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Foreword 

This collection of papers is dedicated to László Kalmár (1905 - 1976), a pioneer in 
mathematical logic, the founder of computer science in Hungary and, among many 
other accomplishments, the founding editor of Acta Cybernetica. It contains the 
list of his publications, two papers written in his memory and the complete versions 
of four papers presented at the Kalmár Workshop on Logic in Computer Science. 
The workshop was held in Szeged, October 1-2, 2003. Its complete program can be 
found at http://www . inf .u-szeged.hu/kutatas/konferenciak/kalmar2003/ . 
The workshop was co-located with the 13th International Conference on Inductive 
Logic Programming (ILP 2003). The papers in this collection deal with automata 
theory, universal algebra, algorithms and computational logic, and thus they are 
all connected to Kalmár's many-faceted research. We thank the authors for their 
contributions and Balázs Szörényi for his help. 

Ferenc Gécseg and György Túrán 

Guest Editors 
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László Kalmár 
(1905-1976) 





In memory of László Kalmár 

András Hajnal* 

The following text was presented by Péter Kornjáth at the Kalmár Work-
shop on Logic and Computer Science on October 2, 2003. 

Ladies and Gentlemen, 

First, I want to apologize for not being able to attend this meeting. 
I was a graduate student of László Kalmár. I arrived to Szeged fifty years ago, 

almost to the day, having completed my obligatory two months military service 
after my graduation from the Eötvös University of Budapest. I was supposed to 
arrive by the morning train and take the tram from the railway station. Professor 
Kalmár, or Uncle Laci as all the students called him, already wrote me two long 
letters to the army base describing future plans for the enormous curriculum he 
planned for me. He was already impatiently waiting for me at the door of the 
University building. He hardly gave me time to put down my luggage and took 
me to all the rooms of the Bolyai Institute, introducing me to everybody, while 
explaining to me Gödel's proof of the consistency of the Generalized Continuum 
Hypothesis, politely and absent mindedly knocking on all the doors whether we 
entered the room or left it. 

Having described him above as the amiable old professor, let me remind you 
that he was not yet quite fifty, the same age as your present lecturer Péter Komjáth, 
my former student, who is supposed to carry on the banner of mathematical logic 
we handed to him. 

To talk seriously, Kalmár was a scientist of enormous authority, a contemporary 
of Gödel, who was among the very few present at the cradle of Mathematical Logic, 
who completely understood both the mathematics involved and the significance of 
it. He had an unparalleled knowledge of contemporary mathematics and he could 
explain the main points of a subject with deep insight. 

Paul Erdős, whose early papers he helped to write, often said that he was a 
mathematician of von Neumann's caliber. He added that he should have lived in 
a more fortunate country, where he could have devoted his energies entirely to 
science. 

I am not sure Paul was right. I think and hope that Uncle Laci enjoyed his life, 
the struggle for his beliefs. His active mind always led him to new discoveries of 

" Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13-15, 
H-1053, Budapest, Hungary 
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science and that is how he became the founder of Hungarian Computer Science. I 
think that that is what this conference will mainly be about, so I could stop here, 
but I want to finish on a personal note. 

I am very thankful for all the care and love he and his family gave me while I 
lived here. I will always cherish the memory of our long mathematical conversations. 
Later in my life, whenever I did or heard something interesting, I wanted to tell it 
to him. Sometimes I succeeded, sometimes I did not. I remember, I learned about 
his death, when returning from abroad I wanted to tell him, that contrary to our 
earlier intuition there are nontrivial inequalities on cardinal exponentiation. 

I am sure this will be the first thing I will tell him when we meet at the place I 
do not believe in. 
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The activities of László Kalmár in the world of 
information technology 

Árpád Makay* 

Abstract 

Since the end of the 1950s László Kalmár has been interested in the in-
formation technology. During a 20 years period he designed several variants 
of computers interpreting high-level programming languages on architectural 
levels. 

Keywords: logical'machine, formula-driven computer, high-level language 
interpreter machine 

Towards the end of the 1950s, information technology (IT) became one of the 
fields in which László Kalmár was highly interested. He was clearly aware of the 
rapid spread of computers and their excellent applicability for numeral computa-
tions. It is nevertheless extremely likely that the links between mathematics and 
IT were what caught his interest and shaped his views of this field. It is undoubted 
that he tackled problems from the aspect of a mathematician, always attempt-
ing to apply mathematical methods in a world, which at that time was virtually 
purely technical and technological. It soon became obvious that IT requires and 
makes wide use of the laws and methods of mathematics: it may suffice merely 
to mention the inspiring role of automata theory or coding theory. The exactness 
of mathematics is reflected in the problem solving of IT, the precise understand-
ing of the problems and their detailed analysis, which often demands considerable 
work. Kalmár's interdisciplinary knowledge played a significant role in his continu-
ous search for new areas of use of IT, defining concrete problems for which he often 
found solutions and attracted the interest of researchers and developers. 

It should .be remembered that the freedom of researchers to carry out effec-
tive work in Hungary in that period was restricted by a number of factors. The 
technical resources in the country were rather poor. For understandable reasons, 
most of the resources were placed in the service of the economy and the running 
of the state, only a minor part being made available for teaching and research. 
Kalmár's wide-ranging contacts and (from the 1960s) his nationwide recognition in 
the world of IT helped him overcome many of the technical obstacles, especially 

'University of Szeged, Árpád tér 2, Szeged, Hungary. 
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in the practical teaching area. Nonetheless, the need to adapt to the external con-
straints certainly influenced his thoughts and plans. One of the main areas of his 
interest, the combination programming languages and mathematics, and especially 
the formal language of logic, was restricted from the outset, the limitations being 
set by his ambition for the availability of the necessary resources. 

Kalmár was unceasingly convinced that the already considerable development 
of the IT world could benefit still further from the innovative work of Hungarian 
researchers. In consequence of his international reputation, the leading journals and 
technical books were at his disposal, often as complimentary copies. The world was 
generally open to him. At conferences, he was able to meet internationally respected 
researchers and to set out his ideas and achievements. In this way he acquired up-
to-date information on the areas of perspective research and development, which 
he readily shared with his students and colleagues. 

When an effective tool such as the computer becomes available to an individ-
ual, his or her imagination suddenly catches wings. And this is what happened to 
the early IT researchers, engineers and end-users in Hungary, among them László 
Kalmár. As an example, the machine translation of natural languages seemed 
attainable from the very beginning. Kalmár closely watched and supported the 
Hungarian group working on this project. We now know that this goal was reached 
in párt only much later. For that group at that time, the objective appeared 
unattainable, though their activities furnished important information and knowl-
edge relating to the field of linguistics. 

László Kalmár was no stranger to philosophy. Perhaps this was one of the rea-
sons why he became interested in some of the unanswered questions of mathematical 
logic which (with full mathematical exactness) touched on the limits of reliability of 
mathematics. Questions often arose in IT (also referred to as cybernetics) such as 
those concerning the relationship of man and a "thinking" machine, the ability of 
a machine to reproduce itself, and the controllability of computers. Kalmár devel-
oped his own concepts of these issues and often put forward his ideas at appropriate 
forums. He did this mainly as a mathematician, a stranger to exaggeration and 
science fiction. 

László Kalmár worked in the purely theoretical realm of mathematical logic; 
it may be stated that he was a real theoretical researcher. In the world of IT, 
however, he strived towards concrete instruments. The technology was limited, but 
he designed tools that could be constructed. 

The first project that was achieved was a by-product of a departmental seminar. 
The theme was the technical implementation of mathematical logic (propositional 
logic). This is an exciting topic if it is considered that the active parts of computers 
are logical circuits, the tasks of which are logical calculations. The decision was 
taken to build a "logical machine" that computes the values of logical formulae [1]. 

The formula applied could contain a maximum of 8 variables, and all the basic 
operators of calculus could be used. A double contact switch represented the value 
of a variable or a component formula. One pole had the value TRUE, and the other 
one the value FALSE. Accordingly, an operator of two variables needed two input 
and one output switches. Special cables connected the poles. These connections 
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had to be set according to the logical operators; it may be said that the operators 
were programmed. The input and output poles of the boxes, already programmed 
for the basic operators, were appropriately connected to each other so that formula« 
of desired length became computable. Operator priority and the use of parentheses 
were enabled. It is obvious that the machine did not tackle the problem by reducing 
the formula to some kind of normal form. The values of the maximum 8 operands 
were set by a simple series of switches, their values and that of the formula being 
indicated by lamps on the display. 

The logical machine was a demonstrative tool, but it led to a degree of self-
confidence necessary for more difficult challenges to be tackled. Every creator feels 
the need to explain what his or her creation is good for: the formula built up 
from the boxes is a circuit that is being tested by the machine. This activity was 
supported by a relayed "memory", together with the potential for the simultane-
ous handling of a number of formulae. By 1959 the machine had received a new 
application (one necessary in most computers): it had become a binary adder. 

It was roughly at this time that the training of " programming mathematicians" 
started at the University of Szeged, and these courses became increasingly more 
popular. The characteristic features of the courses were very thorough training 
in mathematics and programming, first in assembly, and later in higher-level lan-
guages. While providing several mathematical courses, László Kalmár was the 
professor of machine programming. 

In the 1960s, he experienced that programs written in assembly (or in direct 
code) were more effective than the codes generated by the compilers, not to mention 
the time and memory requirements of the compilation process. The effectiveness 
was a result of the work of the programmer in searching for the memory and time 
optimum. He also observed that the programming work, i.e. the human energy 
invested in problem solving, is more effective if a higher-level language is used. This -
latter is nowadays held to be of greatest importance. At that time, Kalmár could 
not predict that within 25 years the memory and computing capacity of computers 
would have become virtually limitless, and that the abilities of compilers would have 
been enhanced considerably as a consequence of theoretical results. He believed 
that the solution lay in the approach of machine code to the syntax and semantics 
of higher-level languages. 

During his productive IT activities, Kalmár often returned to this idea of a 
formula-driven machine. The possibilities available in the various periods are re-
flected by some of the versions planned throughout the years. In parallel, his 
goal was a definition of the computer as an algebraic structure, his plans being 
constructed on this precise theory. As an example, he looked upon a computer 
operation as (amongst others) a transformation in the memory state. However, 
because of the large number and complexity of the operations, the characteristics 
of this transformation could not be written with mathematical exactness. In order 
for this to be done, the model should have been brought into a much simpler level, 
e.g. to the level of Turing machine theory, but the practical demands did not allow 
this. Accordingly, the algebraic model rather played the role of a general approach 
and was not used directly in the design. 
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The first plans involved the use of the Ljapunov operational language inter-
preter machine [2]. The language allowed the use of a limited number of variables, 
expressions built up with the applications of arithmetical operations, and a few 
algorithmic tools: conditional clauses and cycles. The syntax was straightforward. 
Lexical analysis was barely needed. Because of the lack of block structures and 
program segmentation, there was no need for the most difficult techniques applied 
in modern interpreters, which at that time were probably impossible to implement 
with the technical support available then. 

The computational unit of the machine was a stack-like structure built up from 
register quartets. These were designed to handle the arithmetical and logical oper-
ations of two operands; they stored the two operands, the operation and (once the 
values of the operands were available) the result. The result register of the register 
quartet was connected to both operand registers of the higher-level register quartet 
through gates. At most one of the gates was open, in order to receive the result of 
the operation computed at the lower level. 

The program was run through the sequential reading of the characters in one 
pass. At all times there was one active register quartet and one of its registers was 
active. In one step, the value (if any) of the next variable from the sequence was 
placed.in the active register. In every step, the state of activation of the current 
register quartet and its register was refreshed, and the states of the gates were set. 
If the operation could be computed (both operands present in a register quartet), 
the operation was performed and the result flowed upwards through the open gate. 

An analysis of the system reveals that simple cycles can be implemented with 
the described register hierarchy, since the repeating condition is also an expression. 
Apart from this, a control unit was needed, with the role of interpretation of the 
sequential,.conditional and cyclic clauses. The memory assignments and the in-
dexed variable handling demanded a special design. Kalmar's plans included all of 
these features, but the result of prime importance was the technically applicable, 
special stack architecture. The conditions for the building of the machine could not 
be met within Hungary, but parts of his machine plans were utilized in the MIR 
machine of the Ukrainian Academy of Sciences, built in 1966. 

By the beginning of the 1960s, it was evident that the stack was an extremely 
powerful tool in IT. If the traditional infix expressions were converted to postfix 
form and put into the stack, their interpretation was child's play. The use of a stack 
simplified the conversion too. If the algorithmic parts of programming languages 
such as ALGOL-6O could be converted to postfix form, then (by means of a one-
pass compilation) the program could be run several times without being compiled 
in the classical machine language. This was more or less achieved, and extremely 
efficient interpreters were developed on the basis of this theory. The efficiency was 
further increased by building the stack into the hardware level of the architecture 
of the computer, together with the technique of microprogramming. 

In the meantime, theoretical results were obtained that gave a definitive direc-
tion to the evolution of .IT. The design of efficient lexical analysis algorithms was 
based on the theory of finite automata. The theory of pushdown automata and their 
special classes defined the limits to be taken into consideration within the syntax 
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of programming languages for the building of efficient compilers and interpreters. 
The limitations were loose, and the requirements of the programmers concerning 
the programming languages could therefore be fully satisfied. The main direction of 
IT therefore became the use of high-level programming languages (supporting both 
general needs and special requirements) and the construction of efficient compilers 
and interpreters for them. 

In 1973, László Kalmár was requested by the Hungarian Academy of Sciences to 
examine the situation regarding computers and higher-level programming languages 
(including machine languages) and the progress to be expected in these fields. The 
goal was for Hungarian IT to find its place and to play an appropriate role in the 
bright future of IT research and development. It was becoming increasingly more 
obvious that, like all other countries in Eastern Europe, Hungary had failed to 
recognize the importance of IT in time, and had not allocated sufficient funds for 
IT research. This invitation was a sign of appreciation of the leader of one of the 
few research groups which had been producing results and which had come up with 
constructive ideas despite the inadequate support. 

The development of the various generations of computers up to that time, and 
the methods of constructing computer architectures, were reviewed in a series of 
monographs [3]. Naturally, the emphasis was on programming languages and their 
interpretational possibilities, one of Kalmár's main interests. In the final edition, 
some 15 years after the planning of the first formula-driven machine he put forward 
a new proposal for a computer that could be programmed through the use of a 
high-level machine language. 

What were the challenges, to which the new plan was intended to respond? 
A look at the algorithmic (problem-oriented) languages reveals that the parts 

building up the syntax have become clear, and new languages can be designed .by 
combining these parts at will. The block structure and the use of modules were 
necessities. Prom the aspect of semantics, the notion of the expression had become 
very clear, mainly as a result of the increased number of data structures. The pro-
grams themselves defined complex data types, and the classical sets of values could 
no longer be used without appropriate care. The definition and implementation 
were separated, a situation regarded as normal by today's C + + or Java program-
mer. It was now obvious that the handling of reference types needed extensive 
redesigning, a feature applied earlier only for indexed variables and memory as-
signments. It cannot be claimed that the new plan provided adequate answer to 
all these questions, but it did so for most of them. 

The technology too had been evolving. The problems involving the hardware-
manipulated stack had been eliminated. The technique of microprogramming was 
available, a tool that raised the programming level above that of the architecture. 
The implementation of a redesigned architecture with high-level machine language 
again seemed feasible. 

In the design stage, it became obvious to Kalmár that a single algorithmic lan-
guage running on a given architecture could no longer satisfy the users. Compilers 
were clearly needed. The suggested high-level language was designed to be close to 
more general programming languages, particularly from the aspect of syntax. This 
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could result in easier compiling, less human work, and lower hardware requirements. 
The research group led by Kalmár devised the proposed language. He did not 

develop a technical plan for the implementation of this language as he had earlier 
done with the formula-driven machine. He hoped that the various Hungarian work-
groups would share their knowledge and that his plans would materialize via such 
collaboration. In order to verify the language and prove its suitability, he suggested 
simulation methods. His research group did not lack the necessary knowledge, but 
the simulator was not built. It is probable that Kalmár's energy was wasted to some 
extent by his intent on publishing his conceptions in academic and technical circles. 
The reception was appropriate, and the observations were professional. However, 
it was at this time that Eastern Europe started planning great developments in the 
field of IT, and Hungary did not want to be left behind; it therefore adapted to the 
tendencies determined by " the greats". 

What can be said today about formula-driven issues? 

Some 30 years ago, IT developed at a very rapid, but quite unexpected tempo. 
Economizing with hardware resources now belongs to the past; the pace is dictated 
by the application needs. Many criticize this attitude. Not only has the lowest 
programming level not risen but it has even become lower, e.g. as a consequence 
of the RISC technology. The need for the portability of applications over various 
architectures has nevertheless given rise to a shared-language machine, the Java 
virtual machine. This has taken place with a different objective and by different 
means, but its roots are common with those of the formula-driven machine. 
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Groups and Semigroups Defined by some Classes of 
Mealy Automata 

Alexander S. Antonenko* and Eugene L. Berkovich* 

Abstract 

Two classes of finite Mealy automata (automata without branches, slow-
moving automata) are considered in this article. We study algebraic prop-
erties of transformations defined by automata of these classes. We consider 
groups and semigroups defined by automata without branches. 

Keywords: Finite automata; Groups defined by automata; Semigroups de-
fined by automata; Finite automaton transformations. 

Introduction 
In this paper we study finite state Mealy automata over two-symbol alphabet and 
finite state automata transformations defined by them. We shall examine algebraic 
properties of these transformations, various groups and semigroups of automata 
transformations and groups defined by noninitial automata of special types. 

Groups of automaton transformations have been already investigated in the 
early sixties of the 20th century (see [l]-[4]). Recent result in the field of semigroups 
and groups are presented in [6]-[7]. The papers [5] and [8] present reviews of the 
main results of the theory of automaton transformation groups and semigroups. 

Mealy automata turned out to be a convenient tool of defining groups and 
semigroups. The thing is that small (in number of states and alphabet symbols) 
Mealy automata generate complex groups. 

Those of particular interest are groups with extremal properties, for example, 
periodic groups of Burnside type, groups of intermediate growth, etc. Mealy au-
tomata are used to construct examples of such groups. With their help, Burnside's 
problem was solved, as well as the problem of intermediate growth groups existence, 
posed by Milnor in 1968 (the solution of the latter belongs to Grigorchuk). 

In the work [10] semigroups and the growth functions of two state automata 
over two-symbol alphabets are investigated. The question on what groups and 
semigroups are defined by three state automata over two-symbol alphabets remains 
unsolved. Therefore, we consider two special classes of automata. 

'Odessa I. I. Mechnikov National University. E-mail: {aantonenko,eberk}8mail.ru 
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The first part of this study sets out the basic definitions and results of Mealy 
automata theory and gives the definitions of groups and semigroups defined by 
automata. 

The second part is dedicated to Mealy automata over two-symbol alphabets, 
and a classification of states of such automata is suggested. Two special types of 
automata are defined on this basis: automata without branches and slow-moving 
automata. 

We obtain results for automata without branches which characterize the groups 
defined by them for any number of states. Also we study semigroups defined by 
automata without branches. 

The class of slow-moving automata is very wide, and this is why we have limited 
our investigation to its subclass, namely slow-moving automata of finite type. We 
have studied the algebraic properties of transformations defined by slow-mowing 
finite state automata. We have also found family of slow-moving transformations 
of finite type such that any other one is a composition of members of this family. 

1 Preliminaries 
Definition 1 ([11, 12]). A finite Mealy automaton is an ordered quintuple A = 
(X, y, Q, 7r, A), where X is the input alphabet, Y is the output alphabet, Q is the 
finite nonempty set of states, 7r : X x Q —> Q is the transition function and A : 
X x Q —> Y is the output function. X and Y are finite nonempty sets. 

We will consider only finite automata whose input and output alphabets coincide 
(X — Y). We denote such automata by the quadruples A = (X, Q, tt, A). Mainly 
we will consider automata over the two-symbol alphabet X = {0,1}. 

Let Tx = {f\ f X —> X} be the semigroup of all transformations of the set X 
(the full transformation semigroup), Sx = {/| / •' X —» X, f is bijective} the group 
of all bijective transformations of the set X (the full symmetric group), X* the set 
of all finite words over X and Xu the set of all infinite words (w-words) over X. 

It is convenient to describe finite automata by the Moore diagrams. We will 
use the following modification of it. The Moore diagram of an automaton A is an 
edge-labelled and vertex-labelled directed multigraph Da with the set of vertices Q. 
Vertices <?, and qj of the graph Da are connected by the oriented edge in direction 
from qi to qj marked by the label x, if tt(x, Qi) = qj. Here x G X, qi,qj 6 Q. 
Every vertex q is labelled by the transformation Xq € Tx of the alphabet X that 
corresponds to the output function at the state q, i.e. \{x) = A(x,q), where 
x € X, q&Q. 

The functions IT and A can be extended naturally to mappings of the set X* x Q 
into the sets Q and X* by the following equalities [12]: 

tt(A ,q) = q, Tr(wx,q) = ir(x,n(w,q)), 
A(A, q) = A, \{wx, q) = \(w, q)A (x, TT(W, q)), 

where A £ X* is the empty word, q € Q, w £ X* and x € X. The function A 



Groups and Semigi'oups Defined by some Classes of Mealy Automata 25 

can also be extended in a natural way to a mapping A : Xw x Q —» Xu (see for 
example, [12]). 

Definition 2 ([12]). The transformation fq : Xu —» Xu defined by the equality 
fq(u) = X(u,q), where u £ Xu, is called the automaton transformation defined by 
the automaton A = (X, Q, n, A) at state q. 

The Mealy automaton A = (X,Q,n,X), where Q = {90, 9i, • •• ,<j„-i} , defines 
the set Fa = {/«>> /<»>••• > fqn-i} automaton transformations over X u . 

Definition 3. The Mealy automaton A is called invertible if all transformations 
from the set FA are bisections. 

It is easy to show (see for example [5]) that A is invertible if and only if the 
transformation Xq is a permutation of X for each state q £ Q. 

Definition 4 ([12]). The Mealy automata Ai = (X,Qi,iTi,Xi), i = 1,2, are called 
isomorphic if there exist two permutations ip € S\- and a one-to-one mapping 
0 Q\ * Q2 such that 

0TTi(x,q) - ir2(£x,6q), ipX^x^) = X2{£x,9q) 

for all x £ X and q € Q\. 

Definition 5 ([12]). The Mealy automata Ai, i = 1,2, are called equivalent if 
FAi =FA2. 

Proposition 6 ([12]). Each class of equivalent Mealy automata over the alphabet 
X contains, up to isomorphism, a unique automaton that is minimal with respect 
to the number of states (such an automaton is called reduced). 

The minimal automaton can be found using the standard algorithm of mini-
mization. 

Definition 7 ([13]). Fori = 1,2, let Ai = (X,Qi,TTi,Xi) be arbitrary Mealy au-
tomata. The automaton A = (X,Qi x A) whose transition and output func-
tions are defined by 

7T (a;, (91,92)) = (ti (A2 (x,q2) ,qi) ,ir2 (x,q2)), 

M z , (91,92)) = Ai (A2 (x,<?2) ,<?i), 

where x € X and (91,92) € Qi x Q2, is called the product of the automata A\ and 
A2. 

Proposition 8 ([13]). For any states 91 € Q\, q2 € Q2 and arbitrary word u € X* 
the following equality holds: 

/(9i,92M(U) = /«i.A, {fq2,AAu)) • 

Definition 9. The semigroup generated by the set Fa = {fq0, fqi, • • •, fq,Ui} °f 
transformations defined by a Mealy automaton A in all of its states is called the 
semigroup defined by the automaton A. In the case of an invertible automaton A 
the group generated by Fa is called the group defined by the automaton A. 
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2 Two special classes of automata 
In this section we consider two special classes of automata. We will use the following 
classification of automata states. 

