reusing" A. This automatically translates into another claim, ac-
cording to which Ao—B, i.e. ¿>1 —> B, captures our weakest possible — and hence
most natural — intuition of reducing B to A.

As one may expect, the three concepts of recurrence validate different principles.
For example, one can show that the left U- or U-introduction rules of INT, which
are sound with Ao—B understood as bA —> B, would fail if Ao—B was understood
as kA —>. B or kA —> B. A naive person familiar with linear logic and seeing
philosophy-level connections between our recurrence operations and Girard's [4]
storage operator !, might ask which of the three recurrence operations "corresponds"
to !. In the absence of a clear resource semantics for linear logic, perhaps such a
question would not be quite meaningful though. Closest to our present approach
is that of [1], where Blass proved soundness for the propositional fragment of I N T
with respect to his semantics, reintroduced 20 years later [2] in the new context of
linear logic.

3The term "branching recurrence" and the symbols 4 and o— were established in [10]. The
earlier paper [7] uses "branching conjunction", ! and => instead. In the present paper, => has a
different meaning — that of a separator of the two parts of a sequent.

Intuitionistic computability logic 83

To appreciate the difference between —» and o—, let us remember the Kol-
mogorov complexity problem. It can be expressed by \~\uUzK(z, u), where K(z, u)
is the predicate "z is the size of the smallest (code of a) Turing machine that re-
turns u on input 1". Just like the acceptance problem, the Kolmogorov complexity
problem has no algorithmic solution but is algorithmically reducible to the halting
problem. However, such a reduction can be shown to essentially require recurring
usage of the resource I la;l 1 y(Halts(x, y)U^Halts(x, y)). That is, while the following
game is winnable by a machine, it is not so with —> instead of o—:

rkny(Halts(x, y) U ->Halts(x, y)) o - [luLlzK{z, u). (2)

Here is T's strategy for (2) in relaxed terms: T waits till ± selects a value m for u
in the consequent, thus asking T the question "what is the Kolmogorov complexity
of m?". After this, starting from i — 1, T does the following: it creates a new
copy of the (original) antecedent, and makes the two moves in it specifying x and
y as i and 1, respectively, thus asking the counterquestion "does machine i halt on
input 1?". If _L responds by choosing -iHalts(i, 1) ("no"), T increments i by one
and repeats the step; otherwise, if A. responds by Halts(i, 1) ("yes"), T simulates
machine i on input 1 until it halts; if it sees that machine i returned m, it makes
the move in the consequent specifying 2 as |i| (here |i| means the size of i, i.e.,
|i| = log2i), thus saying that |i| is the Kolmogorov complexity of m; otherwise, it
increments i by one and repeats the step.

3 Constant games
Now we are getting down to formal definitions of the concepts informally explained
in the previous section. Our ultimate concept of games will be defined in the next
section in terms of the simpler and more basic class of games called constant games.
To define this class, we need some technical terms and conventions. Let us agree
that by a move we mean any finite string over the standard keyboard alphabet.
One of the non-numeric and non-punctuation symbols of the alphabet, denoted
is designated as a special-status move, intuitively meaning a move that is always
illegal to make. A labeled move (labmove) is a move prefixed with T or _L, with
its prefix (label) indicating which player has made the move. A run is a (finite or
infinite) sequence of labeled moves, and a position is a finite run.

Convention 1. We will be exclusively using the letters F, 0 , $, <f,T for runs, p
for players, a, ß, 7 for moves, and A for labmoves. Runs will be often delimited with
"(" and ")", with () thus denoting the empty run. The meaning of an expression
such as (<J>, pa, T) must be clear: this is the result of appending to position (<J>) the
labmove (pa) and then the run (r). ->r (not to confuse this -1 with the same-shape
game operation of negation) will mean the result of simultaneously replacing every
label T in every labmove of T by ± and vice versa. Another important notational
convention is that, for a string/move a, TQ means the result of removing from T
all labmoves except those of the form paß, and then deleting the prefix 'a ' in the
remaining moves, i.e. replacing each such paß by pß.

84 Giorgi Ja.pa.rkhe

The following item is a formal definition of constant games combined with some
less formal conventions regarding the usage of certain terminology.

Definit ion 2. A constant game is a pair A = (Lr*4, W n A) , where:

1. LrA is a set of runs not containing (whatever-labeled) move satisfying
the condition that a (finite or infinite) run is in LrA iff all of its nonempty
finite — not necessarily proper — initial segments are in Lr"4 (notice that
this implies () € LrA). The elements of LrA are said to be legal runs of A,
and all other runs are said to be illegal. We say that a is a legal move for
p in a position $ of A iff ($, pa) G L r A ; otherwise a is illegal. When the
last move of the shortest illegal initial segment of T is p-labeled, we say that
r is a p-illegal run of A.

• 2. W n A is a function that sends every run T to one of the players T or JL,
satisfying the condition that ifT is a p-illegal run of A, then W n A (r) p.
When W n A (r) = p, we say that T is a p -won (or won by p j run of A;
otherwise T is lost by p. Thus, an illegal run is always lost by the player who
has made the first illegal move in it.

Def in i t i on3 . Let A, B, A\, A2,... be constant games, and n G { 2 , 3 , . . . } .

1. -¡A is defined by: T G Lr""4 iff^Y G L r A ; W n ^ (r) = T f W n ^ r) = JL.
2. Ax^...UAnis defined by: Y G L r ' 4 i n - n ' 4 n iffT = () or Y = (JJ, Q), where

i G { l , . . . , n } andQ G L r A i ; W n A , n - n A » (r) = ± iffT = (_L»,e>, where
i G { 1 , . . . ,n } and WnAi{Q) = ±.

3. Ai A ... A An is defined by: T G L r A l A " AA '1 iff every move of T starts
with 'i.' for one of the i G { l , . . . , n } and, for each such i, T1, G L r A i ;
whenever T G L r A l A " A A " , W n A l A - A A n (r) = T iff, for each i G { l , . . . , n } ,
W n A ' (r -) = T.

4- Ai U . . . LI An and Ai V . . . V An are defined exactly as A\ n . . . n An and
A\A.. .AAn, respectively, only with "T" and "±" interchanged. And A —> B
is defined as (->A) V B.

5. The infinite ri-conjunction A\ n A2 n ... is defined exactly as A\ n . . . n An,
only with "i G { 1 , 2 , . . . } " instead of "i G { 1 , . . . , n } ". Similarly for the infinite
versions of U, A, V.

6. In addition to the earlier-established meanings, the symbols T and J. also
denote two special — simplest — games, defined by L r T = Lr -1 = { () } ,
W n T () = T and W n 1 !) = ±.

An important operation not explicitly mentioned in Section 2 is what is called
prefixation. This operation takes two arguments: a constant game A and a position
$ that must be a legal position of A (otherwise the operation is undefined), and
returns the game (<I>).4. Intuitively, (<3?)/! is the game playing which means playing
A starting (continuing) from position That is, is the game to which A
evolves (will be "brought down") after the moves of $ have been made. We
have already used this intuition when explaining the meaning of choice operations
in Section 2: we said that after _L makes an initial move i G { 1 , . . . ,n } , the game

Intuitionistic computability logic 85

Ail~l.. .n / l n continues as A{. What this meant was nothing but that (_Li)(/lin.. .n
An) = Ai. Similarly, (Ti)(Ai U. . . U = Ai. Here is the definition of prefixation:

Definition 4. Let A be a constant game and <3? a legal position of A. The game
($)A is defined by: Lr^ " 4 = {r | e Lr"1}; Wn w ' 4 (r> = T).

The operation A is somewhat more complex and its definition relies on certain
additional conventions. We will be referring to (possibly infinite) strings of Os and
Is as bit strings, using the letters w, u as metavariables for them. The expression
wu, meaningful only when w is finite, will stand for the concatenation of strings w
and u. We write v> <u to mean that to is a (not necessarily proper) initial segment
of u. The letter e will exclusively stand for the empty bit string.

Convention 5. By a tree we mean a nonempty set T of bit strings, called
branches of the tree, such that, for every w, u, we have: (a) if w £ T and u X w,
then u € T; (b) wO £ T iff wl 6 T; (c) if w is infinite and every finite u with
u < w is in T, then w £ T. Note that T is finite iff every branch of it is finite. A
complete branch of T is a branch w such that no bit string u with w •< u ^ w is
in T. Finite branches are called nodes, and complete finite branches called leaves.

Definition 6. We define the notion of a prelegal position, together with the
function Tree that associates a finite tree Tree($) with each prelegal position <3?, by
the following induction:

1. () is a prelegal position, and Tree() = {e}.

2. ($, A) is a prelegal position iff $ is so and one of the following two conditions
is satisfied:

a) A = -Lu;: for some leaf w of Tree($). We call this sort of a labmove A
replicative. In this case Tree($, A) = Tree(<&) U {rwO, twl}.

b) X is ±w.a or Tw.a for some node w of Tree($) and move a. We call this
sort of a labmove A nonreplicative. In this case Tree($, A) = Tree($).

The terms "replicative" and "nonreplicative" also extend from labmoves to moves.
When a run T is infinite, it is considered prelegal iff all of its finite initial segments
are so. For such a T, the value of Tree(r) is the smallest tree such that, for every
finite initial segment $ ofT, Tree($) C TYee(r).

Convention 7. Let it be a bit string and F any run. Then will stand for the
result of first removing from T all labmoves except those that look like put.a for some
bit string w with w <u, and then deleting this sort of prefixes lw.' in the remaining
labmoves, i.e. replacing each remaining labmove pw.a (where w is a bit string) by
pa. Example: If,u = 101000... and T = (Te.ai,J.: ,J_l.a2 ,T0.a3 ,±1:,T10.a4) ,
then = (T a i , l a 2 , Ta4) .

Definition 8. Let A be a constant game. The game oA is defined by:

86 Giorgi J a p a s i c l ' / A)

1. A position $ is in Lr6A iff$ is prelegal and, for every leaf w of Tree(<£>),
G LrA .

2. As long as T G L r M , W n M (r) = T iffWnA(T±u) = T for every infinite
bit string u.4

Next, we officially reiterate the earlier-given definition of o— by stipulating that
A o— B =def bA —> B.

Remark 9. Intuitively, a legal run T of ¿̂ 4 can be thought of as a multiset Z of
parallel legal runs of A. Specifically, Z = {T - u | u is a complete branch of Tree(T)},
with complete branches of Tree(T) thus acting as names for — or "representing"
— elements of Z. In order for T to win, every run from Z should be a T-won
run of A. The runs from Z typically share some common initial segments and, put
together, can be seen as forming a tree of labmoves, with Tree(T) — that we call
the underlying tree-structure of Z — in a sense presenting the shape of that tree.
The meaning of a replicative move w: — making which is an exclusive privilege of
± — is creating in (the evolving) Z two copies of position r-™ out of one. And
the meaning of a nonreplicative move w.a is making move a in all positions of
(the evolving) Z with w < u. This is a brutally brief explanation, of course. The
reader may find it very helpful to see Section 13 of [7] for detailed explanations and
illustrations of the intuitions associated with our ¿-related formal concepts.5

4 Not-necessarily-constant games
Constant games can be seen as generalized propositions: while propositions in
classical logic are just elements of {T, _L}, constant games are functions from runs
to {T, J.}. As we know, however, propositions only offer a very limited expressive
power, and classical logic needs to consider the more general concept of predicates,
with propositions being nothing but special — constant — cases of predicates.
The situation in CL is similar. Our concept of (simply) game generalizes that of
constant game in the same sense as the classical concept of predicate generalizes
that of proposition.

Let us fix two infinite sets of expressions: the set {^i, i>2, • • •} of variables and
the set {1 ,2 , . . . } of constants. Without loss of generality here we assume that
the above collection of constants is exactly the universe of discourse — i.e. the set
over which the variables range — in all cases that we consider. By a valuation we
mean a function e that sends each variable 2; to a constant e(x). In these terms,
a classical predicate P can be understood as a function that sends each valuation
e to a proposition, i.e. constant predicate. Similarly, what we call a game sends
valuations to constant games:

4 For reasons pointed out on page 39 of [7], the phrase "for every infinite bit string u" here
can be equivalently replaced by "for every complete branch u of 7Vee(r)". Similarly, in clause 1,
"every leaf w of 7>ee(i>)" can be replaced by "every infinite bit string w".

5 A couple of potentially misleading typos have been found in Section 13 of [7]. The current
erratum note is maintained at http://www.csc.villanova.edu/~japaridz/CL/erratum.pdf

http://www.csc.villanova.edu/~japaridz/CL/erratum.pdf

Intuitionistic computability logic 87

Definition 10. A game is a function A from valuations to constant games. We
write e[A] (rather than A(e)) to denote the constant game returned by A for valua-
tion e. Such a constant game e[A] is said to be an instance of A. For readability,
we often write Lr* and W n f instead of L r 6 ^ and Wn6''4'.

Just as this is the case with propositions versus predicates, constant games in
the sense of Definition 2 will be thought of as special, constant cases of games in
the sense of Definition 10. In particular, each constant game A! is the game A such
that, for every valuation e, e[A\ = A'. Prom now on we will no longer distinguish
between such A and A', so that, if A is a constant game, it is its own instance, with
A = e[A] for every e.

We say that a game A depends on a variable x iff there are two valuations
ej, e2 that agree on all variables except x such that ei[A] ^ e2[A]. Constant games
thus do not depend on any variables.

Just as the Boolean operations straightforwardly extend from propositions to
all predicates, our operations A,V, — f l , U, ¿, o— extend from constant games
to all games. This is done by simply stipulating that e[...] commutes with all of
those operations: ->A is the game such that, for every e, e[-iA] = —ie[A]; A n B is
the game such that, for every e, e[A n B] = e[A] n e[B\; etc.

To generalize the standard operation of substitution of variables to games, let
us agree that by a term we mean either a variable or a constant; the domain of
each valuation e is extended to all terms by stipulating that, for any constant c,
e(c) = c.

Definition 11. Let A be a game, x\,...,xn pairwise distinct variables, and
ti,...,tn any (not necessarily distinct) terms. The result of substituting
x\,...,xn by ti,...,tn in A, denoted A(x\/t\,... ,xn/tn), is defined by stipu-
lating that, for every valuation e, e[A(x\/ti,..., xn/tn)} = e'\A\, where e' is the
valuation for which we have e'(xi) = e(ij), e'(xn) = e(tn) and, for every
variable y & {xi,..., xn}, e'(y) = e(y).

Intuitively A(xi/ti,... ,xn/tn) is A with n , . . . ,xn remapped to i i , . . . ,tn, re-
spectively. Following the standard readability-improving practice established in the
literature for predicates, we will often fix a tuple (x\,..., xn) of pairwise distinct
variables for a game A and write A as A(x\,..., xn). It should be noted that
when doing so, by no means do we imply that x\,.. .,xn are of all of (or only) the
variables on which A depends. Representing A in the form A(xi,...,xn) sets a
context in which we can write A(t\,... ,tn) to mean the same as the more clumsy
expression A(x\/t\,... ,xn/tn).

In the above terms, we now officially reiterate the earlier-given definitions of the
two main quantifier-style operations IH and U:

f l x A (x) =def A(l) fl A{2) n >1(3) f l . . .

and
UxA(x) =def A(1) U A(2) U A(3) U .

88 Giorgi Japasicl '/A)

5 Computational problems and their algorithmic
solvability

Our games are obviously general enough to model anything that one would call a
(two-agent, two-outcome) interactive problem. However, they are a bit too general.
There are games where the chances of a player to succeed essentially depend on
the relative speed at which its adversary acts. A simple example would be a game
where both players have a legal move in the initial position, and which is won by the
player who moves first. CL does not want to consider this sort of games meaningful
computational problems. Definition 4.2 of [7] imposes a simple condition on games
and calls games satisfying that condition static. We are not reproducing that
definition here as it is not relevant for our purposes. It should be however mentioned
that, according to one of the theses on which the philosophy of CL relies, the
concept of static games is an adequate formal counterpart of our intuitive concept of
"pure", speed-independent interactive computational problems. All meaningful and
reasonable examples of games — including all elementary games — are static, and
the class of static games is closed under all of the game operations that we have seen
(Theorem 14.1 of [7]). Let us agree that from now on the term "computational
problem", or simply "problem", is a synonym of "static game".

Now it is time to explain what computability of such problems means. The
definitions given in this section are semiformal. The omitted technical details are
rather standard or irrelevant and can be easily restored by anyone familiar with
Turing machines. If necessary, the corresponding detailed definitions can be found
in Part II of [7].

[7] defines two models of interactive computation, called the hard-play machine
(HPM) and the easy-play machine (EPM). Both are sorts of Turing machines with
the capability of making moves, and have three tapes: the ordinary read/write
work tape, and the read-only valuation and run tapes. The valuation tape contains
a full description of some valuation e (say, by listing the values of e at V\,V2, • • •),
and its content remains fixed throughout the work of the machine. As for the run
tape, it serves as a dynamic input, at any time spelling the current position, i.e.
the sequence of the (lab)moves made by the two players so far. So, every time
one of the players makes a move, that move — with the corresponding label —
is automatically appended to the content of this tape. In the HPM model, there
is no restriction on the frequency of environment's moves. In the EPM model, on
the other hand, the machine has full control over the speed of its adversary: the
environment can (but is not obligated to) make a (one single) move only when the
machine explicitly allows it to do so — the event that we call granting permission.
The only "fairness" requirement that such a machine is expected to satisfy is that it
should grant permission every once in a while; how long that "while" lasts, however,
is totally up to the machine. The HPM and EPM models seem to be two extremes,
yet, according to Theorem 17.2 of [7], they yield the same class of winnable static
games. The present paper will only deal with the EPM model, so let us take a little
closer look at it.

Intuitionistic computability logic 89

Let M be an EPM. A configuration of M is defined in the standard way: this
is a full description of the ("current") state of the machine, the locations of its
three scanning heads and the contents of its tapes, with the exception that, in
order to make finite descriptions of configurations possible, we do not formally
include a description of the unchanging (and possibly essentially infinite) content
of the valuation tape as a part of configuration, but rather account for it in our
definition of computation branch as will be seen below. The initial configuration
is the configuration where M. is in its start state and the work and run tapes
are empty. A configuration C' is said to be an e-successor of configuration C
in M if, when valuation e is spelled on the valuation tape, C' can legally follow
C in the standard — standard for multitape Turing machines — sense, based
on the transition function (which we assume to be deterministic) of the machine
and accounting for the possibility of nondeterministic updates — depending on
what move _L makes or whether it makes a move at all — of the content of the
run tape when M grants permission. Technically granting permission happens
by entering one of the specially designated states called "permission states". An
e-computation branch of M. is a sequence of configurations of M. where the
first configuration is the initial configuration and every other configuration is an e-
successor of the previous one. Thus, the set of all e-computation branches captures
all possible scenarios (on valuation e) corresponding to different behaviors by ± .
Such a branch is said to be fair iff permission is granted infinitely many times
in it. Each e-computation branch B of M. incrementally spells — in the obvious
sense — a run T on the run tape, which we call the run spelled by B. Then,
for a game A we write M f=e A to mean that, whenever T is the run spelled by
some e-computation branch B of M. and T is not _L-illegal, then branch B is fair
and W n A (r) — T. We write M \= A and say that M computes (solves, wins)
A iff. M |=e A for every valuation e. Finally, we write j= A and say that A is
computable iff there is an EPM M with M (= A.

6 The language of INT and the extended language
As mentioned, the language of intuitionistic logic can be seen as a fragment of
that of CL. The main building blocks of the language of INT are infinitely many
problem letters, or letters for short, for which we use P,Q,R,S,... as metavari-
ables. They are what in classical logic are called 'predicate letters', and what CL
calls 'general letters'. With each letter is associated a nonnegative integer called
its arity. $ is one of the letters, with arity 0. We refer to it as the logical letter,
and call all other letters nonlogical. The language also contains infinitely many
variables and constants — exactly the ones fixed in Section 4. "Term" also has
the same meaning as before. An atom is P(£i , . . . ,tn), where P is an n-ary letter
and the ij are terms. Such an atom is said to be P-based. If here each term ti
is a constant, we say that P(ti,... ,tn) is grounded. A P-based atom is n-ary,
logical, nonlogical etc. iff P is so. When P is 0-ary, we write P instead of P().
INT-Formulas are the elements of the smallest class of expressions such that all

90 Giorgi Japasicl '/A)

atoms are INT-formulas and, if F, Fx, . . . ,Fn (n > 2) are INT-formulas and x
is a variable, then the following expressions are also INT-formulas: (F\) o— (F2),
(Fi) n . . . n (Fn), (Fi) U . . . U (F„), l lx (F) , Ux(F) . Officially there is no negation
in the language of INT. Rather, the intuitionistic negation of F is understood as
F o—$. In this paper we also employ a more expressive formalism that we call the
extended language. The latter has the additional connectives T, _L, ->, A, V, — A
on top of those of the language of INT, extending the above formation rules by
adding the clause that T, _L, - .F, (Fi) A . . . A (F„), (Fx) V . . . V (Fn), (Fi) -> (F2)
and ¿(F) are formulas as long as F, F l 5 . . . , Fn are so. T and _L count as logical
atoms. Henceforth by (simply) "formula", unless otherwise specified, we mean a
formula of the extended language. Parentheses will often be omitted in formulas
when this causes no ambiguity. With I-! and U being quantifiers, the definitions
of free and bound occurrences of variables are standard.

In concordance with a similar notational convention for games on which we
agreed in Section 4, sometimes a formula F will be represented as F(xx , . . . ,x n) ,
where the xt are pairwise distinct variables. When doing so, we do not necessarily
mean that each such Xj has a free occurrence in F, or that every variable occurring
free in F is among x x , . . . , x n . In the context set by the above representation,
F(ti,..., tn) will mean the result of replacing, in F, each free occurrence of each
Xi (1 < i < n) by term ¿¿. In case each ij is a variable y*, it may be not clear
whether F (x i , . . . , x„) or F(y 1 , . . . , yn) was originally meant to represent F in a
given context. Our disambiguating convention is that the context is set by the
expression that was used earlier. That is, when we first mention F (x i , . . . , x n) and
only after that use the expression F(j / i , . . . , yn), the latter should be understood as
the result of replacing variables in the former rather than vice versa.

Let x be a variable, t a term and F(x) a formula, t is said to be free for x in
F(x) iff none of the free occurrences of x in F(x) is in the scope of I li or I It. Of
course, when t is a constant, this condition is always satisfied.

An interpretation is a function * that sends each n-ary letter P to a static
game *P ~ P*(xi,...,xn), where the xt are pairwise distinct variables. This
function induces a unique mapping that sends each formula F to a game F* (in
which case we say that * interprets F as F* and that F* is the interpretation
of F under *) by stipulating that:

1. Where P is an n-ary letter with *P = P * (x i , . . . , xn) and ti,..., tn are terms,
(P(t i , . . . , t „))* =P*(t1,...,tn).

2. * commutes with all operators: T* = T, (Fo-G)* — F* o - G * , (Fx A . . . A
Fn)* = Fx* A . . . A F*, ([~lxF)* = rix(F*), etc.

When a given formula is represented as F(xx , . . . ,x n) , we will typically write
F*(xx, . . . , x n) instead of (F (x i , . . . , xn))*.

For a formula F, we say that an interpretation * is admissible for F, or simply
F-admissible, iff the following conditions are satisfied:

1. For every n-ary letter P occurring in F, where *P — P*(x\,..., xn) , the
game P*(xx , . . . , xn) does not depend on any variables that are not among
xx, . . . ,x „ but occur (whether free or bound) in F.

Intuitionistic computability logic 91

2. $* = B n Ff n n . . . , where B is an arbitrary problem and F\, F2,. • • is the
lexicographic list of all grounded nonlogical atoms of the language.

Speaking philosophically, an admissible interpretation * interprets $ as a
"strongest problem": the interpretation of every grounded atom and hence —
according to Lemma 27 — of every formula is reducible to $*, and reducible in
a certain uniform, interpretation-independent way. Viewing $* as a resource, it
can be seen as a universal resource that allows its owner to solve any problem.
Our choice of the dollar notation here is no accident: money is an illustrative ex-
ample of an all-powerful resource in the world where everything can be bought.
"Strongest", "universal" or "all-powerful" do not necessarily mean "impossible".
So, the intuitionistic negation F o— $ of F here does not have the traditional "F* is
absurd" meaning. Rather, it means that F* (too) is of universal strength. Turing
completeness, NP-completeness and similar concepts are good examples of "be-
ing of universal strength". $* is what [7] calls a standard universal problem of
the universe (F*, F2*,...). Briefly, a universal problem of a universe (sequence)
{A\,A2, . . .) of problems is a problem U such that \= U —> A\ n A2 f l . . . and hence
j= U o— A\ f\A2 n . . . , intuitively meaning a problem to which each Ai is reducible.
For every B, the problem U = B n.Ai n A2 ... satisfies this condition, and universal
problems of this particular form are called standard. Every universal problem U
of a given universe can be shown to be equivalent to a standard universal problem
U' of the same universe, in the sense that \= U o— U' and f= U' o— U. And all
of the operators of INT can be shown to preserve equivalence. Hence, restricting
universal problems to standard ones does not result in any loss of generality: a
universal problem can always be safely assumed to be standard. See section 23
of [7] for an extended discussion of the philosophy and intuitions associated with
universal problems. Here we only note that interpreting $ as a universal problem
rather than (as one might expect) as _L yields more generality, for _L is nothing but
a special, extreme case of a universal problem. Our soundness theorem for INT,
of course, continues to hold with _L instead of $.

Let F be a formula. We write H-F and say that F is valid iff j= F* for every
F-admissible interpretation *. For an EPM £, we write £t~F and say that £ is
a uniform solution for F iff £ f= F* for every F-admissible interpretation *.
Finally, we write Ifr-F and say that F is uniformly valid iff there is a uniform
solution for F. Note that uniform validity automatically implies validity but not
vice versa. Yet, these two concepts have been conjectured to be extensionally
equivalent (Conjecture 26.2 of [7]).

7 The Gentzen-style axiomatization of INT
A sequent is a pair G K, where K is an INT-formula and G is a (possibly
empty) finite sequence of INT-formulas. In what follows, E, F, K will be used as
metavariables for formulas, and G,H_ as metavariables for sequences of formulas.
We think of sequents as formulas, identifying K with K, F K with ¿ F —> K

92 Giorgi J a p a s i c l ' / A)

(i.e. F o— K), and E\,... ,En K {n > 2) with oE\ A . . . A oEn —> K.6 This
allows us to automatically extend the concepts such as validity, uniform validity,
etc. from formulas to sequents. A formula K is considered provable in I N T iff
the sequent K is so.

Deductively, logic INT is given by the following 15 rules. This axiomatization is
known (or can be easily shown) to be equivalent to other "standard" formulations,
including Hilbert-style axiomatizations for I N T and/or versions where a primitive
symbol for negation is present while $ is absent, or where n and U are strictly
binary, or where variables are the only terms of the language.7

Below G, H are any (possibly empty) sequences of INT-formulas; n > 2; 1 <
i < n; x is any variable; E, F, K, F\, ..., Fn, K\, ..., Kn, F(x), K(x) are
any INT-formulas; y is any variable not occurring (whether free or bound) in the
conclusion of the rule; in Left I"! (resp. Right U), t is any term free for x in F(x)
(resp. in K(x)). 7 > l — m e a n s "from premise(s) V conclude C". When there are
multiple premises in V, they are separated with a semicolon.

Identity H -»• K => K

Domination H - > S^-K

Exchange G,E,F,H^K H G,F,E,H^K

Weakening G^K t- G,F=$>K

Contraction G,F,F=>K H G,F =$> K

Right 0— G,F^K Y--> G^Fo-K

Left 0— G,F => Ki\ K2 1- G,H,K2o-F => Ki

Right n G Ki\ . . . ; G=>Kn G =» Ki n ... n Kn

Left n G,Fi=$> K G, Fi n . . . n Fn K

Right U G=>Ki H- G=*KiU...UKn

Left U G,F1^K] ...; G,Fn=>K h-->• G, Fx U . . . u Fn K

Right ["I Q=>K(y) H -»• G n ^ x)

Left I ! G,F(t) K H G, n x F (x) i f

Right U G K(t) H G^UxK(x)

Left U G,F{y)^K H G, UxF(x) =s> i f

6In order to fully remain within the language of INT, we could understand Ei,...,En

K as E\ o— (E2 o— ... o— (En o— K)...), which can be shown to be equivalent to our present
understanding. We, however, prefer to read jEi, . . . , En => K as i>E\ A . . . A (>En —^ K as it seems
more convenient to work with.

7That we allow constants is only for technical convenience. This does not really yield a stronger
language, as constants behave like free variables and can be thought of as such.

Intuitionistic computability logic 93

Theorem 12. (Soundness:) If I N T > S, then H-5 (any sequent S). Further-
more, (uniform-constructive soundness:) there is an effective procedure that
takes any INT-proof of any sequent S and constructs a uniform solution for S.

Proof See Section 12. •

8 CL2-derived validity lemmas
In our proof of Theorem 12 we will need a number of lemmas concerning uniform
validity of certain formulas. Some such validity proofs will be given directly in
Section 10. But some proofs come "for free", based on the soundness theorem for
logic CL2 proven in [12]. CL2 is a propositional logic whose logical atoms are T
and -L (but not $) and whose connectives are -i, A, V, —», l~l, U. It has two sorts of
nonlogical atoms, called elementary and general. General atoms are nothing but 0-
ary atoms of our extended language; elementary atoms, however, are something not
present in the extended language. We refer to the formulas of the language of CL2
as CL2-formulas. In this paper, the CL2-formulas that do not contain elementary
atoms — including T and _L that count as such — are said to be general-base.
Thus, every general-base formula is a formula of our extended language, and its
validity or uniform validity means the same as in Section 6.8

Understanding F —> G as an abbreviation for -iF V G, a positive occurrence
in a CL2-formula is an occurrence that is in the scope of an even number of
occurrences of ->; otherwise the occurrence is negative. A surface occurrence is
an occurrence that is not in the scope of n and/or U. The elementarization of
a CL2-formula F is the result of replacing in F every surface occurrence of every
subformula of the form G\ n . . . (1 Gn (resp. G\ U . . . U Gn) by T (resp. _L), and
every positive (resp. negative) surface occurrence of every general atom by _L (resp.
T). A CL2-formula F is said to be stable iff its elementarization is a tautology of
classical logic. With these conventions, CL2 is axiomatized by the following three
rules:

(a) HI—where F is stable and H is the smallest set of formulas such that,
whenever F has a positive (resp. negative) surface occurrence of a subformula
Gi n ... n Gn (resp. G\ U . . . LJ Gn), for each i £ { 1 , . . . , n } , H contains the
result of replacing that occurrence in F by Gi.

(b) H\—>F, where H is the result of replacing in F a negative (resp. positive)
surface occurrence of a subformula Gi n . . . n GN (resp. G\ U . . . U G n) by GI
for some i € { 1 , . . . ,n} .

(c) W—^F, where H is the result of replacing in F two — one positive and
one negative — surface occurrences of some general atom by a nonlogical
elementary atom that does not occur in F.

8These concepts extend to thé1 full language of CL2 as well, with interpretations required to
send elementary atoms to elementary games (i.e. predicates in the classical sense, understood in
CL as games that have no nonemty legal runs).

94 Giorgi Japasicl'/A)

In this section p, q, r, s, t, u, w... (possibly with indices) will exlusively stand for
nonlogical elementary atoms, and P, Q, R, 5, T, U, W (possibly with indices) stand
for general atoms. All of these atoms are implicitely assumed to be pairwise distinct
in each context.

Convention 13. In Section 7 we started using the notation G for sequences of
formulas. Later we agreed to identify sequences of formulas with A-conjunctions
of those formulas. So, from now on, an underlined expression such as G will mean
an arbitrary formula Gi A . . . A Gn for some n > 0. Such an expression will always
occur in a bigger context such as G A F or G —> F; our convention is that, when
n = 0, G A F and G —> F simply mean F.

As we agreed that p,q,... stand for elementary atoms and P,Q,... for general
atoms, p,q,... will correspondingly mean A-conjunctions of elementary atoms, and
P, Q,... mean A-conjunctions of general atoms.

We will also be underlining complex expressions such as F —> G, l~1a;F(a;) or
oF. F -> G should be understood as (Fi —> Gi) A . . . A (Fn -> G„), i~1sF(:r) as
rixFi(a;)A.. .Aria;Fn(a:) (note that only the Fj vary but not x), ¿ F as ¿FiA. . . oFn ,
¿ ¿ F as ¿ (¿Fj A . . . A ¿F„), ¿ F —» F A G as ¿Fi A . . . ¿Fn —» Fi A . . . A Fn A G, etc.

The axiomatization of CL2 is rather unusual, but it is easy to get a syntactic
feel of it once we do a couple of exercises.

Example 14. The following is a CL2-proof of (P -> Q) A (Q -> T) -> (P -> T):
1.' [p ->.g) A (q -»t) -> (p -> t) (from {} by Rule (a)).
2. (P -> q) A {q t) -» (P 1) (from 1 by Rule (c)).
3. [P - » Q) A (Q - » i) - » (P i) (from 2 by Rule (c)).
4. (P Q) A (Q -> T) - » (P -> T) (from 3 by Rule (c)).

Example 15. Let n > 2, and let m be the length (number of conjuncts) of both
R and r.

a) For i e {1 , . . . ,n} , the formula of Lemma 17(j) is provable in CL2. It follows
from (R —> Si) —>(/?—> 5j) by Rule (b); the latter follows from (R —> Si) —»
(fl —> Si) by Rule (c); the latter, in turn, can be derived from (r —> Sj) —> (r —+ Si)
applying Rule (c) m times. Finally, (r —> st) —> (r —> Si) is its own elementarization
and is a classical tautology, so it follows from the empty set of premises by Rule
(a).

b) The formula of Lemma 17(h) is also provable in CL2. It is derivable by
Rule (a) from the set of n premises, easch premise being (R —> Si) A ... A (R —>
Sn) —* (i? —> Si) for some i S { 1 , . . . , n}. The latter is derivable by Rule (c) from
{R Si) A . . . A (R -> Si) A . . . A (R - » 5„) (R -> Sj). The latter, in turn, can
be derived from (R —• 5i) A . . . A (r —> s,) A . . . A (fi —» S„) —> (r —» Sj) applying
Rule (c) m times. Finally, the latter follows from the empty set of premises by
Rule (a).

Obviously CL2 is decidable. This logic has been proven sound and complete in
[12]. We only need the soundness part of that theorem restricted to general-base
formulas. It sounds as follows:

Intuitionistic computability logic 95

Lemma 16. Any general-base CL2-provable formula is valid. Furthermore, there
is an effective procedure that takes any CL2-proof of any such formula F and
constructs a uniform solution for F.

A substitution is a function / that sends every general atom P of the language
of CL2 to a formula f(P) of the extended language. This mapping extends to
all general-base CL2-formulas by stipulating that / commutes with all operators:
/ (G i - » Ga) = f(Gi) -» f(G2), f(G\ n ... n Gk) = f(Gi) n ... n f(Gk), etc. We
say that a formula G is a substitutional instance of a general-base CL2-formula
F iff G = f(F) for some substitution / . Thus, "G is a substitutional instance of
F" means that G has the same form as F.

In the following lemma, we assume n > 2 (clauses (h),(i),(j)), and 1 < i < n
(clause (j)). Notice that, for the exception of clause (g), the expressions given below
are schemata of formulas rather than formulas, for the lengths of their underlined
expressions — as well as i and n — may vary.

Lemma 17. All substitutional instances of all formulas given by the following
schemata are uniformly valid. Furthermore, there is an effective procedure that
takes any particular formula matching a given scheme and constructs an EPM that
is a uniform solution for all substitutional instances of that formula.

a) (R A P A Q A S - » T) (R A Q A P A S - » T) ;
b) (R—*T)—> (RAP^T);
c) (R —» S) (W A R A U — W A S A U);

d) (RAP ^ Q) (R^(P->Q));

e) (P - (Q - » T)) A CS - Q) - (P - (R - Tj);
f) (P Q)) A (5 A Q — > T) — » (S A f i A P — » T) ;
g) (P - Q) A (Q T) -> (P - T);
h) (R - > Si) A . . . A (R - » 5 n) (E ^ Si n . . . n Sn);
i) (R A Si —> T) A ... A (R A Sn T) —> ((R A (S i U . . . U Sn) —> T) ;

j) CS Si) - (fl 5i U . . . U 5„).

Proof. In order to prove this lemma, it would be sufficient to show that all formulas
given by the above schemata are provable in CL2. Indeed, if we succeed in doing
so, then an effective procedure whose existence is claimed in the lemma could be
designed to work as follows: First, the procedure finds a CL2-proof of a given
formula F. Then, based on that proof and using the procedure whose existence
is stated in Lemma 16, it finds a uniform solution £ for that formula. It is not
hard to see that the same £ will automatically be a uniform solution for every
substitutional instance of F as well.

The CL2-provability of the formulas given by clauses (g), (h) and (j) has been
verified in Examples 14 and 15. A similar verification for the other clauses is left
as an easy syntactic exercise for the reader. •

96 Giorgi J a p a s i c l ' / A)

9 Closure lemmas
In this section we let n range over natural numbers (including 0), x over any vari-
ables, F,E,G (possibly with subscripts) over any formulas, and £, C, V (possibly
with subscripts) over any EPMs. Unless otherwise specified, these metavariables
are assumed to be universally quantified in a context. The expression {EPMs}
stands for the set of all EPMs.

Lemma 18. If №-F, then IFAF. Furthermore, there is an effective function h :
{EPMs} —> {EPMs} such that, for any £ and F, if£HrF, then /i(£)IFAF.

Proof. According to Proposition 21.2 of [7], there is an effective function h :
{EPMs} —> {EPMs} such that, for any EPM £ and any static game A, if £ [= A,
then h(£) |= A A . We now claim that if El-F, then h(£)H-^F. Indeed, assume EW-F.
Consider any o-F-admissible interpretation *. Of course, the same interpretation is
also F-admissible. Hence, £№-F implies £ \= F*. But then, by the known behavior
of h, we have h(£) \= AF*. Since * was arbitrary, we conclude that h(£)Hr}>F. •

Lemma 19. If N-F, then B-rixF. Furthermore, there is an effective function
h : {EPMs} —> {EPMs} such that, for any £, x and F, ifEUrF, then h(£)l~r\xF.

Proof. Similar to the previous lemma, only based on Proposition 21.1 of [7] instead
of 21.2. •

Lemma 20. If IFF and 18-F —» E, then li-F. Furthermore, there is an effective
function h : {EPMs} x {EPMs} —> {EPMs} such that, for any £, C, F and E, if
ElrF and O-F -» E, then h{£,C)i-E.

Proof. According to Proposition 21.3 of [7], there is an effective function g that
takes any HPM H and EPM £ and returns an EPM C such that, for any static
games A,B and any valuation e, if H \=e A and £ \=e A —> B, then C (=e B.
Theorem 17.2 of [7], which establishes equivalence between EPMs and HPMs in
a constructive sense, allows us to assume that H is an EPM rather than HPM
here. More precisely, we can routinely convert g into an (again effective) function
h : {EPMs} x {EPMs} —> {EPMs} such that, for any static games A,B, valuation
e and EPMs E and C,

if £ \=e A andC \=eA^B, then h(E,C) \=e B. (3)
l

We claim that the above function h behaves as our lemma states. Assume £ IFF and t
CfhF —> E, and consider an arbitrary valuation e and an arbitrary F-admissible
interpretation *. Our goal is to show that h(E,C) \=e E*, which obviously means
the same as

h(£,C) \=e e[E*\. (4)
We define the new interpretation t by stipulating that, for every n-ary letter P
with P* = P*{xi,... ,xn), F f is the game P ^ z i , . . . ,xn) such that, for any tuple
c i , . . . ,Cn of constants, P^(c\,... ,Cn) = e[F*(ci , . . . ,Cn)]. Unlike P*{x\,... ,xn)

Intuitionistic computability logic 97

that may depend on some "hidden" variables (those that are not among x i , . . . , xn),
obviously Pt (x i , . . . , x n) does not depend on any variables other that x i , . . . ,xn .
This makes t admissible for any formula, including F and F —> E. Then our as-
sumptions £HrF and CUrF -» E imply £ (=e Ft and C |=e Ft -> F f . Consequently,
by (3), h(£,C) |=e Ft, i.e. h(£,C) \=e e[Ft], Now, with some thought, we can see
that e[Ft] = e[E*}. Hence (4) is true. •

Lemma 21. (Modus ponens) //Ht-Fi, . . . , l -F„ and l«-Fi A . . . A Fn—>E, then
IbE. Furthermore, there is an effective function h : {EPMs}n+1 —> {EPMs} such
that, for any EPMs £\, ..., £n, C and any formulas F i , . . . , F„, E, ¿/£iHkFi, ...,
£n^~Fn and CB-Fi A . . . A F„ —> E, then h(£i,... ,£n,C)i~E. Such a function, in
turn, can be effectively constructed for each particular n.

Proof In case n = 0, h is simply the identity function h(C) = C. In case n = 1, h is
the function whose existence is stated in Lemma 20. Below we will construct h for
case n = 2. It should be clear how to generalize that construction to any greater
n.

Assume £if-F1, £21SrF2 and CtirFx A F2 - » E. By Lemma 17(d), (Fi A F2 ->
F) —> (Fi —» (F2 —> F)) has a uniform solution. Lemma 20 allows us to combine
that solution with C and find a uniform solution T>\ for F\ —> (F2 —> E). Now
applying Lemma 20 to £\ and V\, we find a uniform solution V2 for F2 —> E.
Finally, applying the same lemma to £2 and V2, we find a uniform solution V for
F. Note that V does not depend on FX,F2,E, and that we constructed V in an
effective way from the arbitrary £x, £2 and C. Formalizing this construction yields
function h whose existence is claimed by the lemma. •

Lemma 22. (Transitivity) If B-F —> E and VhE G, then W-F -> G. Further-
more, there is an effective function h : {EPMs} x {EPMs} —> {EPMs} such that,
for any £\, £2, F, E andG, if£^rF -> E and£2frE -> G, then h{£u £2)%-F -> G.

Proof. Assume £\i~F —> E and £2B-F —» G. By Lemma 17(g), we also have
CI-(F —» F) A (F G) —» (F —> G) for some (fixed) C. Lemma 21 allows us
to combine the three uniform solutions and construct a uniform solution T> for
F^G. •

10 More validity lemmas
As pointed out in Remark 16.4 of [7], when trying to show that a given EPM wins
a given game, it is always safe to assume that the runs that the machine generates
are never _L-illegal, i.e. that the environment never makes an illegal move, for if
it does, the machine automatically wins. This assumption, that we call the clean
environment assumption, will always be implicitly present in our winnability
proofs.

We will often employ a uniform solution for P —* P called the copy-cat strat-
egy (CCS). This strategy, that we already saw in Section 2, consists in mimicking,
in the antecedent, the moves made by the environment in the consequent, and vice

98 Giorgi Japasicl '/A)

versa. More formally, the algorithm that CCS follows is an infinite loop, on every
iteration of which CCS keeps granting permission until the environment makes a
move l .a (resp. 2.a), to which the machine responds by the move 2.a (resp. l .a) .
As shown in the proof of Proposition 22.1 of [7], this strategy guarantees success
in every game of the form A V ->A and hence A —• A. An important detail is that
CCS never looks at the past history of the game, i.e. the movement of its scanning
head on the run tape is exclusively left-to-right. This guarantees that, even if the
original game was something else and it only evolved to A —> A later as a result of
making a series of moves, switching to the CCS after the game has been brought
down to A —> A guarantees success no matter what happened in the past.

Thgroughout this section, F, G, E, K (possibly with indices and attached
tuples of variables) range over formulas, x and y over variables, t over terms, n over
nonnegative integers, w over bit strings, and a, 7 over moves. These (meta)variables
are assumed to be universally quantified in a context unless otherwise specified. In
accordance with our earlier convention, e means the empty string, so that, say,
'I.e.a' is the same as 'l..a'.

Lemma123. B-oF —> F. Furthermore, there is an EPM £ such that, for any F,
£HF -> F.

Proof. The idea of a uniform solution £ for bF —» F is very simple: just act as
CCS, never making any replicative moves in the antecedent and pretending that
the latter is F rather than (the stronger) oF. The following formal description of
the interactive algorithm that £ follows is virtually the same as that of CCS, with
the only difference that the move prefix '1.' is replaced by 'I.e.' everywhere.

Procedure LOOP: Keep granting permission until the environment makes a move
I.e.a or 2.a; in the former case make the move 2.a, and in the latter case make the
move I.e.a; then repeat LOOP.

. Fix an arbitrary valuation e, interpretation * and e-computation branch B of £.
Let 0 be the run spelled by B. From the description of LOOP it is clear that permis-
sion will be granted infinitely many times in B, so this branch is fair. Hence, in order
.to show that £ wins the game, it would suffice to show that W n f (©) = T.

Let ©j denote the initial segment of © consisting of the (lab)moves made by
the players by the beginning of the ith iteration of LOOP in B (if such an iteration
exists). By induction on i, based on the clean environment assumption and applying
a routine analysis of the the behavior of LOOP and the definitions of the relevant
game operations, one can easily find that

a) © i e L r r - F * ;
b) e,1-« •©?• ;
c) All of the moves in ©J' have the prefix 'e.'.

If LOOP is iterated infinitely many times, then the above obviously extends
from to 0 , because every initial segment of 0 is an initial segment of some ©¿.
And if LOOP is iterated only a finite number m of times, then © = © m . This

Intuitionistic computability logic 99

is so because the environment cannot make a move I.e.a or 2.a during the mth
iteration (otherwise there would be a next iteration), and any other move would
violate the clean environment assumption; and, as long as the environment does not
move during a given iteration, neither does the machine. Thus, no matter whether
LOOP is iterated a finite or infinite number of times, we have:

a) 0 < E L r f * ^ * ;
b) 6 l £- = ->Q2- ; (5)
c) All of the moves in 0 1 , have the prefix 'e.'.

Since © £ L r 6 / ' ^ F ' , in order to show that W n f ' " f " (0) = T, by the defini-
tion of ->, it would suffice to show that either W n f * (0 2) = T or WnJ4 F* (0 1) =
T. So, assume W n f * (0 2) ± T, i.e. W n f * (0 2) = ± , i.e. W n ^ ' ^ e 2 -) = T.
Then, by clause (b) of (5), W < F * (0 l £) = T, i.e. W n f * (-n©16) = _L, i.e.
W n f ((_ i©1 ')e) = -L. Pick any infinite bit string w. In view of clause (c) of (5),
we obviously have (-.e1-)*" = Hence Wnf*((->e1-)-'0) = ± . But this,
by the definition of ¿, implies W n f (- i© 1) = _L. The latter, in turn, can be
rewritten as the desired W i i j 4 f (01 ') = T.

Thus, we have shown that £ wins oF* —» F*. Since * was arbitrary and the
work of £ did not depend on it, we conclude that —> F. •

In the subsequent constructions found in this section, * will always mean an
arbitrary but fixed interpretation admissible for the formula whose uniform validity
we are trying to prove. Next, e will always mean an arbitrary but fixed valuation
— specifically, the valuation spelled on the valuation tape of the machine under
question. For readability, we will usually omit the e parameter when it is irrelevant.
Also, having already seen one example, in the remaining uniform validity proofs
we will typically limit ourselves to just constructing interactive algorithms, leaving
the (usually routine) verification of their correctness to the reader. An exception
will be the proof of Lemma 34 where, due to the special complexity of the case,
correctness verification will be done even more rigorously than we did this in the
proof of Lemma 23.

Lemma 24. W-o(-F —> G) —> (¿F —> bG). Moreover, there is an EPM £ such that,
for every F and G, £\bb(F —> G) —> (¿F —> bG).

Proof. A relaxed description of a uniform solution £ for ¿ (F —> G) —» (¿F —> ¿G)
is as follows. In ¿(F* —• G*) and oF* the machine is making exactly the same
replicative moves (moves of the form w.) as the environment is making in bG*.
This ensures that the tree-structures of the three ¿-components of the game are
identical, and now all the machine needs for a success is to win the game (F* —»
G*) —> (F* —> G*) within each branch of those trees. This can be easily achieved
by applying copy-cat methods to the two occurrences of F and the two occurrences
of G.

In precise terms, the strategy that £ follows is described by the following inter-
active algorithm.

100 Giorgi Japasicl'/A)

Procedure LOOP: Keep granting permission until the adversary makes a move 7.
Then:
If 7 = 2.2.w:, then make the moves l.w: and 2.I.W., and repeat LOOP;
If 7 = 2.2.w.a (resp. 7 = l.w.2.a), then make the move l.w.2.a (resp. 2.2.w.a),
and repeat LOOP;
If 7 = 2.1.w.a: (resp. 7 = l .w.l .a) , then make the move l.iw.l.a (resp. 2.1.w.a),
and repeat LOOP. •

L e m m a 25 . M F i A . . . A i F „ ¿ (F i A . . ,AF„) . Furthermore, there is an effective
procedure that takes any particular value of n and constructs an EPM £ such that,
for any Fx,... ,Fn, £N>Fl A . . . A ¿Fn —» ¿(Fi A . . . A Fn).

Proof. The idea of a uniform solution here is rather similar to the one in the proof
of Lemma 24. Here is the algorithm:

Procedure LOOP: Keep granting permission until the adversary makes a move 7.
Then:
If 7 = 2.w:, then make the n moves 1.1.w:,. . . , l.n.w:, and repeat LOOP;
If 7 = 2.w.i.a (resp. 7 = l.i.w.a) where 1 < i < n, then make the move 1 .i.w.a
(resp. 2.w.i.a), and repeat LOOP. •

Lemma 26. 11-A F —> ¿F A ¿F. Furthermore, there is an EPM £ such that, for
any F, £i~oF —»¿FA ¿F.

Proof. Thë idea of a winning strategy here is to first replicate the antecedent turning
it into something "essentially the same"9 as ¿F*AoF*, and then switch to a strategy
that is "essentially the same as" the ordinary copy-cat strategy. Precisely, here is
how £ works: it makes the move l.e: (replicating the antecedent), after which it
follows thé following algorithm:

Procedure LOOP: Keep granting permission until the adversary makes a move 7.
Then:
If 7 = 1.0a (resp. 7 = 2.1.a), then make the move 2.1.a (resp. 1.0a), and repeat
LOOP;
If 7 = 1.1a (resp. 7 = 2.2.a), then make the move 2.2.a (resp. 1.1a), and repeat
LOOP;
If 7 = I.e.a, then make the moves 2.I.e.a and 2.2.e.a, and repeat LOOP. •

Remember from Section 4 that, when t is a constant, e(t) = t.

Lemma 27. For any INT-formula K, l~oS —» K. Furthermore, there is an ef-
fective procedure that takes any INT-formula K and constructs a uniform solution
for ¿$ —> K.

9Using the notation o introduced in Section 13 of [7], in precise terms this "something" is
b(F'oF').