Definition 10. Let A = (X, Q,tt, A) be a finite automaton. Let us call a state 
q£Q 

1. a rest state if for each x £ X, ir(x,q) = q (the automaton will stay in this 
state) 

2. an unconditional jump state if there exists a q' £ Q, such that q' / q and for 
each x € X, TT(X, q) = q' 

3. a waiting state if there exists an x £ X such that ir(x,q) = q', q' ^ q and 
for each symbol x' £ X with x' ^ x, ir(x',q) = q. We will also call this state 
x-waiting state 

4- a multi-waiting state if there exist X' C X andq' ^ q such that 2 < \X'\ < |A'| 
and for each x' £ X', ir(x', q) = q' and for each x X', TT(X, q) = q 

5. a conditional jump state or branch state if there exist two distinct symbols 
xi / X2 such that ir(x\,q) ^ n(x2,q) q 

Definition 11. We say that an automaton A is an automaton without branches if 
all of its states are rest states or unconditional jump ones. 

In other words, the transition function of an automaton without branches de-
pends only on the current state and is independent of input symbols. So for all 
q £ Q and x £ X, we denote n(x, q) by s(q). 

Definition 12. We call an automaton A slow-moving if all of its states are rest 
states or waiting ones. 

In other words, for every state q, there is at most one symbol x such that 
(2, q) ± q-

Definition 13. We call a transformation f : Xu —> slow-moving (without 
branches) if it can be defined by a slow-moving automaton (without branches). 

Example 14. Consider an example of a slow-moving automaton over the two-
symbol alphabet X = {0, 1} shown in Figure 1. We will consider an infinite input 
word w £ X^ as a 2-adic integer. Let f denote the slow-moving transformation 
defined by this automaton at the state q\. Then / adds one to any input 2-adic 
integer. Therefore this automaton is called "adding machine". 

Consider the transformation f2 = f° f- It is clear that f2 adds two to an input 
2-adic integer. 

Therefore f2 does not change the first input symbol, and then, not depending 
on what the first symbol was, acts as transformation / again. Thus, the second 
symbol is changed, in any case. So the initial state of the automaton defining 
such transformation can be neither the state of waiting nor the one of rest and the 
transformation f 2 is not slow-moving. 
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1 

Figure 1: The adding machine 

So the product of two slow-moving automata (transformations) is not a slow-
moving automaton (transformation) in general. 

3 Automata without branches 
Definition 15. We call the word transformation f : Xw —> X" symbol-by-symbol 
one, if 

f (xixz ...xn...)=gi (xi) g2 (x2) ...gn (xn)... 

where gj : X —> X. 
Lemma 16. The transformation defined by an automaton without branches is a 
symbol-by-symbol transformation. 

The proof is clear. 

Thus, the transformation / is completely defined by a word g £ (Tx)u, g = 
(j\(j2 • • • • Let us denote the corresponding transformation by Fg: 

Fg (xix2 ...xn...)=gi ( i i ) 52 ...gn (xn) •••, 9 & Xu, g = gxg2 ... gn ... 

In case / is defined by an invertible automaton over the two-symbol alphabet, 
each map gi is either the identity permutation, or transposition. In the first case, 
we consider gi = 0, in the second one gt = 1. 

Lemma 17. Let the transformation f be defined by an automaton without branches 
with n states. Then f = Fuw, where |u| = n, and w £ (Tx)w is a periodic word. 
Moreover, the length of the period does not exceed n. 

Proof. Let A = (X, Q, n,X) be an automaton without branches. Then the transfor-
mation corresponding to the state qk £ Q is Fg, where g = g\g2 • • •, gi+i = Xsi(Vky 
Recall that s (qi) = ir(x, qi). 

Let us consider the sequence sl (qk) where i — 0,1,2, Members of this 
sequence belong to the set Q = {90, Qi, • • •, Qn-i}, which consists of n elements. 
Hence there are two equal elements sp (qk) = sp+i (qk) among the first n + 1 ones, 
where p < n + 1, I > 0, I < n. 

Let r = n — p > 0. Fix an arbitrary i > 0. Applying sp (qk) — sp+l (qk), we 
obtain s r + i (sp (qk)) = sr+i (s p + l (qk)). Hence s n + i (qk) = sn+i+l (qk). 
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So the sequence s1 (<jt) is periodic beginning from the member sn (qk). It follows 
that the sequence (ji+\ — \s< (qk) is periodic beginning from the member gn+1- The 
length I of the period does not exceed n. • 

3.1 Groups defined by invertible automata without branches 
over a two-symbol alphabet 

Let us remark that the output function of an invertible automaton over a two-
symbol alphabet corresponding to a state is either the identical permutation or 
the transposition. In the first case we write Agi = 0 G Z2. In the second case 
we write Xqi = 1 £ Z^. Since the transition function n of an automaton without 
branches is independent of any input symbols, we use the notation S(QI) = TT(X, qCj. 
Let us consider (Z2 )° as the trivial group. The following theorem is applicable: 

Theorem 18. Let U be an invertible automaton without branches over a two-
symbol alphabet and let n be the number of its states. Then the group defined by it 
is isomorphic to the group (Z2)r, where r = rank .A, 

/ A, •go A 

V \ 

s(«o) 

W ) 

\ 

A G Mn(Z2), s{qi) = n(x, qi), x G X. 

We first prove some auxiliary lemmas. Let v* — vvv..., where v € (Z2)n , v* G 
(Z2)u. We can associate each word uv having the length n + m (|u| = n, = m) 
with the map Puv — Fuv • 

Lemma 19. The composition of invertible TTIIvps Puv CLTid Psw the map Puv+sw ? 
where u,s £ (^2)"; vyw £ {Z<ifx, addition is taken modulo 2 like in the group 
( . Z 2 ) n + m • 

Proof. The proof is straightforward. • 
Lemma 20. Let U be an invertible automaton without branches over a two-symbol 
alphabet, n the quantity of its states and m the least common multiple of all lengths 
of the periods of sequences {s1 (?Jt)}i=J , fc = 0 , . . . ,n — 1, I = n + m. 

Then the group defined by U is isomorphic to the group (Z2)r, where r = rank A!, 

( A, 

A' = 

go 

V A Qn—1 

^s(go) 
A s ( q i ) 

A s l - 1 

A.»!-i 
(go) 

(9i ) 

\ 

^ ' - ' ( in - l ) / 

A! G Mni(Z2), s{qi) = ir{x, q¿), x G X. 
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Proof. Let us denote by G the group defined by U. Note that all the transformations 
commute with each other and their orders are equal to 2. So every element of G is 
a composition-of certain transformations / ; . Transformation fk = Pu , where u is 
the fc-th row of the matrix A! (m is a period for any sequence s1 (qk) beginning from 
n-th member). The composition of these transformations fi is the transformation 
Pw, where w is the sum of the corresponding rows. 

Thus, every element of G is a map Pw, where w is a linear combination of rows of 
A' in the linear space (Z2)n+m over the field Z2 . There are r linearly independent 
rows among rows of the matrix A'. The vector w is uniquely representable in the 
form of linear combination of r linearly independent rows of the matrix A!. 

Set one-to-one correspondence between the elements 5 G G, g = Pw, and r-
vectors of coefficients of linear combination of linear independent rows of the matrix 
A! representing the vector w. Composition operation corresponds to the operation 
of addition of the coefficient vectors from (Z^Y • 

Thus, G is isomorphic to (Z2Y• • 

Proof of Theorem 18. To prove the theorem we need to show that rank A = 
rank A!. For this, let k be the minimal number such that the first k-1 columns 
of the matrix A' are linearly independent, but the first k ones are linearly depen-
dent. 

Then the k-th column is a linear combination of previous columns: 

Ak = b1A1 + b2A2 + ... + bk-1Ak~1, (1) 

where A1 is a ¿-th column of the matrix A!. We can write (1) in a more detailed 
form: 

= + fo^siqi) H 1" 
As<=- 1(Q2) = bi\Q2 + 62-^(52) -+• 1- bk-l\sk~Hq2) 

^sk~i(qn) = + b2Xs(9„) + 1- h-1 \sk-2(qn) 

Let us prove that 

Ap+k = h Ap+1 + b2Ap+2 + ... + bk^Ap+k-\ (2) 

for all p from 0 to I — k. 
Really, fix an arbitrary i between 1 and n. Let sp(qi) = qr. Then 

bl^sr(qi) +^2Asp+i(9i) + ... + 6fc_lAsp+fc-2(9.) = bi\qr +b2\s(qr) + ... +6fc_iAsJ=-2(9r) 
= Asfc-i(9r) = AgP+fc-i(9.) 

Thus (2) has been shown. From (2) we can conclude, by induction, that the 
column Ap+k for any p = 0 , . . . , I — k is a linear combination of the columns A1, 
A2, ..., Ak~l. Since k < n + 1, we conclude that rank A = rank A'. • 
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Figure 2: Schemes of transition functions of invertible automata without branches 
with three states 

Theorem 18 allowed us to describe the groups defined by invertible automata 
without branches with three states. 

Definition 21. We call two transition functions ni, n2 : X x Q —» Q equivalent, if 
there exists a permutation 9 G SQ such that 

•nl(x,q)=e-1n2{x,e{q)) Vx€X,q£Q 

For automata without branches this equation is s(qi) = 6~1s(6(qi)). 
There are 7 equivalence classes of transition functions of invertible automata 

without branches with three states. They can be described with the help of schemes 
(see Figure 2). The cross signs denotes rest states; the dot signs denotes uncondi-
tional jump states. The arrows indicate action of transition function. Consider for 
example automata with transition function corresponding to Scheme 7. 

Scheme 7. Let U = Xqi G Z2. 

(to t\ to \ 
U to h 
t2 ti t0 J 

If to = 0, 11 = 0, t2 = 1, then the rank equals 1. 

If to = 0» tl = 1, *2 = 0, then the rank equals 2. 
If to = 0, h = 1, t2 = 1, then the rank equals 3. 
If to = 1, ti = 0, t2 = 0, then, the rank equals 2. 
If to = 1, ti = 0, t2 = 1, then the rank equals 2. 
If to = 1, h = 1, ti = 0, then the rank equals 2. 
If to = 1, ti = •1, «2 = 1, then the rank equals 1. 
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3.2 Semigroups defined by automata without branches 
Let v* = vvv ... , where v G (Tx)n , v* 6 (Tx)u • We can associate each word uv 
having the length n + m (|u| = n, |u| = m) with the map Puv = Fuv.. 

Lemma 22. The composition of the invertible maps Puv and Psw is the map 
Puvosw, where u,s £ (Tx)n ,v,w € (Tx)m, and by o we denote element by ele-
ment composition of vectors. 
Proof. The proof is straightforward. • 

For semigroups defined by automata we can formulate a theorem being a rough 
analogue to Lemma 20. 
Theorem 23. Let U be an automaton without branches and let n be the number of 
its states. Let m be the least common multiple of all lengths of periods of sequences 
{s l (<?fc)}°^n, k = 0 , . . . , n — 1, and let I = n + m. 

Then each transformation defined by U is representable in the form Pw, where 
w = As(g),..., A3i-i(g)) £ (Tx)1 • Therefore, the semigroup defined by U is 
isomorphic to the semigroup 

s9 ((V> • • • > ^S'-Mqo)) '••'•> ' • • • > ^'"'(in))) 
where sg (go, • • • ,gn) is the semigroup generated by go,... ,gn. 

Proof The semigroup defined by U is generated by the transformations /¿, which, 
by Lemma 17, are representable in the form Fuw where |u| — n, w 6 X " is a 
periodic word, uw = (Aqi, Xs(qi), • • •, X3i-\(qi),...). By the definition of m, fi are 
representable in the form Puv, where |u| = n, |i>| = m. Finally, the isomorphism 
follows from Lemma 22. • 

3.3 Semigroups defined by automata without branches over 
two-symbol alphabets 

Automaton transformations over the two-symbol alphabet X = {0,1} are uniquely 
determined by vectors u of length I the components of which belong to 

;)./>-(; !).«-•-($ I ) ; ) } 
By Lemma 22, the composition of transformations corresponds to the element-

by-element composition of vectors. So we reduce study of semigroups defined by 
automata without branches to study of semigroups of vectors the elements of which 
belong to T2. 

Let / , g be transformations defined by an arbitrary automaton without branches 
over two-symbol alphabet. The relationships f f f — f , f g f f = f g are true. 

We established by numerical experiments that the semigroups of automaton 
transformations defined by automata without branches with 3 states over the two-
symbol alphabet have the following 19 orders (numbers of elements): 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 20, 22, 25, 31. Note that the groups defined by 
such invertible automata have only one of the following orders: 1, 2, 4, 8. 

i 
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4 Slow-moving automata 
The class of slow-moving automata is very wide and it is a rather complicated 
thing to investigate algebraic properties of transformations defined by slow-moving 
automata in a general form. That is why we shall consider one more class of au-
tomata, namely automata of finite type and investigate the transformations defined 
by slow-moving automata of that class. 

4.1 Automata of finite type 
Definition 24. We call a finite automaton A a finite type automaton if the se-
quence of automaton states for any infinite input word and for any initial state will 
stabilize. 

Definition 25. A transformation of infinite words f : X" —> X" we call a finite 
automaton transformation of finite type if there is a finite type automaton defining 
the transformation f in some initial state. 

It is rather easy to determine whether the given automaton is a finite type one 
by its Moore diagram. 

Proposition 26. A finite automaton is an automaton of finite type if and only if 
its Moore diagram is an oriented graph containing no oriented cycles besides the 
loops. 

Proof. Necessity. Let us suppose that the Moore diagram of a finite automaton 
contains an oriented cycle: 

Qii i Qi2 J • • • i Qik > Qii 

Let the automaton start work from the state q . Then there is a sequence of 
input symbols such that the automaton will subsequently be in the states 

Qh i Qi? i • • • > Qik i Qii i Qi21 • • •: Qik 1 i • • • 

Therefore, the sequence of states is not stabilized. 
Sufficiency. Let us take an initial state and a sequence of input symbols. Denote 

the respective sequence of automaton states by {qik}kLi- If the automaton was in 
some state q and then went to some other state then it will not be able to return 
to the state q (since its Moore diagram does not contain oriented cycles besides 
the loops). Consequently, for each state q there is at most one number n such that 
q = qin ^ 9i„+1 , which means that there are only finitely many numbers n for 
which qin / 9i„+1J that is the sequence {qik is stabilized. • 

Note that the product of two slow-moving automata (transformations) is not 
necessarily a slow-moving automaton (transformation), see Example 14. In contrast 
to the class of slow-moving automata the class of automata of finite type is closed 
with respect to the product. 
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Proposition 27. 

1. The product of two automata of finite type is an automaton of finite type 
again. 

2. The automaton inverse to an invertible automaton of finite type will be of 
finite type 

Proof. Statement 1 follows from the definition of the automata product: if the 
sequence of the first automaton states is stabilized at the state 91 at the n-th step, 
and that of the second one is stabilized at the state 92 at the m-th step, then the 
sequence of the states of the product is stabilized at the state (91,92) at the step 
with number max (m,n). 

Statement 2 Let A be an invertible automaton of finite type. By Proposition 26 
its Moore diagram contains no oriented cycles besides the loops. Then the Moore 
diagram of the inverse automaton of A contains no oriented cycles besides the loops, 
so it is also an automaton of finite type. • 

Corollary 28. The set of all finite automaton transformations of finite type is a 
subsemigroup of the semigroup of all finite automaton transformations. 

Corollary 29. The set of all invertible finite automaton transformations of finite 
type is a subgroup of the group of all invertible finite automaton transformations. 

4.2 Transformations Defined by Invertible Slow-moving Au-
tomata of Finite Type over Two-symbol Alphabets 

In this section we shall consider only invertible slow-moving automata of finite type 
over the two-symbol alphabet X = {0,1}. We have studied the algebraic properties 
of transformations defined by such automata. We have also found a family of slow-
moving transformations of finite type such that any other one is a composition of 
members of this family. 

To describe the transformations defined by such automata we shall need spe-
cial operators acting on the set of all transformations of infinite words = 
{ / 1 / : Xu —> Let p be some substitution from the set S.\ = {id, inv} (here 
id is an identical substitution, inv is a transposition). For convenience of notation 
extend the action of p substitution to the sets X*, Xu symbol by symbol: 

p(x 1X2 . . . X n ) = p(xi)p(x2) • • .p(xn) , p(x\x2 ...xn...) ~p(xi)p(x 2).. .p(xn) . . . 

Let / £ Tx". We will denote by p0]f the mapping which acts on an input word 
as a p substitution up to the first occurrence of zero (including it), and then as an 
/ transformation. We can consider pO] as the operator of the form 

pO] : T x „ - T x * 

Definition 30. Let f £ TxThen pO]/ = g is the transformation which acts by 
the •rule 

g (ln0iu) = p ( ln0) f(w),VweX",n>0, g(l*) = l* 
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1 0 

Figure 3: A slow-moving finite state automaton defining the transformation 
invO]idl]inv. 

Here 1* is the infinite word composed of the symbol 1. In other words g acts 
up to the first zero (including it) by p substitution, and then by / transformation. 

The operators 
pi] : —* T x " 

are defined similarly. 

Definition 31. Let f 6 Tx<-> • Then pl\f = g is the transformation which acts by 
the rule 

g (Onlu;) = p (0n l ) / (to), Vw G Xw, n> 0, g (0*) = 0* 

Let us denote the set of all such operators by WG — {p0],pl]|p € SX}• 

Example 32. A slow-moving transformation s — invO]idl]inv transforms the 
words from X w as follows. All the symbols up to the first zero (inclusive) are 
inverted, then until the first one (after the first zero), inclusively, all symbols will 
remain unchanged, and the rest of the symbols will be inverted again. 

This transformation is defined by the automaton shown in Figure 3. 

Any transformations defined by invertible slow-moving finite state automata 
can be represented with the help of the above-mentioned operators. 

Proposition 33. Let A be a slow-moving invertible finite state automaton. Then 
any transformation f defined by it can be represented in the form 

f = h\h2 • •. hkp, where hi G WG, p G SX, K > 0. (3) 

The converse is also true: if the transformation f can be represented in the form 
(3), then it can be defined by a slow-moving invertible automaton of finite type. 

Proof. Let A be an invertible slow-moving- automaton of finite type. Remove from 
its Moore diagram all the loops. Then there will be no more than one arc going 
from each vertex (since all the states are waiting states or rest states). 

In addition the obtained graph will not contain any oriented cycles (since A is 
an automaton of finite type). 

Let us fix some initial state q\ of the automaton. Let us move along the graph 
beginning from its vertex qo until we reach the vertex without edges coming fr om 
it (sooner or later it will happen since the number of vertices is finite and we 
cannot be twice in one and the same vertex). While doing it we shall visit vertices 
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corresponding to the waiting states q\, q2, • • • 1 Qk and to the rest state qk+i, where 
k > 0. Let qi be the xt-waiting state and let the corresponding output function 
be given by the permutation pi, where 1 < i < k. Let p be the output function 
corresponding to the rest state qk+\. Then the transformation / defined by the 
automaton A in its initial state qi can be represented in the form / = h\h2 • • • hkp, 
where hi = piXi]. 

Let us prove the converse statement. Let the transformation / be represented 
in the form / = h\h2 • • • hkp, where hi = PiXi). Then the automaton with the 
ij-waiting states qi (1 < i < k) and output functions pi together with the rest state 
qic+i and the output function p will define the transformation / . • 

To formulate the properties of the introduced operators we shall need one more 
denotation for them. Let p S S\, x & X. Set 

Let us agree that p° = id, and p1 — p, p S Sx-

Example 34. A slow-moving transformation 

s = invO]idl]idO]invl]idl]inv (4) 

may also be represented in the form 

From notation (4) it is clear how exactly the transformation acts, and what 
automaton defines it. However, notation in the form (5) turns out to be more 
convenient in many cases, for example, when one has to find a composition of two 
transformations or turn to the inverted transformation. 

Proposition 35. The operators from the set Wg have the following properties: 

1. Bijeetive transformation under the action of the operator in the form p0\ or 
pi] turn into a bijeetive one, and a finite automaton transformation into a 
finite automaton one. 

2. pxi}px2]... pxk]p = p, Vp £ Sx, Xi £ X, i = 1, k. 

3. (^jfoQg=(^j(fog),\/f,geTx^,a,b,c£X. 

J f~l, V/ G Tx", f is bijeetive. 
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6. invx o ( £ ) /o invv 
a + x 
b + y (invx o / o invv), V/ £ T\u,a,b,x,y £ X, 

addition here and further on is taken modulo 2. 

Proof. Property 2 follows directly from the definition of the operator px]. 

Let us prove Property 3. Let — pib], that is a = pi(b), and ^ ^ = pic], 

that is b = p2(c). Let us consider the action of the transformation ( 7 ) / ° \ n \ g 

on the word w £ X ^ in the next two cases 

1) w FciVi and 2) w = c*, 

Here and further on c is the symbol which is not equal to c, i. e. 1 — c, c* is an 
infinite word consisting only of the symbol c, c £ X, wi £ Xu 

1) (Fewi) = fab]/ op2c]g) (Fcwi) = 

= (Pi&]/) fa (<?c)g(w{)) = fab]/) (p2 (c)n
P2(c)g(w1)) = (*) 

Note that p2(c) = b, therefore p2(c) = b (since p2 is injective). Then (*) 
fab]/)(bHg(Wl)) = Pi{b)n

Pl(b)f(g(w1)) = P l (p2(c))n P l fa (c)) / (g (Wl)) 

l(pi°P2)c](fog)} (Fcwi) = Pl fa (c)) 
(.f°9) (Few i) (fog) (Fcw\) 

2) ab)fo[c^ (c*) = (Pib}fop2c]g) (?) = fab]/) (P2 (£)*) = 

• fab}/) (b*) = Pi (by = Pl fa (£))• = (fa O pa) c] ( / O 5 ) ) (£•) 

((Pl(Pc2(c)))(/o g))(n (f°ff))(c*) 

Properties 4 and 5 follow directly from Property 3. 
To prove Property 6 we shall use the relationships (6), which follow from Prop-

erty 1: 
a + x mv" =| | mv" invy = 

b + y 
mv" (6) 

From (6), applying Property 3, we obtain the required relationship. 
The first statement of Property 1 follows from the already proved Pfoperty 5. 
Let us prove that a finite automaton transformation / under the action of the 

operator px] £ WQ- turns into a finite automaton one. Let / be defined by some 
finite initial automaton Aq (with initial state q). 

Let us add to the set of states of this automaton a new state qo. At the same 
time let us extend the transition function at this state by n(x, qo) = qo', 7t( .t , qo) — q 
and the output function by \(x,qo) = X(x,qo) = p(x). It is evident that qo will be 
an x-waiting state. Let us choose this state the initial one. Then the obtained 
initial automaton A'qo will determine the transformation / . • 
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It follows from Property 2 of Proposition 35 that the representation (3) for slow-
moving transformation of finite type is not single-valued but it could be always 
brought to the form: 

pixi]p2x2]. ..pkXk]p, where p ± pk p,pi € Sx, Xi £ X, i-l,k (7) 

Let us call the representation (7) canonical. 

Proposition 36. Every slow-moving transformation of finite type has exactly one 
canonical representation. 

Proof. Assume that the transformation / have two different canonical representa-
tions: 

/ = P\X\}P2X2) .. .pkxk]p = pWi\P2x2] • • •P'k>x'k-]P' 

Let us suppose that there exists a number I such that Vi < I : pi = p\, Xj = x\, and 
pi ^ p\ or x/ ^ x[. Otherwise we have k ^ k' (without loss of generality we may as-
sume k < k') and Vi = l,k : p^ = p<, Xj = x\. This case will be considered later. 

Note that the situation k = k', Vi = l,fc : pi = p'it Xj = x\ and p ^ p' is 
impossible since one of the representations will not be canonical. 