Intuitionistic computability logic 101

Proof. We construct an EPM £ and verify that it is a uniform solution for o$ —»
K\ both the construction and the verification will be done by induction on the
complexity of K. The goal in each case is to show that £ generates a T-won run of
e[(o$ —» K)*] = ¿e[$*] —> e{K*\ which, according to our convention, we may write
with "e" omitted.
Case 1: K = %. This case is taken care of by Lemma 23.
Case 2: K is a fc-ary nonlogical atom P(t\,..., tk). Let a,...,Ck be the constants
e(t\),... ,e(ifc), respectively. Evidently in this case e[K*] = e[P*(ci,... ,Cfc)], so,
the game for which £ needs to generate a winning run is o$* —> P*(c\,..., Ck).
Assume (P (c i , . . . , Ck))* is conjunct # m of (the infinite n-conjunction) $*. We
define £ to be the EPM that acts as follows. At the beginning, if necessary (i.e.
unless all U are constants), it reads the valuation tape to find c i , . . . , Cfc. Then,
using this information, it finds the above number m and makes the move 'l.e.m',
which can be seen10 to bring the game down to ¿P* (c i , . . . , cjt) —> P*(c\,... ,ck).
After this move, £ switches to the strategy whose existence is stated in Lemma 23.
Case 3: K = bE —> F. By Lemma 17(b), there is a uniform solution for (o$ —>
F) —» (¿$ A bE —» F). Lemmas 17(d) and 22 allow us to convert the latter into
a uniform solution V for (¿$ -> F) -> (¿$ (bE -> F)). By the induction
hypothesis, there is also a uniform solution C for o$ —» F. Applying Lemma 21 to
C and V, we find a uniform solution £ for ¿$ —» (bE —> F).
Case 4-' K = U. . . UEn. By the induction hypothesis, we know how to construct
an EPM Ci with Ci»-A$ E\. Now we define £ to be the EPM that first makes
the move 2.1, and then plays the rest of the game as Ci would play. £ can be seen
to be successful because its initial move 2.1 brings (¿$ —> K)* down to (¿$ —> E\)*.
Case 5: K = Ei n . . . n En. By the induction hypothesis, for each i with 1 < i < n
we have an EPM Ci with C^AS Et. We define £ to be the EPM that acts as
follows. At the beginning, £ keeps granting permission until the adversary makes
a move. The clean environment assumption guarantees that this move should be
2.i for some 1 < i < n. It brings (A$ - » Ex n . . . n En)* down to (¿$ Ei)*. If
and after such a move 2.i is made, £ continues the rest of the play as Ci.
Case 6: K = U x E (x) . By the induction hypothesis, there is an EPM Ci with

—> £(1). Now we define £ to be the EPM that first makes the move 2.1,
and then plays the rest of the game as C\. £ can be seen to be successful because
its initial move 2.1 brings (A$ - » Ua ; jE(a ;)) * down to (¿$ -> E(1))*.
Case 7: K = Q x E (x) . By the induction hypothesis, for each constant c there is
(and can be effectively found) an EPM Cc with Ccm~o$ —> E(c). Now we define £
to be the EPM that acts as follows. At the beginning, £ keeps granting permission
until the adversary makes a move. By the clean environment assumption, such a
move should be 2.c for some constant c. This move can be seen to bring ((¿$ —»
rtai?(a;)))* down to (¿$ —'• E(c))*. If and after the above move 2.c is made, £
plays the rest of the game as Cc. •

10See Proposition 13.8 of [7].

102 Giorgi Ja.pa.ndze

Lemma 28. Assume n > 2, 1 < i < n, and t is a term free for x in G(x). Then
the follovring uniform validities hold. Furthermore, in each case there is an effective
procedure that takes any particular values ofn, i, t and constructs an EPM which
is a uniform solution for the corresponding formula no matter what the values of
F\,..., Fn and/or G(x) (as long as t is free for x in G(x)) are.

a) H>(FX n ... n Fn) - » ¿F i ;

b) «-¿riiG(i) - AG(f);
c) H>(Fi U ... U Fn) - » ¿Fx U . . . U o F n ;
d) N>UzG(x) -> UxiG(x) .

Proof. Below come winning strategies for each case.
Clause (a): Make the move 'l.e.i'. This brings the game down to oF* —> ¿F*.
Then switch to CCS.
Clause (b): Let c — e(t). Read c from the valuation tape if necessary, i.e., if t is
a variable (otherwise, simply c = i). Then make the move 'l.e.c'. This brings the
game down to oG*(c) —> oG*(c). Now, switch to CCS.
Clause (c): Keep granting permission until the adversary makes a move 'l.e.j'
(1 < j < n), bringing the game down to ¿F* —» oFf U . . . U &F*. If and after such
a move is made (and if not, a win is automatically guaranteed), make the move
l2.j', which brings the game down to ¿F* —» ¿F*. Finally, switch to CCS.
Clause (d): Keep granting permission until the adversary makes the move 'l.e.c'
for some constant c. This brings the game down to AG*(c) —> LJxoG* (x). Now
make the move '2.c', which brings the game down to ¿G*(c) —> ¿G*(c). Finally,
switch to CCS. •
L e m m a 2 9 . l»-nx(F(x) - » G(x)) -> (rixF(x) rixG(x)) . Furthermore, there
is an EPM £ such that, for any F(x) and G{x), £KFrix(F(x) - » G(x)) ->
(l~lxF(x) - » [~1 xG{x)).

Proof. Strategy: Wait till the environment makes the move '2.2.c' for some constant
c. This brings the 1*1 xG*(x) component down to G*(c) and hence the entire game
to l~lx(F*(x) G*(x))-+ (rixF* (x) -> G* (c)). Then make the same move c in
the antecedent and in r~lxF*(x), i.e. make the moves 'l.c' and '2.1.c'. The game
will be brought down to (F*(c) -> G*(c)) (F*(c) -> G*(c)). Finally, switch to
CCS. •
L e m m a 3 0 . ID-r ix (Fi (x) A . . . A F n (x) A F (x) - » G (x)) - > (r i x F i (x) A . . . A
rixFn(x) A UxF(x) —» UxG(x)) . Furthermore, there is an effective procedure
that takes any particular value of n and constructs an EPM £ such that, for any
Fi(x), . . . , Fn(x) , F(x), G(x), £H-rix(F1(x) A . . . A Fn (x) A E(x) -> G(x)) - »
(rixFi(x) A . . . A nxF n (x) A UxF(x) —• UxG(x)) .

Proof. Strategy for n: Wait till the environment makes a move c in the UxF*(x)
component. Then make the same move c in UxG*(x), r ix (F i (x) A . . . A F*(x) A
F*(x) —> G*(x)) and each of the l_lxFi*(x) components. After this series of moves
the game will have evolved to (F*(c) A . . . A F*{c) A E*(c) -> G*(c)) -> (F{(c) A
. . . A F* (c) A E* (c) G* (c)). Now switch to CCS. •

Intuitionistic computability logic 103

Lemma 31. Assume t is free for x in F(x) . Then ll-F(i) —> UxF(x) . Further-
more, there is an effective function that takes any t and constructs an EPM £ such
that, for any F(x) , whenever t is free for x in F(x) , £1rF(t) —> UxF(x) .

Proof. Strategy: Let c = e(t). Read c from the valuation tape if necessary. Then
make the move '2.c\ bringing the game down to F*(c) —> F*(c). Then switch to
CCS. •

Lemma 32. Assume F does not contain x. Then W-F —» l"1 xF. Furthermore,
there is an EPM £ such that, for any F and x, as long as F does not contain x,

- F -> n x F .

Proof. In this case we prefer to explicitly write the usually suppressed parameter
e. Consider an arbitrary F not containing x, and an arbitrary interpretation *
admissible for F —> rixF. The formula F —> (~1xF contains x yet F does not.
From the definition of admissibility and with a little thought we can see that F*
does not depend on x. In turn, this means — as can be seen with some thought
— that the move c by the environment (whatever constant c) in e[[~lxF*] brings
this game down to e[F*]. With this observation in mind, the following strategy can
be seen to be successful: Wait till the environment makes the move '2.c' for some
constant c. Then read the sequence ' l .a i ' , . . . , '1.an' of (legal) moves possibly
made by the environment before it made the move '2.c', and make the n moves
'2.ai', . . . , '2.an\ It can be seen that now the original game e[F*] —> eff lxF*] will
have been brought down to ($)e[F*] —> ($)e[F*], where $ = (T a i , . . . , Ta„) . So,
switching to CCS at this point guarantees success. •

Lemma 33. Assume F(x) does not contain y. Then IH-riyF(2/) .—» r ixF(x) and
H J x F (x) U y F (y) . In fact, CCSbHyFiy) - » l~lxF(x) and CCSW-\JxF(x) -»
U yF(y).

Proof. Assuming that F (x) does not contain y and analyzing the relevant defini-
tions, it is not hard to see that, for any interpretation * admissible for f~lyF(y)
r ixF(x) and/or UxF(x) —> U y F (y) , we simply have (Hj/F(y)) = (r ixF(x))
and (Uj/F(j/))* = (UxF(x))* . So, in both cases we deal with a game of the form
A —> A, for which the ordinary copy-cat strategy is successful. •

Our proof of the following lemma is fairly long, for which reason it is given
separately in Section 11:

Lemma 34. l~oF —> ¿oF. Furthermore, there is an EPM £ such that, for any F,
£№-oF —> oAF.

11 Proof of Lemma 34
Roughly speaking, the uniform solution £ for ¿ F —> ¿ ¿ F that we are going to
construct essentially uses a copy-cat strategy between the antecedent and the con-
sequent. However, this strategy cannot be applied directly in the form of our kind

104 Giorgi Japasicl '/A)

old friend CCS. The problem is that the underlying tree-structure (see Remark
9) of the multiset of (legal) runs of F* that is being generated in the antecedent
should be a simple tree T, while in the consequent it is in fact what can be called
a tree T" of trees. The trick that E uses is that it sees each edge of T in one of
two — blue or yellow — colors. This allows E to associate with each branch y of
a branch x of T" a single branch 2 of T, and vice versa. Specifically, with x,y,z
being (encoded by) bit strings, 2 is such that the subsequence of its blue-colored
bits (=edges) coincides with x, and the subsequence of its yellow-colored bits coin-
cides with y. By appropriately "translating" and "copying" in the antecedent the
replicative moves made by the environment in the consequent, such an isomorphism
between the branches of T and the branches of branches of T" can be successfully
maintained throughout the play. With this one-to-one correspondence in mind,
every time the environment makes a (nonreplicative) move in the position(s) of F*
represented by a leaf or a set of leaves of T, the machine repeats the same move in
the position(s) represented by the corresponding leaf-of-leaf or leaves-of-leaves of
T", and vice versa. The effect achieved by this strategy is that the multisets of all
runs of F* in the antecedent and in the consequent of oF* —» ¿0F* are identical,
which, of course, guarantees a win for E.

Let us now define things more precisely. A colored bit 6 is a pair (c, d), where c,
called the content of b, is in {0,1} , and d, called the color of b, is in {blue,yellow}.
We will be using the notation c ("blue c") for the colored bit whose content is c and
color is blue, and c ("yellow c") for the bit whose content is c and color is yellow.

A colored bit string is a finite or infinite sequence of colored bits. Consider
a colored bit string v. The content of v is the result of "ignoring the colors" in v,
i.e. replacing every bit of v by the content of that bit. The blue content of v is
the content of the string that results from deleting in v all but blue bits. Yellow
content is defined similarly. We use v, v and v to denote the content, blue content
and yellow content of v, respectively. Example: if v — 10001, we have y_ = 10001,
v = 10 and v = 001. As in the case of ordinary bit strings, e stands for the empty
colored bit string. And, for colored bit strings w and u, w <u again means that w
is a (not necessarily proper) initial segment of u.

Definition 35. A colored tree is a set T of colored bit strings, called its
branches, such that the following conditions are satisfied:

a) The set {v \ v £ T} — that we denote by T — is a tree in the sense of
Convention 5.

b) For any w,u£T, ifw_ = U., then w = u.
c) For no v £T do we have {vO, ul} C T or {t;0, C T.

A branch v of T is said to be a leaf iff v is a leaf of T.

When represented in the style of Figure 1 of [7] (page 36), a colored tree will
look like an ordinary tree, with the only difference that now every edge will have
one of the colors blue or yellow. Also, by condition (c), both of the outgoing edges
("sibling" edges) of any non-leaf node will have the same color.

Intuitionistic computability logic 105

Lemma 36. Assume T is a colored tree, and w,u are branches of T with w <u
and w^u. Then w X u.

Proof. Assume T is a colored tree, w, u £ T, and w u. We want to show that
then w u or w u. Let v be the longest common initial segment of w and u, so
we have w = vw' and u = vu' for some w', u' such that w' is nonempty and w' and
u' do not have a nonempty common initial segment. Assume the first bit of w' is
0 (the cases when it is 1, 0 or 1, of course, will be similar). If u' is empty, then w
obviously contains more blue bits than u does, and we are done. Assume now u'
is nonempty, in particular, b is the first bit of u'. Since w' and u' do not have a
nonempty common initial segment, b should be different from 0. By condition (b)
of Definition 35, the content of b cannot be 0 (for otherwise we would have vO = vb
and hence 6 = 0). Consequently, b is either 1 or 1. The case b = 1 is ruled out
by condition (c) of Definition 35. Thus, 6 = 1. But the blue content of wO is w0
while the blue content of v\ is v\. Taking into account the obvious fact that the
former is an initial segment of w and the latter is an initial segment of u, we find
w u. •

Now comes a description of our EPM £. At the beginning, this machine creates
a record T of the type 'finite colored tree', and initializes it to {e}. After that, £
follows the following procedure:

Procedure LOOP: Keep granting permission until the adversary makes a move
7. If 7 satisfies the conditions of one of the following four cases, act as the corre-
sponding case prescribes. Otherwise go to an infinite loop in a permission state.
Case (i): 7 = 2.w: for some bit string w. Let vi,...,vk be11 all of the leaves
v of T with w = v. Then make the moves l . g j : , . . . , l.gj.:, update T to T U
{viO, v\l,..., ffcO, « J } , and repeat LOOP.
Case (ii): 7 = 2.w.u: for some bit strings w,u. Let V\,... ,Vk be all of the leaves v
of T such that w •< v and u = v. Then make the moves l .g x : , . . . , update T
to T U {«i0, v\l,..., VkQ, ffcl}, and repeat LOOP.
Case (Hi): 7 = 2.w.u.a for some bits strings w,u and move a. Let v\,...,vk
be all of the leaves v of T such that w X v and u X v. Then make the moves
l .z^.a, . . . , l.Ufc.a, and repeat LOOP.
Case (iv): 7 = 1 .w.a for some bit string w and move a. Let v\,...,vk be all of
the leaves v of T with Then make the moves 2.vi.v1.a,..., 2.Vk-vk.a, and
repeat LOOP.

Fix any interpretation *, valuation e and e-computation branch B of £. Let 0
be the run spelled by B. From the above description it is immediately clear that B
is a fair. Hence, in order to show that £ wins, it would be sufficient to show that
Wn£ F (O) = T. Notice that the work of £ does not depend on e. And, as
e is fixed, we can safely and unambiguously omit this parameter (as we often did
in the previous section) in expressions such as e[A], Lr^ or W n ^ and just write

11 In each of the four cases we assume that the list v\,. .. is arranged lexicographically.

106 Giorgi Japasicl'/A)

or say A, hrA or W n A . Of course, £ is interpretation-blind, so as long as it wins
bF* —> ooF", it is a uniform solution for ¿F —> o o f -

Let N = { 1 , . . . ,TO} if LOOP is iterated the finite number m of times in B,
and N = {1 ,2 ,3 , . . . } otherwise. For i £ jV, we let Ti denote the value of record
T at the beginning of the ith iteration of LOOP; ©i will mean the initial segment
of 0 consisting of the moves made by the beginning of the ith iteration of LOOP.
Finally, will stand for ->©*• and for ©?•.

From the description of LOOP it is immediately obvious that, for each i £ N,
Ti is a finite colored tree, and that T\ C T2 C . . . C T,: In our subsequent reasoning
we will implicitly rely on this fact.

Lemma 37. For every i with i £ N, we have:

a) is prelegal and Tree(3>i) = Ti.
b) i'j is prelegal.

e) For every leaf x o/Tree^j), is prelegal.

d) For every leaf z ofTi, z is a leaf of Tree{$i) and z is a leaf of Tree(<S>?z).

e) For every leaf x o/TVee(\&j) and every leafy ofTree(i'fx), there is a leaf z
of Ti such that x = z and y = z. By Lemma 36, such a z is unique.

f) For every leaf z ofTit $f1 =

g) Qi is a legal position of bF* —> boF*; hence, £ Lr6F and € Lr66F .

Proof. We proceed by induction on i. The basis case with i — 1 is rather straight-
forward for each clause of the lemma and we do not discuss it. For the induction
step, assume i + 1 £ N, and the seven clauses of the lemma are true for i.
Clause (a): By the induction hypothesis, is prelegal and Tree($t) = T{. As-
sume first that the ith iteration of LOOP deals with Case (i), so that $¿+1 =
(<3>i, . . . , -Lv.k:). Each of . . . ,v_k is a leaf of Tit i.e. a leaf of 7Vee($i). This
guarantees that $¿+1 is prelegal. Also, by the definition of function Tree, we have
7Vee(i>i+i) = 2Vee($j)U{g10,I1l,...,SfcO,S fel}- But the latter is nothing but Ti+1

as can be seen from the description of how Case (i) updates Ti to Tj+i. A similar
argument applies when the ith iteration of LOOP deals with Case (ii). Assume now
the ith iteration of LOOP deals with Case (iii). Note that the moves made in the
antecedent of bF* —> bbF* (the moves that bring to $i+i) are nonreplicative
— specifically, look like v.a where v £ Tj = 7Vee($i). Such moves yield prelegal
positions and do not change the value of Tree, so that Tree{$i) = 7Vee($t+i)- It re-
mains to note that T is not updated in this subcase, so that we also have T i + 1 = Ti.
Hence 7Vee($i+i) = Ti+1. Finally, suppose the ith iteration of LOOP deals with
Case (iv). It is the environment who moves in the antecedent of oF* —> 0 0 F * ,

and does so before the machine makes any moves. Then the clean environment
assumption — in conjunction with the induction hypothesis — implies that such a
move cannot bring to an illegal position of oF* and hence cannot bring it to a
non-prelegal position. So, $i+i is prelegal. As for Tree($ i+i) = T_i+l, it holds for
the same reason as in the previous case.

Intuitionistic computability logic 107

Clause (b): If the ith iteration of LOOP deals with Case (i), (ii) or (iii), it is the en-
vironment who moves in the consequent of bF* —> ooF*, and the clean environment
assumption guarantees that $¿+1 is prelegal. Assume now that the ith iteration
of LOOP deals with Case (iv), so that i 'i+i = (^i, Tvi.vx.a,..., Tvk.vk.a). By
the induction hypothesis for clause (d), each Vj (1 < j < k) is a leaf of Tree(i'l),
so adding the moves Tvi.v1.a,..., Tvk.vk does not bring to a non-prelegal po-
sition, nor does it modify TVee(i'i) because the moves are nonreplicative. Hence
$¿+1 is prelegal.
Clause (c): Just as in the previous clause, when the ith iteration of LOOP deals
with Case (i), (ii) or (iii), the desired conclusion follows from the clean environ-
ment assumption. Assume now that the ith iteration of LOOP deals with Case
(iv). Consider any leaf x of Tree(^l+\). As noted when discussing Case (iv) in
the proof of Clause (b), Tree(^i) = Tree(^i+i), so x is also a leaf of Tree($>i).
Therefore, if Vf'j+i = the conclusion that V t ^ is prelegal follows from the
induction hypothesis. Suppose now ^ Note that then looks like

T j / i .a , . . . , Tym.a), where for each yj (1 < j < m) we have z = x and z = yj
for some leaf z of Tj. By the induction hypothesis for clause (d), each such yj is
a leaf of Tree(^fx). By the induction hypothesis for the present clause, 'I ' -1 is
prelegal. Adding to such a position the nonreplicative moves T j / i .a , . . . , Tym .a —
where the yj are leaves of Tree{^fx) — cannot bring it to a non-prelegal position.
Thus, remains prelegal.
Clauses (d) and (e): If the ith iteration of LOOP deals with Cases (iii) or (iv), Ti
is not modified, and no moves of the form x: or x.y: (where x,y are bit strings)
are made in the consequent of bF* —» ooF*, so Tree(^i) and Tree(^f*) (any
leaf x of Tree^i)) are not affected, either. Hence Clauses (d) and (e) for i + 1
are automatically inherited from the induction hypothesis for these clauses. This
inheritance also takes place — even if no longer "automatically" — when the ith
iteration of LOOP deals with Case (i) or (ii). This can be verified by a routine
analysis of how Cases (i) and (ii) modify Ti and the other relevant parameters.
Details are left to the reader.
Clause (f): Consider any leaf z of Tl+i. When the ith iteration of LOOP deals
with Case (i) or (ii), no moves of the form x.a are made in the antecedent of
oF* —> ooF*, and no moves of the form x.y.a are made in the consequent (any bit
strings x, y). Based on this, it is easy to see that for all bit strings x,y — including
the case x = z and y = z — we have = and (l ^) - " =
Hence clause (f) for i + 1 is inherited from the same clause for i. Now suppose
the ith iteration of LOOP deals with Case (iii). Then Tl+\ — Ti and hence z
is also a leaf of Ti. From the description of Case (iii) one can easily see that if
ui z or u 2< z, we have <3?^ = and (" i ^) - - = so the equation

= (i 1 ^) - 2 is true by the induction hypothesis; and if w X z and u < z,
then ^ = {&?1 , _La) and = <(«£*)-*, -La). But, by the induction
hypothesis, = (i ^ 2) - 2 . Hence i » ^ = (vE^) - 2 . A similar argument applies
when the ith iteration of LOOP deals with Case (iv).

108 Giorgi J a p a s i c l ' / A)

Clause (g): Note that all of the moves made in any of Cases (i)-(iv) of LOOP have
the prefix '1.' or '2.', i.e. are made either in the antecedent or the consequent of
oF* —> ooF*. Hence, in order to show that 0 i + i is a legal position of bF* —> obF*,
it would suffice to verify that £ LrAF* and <£¿+1 £ LrAAF*.

Suppose the ith iteration of LOOP deals with Case (i) or (ii). The clean
environment assumption guarantees that $¿+1 £ LrAAF . In the antecedent of
oF* —> boF* only replicative moves are made. Replicative moves can yield an
illegal position ($¿+1 in our case) of a ¿-game only if they yield a non-prelegal
position. But, by clause (a), $¿+1 is prelegal. Hence it is a legal position of bF*.

Suppose now the ¿th iteration of LOOP deals with Case (iii). Again, that
£ Lr is guaranteed by the clean environment assumption. So, we only

need to verify that $¿+1 £ LrAF . By clause (a), this position is prelegal. So, it
remains to see that, for any leaf y of Tree($ i+i). £ LrAF . Pick an arbitrary
leaf y of 7Vee($i+i) — i.e., by clause (a), of T i + 1 . Let z be the leaf of Ti+1 with
y = z. We already know that i 'i+i £ LrAAF . By clause (d), we also know that z is
a leaf of Tree(^i+i). Consequently, ^f^ € LrAF . Again by clause (d), z is a leaf
of Tree^f^). Hence, (^ j+x) - - should be a legal position of F*. But, by clause
(f), ^ = (t f ^) ^ . Thus, £ LrF ' .

Finally, suppose the ith iteration of LOOP deals with Case (iv). By the clean
environment assumption, $¿+1 £ LrAF . Now consider ^¿+1- This position is
prelegal by clause (b). So, in order for to be a legal position of obF*, for every
leaf x of Tree(^fi+i) we should have i 1 ^ £ LrAF . Consider an arbitrary such leaf
x. By clause (c), ^ ^ is prelegal. Hence, a sufficient condition for ^ ^ £ LrAF

is that, for every leaf y of Tree^f^), £ LrF . So, let y be an arbitrary
such leaf. By clause (e), there is a leaf z of Tl+i such that z = x and z = y.
Therefore, by clause (f), = But we know that $ i + i £ LrAF* and
hence (with clause (a) in mind) £ LrF*. Consequently, £ LrF*. •

Lemma 38. For every finite initial segment T of Q, there is i £ N such that
T is a (not necessarily proper) initial segment of G< and hence of every Qj with
i <j £ N.

Proof. The statement of the lemma is straightforward when there are infinitely
many iterations of LOOP, for each iteration adds a nonzero number of new moves
to the run and hence there are arbitrarily long ©¿s, each of them being an initial
segment of 0 . Suppose now LOOP is iterated a finite number m of times. It
would be (necessary and) sufficient to verify that in this case 0 = 0 m , i.e. no
moves are made during the last iteration of LOOP. But this is indeed so. From the
description of LOOP we see that the machine does not make any moves during a
given iteration unless the environment makes a move 7 first. So, assume _L makes
move 7 during the mth iteration of LOOP. By the clean environment assumption,
we should have (0 m , ±7) £ LrAF _>AiF . It is easy to see that such a 7 would have
to satisfy the conditions of one of the Cases (i)-(iv) of LOOP. But then there would

Intuitionistic computability logic 109

be an (m + l)th iteration of LOOP, contradicting out assumption that there are
only m iterations. •

Let us use $ and to denote -i©1- and Q2 ' , respectively. Of course, the
statement of Lemma 38 is true for $ and *]/ (instead of ©) as well. Taking into
account that, by definition, a given run is legal if all of its finite initial segments
are legal, the following fact is an immediate corollary of Lemmas 38 and 37(g):

© G Lr i F * _ > i i F * . Hence, $ G LrAF* and ® G LrAAF*. (6)

To complete our proof of Lemma 34, we need to show that W n S F " " J 4 f ' (©) =
T. With (6) in mind, if Wn 4 A F" ($) = T, we are done. Assume now Wn 4 4 F* <$) =
_L. Then, by the definition of ¿, there is an infinite bit string x such that is a
legal but lost (by T) run of ¿F*. This means that, for some infinite bit string y,

Wn F * ((^ - x) - y) = _L. (7)

Fix these x and y. For each % G N, let Xi denote the (obviously unique) leaf of
Tree^i) such that x^ < x; and let yt denote the (again unique) leaf of Tree($fXi)
such that yi X y. Next, let zl denote the leaf of T* with Z{ = Xi and zx = yi.
According to Lemma 37(e), such a exists and is unique.

Consider any i with i + 1 G N. Clearly X and yi X yi+ j. By our choice
of the Zj, we then have zt X z i + i and z{ < z i + 1 . Hence, by Lemma 36, Zi •< Zi+1.
Let us fix an infinite bit string z such that for every i G N, ~z{ < z. Based on the
just-made observation that we always have Zi X zl+i, such a 2 exists.

In view of Lemma 38, Lemma 37(f) easily allows us to find that <£-z =
Therefore, by (7), W n F ' ($ ^) = ± . By the definition of ¿, this

means that W n A F ($) = ± . Hence, by the definition of —» and with (6) in mind,
WnAF*_>A4F* (0) = T. Done. •

12 Proof of Theorem 12
Now we are ready to prove our main Theorem 12. Consider an arbitrary sequent
S with INT I- S. By induction on the INT-derivation of S, we are going to
show that S has a uniform solution £. This is sufficient to conclude that INT
is 'uniformly sound'. The theorem also claims 'constructive soundness', i.e. that
such an £ can be effectively built from a given INT-derivation of S. This claim of
the theorem will be automatically taken care of by the fact that our proof of the
existence of £ is constructive: the uniform-validity and closure lemmas on which we
rely provide a way for actually constructing a corresponding uniform solution. With
this remark in mind and for the considerations of readability, in what follows we only
talk about uniform validity without explicitly mentioning uniform solutions for the
corresponding formulas/sequents and without explicitly showing how to construct
such solutions. Also, we no longer use => or o—, seeing each sequent F=$Kas the
formula oF —> K and each subformula E\ 0—E2 of such a formula as ¿Fi E2.

110 Giorgi Japasicl'/A)

This is perfectly legitimate because, by definition, (F => K)* = (¿F —> K)* and
(E^Et)* = E2)\ ~

There are 15 cases to consider, corresponding to the 15 possible rules that might
have been used at the last step of an INT-derivation of 5, with S being the conclu-
sion of the rule. In each non-axiom case below, "induction hypothesis" means the
assumption that the premise(s) of the corresponding rule is (are) uniformly valid.
The goal in each case is to show that the conclusion of the rule is also uniformly
valid. "Modus ponens" should be understood as Lemma 21, and "transitivity" as
Lemma 22.

Identity: Immediately from Lemma 23.

Domination: Immediately from Lemma 27.

Exchange: By the induction hypothesis, W-pG A ¿ F A ¿ F A oH_ —> K. And, by
Lemma 17(a), « - (¿GaAFaAFA^H; K) -> {¿Ga^FaIea^H K). Applying
modus ponens yields B-pG A ¿ F A ¿ F A —> K.

Weakening: Similar to the previous case, using Lemma 17(b) instead of 17(a).

Contraction: By Lemma 17(c) (with empty U), Hr()>F - » ¿ F A i F) -> (¿GApF ->
¿G A ¿ F A ¿F) . And, by Lemma 26, ^ ¿ F - » ¿ F A ¿F. Hence, by modus ponens,
N>GaAF -> ¿GAiFA^F. But, by the induction hypothesis, l ^ ¿GA¿FA¿F -> K.
Hence, by transitivity, ^-¿G A ¿ F —> K.

Right o - : From Lemma 17(d), ¡ - (¿ G A ¿ F -> K) -> (¿G (¿F - » K)). And,
by the induction hypothesis, A ¿ F —> K. Applying modus ponens, we get
K G - » (¿F -+ K).

Left o—: By the induction hypothesis,

^-¿G A ¿F —> Ki] (8)

(9)

Our goal is to show that

^]OGAHH_A^K2^F)^KX. (10)

By Lemma 18, (9) implies «-¿(¿tf - » K2). Also, by Lemma 24, »(-¿(¿tf ->
K2) —> (QQH —> BK2). Applying modus ponens, we get M~o ¿ / / - » OK2. Again
using Lemma 18, we find №-¿(¿¿7/ —» oK2), which, (again) by Lemma 24 and
modus ponens, implies

^ ¿ ¿ ¿ ¿ - ¿ ¿ X 2 . (11)

Combining Lemmas 17(c) (with empty W,U) and 34, by modus ponens, we
find i -^ff -> ¿ ¿ f f . Next, by lemma 25, №-¿¿7? -> ¿ ¿ # . Hence, by transitivity,
HrkH —» ¿ ¿ / f . At the same time, by Lemma 34, IhooH —> ooof f . Again by

Intuitionistic computability logic 111

transitivity, ffi-pH —> booH. This, together with (11), by transitivity, yields

—> ¿¿K2. (12)

Next, by Lemma 24,

№-¿(¿#2 —• F) —> (¿ ¿ # 2 —> ¿F) . (13)

From Lemma 17(e), « - (¿ (¿ / fa - » F) - » (AAüfa - » ¿F)) A (¿ i f —> ¿¿üf2)
(¿ (¿ # 2 —> F) (o f f ¿ F)) . This, together with (13) and (12), by modus
ponens, yields

i - o (oK 2 —> F) —> (A/f —» ¿F) . (14)

By Lemma 17(f),

F) - » (A# ¿ F)) A (AG A o F —> K i) , .
-» (OGAOH_A^(OI<2 -> F) -> KL).

From (14), (8) and (15), by modus ponens, we obtain the desired (10).

Right n: By the induction hypothesis, B-pG —» K\, . . . , IH-qG —> Kn. And, from
Lemma 17(h), «-(¿G —> Ki) A . . . A (¿G —> I<n) —> (AG —> Ä"i n . . . n Kn). Modus
ponens yields W-AG —> K\ n . . . n Kn.

Left n: By Lemma 28(a), » - ¿ (F in . . ,nFn) -> oFi\ and, by Lemma 17(c), » - (¿ (F in
• • • n Fn) ¿Fi) -> (AG A ¿(Fi n . . . n Fn) —* AG A ¿Fj) . Modus ponens yields
AGAA(F tn.. .nFn) -> ¿GA¿Fi• But, by the induction hypothesis, ft-AGAAFj -> K.
So, by transitivity, M-AG A ¿(Fi n . . . I~l F„) —> K.

Right U: By the induction hypothesis, B~oG —> Kl. According to Lemma 17(j),
»-(AG -> Ki) -> (AG —» K\ U ... U Kn). Therefore, by modus ponens, M-AG ->
Ki U . . . U Kn.

J

Left U: By the induction hypothesis, » -¿G A ¿Fi —> K, . . . , ffl~AG A ¿F n -> K.
And, by Lemma 17(i), »-(oGA AFi - » K) A . . . A (AG A ¿Fn - » K) - » (AG A (¿Fi U
. . . U oF n) —> K). Hence, by modus ponens,

ffl-oG A (¿Fi U . . . U ¿F„) - » K. (16)

Next, by Lemma 17(c), » - (¿ (F j U . . . U F n) ¿Fi U . . . U ¿F„) —> (AG A ¿(Fi U
. . . U Fn) —> AG A (¿Fl U . . . U ¿F„)) . But, by Lemma 28(c), N>(Fi U . . . U F„)
¿FiU. . .UoFn. Modus ponens yields №-AGaA(FiU. . .UFn) AGa(AFiU.! ,uAFn).
From here and (16), by transitivity, » -¿G A ¿(Fi LI... U Fn) —> K.

Right I I: First, consider the case when AG is nonempty. By the induction hy-
pothesis, »-¿G K(y). Therefore, by Lemma 19, »-["^(AG -> K(y)) and, by
Lemma 29 and modus ponens, »-IHt/AG —» \~\yK(y). At the same time, by Lemma

112 Giorgi Japasicl '/A)

32, B-oG l~lyAG. By transitivity, we then get B-AG -> f~lyK(y). But, by Lemma
33, B-IIyK(y) -> ["IxK(x). Transitivity yields B~AG r\xK(x). The case when
oG is empty is simpler, for then B~AG —> V\xK(x), i.e. IB—I IxK(x) , can be obtained
directly from the induction hypothesis by Lemmas 19, 33 and modus ponens.

Left l~l: Similar to Left n, only using Lemma 28(b) instead of 28(a).

Right U: By the induction hypothesis, B-AG —> K(t). And, by Lemma 31,
B-K(t) U r f (i) . Transitivity yields B-AG ^ U x A ' (i) .

Left U : By the induction hypothesis, B~AG A AF(y) —> K. This, by Lemma 19,
implies B-l~ly(AG A AF(y) —> K). From here, by Lemma 30 and modus ponens, we
get

fr-fh/AG A UyAF(y) - UyK. (17)

By Lemma 17(c), B-(AG -> flyAG) (AGAUyAF(y) nyAGAUyAF(y)). This,
together with Lemma 32, by modus ponens, implies AG A UyoF(y) —> l~lyAG A
UyiF(y) . From here and (17), by transitivity, B-AG A \Jyi>F(y) -> K. But, by
Lemmas 33, 17(c) and modus ponens, B~AG A Ua:AF(x) —> AGAUyAF(y). Hence,
by transitivity,

B-oG A UrcAF(x) ^ K. (18)

Next, by Lemma 17(c), IF(AUxF(x) - » UxAF(x)) (AG A AUxF(x) - » AG A
UxAF(x)). But, by Lemma 28(d), l-AUxF(x) —> UxAF(x). Modus ponens yields
AG A AUxF(x) AG A UxAF(x). From here and (18), by transitivity, B-AG A
AUxF(x) - * K . •

References
[1] Blass, A. Degrees of indeterminacy of games. Fundamenta Mathematicae,

77:151-166, 1972.

[2] Blass, A. A game semantics for linear logic. Annals of Pure and Applied Logic,
' 56:183-220, 1992.

[3] Feischer, W. Dialogues, strategies, and intuitionistic provability. Annals of
Pure and Applied Logic, 28: 217-254,1885.

[4] J.Y. Girard, J. Y. Linear logic. Theoretical Computer Science, 50:1-102,1987.

[5] Gödel, K. Uber eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica, 12:280-287, 1958.

[6] Japaridze, G. A constructive game semantics for the language of linear logic.
Annals of Pure and Applied Logic, 85:87-156, 1997.

[7] Japaridze, G. Introduction to computability logic. Annals of Pure and Applied
Logic, 123:1-99, 2003.

Intuitionistic computability logic 113

[8] Japaridze, G. From truth to computability I. Theoretical Computer Science,
357:100-135, 2006.

[9] Japaridze, G. From truth to computability II. Theoretical Computer Science,
376:20-52, 2007.

[10] Japaridze, G. Computability logic: a formal theory of interaction. In Goldin,
Dina, Smolka, Scott and Wegner, Peter, editors, Interactive Computation: The
New Paradigm, pages 183-223. Springer, 2006.

[11] Japaridze, G. Propositional computability logic I. ACM Transactions on
Computational Logic, 7:302-330, 2006.

[12] Japaridze, G. Propositional computability logic II. ACM Transactions on
Computational Logic, 7:331-362, 2006.

[13] Kleene, S. C. Introduction to Metamathematics. D. van Nostrand Company,
New York, Toronto, 1952.

[14] Kolmogorov, A. N. Zur Deutung der intuitionistischen Logik. Mathematische
Zeitschrift, 35:58-65, 1932.

[15] Lorenzen, P. Ein dialogisches Konstruktivitätskriterium. In Infinitistic Meth-
ods (Proc. Symp. Foundations of Mathematics), pages 193-200, Warsaw, 1961.
PWN.

[16] Medvedev, Y. Interpretation of logical formulas by means of finite problems
and its relation to the realizability theory. Soviet Mathematics Doklady, 4:180-
183, 1963.

REGULAR PAPERS

Acta Cybernetica 18 (2007) 117-134.

On monotone languages and their characterization
by regular expressions

György Gyurica*

To the memory of Balázs Imreh

Abstract

In one of their papers, F. Gécseg and B. Imreh gave a characterization
for monotone string languages by regular expressions. It has turned out
that the monotone string languages are exactly those languages that can be
represented by finite unions of seminormal chain languages. In this paper a
similar characterization is given for monotone DR-languages.

1 Introduction
Monotone string and tree languages were introduced by Gécseg and Imreh in [4]
where these languages were characterized by means of syntactic monoids. They also
used chain languages to represent monotone string languages by regular expressions,
and showed that any monotone string language can be represented as the union
of finitely many seminormal chain languages and that, conversely, any seminormal
chain language can be recognized by a monotone recognizer.

In this paper we continue the investigation of monotone string and DR-
languages. Our primary goal was to characterize the monotone DR-languages by
regular EX-expressions, but we have also introduced the concept of iterational
height for regular expressions which was useful to state conditions under which
iteration preserves monotonicity. The same result was adapted to DR-languages,
too.

Thereafter, a simple characterization of monotone DR-languages was given. The
number of the auxiliary variables used in this representation and some decompo-
sition problems were also investigated. Later, we stated some conditions that are
required to preserve monotonicity when using the operations of x-product and x-
iteration. Finally, we introduced the concept of generalized i?-chain languages, for
which it will turn out that they represent exactly the monotone DR-languages. For
notions and notation not defined in this paper we refer the reader to [4] aiid [7].

* Department of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary.
E-mail: gyuricafflinf.u-szeged.hu

117

118 György Gyurica.

2 Monotone string languages
Let X be an alphabet. The set of all words over X is denoted by X*. Let us
denote the length of a word u £ X* by |ix| which is the number of occurrences of
letters from X in u. The empty word is denoted by e. The set of words with length
greater than 0 is denoted by X+(— X* \ {e}).

An X-recognizer is a system A = (A, X, 5, ao, A'), where A is a finite set of states,
X is the input alphabet, 5 : A x X —> A is the next-state function, ao € A is the initial
state, and A' C A is the set of final states. The next-state function can be extended
to a function S* : A x X* —* A, where S*(a,.e) = a and 6*(a,xu) = 5*(6(a,x),u)
(a £ A, x G X, u G X*). If there is no danger of confusion, instead of 5*(a,u) we
can use the notation 5(a, u) or simply au.

The language L(A) recognized by A is given by

A language L C X* is called regular or recognizable if it can be recognized by
an X-recognizer.

An X-recognizer A = (A, X, 6, ao, A') is monotone if there is a partial ordering
< on A such that for all a € A and x £ X, a < 6(a,x) holds. It is obvious that
for all a € A and u £ X*, a < au holds, too. A language L C X* is monotone if
L = L(A) for a monotone X-recognizer A. Later we will use the fact that every
partial ordering on a finite set can be extended to a linear ordering. For more
details we refer the reader to [4].

A language L C X* is fundamental, if L = Y* for a Y C X. A language L C X*
is a chain language if L can be given in the form L = LqX\L\X2 ... Xk-iLk-iXkLk,
where x\,... ,xk 6 X and every L, (0 < i < k) is a product of fundamental lan-
guages. A chain language L = L0X1L1X2 Xk-iLk-\xkLk is called seminormal
if Xi 0 Lj-1 for every 1 < i.< k. L is normal if Xi £ Li- i and Xi ^ Li (1 < i < k).
A seminormal chain language L = LoXiL\x2 .. .Xk-iLk-\XkLk is called simple if
each Li (0 < i < k) is fundamental.

Now we recall the main result from the corresponding section in [4].

Theorem 1. A language is monotone iff it can be given as a union of finitely many
seminormal chain languages. •

Let X be an alphabet. The set RE of all regular expressions and the language
L(rj) represented by rj £ RE are defined in parallel as follows:

• if riurne RE, then (m) + £ RE, %) + fe)) = %)ULM,

L(A) = {u £ X* | a0u £ A'}.

• 0 S RE,

• Vx € X : x £ RE

L(0) = 0,

L(x) = {x }

• if 771,% G RE, then (771) (772) G RE, L((m)(m)) = L(77i)L(T72)

• if 7? G RE, then (77)* 6 RE, L((77)*) = L(V)*

Oil monotone languages and their characterization by regular expressions 119

Some parentheses can be omitted from regular expressions, if a precedence re-
lation is assumed between the operations of iteration, concatenation, and union in
the given order.

A regular expression £ is called a subexpression of 77 if C occurs in the inductive
definition of 77. The set of all subexpressions of 77 will be denoted by Sub(rj). The
operation omission on regular expressions is defined as follows: Let us consider
771,772 £ RE and the regular expressions (771) + (772), (77i){r]2) and (771)*. By omitting
rji from them we get 772 from the first two ones, and the expression 771 from the
third one. We also allow the omission of 771 from (771)* to result in (0)*. If we omit
772 from (771) + (772) and (771) (772) we get 771 and 771 respectively. This way, omission
is not well-defined, nor does it have to be. Let £ be a subexpression of a regular
expression 77. We call £ redundant in 77 if £ can be omitted from 77 so that L(rj)
remains the same after the omission. A regular expression is reduced if it has no
redundant subexpressions.

The reduction of a regular expression is not necessarily unique as the following
example shows.

Example 2. Let us consider the regular expression 77 = x(yx)* + z + (xy)*x.
Obviously the first and the third member of the union represent the same language,
that is, both of them are redundant in 77. If we omit one of them separately, we
get two different reduced regular expressions: x(yx)* + z and z + (xy)*x which
represent the same language.

Now we define the concept of iterational height which is used to identify the
length of the longest word that will be used in the iteration of a particular lan-
guage. Let 77 be a reduced regular expression in fo.tm (£)*. The nonnegative integer
max{\u\ : u £ L(C)} will be called the iterational height of 77 (or 1/1(77) for short),
if L(C) is finite. If L(£) is infinite, then let ih(rf) be the infinity 00 that we will
treat as the largest integer. Let now 77 be a reduced regular expression in any form.
We define ih(ri) as max{ih((Q*) \ (Q* 6 Sub(r])}, if Sub(rj) contains an expression
in form (()*, and 0 otherwise. The iterational height of a regular language L (or
ih(L) for short) is defined as min{ih(r}) | L = L(r\),r} £ RE}.

Example 3. Let us take the regular expression (= xx + xxx. By the defini-
tion of ih((C)*) we have ih((Q*) = 3. Let us now consider the regular expression
77 = x + (£)* • ft is easy to see that ih(rj) = 3, because 77 has a subexpression in form
(()*, for which ih((()*) = 3. Let us now take the language L(rj), for which we get
that ih(L(r})) = 1, because L(77) can also be represented by the regular expression
(x)*, for which ih((x)*) = 1.

Lemma 4. Let 77 be a reduced regular expression of the form (£)*. If L(t]) is
monotone, then ih(L(rj)) < 1.

Proof Let 77 be a reduced regular expression of the form (C)*, and let the monotone
X-recognizer A recognize L(rj) with the partial ordering < on A. We can suppose
without the loss of generality that A is reduced and connected from its initial state,
hence there is exactly one final state a £ A' such that au = a for every u £ L(C).

120 György Gyurica.

Using the monotonicity of A we get that ax = a holds for any letter x from the
words of L(Q. We see that there is no such state a' £ A \ {a} for which a' < a and
a'x = a' hold for any x £ X, and we also see that there is no final state а" ф a
such that a < a". Hence rj can be written in form C'C"> where С does not contain
the operation *, and represents the set of all words taking A from ao to a, and
where is in form (yi + • • • + yr)*, where yi,..., yT are the letters from the words
of L(C). Since 1,(77) = L(C'C") and ih{L(C(")) = 1. we get that ih(L(r])) < 1 . •

3 Monotone DR-languages
A ranked alphabet is a finite nonempty set of operational symbols, which will be
denoted by E. The subset of all m-ary operational symbols of E will be denoted
by Em . We shall suppose in the rest of this paper that Eo — 0. Let p(S) stand for
the power set of the set S.

Let X be a set of variables. The set T%(X) of ИХ-trees is defined as follows:

(i) Х С В Д ,

(ii) a (p i , . . . , p m) £ T E (X) , if m > 0, a £ E m and p b . . . ,pm £ T E (X) ,

(iii) every EX-tree can be obtained by applying the rules (г) and (ii) a finite
number of times.

In the rest of this paper X will stand for the countable set {x\,x2, • • •}, and for
every n > 0, Xn will denote the subset { x i , . . . , xn} of X.

A pair А = (A, E) will represent a deterministic root-to-frontier E-algebra (or
a DR T,-algebra for short), where A is a nonempty set, and E is a ranked alphabet.
Every a £ E m is represented as a mapping ал : A —> Am. A is called finite, if E is
a ranked alphabet and A is finite.

A. deterministic root-to-frontier HXn-recognizer (or a DR T,Xn-recognizer for
short) is a system 21 = (Л, a0, a), where Л = (A, E) is a finite DR E-algebra,
ao £ A is the initial state, and a = (A*1) , . . . , A ^) £ p(A)n is the final state
vector. If E or Xn is not specified, we speak of DR-recognizers.

Let 21 = (A, ao, a) be a DR EXn-recognizer, and let the mapping a : Т%(Хп) —>
p(A) be defined as follows. For every p £ Т%(Хп)

(i) if p = Xi £ Xn, then a(p) = A^,

(ii) if p = a(pi,... ,pm), then a(p) = {a £ A \cA(a) € a(px) x ...x а(рщ)}.

The tree language T(2l) recognized by 21 can be given by

T(2l) = {p £ TS(X„) I a0 £ a(p)}.

Tree languages that can be recognized by DR-recognizers are also called DR-
languages.

Let 21 be a DR EXn-recognizer and a € A one of its states. We define the
tree language T(2l, a) as the set { p £ T^(Xn) \ a £ a(p)}. A state a is called

Oil monotone languages and their characterization by regular expressions 121

0-state if T(2l, a) = 0. 21 is called normalized if for all a G £ m and a € A it
holds that each component of crA(a) is a 0-state or no component of crA(a) is a
0-state. Moreover, 21 is called reduced if for any states a, b £ A it holds that a / 6
implies T(2l, a) ± T(2l,6). It is a well-known fact that every DR-language can be
recognized by a normalized and reduced DR-recognizer (cf. [5], [6] and [7]).

Let 7r¿ be the i-th projection. A DR E-algebra A = (A, E) is called monotone
if there is a partial ordering < on A such that a < tti(aA(a)) holds for all a £ A,
a € E m and 1 < i < m. We say that 21 is a monotone DR HXn-recognizer if the
underlying DR E-algebra A is monotone. Moreover, T C T^(Xn) is a monotone
DR-language, if T = T(2l) for a monotone DR EXn-recognizer 21 (see, [2] and [4]).

As every partial ordering on a finite set can be extended to a linear ordering,
the following lemma hold.

Lemma 5. For any monotone DR-recognizer 21 we may assume that the partial
ordering on A is total.

The following lemma is also obvious.

Lemma 6. Every finite DR-language is monotone.

4 Basic observations
Before we continue the investigation of monotone DR-languages, we need to intro-
duce some concepts and notions (mainly taken from [4], [6] and [7]).

Let E be a ranked alphabet, and let E be an ordinary alphabet defined as
follows. For all a, T £ E let

(i) ECT = {cti, . . . ,am}, if a- £ E m {m > 1), and

(ii) ta n ET = :0, if a t.

We define E as E = U(E(T | a £ £) . We say that the alphabet E corresponds to
the ranked alphabet E.

Let n > 1 be fixed arbitrarily. The set gXi(t) of Xi-paths of a tree t £ T^(Xn) is
defined for each i € { 1 , . . . , n} in the following way:

(i) 9xÁXi) = {e } , and gXi(xj) = 0, if i^j, i, j £ { 1 , . . . , n} ,

(ii) If t = (j{t\ j • • •, ¿m) (c € E m) , then gXi(t) = <riSXi(ii) U . . . U crmgXi(tm).

For a tree language T C T^(Xn), let gXi{T) = U/.GT ÍZ .M' which is also denoted
by TXi (1 <i<n).

Let E be a ranked alphabet, and let E be the alphabet corresponding to it. Let
A = (A, E) be a DR E-algebra. For every u £ E* the mapping uA : A —» A is
defined as follows:

(i) If u = e, then auA = a, and

122 György Gyurica.

(ii) if и = <TjV, then auA = •nj(a(a))vA, (a £ A, a £ E m , 1 < j < m, v £ Ё*).

The mapping defined above can be extended to subsets of E* in a natural way.
In the rest of this paper we will omit the superscript A in uA if the DR E-algebra
A inducing uA is obvious.

A tree language T С T^(Xn) is closed if a tree t £ T^(Xn) is in T if and only
if 9x{t) Я Tx for all x £ Xn. It is a well known result, that a regular tree language
is DR-recognizable if and only if it is closed (cf. [1] and [9]).

Now we need to specify some details regarding particular operations on tree
languages. The о-product of EXn-tree languages T\, . . . , Tm is the tree language
a (T i , . . . , Tm) = {a(ti,..., tm) | U £ Ti, 1 < i < m}, where m > 1 and a £ E m .
We assume that the reader is already familiar with the operations of union, x-
product and x-iteration. In the rest of this paper, we will use the operation of
x-product in right-to-left manner, that is, for any tree languages S,T С T^(X n)
the x-product T- X S is interpreted as a tree language in which the trees are obtained
by taking a tree s from S and replacing every leaf symbol x in s by a tree from
T. Different occurrences of x may be replaced by different trees from T. We will
also assume that T -y R -x S always means T -y (R -x S) for any tree languages
5, R, T С Tz{Xn) and variables x, у £ Xn.

Let E be a ranked alphabet, and let Xn be a set of variables. The set RE(EX„)
of all regular T,Xn-expressions and the tree language T(rj) represented by r) £
RE(T,Xn) are defined in parallel as follows:

• 0 e RE(£X„), T(0) = 0,

• Vx G Xn : x £ RE(EXn), T{x) = {x } ,

If <7 G E m , •.. ,r)m £ RE(EXn), x £ Xn, then

• Ы + (m) G RE&xn), T((m) + (r?2)) = T(Vl) и ТЫ,

• Ы -x Ш е RE(Exn), T((m) -x (m)) = T(m) -x T(m),

. W £ RE(EXn), Т{{ъУ'х) = T W ,

• a(m,...,7lm)£RE(ZXn), T(cr(r]i,... ,T]m)) = a(T(rji),... ,T(r]m)).