If pi ± p[, it is easily seen that < 

f (xix2 .. • xi-iaw) = {pixi]p2x2) • • .pkxk}p) (xix2 ...xi-iaw) = 

= Pi(xi)p2{x2) • ..pi-i(xi-i)pi(a)u 
f (X1X2 . . . Xl-\aw) = {p'1x'1)p2x'2\...p'kx'k}p')(x1x2...x[-iaw) = 

= p'l (x 1 )P2 (x2 ) • • • p'l-1 (xi-1 )p[ (o)u' 

where a £ X,w, u, u' £ Xu. This is impossible since pi (a) ^ p[ (a). If pi = p{ = po, 
then we shall find a maximal number m such that po = p/ = Pi+\ = ... = p m , m < 
k (if m < k, then pm ^ p m + i ) . 

Similarly, rn' is a maximal number such that p{ — p'l+l = ... = p'rn,. Let us 
assume that m — I < m' — I, the case m — I > m' — I can be treated in a similar 
way. Then it is not difficult to see that 

f (xxx2 ... x;_ixi... xmaw) = (pixi]p2z2] • • -PkXkjp) (xxx2 ... x ;_ixi... xmaw) = 

= pi(xi)p2(x2) • • .pi-i(xi_i)p0 (xi...xm)r(a)u, 

where r pm+i if m < fc, and r = p if m = k (a £ X, w, u, u' £ Xw). On the other 
hand 

/ (xix2 ...xi-ixi... xmaw) = (pixijpa^l • • •p'k>x'k']p') (xix2 • • • xi-ixi • • • xmaw) = 

= P'I(XI)P'2(X2) • • -p'^iixi-^po (xi.. ,xm)p0(a)w' (8) 

which is impossible since po (a) ^ r (a). 
We need only consider the case when k < k' and Vi = l,k : Pi = p'it x< = x\. 

There are two subcases: 
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1. 3s > k : p'3 p and 

2. (Vs>k:p's=p)k(p'¿p) 

In the first subcase let s be the minimal number such that p'a ̂  p. In the word 
/ (x[x2 • • . x'saw) the symbol with number s+1 will be p's (a) on one side and p (a) 
on the other side. In the second subcase in the word / (x\x'2 ... x'kaw) the symbol 
with number fe+1 will be p' (a) on one side and p(a) on the other side. Therefore, 
in any cases we obtain a contradiction. • 

Let us consider a family of slow-moving transformations of finite type: 

c*o = inv, ai = idO]inv, a2 = idO]idO]inv, ..., an = idO]ninv, 

All the a, are the involutions, that is af — id. We will show that all the slow-moving 
transformations of finite type can be represented in the form of compositions of a*. 

Theorem 37. The following equality holds 

— /T,°o_,ao+ai ai+a2 an-2+On-i an_i+a„+f>n_i f>n-i+i>n-2 nb2+bi b,+bn bn — a 0 a x a 2 . . . a n _ 1 a n a n - i •••"2 "1 "0 
n > 1 (9) 

Proof. The proof will be made by induction on n. 
Base of induction: n = 1. 

Applying Property 6 of Proposition 35, we obtain 

I mva> = inva° o inva° o l ? invai o invb° o invb° = 
bo 

0 
bo + bo 

1 
0 

(inva° O inv0,1 O invb°) O i = mvao O I ?0 + j (inva° O invai O invb°) O invbo = 

= »0° 0 (T) (invao+ai+b°) o ab0° = off O a?0 + Q l + i , n o ab0" 

If ao+ai+6o = 0, then ^ (inva°+ai+bo) = id, otherwise ^ (im>a°+0 l+60) = ai . 
Transition of induction: Suppose that the statement of the theorem is valid for 
n = k — 1. Let us prove it for n = k: 

= invao O invao O fab° J U1 J • • • ) inv<i" 0 invbo 0 invbo = 
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Applying Property 6 of Proposition 35, we obtain 

fa o + ao 
bo + b o 

inva° o ' a i 
bi 

] mD"' o invbo 
Ofc-l 

o mv " = 

Applying the assumption of induction: 

£*n o 

mv u oft„'a "I „01+02 ̂ "2 +a-3 o "1 a0 ... a: ot-2+ofc-i ak-i+aic+bk-i 
fc-2 a fc-1 

o a pk-l+bk-2 
fc-2 ,. a b3+b2ab2+bi/^bl L>j oil ,,bo 

ao+ai aj +a2 o2+a3 a, 

o a 

' a a0 . a 

a0 ' o inv J | oinv = 

fc-2 a fc-i 

i>fc-l+f)fc-2 
fc-2 

i>3+i>2 _,f>2 +61 +6() a a, 0 o a. bo _ 

Applying Property 4 of Proposition 35 and the relationship c^ = a i + 1 , we 

obtain 

— "0 "1 'a; ... a fc-i OLu a fc-i . . . a ¡>2+(>!„, i>l+f>0.-,i>0 'a a. 0 

• 
Thus, a slow-moving transformation of finite type can be represented as follows: 

s = a^a^-.a^, (10) 

where 

(10.1) ir ir+1 for all r — l,k and 
(10.2) there exists an m, so that iv < iq, if p < q < m, and ip > iq, if m < p < q. 

On the contrary, if {¿r}^=1 is the sequence of nonnegative integers satisfying 
conditions (10.1) and (10.2), then it follows from Theorem 37 that the transforma-
tion s — ail ai2... ailc is slow-moving of finite type (it is not difficult to select the 
corresponding ai, bi € Z2). 

4.3 Noninvertible slow-moving automata of finite type 
Let us consider the slow-moving automata of finite type over the two-symbol al-
phabet X — {0,1} being a generalization of the corresponding invertible automata 
studied in Section 4.2. To describe the transformations defined by such automata, 
we need to extend the set of the operators considered in Section 4.2. 

Let p be some transformation from the set T\ = T2 = {id — e,inv = a, a, /3}. 
Extend the action of the transformation p to the sets X* and Xw symbol by symbol 
as in Section 4.2. 
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The operators pO] and pi] are introduced similarly as in Section 4.2: 

pO}:Tx„ ^Tx», pO]/ = g, 

where g acts according to the rule 

g (1"0V) - p ( ln0) / H ,Vw€X",n> 0, g (1*) = p (1*) 

and 
pl] : Tx" —» Tx", pl]f = g, 

where g acts according to the rule 

g (0"lu>) = p (0n l ) / (tu), Vu; G X", n > 0, g (0*) - p (0*) -

Set Ws = {px]\p&T2,x G X) = {p0],pl]|p GT2}. It is evident that WG C Ws. 

Proposition 38. Let A be a slow-moving automaton of finite type. Then any 
transformation f defined by it can be represented in the form 

f = hih2 ... hkp, where hi G Ws,p &T2,k>0 (11) 

The inverse statement is also true: if the transformation f can be represented 
in the form (11), then it can be defined by a slow-moving automaton of finite type. 

Proof. The proof is similar to that of Proposition 33. • 

Let us introducé one more notation for the operators from Wg: 

px) = ^p(x)j ,a = 1, P € { a , / ? } 
p G {id, inv} 

M y V 
The notation of the form I a I corresponds to the notation px] = ( , ) G Wg of 

W KJ 
Section 4.2. Set p° = id, and p1 = p, p G T2. Let x = 1 - x, x G X - {0,1} . 

Proposition 39. The following properties hold for the operators from VF5: 
1. Finite automaton transformations turn into finite automaton transformations 

under the action of. operators of the form pO] or pl]. 

2. px\]px2].. .pxk]p =p, for all p E T2,Xi e X,i = 1, k. 

3. for all g G Tx», a,be X, x€ X", n > 0 

(V*bx^j = a^ag (x), 
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4. for all g G Tx», a,be X,xG r , n > 0 

a\g\ (Tbx)=an+lg(x), f i a ) p ) (5*) = a* 

5. ^ a j / 0 g = ^ a j ( f o g ) , V f , g e T x » , a , b , c e X . 

fd\ / d \ 
6. invxo I a foinvy = a + x (invx 0 / 0 invv), V / G T\-*>, a, b,x,y G X, 

\bj \b + yj 
the addition here and further on is taken modulo 2. 

Proof. 

1. The proof is similar to that of Property 1 for the operators from WQ 

2. The proof follows from the definition of px). 

W 

3. Let p G {id, inv}, p(b) = a, p(b) = a. Then pb] = [ a j , hence from the 

definition of pb] the property follows. 
A\ 

4. Let p G {a,P},p(b) = p(b) = a. Then pb) = l a ] , hence from the definition w 
of pb) the property follows. 

5. Let us consider the action of the left and right sides of equality on words of 
the form c"cx, where n > 0, x G Xu and c* = c c . . . 
Using properties 3 and 4 we obtain: 

/<e\ 
a- J f° I b | g (cncx) = | a | / 

'0> 
b I g(cncx) = 0 /(r6 f f(x)) 

(anaf(g(x)), d = 0 _ fa"a ( / o g) (x), d = 0 _ ( f \ 
\an+1f (g (x ) ) , .d = l-\a»+1(fog)(x), d = 1 ~ 1") 

a | (fog)(?) 
Cj 
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0 \ / 0 
6. By Property 2, | a + i I invx = invxa]invx — invc; I b | invv 

a J \b + Vj 
/d\ fd\ / 0 \ 

invvb]inyv = invv. We have a / o invv = I a I / o I b I invv = 

W W V+y) 
d \ 
a I ( / o invy). If x = 0, then Property 6 turns into the last equality. 

yb + y) 
Otherwise, if d = 0 then Property 5 gives 

/0\ / 0 \ / 0 \ 
invx o I a I / o invy — I a + x I invx o I a I ( / o invy) — 

W \ a J \ b + y) 
( ° \ = a + x (invx o / o invy) 
\b + yj 

(l\ ( 1 \ If d = l , x = 1, then inv o I a / o invy = inv o I a I ( / o invv). By 
W \b + yJ 

( M ( M the definitions of the operators a and a + 1 we obtain inv o 
\b + yj \b + y) 

1 \ ( M a I ( / o invv) = I a + 1 I (inv o f o invv), which proves Property 6. 
^b + yj \b + y) 

• 
Similarly as in Section 4.2, we can introduce the notion of the canonical repre-

sentation of an arbitrary (not necessarily invertible) slow-moving finite automaton 
transformation of finite type which is unique. 

Let 

ao = inv, a\ = id0]inv, = id0]id0]inv, ..., an = idQ]ninv, 

PI = a0}id,p2 = id0}a0]id,p3 = id0]id0]a0]id, ...,PN= idO^aOjid,... 

7i = a0]inu,72 = id0]o:0]inw,73 = ¿d0]id0]a0]im;,... ,7„ = idO]n-1aO]m'u,... 
50 = a, = idOja, 62 = ¿d0]ici0]a, ..., 6n = idO]na, 

= cci, \2ii = Pi+i,\3,i = 7i+ii = Si,i > 0 

° (°\ 
It is evident that we have Aj^+i = irfO]Aj i = 0 I Xj ¿, i > 0,1 < j < 4. 

\oJ 
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All cti are involutions, a2 = id, all /3t, Si are idempotents, that is Pf = Pi,S2 — ¿¿. 
It is clear that ccg = id, <5q = ¿o- Let us prove the idempotency of Pi. We have 
Pi ( ln0x) = 0 n + 1 x, p\ ( ln0x) = Pi (0n + 1x) = pi (00"x) = 00nx = px ( ln0x), 
px (1*) = 0* = 00*,/?? (1*) = Pi (00*) = 00* = Pi (1*). Then, a2 = id0]i (a2) = 
id0}Hd = id, pf = idOY'1 (Pi) = idOY^pi = pu 8f '= idO]' (Jg) = idOj^o = <*«• It 
is evident that 7, are not idempotents. 

Theorem 37 can be generalized to the following: all the slow-moving transfor-
mations of finite type can be represented in the form of compositions of «¿, A , 7t, 
(or which is the same Aj,t, i > 0,1 < j < 4). 

Theorem 40. Any slow-moving transformation of finite type f = hih2... hup, 
where hi 6 Wg, p &T2, k > 0, can be represented in the form 

f = /1 o /2 o • • • o fr, r > 0, f j € {Aai<|t > 0,1 < s < 4}, j = Î~F (12) 

More exactly, if hi 
'Ci-1 
bi-i I , ai-i,bi-i,Ci-i £l, i — l,k then 

<CLi-lj 

f = L0 (co, a0, b0) o Lx (ci, ai, 61) o • • • o Lk-\(ck-i,ak-i,bk-i) o Ck (p) o 
O Rk_i (bk-i) o • • • o Ri (bi) O Ro (bo) (13) 

where 

Li (c, a, b) 
a? o a. 
a 
a 

R i ( b ) = a h o a b 

id, 

i+1> 
opi+i oabi+l, 
o 7 i + 1 o a J + 1 , 

if c — 0 
if c = l,a + b — 0 

if c = l,o + b = 1 

Ci(p) = 

if p = id 
if p = inv 
if p = a 

„ atioSi, ifp = P 

ai, 
Si, 

The form of the function (13) turns into the form of the function (12) by throw-
ing id from the composition (13), except for the case f — id. 

Proof. We will prove the theorem by induction on the number k. 
The base of induction. Let k = 0. Then / =p € {id, inv,a,P}, and 

id = Co (id) =ao° <20, inv = ao = Co (inv), a — 5o = Co (a), 
P — inv o a = ao o So = Co (P) 

that is / can be represented in forms (12) and (13). 
Suppose that the statement of the theorem holds for k = I and prove it for 

k — I + 1. Let g = h2hz... hkp. Then / = hig and by the induction hypothesis g 
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can be represented as g = LQ (ci, oi , 6i)oLi (02,02,62)°- • -°Lk-2 (cjk-i, a t - i , bfc-i)o 
Cfc-i (p) 0 -Rfc-2 (bk-1) ° • • • 0 Ro ( M - Note that idO]Li (c, a, 6) = Li+1 (c, a, 6), 
idO]Ri (b) = (6), idO]Ci (p) = Ci+1 (p), therefore 

zdOjg = L\ (ci,ai,6i) o L2 (c2,a2,b2) o • •• o Lfc_i (cfc_i,Ofc_i A - i ) o Ct (p)o 
o J R f c _ 1 ( 6 f c _ 1 ) o . . . o / ? 1 ( 6 1 ) 

There are two cases to consider: 
(°\ 

Let /11 = a . Then w 
'0\ / . /0\ \ 

a I g = inva o I inva o I a I g o m n ' o invb = 

V W / 
a ° \ \ • 

= ira;a o [ a + a I (¿nva 0 5 0 ¿ra;6) I oinvb = ag o (idO] (a^ ogoag)) o invb = 
\\b + bj J 

= ag o a? o idO}g o a^ o a£ = L0 (0, a, 6) o id0]g o i?o (6) 

from which (13) follows. 

Let hi — l a . Then w 
/1\ M 

a) g = I a i d O 6 g = 
>bj \b] \bj 

/ /1\ \ I M \ 
= ¿nt)" o I int;a o I a I id o znub I o mt)b o invb o I invb o I b I g o invb I o invb — 

V w / V W / 
/A /o\ 

= infa o I 0 I (inva o id o mu6) o I 0 1 (invb o g o invb) o invb = 

W W 
= ag o a0]ira;a+b o a j o o a j ° «o = ¿0 (1, a, b) o id(% o Rq (b) 

from which (13) follows. • 

The form (13) is not necessarily minimal. To reduce the number of its elements 
we can remove from it fragments of the form cti o on being equal to id. 

Conclusions 
In this article we describe groups defined by automata without branches over two-
symbol alphabets. Study of semigroups defined by automata without branches 
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is reduced to that of vectors over finite full transformation semigroups. We also 
study algebraic properties of the transformations defined by slow-moving automata 
of finite type. We prove that such invertible transformations can be expressed as 
compositions of members of the family {ai } . In the general case, any slow-moving 
transformation of finite type can be expressed as a composition of a*, ft, 7¿, <5,. 
Further we need to investigate properties of these transformation families and find 
all relations between these transformations. 
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A Classification Scheme for Bin Packing Theory 

Edward G. Coffman, Jr.* and Janos Csirik* 

Abstract 
Classifications of published research place new results in a historical con-

text and in so doing identify open problems. An example in wide use classi-
fies results in scheduling theory according to a scheme originated by Graham, 
Lawler, Lenstra and Rinnooy Kan [10]. A similar effort was made by Dy-
ckhoff [6] for cutting and packing problems. Such classification schemes can 
be combined with comprehensive bibliographies, e.g., the one provided for 
scheduling theory by Bruckner1. This paper describes a novel classification 
scheme for bin packing which is being applied by the authors to an extensive 
(and growing) bibliography of the theory. Problem classifications are supple-
mented by compact descriptions of the main results and of the corresponding 
algorithms. The usefulness of the scheme is extended by an online search en-
gine. With the help of this software, one is easily able to determine whether 
results already exist for applications that appear to be new, and to assist in 
locating the cutting edge of the general theory. 

1 Introduction 
For given positive reals a\,... ,an and b\, b2,..., classical bin packing algorithms 
partition some subset of { a i , . . . , a n } into blocks B\,B2, • • • ,Bj such that the levels 
£(Bi) := flfc satisfy the sum constraints i(Bi) < bi, 1 < i < j. This 
definition embraces several packing problems, depending on the way the subset of 
the ai's and the integer j are chosen. In bin packing terms, the ai are called items, 
the blocks Bi are called bins with respective capacities or sizes bi, and the partitions 
are called packings; the notion of packing items into a sequence of initially empty 
bins helps visualize algorithms for constructing partitions. It is also helpful in 
classifying algorithms according to the various constraints under which they must 
operate in practice. The items are normally given in the form of a sequence or list 
L= (ai,..., an), although the ordering in many cases will not have any significance. 
To economize on notation, we adopt the harmless abuse whereby ai denotes both 
the name and the size of the i-th item. The generic symbol for packing is V\ the 

•Department of Electrical Engineering, Columbia University, 1312 S.W. Mudd, 500 West 120th 
Street, New York, NY 10027, USA. E-mail: egcaee.columbia.edu 

t Department of Computer Science, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary. 
E-mail: csirikainf.u-szeged.hu 

1 Available at http://www.mathematik.uni-osnabrueck.de/research/OR/class/ 
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number of items in V is denoted by \P\ and the norm of the packing is defined as 
the sum of the sizes of the nonempty bins: Ĥ H :— Y ,̂e(Bi)>o majority 
of problems being classified, the entire list is packed, so 1̂ 1 = n and the index j 
of the last occupied bin is the packing measure of interest. It is also common to 
have all bin sizes the same, in which case the bin size is denoted simply by b and 
a,i < b is assumed for all i. Further,' when b functions only as a scale factor, it 
is usually normalized to 1; in this case, the norm reduces simply to the number of 
bins in the packing, i.e., j = HPy. The term wasted space has the obvious meaning, 
WN-ZI^ai-

With bin sizes given by context, let VA(L) denote the packing of L produced by 
algorithm A. In the literature, one finds the notation A(L) representing properties 
such as IIT̂ C^OH; but since A(L) may denote different properties for different prob-
lems (the same algorithm A may apply to problems with different objective func-
tions), we will need the alternative notation on occasion. The more general forms 
with b specified are V(L, b) and A(L, b), but the bin size will be omitted whenever 
it has been normalized to 1. The minimum of ^(LJU over all partitions of L sat-
isfying the sum constraints will have the notation: OPT(L) := minp||'P(L)||, the 
notation OPT(L) suffering from the same ambiguity as before, i.e., the objective 
function to which it applies is determined by context. Moreover, in contrast with 
other algorithm notation, OPT does not denote a unique algorithm. 

The classical theory refers to the study of algorithms satisfying various operating 
constraints which try to minimize, usually only approximately, the number of bins 
\\V{L)\\ under the sum constraints £(Bi) < 1. Dual bin packing changes the sum 
constraints to ¿(Bi) > 1 and asks for a packing which maximizes the number of bins 
under these new constraints. Dual bin packing is often called bin covering, a term 
that we will use here. These combinatorial optimization problems are NP-hard; 
with problems defined on restricted item sizes or number of items per bin being the 
major exceptions, this will be the case for nearly all problems in the classifications 
below. 

To fix ideas, consider the Next Fit (NF), First Fit (FF), and Best Fit (BF) 
approximation algorithms for classical bin packing. Each algorithm packs all the 
items of L one by one in the sequence ai, a2,. • •, an. NF packs items in B\ until it 
encounters an item, say a*, for which â  > 1 — Yli<j<i a,-; that is, al does not fit in 
the space left over by a i , . . . , aj_i. At that point ~BX is closed in the sense that no 
further items can be packed in B\, and aj is placed as the first item in B2. This 
bin-by-bin process repeats, packing the items ait ai+i,... ,an into B2, B3,..., and 
continues until no items remain to be packed. The bin being packed at any given 
step is called the open bin. Under FF and BF all bins remain open throughout the 
packing process. At the i-th step under FF, ai is packed in the lowest indexed bin 
with sufficient space (of course, this may have'to be the empty bin just beyond the 
last nonempty bin). At the i-th step under BF, a» is packed into a bin in which it 
fits best, i.e., with the least space left over. In case two or more bins satisfy this 
criterion, the lowest indexed of these bins is chosen. 

Another dual of classical bin packing, called multiprocessor or makespan schedul-
ing, takes the number, m, of bins to be constant and minimizes the capacity b such 



A Classification Scheme for Bin Packing Theory 49 

that L can be packed into m bins of capacity 6; again, the norm ||P(L)j| = rnb is 
minimized, but in this case via b for fixed m. List scheduling (LS) is a classical 
algorithm for this problem and is organized like WORST FIT (a misnomer in the 
makespan context): the next item to be packed is put in a least-full bin, with ties 
resolved in favor of lower indexed bins. 

Problems fixing the number of bins fall within scheduling theory whose origins 
in fact predate those of bin packing theory. In scheduling theory, which is very large 
in its own right, makespan scheduling is more likely to be described as scheduling 
a list of tasks or jobs (items) on m identical processors (bins) so as to minimize 
the schedule length or makespan (bin capacity). Our incursion into scheduling 
problems will be limited to the most elementary duals and applications of bin 
packing problems, such as the one above. 

The most common approach to the analysis of approximation algorithms has 
been worst-case analysis by which the worst possible performance of an algorithm is 
compared with optimal performance. (Detailed definitions will be provided shortly.) 
The term performance guarantee puts a more positive slant on results of this type2 . 
Probability models also enjoy wide use, and are growing in popularity, as they bring 
out typical, average-case behavior rather than the, normally quite rare, worst-case 
behavior. In probabilistic or stochastic analysis, algorithms have random inputs; 
the items are usually assumed to be independent, identically distributed random 
variables. For a given algorithm A, A(Ln) is a random variable whose distribution 
becomes the goal of the analysis. Because of the difficulties inherent to these 
problems, even for elementary algorithms, one must often settle for weaker results, 
such as bounds on tail probabilities and asymptotic (large-n) estimates of expected 
values. 

An analysis combining aspects of both the combinatorial and probabilistic ap-
proaches is that of stochastic bin packing, in which a typical problem is to find a 
packing algorithm that optimizes the expected value of some performance measure. 
These problems are almost always substantially more difficult extensions of prob-
lems that are already quite difficult. The classification scheme will have very few 
opportunities to cite such results. 

The scheme for classifying problems and solutions will take the form of five fields: 
arena, objective function, class of algorithms, results, and constraints. The arena 
field describes the nature of the bins3, such as whether they have variable capacities; 
the objective function to be minimized or maximized under sum constraints refers 
to the number of bins of fixed capacity, the capacity of a fixed number of bins, 
etc.; the class of algorithms refers to paradigms such as online, offline, bounded 
space, etc. as well as to algorithmic approaches such as grouping and fitting, to be 
described in Section 3; the results field specifies performance in terms of absolute 
or asymptotic worst case ratios, problem complexity, etc.; and constraints refer 

2 So also does the term competitive analysis, which usually refers to a worst case analysis 
comparing an on-line approximation algorithm with an optimal offline algorithm. 