Some parentheses can be omitted from regular EXn-expressions, if a precedence
relation is assumed between the operations of ст-product, x-iteration, x-product,
and union in the given order.

A regular EX„-expression £ is subexpression of rj if £ occurs in the inductive
definition of г]. The set of all subexpressions of 77 will be denoted by Sub(r]). The
operation omission on regular EXn-expressions is defined as follows: Let us consider
a £ E m , x £ X, 771,772, • • • ,rjm £ RE(EXn) and the regular EXn-expressions
(m) + (%), (rn) X (m)*'x and <7(771,... ,77m). By omitting 771 from them we
get 772, 772, 771 and cr(£, 772,... ,r)m) respectively, where £ is a variable occurring in
T(77i), if such exists, otherwise С = 0- We allow the omission of щ from (771)*'1

to result in x as well. If we omit щ from (771) + (772) and (772) •x (771) we get 771

Oil monotone languages and their characterization by regular expressions 123

and T)x respectively. Omission on regular EXn-expressions is not well-defined, but
we do not need it to be so. Let 77 be a regular EA^-expression, and let (be a
subexpression of r). We call (redundant in 77, if (can be omitted from 77 so that
T(j]) remains unchanged after omission. A regular EXn-expression is reduced if it
has no redundant subexpressions. As in the string case, a regular EXn-expression
may have several different reduced forms.

Now we adapt the concept of iterational height for tree languages which will
be used to identify the length of the longest x-path that will be used in an x-
iteration of a particular tree language. Let x € X be a variable, and let 77 be a
regular EXn-expression in form (C)*'x- The iterational height of x in 77 (ihx(r;) for
short) is defined as max{\u\ : u € 9x(T(C))}, if gx (T(Q) is finite. If gx{T{Q) is
infinite, then let ihx(rj) be the infinity 00 that we will treat as the largest integer.
Let now 77 be a reduced regular EXn-expression in any form. We define ihx(rj) as
max{ihx((()*'x) | (C)*'x G Sub(r])}, if Sub(r]) contains an expression in form (C)*'x,
and 0 otherwise. The iterational height of x in a regular tree language T (ihx(T)
for short) is defined as min{ihx{r]) : T — T(rj)}.

Example 7. Let E = E2 = {cr} and X = {x,y} hold and let us consider the
regular EX-expression (= cr(y,a(y,x)) -f a(y,a(y,a(y,x))). It is easy to see that
ihx((0*'x) = 3. Taking 77 = cr(y,x) + (C)*'x we have ihx(rf) = 3 because 77 has
a subexpression in form (C)*'x for which ihx((Q*'x) = 3. Considering the tree
language T(i7) we get ihx(T(r})) = 1, because T(rj) can be represented also by
(cr(y, x))*'x, for which ihx((a(y,x))*'x) = 1.

Lemma 8. Let 77 be a reduced regular Y,Xn-expression of the form (C)*'x- IfT(ri)
is a monotone DR-language, then ihx(T(r])) < 1.

Proof. Let 77 be a reduced regular EXn-expression of the form (C)*'x, and let 21
be a monotone DR-recognizer which recognizes T(r}) with the partial ordering <.
Without the loss of generality we can suppose that 21 is reduced and normalized,
thus there is exactly one state a € A for which a £ a(x) and au = a hold for every
word u £ gx(T(Q). Since 21 is monotone, we see that aa = a for any letter a that is
present in any of the words of gx(T(()). Moreover, there is no state a' £ A\ {a} for
which a < a' and a' £ a(x), and there is no state a" £ a(x) \ {a } for which a" < a
and a"a — a" hold for every letter a that is present in any of the words of gx(T(()).
Hence rj can be written in form (C')*'x -x C'> where represents the tree language
that 21 recognizes by taking A^ = {a} , and leaving A ^ unchanged if j ^ i, and
where (" is the representation of the trees that we can get by decomposition of
every tree t £ T(£) at every point of the paths in gx(t). It is easy to see that
T(rj) = T((C")*'X -x C) and ihx{T{{CY'x -x C')) = 1- that is ihx(T{77)) < 1 . •

5 A simple characterization
Let 21 = (A, ao,a) be a monotone DR EXn-recognizer, where A = (A, E-4),
A = { a 0 , . . . , a * } and a = (#) , . . , #)) . Without the loss of generality we

124 György Gyurica.

can suppose that ao < ai < . . . < ak holds. Let Ek = {£o. • • • , £/t} be a set of
auxiliary variables for which Xn fl Ek = 0 holds. Furthermore, let <f>: A —> Ek be a
bijective mapping defined by <j>(a,i) = & (0 < i < k). Now we construct the regular

n U —¿^-expression TJ as follows:

V = T]k Vk-i -a-i • • • Vo,

where for each i = 0 , . . . , k

rii = (p\ + --- + pi+yi + ••• + yiri) -u (t\ + --- + t)y<*\

and where

1) y\,... ,ylr. are all the elements of the set {xz G Xn\ a» G A ^ } ,

2) Pls = . • • • > &m) f o r s u c h " ^ m and € Ek (1 < v < m) that <r(cii) =
(r ' K i .) . • • - r ' t e J) and a i i Ui<„<m { * » (* (*)) } (1 < « < h),

3) t\ = cr^M, • • -.&,„) for such cr G E m and £ 5 t (l < u < m) that o(a,i) =
).•••. and G U i < u < m K (* (« <)) } hold (1 < s < ¿ 0 ,

4) I { p l - . - M j I + I { i i . - - - . i U I =1 E |.

The regular E(Xn U Efc)-expression rj constructed above is called the trivial
regular expression belonging to 21, and is denoted by rfa. We use the word trivial
because describes T(2l) by its computation in 21, where for every 0 < i < k,
rji is responsible for the computation starting in state a*. That part of rji which is
iterated by the operation is called the iterating part of r]i, and the part of rji
which is inserted by product into the variables & of the iterating part is called
the terminating part of 77*. We will call the expressions of the form T]k . . . rji rjo
by chains.

Let the ao < a\ < ... < ak linear ordering hold on the state set of the monotone
DR EX"n-recognizer 21. Let us define the DR EXn-recognizer 21, as follows: 2lj =
(Ai,ai, a;), where A = (A n {a*,. . . .afcJ.E-4), and
a; = (Ad) D { a , , . . . , a jt } , . . . , A^"' n {a» , . . . , ajt}). It is obvious that 21* recognizes

Lemma 9. For a monotone DR HXn-recognizer 21 the equality T(21) = T(r?<a)
holds.

Proof. Let 21 be a monotone DR EXn-recognizer, and let 77a be the trivial regular
expression belonging to 21. Let us also suppose that 21 = (A, ao,a), A = (A, E),
A = {ao , . . . , at} , and the linear ordering CLQ < ... < ak holds on A. The proof is
continued by induction on the number of states in 21.

If k = 0, then T(2l) = TE(Xn n {x»| a0 G A (i) }) holds because A is singleton.
Obviously 77a = rjo holds, too. By the definition of 77a, every <7 G E is present
in the iterating part of ijo, and every x G {xi| a0 G A ^ } C Xn is present in
the terminating part of r/0. Hence,' T(TJ<X) = TS(XN f l {x*| ao G A ^ }) , that is,
T(2l) = Tfaa).

Oil monotone languages and their characterization by regular expressions 125

Let us now suppose as our induction hypothesis that Т(21*) = г]к -(k . . . -(i+1 rji
holds for every 1 < i < k. Now we construct the T,(Xn U Sfc)-recognizer 21' as
follows: 2Г = (A a 0 , a ') , where a' = (Л ^ П { a 0 } , . . . , A™ n { a 0 } , { a 0 } , . . . , {a*}) €
p(^)n + f c + 1 . To interpret the meaning of T(2t') let us treat Xn U Ek as the
set Xn+fc+i, where xn+i+1 = and let the mapping a be defined as а(£») =
a(x n + i+ i) = A(n + i + 1) (i = 0 , . . . , f c) .

It can be easily seen that T(21) = T(2lfc) ъ . . . -i2 T(2li) -5l Г(Я'), and T(21') =
T(r]o). Hence

T(2i) = r (a f c) - £ l k r (a f c _ 1) . C t _ 1 . . . - € a T (a 1) . { l T (a ')
= T{r}k) -ik Т(щ - i t 77fc_i) . . . -e2 T(rjk -ik... -ia m) T(r)o) =
= T(r,k) T(Vk-i) . . . -6 T(m) т(г]о)
= T(vk -ik m-i - a - ! • • • -ъ m -«i vo)
= T(v). •

6 Remarks on the decomposition of 77

In this section we give some remarks on the decomposition of the regular E(XnUEfc)-
expression TJ = Щ • • • Щ Щ. If there is at most one symbol in the terminating
part of rji, then the decomposition in the т]г part makes no sense, hence we assume
in this section that there are at least two symbols in the terminating part of 77,.

We say that г] = щ-^к . . . rji . . . щ can be decomposed in the 77* part
if it can be given in the form

4 = 4k~ik--- -Ci+i Vi "ii • • • -ii 4o =

4k •{»... -€i+i (P\ + • • • +Ph + У\ + •" • + Vrt) Ъ № + ••• + Ъ • • • "ii =

4k -ii+1 (yl) -fi (*! + ••• + •£< " • • 40 +

+ 4k 4* • • • -C+i Ш Ъ № + ••• + 'b • • • 'ii Vo +

+ 4к-цк . . . - i i+1 (Pi) 'ii (¿I + ' ' ' + Ъ • • • -€i +

+ '£¿+1 Ш '£. (¿i + ' ' • + "ft • • • -Ci

where

(i) yj £ X n (1 < s < rit 0 < г, < n),

(ii) p* = cr(Ci!, • • • ,&m), for some cr e £ m , € Efc, 1 < v < m, 1 < s < h,

(iii) t\ = • • • .&m), for some cr e E m , 1 < v < m, 1 < s <

126 György Gyurica.

Now we state a necessary condition for the existence of such decompositions.

Lemma 10. The expression V = Ik ^ - • - Vi ii Vo can be decomposed in the r]i part,
if every operational symbol in the iterating part of 77, contains the auxiliary variable

at most once among its leaves.

Proof. Let us suppose that the condition of the lemma holds. Let us denote in this
proof the regular £(XnUEfc)-expressions rjk -£k • • • i+2 Vi+i a n d {t\ H 1

770 by and (' , respectively. It is easy to see that for every tree t £ T((')
the set g^ (i) is a singleton or the empty set. By the definition of the ^-product of
tree languages, using the condition of the lemma, we get

T(v) = T(c" - i i+1 (pi + • • • + pi + y\ + • • • + -Ci C') =

- T(a -Ci+1 T(p\ + • • •+pi + y\ + • • • + -{4 T(C) =

= AC) (T(P\) -£i AC) u . . . u T(PI) -(T T(C) u T(y\) -£l T(C) u . . .

. . . u r o ^ H T (c ')) =

= r(C" pi "ii C' + • • • + C" -€i+1 Pi -Ci C + <" •£«., l/i C + • •. + C" -£i+1 v'r, a -

Hence the decomposition in 77* led to an equivalent regular T,(Xn U Efc)-expression.
•

It is clear that if the auxiliary variable & does not occur in the subexpression
77i_ 1 • • - T/i 770, then the factor 77* can be omitted from the expression of 77.
Let us note that the decomposed parts will also be called chains, that is, the above
mentioned chain 77 is decomposed into finite union of chains.

The variables y\,..., y^.. can be left in any of the decomposed chains, because by
inserting these variables into the iterating part during the ^¿-product we terminate
that path, that is, no auxiliary variable can be reached after from these variables.

Now we state the converse of the Lemma 10.

Lemma 11. If the expression 77 = rjk -£k . . . rji "£1 Vo can be decomposed in the rji
part, then every operational symbol in the iterating part of rji contains the auxiliary
variable at most once among its leaves.

Proof. Let us suppose that there is an operational symbol a £ E m in the iterating
part of the decomposed rji, where & occurs at least twice among the leaves of a. Let

and C' stand for the regular E(XnUEfc)-expressions . ••£i+2 77i+i and 77i_1-ii_1

• • • 770, respectively. For the sake of simplicity we will write a (£ i i n s t e a d
of M V - 6 , £ i V - - > 0 w h e r e G {0 ,1 , . . . , m — 2},
V!+V2+V3 = m - 2 , and £ Sfc) (z' £ { 1 , . . . , ^ } , z" £ { l , . . . , ^ } ,
z"' 6 { 1 , . . . , v3}). It is obvious that T(C" -Ci+1 (pi + • • • + pi + y\ + • • • + y\) -€l

-U O C T(r,). Moreover, T(C" -£i+1 a(«i ,sa) C) C T(77) holds too for
every different pair of symbols Si, s2 £ {p\,... ,p\.,y\,... ,ylT.}. On the other hand
T(c"- i i + 1a(S l ,S2HC) 2 Ui<„<^c% + 1 *(pi ,p i) - i<c ') U 1U< r i T(C' - i i + 1
&{yviDv) '£. <')> which is a contradiction because there are such trees in T(rf) which
are not present in the decomposed chains of 77. •

Oil monotone languages and their characterization by regular expressions 127

The above results can be summarized in

Theorem 12. The expression 77 = r)k -£fc • • - Vi "Ci rlo can be decomposed in the 77j
part if and only if every operational symbol in the iterating part of r)i contains the
auxiliary variable & at most once among its leaves.

7 Remarks on the number of the auxiliary vari-
ables in 7721

In this section we deal with the number of the auxiliary variables in 77a. We will
also give some methods by which this number can be possibly reduced. It is obvious
that if the number of states is k, then the representation can be done with k + 1
auxiliary variables.

It is said that we terminate a variable x € Xn in a tree t £ T^(Xn) by a tree
p € Tz(Xn), if the variable x is not present among the leaves of the trees p-xt. Let
£ be a regular EXn-expression. It is said that a variable x 6 Xn is terminated in

if there is no variable x among the leaves of the trees of T(£).
Obviously, the number of the necessary auxiliary variables can be possibly de-

creased if we decompose 77 at every possible place (as seen in the previous section),
and we renumber the auxiliary variables from 0 in each decomposed chain of 77
separately.

It is clear that a variable & is terminated in the rfe part, that is the variable
will not occur at any leaf from this point during the right-to-left evaluation of

77. Hence we can reuse some auxiliary variables within a chain. Let us suppose
that there is an auxiliary variable in the chain which has its first occurrence in
the terminating part of rji (during the right-to-left evaluation of the chain). In this
case every occurrence of in 77 can be replaced with by which we have done an
equivalent transformation. In fact, we can also use the elements of Xn to decrease
the number of the auxiliary variables. The idea is the same, that is, an existing
auxiliary variable f j can be replaced with a variable x if & gets terminated before
the first occurrence of x.

On the basis of the remarks above the following steps can possibly reduce the
number of the auxiliary variables:

(i) decompose 77a into union of as many chains as possible

(ii) decrease the number of the auxiliary variables in these decomposed chains
separately

(iii) renumber the auxiliary variables starting with 0 in each chain

Example 13. Let 21 — (A, ao, a) be a DR £X3-recognizer, where A — (A, E),
A — {a0 ,ai,a2 ,a3}, E = {oi,a2,a3}, Oi € £» (1 < i < 3), and a =
({ao}, {<10,02}, {11,02,^3})- £ is realized in A as follows:

128 György Gyurica.

^i(ao) = (a i) , &2(ao) = (ao,ai), cr3(a0) = (ao,ao,ai),
<7i (a i) = (a 3) , a2(aj) = (a 2 , a 2) , 0-3(01) = (a i , <13, ¿3) ,
^1(^2) = (03), a - 2 (a 2) = (a 2 , a 3) , c r 3 (a 2) = (a 2 , a 3 , a 3) ,
^ 1 (0 3) = (03) , <7 2 (a 3) = (a 3 , a 3) , a 3 (a 3) = (a 3 , a 3 , a 3) .

The resulting regular expression is the following:

V% = V3 3 i2 T?O =

= (® 3) (0 - 1 (^ 3) + ffa(i3,&) + 6)) * ' i 3 - 6

• & (* i (6) + + 1 3) •{, (M f c . f o) + M & . f e , 6)) * , € a - e a

• & (& ! (&) + 6) + S 3) -C. (M f i . f c . f i O r S .

We can decompose the above chain in the rj 1 factor by which we get

(a*) (tri(fo) + <72(6, &) + cr3(e3,6,6))*'i3-i3

• C a M f o) + S 2 + ® 3) 'f2 + a 3 (C 2 , & , f o) r € a - i a

+
(a*) -c, M &) + M f c . f o) + *3(&.6,6))* , C s - fc

+ S 2 + 3 3) + f f 3 (6 , 6 , &) r € a - t a

Simplifying the above expression we can write

(x3) -Cs M 6) + ff3(e3,i3,6))*,€s-C,

••&M&)+33) -€l M C i ^ ^ r N ,
• C l M 6) + x i +x2) - i 0 (a 2 (& , i i) + C o , 6)) * , i o

+
(*3) "is (* l (6) + ^ 2 (6 , 6) + ^ 3 (6 , 6 , 6)) * ' i 3 - i 3

+S2 +13) "fo M & . &) + a3(S2,fo,i3)r€a-£a

&))•«, (M i l , &)) • • * ' • € ,

•€1(̂ 1 (€1) + + sa) -fo (M £ o , 6) + M £ o , £ o , £ i) r i o

Oil monotone languages and their characterization by regular expressions 129

Reusing the variables (£o —> £3) and (хз —> £1) in the above chains we get

•xa fr fa) + Xi + x 2) -(o (аг((;о,хз)+ <гз(£о,{о,хз))*'(°

+
Ы -£o Ы &) + <T2(£o,£o)

•£o(ffi(fo) +X2 + x3) -i2 (a2(6>Co) + 0-3(^2,Co,Co))*'i2-£2

•£2(^2(6.6)) -X3
• X 3 (<TI(X 3) + z i + x2) -£0 (<т2(С0,яз) + <тз(€о,€о,хэ))*'io

We can see that the initial number of the auxiliary variables is reduced from 4 to
2.

We finish the discussion of the section with

Lemma 14. If £ = £1, then for any monotone DR HXn-recognizer 21 one auxiliary
variable is enough to represent щ.

Proof. Let £ = £1, and let щ be the £ (X n U Efc)-regular expression belonging to
21. As we have only unary operational symbols, occurs at most once among the
leaves of an operational symbol from the iterating part of each щ. So 77 can be
decomposed into finite union of chains, moreover, the decomposition can be done
at each r/i factor. The condition £ = £1 implies also that during the evaluation at
every step there is exactly one auxiliary variable which is not terminated. Since the
variable £0 gets terminated in the terminating part of rjo, we can reuse £0 instead
of introducing a new auxiliary variable. Continuing the idea we can rewrite all
decomposed chains so that they will use only £0 as an auxiliary variable. •

8 Characterization of monotone DR-languages
It is a well-known fact that the class of DR-languages is closed under cr-products,
but not under union, x-product, and x-iteration. It means that the x-product,
x-iteration and union of monotone DR-languages are not always deterministic (cf.
[3] and [8]). Conversely, using the three operations mentioned above on not closed
languages can result in a closed (or even monotone) DR-languages, as it can be
seen from the examples below.

Example 15. Let us consider the regular tree languages S = {cr(x, x), a(y, y)} and
T = {a(x,y), a(y,x)}. It is clear that they are not closed, but the tree language
S U T = {ct(x ,x), cr(y,y), o(x,y), cr(y,x)} is closed, that is, DR-recognizable.
Moreover, S U T is monotone.

130 György Gyurica.

Example 16. Let us now consider the regular tree languages S — {z, a(x,x),
<j(y,y)} and T = {a(x,y), cr(y,x)}. They are not closed, but the tree language
T -z S = {o(x,x), u(y,y), a{x,y), a(y,x)} is DR-recognizable, and what is more,
T z S is monotone.

Example 17. Let S be the following regular tree language: S = {a(x,a(x,y)),
a(x,a(y,x)), cr(x,x), o(y,y), a(x,y), a(y,x)}. S is not closed, but the tree
language (S)* , x is closed, moreover, (S)*'x is monotone.

Let S C Tz(Xn) be a tree language and let p £ T^(Xn) be a tree. The root
root(p), leaves leaves(p) and the set of subtrees Sub(p) of the tree p are defined as
follows:

(i) If p £ Xn, then root(p) = p, leaves(p) = {p} and Sub(p) = {p}.

(ii) If p = <x(ti,... ,tm), a £ E m , U £ T^(Xn), 1 < i < m, then root(p) = a,
leaves[p) = \Ji<i<mleaves(ti)' and Sub{p) = {p} U U i ^ K m i 5 " 6 ^)) -

The above functions are extended from trees to tree languages as follows:
root(S) = {root(p) | p £ S } , leaves(S) = (J 6S leaves(p), and Sub(S) =

Let Us denote the set of operational symbols appearing in S, and is defined as
E s = root(Sub(S)) \ Xn. Let E s , x denote the set { a e E | 3u € gx{S), 3v £
E*, 3 z£Xn : uv£gz(S), v = (a,»)... (w,j), w g E, i,j £ N}.

Now we give a condition by which the ^-product of two monotone DR-languages
is also monotone.

Theorem 18. Let S, T C T^(Xn) be monotone DR-languages, Xi £ Xn. IfEs,Xi fl
root(T) = 0, then T •Xi S is monotone.

Proof. Assume that the conditions of the theorem hold. Let 21 = (.4,ao,a)
and © = (B, bo, b) be monotone DR EXn-recognizers, where A = {A,
A = {a 0 , . . . ,a fc } , a = (^ D , . . . , ¿<»>), B = (B, E B) , B = {60, - • •
b = (S (1) , . . . , B (n)) and A n B = 0 such that T(2l) = S and T (B) = T. Let
us also suppose that ao < . • • < ak and bo < . • • < bi hold on the state sets A and
B, respectively.

We construct a monotone £ = (C,CQ,C) that recognizes T -Xi S as follows. Let
C = (C, E c) , C = A U B, co = ao and c = (C (x) , . . . , CW) hold, where c is defined

\JpeSSub(p).

as follows:

' U BÜ) U A « , if Xj £ T , j ^ i
U) \ A Ü l u f l « , i f X j t T , i ± i

if XJ£T,j = i
. B^, if X j t T , j = i

i f X j t T , j ^ i
if Xj £T, j = i
if Xj (¿T, j = i

It remains to represent the elements of E in C. For a £ E and c £ C let

ac(c)= M,a£root(T)

Oil monotone languages and their characterization by regular expressions 131

The construction of £ relies on the condition H root(T) = 0. It allows
us to determine at every step during the processing of a tree in € whether the
next input symbol is evaluated in 21 or in 03. Once we reach a state a G A ^ , the
symbols from root(T) will lead us to a state b G B, from which we can continue
the processing in 03. If the input symbol applied in the state a is from E \root(T),
then we process it according to 21. Therefore, it can be shown by a straightforward
computation that C recognizes T-Xi S, and C is monotone under the linear ordering
0.0 < • • • < flfc < bo < ... < bi, which means that T -Xi S is monotone. •

Corollary 19. Let S, T C T^(Xn) be monotone DR-languages, Xi G Xn. IfEs n
root(T) = 0, then T -Xi S is monotone.

Proof. The conditions of Theorem 18 hold because Q Es. •

The conversion of Theorem 18 does not hold as the counter example below
shows.

Example 20. Let T and S stand for the DR-languages {a(z,z)} and {cr(x, z),
a(a(z, z), z)}, respectively. It is obvious that S and T are monotone and T -x S =
{ir(cr(z, z), z)} is also monotone. However, Es)X fl root(T) — {a} ^ 0.

Let x G Xn. A tree language T is called x-homogeneous if there exists no t G T
for which there are u,v G gx(t), w G E* and z G Xn such that uw G gz{T) and
vw<tgz{T).

The condition under which the class of monotone DR-languages is closed under
^-iteration can be restricted by the following lemmas.

Lemma 21. Let T C Tz(Xn) be a DR-language, x G Xn, and let T*'x be deter-
ministic. IfT is not x-homogeneous, then T*'x is not monotone.

Proof. Let us suppose that the conditions of the lemma hold. It means that there
is a tree t G T for which there are u, v G gx{t) with u ^ v, and there are w G
E*, z G Xn such that uw G gz{T) and vw £ gz(T). Moreover, let us assume that
21 is a reduced monotone DR £Xn-recognizer which recognizes T*'x. Let ai = aou
and aj = aov. Since uw G gz{T) and vw ^ gz(T), we get that ai ^ aj. It is obvious
that ai,aj G a(x), hence T(2l,fli) = T*'x and T(2l,aj) = T*,x. Using the fact that
21 is reduced, T(2i, a,) = T(Ql,aj) implies that ai = a3, which is a contradiction.
Therefore, T*'x is not monotone. •

Lemma 22. Let T C T^(Xn) be a DR-language, x G Xn, and let T*,x be deter-
ministic. If ihx(T*'x) > 1, then T*'x is not monotone.

Proof. Let us suppose that T is a DR-language for which T*'x is deterministic and
ihx(T*'x) > 1. Let the regular £Xn-expression (represent T. By the definition of
ihx, there is a reduced regular £Xn-expression r] for which T(r]) = T*'x, ihx(rj) > 1
and T] is in form (Q*'x. Using Lemma 8 we get that T(rj) is not monotone, therefore
T*'x is not monotone, too. •

132 György Gyurica.

Now we give a condition by which the x-iteration of a monotone DR-language
is also monotone.

T h e o r e m 23. LetT C TY.(Xn) be a monotone DR-language, Xi £ Xn, and letT*'Xi

be deterministic. If T is Xi-homogeneous, ihXi(T*,Xi) < 1 and Sr.ii C\root(T) = 0,
then T*'Xi is monotone.