3The present classification of one dimensional problems will eventually be extended to higher 
dimensions, in which case the arena field will also specify problem dimensionality (e.g., packing 
2-dimensional bins and strip packing. 
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to limitations in problem parameters, such as a minimum placed on item sizes, 
a restriction of all data to be integers, and so on. The classification scheme is 
intended for general use as a compact means for referring to packing problems; 
however, in the entries of the bibliography, the classification will be supplemented 
by a brief description of the algorithms studied and the results (typically, but not 
always, bounds of some kind) derived for the algorithms. 

In what follows, Section 2 covers typical results and performance measures, 
Section 3 describes fundamental algorithms, and then Section 4 contains the details 
of the classification scheme. The many annotated examples in Section 5 are meant 
to familiarize the reader with classification criteria and their limitations. 

An updated, classified bibliography with a search engine will be available at 
http: / /www. inf. u-szeged. hu/~csirik. 

2 Results 
There are many forms results take, but the most common in combinatorial anal-
ysis are performance ratios or guarantees, which give the performance of an ap-
proximation algorithm relative to an optimal algorithm. Hereafter, dependence of 
performance ratios on a means that all item sizes satisfy a* < a; this dependence 
is omitted if there is no upper bound on item size, i.e. a = b. For classical bin 
packing, the asymptotic worst-case ratio (or bound) for algorithm A is defined as 

R%(a) :=lim sup R™ (a) 
k—*oo 

with 
« " ( „ ) : - sup № } 

L-.OPT(L)=k I « J 

where OPT(L) refers to the optimal offline result. A less formal but more instruc-
tive definition describes R ^ ( a ) as the smallest multiplicative constant such that 
for some additive constant K < oo, 

A{L) <R%(a)-OPT(L) + K 

for all L. 
The absolute worst-case ratio is simply 

The comparison of algorithms by asymptotic bounds can be strikingly different 
from that by absolute bounds. Generally speaking, the number of items n must 
be sufficiently large (how large will depend on the algorithm) for the asymptotic 
bounds to be the better measure for purposes of comparison. Note that the ratios 
are bounded below by 1; the better algorithms have the smaller ratios. 
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The performance guarantees for covering have a complementary form. The 
asymptotic ratio is 

:= liminf RA(k) 
k—>oo 

where 
RA(k):= inf 

L-.OPT(L)=k [ k J 
and the absolute ratio is 

L \ OPT(L) J 
Note that the covering ratios are bounded above by 1; the better algorithms have 
the larger ratios. 

Similar performance guarantees are defined for scheduling and a number of 
other problems. As can be seen, the ratio notation above is generic; the context 
will determine which definition is in force. When all item sizes are at most the item 
size parameter a, these bounds are denoted by R'A(a) and RA(oi)-

The determination of time complexities of fundamental algorithms and their 
extensions or adaptations is usually routine. The analysis of parallel algorithms for 
computing packings is an example where deriving time complexities is not routine. 
However, the research in this area, in which results take the form of complexity 
measures, has been very limited. 

Several results quantify the trade-off between the running time of algorithms and 
the quality of the packings. They produce Polynomial Time (or Fully Polynomial 
Time) Approximation Schemes [9], denoted by PTAS (or FPTAS). In simplified 
terms, a typical form of such results is illustrated by: "Algorithm A produces 
packings with 0(e) expected wasted space and has a running time polynomial in 
1/e." 

Average-case results may be in the form of expected ratios like 1ERA(L) or 
simply expected performance ~EA(L), usually in terms of EOPT(L) . (These com-
parisons need not be the same of course.) In many cases, tails of the distributions 
are estimated in the process of deriving estimates for expected values. 

3 Fundamental algorithms 
A number of such algorithms will be incorporated directly into the classification 
notation. These include the FIT algorithms FF, BF, and WF which we have 
already described. In some cases only the algorithmic approach or structure will 
be described, with extensive details omitted. The four structures most often used 
in defining algorithms are described below. 

3.1 Fitting algorithms 
These refer not only to those just mentioned, but also their offline decreasing coun-
terparts denoted by NFD, FFD, BFD, and WFD, where the D stands for decreasing. 
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In each case, the algorithm begins with an ordering of L by decreasing item size. 
The respective algorithms are then applied to the reordered list. The notation for 
the corresponding increasing counterparts simply replaces the D by an I. 

Bounded-space algorithms are a subcategory of fitting algorithms and are speci-
fied in many cases by a fitting rule, either FF or BF, and a closing rule. The closing 
rule is invoked when the next item to be packed does not fit into any of the open 
bins, in which case one of the open bins must be closed and a new bin opened. The 
choices for the bin to close are the lowest indexed bin (the First bin) and a bin with 
the highest level (a Best bin). 

•3.2 Grouping algorithms 

Grouping is a standard technique that has been studied at great length with many 
variations. Essentially, it refers to schemes that pack/schedule items based on 
group membership, where groups are defined by item size. A primary example 
called HARMONIC and denoted by is based on a partition of the interval (0,1] 
into k subintervals, where the partitioning points are 1 /2 ,1 /3 , . . . , 1/k. Each of 
these subintervals corresponds to a different group, and.each has its own open bin; 
items belonging to a given group/subinterval are packed only into the corresponding 
open bin. If a new item arrives that does not fit into the open bin of its group, 
the bin is closed and a new bin of that type is opened. Thus, the packing of 
items in each group is an NF packing. Grouping has been defined on other than 
the Hk intervals, and it has been combined with various greedy fitting algorithms. 
HARMONIC has received so much coverage in the literature that we adopt, along 
with the FIT acronyms, the symbol Hk as part of the notation. 

3.3 Iterative algorithms 

Iterating an algorithm designed for good performance under one objective function 
may be an effective algorithm under another objective function. For example, con-
sider approximation algorithms for the'problem of minimizing schedule makespans. 
One could iterate BFD on an increasing sequence of "candidate" makespans (bin 
capacities) until one is tried with success, which then yields the desired approxima-
tion of the minimum makespan. For iterative versions of fundamental algorithms 
we use the prefix I. Thus, the algorithm just mentioned would be called IBFD. In a 
similar approach, IWFD could be used as an approximation algorithm for classical 
bin packing. 

3.4 Limiting item sizes or the number packed per bin 

If the number of distinct item sizes is limited, to N say, then when N is relatively 
small, substantial improvements in algorithm design and performance are possible. 
Moreover, finite (if not actually small) N loses no generality in practice. This as-
sumption leads naturally to integer-program formulations. For example, consider 
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classical bin packing and define a configuration as any subset of items (with repli-
cation allowed) with a total size at most 1. Let Cjk be the number of items of the 
j-th size in the fc-th configuration, and let tk s tk(V) be the number of bins of V 
with the k-th configuration. If there is a total of M possible configurations, and 
if there are mj items of the j-th size in an instance I of the bin packing problem, 
then finding the size (norm) of an optimal packing is solving the following integer 
program for I: minimize Yl!k=\ tk subject to X^fcli tkCjk — nij, j = 1 , . . . , N, and 
tk > 0, k = 1,. . .M. 

Limiting the number of items per bin is a similar restriction, one that has often 
been used to greatly simplify average-case analysis. For example, for classical bin 
packing, there are simple algorithms packing at most 2 items per bin which yield 
smallest possible asymptotic estimates of expected wasted space, when item sizes 
are drawn independently and uniformly at random from [0,1]. 

4 Classification scheme 
The notation takes the form 

arena| objective Junction | algor ithm.class | results | constraints 

This section gives the current lists of entries for each field, with definitions where 
needed. The special terms or abbreviations adopted for entries will be given in bold 
face. 

4.1 Arena 
The basic arena as a sequence of one-dimensional bins has already been described. 
When sum constraints apply, and all bins have the same size b, then the arena field 
will be empty. When this field is not empty, terms like the following will appear. 

1. variable bi means that there is more than one bin size and that there is an 
unlimited supply for each size. 

2. open_end refers to problems in which sum constraints are relaxed as follows: 
bin Bi can always accommodate an item if ¿(Bi) < bi but it is closed as soon 
as ¿(Bi) > bi. Other notions of exceeding bin capacity will fall under the 
general term overfill. 

4.2 Objective function 
This function will most often be implicit in a term adopted for the corresponding 
combinatorial optimization problem. 

1. pack refers to the classical problem of minimizing ||7>(L)|| subject to the sum 
constraints ¿(Bi) < 1. 
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2. makespan refers to the problem of minimizing the common bin capacity 
needed to pack L into a given number of bins. The bin-stretching problem is 
a special case of the makespan problem in which the value of the bin size in 
the optimal packing is known in advance. For this problem, the term stretch 
will be appended to the performance-guarantee notation. 

3. deadline abbreviates deadline scheduling and refers to the problem of finding 
schedules in which a maximum cardinality subset of the tasks in L finish by 
a given deadline (capacity) 6 on a given number m of processors. 

4. pack_cover refers to the dual bin packing problem of maximizing \\V(L)|| 
subject to the dual constraints i(Bi) > 1. 

5. schedule.cover refers to the dual makespan scheduling problem of maximiz-
ing the makespan b for fixed m such that £(Bi) > b. 
In principle, there are covering versions of deadline scheduling as well, but we 
have encountered no research on these problems. One such problem is: 

6. deadline_cover names the problem of minimizing the total size of the subset 
of tasks needed to cover a given number m of processors with a given deadline 
b. 

4.3 Algorithm class 
1. offline algorithms have no constraints beyond the intrinsic sum constraints; 

an offline algorithm simply maps the entire list L into a packing V(L). Ef-
fectively, all items are known in advance, so the ordering of L plays no role. 

2. online algorithms sequentially assign items to bins, in the order encountered 
in L, without knowledge of items not yet packed. Thus, the bin to which at 

is assigned is a function only of o i , . . . , a*. Note that NF, FF, and BF are all 
online. 

3. bounded space algorithms decide where an item is to be packed based only 
on the current contents of at most a finite number k of bins, where k is a 
parameter of the algorithm. Note that FF and BF are not bounded space 
algorithms, but NF is, with k = 1. A more precise definition and further 
discussion of these algorithms appear later. 

4. linear-time algorithms have 0(n) running time. In fact, a more precise 
statement can be made: all such algorithms classified here take constant time 
to pack each item. NF is clearly a linear-time algorithm, but FF and BF are 
not. 
The three characterizations above are orthogonal. But the literature suggests 
that the following convention will allow us to use one term in classifying algo-
rithms most of the time: Bounded space implies linear time and linear time 
implies online. Exceptions will be noted explicitly; below (under repack) we 
will see how offline algorithms can be linear time. 
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5. greedy. Any algorithm in a broad class of algorithms variously called rea-
sonable, fair, any-fit, or greedy is required to pack the current item into an 
open bin with sufficient space, in case such a bin exists; in particular, it can 
not choose to open a new bin in this case. We use the term greedy exclu-
sively to describe such algorithms. Scheduling algorithms satisfying a similar 
constraint are sometimes called conservative or work conserving. 

6. repack. There have been a number of studies devoted to packing problems 
which allow the repacking (possibly limited in some way) of items - moving 
an item, say aj, from one bin to another based on the sizes of items aj, j > i. 

7. dynamic packing introduces the time dimension; an instance L of this prob-
lem consists of a sequence of triples (dj, rj, di) with r̂  and dt denoting arrival 
and departure times, respectively. Under packing algorithm A, A(L,t) de-
notes the number of bins occupied at time t, i.e. the number of bins occupied 
by those items at for which ri < t < di. 

Conventions: Along with the algorithm class, the algorithm will be spec-
ified when possible. In many cases, the algorithm will be an adaptation or 
variant of some well-known algorithm, like FF for example, in which case the 
specification will have the form FF variant. 

4.4 Results 
Almost all results fall into the broad classes mentioned in Section 2. 

1. Asymptotic worst case ratios, where R ^ is the general entry with A specified 
where appropriate. 

2. Absolute worst case, with R a being the entry. 

3. Average case: A probabilistic analysis, usually leading only to expected val-
ues, is indicated. The entries adopt standard notation such as ~EiA(Ln) or 
Pr{j4(L„) > x} . In parentheses, a distribution or class of distributions will 
be given. Examples include (7(0, a) (the uniform distribution on [0,a]) and 
A(0,a) (the triangular distribution on [0,a], but if no distribution is spec-
ified then it is assumed to be general. Standard terms like unimodal and 
decreasing (referring to a density function), etc. will be encountered. Item 
sizes are assumed to be independent random variables in all cases, unless 
stated otherwise. 

4. Where possible, complexity of the problem will be given in the standard 
notation of problem complexity. 

5. Complexity of the algorithm refers to running-time complexity and will be 
signalled by the entry running-time. 
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Conventions: A paper classified as a worst-case analysis may also have 
complexity results (but not conversely, unless both types of results figure 
prominently in the paper, in which case both classifications will be given), 
and a paper given an average case classification may also have worst case 
results; here also, both classifications will be noted only if both worst-case and 
average-case analysis play major roles in the paper. Approximation schemes 
are classified as complexity results and have entries like PTAS, FPTAS as 
noted earlier. 

4.5 Constraints 

These typically introduce further limitations on the problem instance, or further 
properties of the algorithm classification. 

1. mutex stands for mutual exclusion and introduces constraints in the form of 
a sequence of pairs (a,, dj), i ^ j, signifying that at and dj can not be put in 
the same bin. 

2. items/bin < k gives a bound on the number of items that can be packed in 
a bin. 

3. a,i < a or a,i > a. These denote bounds on item sizes, the former being far 
more common in the literature. In the former case a is usually part of the 
result notation (see the next subsection) so in these cases, it is omitted from 
the classification. Throughout the bibliography, the symbol a is reserved for 
this purpose. These cases are often called parametric cases in the literature. 

A constraint that may refer as much to analysis as to algorithm design calls 
for discrete sets of items; as such it is not a significant practical constraint. 

4. discrete which means that item sizes are all multiples of 1/fc with b = 1. 
Equivalently, the bin size could be taken as some integer b and item sizes 

. restricted to the set { 1 , . . . , b}. 

5. restricted sizes refers to the problem where the number of different item 
sizes is finite. 

6. The symbol * refers to features or properties not classifiable within the 
scheme. 

Conventions: There are further interesting extensions which occur only in 
a few papers. In these cases we will use a special notation; a short description 
in each case will be given as a remark. , . 
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5 Examples 
The following examples should help familiarize the reader with the classification 
technique. 

1. Reference [4] gives an average-case analysis of the classical, bounded-space 
Next Fit algorithm for bin packing: 

|pack|bounded_space|E7VF(Ln), U( 0,1) 

Result: E N F ( L ) = ^EOPT(L) + 0(1), where item sizes are independent 
draws from U(0,1). 
Recall that the empty arena component implies that all bin levels are bounded 
above by 1, the common bin size. 

2. The classification of [13] shows a nonempty arena field: 

variable ¿>,|pack|offline| PTAS 

3. The classification of [12] gives another such example: 

open_endjpack|online; o f f l i n e b o u n d ; FPTAS 

Results: For the open-end bin packing problem any online algorithm must 
have an asymptotic worst-case ratio of at least 2. Next Fit achieves this ratio. 
There is a fully polynomial approximation scheme for this problem. 

4. The classification of [2] illustrates a makespan problem: 

|makespan|online|ii^ stretch 

Results: A combined algorithm achieves a worst case bound of 1.625. The 
best lower bound for any online algorithm is 4/3. 

5. Reference [3] shows a deadline objective function: 

|deadline|offline; WFI, FFL\RA 

R e s u l t s : RWFI = \,RFFI = §• 

6. Reference [5] is classified as a covering problem. 

|pack_cover|onlme|/?5f bound 

Results: Asymptotic bound: R°G < 1 / 2 for any online algorithm A. There 
exists an asymptotically optimal online algorithm. 
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7. The classification of [7] is 

|pack|ofHine; combined BF, FFD variant 

Algorithm: Combined Best Fit (CBF) which takes the better of the First 
Fit Decreasing solution and Best Two Fit (B2F) solution, where the latter 
algorithm is a grouping version of Best Fit limiting the number of items per 
bin. 
Results: 

— 5/4> fH < Rcbf < I 
Note that the word 'variant' may be simplistic in that it occasionally hides 
details of relatively complicated algorithms. 

8. Reference [8] shows an example for combination of two algorithm classes: 

|pack|bounded_space, repack|i?/i 

Algorithm: REP3: an adaptation of FFD using three open bins at any 
time. 
Result: R^Ep3 « 1.69... . 

9. The classification of [11] illustrates a constraint: 

|pack|offiine; FF variant|i?y |items/bin < k 

Result: 
27 
10 

37 ,00 . , '27 24 \ 
10A: 

where FFfc is the obvious adaptation of FF. 

10. For [14], the classification mentions yet another constraint: 

|pack|bounded_space; H^ variant|/?^|0(log k) open bins 

Result: R's>Hk (k) = R^k, where SH/; is a simplified version of H^ that uses 
only 0(log k) open bins at any time. 

11. Classification of [1] aggregates several results: 

|pack.cover|offline, online; NF, FFD, IWFD v a r i a n t s ^ 

Algorithms: Adaptation of Next Fit called DNF (a new bin is opened when 
the current open bin, say 5 , first overflows with item, say a,, but in this case 
a.i stays in B)\ of First Fit Decreasing with a parameter r (FFDr); and of an 
iterated version of Worst Fit (IWFD). 
Results: 

RDNF = FFDR = I f or all r , | < r < and RfWFD = ^ 
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Function Classes, and Functions of Boolean 

Variables* 

Miguel Couceirot and Stephan Foldes* 

Abstract 
The paper deals with classes of functions of several variables defined on an 

arbitrary set A and taking values in a possibly different set B. Definability 
of function classes by functional equations is shown to be equivalent to defin-
ability by relational constraints, generalizing a fact established by Pippenger 
in the case A = B = {0,1}. 

Conditions for a class of functions to be definable by constraints of a 
particular type are given in terms of stability under certain functional com-
positions. This leads to a correspondence between functional equations with 
particular algebraic syntax and relational constraints with certain invariance 
properties with respect to clones of operations on a given set. 

When A = {0,1} and B is a commutative ring, such B-valued functions 
of n variables are represented by multilinear polynomials in n indetermi-
nates in B[X\,..., Xn], Functional equations are given to describe classes of 
field-valued functions of a specified bounded degree. Classes of Boolean and 
pseudo-Boolean functions are covered as particular cases. 

Keywords: Function classes, class composition, stability, functional equa-
tions, relational constraints, function class definability, ring-valued functions, 
multilinear polynomial representations, linear equations, field-valued func-
tions of Boolean variables, Boolean functions, pseudo-Boolean functions. 

1 Introduction and Basic Definitions 

For arbitrary sets B and C, by a C-valued function on B we mean a map 

/ : Bn —> C 
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where n > 1 is called the arity of / . The essential arity of an n-ary C-valued 
function / : Bn —* C is defined as the cardinality of the set of indices 

/ = {1 < i < n : there are ai,... aj_i, a^ bi, a i + i , . . . , an with ai ± bi and 
f(ai,... , a j _ i , a i , a i + i , . . . , a n ) ^ / ( a i , . . . , a j _ i , bi, a i + i , . . . , a n ) } . 

For each i £ I, we say that the ith variable of f is essential. Note that the essential 
arity of / is zero if and only if / is constant. If B — C, then a C-valued function 
on B is called an operation on B. Operations on the two-element set B = {0 ,1} 
are usually refered to as Boolean functions. 

For any maps g\,...,gn '• D —> B, where D is any set and / : Bn —» C, 
the composition f(g\,...,gn) is defined as the map from D to C given by 
}{9\,---,9n){a) = f(9i(a),...,gn{a)), for every a £ D. 

Let A, B and C be arbitrary non-empty sets, X a class (i.e. set) of C-valued 
functions on B (of various arities), and J a class of B-valued functions on A (of 
various arities). The class composition XJ is defined as the set 

1J = {/(5i>- • • ,9n) | n,m > 1 , / n-ary in 1, g\,...,gn m-ary in J}. 

If J is a singleton, I = { / } , then we write f j for { f } J . We note that this 
construction underlies the various notions of subfunction and minor appearing e.g. 
in [13, 12,15, 3, 8, 4]. 

Consider arbitrary non-empty sets A, B, and C, and let 2 be a class of C-valued 
functions on B and J a class of B-valued functions on A. We say that X is stable 
under right composition with J if XJ C X. Similarly, we say that J is stable under 
left composition with X if XJ C J. Note that a clone on an arbitrary set A is 
simply a class. C of A-valued functions on A that contains all projections, and is 
stable under (left or right) composition with itself, i.e. CC C C (or equivalently, 
CC=C). 

Consider arbitrary non-empty sets A and B. A functional equation (for B-
valued function on A) is a formal expression 

Mf(si(vi , • • • > vp)) , . . . , f (5 m (v! , . . . , vp))) = 
= Mf(s ' i (vi , • • •, vP)), • • •, f(p'tivx,..., Vp))) (1) 

where m,t,p>\,h\\ Bm —> C, h2 : Bl —> C, each gi and g'^ is a map Ap —> A, the 
v i , . . . , Vp are p distinct symbols called vector variables, and f is a distinct symbol 
called function symbol. 

For n > 1, we denote by n the set n = { 1 , . . . , n } , so that an n-vector (n-tuple) 
v in An is a map v : n —> A. In this way, if g is an p-ary operation on A and 
vi,... ,vp are n-vectors in An, then g(v\,... ,vp) denotes the n-vector 

(g(vu ..., up)(l),. . . ,g{vi,.. .,vp)(n)) G An. 

For an n-ary B-valued function on A, f : An —> B, we say that / satisfies the 
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equation (1) if, for all vi,..., vp £ An, we have 

hi(f(gi(vi,.. -,vp)),..., f(gm{vu vp))) = 

= h2(f(g' xK • • •, vp)),..., f(g't(vu..., vp))). (2) 

A class (i.e. set) JC of B-valued functions on A is said to be defined, or definable, by 
a set £ of functional equations, if K, is the class of all those functions which satisfy 
every member of £. 

To illustrate, let A = B — {0,1}, m = 2, t = 1, p = 2, and let gi be the 
projection function (x,y) >-> x, g2 the conjunction (x,y) i—> xy, hi = g2, and h2 

the identity x i—> x. The functional equation (1) so specified defines the clone (Post 
class) of monotone Boolean functions. In a more free style of notation, this equation 
can be displayed as 

f(vi)f(vxv2) = f(viv2). 
When the specific context is well understood, we shall present functional equations 
in such more informal manner. 

Useful functional properties have often been advantangeously expressed by func-
tional equations. Classical examples include the linearity of F-valued functions on 
a field F, as well as monotonicity and convexity properties traditionally expressed 
by functional inequalities which are obviously equivalent to functional equations in 
max-plus language. More contemporary examples include the submodular prop-
erty of real-valued functions {0,1 } n —> R, and Post classes (clones) of Boolean 
functions traditionally characterized by relations. Many strong consequences of 
submodularity, such as the Hall-Rado theorems, follow directly from the charac-
terizing submodular inequality which is essentially a max-plus functional equation 
(see Welsh [14]). For Boolean functions, equations were systematically studied in 
[3] and, in a variant form, by Pogosyan [9]. Also, in [5] equations were shown to 
provide a measure of complexity, essentially in terms of the syntax of the functional 
equations used to define Post classes. 

2 Definability of Function Classes by Functional 
Equations and Relational Constraints 

An m-ary relation on A is a subset R of Arn, and thus the relation R can be viewed 
as a class (set) of unary maps from m to A. A function / : An —> A is said to 
preserve R, and R is said to be invariant under / , if fR C. R, where fR is the class 
composition {f}R as explained above. An m-ary A-to-B constraint (or simply, 
m-ary constraint, when the underlying sets are understood from the context) is 
a couple (R, S) where R C A"' and S C Brn. The relations R and 5 are called 
the antecedent and consequent, respectively, of the relational constraint (Pippenger 
[8]). A B-valued function on A, f : An —> B, n > 1, is said to satisfy an m-ary 
A-to-B constraint (R, S) if fR C S. A class K, of B-valued functions on A is said 
to be defined, or definable, by a set T of A-to-B constraints, if K. is the class of all 
those functions which satisfy every constraint in T. 
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As an example, the already mentioned clone of monotone Boolean functions 
can be equivalently defined by the single constraint ( < , < ) , where < denotes the 
less-or-equal relation on {0,1}. 

In [8], Pippenger has shown that in the Boolean case, i.e. when A = B = {0 ,1} , 
definability of a function class by functional equations is equivalent to definability 
by relational constraints. The following theorem is not restricted to the Boolean 
case, and not even contingent on the finiteness of the underlying sets. 

Theorem 1. Let A be an arbitrary non-empty set, and B any set with at least two 
elements. For any class K. of B-valued functions on A, the following are equivalent: 

(i) K, is definable by some set of functional equations; 

(ii) K, is definable by some set of relational constraints. 

Proof. To prove that (i) => (ii), it is enough to show that for every functional 
equation (1) there is a relational constraint (R, S), such that the B-valued functions 
on A satisfying the equation are exactly the same as those satisfying the constraint. 
Indeed, we can define the constraint (R, S) by 

R = {(9i{a),---,9m(a),g'i{a),...,g't(a)):aeAp}, 
S = { (6 i , . . . ,bm, b'i,..., 6't),G Bm+t : h\(b\,..., bm) = h2(b\,..., b't)}. 

Conversely, let us show that (ii) => (i). Let T be a set of constraints, and 
let K. be the class of B-valued functions on A defined by T. Consider the set 
T' of constraints obtained from T by removing all those constraints with empty 
antecedent. Clearly, T and T' define the same class K. of B-valued functions on 
A. Therefore, the proof will be complete if we can show that for every constraint 
(R, S) with R , ¿ 0 there is a functional equation (1) satisfied by exactly the same 
functions as those satisfying (R, S). 

Let m be the arity of (R, S). The construction of the equation (1) is based on 
the following facts. 

Fact 1. Given a non-empty relation R C Am, there is ap> 1 and a map g : Ap —> 
Am, such that the range of g is R. 

Fact 2. Given a relation S C Bm, there exist maps h\,h2 : Bm —» B, such that 

S = {b e Bm : fn(b) = h2{b)}. 

Using these functions g,h\ and h2, the equation (1) can be defined as follows: 
the integer m is the arity of (R, S), t = m, and p is the arity of g : Ap —» Am. For 
1 < i < m = t, let gi = g\ be the ith component of g, i.e. we have 

9(o) = (9i(a), •••,9m{a)) 

for all a G Ap. The maps hi, h2 in (1) are given by Fact 2. • 

It is not difficult to see that both Fact 2 and Theorem 1 itself would fail if we 
allowed B to be a singleton. However, the implication (i) => (ii) in Theorem 1 
would continue to hold. 
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3 Definability of Function Classes by Invariant 
Constraints 

The question of definability of Boolean function classes by constraints (R, S), where 
R, S C {0 ,1}" are of a special algebraic kind, was considered in [1]. Specifically, the 
relations R and S were required to be affine subspaces of the vector space {0, l } n 

over the two-element field GF(2). A subset of {0,1}™ is an affine subspace if and 
only if it is closed under the triple sum operation u + v + w, i.e. if and only if it is 
invariant under the clone £oi of constant-preserving linear Boolean functions - that 
is, functions which are the sum of an odd number of variables. (See e.g. Godement 
[6].) Also it is well known that the non-empty affine subspaces can be described 
as ranges of affine maps, and that affine hyperplanes can be described as kernels 
of affine forms, i.e. as sets on which a given form agrees with the null form. As 
shown in [1], this accounts for the definability of certain function classes by linear 
equations. 

In this section we consider general notions of closure for the antecedent R and 
the consequent 5 of a constraint (R, S), and we address the question of definability 
of classes of B-valued functions on a set A by such invariant constraints, without 
any restriction on the underlying sets A and B. 

Associativity Lemma. Consider arbitrary non-empty sets A, B, C and E, and 
let I be a class of E-valued functions onC, J a class of C-valued functions on B, 
and K, a class of B-valued functions on A. The following hold: 

(i) {XJ)K C 1(J1C); 

(ii) If J is stable under right composition with the clone of projections on B, then 
(IJ)K. = I(J/C). 

Proof. The inclusion (i) is a direct consequence of the definition of function class 
composition. Property (ii) asserts that the converse inclusion also holds if J is 
stable under right composition with projections. A typical function in T(JK) is of 
the form 

lmx), • • • i gn(hn\ J • • • , hnrrLn)) 
where / is in Z, the gi's are in J , and the hij's are in /C. By taking appropriate 
functions g'i,. • • ,g'n obtained from gi,... ,gn by addition of inessential variables 
and permutation of variables, the function above can be expressed as 

fig' lCuii • • • > him i, • • • > hni, • • •, hnrrin),... ,g'n(hn,..., himi, • • •, hn i,..., hnrrin)) 

which is easily seen to be in (IJ)K, . • 

Note that statement (ii) of the Associativity Lemma applies, in particular, if J 
is any clone on C = B. 

Let J- be a set of B-valued functions on A. If V is the clone of all projections on 
A, then J-V = T expresses closure under taking minors as in [8], or closure under 
simple variable substitutions in the terminology of [2]. 
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For a class T of ^-valued functions on A, an m-ary relation R on A is said to 
be T-invariant if TR C R. In other words, R is .T-'-invariant if every member of T 
preserves R. If two classes of functions T and Q generate the same clone, then the 
^-invariant relations are the same as the (/-invariant relations. (See Poschel [10] 
and [11].) Observe that we always have R C TR if T contains the projections, but 
we can have R C TR even if T contains no projections. (Take the Boolean triple 
sum xi + x2 + £3 as the only member of T.) 

For a clone C, the intersection of m-ary C-invariant relations is always C-invariant 
and it is easy to see that, for an m-ary relation R, the smallest C-invariant relation 
containing R in Am is CR, and it is said to be generated by R. (See [10] and [11], 
where Poschel denotes CR by Tc(R)-) 

Let C\ and C2 be clones on arbitrary non-empty sets A and B, respectively. If 
R is Ci-invariant and S is C2-invariant, we say that (/?, S) is a (Ci,C2)-constraint. 
The following result generalizes Lemma 1 in [1]: 

Lemma 2. Consider arbitrary non-empty sets A and B. Let f be a B-valued 
Junction on A, and let C be a clone on A. If every function in fC satisfies an 
A-to-B constraint (R,S), then f satisfies (CR,S). 

Proof. The assumption means that ( fC )R C S. By the Associativity Lemma, 
(fC)R = f(CR), and thus f(CR) CS. • 

A class K of B-valued functions on A is said to be locally closed if for every 
.B-valued function f on A the following holds: if every finite restriction of / (i.e 
restriction to a finite subset) coincides with a finite restriction of some member of 
1C, then / belongs to K.. 

Theorem 3. Consider arbitrary non-empty sets A and B and let C\ and C2 be 
clones on A and B, respectively. For any class K, of B-valued functions on A, the 
following conditions are equivalent: 

(i) K. is locally closed and it is stable both under right composition with C\ and 
under left composition with C2; 

(ii) fC is definable by some set of (C\,C2)-constraints. 

Proof. To show that (ii) => (i), assume that K. is definable by some set T of 
(Ci,C2)-constraints. For every (R,S ) in T , we have ICR C S. Since R is C\-
invariant, ICR = K,(C\R). By the Associativity Lemma, K(C\R) = (K,C{)R, and 
therefore (K.C\)R = ICR C S. Since this is true for every (R, S) in T we must have 
KCi C /C. 

For every (R,S ) in T, we have ICR C 5, and therefore C2(fCR) C C2S. By 
the Associativity Lemma, (C2K)R C C2{fCR) C C2S, and C2S = S because S is 
C2-invariant. Thus (C2K,)R C S for every (R, S) in T, and we must have C2K. C /C. 

To see that K is locally closed, consider / £ K., say of arity n > 1, and let 
(R, S) be an m-ary (Ci,C2)-constraint that is satisfied by every function g in K 
but not satisfied by / . Hence for some a x , . . . , a n in R, f(a},...,an) £ S but 
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g(al,..., a") £ S, for every n-ary function g in K.. Thus the restriction of / to the 
finite set { (a 1 ( i ) , . . . , an(i)) : i £ m } does not coincide with that of any member of 
fC. 

To prove (i) => (ii), we show that for every function g not in K, there is a 
(Ci, ¿^-constraint № S) which is satisfied by every member of K. but not satisfied 
by g. The class K. will then be definable by the set T of those (Ci,C2)-constraints 
that are satisfied by all members of fC. 

Note that K, is a fortiori stable under right composition with the clone containing 
all projections, that is, K. is closed under simple variable substitutions. We may 
assume that K. is non-empty. Suppose that g is an n-ary B-valued function on A 
which is not in /C. Since K, is locally closed, there is a finite restriction gp of g to 
a finite subset F C An such that gp disagrees with every function in K. restricted 
to F. Suppose that F has size m, and let a 1 , . . . , an be m-tuples in Am, such that 
F = { ( a 1 ^ ) , . . . , a"(i)) : i £ m} . Define Ro to be the set {a 1 , . . . ,a 7 1 } , and let 
S = { / ( a 1 , . . . , an) : f 6 K, f n-ary}. Clearly, (Ro,S) is not satisfied by g, and 
it is not difficult to see that every member of fC satisfies (Ro, S). As K, is stable 
under left composition with C2, it follows that S is C2-invariant. Let R be the 
Ci-invariant relation generated by Ro, i.e. R = C\RQ. By Lemma 2, the constraint 
(R, S) constitutes indeed the desired separating (Ci,C2)-constraint. • 

This generalizes the characterizations of closed classes of functions given by 
Pippenger in [8] as well as in [1] and [2] by considering arbitrary underlying sets, 
possible infinite, and more general closure conditions. In the finite case, we obtain as 
special cases of Theorem 3 the characterizations given in Theorem 2.1 and Theorem 
3.2 in [8], by taking C\ = C2 = V, and C\ =U and C2 = V, respectively, where 
U is a clone containing only functions having at most one essential variable, and 
V is the clone of all projections. Taking A — B — {0,1} and C\ = C2 = £oi, we 
obtain the characterization of classes of Boolean functions definable by sets of affine 
constraints given in [1]. For arbitrary non-empty underlying sets, Theorem 1 in [2] 
corresponds to the particular case C\ = C2 = V. In this case, from Theorem 1 and 
Theorem 3 we conclude the following: 

Corollary 4. Consider arbitrary non-empty sets A and B. The equationally de-
finable classes of B-valued functions on A are exactly those locally closed classes 
that are stable under right composition with the clone of projections on A. 

In certain cases, given a (Ci,C2)-constraint (R,S), R C Am, S C Bm, the 
construction of a functional equation given in the proof of Theorem 1 in the previous 
section can be refined to yield a functional equation with special algebraic syntax. 
To do this, one may seek to use, instead of arbitrary functions as given by Fact 1 and 
Fact 2 in the proof of Theorem 1, functions g\, • • • ,gm,h\,h2 of a particular kind 
still satisfying the conditions of these Facts. For example, in [1], the functions were 
chosen to be affine maps, based on the range-and-kernel theory of linear algebra. 
Another application of this strategy will be given in Section 4. 

Also, in certain cases, given a functional equation (1) with a special algebraic 
syntax, if the functions g\,... ,gm,g' ... ,g' t,h\,h2 appearing in the equation have 
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particular structure-preserving properties, then it may be possible to conclude that 
the construction of the constraint (R, S), as given in the first part of the proof 
of Theorem 1, yields relations R and S invariant under certain clones C\ and C2. 
Thus the affine functions appearing in the "linear" functional equations defined in 
[1] were used to construct affine constraints. The same principle, together with 
Theorem 3, will be used in Section 4 to show that certain natural function classes 
cannot be defined by a particular type of functional equations. 

4 Functions of Boolean Variables Valued in a Ring 
In this section we consider functions {0, l } n —> B, where B is a commutative ring. 
We view {0,1} as endowed with the two-element field structure, {0,1} = GF(2), 
as well as with the lattice structure where 0 < 1. If B is also {0,1} = GF(2), 
then these B-valued functions are called Boolean functions. If B is the field R 
of real numbers, then the functions under consideration are called pseudo-Boolean 
functions, which provide an algebraic representation for set functions V(E) —> R 
for finite E (see e.g. [4] for a recent reference). 

Every Boolean function {0 ,1 } " —> {0,1} is well known to be representable by a 
unique multilinear polynomial in n indeterminates over GF(2), i.e. a polynomial 
which is linear in each of its indeterminates, called its Zhegalkin polynomial, Reed-
Muller polynomial or ring-sum expansion. Also, pseudo-Boolean functions can be 
uniquely represented by multilinear polynomials in n indeterminates over R (see 
Hammer and Rudeanu [7]). 

Consider any commutative ring B with null and identity elements 0 b and 1 B, 
respectively. For a polynomial p G B[Xi,..., Xn] in n indeterminates, and an n-
tuple ( a i , . . . , an) G {0 ,1}" , for each a* let af denote 0b or l g according to whether 
aj is 0 or 1, and denote the evaluation p ( a f , . . . , a®) simply by p (a i , . . . , an). The 
B-valued function on {0,1} given by 

(a i , . . . ,an) i-» p (a i , . . . ,a„) 

is said to be represented by p. By a method similar to that used by Hammer 
and Rudeanu [7] in the case B — R, we show in the next theorem the existence 
of a unique multilinear polynomial representation for any B-valued function on 
{0,1} , for any commutative ring B with identity. This unifies the Zhegalkin and 
pseudo-Boolean polynomial representations. 

Theorem 5. Consider any commutative ring B with identity. For any n > 1, 
every B-valued function f on {0,1} , f : {0, l } n —> B, is represented by a unique 
multilinear polynomial p G B[Xi,..., Xn). 

Proof. The existence of representation is proved by induction on essential arity. For 
essential arity 0, i.e. for constant functions, representation by constant polynomials 
is obvious. For a function / : {0 ,1 } " —» B with essential arity m > 0, assuming the 
claim proved for lesser essential arities, and taking any index i such that the zth 
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variable of / is essential, let /0 and /1 be the n-ary 5-valued functions given by 

/ o (a i , . . . ,a„) = / ( a i , . . . a i _ i , 0 ,a i + 1 , . . . ,an ) 
/ i ( a i , . . . ,an ) = / ( a i , . . . aj_i, l , a i + i , . . . ,an). 

We have 

/(at,... ,a„) = (1 - af )/0(ai,... ,a„) + af/i(ai,... ,an) 

and both /0 and /1 have essential arity less than m. By the induction hypothesis, /0 
and /1 are represented by polynomials po and pi, respectively. Thus / is represented 
by the polynomial 

P=(l~ Xi)po + Xipx 
and if p had any powers of indeterminates with k > 1, by replacing each such 
occurrence by X j we would obtain a multilinear polynomial representing / . 

Uniqueness is proved by contradiction. Suppose that / had two distinct multi-
linear polynomial representations p and q. Then the multilinear polynomial p — q 
would represent the constant zero function. Let J be a set of indices of smallest 
possible size, such that the monomial c\\-€JXj occurs in p — q with coefficient 
c ^ Ob: such a J must exist if p — q is not the zero polynomial. But then the 
evaluation of p — q at ( a i , . . . , an), where cij = lg if j £ J and a,j = Ob otherwise, 
would be c Ob, contradicting the fact that p — q represents the constant zero 
function. Thus p — q must be the null polynomial, i.e. p = q. • 

Let / be a £?-valued function on {0,1}, / : {0, l } n —> B, where B is a com-
mutative ring with identity. The degree of / is the smallest non-negative integer d 
such that for every J C { 1 , . . . , n} of size | J |> d the coefficient of Wj^j X j the 
multilinear polynomial representation of / is zero. Thus the functions of degree 0 
are precisely the constants (including the constant zero function). 

Theorem 6. If B is any field of characteristic 2, and k > 1, 'then the class of 
B-valued functions on {0,1} having degree less than k is defined by the following 
functional equation (with vector variables vi,..., Vfcj.-

£ f ( I > ) = 0 (3) 
/ c { i fc} ¿e/ 

In (3) the inner summations refer to addition of vectors over the two-element 
field GF(2) = {0,1} , while the outer summation refers to addition in the field B. 
For 7 = 0, the empty sum J2vi represents the constant zero. 

iei 

Proof. First we prove that (3) is satisfied by every B-valued function on {0,1} 
having degree less than k. From the form of the equation (3), it is easy to see 
that the class of functions satisfying (3) is closed under linear combinations with 
coefficients in B. Therefore, it is sufficient to prove that, for n > 1, every n-ary B-
valued function / on {0,1} represented by a product of less than k indeterminates, 
i.e. of the form I l j e j Xj, \ J \< k, J C {1,..., n}, satisfies (3) . 
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Let v\,... ,Ufc be any n-vectors in {0,1}" . Let wJ be the characteristic vector 
of J in { 0 , l } n , i.e. wJ = (a i , . . . ,an ) , where a,j = 1 if j € J, and a,j = 0 otherwise. 
For every I C { 1 , . . . , k}, consider the vector wJ • (]T)ie/v*) i®' w^ere the 
product • is defined componentwise. Observe that there are 2* possible choices for 
/ , yet due to the size of | J |< fc, there at most 2 f c _1 distinct vectors of the form 
wJ • v i ) in ! }"• Therefore, there are distinct subsets I\, /2 of { 1 , . . . , fc}, 
such that 

wJ • (5Z vi) = wJ • (5Z vi) 
¿€/1 i€h 

and for the symmetric difference D of I\ and / 2 , we have 

i&D 

The 2fc subsets of { 1 , . . . , k}, are matched into pairs { / , I + D}, where I + D is the 
symmetric difference of I and D, and because / is represented by Yij^.i X j , by the 
definition of wJ it follows that for each such pair we have 

/(][>) = /(«/•(£ = E *)) = /( £ 
iei iti iei+D ieJ+D 

Therefore, due to the fact that the underlying field B has characteristic 2, the terms 
in the equation cancel pairwise. 

Conversely, suppose now that the n-ary function / is represented by a polyno-
mial of degree greater than or equal to k. We show that / does not satisfy the 
equation (3). 

Let g be the B-valued function on {0,1} represented by the sum of those mono-
mials in the polynomial representation of / which have degree less than k. By the 
first part of the proof, g satisfies (3). Working towards a contradiction, suppose 
that / satisfies (3). Given the form of equation (3), this is the case if and only 
if the n-ary function h = f + g, represented by the sum of all monomials in the 
polynomial representation of / having degree greater than or equal to k, satisfies 
(3). 

Let J be an inclusionwise minimal subset of { 1 , . . . , n}, such that the monomial 
c U j € J X j appears in the polynomial representation of h with coefficient c ^ 0/j. 
Note that | J |> k. We claim that if / (or equivalently, h) satisfies (3), then the 
function /ik represented by the monomial cEljekXj where k = { l , . . . , f c } , also 
satisfies equation (3). 

Observe that, by the construction in the proof of Theorem 1, equation (3) is 
equivalent to a constraint (R, S) whose antecedent R is the range of a linear map 
with codomain GF(2) m , i.e. R is a subspace of the vector space GF(2) m over 
GF(2). Thus by Theorem 3 it follows that the class K. of functions satisfying (3) 
is stable under right composition with the clone Co of 0-preserving linear Boolean 
functions. In particular, K. is closed under permutation and identification of vari-
ables, as well as under fixing variables to 0. It is not difficult to see that hk can be 
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obtained from h by a combination of these operations. In other words, if h satisfies 
the equation (3), then hk also satisfies the equation. 

Now, let vi,..., vk be the unit n-vectors e i , . . . , ejt in {0 ,1}" . We have 

vi) = O = c ^ 0 

/Ck ¿6/ i€k 

which shows that hy does not satisfy the equation (3), and yields the desired con-
tradiction. • 

In [1] it was shown that, for any positive integer k, the class of Boolean functions 
whose Zhegalkin polynomial has degree less than k, can be defined by "linear" 
equations. Theorem 6 above explicitly gives such an equation for every k > 1. 
For k = 1, the equation (3) can be rewritten as f(v) = f(0), and for k = 2, as 
f(v + w) = f (v ) + f(w) + f(0). 

If B is a field and A = {0,1} = GF(2), then a functional equation (1) is 
called linear if the functions g\,..., gm, g\,..., g't are all affine maps from the p-
dimensional vector space GF(2)P to GF(2), and hi,h2 are affine maps from the 
5-vector spaces Brn and 5 ' , respectively, to the scalar field B. (Recall that a 
function Fn —> F, where F is any field, is affine if and only if it is of the form 
(a i , . . . , an) <-> c\a\ + . . . Cnan + c, for fixed scalars c i , . . . , Cn, c in F.) Obviously, 
the functional equation (3) in Theorem 6 is linear. Our next result shows that the 
requirement on the characteristic of the underlying field is indeed essential. 

Theorem 7. For any field B of characteristic different from 2, and any k > 2, the 
class of B-valued functions on {0 ,1} having degree less than k is not definable by 
any set of linear functional equations. 

Proof. As in the proof Theorem 6, if there would be a k > 2 such that the class 
K. of B-valued functions on {0,1} having degree less than k is definable by some 
set of linear functional equations, then, using the construction given in the proof of 
Theorem 1, we would conclude that the class in question is definable by some set 
of constraints whose antecedents are affine subspaces of vector spaces over GF(2). 
These affine subspaces would be closed under the triple sum u + v + w, i.e. invariant 
under the clone £oi of constant-preserving linear Boolean functions. By Theorem 3, 
this would imply that K is stable under right composition with the clone £oi- We 
show that this is not the case. 

Consider the (k — l)-ary function / represented by the monomial X\... XK~I. 
Let T be the (k + l)-ary Boolean function in Coi given by 

(oi,..., ak+1) ak-1 + ak + ak+i 

Note that the B-valued function TB defined on {0,1} which is valued I s on exactly 
those vectors ( a i , . . . , afc+i) for which r ( a i , . . . , ak+1) = 1 and valued 0b otherwise, 
is represented by the polynomial 

+ XK + XK+I — 2XK-IXK — 2XKXK+I — 2XK-\XK+I + AXK-\XKXK+I 
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where + and — are to be interpreted in B. Thus, the composition f(fi,... ,fk-i), 
where FK-I = T and FI is the (k + l)-ary ith projection function 

(a i , . . . ,afe+i) >-> aj 

for k = 1 , . . . , k — 2, is represented by the polynomial in k + 1 indeterminates 

X\... Xk-2{Xk-i + Xk + Xk+i~ 
— 2Xk-iXk — 2XkXk+i — 2Xk~\Xk+\ + 4Xk-iXkXk+i) 

where + and — are to be interpreted in B. Prom the fact that B has characteristic 
different from 2, it follows that this polynomial has degree greater than k. • 

Note that for k = 1, the class of functions of degree less that k, i.e. the class of 
constants, is defined by the linear expression f(v) = f(0). In fact, from Theorem 7 
above it follows that, if B is any field of characteristic different from 2, then the 
set of constants is the only linearly definable class of B-valued functions on {0 ,1} 
of bounded degree. However, Corollary 4 guarantees the existence of equational 
characterizations of these classes, because bounded degree classes are stable un-
der right composition with the minimal clone V containing only projections. The 
following generalization of Corollary 3.3 in [4] provides an equation characterizing 
classes of bounded degree functions of Boolean variables, and whose codomain is 
any commutative ring with identity. 

Theorem 8. If B is any commutative ring with identity, and k > 1, then the class 
of B-valued functions on {0,1} having degree less than k is defined by the following 
functional equation (with vector variables vi,..., vkJ: 

ftA^ + D-1)"1^ A v<) = ° (4) 
¿ek / ck je/iek\{j} /¡¿a 

where k = {1 , . . . , k}. 