Proof. Let us suppose that the conditions of the theorem hold. Let 21 be a reduced
DR EX„-recognizer for which T(2l) = T, and where 21 = (A, a0 , a), A = (A, T,A),
A = {ao,. • •, at-}, a = (A ^ , . . . , A'71'). Let us also assume that 21 is monotone
under the linear ordering ao < •.. < ak-

We construct the monotone DR EX„-recognizer 2$ = (B, bo, b) with B =
(B , E B) which recognizes T*,Xi. Let us define the state set B as AU {bo}, where bo
is a new state. The final state vector b is

. {a 0 ,6 0 } , B ^ 1 » B W) ,

where the components are defined by two steps in the following order:

m r n - c r i i v r - 1 nti) J A^U{bo}, i f a o S A W
{I) For.all j £{!,...,n}\{i}, B[3)-=^AU)i else,

(2) For all a € A& and j G { 1 , . . . ,i - 1, i + 1 , . . . , n } if a € then B<-j) :=
B (i ' u {a 0 } .

The definition of E e is given by four steps in the following order:

(3) For all a £ root(T) and a' £ A (i)

/ (-• • ,a0 , - : •), if <JA(a0) = (..., a',...)
a (a o) •= \ c^(ao), else,

(4) For all a £ E \ root{T)

B, . / aA(a'), if A& ± 0, (a' 6 A ^ is arbitrarily chosen)

(5) For all a £ root(T) aB(b0) := aB(a0),

(6) For all a £ E and a £ A \ {a0} aB{a) := aA(a).

The construction of 53 relies on the condition E-f jXi C\root(T) = 0. It guarantees
us that in every state a £ a(x{) for any input symbol a we can determine whether to
continue an already started processing of a tree, or to start a process from the root
of a tree from T. In all the other cases 55 is acting as 21 did. The 2^-homogeneous
property of T and the inequality ihXi(T*'Xi) < 1 ensure us that one state is enough
to iterate the a^-paths of T, which is the basic idea of any iteration related automata
construction. Therefore, it can be shown by a straightforward computation that
T(93) = T*'Xi, and 93 is monotone under the linear ordering bo < ao < • • • < ak,
which means that T*,Xi is monotone. •

Oil monotone languages and their characterization by regular expressions 133

The following lemma is obvious.

Lemma 24. For any fixed variable x 6 Xn the x-product of tree languages is
associative, that is, for any tree languages S, R and T the equality T -x (R -x S) =
(T -x R) -x S holds.

A tree language rj = . r/o is called R-chain language, if every щ is in form
('Ti) (Si)*'^ (i = 0 , . . . , k), where S¿ and T¿ are finite DR-languages, for which S¿
is ^¿-homogeneous, ih^(Si) < 1, root(Si) П Esí,£í = 0 and rooí(T¿) П (root(Sl) U
Esj,^) = 0- Moreover, let us denote the language 77¿_i . . . 770 by (¿. The
T] — т]к-£к.. ñ-chain language is called^generalized, if root(T(r)i))nT,T((;i),zi = 0
holds for every i — 1,... ,k.

Theorem 25. Let T be a DR-language. T is monotone iff it can be given as a
generalized R-chain language.

Proof. Let us suppose that T is a monotone DR-language. Let 21 be the mono-
tone DR-recognizer for which T(2Í) = T. Constructing the regular expression щ
belonging to 21 we get a generalized .R-chain language for which T = Т(щ).

Conversely, let us take a generalized .R-chain language r¡ — r¡k • • • щ which
represents T. Prom Lemma 6, Theorem 18, and Theorem 23 we directly obtain
that every T(щ) is monotone (i = 0,... ,k). Using Lemma 24 and Theorem 18 we
directly get that T(r¡) is monotone. •

9 Conclusion
As we showed above, the monotone DR-languages can be characterized by means of
generalized .R-chain languages. We gave several conditions by which some particular
operations preserve monotonicity, but we did not state conditions by which the
class of DR-languages is closed under the operations of x-product, x-iteration and
union. However, it seems possible to give appropriate conditions for each operation
mentioned above.

10 Acknowledgement
The author is extremely grateful to Professor Ferenc Gécseg for his helpful com-
ments and valuable suggestions. The author is also thankful to the anonymous
reviewer whose remarks considerably improved the quality and style of this paper.

References
[1] Courcelle, В.: A representation of trees by languages I, Theoretical Computer

Science, 6 (1978), 255-279.

[2] Gécseg, F.: On some classes of tree automata and tree languages, Annales
Academice Scientiarum FenniccE, Mathematica, 25 (2000), 325-336.

134 György Gyurica.

[3] Gécseg, F. and Gyurica, Gy.: On the closedness of nilpotent DR tree languages
under Boolean operations, Acta Cybernetica, 17 (2006), 449-457.

[4] Gécseg, F. and Imreh, B.: On monotone automata and monotone languages,
Journal of Automata, Languages, and Combinatorics, 7 (2002), 71-82.

[5] Gécseg, F. and Steinby, M.: Minimal ascending tree automata, Acta Cybernet-
ica, 4 (1978), 37-44.

[6] Gécseg, F. and Steinby, M.: Minimal Recognizers and Syntactic Monoids of
DR Tree Languages, In Words, Semigroups, & Transductions, World Scientifics
(2001), 155-167.

[7] Gécseg, F. and Steinby, M.: Tree Automata, Akadémiai Kiadó, Budapest 1984.

[8] Jurvanen, E.: The Boolean closure of DR-recognizable tree languages, Acta
Cybernetica, 10 (1992), 255-272.

[9] Virágh, J.: Deterministic ascending tree automata I, Acta Cybernetica, 5 (1980),
33-42.

Received December, 2005

Acta Cybernetica 18 (2007) 117-134.

Self-Regulating Finite Automata

Alexander Meduna* and Tomás Masopust*

Abstract
This paper introduces and discusses self-regulating finite automata. In

essence, these automata regulate the use of their rules by a sequence of rules
applied during previous moves. A special attention is paid to turns defined
as moves during which a self-regulating finite automaton starts a new self-
regulating sequence of moves. Based on the number of turns, the present
paper establishes two infinite hierarchies of language families resulting from
two variants of these automata. In addition, it demonstrates that these hier-
archies coincide with the hierarchies resulting from parallel right linear gram-
mars and right linear simple matrix grammars, so the self-regulating finite
automata can be viewed as the automaton counterparts to these grammars.
Finally, this paper compares both infinite hierarchies. In addition, as an open
problem area, it suggests the discussion of self-regulating pushdown automata
and points out that they give rise to no infinite hierarchy analogical to the
achieved hierarchies resulting from the self-regulating finite automata.

Keywords: regulated automata, self-regulation, infinite hierarchies of lan-
guage families, parallel right linear grammars, right linear simple matrix
grammars

1 Introduction
Over its history, automata theory has modified and restricted classical automata
in many ways (see [3, 5, 6, 7, 8, 16, 22, 24, 26]). Recently, regulated automata have
been introduced and studied in [17, 18]. In essence, these automata regulate the
use of their rules according to which they make moves by control languages. In this
paper, we continue with this topic by defining and investigating self-regulating finite
automata. Instead of prescribed control languages, however, the self-regulating
finite automata restrict the selection of a rule according to which the current move
is made by a rule according to which a previous move was made.

To give a more precise insight into self-regulating automata, consider a finite
automaton, M , with a finite binary relation, R, over M's rules. Furthermore,
suppose that M makes a sequence of moves, p, that leads to the acceptance of a

'Department of Information Systems, Faculty of Information Technology, Brno University
of Technology, Bozetechova 2, Brno 61266, Czech Republic E-mail: medunaOfit.vutbr.cz,
masopustSf it .vutbr.cz

135

136 Alexander Meduna and Tomás Masopust

word, so p can be expressed as a concatenation of n + 1 consecutive subsequences,
p = poPi • • • Pn, \pi\ = |Pj|. 0 < i,j < n, in which rj denote the rule according to
which the ith move in pj is made, for all 0 < j < n and 1 < i < \pj\ (as usual, \pj\
denotes the length of pj). If for all 0 < j < n, (rj,rJ1+1) € R, then M represents
an n-tum first-move self-regulating finite automaton with respect to R. If for all
0 < j <n and all 1 < i < |pi|, (ii,rj+1) e R, then M represents an n-turn all-move
self-regulating finite automaton with respect to R.

Based on the number of turns, we establish two infinite hierarchies of language
families that lie between the families of regular and context-sensitive languages.
First, we demonstrate that n-turn first-move self-regulating finite automata give
rise to an infinite hierarchy of language families coinciding with the hierarchy re-
sulting from (n + l)-parallel right linear grammars (see [20, 21, 27, 28]). Recall
that n-parallel right linear grammars generate a proper language subfamily of the
language family generated by (n + l)-parallel right linear grammars (see Theorem
5 in [21]). As a result, n-turn first-move self-regulating finite automata accept a
proper language subfamily of the language family accepted by (n + l)-turn first-
move self-regulating finite automata, for all n > 0. Similarly, we prove that n-turn
all-move self-regulating finite automata give rise to an infinite hierarchy of language
families coinciding with the hierarchy resulting from (n + l)-right linear simple ma-
trix grammars (see [4, 10, 28]). As n-right linear simple matrix grammars generate
a proper subfamily of the language family generated by (n + l)-right linear simple
matrix grammars (see Theorem 1.5.4 in [4]), n-turn all-move self-regulating finite
automata accept a proper language subfamily of the language family accepted_ by
(n + l)-turn all-move self-regulating finite automata. Furthermore, since the fam-
ilies of right linear simple matrix languages coincide with the language families
accepted by multitape nonwriting automata (see [5]) and by finite-turn checking
automata (see [24]), the all-move self-regulating finite automata characterize these
families, too. Finally, we summarize the results about both infinite hierarchies.

In the conclusion of this paper, as an open problem area, we suggest the dis-
cussion of self-regulating pushdown automata. Regarding self-regulating all-move
pushdown automata, we prove that they do not give rise to any infinite hierarchy
analogical to the achieved hierarchies resulting from the self-regulating finite au-
tomata. Indeed, zero-turn all-move self-regulating pushdown automata define the
family of context-free languages while one-turn all-move self-regulating pushdown
automata define the family of recursively enumerable languages. On the other
hand, as far as self-regulating first-move pushdown automata are concerned, the
question whether they define an infinite hierarchy or not is open.

2 Preliminaries
We assume that the reader is familiar with the theory of automata and formal
languages (see [1, 2, 9, 11, 12, 13, 15, 19, 25]). For a set Q, |<2| denotes the
cardinality of Q. N = { 1 , 2 , 3 , . . . } denotes the set of all natural numbers. For an
alphabet V, V* represents the free monoid generated by V under the operation of

Self-Regulating Finite A utomata 137

concatenation. The identity of V* is denoted by e. Set V+ = V* — {e} ; algebraically,
V+ is thus the free semigroup generated by V under the operation of concatenation.
For w £ V*, \w\ denotes the length of w. Let w € V*; then, alph(w) = {a £ V : a
appears in w}. For every L C V*, alph(L) = \JweLalph(w).

A finite automaton, M, is a quintuple M = (Q,T,,5,qo, F), where Q is a finite
set of states, E is a finite input alphabet, 5 is a finite set of rules of the form qw —> p,
QtP £ Q> w £ Qo G Q is an initial state, and F is a set of final states. Let i ' be
an alphabet of rule labels such that = |<5|, and tp be a bijection from <5 to Vf. For
simplicity, to express that ip maps a rule qw —> p 6 5 to r, where r e we write
r.qw —• p £ <5; in other words, r.qw —> p means ip(qw —> p) = r. A configuration of
M is any word from QE*. For any configuration qwy, where y £ E*, q £ Q, and
any r.qw —> p £ <5, M makes a move from configuration qwy to configuration py
according to r, written as qwy =4> py [r]. Let x be any configuration of M. M makes
zero moves from x to X according to e, written as x X [£] • Let there exist a
sequence of configurations xo, Xi5 • • •, Xn, for some n > 1, such that Xi-i Xi [rt]i
where ri € i = 1,... ,n. Then, M makes n moves from xo to Xn according
to r\,... ,rn, symbolically written as xo =>n Xn [^i .. • rn]. We write <p =>* K [/i] if
(p =>n k [/i] for some n > 0. If w £ £* and qow =>* / [/j], for f £ F, then w is
accepted by M and q^w =>* / [fi] is an acceptance of w in M. The language of M
is defined as C(M) = {u; £ E* : qow / [/i] is an acceptance of w}.

For n > 1, an n-parallel right linear grammar, n-PRLG, is an (n + 3)-tuple
G = (N\,..., Nn,T, S, P), where Ni, 1 < i < n, are mutually disjoint nonterminal
alphabets, T is a terminal alphabet, S £ N is an initial symbol, N = U • • -UNn,
and P is a finite set of rules that contains three kinds of rules:

For x, y £ (N U T U {S})*, x=>yii and only if

1. either x = S and S —» y £ P,

2. or x = y 1X1... ynXn, y = yixi... ynxn, where y{ £ T*, Xi £ T*N U T*,
Xi £ Ni, and Xi —> Xi £ P, 1 < i < n.

If x,y £ (NUTU {5 })* and I > 0, then x y if and only if there exists a sequence
xo x\ => • • • X[, xo — x, xi = y. Then, we say x =>+ y if and only if there
exists I > 0 such that x =>l y, and x =>* y if and only if x = y or x y. The
language generated by an n-PRLG, G, is defined as C(G) = {w £T* : S w}.
Language L C T* is an n-parallel right linear language, n-PRLL, if there is an
n-PRLG, G, such that L = C(G). The family of n-PRLLs is denoted by R

For n > 1, an n-right linear simple matrix grammar, n-RLSMG, is an (n +
3)-tuple G = (N\,..., Nn,T, S, P), where Ni, 1 < i < n, are mutually disjoint
nonterminal alphabets, T is a terminal alphabet, S 0 N is an initial symbol,
N = N\ U • • • U Nn, and P is a finite set of matrix rules. A matrix rule can be in
one of the following three forms:

1. S —> X\... X,
2. X - » wY,
3. X ->w, 3. X

Xi £ Ni, 1 < i < n;
X,Y £ Ni for some i, 1 < i < n, w £ T*\
X £N,W£T*.

138 Alexander Meduna and Tomás Masopust

1. [5 - » X i . . . X n] , X i Z N i , l < i < n ;
2. [Xi -> W]Yi,...,Xn -> wnYn], Wi G T*, XuYi € ty, 1 < i < n;
3. [Xi ->wi,...,Xn-> ion], Xi G Nu Wi G T*, 1 < i < n.

Let m be a matrix, then m[i] denotes the ith rule of m. For x, y G (N U T U {S})* ,
x=> y if and only if

1. either x — S and [5 —> y] G P ,

2. or x = yiXi.. .ynXn, y = yixi...ynxn, where yt G T*, aG T*N U T*,
Xi G Ni, 1 <i < n, and [Xi —> xi,..., Xn —> xn] G P.

We define x =$>+ y and x =>* y as above. The language generated by an n-RLSMG,
G, is defined as C(G) = {w G T* : S u;}. Language L C T* is an n-right
linear simple matrix language, n-RLSML, if there is an n-RLSMG, G, such that
L = £(G). The family of n-RLSMLs is denoted by P (n] .

Let G = (Ni,..., Nn,T, S, P) be an n-PRLG, for some n > 1, and 1 < i < n.
By the ith component of G we understand a 1-PRLG G = (Ni, T, S', P'), where P'
contains rules of the following forms:

l.S'^Xi ifS->X1...Xn£P,XieNi;
2 .X^wY if X -» wY G P and X,Y € iVi ;

3. X -» w if X - » w G P and X G Ni.

The ith component of an n-RLSMG is defined analogously.
Finally, let REG, CF, and CS denote the families of regular, context-free, and

context-sensitive languages, respectively.

3 Definitions and Examples
In this section, we define and illustrate n-turn first-move self-regulating finite au-
tomata and n-turn all-move self-regulating finite automata.

Definition 1. A self-regulating finite automaton, SFA, M, is a septuple

M = {Q,H,6,q0,qt,F,R),

where

1. (Q,T,,S,qo,F) is a finite automaton,

<7t € Q is a turn state, and

3. R C <1/ x ^ is a finite relation on the alphabet of rule labels.

In this paper, we consider two ways of self-regulation—first-move and all-move.
According to these two types of self-regulation, two types of n-turn self-regulating
finite automata are defined.

Self-Regulating Finite A utomata 139

Definition 2. Let n > 0 and M = (Q,T,,6,qo,qt, F, R) be a self-regulating finite
automaton. M is said to be an n-turn first-move self-regulating finite automaton,
n-first-SFA, if M accepts w in the following way. There is an acceptance of the
form qow =>* f [fi] such that

where fc 6 N, r° is the first rule of the form qx —> qt, for some q € Q, x € £*, and

(r } , r } + 1) e R

for all 0 < j < n.
The family of languages accepted by n-first-SFAs is denoted by Wn.

Example 3. Consider a 1-turn first-move self-regulating finite automaton, M =
({s,t,f}, {a,b}, 6, s, t, { / } , { (1,3)}) , with 5 containing rules l.sa —» s, 2.sa =-* t,
3.tb -* / , and 4 . fb -> / (see Fig. 1).

a b

Figure 1: 1-turn first-move self-regulating finite automaton M.

With aabb, M makes

saabb =*> sabb [1] => tbb [2] fb [3] =i> / [4].

In brief, saabb f [1234]. Observe that C(M) = {anbn : n > 1}, which belongs
to CF - REG.

Definition 4. Let n > 0 and M = (Q,E,S, qo,qt,F, R) be a self-regulating finite
automaton. M is said to be an n-turn all-move self-regulating finite automaton, n-
all-SFA, if M accepts w in the following way. There is an acceptance qow =>* / [/¿]
such that

.. _ „0 0 1 1 n n

M - ri • --rkrl • • • rk • • • ri • • - rfci

where k £ N, rk is the first rule of the form qx —> qt, for some q S Q, x £ E*, and

. (ri,ri+1)eR

for all 1 < i < k, 0 < j < n.
The family of languages accepted by n-all-SFAs is denoted by Sn.

140 Alexander Meduna and Tomás Masopust

a,b a,b

Figure 2: 1-turn all-move self-regulating finite automaton M.

Example 5. Consider a 1-turn all-move self-regulating finite automaton, M =
({s, t, / } , {a, 6}, <5, s, t, { / } , {(1,4), (2,5), (3,6)}), with 6 containing rules l.sa —• s,
2.sb —> s, 3.s —> t, 4.ta —• t, b.tb —> i, and 6.i —> / (see Fig. 2).
With abab, M makes

sabab => sbab [1] sab [2] tab [3] => tb [4] => t [5] / [6].

In brief, sabab =>* /[123456]. Observe that £ (M) = {ww : w € {a, 6}*}, which
belongs to CS - CF.

4 Results
We prove that the family of languages accepted by n-first-SFAs coincides with the
family of languages generated by (n + l)-PRLGs. Furthermore, we demonstrate
that the family of languages accepted by n-all-SFAs coincides with the family of
languages generated by n-RLSMGs.

4.1 n-Turn First-Move Self-Regulating Finite Automata
Section 4.1 establishes the identity between the family of languages accepted by
n-first-SFAs and the family of languages generated by (n + l)-PRLGs. To do so,
we need the following form of parallel right linear grammars.

Lemma 6. For every n-PRLG G = (N\,..., Nn, T, S, P), there is an equivalent
n-PRLG G' = (N[,..., N^, T, 5, P') that satisfies:

1. if S —> X\... Xn £ P', then Xi does not occur on the right-hand side of any
rule, for 1 < i < n;

2. if S a, S -> P € P' and a ± ¡3, then alph(a) n alph(P) = 0.

Proof. If G does not satisfy conditions from the lemma, then we will construct a
new n-PRLG G' = (N[,..., N^, T, S, P'), where P' contains all rules of the form
X — p € P, X ^ S, and Nj C N'p 1 < j < n. For each rule S — Xx... Xn € P,
we add new nonterminals Yj £ Nj into /Vj, and rules include S —* Y\... Yn and
Yj X j in P', 1 < j < n. Clearly,

S =>G Xi... Xn if and only if S =>G- Yx... Yn => X i . . . Xn.

Self-Regulating Finite A utomata 141

Thus, £(G) = C(G'). •
Lemma 7. Let G be an n-PRLG. Then, there is an (n - l)-first-SFA, M, such
that C(G) = C(M).

Proof. Informally, M is divided into n parts (see Fig. 3). The ith part represents a
finite automaton accepting the language of G's ith component, and R also connects
the ith part to the (i + l)st part as depicted in Fig. 3.

Formally, without loss of generality, we assume G = (Ni,..., Nn, T, 5, P)
to be in the form from Lemma 6. We construct an (n - l)-first-SFA M =
0Q,T,5,q0 ,q t ,F,R), where Q = {q0,...,qn} UN, N = Ni U ••• U Nn,
{<70,<7i,-••,<?«} niV = 0, F = {<?„}, 5 = {qi -» Xi+i : S Xi...Xn £
P, 0 < i < n) U {Xw -* Y : X wY € P } U {Xw qi : X -» w £
P,w £ T*, X e Ni, i £ { 1 , . . . , « } } , qt = qi, V - 6 with the identity map,
and R = {(qi - Xi+1,qi+1 Xi+2) : S ^ X1...Xn£ P,0<i<n-2}.

Next, we prove C(G) = £(M). To prove C(G) C C(M), consider a derivation of
w in G and construct an acceptance of w in M depicted in Fig. 3. This figure clearly

Figure 3: A derivation of w in G and the corresponding acceptance of w in M.

demonstrates the fundamental idea behind this part of the proof; its complete and
rigorous version is lengthy and left to the reader. Thus, for each derivation S =>* w,
w £T*, there is an acceptance of w in M.

To prove C(M) C C(G), let w £ C(M). Consider an acceptance of w in M.
Observe that the acceptance is of the form depicted on the right-hand side of Fig.
3. It means that the number of steps M made from qi-\ to q, is the same as
from qi to qi+i since the only rule in the relation with qi-\ —• X{ is the rule
qi —+ Moreover, M can never come back to a state corresponding to a
previous component. (By a component of M, we mean the finite automaton Mi =
(Q, E, <5, <7t_i, {<7i}), for 1 < i < n.) Now, construct a derivation of w in- G. By
Lemma 6, we have |{X : {qi -* -> X) £ i?}| = 1, for all 0 < i <
n - 1. Thus, S X\Xl.. .Xj" £ P. Moreover, if Xjx* X)+l, we apply

w =

in G in M

142 Alexander Medu na and Tomas Mas op us r

X) 6 P, and if Xlxl - » <?i, we apply X* — x\ £ P, 1 < i < n,
l<j<k.

Hence, Lemma 7 holds. •

Lemma 8. Let M be an n-first-SFA. There is an (n + 1)-PRLG, G, such that
C(G) = C{M).

Proof. Let M = (Q,Y,,6,q0,qt,F,R). Consider G = (No, • • •, Nn, E, 5, P), where
N = (QT,1 xQx{i}xQ)U (Q x {¿} x Q), I = max{|u;| : qw p £ J}, 0 < i < n,
and

P = {S -> [qoxo,qa,0,qt][qtxx,ql,l,qil\[qi1x2,q2,2,qh\...[qin_lxn,qn,n,qin\ :
ro-qoxo -» q°, ri.qtx\ -<• q1, r2.qhx2 q2,..., rn.9i„_1xn -> qn £ 5,
(ro,n),(rx,r2),... ,(rn_l,rn) £ R, qin £ F}U
{[px, q,i,r] x[q,i,r]}\J

{[<7,i,p] -> w[q',i,p\ :qw^>q' £ ¿}.

Next, we prove £(G) = £ (M) . To prove £(G) C £ (M) , observe that we make
n + 1 copies of M and go through them similarly to Fig. 3. Consider a derivation
of w in G. Then, in greater detail, this derivation is of the form

S => [go^o. 9i> • - • [^„-iaro. 9i„]
=> £o [<??, 0, qt} 4 [<?}, 1, qi,]... x£ fa?, n, qin]
=» i g ® i [9 §) 0 I g t] x 5 x i [^ , l I 9 i l] . . . x 5 s y [9 J > n 1 f t n] (1)

xgx? ...x°k[qt, 0, qt]xox\... x ^ , 1, q^].... x£x? . . . x£fain, n, ft J
^ „0„0 0„1 1 1 -V.™ =?• XQXJ . . . X^XqXJ . . . Xfc . . . X g • • • Xk

and r0.q0x% •-» n.qtxl0 -» q\, r2.qirxl q\,..., r„.g in_,xft - » £ S, (r0 ,r i) ,
(ri,r2),..., (r n _ ! , r n) £ R, and qin £ F.

Thus, the list of rules used in the acceptance of w in M is

M = (90®8 —' 9i)(9?®? «§)--• 9t)
(qtx0 - » ^ H g j z } ->q2)--- (<?M -»•?»J

9i)(9i®i 9a) • • • (9*®fc (2)

- q?)(q?x? - 92) • • • (« - <?iJ-

Now, we prove C(M) C £(G). Informally, the acceptance is divided into n + 1
parts of the same length. Grammar G generates the ith part by the ith component
and records the state from which the next component starts.

Self-Regulating Finite A utomata 143

Let /j. be a list of rules used in an acceptance of w in M of the form (2), where
w = XoX? . . . x°xlx\.. .xl... XqXi Then, the derivation of the form (1)
is the corresponding.derivation of w in G since [<?j,i,p] —» x1j[qtJ+l,i,p] e P and
[q, i, 9] —» £, for all 0 < i < n, 1 < j < k.

Hence, Lemma 8 holds. •

The first main result of this paper follows next.

Theorem 9. For all n > 0, Wn - Rn+i-

Proof. This proof follows from Lemma 7 and 8. •

Corollary 10. The following statements hold true.

1. REG = W0 C Wi C W2 C • • • C CS.

2. W\ C CF.
3. W2 % CF.
4. CF g Wn for any n> 0.
5. For all n > 0, Wn is closed under union, finite substitution, homomorphism,

intersection with a regular language, and right quotient with a regular lan-
guage.