In (4) the summation refers to addition in the commutative ring B. Equation 
(4) was obtained in [4] as a combination of two opposite inequalities in the ordered 
real field B — R. Inequalities are. not available in general in a commutative ring, 
in particular in finite fields. However, the following direct proof, based on the 
principles used in establishing the functional inequality in Theorem 3.1 in [4], can 
still be used in the arbitrary commutative ring context. 

Proof. First we show that every B-valued function on {0,1} of degree less than 
k satisfies equation (4). As in the proof of Theorem 6, it is enough to show that 
every monomial of degree less than k satisfies equation (4), because every linear 
combination (with coefficients in B) of functions satisfying (4), also satisfies the 
equation. 

Let / be an n-ary B-valued function on {0,1} represented by I l j g j Xj, \ J \< k, 
J C {1 , . . . ,n}. Let wJ be the characteristic vector of J in {0 ,1}" . Let v\,... 
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be any n-vectors in { 0 , l } n , and let u denote their conjunction f\i€k Vi. For every 
j € k = { l , . . . , k}, let 

Uj = f\ Vi 
i6k\{j} 

and let the vector z(I) be defined by 

z{I) = wJ • (\J Uj) for 0 ^ J C k, and z(0) = wJ • u 

where the product • is defined componentwise. From the fact that k >| J |, it 
follows that there is an I € k such that 

wJ • u = wJ • Ul 

Fix such an index I. It is not difficult to see that, for every I C k, we have 

f(\/uj) = f(z(I)) and z(I) = z(I + {I}) 

and thus the terms in the sum 

/ ( A ^ + D - 1 ) " 1 / ^ ) 
i€k /Ck j€l 

cancel pairwise, i.e. the sum is zero, which shows that / satisfies (4). 
In order to complete the proof of Theorem 8, we need to show that if / is an 

n-ary function of degree greater than or equal to k, then equation (4) is not satisfied 
by / . Let g and h be the n-ary functions represented by the sum of monomials, in 
the polynomial representation of / , having degree less than k and greater than or 
equal to k, respectively. As in the proof of Theorem 6, / satisfies equation (4) if 
and only if h satisfies the equation. We prove that h does not satisfy (4). 

Let J be an inclusionwise minimal subset of n = { l , . . . , n } , such that the 
monomial c n^e J aPP e a r s in the polynomial representation of h, with coefficient 
c ^ OB- Note that | J |> k. Let JQ be any subset of J of size k. For every j € Jo, 
consider the n-vectors yj — (a i , . . . ,an) , where aj = 0, aj = 0 if i £ J, and a* = 1 
if i € J \ { j } . Let vi,..., Vk be defined as the vectors yj, j 6 Jo, in any order. Let 
u = Aiek vi> a n d for each j € k, let 

Uj = f\ Vi 
¿6k\{j} 

Observe that for / C k, all monomials in the polynomial representation of h are 
evaluated to zero on 

V ui 
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except in the case I = k, where the only monomial which has non-zero value is 
c rije j Xj, because the n-vector 

\J Uj = (oi,... ,an) 
;?€k 

is given by at = 1 if t € J, and at = 0 otherwise. Therefore, we have 

h(f\vi) + £ ( - l ) m M V = (~l) f cM V «>) = i-Vkc * 0 

¿ek /ck jei je k 

which shows that h, and thus / , does not satisfy equation (4). • 

Theorem 8 provides in particular an alternative equational characterization of 
classes of Boolean functions whose Zhegalkin polynomials have degree bounded by 
a positive integer k. 
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Intuitionistic computability logic* 

Giorgi Japaridze* 

Abstract 
Computability logic (CL) is a systematic formal theory of computational 

tasks and resources, which, in a sense, can be seen as a semantics-based 
alternative to (the syntactically introduced) linear logic. With its expres-
sive and flexible language, where formulas represent computational problems 
and "truth" is understood as algorithmic solvability, CL potentially offers a 
comprehensive logical basis for constructive applied theories and computing 
systems inherently requiring constructive and computationally meaningful 
underlying logics. Among the best known constructivistic logics is Heyting's 
intuitionistic calculus INT, whose language can be seen as a special frag-
ment of that of CL. The constructivistic philosophy of INT, however, just 
like the resource philosophy of linear logic, has never really found an intu-
itively convincing and mathematically strict semantical justification. CL has 
good claims to provide such a justification and hence a materialization of 
Kolmogorov's known thesis "INT = logic of problems". The present paper 
contains a soundness proof for INT with respect to the CL semantics. 

Keywords: computability logic, interactive computation, game semantics, 
linear logic, intuitionistic logic 

1 Introduction 
/ 

Computability logic (CL), introduced recently in [7], is a formal theory of com-
putability in the same sense as classical logic is a formal theory of truth. It un-
derstands formulas as (interactive) computational problems, and their "truth" as 
algorithmic solvability. Computational problems, in turn, are defined as games 
played by a machine against the environment, with algorithmic solvability meaning 
existence of a machine that always wins the game. 

Intuitionistic computability logic is not a modification or version of CL. The 
latter takes pride in its universal applicability, stability and "immunity to possible 
future revisions and tampering" ([7], p. 12). Rather, what we refer to as intuition-
istic computability logic is just a — relatively modest — fragment of CL, obtained 

"This material is based upon work supported by the National Science Foundation under Grant 
No. 0208816 
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by mechanically restricting its formalism to a special sublanguage. It was conjec-
tured in [7] that the (set of the valid formulas of the) resulting fragment of CL is 
described by Heyting's intuitionistic calculus INT. The present paper is devoted 
to a verification of the soundness part of that conjecture. 

Bringing INT and CL together could signify a step forward not only in logic 
but also in theoretical computer science. INT has been attracting the attention of 
computer scientists since long ago. And not only due to the beautiful phenomenon 
within the 'formulas-as-types' approach known as the Curry-Howard isomorphism. 
INT appears to be an appealing alternative to classical logic within the more tra-
ditional approaches as well. This is due to the general constructive features of its 
deductive machinery, and Kolmogorov's [14] well-known yet so far rather abstract 
thesis according to which intuitionistic logic is (or should be) a logic of problems. 
The latter inspired many attempts to find a "problem semantics" for the language 
of intuitionistic logic [5, 13, 16], none of which, however, has fully succeeded in jus-
tifying INT as a logic of problems. Finding a semantical justification for INT was 
also among the main motivations for Lorenzen [15], who pioneered game-semantical 
approaches in logic. After a couple of decades of trial and error, the goal of obtain-
ing soundness and completeness of INT with respect to Lorenzen's game semantics 
was achieved [3]. The value of such an achievement is, however, dubious, as it came 
as a result of carefully tuning the semantics and adjusting it to the goal at the cost 
of sacrificing some natural intuitions that a game semantics could potentially offer.1 

After all, some sort of a specially designed technical semantics can be found for vir-
tually every formal system, but the whole question is how natural and usable such a 
semantics is in its own right. In contrast, the CL semantics was elaborated without 
any target deductive construction in mind, following the motto "Axiomatizations 
should serve meaningful semantics rather than vice versa". Only retroactively was 
it observed that the semantics of CL yields logics similar to or identical with some 
known axiomatically introduced constructivistic logics such as linear logic or INT. 
Discussions given in [7, 8, 10, 11] demonstrate how naturally the semantics of CL 
emerges and how much utility it offers, with potential application areas ranging 
from the pure theory of (interactive) computation to knowledgebase systems, sys-
tems for planning and action, and constructive applied theories. As this semantics 
has well-justified claims to be a semantics of computational problems, the results 
of the present article speak strongly in favor of Kolmogorov's thesis, with a promise 
of a full materialization of the thesis in case a completeness proof of INT is also 
found. 

The main utility of the present result is in the possibility to base applied theories 
or knowledgebase systems on INT. Nonlogical axioms — or the knowledge base — 
of such a system would be any collection of (formulas expressing) problems whose 

1 Using Blass's [2] words, 'Supplementary rules governing repeated attacks and defenses were 
devised by Lorenzen so that the formulas for which P [proponent] has a winning strategy are 
exactly the intuitionistically provable ones'. Quoting [6], 'Lorenzen's approach describes logical 
validity exclusively in terms of rules without appealing to any kind of truth values for atoms, and 
this makes the semantics somewhat vicious ... as it looks like just a "pure" syntax rather than a 
semantics'. 
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algorithmic solutions are known. Then, our soundness theorem for I N T — which 
comes in a strong form called uniform-constructive soundness — guarantees that 
every theorem T of the theory also has an algorithmic solution and, furthermore, 
such a solution can be effectively constructed from a proof of T. This makes I N T 
a problem-solving tool: finding a solution for a given problem reduces to finding a 
proof of that problem in the theory. 

It is not an ambition of the present paper to motivationally (re)introduce and 
(re)justify computability logic and its intuitionistic fragment in particular. This 
job has been done in [7] and once again — in a more compact way — in [10]. An 
assumption is that the reader is familiar with at least the motivational/philosophical 
parts of either paper and this is why (s)he decided to read the present article. While 
helpful in fully understanding the import of the present results, from the purely 
technical point of view such a familiarity, however, is not necessary, as this paper 
provides all necessary definitions. Even if so, [7] and/or [10] could still help a less 
advanced reader in getting a better hold of the basic technical concepts. Those 
papers are written in a semitutorial style, containing ample examples, explanations 
and illustrations, with [10] even including exercises. 

2 A brief informal overview of some basic concepts 
As noted, formulas of CL represent interactive computational problems. Such prob-
lems are understood as games between two players: T, called machine, and J., 
called environment. T is a mechanical device with a fully determined, algorith-
mic behavior. On the other hand, there are no restrictions on the behavior of 
_L. A problem/game is considered (algorithmically) solvable/winnable iff there is a 
machine that wins the game no matter how the environment acts. 

Logical operators are understood as operations on games/problems. One of 
the important groups of such operations, called choice operations, consists of 
n,U, n , U , in our present approach corresponding to the intuitionistic operators 
of conjunction, disjunction, universal quantifier and existential quantifier, respec-
tively. A i f l . . . n A n is a game where the first legal move ("choice"), which should be 
one of the elements of { 1 , . . . ,n } , is by the environment. After such a move/choice 
i is made, the play continues and the winner is determined according to the rules of 
Ai\ if a choice is never made, ± loses. A\U.. .UAn is defined in a symmetric way with 
the roles of ± and T interchanged: here it is T who makes an initial choice and who 
loses if such a choice is not made. With the universe of discourse being {1 ,2 ,3 , . . . } , 
the meanings of the "big brothers" II and U of n and U can now be explained by 
ria:A(a:) = ,4(1) n A(2) n ¿ (3 ) n . . . and UxA(x) = A ( l ) U .4(2) U A{3) U . . . . 

The remaining two operators of intuitionistic logic are the binary o— ("intu-
itionistic implication") and the 0-ary $ ("intuitionistic absurd"), with the intu-
itionistic negation of F simply understood as an abbreviation for F o—$. The 
intuitive meanings of and $ are "reduction" (in the weakest possible sense) 
and "a problem of universal strength", respectively. In what precise sense is $ a 
universal-strength problem will be seen in Section 6. As for o—, its meaning can 
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be better explained in terms of some other, more basic, operations of CL that have 
no official intuitionistic counterparts. 

One group of such operations comprises negation -> and the so called parallel 
operations A, V,—>. Applying -> to a game A interchanges the roles of the two 
players: T's moves and wins become J_'s moves and wins, and vice versa. Say, if 
Chess is the game of chess from the point of view of the white player, then ->Chess is 
the same game as seen by the black player. Playing A\ A.. ,AAn (resp. A\V.. -VAn ) 
means playing the n games in parallel where, in order to win, T needs to win in 
all (resp. at least one) of the components Ai. Back to our chess example, the 
two-board game Chess V Chess can be easily won by just mimicking in Chess the 
moves made by the adversary in -¡Chess and vice versa. On the other hand, winning 
ChessU^Chess is not easy at all: here T needs to choose between Chess and -¡Chess 
(i.e. between playing white or black), and then win the chosen one-board game. 
Technically, a move a in the kth A-conjunct or V-disjunct is made by prefixing a 
with lk.'. For example, in (the initial position of) ( A u B ) V(CnZ) ) , the move '2.1' 
is legal for _L, meaning choosing the first n-conjunct in the second V-disjunct of the 
game. If such a move is made, the game will continue as (A U B) V C. One of the 
distinguishing features of CL games from the more traditional concepts of games 
([1, 2, 3, 6, 15]) is the absence of procedural rules — rules strictly regulating which 
of the players can or should move in any given situation. E.g., in the above game 
(AUB) V ( C n D ) , T also has legal moves — the moves '1.1' and '1.2'. In such cases 
CL allows either player to move, depending on who wants or can act faster.2 As 
argued in [7] (Section 3), only this "free" approach makes it possible to adequately 
capture certain natural intuitions such as truly parallel/concurrent computations. 

The operation —> is defined by A —> B — (->A) V B. Intuitively, this is the 
problem of reducing B to A: solving A —> B means solving B having A as an 
external computational resource. Resources are symmetric to problems: what is a 
problem to solve for one player is a resource that the other player can use, and 
vice versa. Since A is negated in (->^4) V B and negation means switching the roles, 
A appears as a resource rather than problem for T in A —» B. To get a feel of 
—> as a problem reduction operation, the following — already "classical" in CL — 
example may help. Let, for any m, n, Accepts(m, n) mean the game where none of 
the players has legal moves, and which is automatically won by T if Turing ma-
chine m accepts input n, and otherwise automatically lost. This sort of zero-length 
games are called elementary in CL, which understands every classical proposi-
tion/predicate as an elementary game and vice versa, with "true" = "won by T" 
and "false" = "lost by T". Note that then \~\x\~\xj(yAccepts(x, y) U -> Accepts(x,y)) 
expresses the acceptance problem as a decision problem: in order to win, the ma-
chine should be able to tell whether x accepts y or not (i.e., choose the true disjunct) 
for any particular values for x and y selected by the environment. This problem 
is undecidable, which obviously means that there is no machine that (always) wins 

2This is true for the case when the underlying model of computation is HPM (see Section 5), 
but seemingly not so when it is EPM — the model employed in the present paper. It should be 
remembered, however, that EPM is viewed as a secondary model in CL, admitted only due to the 
fact that it has been proven ([7]) to be equivalent to the basic HPM model. 



Intuitionistic computability logic 81 

the game \~\x\~\y(Accepts(x,y)L}-*Accepts(x,y)). However, the acceptance problem 
is known to be algorithmically reducible to the halting problem. The latter can be 
expressed by \~\xV~\y(Halts(xiy) LI ~^Halts(x,y)), with the obvious meaning of the 
elementary game/predicate Halts(x,y). This reducibility translates into our terms 
as existence of a machine that wins 

rtany(Halts(x,y) U-iHalts(x,y)) —> V~\x\~\y(Accepts{x, y) \J -*Accepts(x,y)). (1) 

Such a machine indeed exists. A successful strategy for it is as follows. At the 
beginning, T waits till _L specifies some values m and n for x and y in the conse-
quent, i.e. makes the moves '2.m' and '2.n\ Such moves, bringing the consequent 
down to Accepts(m,n) U ->Accepts(m,n), can be seen as asking the question "does 
machine m accept input n?". To this question T replies by the counterquestion 
"does m halt on n?", i.e. makes the moves ' l .m and 'l .n' , bringing the antecedent 
down to Halts(m, n) U -*Halts(m, n). The environment has to correctly answer this 
counterquestion, or else it loses. If it answers "no" (i.e. makes the move '1.2' and 
thus further brings the antecedent down to -iHalts(m,n)), T also answers "no" 
to the original question in the consequent (i.e. makes the move '2.2'), with the 
overall game having evolved to the true and hence T-won proposition/elementary 
game -*Halts(m,n) —> ->Accepts(m,n). Otherwise, if the environment's answer is 
"yes" (move '1.1'), T simulates Turing machine m on input n until it halts, and 
then makes the move '2.1' or '2.2' depending whether the simulation accepted or 
rejected. 

Various sorts of reduction have been defined and studied in an ad hoc man-
ner in the literature. A strong case can be made in favor of the thesis that the 
reduction captured by our —• is the most basic one, with all other reasonable con-
cepts of reduction being definable in terms of —>. Most natural of those concepts 
is the one captured by the earlier-mentioned operation of "intuitionistic implica-
tion" o—, with Ao—B defined in terms of —> and (yet another natural operation) 
o by Ao—B = (¿>1) —» B. What makes o— so natural is that it captures our 
intuition of reducing one problem to another in the weakest possible sense. The 
well-established concept of Turing reduction has the same claim. But the latter 
is only defined for non-interactive, two-step (question/answer, or input/output) 
problems, such as the above halting or acceptance problems. When restricted to 
this sort of problems, as one might expect, o— indeed turns out to be equivalent 
to Turing reduction. The former, however, is more general than the latter as it 
is applicable to all problems regardless their forms and degrees of interactivity. 
Turing reducibility of a problem B to a problem A is defined as the possibility to 
algorithmically solve B having an oracle for A. Back to (1), the role of _L in the 
antecedent is in fact that of an oracle for the halting problem. Notice, however, 
that the usage of the oracle is limited there as it only can be employed once: after 
querying regarding whether m halts of n, the machine would not be able to repeat 
the same query with different parameters m' and n', for that would require two 
"copies" of r\x\~\y(Halts(x,y) U-*Halts(x,y)) rather than one. On the other hand, 
Turing reduction to A and, similarly, our A o— . . . , allow unlimited and recurring 
usage of A, which the resource-conscious CL understands as -»-reduction not to A 
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but to the stronger problem expressed by bA, called the branching recurrence 
of A.3 Two more recurrence operations have been introduced within the frame-
work of CL ([10]): parallel recurrence A and sequential recurrence A. Common to 
all of these operations is that, when applied to a resource A, they turn it into a 
resource that allows to reuse A an unbounded number of times. The difference 
is in how "reusage" is exactly understood. Imagine a computer that has a pro-
gram successfully playing Chess. The resource that such a computer provides is 
obviously something stronger than just Chess, for it allows to play Chess as many 
times as the user wishes, while Chess, as such, only assumes one play. The simplest 
operating system would allow to start a session of Chess, then — after finishing or 
abandoning and destroying it — start a new play again, and so on. The game that 
such a system plays — i.e. the resource that it supports/provides — is A Chess, 
which assumes an unbounded number of plays of Chess in a sequential fashion. 
However, a more advanced operating system would not require to destroy the old 
session(s) before starting a new one; rather, it would allow to run as many parallel 
sessions as the user needs. This is what is captured by kChess, meaning nothing 
but the infinite conjunction Chess A Chess A.... As a resource, kChess is obviously 
stronger than kChess as it gives the user more flexibility. But A is still not the 
strongest form of reusage. A really good operating system would not only allow 
the user to start new sessions of Chess without destroying old ones; it would also 
make it possible to branch/replicate each particular session, i.e. create any number 
of "copies" of any already reached position of the multiple parallel plays of Chess, 
thus giving the user the possibility to try different continuations from the same 
position. After analyzing the formal definition of A given in Section 3 — or, better, 
the explanations provided in Section 13 of [7] — the reader will see that o Chess is 
exactly what accounts for this sort of a situation. A Chess can then be thought of as 
a restricted version of A Chess where only the initial position can be replicated. A 
well-justified claim can be made that oA captures our strongest possible intuition 
of "recycling" / "reusing" A. This automatically translates into another claim, ac-
cording to which Ao—B, i.e. ¿>1 —> B, captures our weakest possible — and hence 
most natural — intuition of reducing B to A. 

As one may expect, the three concepts of recurrence validate different principles. 
For example, one can show that the left U- or U-introduction rules of INT, which 
are sound with Ao—B understood as bA —> B, would fail if Ao—B was understood 
as kA —>. B or kA —> B. A naive person familiar with linear logic and seeing 
philosophy-level connections between our recurrence operations and Girard's [4] 
storage operator !, might ask which of the three recurrence operations "corresponds" 
to !. In the absence of a clear resource semantics for linear logic, perhaps such a 
question would not be quite meaningful though. Closest to our present approach 
is that of [1], where Blass proved soundness for the propositional fragment of I N T 
with respect to his semantics, reintroduced 20 years later [2] in the new context of 
linear logic. 

3The term "branching recurrence" and the symbols 4 and o— were established in [10]. The 
earlier paper [7] uses "branching conjunction", ! and => instead. In the present paper, => has a 
different meaning — that of a separator of the two parts of a sequent. 
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To appreciate the difference between —» and o—, let us remember the Kol-
mogorov complexity problem. It can be expressed by \~\uUzK(z, u), where K(z, u) 
is the predicate "z is the size of the smallest (code of a) Turing machine that re-
turns u on input 1". Just like the acceptance problem, the Kolmogorov complexity 
problem has no algorithmic solution but is algorithmically reducible to the halting 
problem. However, such a reduction can be shown to essentially require recurring 
usage of the resource I la;l 1 y(Halts(x, y)U^Halts(x, y)). That is, while the following 
game is winnable by a machine, it is not so with —> instead of o—: 

rkny(Halts(x, y) U ->Halts(x, y)) o - [luLlzK{z, u). (2) 

Here is T's strategy for (2) in relaxed terms: T waits till ± selects a value m for u 
in the consequent, thus asking T the question "what is the Kolmogorov complexity 
of m?". After this, starting from i — 1, T does the following: it creates a new 
copy of the (original) antecedent, and makes the two moves in it specifying x and 
y as i and 1, respectively, thus asking the counterquestion "does machine i halt on 
input 1?". If _L responds by choosing -iHalts(i, 1) ("no"), T increments i by one 
and repeats the step; otherwise, if A. responds by Halts(i, 1) ("yes"), T simulates 
machine i on input 1 until it halts; if it sees that machine i returned m, it makes 
the move in the consequent specifying 2 as |i| (here |i| means the size of i, i.e., 
|i| = log2i), thus saying that |i| is the Kolmogorov complexity of m; otherwise, it 
increments i by one and repeats the step. 

3 Constant games 
Now we are getting down to formal definitions of the concepts informally explained 
in the previous section. Our ultimate concept of games will be defined in the next 
section in terms of the simpler and more basic class of games called constant games. 
To define this class, we need some technical terms and conventions. Let us agree 
that by a move we mean any finite string over the standard keyboard alphabet. 
One of the non-numeric and non-punctuation symbols of the alphabet, denoted 
is designated as a special-status move, intuitively meaning a move that is always 
illegal to make. A labeled move (labmove) is a move prefixed with T or _L, with 
its prefix (label) indicating which player has made the move. A run is a (finite or 
infinite) sequence of labeled moves, and a position is a finite run. 

Convention 1. We will be exclusively using the letters F, 0 , $ , <f,T for runs, p 
for players, a, ß, 7 for moves, and A for labmoves. Runs will be often delimited with 
"(" and ")", with () thus denoting the empty run. The meaning of an expression 
such as (<J>, pa, T) must be clear: this is the result of appending to position (<J>) the 
labmove (pa) and then the run (r). ->r (not to confuse this -1 with the same-shape 
game operation of negation) will mean the result of simultaneously replacing every 
label T in every labmove of T by ± and vice versa. Another important notational 
convention is that, for a string/move a, TQ means the result of removing from T 
all labmoves except those of the form paß, and then deleting the prefix 'a ' in the 
remaining moves, i.e. replacing each such paß by pß. 
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The following item is a formal definition of constant games combined with some 
less formal conventions regarding the usage of certain terminology. 

Definit ion 2. A constant game is a pair A = (Lr*4, W n A ) , where: 

1. LrA is a set of runs not containing (whatever-labeled) move satisfying 
the condition that a (finite or infinite) run is in LrA iff all of its nonempty 
finite — not necessarily proper — initial segments are in Lr"4 (notice that 
this implies () € LrA ). The elements of LrA are said to be legal runs of A, 
and all other runs are said to be illegal. We say that a is a legal move for 
p in a position $ of A iff ($, pa) G L r A ; otherwise a is illegal. When the 
last move of the shortest illegal initial segment of T is p-labeled, we say that 
r is a p-illegal run of A. 