6. For all n > 1, Wn is not closed under intersection and complement.

Proof. Recall the following statements proved in [21]:

, • REG = R1CR2CR3C- -CCS.
• R2 C CF.
• CF % Rn, n > 1.
• For all n > 1, Rn is closed under union, finite substitution, homomorphism,

intersection with a regular language, and right quotient with a regular lan-
guage.

• For all n > 2, Rn is not closed under intersection and complement.

These statements and Theorem 9 imply statements 1, 2, 4, 5, 6 of Corollary 10.
Moreover, observe that {anbnc2n : n > 0} e W2 — CF, which proves 3. •

Theorem 11. For all n> I, Wn is not closed under inverse homomorphism.

Proof. For n = 1, let L = {akbk : k > 1}, and let the homomorphism
h : {a, b, c}* —• {a, b}* be defined as h{a) = a, h(b) = b, and h(c) = e. Then,
L e W i , but

L' = h~\L) n c*a*b* = {c*akbk :k>\}$.Wx.

Assume that L' is in W\. Then, by Theorem 9, there is a 2-PRLG G =
{NUN2,T,S,P) such that C(G) = L'. Let k > |P| • max{|to| : X — wY e P}.
Consider a derivation of ckakbk € L'. The second component can generate only

144 Alexander Meduna and Tomás Masopust

finitely many as; otherwise, it derives {akbn : k < n}, which is not regular. Anal-
ogously, the first component generates only finitely many bs. Therefore, the first
component generates any number of as, and the second component generates any
number of bs. Moreover, there is a derivation of the form X =>m X, for some
X G N2, and m > 1, used in the derivation in the second component. In the first
component, there is a derivation A a3A, for some A G N\, and s,l > 1. Then,
we can modify the derivation of ckakbk so that in the first component, we repeat
the cycle A =>' a3A (m + l)-times, and in the second component, we repeat the
cycle X =>m X (I + l)-times. The derivations of both components have the same
length—the added cycles are of length ml, and the rest is of the same length, as in
the derivation of ckakbk. Therefore, we have derived ckarbk, where r > k, which is
not in L'—a contradiction.

For n > 1, the proof is analogous and left to the reader. •

Corollary 12. For all n > 1, Wn is not closed under concatenation. Therefore, it
is not closed under Kleene closure either.

Proof. For n — 1, let Li = {c}* and L2 = {akbk : k > 1}. Then, LiL2 = {c*akbk :
k > 1}. Analogously, prove this corollary for n > 1. •

4.2 n-Turn All-Move Self-Regulating Finite Automata
This section discusses n-turn all-move self-regulating finite automata. It proves
that the family of languages accepted by n-all-SFAs coincides with the family of
languages generated by n-RLSMGs.

Lemma 13. For every n-RLSMG, G = (N\,..., Nn, T, S, P), there is an equivalent
n-RLSMG, G', that satisfies:

1. if [iS —> X\... Xn], then Xi does not occur on the right-hand side of any rule,
1 < i < n;

2. if [S a], [S -* /3} G P and a ± (3,- then alph(a) n alph(P) = 0;
3. for any two matrices m\,m2 G P, if m\[i) = mj[i], for some 1 < i < n, then

mi = m2.

Proof. The first two conditions can be proved analogously to Lemma 6. Suppose
that there axe matrices m and m' such that m[i] = m'[i], for some 1 < i < n.
Let m = [Xi -> xi,...,Xn -* zn] , m! = [Yi yi,...,Yn yn). Replace
these matrices with matrices mi = [Xi —• X[,..., Xn —* X^], m2 = [X{ —>
xi,...,X'n - » ! „] , and mi = [yx - Y{',..,,Yn -» y^'], m'2 = - yu ..., Y^
yn], where X[, Y" are new nonterminals for all i. These new matrices satisfy
condition 3. Repeat this replacement until the resulting grammar satisfies the
properties of G' given in this lemma. •

Lemma 14. Let G be an n-RLSMG. There is an (n - 1)-all-SFA, M, such that
C(G)=C(M).

Self-Regulating Finite A utomata 145

Proof. Without loss of generality, we assume that G = (N\,..., Nn,T, S, P)
is in the form described in Lemma 13. We construct (n — l)-all-SFA M =
{Q,T, 6,qo,qt, F, R), where Q = {q0,..., qn} U N, N = U • • • U Nn,
{9o,9i, • • • ,9n} C\ N — 0, F = {(?„}, S = {qi - Xi+1 : [S Xl...Xn] € P, 0 <
i < n} U {XiWi — Yi : [Xi — WlYu..., Xn — w n y n] € P, 1 < » < n} U {XiWi —

: [Xi wi,..., Xn —> ion] G P, Wi G T*, 1 < i < n} , qt = <ji, ^ = J with the
identity map, and R = {(<?i —> X i + i , —• Xi+2) : [5 —> X\... X n] G P, 0 < i <
n - 2} U {(XiWi — Yu Xi+lwi+l - » y i + 1) : [Xi —ti>iYi,. ..,Xn-> wnYn] G P, 1 <
i < n} U {(XiXWi —• qi, Xi+iwi+1 -> 9 i + i) : [Xi wu..., Xn -» wn] G P, G
T*,l<i< n}.

We next prove C(G) = C(M). The proof of C{G) C C(M) is very similar to the
proof of the same inclusion of Lemma 7, so it is left to the reader.

To prove C(M) C C(G), consider w G £ (M) and an acceptance of w in M.
As in Lemma 7, the derivation looks like the one depicted on the right-hand side
of Fig. 3. Next, we generate w in G as follows. By Lemma 13, there is matrix
[S — X i X f - . - X i 1] in P. Moreover, if X)x) Xlj+1, 1 < i < n, then (X j
xiXj+1,X}+1 - » x}+ 1X)X\) G R, for 1 < i < n, 1 < j < k. We apply [Xj -
x}X]+1,...,XV- _> x?X?+1] from P. If Xlx\ -> qit 1 < i < n, then - »
4> x k + l 4 + 1) S ii, for 1 < i < n, and we apply [Jfjj x £ , . . . , X £ — arJJ] G P.
Thus, w G £(G).

Hence, Lemma 14 holds. •

Lemma 15. Let M be an n-all-SFA. There is an (n + 1)-RLSMG, G, such that
C(G) = £(M).

Proof. Let M = (Q,Y,,6,q0,qt,F,R). Consider G = (¿V0 , . . . , Nn, 5, P) , where
Ni = (QE' x Q x { i } x Q) U (Q x {¿} xQ),l= m a x { H : qw -» p G <5}, 0 < i < n,
and

P = { [5 [q0x0,q°, O.^Kitari,«1,!, qh\ • • •[<lin-1xn,qn, n , ^]] :
ro-qoxo -> 90,ri.Qta;i -» g 1 , . . . ,rn .g i n_,x„. qn € 5,

71— 1J ' 71)GP,<? i n G F } U
{[bo^o,9o,0,ro] —> xo[9o,0,ro],.. . , [p „x „ ,g n ,n , r n] - » x„[gn ,n,rn]]}U
{[[9o,0,9o] - » e , . . . , [? „ ,n ,g„] e] : q{ G Q, 0 < i < n}U
{[[9o,0,po] wo[q'o,0,Po], • • • ,[qn,n,pn] wn[q'n,n,pn}} : rj.qjWj -> gj G
(5, 0 < j < n, (ri,ri+1) G R, 0 < i < n} .

Next, we prove C(G) = C(M). To prove C(G) C C(M), consider a derivation
of w in G. Then, the derivation is of the form (1) and there are rules 7'0.(J0Xq —>
9?,n-9tz0 9i, • • •,rn-9t„_ 1^0 9" in <5 such that (r0 ,r i) , . . . , (r „ _ i , r „) G R.
Moreover, (r j , G R, where r^.q^Xj —» qlj+1 G 5, and (r^r1^1) G R, where
A-^Wk Qi, G S, 0 < I < n, 1 < j < k, qio denotes qt, and qin G F. Thus, M
accepts w with the list of rules ¡1 of the form (2).

To prove C(M) C C(G), let n be a list of rules used in an acceptance of

W = XqXi . . . X®XQX\ . . . x\ . . . Xq x " . . . xjj

146 Alexander Meduna and Tomás Masopust

in M of the form (2). Then, the derivation is of the form (1) because

[[<#,0,9t] -» z°[<z°+1>0,<Zt], • • •, - x^ + l,n,q i n}} 6 P,

for all q) G Q, 1 < i < n, 1 < j < k, and [[qt, 0, qt] ->£,..., [qin, n, qin] e] G P.
Hence, Lemma 15 holds. •

The second main result of this paper follows next.

Theorem 16. For all n > 0, Sn = #[n+i]-

Proof. This proof follows from Lemma 14 and 15. •

Corollary 17. The following statements hold:

1. REG = So C Si C S2 C • • • C-CS.

2. Si %CF.

. 3. CF % Sn, for every n > 0.
4- For all n > 0, Sn is closed under union, concatenation, finite substitution,

homomorphism, intersection with a regular language, and right quotient with
a regular language.

5. For all n > 1, Sn is not closed under intersection, complement, and Kleene
closure.

Proof. Recall the following statements proved in [28]:

• REG = i fy] C R[2] C % C • • • C CS.

• For all n > 1, P[n] is closed under union, finite substitution, homomorphism,
intersection with a regular language, and right quotient with a regular lan-
guage.

• For all n > 2, R[n] is not closed under intersection and complement.

Furthermore, recall these statements proved in [23] and [24]:

• For all n > 1, P[n] is closed under concatenation.
• For all n > 2, i?[n] is not closed under Kleene closure.

These statements and Theorem 16 imply statements 1, 4, and 5 of Corollary 17.
Moreover, observe that {ww : w G {a, 6}*} G Si — CF (see Example 3), which
proves 2. Finally, let L = {wcwR : w G {a,6}*} . In [4, Theorem 1.5.2], there is a
proof that L # R[n], for any n > 1. Thus, 3 follows from Theorem 16. •

Theorem 18, given next, follows from Theorem 16 and from Corollary 3.3.3
in [24]. However, Corollary 3.3.3 in [24] is not proved effectively. We next prove
Theorem 18 effectively. • •

Theorem 18. Sn is closed under inverse homomorphism, for all n > 0.

Self-Regulating Finite A utomata 147

Proof. For n = 1, let M = (Q, £, S, q0, ft, F, R) be a 1-all-SFA, and let h : A* - » E*
be a homomorphism. Next, we construct 1-all-SFA M' = (Q', A , 5', q'0, q't, {q'f}, R')
accepting h~1(C(M)) as follows. Denote k = max{|tu| : qw —> p £ <5} + max{|/i(a)| :
a £ A } . Let Q' = q'0 U {[x,<7,?/] : x,y £ £*, |y| < k, q £ Q}. Initially, set 5' and
R' to 0. Then, extend 5' and R' by performing 1 through 5:

1. For y £ £*, \y\ < k, add
Wo [e,qo,y],q't [y,qt,e]) to R'-,

2. For A £ Q', q ^ qt, add
(\x,q,y]a -» [xh(a),q,y],A —> A) to R';

3. For A € Q', add
(A —> A, [x,?, e]o —• [x/i(a), g,e]) to ii ' ;

4. For (qx —» p, g V —> p') S ii, q ^ ft, add
([iiy,9,'2/] -> [iD,p,ji] ,(xV,g',£] [u;',p',£]) to R';

5. For € .F, add
q't, [e,qj,e] 9/) to

In essence, M ' simulates M in the following way. In a state of the form [x, q, y],
the three components have the following meaning:

• x = h(a\... an), where a i . . . an is the input string that M' has already read;

• q is the current state of M ;

• y is the suffix remaining as the first component of the state that M' enters
during a turn; y is thus obtained when M' reads the last symbol right before
the turn occurs in M\ M reads y after the turn.

More precisely, h(w) = wiyw2, where w is an input string, w\ is accepted by M
before making the turn, i.e. from qo to ft, and yw2 is accepted by M after making
the turn, i.e. from ft to qj £ F. A rigorous version of this proof is left to the
reader.

For n > 1, the proof is analogous and left to the reader. •

4.3 Language Families Accepted by n-first-SFAs and n-all-
SFAs

In this section, we compare the family of languages accepted by n-first-SFAs with
the family of languages accepted by n-all-SFAs.

Theorem 19. For all n > 1, W„ C Sn-

Proof In [21] and [28], it is proved that for all n > 1, Rn C ii[„]. The proof of
Theorem 19 thus follows from Theorem 9 and 16. •

Theorem 20. Wn % 5 „_ 1, n > 1.

148 Alexander Meduna and Tomás Masopust

Proof. It is easy to see that L = {a^a^ • • : fc > 1} E Wn = Rn+i- However,
L Sn-i = R{n) (see Lemma 1.5.6 in [4]). •

Lemma 21. For each regular language, L, language {wn : w 6 L} € Sn-i-

Proof. Let L = C(M), where M is a finite automaton. Make n copies of M.
Rename their states so all the sets of states are pairwise disjoint. In this way,
also rename the states in the rules of each of these n automata; however, keep the
labels of the rules unchanged. For each rule label r, include (r, r) into R. As a
result, we obtain an n-turn all-move self-regulating finite automaton that accepts
{wn : w £ L}. A rigorous version of this proof is left to the reader. •

Theorem 22. Sn - W ± 0, for all n> 1, where W = U ~ = 1 Wm.

Proof. By induction on n > 1, we prove that language L = {(cu>)n+1 : w €
{a, 6}*} ^ W. From Lemma 21, L £ Sn.

Basis: For n = 1, let G be an m-PRLG generating L, for some positive integer
m. Consider a sufficiently large string cw\cu>2 £ L such that w\ = = anibn2,
n2 > ni > 1 . Then, there is a derivation of the form

S =>p

X\Aix2A2 .. =>k x i y i A i x 2 y 2 A 2 . . (3)

in G, where cycle (3) generates more than one a in wi. The derivation continues
as

x i j / iA i . . • ^ml/mAm
• ^m Vm ¿m ̂ m xiyiZiUiBi.. (4)

(cycle (4) generates no as) =>3 cw\cw2.

Next, modify the left derivation, the derivation in components generating cw\, so
that the a-generating cycle (3) is repeated (I + l)-times. Similarly, modify the right
derivation, the derivation in the other components, so that the no-a-generating
cycle (4) is repeated (k + l)-times. Thus, the modified left derivation is of length
p + k(l + I) + r +1 + s — p + k + r + l(k +1) + s, which is the length of the modified
right derivation. Moreover, the modified left derivation generates more as in wi
than the right derivation in w2—a contradiction.

Induction step: Suppose that the theorem holds for all n < k, for some fc > 1.
Consider n + 1 and let {(cto)n + 1 : w £ {a, b}*} € Wi, for some I > 1. As W; is closed
under the right quotient with a regular language, and language {cw : w £ {a, 6}*}
is regular, we obtain {(cu>)n : w £ {a, 6}*} £ Wi C W—a contradiction. •

Fig. 4 summarizes the language families discussed in this paper.

Self-Regulating Finite A utomata 149

Figure 4: The hierarchy of languages.

5 Conclusion and Discussion
This paper has discussed self-regulating finite automata. As demonstrated next,
we can analogically introduce and discuss self-regulating pushdown automata.

Recall that a pushdown automaton (see [15]), M, is a septuple M = (Q, E, T, 5,
qo,Zo,F), where Q, E, f/o 6 Q, F are as in a finite automaton, T is a finite
pushdown alphabet, 6 is a finite set of rules of the form Zqw —» 7p, q,p £ Q,
Z £ T, w £ E*, 7 £ r*, and ZQ is an initial pushdown symbol. Again, let ip denote
the bijection from 5 to and write r.Zqw —> 7p instead of ip(Zqw —> 7p) = r.
A configuration of M is any word from T*QE*. For any configuration xAqwy,
where x £ T*, y £ £*, q £ Q, and any r.Aqw —> jp £ 6, M makes a move from
xAqwy to 17py according to r, written as xAqwy =S> xjpy [r]. As usual, we define
closure =>•*. If w £ E* and Zoqow =>* / [/i], f £ F, then w is accepted by M
and Z0qow =>* / [/x] is an acceptance of w in M. The language of M is defined as
£ (M) = {u; £ E* : Zoqow f [fx] is an acceptance of w}.

Definition 23. A self-regulating pushdown automaton, SPDA, M, is a nonuple

M = {Q,E,r,5,qo,qt,Zo,F,R),

where

1. (Q, E,r,<5, qo,Za,F) is a pushdown automaton,

2. qt £ Q is a turn state, and

3. R C <]> x $ is a finite relation, where ^ is an alphabet of rule labels.

150 Alexander Meduna and Tomás Masopust

Definition 24. Let n > 0 and M = (Q, E, T, <5, qo, qt, ZQ, F, R) 6e a self-regulating
pushdown automaton. M is said to be an n-turn first-move self-regulating push-
down automaton, n-first-SPDA, if M accepts w in the following way. There is an
acceptance Zoqow / [/i] such that

¡i = r? .. .r°kr{.. .rl.. .r? .. ,r£,

where k £ N, rk is the first rule of the form Zqx —> 7qt, for some Z € T, q £ Q,
x £ £*, 7 £ T*, and

(ri,r{+1)£R

for all O < j < n.
The family of languages accepted by n-first-SPDAs is denoted by C(n-first-

SPDA).

Definition 25. Let n > 0 and M = (Q, T,,r,5,qo,qt,Zo,F, R) be a self-regulating
pushdown automaton. M is said to be an n-turn all-move self-regulating push-
down automaton, n-all-SPDA, if M accepts w in the following way. There is an
acceptance Zoqow =>* / [p.] such that

p = r01...r°krl,:r1k...r?...rnk,

where k £ N, rk is the first rule of the form Zqx —> 7qt, for some Z £ T, q £ Q,
x £ E*, 7 € r*, and

(r j , r i + 1 y & R

for all 1 < i < k, 0 < j < n.
The family of languages accepted by n-all-SPDAs is denoted by C(n-all-SPDA).

5.1 n-Turn All-Move Self-Regulating Pushdown Automata

It is easy, to see that an n-turn all-move self-regulating pushdown automaton with-
out any turn state is exactly a common pushdown automaton. Therefore, £(0-all-
SPDA) = CF. Moreover, if we consider 1-turn all-move self-regulating pushdown
automata, their power is that of the Turing machines.

Theorem 26. £(1 -all-SPDA) = RE.

Proof. For any L € RE, L C A*, there are context-free languages C(G) and C(H)
and a homomorphism h : £* —> A* such that L = h(C(G) fl C(H)) (see Theorem
1.12 in [14]). Suppose that G = {NG, E, PG, SG), H = (NH,E,PH,SH) are in the
Greibach normal form, i.e. all rules are of the form A —> aa, where A is a nonter-
minal, a is a terminal, and a is a (possibly empty) string of nonterminals. Let us
construct 1-all-SPDA M = ({<70, q, QuP, / } , A, EU JVG U NH U {Zj, S,q0, Z, {/}, R),
Z E U NG U NH, with R made as follows:

1. add (Zqo —» ZSGq, Zqt —> ZSHP) to R

Self-Regulating Finite A utomata 151

2. add (Aq -> Bn... B\aq, Cp —> Dm ... D\ap) to R if
A —» aBi ...BnePG and
C -» aDi... Dm g Ptf

3. add (aqh(a) —» q,ap —» p) to i i
4. add (Zg Zg t) Zp f) to R

Moreover, 5 contains only the rules from the definition of i?.
Now, we prove w g / i (£(G) D £ (#)) if and only if w € C(M).

Only if Part: Let w g h(C(G) fl C(H)). There are a\,a2,... ,an g E such that
a\a2 • • .an g C(G) n C(H) and w = h(aia2...an), for some n > 0. There are
leftmost derivations SG axa2 .. .an and SH =$>n a\a2.. ,an of length n in G
and H, respectively, because in every derivation step exactly one terminal element
is derived. Thus, M accepts h(a\)... h(an) as

Zq0h(ai)... h(an) => ZSGqh(ai)... h(an),..., Zanqh(an) => Zq, Zq Zqt,

Zqt ZSHP,---, Zanp Zp, Zp /.

In state q, by using its pushdown, M simulates G's derivation of a\... an but reads
h(ai)... h(an) as the input. In p, M simulates H's derivation of aia2... an but
reads no input. As a\a2 ... an can be derived in both G and H by making the same
number of steps, the automaton can successfully complete the acceptance of w.

If Part: Notice that in one step, M can read only h(a) g A*, for some a g E.
Let w g £ (M) , then w = h(ai)... h(an), for some a\,...,an € E. Consider M's
acceptance of w

Zq0h(ai)... h(an) ZSGqh{a\)... h(an),..., Zanqh(an) Zq, Zq =*> Zqt,

Zqt => ZSHP, •••, Zanp => Zp, Zp => /.

As stated above, in q, M simulates G's derivation of a\a2 ... an, and then in p, M
simulates H's derivation of a\a2 .. ,an. It successfully completes the acceptance of
w only if axa2... an can be derived in both G and H. Hence, the if part holds,
too. •

5.2 Open Problems
Although the fundamental results about self-regulating automata have been
achieved in this paper, there still remain several open problems concerning them.
Perhaps most importantly, these open problem areas include 1 through 3 given
next:

1. What is the language family accepted by n-turn first-move self-regulating
pushdown automata, when n > 1 (see Definition 24)?

2. By analogy with the standard deterministic finite and pushdown automata
(see page 145 and page 437 in [15]), introduce the deterministic versions of
self-regulating automata. What is their power?

152 Alexander Meduna and Tomás Masopust

3. Discuss the closure properties of other language operations, such as the re-
versal.

Acknowledgements
The authors would like to thank both anonymous referees for their sugges-
tions. This work was supported by the GACR 201/07/0005, 102/05/H050, and
FR762/2007/G1 grants.

References
[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Com-

piling, Volume I: Parsing. Prentice Hall, Englewood Cliffs, New Jersey, 1972.

[2] J. M. Autebert, J. Berstel, and L. Boasson. Context-free languages and push-
down automata. In G. Rozenberg and A. Salomaa, editors, Handbook of For-
mal Languages, volume 1, Word Language Grammar, pages 111-174. Springer-
Verlag, Berlin, 1997.

[3] B. Courcelle. On jump deterministic pushdown automata. Math. Systems
Theory, 11:87-109, 1977.

[4] J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

[5] P. C. Fischer and A. L. Rosenberg. Multitape one-way nonwriting automata.
J. Comput. System Sci., 2:38-101, 1968.

[6] S. Ginsburg, S. A. Greibach, and M. A. Harrison. One-way stack automata.
J. ACM, 14:389-418, 1967.

[7] S. Ginsburg and E. Spanier. Finite-turn pushdown automata. SIAM J. Con-
trol, 4:429-453, 1968.

[8] S. A. Greibach. Checking automata and one-way stack languages. J. Comput.
System Sci., 3:196-217, 1969.

[9] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley,
Reading, Massachusetts, 1978.

[10] O. H. Ibarra. Simple matrix languages. Inform, and Control, 17:359-394,1970.

[11] M. Ito. Algebraic Theory of Automata and Languages. World Scientific, Sin-
gapore, 2004.

[12] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, 1981.

Self-Regulating Finite A utomata 153

[13] J. C. Martin. Introduction to Languages and the Theory of Computation.
McGraw-Hill, New York, 1991.

[14] A. Mateescu and A. Salomaa. Aspects of classical language theory. In
G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, volume
1, Word Language Grammar, pages 175-251. Springer-Verlag, Berlin, 1997.

[15] A. Meduna. Automata and Languages: Theory and Applications. Springer,
London,2000.

[16] A. Meduna. Simultaneously one-turn two-pushdown automata. Int. J. Comp.
Math., 80:679-687, 2003.

[17] A. Meduna and D. Kolar. Regulated pushdown automata. Acta Cybernet.,
14:653-664, 2000.

[18] A. Meduna and D. Kolar. One-turn regulated pushdown automata and their
reduction. Fund. Inform.., 51:399-405, 2002.

[19] G. E. Revesz. Introduction to Formal Languages. McGraw-Hill, New York,
1983.

[20] R. D. Rosebrugh and D. Wood. A characterization theorem for n-parallel right
linear languages. J. Comput. System Sci, 7:579-582, 1973.

[21] R. D. Rosebrugh and D. Wood. Restricted parallelism and right linear gram-
mars. Util. Math., 7:151-186, 1975.

[22] J. Sakarovitch. Pushdown automata with terminating languages. Languages
and Automata Symposium, RIMS 421, Kyoto University, pages 15-29, 1981.

[23] R. Siromoney. Studies in the Mathematical Theory of Grammars and its Ap-
plications. PhD thesis, University of Madras, Madras, India, 1969.

[24] R. Siromoney. Finite-turn checking automata. J. Comput. System Sci., 5:549-
559, 1971.

[25] T. A. Sudkamp. Languages and Machines. Addison-Wesley, Reading, Mas-
sachusetts, 1988.

[26] L. Valiant. The equivalence problem for deterministic finite turn pushdown
automata. Inform, and Control, 81:265-279, 1989.

[27] D. Wood. Properties of n-parallel finite state languages. Technical report,
McMaster University, 1973.

[28] D. Wood, m-parallel n-right linear simple matrix languages. Util. Math.,
8:3-28, 1975.

Received June, 2006

Acta Cybernetica 18 (2007) 117-134.

Automata with Finite Congruence Lattices*

István Babcsányi*

To the memory of Balázs Imreh

Abstract

In this paper we prove that if the congruence lattice of an automaton A is
finite then the endomorphism semigroup E(A) of A is finite. Moreover, if A is
commutative then A is A-finite. We prove that if 3 < |/1| then a commutative
automaton A is simple if and only if it is a cyclic permutation automaton of
prime order. We also give some results concerning cyclic, strongly connected
and strongly trap-connected automata.