• 2. W n A is a function that sends every run T to one of the players T or JL, 
satisfying the condition that ifT is a p-illegal run of A, then W n A ( r ) p. 
When W n A ( r ) = p, we say that T is a p -won (or won by p j run of A; 
otherwise T is lost by p. Thus, an illegal run is always lost by the player who 
has made the first illegal move in it. 

Def in i t i on3 . Let A, B, A\, A2,... be constant games, and n G { 2 , 3 , . . . } . 

1. -¡A is defined by: T G Lr""4 iff^Y G L r A ; W n ^ ( r ) = T f W n ^ r ) = JL. 
2. Ax^...UAnis defined by: Y G L r ' 4 i n - n ' 4 n iffT = () or Y = (JJ, Q), where 

i G { l , . . . , n } andQ G L r A i ; W n A , n - n A » ( r ) = ± iffT = (_L»,e>, where 
i G { 1 , . . . ,n } and WnAi{Q) = ±. 

3. Ai A ... A An is defined by: T G L r A l A " AA '1 iff every move of T starts 
with 'i.' for one of the i G { l , . . . , n } and, for each such i, T1, G L r A i ; 
whenever T G L r A l A " A A " , W n A l A - A A n ( r ) = T iff, for each i G { l , . . . , n } , 
W n A ' ( r - ) = T. 

4- Ai U . . . LI An and Ai V . . . V An are defined exactly as A\ n . . . n An and 
A\A.. .AAn, respectively, only with "T" and "±" interchanged. And A —> B 
is defined as (->A) V B. 

5. The infinite ri-conjunction A\ n A2 n ... is defined exactly as A\ n . . . n An, 
only with "i G { 1 , 2 , . . . } " instead of "i G { 1 , . . . , n } ". Similarly for the infinite 
versions of U, A, V. 

6. In addition to the earlier-established meanings, the symbols T and J. also 
denote two special — simplest — games, defined by L r T = Lr -1 = { ( ) } , 
W n T ( ) = T and W n 1 ! ) = ±. 

An important operation not explicitly mentioned in Section 2 is what is called 
prefixation. This operation takes two arguments: a constant game A and a position 
$ that must be a legal position of A (otherwise the operation is undefined), and 
returns the game (<I>).4. Intuitively, (<3?)/! is the game playing which means playing 
A starting (continuing) from position That is, is the game to which A 
evolves (will be "brought down" ) after the moves of $ have been made. We 
have already used this intuition when explaining the meaning of choice operations 
in Section 2: we said that after _L makes an initial move i G { 1 , . . . ,n } , the game 
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Ail~l.. .n / l n continues as A{. What this meant was nothing but that (_Li)(/lin.. .n 
An) = Ai. Similarly, (Ti)(Ai U. . . U = Ai. Here is the definition of prefixation: 

Definition 4. Let A be a constant game and <3? a legal position of A. The game 
($)A is defined by: Lr^ " 4 = {r | e Lr"1}; Wn w ' 4 ( r> = T). 

The operation A is somewhat more complex and its definition relies on certain 
additional conventions. We will be referring to (possibly infinite) strings of Os and 
Is as bit strings, using the letters w, u as metavariables for them. The expression 
wu, meaningful only when w is finite, will stand for the concatenation of strings w 
and u. We write v> <u to mean that to is a (not necessarily proper) initial segment 
of u. The letter e will exclusively stand for the empty bit string. 

Convention 5. By a tree we mean a nonempty set T of bit strings, called 
branches of the tree, such that, for every w, u, we have: (a) if w £ T and u X w, 
then u € T; (b) wO £ T iff wl 6 T; (c) if w is infinite and every finite u with 
u < w is in T, then w £ T. Note that T is finite iff every branch of it is finite. A 
complete branch of T is a branch w such that no bit string u with w •< u ^ w is 
in T. Finite branches are called nodes, and complete finite branches called leaves. 

Definition 6. We define the notion of a prelegal position, together with the 
function Tree that associates a finite tree Tree($) with each prelegal position <3?, by 
the following induction: 

1. () is a prelegal position, and Tree() = {e}. 

2. ($, A) is a prelegal position iff $ is so and one of the following two conditions 
is satisfied: 

a) A = -Lu;: for some leaf w of Tree($). We call this sort of a labmove A 
replicative. In this case Tree($, A) = Tree(<&) U {rwO, twl}. 

b) X is ±w.a or Tw.a for some node w of Tree($) and move a. We call this 
sort of a labmove A nonreplicative. In this case Tree($, A) = Tree($). 

The terms "replicative" and "nonreplicative" also extend from labmoves to moves. 
When a run T is infinite, it is considered prelegal iff all of its finite initial segments 
are so. For such a T, the value of Tree(r) is the smallest tree such that, for every 
finite initial segment $ ofT, Tree($) C TYee(r). 

Convention 7. Let it be a bit string and F any run. Then will stand for the 
result of first removing from T all labmoves except those that look like put.a for some 
bit string w with w <u, and then deleting this sort of prefixes lw.' in the remaining 
labmoves, i.e. replacing each remaining labmove pw.a (where w is a bit string) by 
pa. Example: If,u = 101000... and T = (Te.ai,J.: ,J_l.a2 ,T0.a3 ,±1:,T10.a4) , 
then = ( T a i , l a 2 , Ta4 ) . 

Definition 8. Let A be a constant game. The game oA is defined by: 
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1. A position $ is in Lr6A iff$ is prelegal and, for every leaf w of Tree(<£>), 
G LrA . 

2. As long as T G L r M , W n M ( r ) = T iffWnA(T±u) = T for every infinite 
bit string u.4 

Next, we officially reiterate the earlier-given definition of o— by stipulating that 
A o— B =def bA —> B. 

Remark 9. Intuitively, a legal run T of ¿̂ 4 can be thought of as a multiset Z of 
parallel legal runs of A. Specifically, Z = {T - u | u is a complete branch of Tree(T)}, 
with complete branches of Tree(T) thus acting as names for — or "representing" 
— elements of Z. In order for T to win, every run from Z should be a T-won 
run of A. The runs from Z typically share some common initial segments and, put 
together, can be seen as forming a tree of labmoves, with Tree(T) — that we call 
the underlying tree-structure of Z — in a sense presenting the shape of that tree. 
The meaning of a replicative move w: — making which is an exclusive privilege of 
± — is creating in (the evolving) Z two copies of position r-™ out of one. And 
the meaning of a nonreplicative move w.a is making move a in all positions of 
(the evolving) Z with w < u. This is a brutally brief explanation, of course. The 
reader may find it very helpful to see Section 13 of [7] for detailed explanations and 
illustrations of the intuitions associated with our ¿-related formal concepts.5 

4 Not-necessarily-constant games 
Constant games can be seen as generalized propositions: while propositions in 
classical logic are just elements of {T, _L}, constant games are functions from runs 
to {T, J.}. As we know, however, propositions only offer a very limited expressive 
power, and classical logic needs to consider the more general concept of predicates, 
with propositions being nothing but special — constant — cases of predicates. 
The situation in CL is similar. Our concept of (simply) game generalizes that of 
constant game in the same sense as the classical concept of predicate generalizes 
that of proposition. 

Let us fix two infinite sets of expressions: the set {^i, i>2, • • •} of variables and 
the set {1 ,2 , . . . } of constants. Without loss of generality here we assume that 
the above collection of constants is exactly the universe of discourse — i.e. the set 
over which the variables range — in all cases that we consider. By a valuation we 
mean a function e that sends each variable 2; to a constant e(x). In these terms, 
a classical predicate P can be understood as a function that sends each valuation 
e to a proposition, i.e. constant predicate. Similarly, what we call a game sends 
valuations to constant games: 

4 For reasons pointed out on page 39 of [7], the phrase "for every infinite bit string u" here 
can be equivalently replaced by "for every complete branch u of 7Vee(r)". Similarly, in clause 1, 
"every leaf w of 7>ee(i>)" can be replaced by "every infinite bit string w". 

5 A couple of potentially misleading typos have been found in Section 13 of [7]. The current 
erratum note is maintained at http://www.csc.villanova.edu/~japaridz/CL/erratum.pdf 

http://www.csc.villanova.edu/~japaridz/CL/erratum.pdf
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Definition 10. A game is a function A from valuations to constant games. We 
write e[A] (rather than A(e)) to denote the constant game returned by A for valua-
tion e. Such a constant game e[A] is said to be an instance of A. For readability, 
we often write Lr* and W n f instead of L r 6 ^ and Wn6''4'. 

Just as this is the case with propositions versus predicates, constant games in 
the sense of Definition 2 will be thought of as special, constant cases of games in 
the sense of Definition 10. In particular, each constant game A! is the game A such 
that, for every valuation e, e[A\ = A'. Prom now on we will no longer distinguish 
between such A and A', so that, if A is a constant game, it is its own instance, with 
A = e[A] for every e. 

We say that a game A depends on a variable x iff there are two valuations 
ej, e2 that agree on all variables except x such that ei[A] ^ e2[A]. Constant games 
thus do not depend on any variables. 

Just as the Boolean operations straightforwardly extend from propositions to 
all predicates, our operations A,V, — f l , U, ¿, o— extend from constant games 
to all games. This is done by simply stipulating that e[...] commutes with all of 
those operations: ->A is the game such that, for every e, e[-iA] = —ie[A]; A n B is 
the game such that, for every e, e[A n B] = e[A] n e[B\; etc. 

To generalize the standard operation of substitution of variables to games, let 
us agree that by a term we mean either a variable or a constant; the domain of 
each valuation e is extended to all terms by stipulating that, for any constant c, 
e(c) = c. 

Definition 11. Let A be a game, x\,...,xn pairwise distinct variables, and 
ti,...,tn any (not necessarily distinct) terms. The result of substituting 
x\,...,xn by ti,...,tn in A, denoted A(x\/t\,... ,xn/tn), is defined by stipu-
lating that, for every valuation e, e[A(x\/ti,..., xn/tn)} = e'\A\, where e' is the 
valuation for which we have e'(xi) = e(ij), e'(xn) = e(tn) and, for every 
variable y & {xi,..., xn}, e'(y) = e(y). 

Intuitively A(xi/ti,... ,xn/tn) is A with n , . . . ,xn remapped to i i , . . . ,tn, re-
spectively. Following the standard readability-improving practice established in the 
literature for predicates, we will often fix a tuple (x\,..., xn) of pairwise distinct 
variables for a game A and write A as A(x\,..., xn). It should be noted that 
when doing so, by no means do we imply that x\,.. .,xn are of all of (or only) the 
variables on which A depends. Representing A in the form A(xi,...,xn) sets a 
context in which we can write A(t\,... ,tn) to mean the same as the more clumsy 
expression A(x\/t\,... ,xn/tn). 

In the above terms, we now officially reiterate the earlier-given definitions of the 
two main quantifier-style operations IH and U: 

f l x A ( x ) =def A( l ) fl A{2) n >1(3) f l . . . 

and 
UxA(x) =def A( 1) U A(2) U A(3) U . 
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5 Computational problems and their algorithmic 
solvability 

Our games are obviously general enough to model anything that one would call a 
(two-agent, two-outcome) interactive problem. However, they are a bit too general. 
There are games where the chances of a player to succeed essentially depend on 
the relative speed at which its adversary acts. A simple example would be a game 
where both players have a legal move in the initial position, and which is won by the 
player who moves first. CL does not want to consider this sort of games meaningful 
computational problems. Definition 4.2 of [7] imposes a simple condition on games 
and calls games satisfying that condition static. We are not reproducing that 
definition here as it is not relevant for our purposes. It should be however mentioned 
that, according to one of the theses on which the philosophy of CL relies, the 
concept of static games is an adequate formal counterpart of our intuitive concept of 
"pure", speed-independent interactive computational problems. All meaningful and 
reasonable examples of games — including all elementary games — are static, and 
the class of static games is closed under all of the game operations that we have seen 
(Theorem 14.1 of [7]). Let us agree that from now on the term "computational 
problem", or simply "problem", is a synonym of "static game". 

Now it is time to explain what computability of such problems means. The 
definitions given in this section are semiformal. The omitted technical details are 
rather standard or irrelevant and can be easily restored by anyone familiar with 
Turing machines. If necessary, the corresponding detailed definitions can be found 
in Part II of [7]. 

[7] defines two models of interactive computation, called the hard-play machine 
(HPM) and the easy-play machine (EPM). Both are sorts of Turing machines with 
the capability of making moves, and have three tapes: the ordinary read/write 
work tape, and the read-only valuation and run tapes. The valuation tape contains 
a full description of some valuation e (say, by listing the values of e at V\,V2, • • • ), 
and its content remains fixed throughout the work of the machine. As for the run 
tape, it serves as a dynamic input, at any time spelling the current position, i.e. 
the sequence of the (lab)moves made by the two players so far. So, every time 
one of the players makes a move, that move — with the corresponding label — 
is automatically appended to the content of this tape. In the HPM model, there 
is no restriction on the frequency of environment's moves. In the EPM model, on 
the other hand, the machine has full control over the speed of its adversary: the 
environment can (but is not obligated to) make a (one single) move only when the 
machine explicitly allows it to do so — the event that we call granting permission. 
The only "fairness" requirement that such a machine is expected to satisfy is that it 
should grant permission every once in a while; how long that "while" lasts, however, 
is totally up to the machine. The HPM and EPM models seem to be two extremes, 
yet, according to Theorem 17.2 of [7], they yield the same class of winnable static 
games. The present paper will only deal with the EPM model, so let us take a little 
closer look at it. 
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Let M be an EPM. A configuration of M is defined in the standard way: this 
is a full description of the ("current") state of the machine, the locations of its 
three scanning heads and the contents of its tapes, with the exception that, in 
order to make finite descriptions of configurations possible, we do not formally 
include a description of the unchanging (and possibly essentially infinite) content 
of the valuation tape as a part of configuration, but rather account for it in our 
definition of computation branch as will be seen below. The initial configuration 
is the configuration where M. is in its start state and the work and run tapes 
are empty. A configuration C' is said to be an e-successor of configuration C 
in M if, when valuation e is spelled on the valuation tape, C' can legally follow 
C in the standard — standard for multitape Turing machines — sense, based 
on the transition function (which we assume to be deterministic) of the machine 
and accounting for the possibility of nondeterministic updates — depending on 
what move _L makes or whether it makes a move at all — of the content of the 
run tape when M grants permission. Technically granting permission happens 
by entering one of the specially designated states called "permission states". An 
e-computation branch of M. is a sequence of configurations of M. where the 
first configuration is the initial configuration and every other configuration is an e-
successor of the previous one. Thus, the set of all e-computation branches captures 
all possible scenarios (on valuation e) corresponding to different behaviors by ± . 
Such a branch is said to be fair iff permission is granted infinitely many times 
in it. Each e-computation branch B of M. incrementally spells — in the obvious 
sense — a run T on the run tape, which we call the run spelled by B. Then, 
for a game A we write M f=e A to mean that, whenever T is the run spelled by 
some e-computation branch B of M. and T is not _L-illegal, then branch B is fair 
and W n A ( r ) — T. We write M \= A and say that M computes (solves, wins) 
A iff. M |=e A for every valuation e. Finally, we write j= A and say that A is 
computable iff there is an EPM M with M (= A. 

6 The language of INT and the extended language 
As mentioned, the language of intuitionistic logic can be seen as a fragment of 
that of CL. The main building blocks of the language of INT are infinitely many 
problem letters, or letters for short, for which we use P,Q,R,S,... as metavari-
ables. They are what in classical logic are called 'predicate letters', and what CL 
calls 'general letters'. With each letter is associated a nonnegative integer called 
its arity. $ is one of the letters, with arity 0. We refer to it as the logical letter, 
and call all other letters nonlogical. The language also contains infinitely many 
variables and constants — exactly the ones fixed in Section 4. "Term" also has 
the same meaning as before. An atom is P(£i , . . . ,tn), where P is an n-ary letter 
and the ij are terms. Such an atom is said to be P-based. If here each term ti 
is a constant, we say that P(ti,... ,tn) is grounded. A P-based atom is n-ary, 
logical, nonlogical etc. iff P is so. When P is 0-ary, we write P instead of P(). 
INT-Formulas are the elements of the smallest class of expressions such that all 
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atoms are INT-formulas and, if F, Fx, . . . ,Fn (n > 2) are INT-formulas and x 
is a variable, then the following expressions are also INT-formulas: (F\) o— (F2), 
(Fi) n . . . n (Fn), (Fi) U . . . U (F„), l lx (F) , Ux(F) . Officially there is no negation 
in the language of INT. Rather, the intuitionistic negation of F is understood as 
F o—$. In this paper we also employ a more expressive formalism that we call the 
extended language. The latter has the additional connectives T, _L, ->, A, V, — A 
on top of those of the language of INT, extending the above formation rules by 
adding the clause that T, _L, - .F, (Fi) A . . . A (F„), (Fx) V . . . V (Fn), (Fi) -> (F2) 
and ¿(F) are formulas as long as F, F l 5 . . . , Fn are so. T and _L count as logical 
atoms. Henceforth by (simply) "formula", unless otherwise specified, we mean a 
formula of the extended language. Parentheses will often be omitted in formulas 
when this causes no ambiguity. With I-! and U being quantifiers, the definitions 
of free and bound occurrences of variables are standard. 

In concordance with a similar notational convention for games on which we 
agreed in Section 4, sometimes a formula F will be represented as F(xx , . . . ,x n ) , 
where the xt are pairwise distinct variables. When doing so, we do not necessarily 
mean that each such Xj has a free occurrence in F, or that every variable occurring 
free in F is among x x , . . . , x n . In the context set by the above representation, 
F(ti,..., tn) will mean the result of replacing, in F, each free occurrence of each 
Xi (1 < i < n) by term ¿¿. In case each ij is a variable y*, it may be not clear 
whether F ( x i , . . . , x„ ) or F(y 1 , . . . , yn) was originally meant to represent F in a 
given context. Our disambiguating convention is that the context is set by the 
expression that was used earlier. That is, when we first mention F ( x i , . . . , x n ) and 
only after that use the expression F( j / i , . . . , yn), the latter should be understood as 
the result of replacing variables in the former rather than vice versa. 

Let x be a variable, t a term and F(x) a formula, t is said to be free for x in 
F(x) iff none of the free occurrences of x in F(x) is in the scope of I li or I It. Of 
course, when t is a constant, this condition is always satisfied. 

An interpretation is a function * that sends each n-ary letter P to a static 
game *P ~ P*(xi,...,xn), where the xt are pairwise distinct variables. This 
function induces a unique mapping that sends each formula F to a game F* (in 
which case we say that * interprets F as F* and that F* is the interpretation 
of F under *) by stipulating that: 

1. Where P is an n-ary letter with *P = P * ( x i , . . . , xn) and ti,..., tn are terms, 
(P( t i , . . . , t „ ) )* =P*(t1,...,tn). 

2. * commutes with all operators: T* = T, (Fo-G)* — F* o - G * , (Fx A . . . A 
Fn)* = Fx* A . . . A F*, ([~lxF)* = rix(F*), etc. 

When a given formula is represented as F(xx , . . . ,x n ) , we will typically write 
F*(xx, . . . , x n ) instead of ( F ( x i , . . . , xn))*. 

For a formula F, we say that an interpretation * is admissible for F, or simply 
F-admissible, iff the following conditions are satisfied: 

1. For every n-ary letter P occurring in F, where *P — P*(x\,..., xn ) , the 
game P*(xx , . . . , xn) does not depend on any variables that are not among 
xx, . . . ,x „ but occur (whether free or bound) in F. 
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2. $* = B n Ff n n . . . , where B is an arbitrary problem and F\, F2,. • • is the 
lexicographic list of all grounded nonlogical atoms of the language. 

Speaking philosophically, an admissible interpretation * interprets $ as a 
"strongest problem": the interpretation of every grounded atom and hence — 
according to Lemma 27 — of every formula is reducible to $*, and reducible in 
a certain uniform, interpretation-independent way. Viewing $* as a resource, it 
can be seen as a universal resource that allows its owner to solve any problem. 
Our choice of the dollar notation here is no accident: money is an illustrative ex-
ample of an all-powerful resource in the world where everything can be bought. 
"Strongest", "universal" or "all-powerful" do not necessarily mean "impossible". 
So, the intuitionistic negation F o— $ of F here does not have the traditional "F* is 
absurd" meaning. Rather, it means that F* (too) is of universal strength. Turing 
completeness, NP-completeness and similar concepts are good examples of "be-
ing of universal strength". $* is what [7] calls a standard universal problem of 
the universe (F*, F2*,...). Briefly, a universal problem of a universe (sequence) 
{A\,A2, . . . ) of problems is a problem U such that \= U —> A\ n A2 f l . . . and hence 
j= U o— A\ f\A2 n . . . , intuitively meaning a problem to which each Ai is reducible. 
For every B, the problem U = B n.Ai n A2 ... satisfies this condition, and universal 
problems of this particular form are called standard. Every universal problem U 
of a given universe can be shown to be equivalent to a standard universal problem 
U' of the same universe, in the sense that \= U o— U' and f= U' o— U. And all 
of the operators of INT can be shown to preserve equivalence. Hence, restricting 
universal problems to standard ones does not result in any loss of generality: a 
universal problem can always be safely assumed to be standard. See section 23 
of [7] for an extended discussion of the philosophy and intuitions associated with 
universal problems. Here we only note that interpreting $ as a universal problem 
rather than (as one might expect) as _L yields more generality, for _L is nothing but 
a special, extreme case of a universal problem. Our soundness theorem for INT, 
of course, continues to hold with _L instead of $. 

Let F be a formula. We write H-F and say that F is valid iff j= F* for every 
F-admissible interpretation *. For an EPM £, we write £t~F and say that £ is 
a uniform solution for F iff £ f= F* for every F-admissible interpretation *. 
Finally, we write Ifr-F and say that F is uniformly valid iff there is a uniform 
solution for F. Note that uniform validity automatically implies validity but not 
vice versa. Yet, these two concepts have been conjectured to be extensionally 
equivalent (Conjecture 26.2 of [7]). 

7 The Gentzen-style axiomatization of INT 
A sequent is a pair G K, where K is an INT-formula and G is a (possibly 
empty) finite sequence of INT-formulas. In what follows, E, F, K will be used as 
metavariables for formulas, and G,H_ as metavariables for sequences of formulas. 
We think of sequents as formulas, identifying K with K, F K with ¿ F —> K 
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(i.e. F o— K), and E\,... ,En K {n > 2) with oE\ A . . . A oEn —> K.6 This 
allows us to automatically extend the concepts such as validity, uniform validity, 
etc. from formulas to sequents. A formula K is considered provable in I N T iff 
the sequent K is so. 

Deductively, logic INT is given by the following 15 rules. This axiomatization is 
known (or can be easily shown) to be equivalent to other "standard" formulations, 
including Hilbert-style axiomatizations for I N T and/or versions where a primitive 
symbol for negation is present while $ is absent, or where n and U are strictly 
binary, or where variables are the only terms of the language.7 

Below G, H are any (possibly empty) sequences of INT-formulas; n > 2; 1 < 
i < n; x is any variable; E, F, K, F\, ..., Fn, K\, ..., Kn, F(x), K(x) are 
any INT-formulas; y is any variable not occurring (whether free or bound) in the 
conclusion of the rule; in Left I"! (resp. Right U), t is any term free for x in F(x) 
(resp. in K(x)). 7 > l — m e a n s "from premise(s) V conclude C". When there are 
multiple premises in V, they are separated with a semicolon. 