1 Preliminaries
In this paper, by an automaton A = (A, X, S) we mean always an automaton
without outputs, where A ^ 0 is the state set and X ^ 0 is the input set. Denote
|A| the cardinality of the set A. The automaton A is called A-finite if |A| < oo.
If |A| = n then we say that n is the order of A and if n is a prime then A is
an automaton of prime order. The input monoid [semigroup] X* [X +] of A is
the free monoid [semigroup] over X. The transition function S : A x X —> A can
be extended in the usual way. If e e X* is the empty word then let ő(a, e) = a
for every a S A; if a e A, p € X* and x e X then let 6(a,px) = 5(S(a,p),x).
Sometimes, we shall use the notation ap instead of 5(a,p).

As known, every automaton can be considered as a unary algebra. Thus the
notions such as subautomaton, congruence, homomomorphism, isomorphism etc.
can be introduced in the following natural way.

An equivalence relation p of state set A of the automaton A is called a congru-
ence on A if

(a, h) € p =£> (ax, bx) e p,

for all a, b e A and x £ X. The p-class of A containing the state a is denoted
by p\a]. Denote C(A) the congruence lattice of A. Let LA [wa] be the equality
[universal] relation on A. The automaton A is called simple if C(A) = {LA,VA}-
It is evident that if |A| < 2 then A is simple.

'Research supported by the Hungarian NFSR grant No 67639.
t Department of Algebra, Mathematical Institute, Budapest University of Technology and Eco-

nomics, 1111 Budapest, Egry József u. 1, Hungary. E-mail: babcs8math.bme.hu

155

156 István Babcsányi

The automaton A' = (A' ,X,S') is a subautomaton of the automaton A =
(A, X, (5) if A' C A and 5' is the restriction of 5 to A' x X. The congruence

PA• = {(a, b) e A2; a - 6 or a, b £ A'}

is called the Rees congruence of A induced by A' ([2]). The set R(A) of Rees
congruences of A is a sublattice of G(A). It is called the Rees congruence lattice
of A.

Let A = (A,X,S) and B = (B,X,S') be arbitrary automata. We say that a
mapping ip : A —* B is a homomorphism of A into B if

(p(ax) = <p(a)x,

for all a € A and x € X. The kernel of <p is the congruence Ker <p defined by
(a, b) G Ker</? if and only if ip(a) '= ip(b) (a,b € A). If A = B then tp is an
endomorphism of A. Furthermore, if <p is bijective then it is an automorphism of
A. The set E(A) [G(A)] of all endomorphisms [automorphisms] of A is a monoid
[group] under the usual multiplication of mappings. E(A) [G(A)j is called the
endomorphism semigroup [automorphism group] of A.

For notations and notions not defined here we refer to the books P.M. Cohn [5],
F. Gecseg [7], F. Gecseg, F. and I. Peak [8], K.H. Kim and F.W. Roush [10] and
G. Lallement [11].

2 Automata with finite congruence lattices
Let B be a nonempty subset of the state set A of an automaton A = (A,X:S).
Denote [B] = 5') the subautomaton of A generated by B, that is, [B] =
{bp; b e B,p e X* } . Specially, denote [a] = ([a], X, 5') the subautomaton generated
by a S A. If A = [£?] then B is called a generating set of A. If there exists a finite
generating set of A then we say that A is finitely generated. Specially, if there exists
a generating set containing only one element a then A is called a cyclic automaton
and we say that a is a generating element of A.

Lemma 1. If the congruence-lattice of an automaton A is finite then A has finitely
many subautomata and the congruence lattices of its subautomata are also finite.

Proof. Assume that the congruence lattice C(A) of the automaton A = (A, X, S)
is finite. Thus the Rees congruence lattice R(A) is finite. From this it follows that
A has finitely many subautomata.

If A' = (A', X, 5') is a subautomaton of A and p £ G(A') then p U LA G C(A).
Furthermore, if p, p' e C(A') and p ^ p' then p U IA ^ p' U IA- Thus G(A ') is also
finite. •

Corollary 2. If the congruence lattice of an automaton is finite then the automaton
is finitely generated.

Automata with Finite Congruence Lattices 157

Proof. If the congruence lattice of an automaton is finite then by Lemma 1, the
number of its subautomata and thus the number of its cyclic subautomata is finite.
Therefore, the automaton is finitely generated. •

S. Radeleczki has prowed in [15] that if the congruence lattice of a unary algebra
is finite then its automorphism group is finite, too. The following theorem is a
generalization of this result.

Theorem 3. If the congruence lattice C(A) of an automaton A = (A, X, á) is
finite then the endomorphism semigroup E(A) is finite.

Proof. First, we show that the automorphism group G(A) is finite. Assume that
the order of a € G(A) is infinite. For every positive integer m, we define the binary
relation pam on A, as follows. For a,b £ A, (a, b) € pQm if and only if there is an
element c of A and there are integers i,k, I such that 0 < i < m — 1 and

a = akm+i(c), b — alm+i(c).

It can be easily verified that pam is a congruence of A. Furthermore, if m ± n
then pam Pan in a contradiction with our assumption that the congruence lattice
C(A) is finite. Thus the order of every a £ G(A) is finite.

Let r be the order of a £ G(A). Take the binary relation pa on A for which
(a, b) £ pa if and only if there are c £ A and integers 0 < i, j < r — 1 such that

a — al(c), b = cc'(c).

For every a £ G(A), the relation pa is a congruence of A. Assume that

pa =Pf), 0 £ G{A).

By Corollary 2, the automaton A is finitely generated. If {ci, c 2 , . . . , ck} is a finite
generating set of A then

Pp[c\] = poc[C\], pp[c2} = Pa [C2], • • -,pp[ck] = Pa [Cfc],

that is,
0(d) = a i l (c i) , 0(c2) = a i 2 (c 2) , . . ,,0(ck) = aik(ck)

(0 < ¿i, ¿2, . . . , ife < r — 1). This means that /3 = a l j on [Cj} (j = 1 ,2 , . . . , k). From
this it follows that the number of such /3 is finite for arbitrary a € G(A). Since
C(A) is finite, the number of different pa's is finite. From these results it follows
that G(A) is finite.

Now we show that the endomorphism semigroup E(A) is also finite. If a £ E(A)
then Aa = (a(A), X, <5') is a subautomaton of A, where a(A) = {a(a); a £ A}. Let
/3 G E(A) such that

Ker 0 = Ker a and 0(A) = a(A).

158 István Babcsányi

Define the mapping tp0^ : a(A) —> ß(A) such that

<pa,0{a(a)) =ß{a)

for every a £ A. This means that

faßCt = ß.

Since Ker/? = Ker a, ipa,p is a bijective mapping. If a £ A and x e X then

ipaß(a{a)x) = ipa£a(ax) - ß(ax) = ß(a)x — (pa,p(a(a))x,

that is, <ßa,ß £ G(Aa). By Lemma 1, C(Aa) is finite and thus, by the first part of
this proof, G(Aa) is finite. Furthermore, if

Kerß = Kerß' = Kera. ß(A) = ß'(A) = a(A) .

and
'Paß = 'Paß',

then ß — ß'. Thus, for arbitrary a £ E(A), the number of ß G E(A) such that
Kerß = Ker a and ß(A) = a(A) is finite. Since the number of different Ker a's and
different ß(A)'s (a,ß G E(A)) is finite, E(A) is also finite. •

For every a G A, consider the binary relation PA,A on X* defined as

(P,Q) G PA.a AP = aq {p,q G X*).

It is clear that pA,a (a £ A) is a right congruence on X*. The relation
PA = R>A€APA,A is congruence on X*. The characteristic semigroup 5 (A) of the
automaton A is the factor semigroup X*/pA.

R.H. Oehmke has shown in [13] the first part of the following lemma, that is,
for arbitrary cyclic automaton A = (A, X, 6), |-E(A)| < We have shown in our
paper [1] that \A\ < |S(A)|.

Lemma 4. For every cyclic automaton A = (A,X,S),

|£(A)| < \A\ < |S(A)|.

Proof. If ao is a generating element of A and a(ao) = /3(a0) (a,ß £ E(A)) then,
for every p £ X*,

a(aop) = a(a0)p = ß{ao)p = ß(aop),

that is, a = ß. Thus the mapping ip : E(A) -+ A such that <p(a) = a(ao), for every
a £ E(A), is an injective mapping of E(A) into A. This means that |i?(A)| <

If aop ^ a0q (P,q £ X*) then pA\p\ £ PA[Q}- From this it follows that |A| <
|S(A)|. •
Lemma 5. If the relation pA,a0 is a congruence on X*, for a generating element
ao of a cyclic automaton A = (A, X, S), then E(A) = S(A) and |£(A)| = |A|.

Automata with Finite Congruence Lattices 159

Proof. If the relation PA,a0 is a congruence on X* then PA.A0 = PA- Define the
mapping ap : A —* A, for every p G X*, such that

ap(a0q) = a0pq (q G X*).

It can easily be shown that ap G E(A). Furthermore, if a G E(A) and a(oo) = aor
(r G X*) then a — ar. The mapping tp : E(A) —» 5 (A) such that

V(<*p) = PA\P) (V G X*)

is an isomorphism of E(A) onto 5 (A) . By Lemma, |i?(A)| = |A|. •

From Theorem 3, Lemma 4 and Lemma 5, we get the following corollary.

Corollary 6. Let the congruence lattice C{A) of the cyclic automaton A =
(A, X, 5) be finite. If the relation pA,a0 is a congruence on X*, for a generating
element ao, then A is A-finite.

The automaton A is commutative if apq = aqp for every a G A and p,q G
X*. It is immediate that every subautomaton of a commutative automaton is also
commutative. I. Peak proved in [14] that E(A) = 5 (A) and |£(A)| = |A| for
arbitrary cyclic commutative automaton A . (See also F. Gecseg and I. Peak [8], Z.
Esik and B. Imreh [6].) The statement of Lemma 5 is a generalization of this result.
A.P. Grillet showed in [9] that if the congruence lattice of a commutative semigroup
5 is finite then 5 is finite. The following theorem generalizes this statement for
commutative automata.

Theorem 7. If the congruence lattice C(A) of a commutative automaton A =
(A,X, 5) is finite then the automaton A is A-finite.

Proof. By Corollary 2, A is finitely generated. Then, it is a union of commutative
cyclic subautomata Ai = (A,, X, ¿¿) (¿ = 1 ,2 , . . . , n). But, if ai G A, is a generating
element of A i then PAI,at is a congruence on X*, since A j (i = 1,2, . . . , n) is
commutative. By Corollary 6, A , (i = 1,2,... ,n) is A-finite and thus A is also
finite. •

3 Simple automata
We discussed in our papers [3] and [4] the simple Mealy and Moore automata. In
this paper we investigate the simplicity of the automata A = (A,X,8) without
outputs. In this case C(A) = {la,^a}-

Let H ^ 0 be a subset of the state set A and let Hp = {ap; a G H} for every
p e X*. Define the binary relation Th on A as follows.

(a, b) G TH if and only if (ap G H bp G H)

for every p G X*. TH is a congruence of A and H is a union of certain TH-
congruence classes. The state a G A is called disjunctive, if T{0} = LA-

160 István Babcsányi

The set H is called a separator of A if, for every p £ X*,

HpCH or HpC\H = %.

The one-element subsets of A and itself A are separators of A. We say that these
separators are the trivial separators.

Lemma 8. The automaton A = (A, X, 6) is simple if and only if every separator
of A is trivial.

Proof. Assume that all separators of A are trivial. If p is a congruence of A then
every p-class is a separator of A. Therefore, p = TA or p = UJa, that is, A is a
simple automaton.

Conversely, assume that A is simple. If H is a separator of A then 77/ is a
congruence of A such that H is a r//-class. But t h = tA or 77/ = wA. Thus
|H| = 1 or H = A therefore H is a trivial separator of A. •

If every state of an automaton A = (A, X, 5) is a generating element of A then
we say that- A is strongly connected. In other words, A is strongly connected if,
for arbitrary states a,b £ A, there exists a p £ X+ such that ap = b. If [c] = { c }
then the state c £ A is called a trap of A. The automaton A is called strongly
trap-connected if it has a trap c and for every state a € A — { c } and b £ A, there
exists a p € X* such that ap — b. It is known that the automaton A is strongly
connected if and only if it has no subautomaton A' = (A',X, 8) of A such that
A! / A: Furthermore, if A strongly trap-connected then it has only one trap.

Corollary 9 (G. Thierrin [16]). Every simple automaton with at least three states
is strongly connected or strongly trap-connected.

Proof. If A' — (A', X, 5') is a subautomaton of the automaton A = (A, X, 6) then
A! is a separator of A. Thus A! = A or ¡A'l = 1. If A is not strongly connected,
then it has only one subautomaton A' = (A' ,X, <5), namely = 1. In the latter
case if A! = {c } then c is a trap of A. Hence if A is not strongly connected then it
is strongly trap-connected. •

Theorem 10. The strongly trap-connected automaton A = (A, X, 5) with at least
three states is simple if and only if the trap of A is disjunctive.

Proof. Let c £ A be the trap of A. First, we show that if p is a congruence of
A and p t̂ o>A then p[c] = {c}. Let a,b £ A be arbitrary states. Assume that
(a, c) £ p. li a ^ c then there exists a p £ X* such that ap — b. Thus

(b, c) = (ap, cp) € p.

From this it follows that p = u>a- This is impossible. Thus we get that a = c and
P[c] = {c}-

Now assume that c is disjunctive, that is, 7"{c} = IA • Let p ^ U>A be a congruence
of A. .Since p[c) = {c} , if a, b €. A — { c } and (a, b) £ p then (a,b) £ r{ c} , that is,
a = b. We get p = LA and thus A is simple.

Automata with Finite Congruence Lattices 161

Conversely, assume that A is simple. But A is strongly trap-connected au-
tomaton with at least three states, thus T{c} =/= U>A- Therefore T{cj = and so c is
disjunctive. •

4 Commutativity of simple automata
Theorem 11. If the strongly trap-connected automaton A = (A, X, 6) with at least
three states is simple then it is not commutative. Furthermore G(A) = {m} and
E(A) = {iA,ctc}, where c is the trap of A, and ac defined by ac(a) = c (a £ A).

Proof. Assume that A is commutative. Let a,b £ A — { c } and a ^ b. Since A is
strongly trap-connected, there are q, r £ X* such that aq = b and br = a. Thus,
for arbitrary p £ X*,

bp = aqp = apq and ap — brp = bpr.

Then, ap = c if and only if bp = c. Thus (a,b) £ T{c}, that is, a = b, which
contradicts the assumption. We get that A is not commutative.

It is evident that ac £ E(A). If a £ E(A) then, for every p £ X*,

a(c)p = a(cp) = a(c),

and so a(c) is a trap of A , that is a(c) = c. If a £ A — { c } and a(a) = c then, for
every p £ X*,

a(ap) = a(a)p = cp = c,

that is, a = ac. Assume that a, b £ A — { c } , a ^ b and ct(a) = a(b). If, for every
p £ X*, ap = c if and only if bp = c then (a, b) £ T{c}. By Theorem 10, a — b. This
is a contradiction. Thus there exists a q £ X* such that for instance aq = c and
bq i c. Then

a(bq) = a{b)q = ce(a)q = a(aq) = a(c) = c.

From this it follows that a = ac, thus G(A) = and E(A) = {¿a^c}- •

Lemma 12. Every endomorphism of a strongly connected automaton is swrjective.

Proof. Let A = (A, X, 5) be a strongly connected automaton. If a 6 E(A) then
A a = (a (A) , X , S ') is a subautomaton of A. Therefore, a(A) = A, that is, a is a
surjective mapping. •

Theorem 13. Let the strongly connected automaton A = (A, X, 6) with at least
three states be simple. If E(A) = {m} then A is not commutative. If E(A) ^ { t^ }
then A is an A-finite commutative automaton, |i5(A| = |A| and E(A) = G(A) is
a cyclic group of prime order.

Proof. First, we show that if the strongly connected automaton A with at least
three states is simple then E(A) = G(A) is a finite group. Since Kera (a £ E(A))
is a congruence of A, Kera = LA or Kera = OJA- By Lemma 12, a is surjective

162 István Babcsányi

mapping. Prom this it follows that Kera = la and thus a £ G(A). This means
that E{A) = G(A). By Theorem 3, E(A) is finite.

Assume that E(A) = {t / i } and A is commutative. Since A is strongly con-
nected, there are ao £ A and p € X+ such that ao ^ aop. Define the mapping ap

in the same way as in the proof of Lemma 5. Since the relation PA,a0 is a congruence
on X*, ap £ E(A) and ap IA- This is impossible, and so A is not commutative.

Now assume that E(A) = G(A) ^ { m } - Let a £ G(A) and a ^ LA- Consider
the congruence pa defined in the proof of Theorem 3. Since A is simple, pa — iA

or pa = wa- If pa = M then a = iA- If pa = oja then, for arbitrary state d E A,

A={d,a(d),...,ar~l(d)}.

If P £ G(A) then there exists an integer 0 < j < r — 1 such that P(d) = a^(d).
Thus, for every p £ X*, we have ,6(dp) = aj (dp), that is, P = a?. Then, G(A is a
cyclic group.

If r is not prime then r = In (1 < l,n < r). Define the binary relation „ on
A as follows. For a,b € A (a, b) £ p/ n if and only if there are integers 0 < i < I — 1
and 0 < j, k < n — 1 such that

a = ai+ji(d), b = ai+kl(d).

It is easy to show that P^N is a congruence of A and p; n ^ LA-.^A- It is a contra-
diction. Hence r is a prime number.

We show that A is commutative, lip, q £ X* then let ap = ak(a) and aq = a1 (a)
(0 < k, I < r - 1). Then, for arbitrary 0 < i < r - 1,

ai(a)pq — al(ap)q = alak(a)q = alak(aq) =

= alakal(a) = aialak(a) =

= ofctfap) — a%al(a)p = az(aq)p = aL(a)qp,

that is, A is commutative.
By Theorem 7, the automaton A is A-finite. By Lemma 4 and Lemma 5,

|£?(A| = \A\. •

We note that W. Lex proved in [12], if A is a simple automaton then |G(A)| = 1
or G(A) is a cyclic group of prime order.

The automaton A = (A, X, 5) is called a permutation automaton if every input
sign x £ X is a permutation sign, that is, if ax = bx (a, b £ A) then a = b. Let
the automaton A be A-finite and |A| = r. The input sign x £ X is called cyclic
permutation sign if, for any a £ A,

A = {a, ax, ax2,..., axr~1} (axr = a).

The input sign x £ X is called identical permutation sign if ax — a for every a € A.
The permutation automaton A is called a cyclic permutation automaton of order
r if there exists an x £ X cyclic permutation sign.

The congruence p of the automaton A = (A, X, 5) is called uniform if, for every
a,be A, |p[a]| = |p[6]|.

Automata with Finite Congruence Lattices 163

Lemma 14. Every congruence of a strongly connected permutation automaton is
uniform. •

Proof. Let A = (A, X, 5) be a strongly connected permutation automaton. Assume
that p is a congruence of A and a, b 6 A arbitrary states. Since A is strongly
connected, there axe p,q £ X* such that b = ap and a = bq. Then p[a)p C p[b] and
p[b]q C p[a\. As every input sign is a permutation sign, we get

I p M I = I p H p I < \p[b\\ = \p[b]q\ < I p H I ,

that is, |p[a]| = \p{b}\. •

Prom Lemma 14 it follows that every strongly connected permutation automa-
ton of prime order is simple. By the following example this is generally not true.
Example 15. If A = {1,2,3} , X = {x, y} and

lx = 2x = 3, 3x = 2, 1 y = 2, 2y = 1, 3y = 1,

then the automaton A = (A, X, S) is strongly connected of prime order, but not
simple.

By the following example, there is a simple strongly connected permutation
automaton whose order is not a prime number.
Example 16. A = {1,2,3,4} , X = {x ,y }and

lx = 2, 2x = 3, 3x = 4, 4x = 1, 1 y = 1, 2y = 2, 3y = 4, 4y = 3.

The automaton A = (A, X, 5) is a cyclic permutation automaton.
Theorem 17. The commutative automaton A = (A, X, 8) with at least three states
is simple if and only if it is a cyclic permutation automaton of prime order.

Proof Assume that the commutative automaton A is simple. By Theorem 13,
A is an A-finite automaton of prime order. By Corollary 9 and Theorem 11, A
is strongly connected. Let x € X be an arbitrary input sign. Define the binary
relation px on A as follows.

(a, 6) € px if and only if ax = bx.

Using the commutativity of A, it is not difficult to seen that the relation px is a
congruence of A. If px = UJA then there is an element c € A such that for every
a.£ A ax = c. Hence c is a trap of A. It is impossible. Thus px = i A, that is, x is
a permutation sign. We get that A is a permutation automaton. Since A strongly
connected and 3 < |A|, there are a € A and x € X such that ax a. But a; is a
permutation sign. Therefore, if ax% — ax? (0 < i < j) then a = ax^"1 and 2 < j—i.
Let k be the smallest positive integer for which axk = a. Since ax ^ a, therefore
2 < k. The set H — {a, ax,... ,axk~1} is a separator of A. Prom this it follows
that H = A. Thus x is a cyclic permutation sign, that is, A is a cyclic permutation
automaton of prime order.
. Conversely, if A is a cyclic permutation automaton of prime order then, by

Lemma 14, A is simple. •

164 István Babcsányi

If a commutative automaton is a cyclic permutation automaton of prime order
then every input sign is an identical permutation sign or a cyclic permutation sign.

We remark that in [16] G. Thierrin proved that if G(A) ^ {t^}, for a simple
automaton A, then A is a permutation automaton, |G(A| = |A| and |G(A)| is a
prime number. By Theorem 13, every commutative simple automaton is A-finite.
By the following examples, it is generally not true.

Example 18. If A = { 1 ,2 , . . . , n , . . . }, X = {x, y} and

\y = 1, 2y = 2, nx — n 4-1, n = 1 ,2 , . . . ,

m = 2, ni+i = rii + i, i = 1 ,2 , . . . ,

v-i+iy = 1, (ni+1 + 1)y = (ni+1 + 2) y = ••• = (ni+i +i)y = 2, ¿ = 1 ,2 , . . . ,

then the infinite automaton A = (A, X, (5) is strongly connected, simple and not
commutative.

Example 19. If A = {0 ,1 ,2 , . . . , n , . . . } , X = { x , y } and

Ox = 0y = ly = 0, nx — n + 1, n = l , 2 , . . . ,

ni=2, ni+i = ni + i, i = 1 ,2 , . . . ,

rny = 1, (n i + i + 1)y = (n i+1 + 2)y = • • • = (n i + i + i)y = 2, i = 1,2,...,

then the infinite automaton A = (A , X, 5) is strongly trap-connected with the trap
0, simple and not commutative.

References
[1] Babcsányi, I., A félperfekt kváziautomatdk (On quasiperfect quasiautomata),

Mat. Lapok, 21 (1970), 95-102 (Hungarian with English summary).

[2] Babcsányi, I., Rees automaták (Rees-automata), Mat. Lapok, 29 (1977-1981),
139-148 (Hungarian with English summary).

[3] Babcsányi, I., Simple Mealy and Moore automata, Proceedings of the Inter-
national Conference on Automata and Formal Languages IX, Vasszécseny,
Hungary, August 9-13, 1999, Publicationes Mathematicae, Supplementum 60
(2002), 473-482.

[4] Babcsányi, I. Equivalence of Mealy and Moore automata, Acta Cybernetica 14
(2000), 541-552.

[5] Cohn, P.M., Universal Algebra, Harper and Roow Publishers, New York-
Evanston-London, 1965.

[6] Esik Z. and B. Imreh, Remarks on finite commutative automata, Acta Cyber-
netica, 5 (1981), 143-146.

Automata with Finite Congruence Lattices 165

[7] Gécseg, F., Products of Automata, Springer-Verlag, Berlin-Heidelberg-New
York-Tokyo, 1981.

[8] Gécseg, F. and I. Peak, Algebraic Theory of Automata, Akadémiai Kiadó,
Budapest, 1972.

[9] Grillet, A.P., Commutative semigroups with finite congruence lattices, Acta
Sci. Math.(Szeged), 70 (2004), 551-555.

[10] Kim, K.H. and F.W. Roush, Applied Abstract Algebra, John Wiley and Sons,
New York-Chichester-Brisbane-Ontario, 1983.

[11] Lallement, G., Semigroups and Combinatorial Applications, John Wiley and
Sons, New York-Chichester-Brisbane-Toronto, 1979.

[12] Lex, W., Akte (Acts), Habilitationsschift, Clausthal-Zellerfeld, 1980 (German).

[13] Oehmke, R.H., On the structures of an automaton and its input semigroup, J.
Assoc. Comp. Machinery, 10 (1963), 521-525.

[14] Peák, I., Avtomatü i polugruppü II (Automata and semigroups II), Acta Sci.
Math.(Szeged), 26 (1965), 49-54 (Russian).

[15] Radeleczki, S., The automorphism group of unary algebras, Mathematica Pan-
nonica, 7 (1996), 253-271.

[16] Thierrin, G., Simple automata, Kybernetika (Pragua), 5 (1970), 343-350.

Received February, 2007

CONTENTS

Kalmár Workshop on Logic and Computer Science 1
Foreword 3
László Kalmár (1905-1976) 5
András Hajnal: In memory of László Kalmár . '7
Árpád Makay: The activities of László Kalmár in the world of information

technology 9
Publications of László Kalmár 15
Alexander S. Antonenko and Eugene L. Berkovich: Groups and Semigroups

Defined by some Classes of Mealy Automata 23
Edward G. Coffman, Jr. and János Csirik: A Classification Scheme for Bin

Packing Theory 47
Miguel Coueeiro and Stephan Foldes: Functional Equations, Constraints, De-

finability of Function Classes, and Functions of Boolean Variables 61
Giorgi Japaridze: Intuitionistic computability logic 77

Regular Papers 115
György Gyurica: On monotone languages and their characterization by reg-

ular expressions 117
Alexander Meduna and Tomás Masopust: Self-Regulating Finite Automata . 135
István Babcsányv. Automata with Finite Congruence Lattices 155

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János