Identity H -»• K => K 

Domination H - > S^-K 

Exchange G,E,F,H^K H G,F,E,H^K 

Weakening G^K t- G,F=$>K 

Contraction G,F,F=>K H G,F =$> K 

Right 0— G,F^K Y--> G^Fo-K 

Left 0— G,F => Ki\ K2 1- G,H,K2o-F => Ki 

Right n G Ki\ . . . ; G=>Kn G =» Ki n ... n Kn 

Left n G,Fi=$> K G, Fi n . . . n Fn K 

Right U G=>Ki H- G=*KiU...UKn 

Left U G,F1^K] ...; G,Fn=>K h-->• G, Fx U . . . u Fn K 

Right ["I Q=>K(y) H -»• G n ^ x ) 

Left I ! G,F(t) K H G, n x F ( x ) i f 

Right U G K(t) H G^UxK(x) 

Left U G,F{y)^K H G, UxF(x) =s> i f 

6In order to fully remain within the language of INT, we could understand Ei,...,En 

K as E\ o— (E2 o— ... o— (En o— K)...), which can be shown to be equivalent to our present 
understanding. We, however, prefer to read jEi, . . . , En => K as i>E\ A . . . A (>En —^ K as it seems 
more convenient to work with. 

7That we allow constants is only for technical convenience. This does not really yield a stronger 
language, as constants behave like free variables and can be thought of as such. 
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Theorem 12. (Soundness:) If I N T > S, then H-5 (any sequent S). Further-
more, (uniform-constructive soundness:) there is an effective procedure that 
takes any INT-proof of any sequent S and constructs a uniform solution for S. 

Proof See Section 12. • 

8 CL2-derived validity lemmas 
In our proof of Theorem 12 we will need a number of lemmas concerning uniform 
validity of certain formulas. Some such validity proofs will be given directly in 
Section 10. But some proofs come "for free", based on the soundness theorem for 
logic CL2 proven in [12]. CL2 is a propositional logic whose logical atoms are T 
and -L (but not $) and whose connectives are -i, A, V, —», l~l, U. It has two sorts of 
nonlogical atoms, called elementary and general. General atoms are nothing but 0-
ary atoms of our extended language; elementary atoms, however, are something not 
present in the extended language. We refer to the formulas of the language of CL2 
as CL2-formulas. In this paper, the CL2-formulas that do not contain elementary 
atoms — including T and _L that count as such — are said to be general-base. 
Thus, every general-base formula is a formula of our extended language, and its 
validity or uniform validity means the same as in Section 6.8 

Understanding F —> G as an abbreviation for -iF V G, a positive occurrence 
in a CL2-formula is an occurrence that is in the scope of an even number of 
occurrences of ->; otherwise the occurrence is negative. A surface occurrence is 
an occurrence that is not in the scope of n and/or U. The elementarization of 
a CL2-formula F is the result of replacing in F every surface occurrence of every 
subformula of the form G\ n . . . (1 Gn (resp. G\ U . . . U Gn) by T (resp. _L), and 
every positive (resp. negative) surface occurrence of every general atom by _L (resp. 
T). A CL2-formula F is said to be stable iff its elementarization is a tautology of 
classical logic. With these conventions, CL2 is axiomatized by the following three 
rules: 

(a) HI—where F is stable and H is the smallest set of formulas such that, 
whenever F has a positive (resp. negative) surface occurrence of a subformula 
Gi n ... n Gn (resp. G\ U . . . LJ Gn), for each i £ { 1 , . . . , n } , H contains the 
result of replacing that occurrence in F by Gi. 

(b) H\—>F, where H is the result of replacing in F a negative (resp. positive) 
surface occurrence of a subformula Gi n . . . n GN (resp. G\ U . . . U G n ) by GI 
for some i € { 1 , . . . ,n} . 

(c) W—^F, where H is the result of replacing in F two — one positive and 
one negative — surface occurrences of some general atom by a nonlogical 
elementary atom that does not occur in F. 

8These concepts extend to thé1 full language of CL2 as well, with interpretations required to 
send elementary atoms to elementary games (i.e. predicates in the classical sense, understood in 
CL as games that have no nonemty legal runs). 



94 Giorgi Japasicl'/A) 

In this section p, q, r, s, t, u, w... (possibly with indices) will exlusively stand for 
nonlogical elementary atoms, and P, Q, R, 5, T, U, W (possibly with indices) stand 
for general atoms. All of these atoms are implicitely assumed to be pairwise distinct 
in each context. 

Convention 13. In Section 7 we started using the notation G for sequences of 
formulas. Later we agreed to identify sequences of formulas with A-conjunctions 
of those formulas. So, from now on, an underlined expression such as G will mean 
an arbitrary formula Gi A . . . A Gn for some n > 0. Such an expression will always 
occur in a bigger context such as G A F or G —> F; our convention is that, when 
n = 0, G A F and G —> F simply mean F. 

As we agreed that p,q,... stand for elementary atoms and P,Q,... for general 
atoms, p,q,... will correspondingly mean A-conjunctions of elementary atoms, and 
P, Q,... mean A-conjunctions of general atoms. 

We will also be underlining complex expressions such as F —> G, l~1a;F(a;) or 
oF. F -> G should be understood as (Fi —> Gi) A . . . A (Fn -> G„), i~1sF(:r) as 
rixFi(a;)A.. .Aria;Fn(a:) (note that only the Fj vary but not x), ¿ F as ¿FiA. . . oFn , 
¿ ¿ F as ¿ (¿Fj A . . . A ¿F„), ¿ F —» F A G as ¿Fi A . . . ¿Fn —» Fi A . . . A Fn A G, etc. 

The axiomatization of CL2 is rather unusual, but it is easy to get a syntactic 
feel of it once we do a couple of exercises. 

Example 14. The following is a CL2-proof of (P -> Q) A (Q -> T) -> (P -> T): 
1.' [p ->.g) A (q -»t) -> (p -> t) (from {} by Rule (a)). 
2. (P -> q) A {q t) -» (P 1) (from 1 by Rule (c)). 
3. [P - » Q) A (Q - » i) - » (P i) (from 2 by Rule (c)). 
4. (P Q) A (Q -> T) - » (P -> T) (from 3 by Rule (c)). 

Example 15. Let n > 2, and let m be the length (number of conjuncts) of both 
R and r. 

a) For i e {1 , . . . ,n} , the formula of Lemma 17(j) is provable in CL2. It follows 
from (R —> Si) —>(/?—> 5j) by Rule (b); the latter follows from (R —> Si) —» 
(fl —> Si) by Rule (c); the latter, in turn, can be derived from (r —> Sj) —> (r —+ Si) 
applying Rule (c) m times. Finally, (r —> st) —> (r —> Si) is its own elementarization 
and is a classical tautology, so it follows from the empty set of premises by Rule 
(a). 

b) The formula of Lemma 17(h) is also provable in CL2. It is derivable by 
Rule (a) from the set of n premises, easch premise being (R —> Si) A ... A (R —> 
Sn) —* (i? —> Si) for some i S { 1 , . . . , n}. The latter is derivable by Rule (c) from 
{R Si) A . . . A (R -> Si) A . . . A (R - » 5„) (R -> Sj). The latter, in turn, can 
be derived from (R —• 5i) A . . . A (r —> s,) A . . . A (fi —» S„) —> (r —» Sj) applying 
Rule (c) m times. Finally, the latter follows from the empty set of premises by 
Rule (a). 

Obviously CL2 is decidable. This logic has been proven sound and complete in 
[12]. We only need the soundness part of that theorem restricted to general-base 
formulas. It sounds as follows: 
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Lemma 16. Any general-base CL2-provable formula is valid. Furthermore, there 
is an effective procedure that takes any CL2-proof of any such formula F and 
constructs a uniform solution for F. 

A substitution is a function / that sends every general atom P of the language 
of CL2 to a formula f(P) of the extended language. This mapping extends to 
all general-base CL2-formulas by stipulating that / commutes with all operators: 
/ ( G i - » Ga) = f(Gi) -» f(G2), f(G\ n ... n Gk) = f(Gi) n ... n f(Gk), etc. We 
say that a formula G is a substitutional instance of a general-base CL2-formula 
F iff G = f(F) for some substitution / . Thus, "G is a substitutional instance of 
F" means that G has the same form as F. 

In the following lemma, we assume n > 2 (clauses (h),(i),(j)), and 1 < i < n 
(clause (j)). Notice that, for the exception of clause (g), the expressions given below 
are schemata of formulas rather than formulas, for the lengths of their underlined 
expressions — as well as i and n — may vary. 

Lemma 17. All substitutional instances of all formulas given by the following 
schemata are uniformly valid. Furthermore, there is an effective procedure that 
takes any particular formula matching a given scheme and constructs an EPM that 
is a uniform solution for all substitutional instances of that formula. 

a) (R A P A Q A S - » T) (R A Q A P A S - » T) ; 
b) (R—*T)—> (RAP^T); 
c) (R —» S) (W A R A U — W A S A U); 

d) (RAP ^ Q) (R^(P->Q)); 

e) (P - (Q - » T)) A CS - Q) - (P - (R - Tj); 
f) (P Q)) A ( 5 A Q — > T ) — » ( S A f i A P — » T) ; 
g) (P - Q) A (Q T) -> (P - T); 
h) (R - > Si) A . . . A (R - » 5 n ) (E ^ Si n . . . n Sn); 
i) (R A Si —> T) A ... A (R A Sn T) —> ((R A ( S i U . . . U Sn) —> T ) ; 

j) CS Si) - (fl 5i U . . . U 5„). 

Proof. In order to prove this lemma, it would be sufficient to show that all formulas 
given by the above schemata are provable in CL2. Indeed, if we succeed in doing 
so, then an effective procedure whose existence is claimed in the lemma could be 
designed to work as follows: First, the procedure finds a CL2-proof of a given 
formula F. Then, based on that proof and using the procedure whose existence 
is stated in Lemma 16, it finds a uniform solution £ for that formula. It is not 
hard to see that the same £ will automatically be a uniform solution for every 
substitutional instance of F as well. 

The CL2-provability of the formulas given by clauses (g), (h) and (j) has been 
verified in Examples 14 and 15. A similar verification for the other clauses is left 
as an easy syntactic exercise for the reader. • 
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9 Closure lemmas 
In this section we let n range over natural numbers (including 0), x over any vari-
ables, F,E,G (possibly with subscripts) over any formulas, and £, C, V (possibly 
with subscripts) over any EPMs. Unless otherwise specified, these metavariables 
are assumed to be universally quantified in a context. The expression {EPMs} 
stands for the set of all EPMs. 

Lemma 18. If №-F, then IFAF. Furthermore, there is an effective function h : 
{EPMs} —> {EPMs} such that, for any £ and F, if£HrF, then /i(£)IFAF. 

Proof. According to Proposition 21.2 of [7], there is an effective function h : 
{EPMs} —> {EPMs} such that, for any EPM £ and any static game A, if £ [= A, 
then h(£) |= A A . We now claim that if El-F, then h(£)H-^F. Indeed, assume EW-F. 
Consider any o-F-admissible interpretation *. Of course, the same interpretation is 
also F-admissible. Hence, £№-F implies £ \= F*. But then, by the known behavior 
of h, we have h(£) \= AF*. Since * was arbitrary, we conclude that h(£)Hr}>F. • 

Lemma 19. If N-F, then B-rixF. Furthermore, there is an effective function 
h : {EPMs} —> {EPMs} such that, for any £, x and F, ifEUrF, then h(£)l~r\xF. 

Proof. Similar to the previous lemma, only based on Proposition 21.1 of [7] instead 
of 21.2. • 

Lemma 20. If IFF and 18-F —» E, then li-F. Furthermore, there is an effective 
function h : {EPMs} x {EPMs} —> {EPMs} such that, for any £, C, F and E, if 
ElrF and O-F -» E, then h{£,C)i-E. 

Proof. According to Proposition 21.3 of [7], there is an effective function g that 
takes any HPM H and EPM £ and returns an EPM C such that, for any static 
games A,B and any valuation e, if H \=e A and £ \=e A —> B, then C (=e B. 
Theorem 17.2 of [7], which establishes equivalence between EPMs and HPMs in 
a constructive sense, allows us to assume that H is an EPM rather than HPM 
here. More precisely, we can routinely convert g into an (again effective) function 
h : {EPMs} x {EPMs} —> {EPMs} such that, for any static games A,B, valuation 
e and EPMs E and C, 

if £ \=e A andC \=eA^B, then h(E,C) \=e B. (3) 
l 

We claim that the above function h behaves as our lemma states. Assume £ IFF and t 
CfhF —> E, and consider an arbitrary valuation e and an arbitrary F-admissible 
interpretation *. Our goal is to show that h(E,C) \=e E*, which obviously means 
the same as 

h(£,C) \=e e[E*\. (4) 
We define the new interpretation t by stipulating that, for every n-ary letter P 
with P* = P*{xi,... ,xn), F f is the game P ^ z i , . . . ,xn) such that, for any tuple 
c i , . . . ,Cn of constants, P^(c\,... ,Cn) = e[F*(ci , . . . ,Cn)]. Unlike P*{x\,... ,xn) 
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that may depend on some "hidden" variables (those that are not among x i , . . . , xn), 
obviously Pt (x i , . . . , x n ) does not depend on any variables other that x i , . . . ,xn . 
This makes t admissible for any formula, including F and F —> E. Then our as-
sumptions £HrF and CUrF -» E imply £ (=e Ft and C |=e Ft -> F f . Consequently, 
by (3), h(£,C) |=e Ft, i.e. h(£,C) \=e e[Ft], Now, with some thought, we can see 
that e[Ft] = e[E*}. Hence (4) is true. • 

Lemma 21. (Modus ponens) //Ht-Fi, . . . , l -F„ and l«-Fi A . . . A Fn—>E, then 
IbE. Furthermore, there is an effective function h : {EPMs}n+1 —> {EPMs} such 
that, for any EPMs £\, ..., £n, C and any formulas F i , . . . , F„, E, ¿/£iHkFi, ..., 
£n^~Fn and CB-Fi A . . . A F„ —> E, then h(£i,... ,£n,C)i~E. Such a function, in 
turn, can be effectively constructed for each particular n. 

Proof In case n = 0, h is simply the identity function h(C) = C. In case n = 1, h is 
the function whose existence is stated in Lemma 20. Below we will construct h for 
case n = 2. It should be clear how to generalize that construction to any greater 
n. 

Assume £if-F1, £21SrF2 and CtirFx A F2 - » E. By Lemma 17(d), (Fi A F2 -> 
F) —> (Fi —» (F2 —> F)) has a uniform solution. Lemma 20 allows us to combine 
that solution with C and find a uniform solution T>\ for F\ —> (F2 —> E). Now 
applying Lemma 20 to £\ and V\, we find a uniform solution V2 for F2 —> E. 
Finally, applying the same lemma to £2 and V2, we find a uniform solution V for 
F. Note that V does not depend on FX,F2,E, and that we constructed V in an 
effective way from the arbitrary £x, £2 and C. Formalizing this construction yields 
function h whose existence is claimed by the lemma. • 

Lemma 22. (Transitivity) If B-F —> E and VhE G, then W-F -> G. Further-
more, there is an effective function h : {EPMs} x {EPMs} —> {EPMs} such that, 
for any £\, £2, F, E andG, if£^rF -> E and£2frE -> G, then h{£u £2)%-F -> G. 

Proof. Assume £\i~F —> E and £2B-F —» G. By Lemma 17(g), we also have 
CI-(F —» F) A (F G) —» (F —> G) for some (fixed) C. Lemma 21 allows us 
to combine the three uniform solutions and construct a uniform solution T> for 
F^G. • 

10 More validity lemmas 
As pointed out in Remark 16.4 of [7], when trying to show that a given EPM wins 
a given game, it is always safe to assume that the runs that the machine generates 
are never _L-illegal, i.e. that the environment never makes an illegal move, for if 
it does, the machine automatically wins. This assumption, that we call the clean 
environment assumption, will always be implicitly present in our winnability 
proofs. 

We will often employ a uniform solution for P —* P called the copy-cat strat-
egy (CCS). This strategy, that we already saw in Section 2, consists in mimicking, 
in the antecedent, the moves made by the environment in the consequent, and vice 
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versa. More formally, the algorithm that CCS follows is an infinite loop, on every 
iteration of which CCS keeps granting permission until the environment makes a 
move l .a (resp. 2.a), to which the machine responds by the move 2.a (resp. l .a) . 
As shown in the proof of Proposition 22.1 of [7], this strategy guarantees success 
in every game of the form A V ->A and hence A —• A. An important detail is that 
CCS never looks at the past history of the game, i.e. the movement of its scanning 
head on the run tape is exclusively left-to-right. This guarantees that, even if the 
original game was something else and it only evolved to A —> A later as a result of 
making a series of moves, switching to the CCS after the game has been brought 
down to A —> A guarantees success no matter what happened in the past. 

Thgroughout this section, F, G, E, K (possibly with indices and attached 
tuples of variables) range over formulas, x and y over variables, t over terms, n over 
nonnegative integers, w over bit strings, and a, 7 over moves. These (meta)variables 
are assumed to be universally quantified in a context unless otherwise specified. In 
accordance with our earlier convention, e means the empty string, so that, say, 
'I.e.a' is the same as 'l..a'. 

Lemma123. B-oF —> F. Furthermore, there is an EPM £ such that, for any F, 
£HF -> F. 

Proof. The idea of a uniform solution £ for bF —» F is very simple: just act as 
CCS, never making any replicative moves in the antecedent and pretending that 
the latter is F rather than (the stronger) oF. The following formal description of 
the interactive algorithm that £ follows is virtually the same as that of CCS, with 
the only difference that the move prefix '1.' is replaced by 'I.e.' everywhere. 

Procedure LOOP: Keep granting permission until the environment makes a move 
I.e.a or 2.a; in the former case make the move 2.a, and in the latter case make the 
move I.e.a; then repeat LOOP. 

. Fix an arbitrary valuation e, interpretation * and e-computation branch B of £. 
Let 0 be the run spelled by B. From the description of LOOP it is clear that permis-
sion will be granted infinitely many times in B, so this branch is fair. Hence, in order 
.to show that £ wins the game, it would suffice to show that W n f (©) = T. 

Let ©j denote the initial segment of © consisting of the (lab)moves made by 
the players by the beginning of the ith iteration of LOOP in B (if such an iteration 
exists). By induction on i, based on the clean environment assumption and applying 
a routine analysis of the the behavior of LOOP and the definitions of the relevant 
game operations, one can easily find that 

a ) © i e L r r - F * ; 
b) e,1-« •©?• ; 
c) All of the moves in ©J' have the prefix 'e.'. 

If LOOP is iterated infinitely many times, then the above obviously extends 
from to 0 , because every initial segment of 0 is an initial segment of some ©¿. 
And if LOOP is iterated only a finite number m of times, then © = © m . This 
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is so because the environment cannot make a move I.e.a or 2.a during the mth 
iteration (otherwise there would be a next iteration), and any other move would 
violate the clean environment assumption; and, as long as the environment does not 
move during a given iteration, neither does the machine. Thus, no matter whether 
LOOP is iterated a finite or infinite number of times, we have: 

a ) 0 < E L r f * ^ * ; 
b) 6 l £- = ->Q2- ; (5) 
c) All of the moves in 0 1 , have the prefix 'e.'. 

Since © £ L r 6 / ' ^ F ' , in order to show that W n f ' " f " ( 0 ) = T, by the defini-
tion of ->, it would suffice to show that either W n f * ( 0 2 ) = T or WnJ4 F* ( 0 1 ) = 
T. So, assume W n f * (0 2 ) ± T, i.e. W n f * ( 0 2 ) = ± , i.e. W n ^ ' ^ e 2 - ) = T. 
Then, by clause (b) of (5), W < F * ( 0 l £ ) = T, i.e. W n f * (-n©16 ) = _L, i.e. 
W n f ((_ i©1 ' )e ) = -L. Pick any infinite bit string w. In view of clause (c) of (5), 
we obviously have (-.e1-)*" = Hence Wnf*((->e1-)-'0) = ± . But this, 
by the definition of ¿, implies W n f ( - i© 1 ) = _L. The latter, in turn, can be 
rewritten as the desired W i i j 4 f (01 ' ) = T. 

Thus, we have shown that £ wins oF* —» F*. Since * was arbitrary and the 
work of £ did not depend on it, we conclude that —> F. • 

In the subsequent constructions found in this section, * will always mean an 
arbitrary but fixed interpretation admissible for the formula whose uniform validity 
we are trying to prove. Next, e will always mean an arbitrary but fixed valuation 
— specifically, the valuation spelled on the valuation tape of the machine under 
question. For readability, we will usually omit the e parameter when it is irrelevant. 
Also, having already seen one example, in the remaining uniform validity proofs 
we will typically limit ourselves to just constructing interactive algorithms, leaving 
the (usually routine) verification of their correctness to the reader. An exception 
will be the proof of Lemma 34 where, due to the special complexity of the case, 
correctness verification will be done even more rigorously than we did this in the 
proof of Lemma 23. 

Lemma 24. W-o(-F —> G) —> (¿F —> bG). Moreover, there is an EPM £ such that, 
for every F and G, £\bb(F —> G) —> (¿F —> bG). 

Proof. A relaxed description of a uniform solution £ for ¿ (F —> G) —» (¿F —> ¿G) 
is as follows. In ¿(F* —• G*) and oF* the machine is making exactly the same 
replicative moves (moves of the form w.) as the environment is making in bG*. 
This ensures that the tree-structures of the three ¿-components of the game are 
identical, and now all the machine needs for a success is to win the game (F* —» 
G*) —> (F* —> G*) within each branch of those trees. This can be easily achieved 
by applying copy-cat methods to the two occurrences of F and the two occurrences 
of G. 

In precise terms, the strategy that £ follows is described by the following inter-
active algorithm. 
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Procedure LOOP: Keep granting permission until the adversary makes a move 7. 
Then: 
If 7 = 2.2.w:, then make the moves l.w: and 2.I.W., and repeat LOOP; 
If 7 = 2.2.w.a (resp. 7 = l.w.2.a), then make the move l.w.2.a (resp. 2.2.w.a), 
and repeat LOOP; 
If 7 = 2.1.w.a: (resp. 7 = l .w.l .a) , then make the move l.iw.l.a (resp. 2.1.w.a), 
and repeat LOOP. • 

L e m m a 25 . M F i A . . . A i F „ ¿ ( F i A . . ,AF„ ) . Furthermore, there is an effective 
procedure that takes any particular value of n and constructs an EPM £ such that, 
for any Fx,... ,Fn, £N>Fl A . . . A ¿Fn —» ¿(Fi A . . . A Fn). 

Proof. The idea of a uniform solution here is rather similar to the one in the proof 
of Lemma 24. Here is the algorithm: 

Procedure LOOP: Keep granting permission until the adversary makes a move 7. 
Then: 
If 7 = 2.w:, then make the n moves 1.1.w:,. . . , l.n.w:, and repeat LOOP; 
If 7 = 2.w.i.a (resp. 7 = l.i.w.a) where 1 < i < n, then make the move 1 .i.w.a 
(resp. 2.w.i.a), and repeat LOOP. • 

Lemma 26. 11-A F —> ¿F A ¿F. Furthermore, there is an EPM £ such that, for 
any F, £i~oF —»¿FA ¿F. 

Proof. Thë idea of a winning strategy here is to first replicate the antecedent turning 
it into something "essentially the same"9 as ¿F*AoF*, and then switch to a strategy 
that is "essentially the same as" the ordinary copy-cat strategy. Precisely, here is 
how £ works: it makes the move l.e: (replicating the antecedent), after which it 
follows thé following algorithm: 

Procedure LOOP: Keep granting permission until the adversary makes a move 7. 
Then: 
If 7 = 1.0a (resp. 7 = 2.1.a), then make the move 2.1.a (resp. 1.0a), and repeat 
LOOP; 
If 7 = 1.1a (resp. 7 = 2.2.a), then make the move 2.2.a (resp. 1.1a), and repeat 
LOOP; 
If 7 = I.e.a, then make the moves 2.I.e.a and 2.2.e.a, and repeat LOOP. • 

Remember from Section 4 that, when t is a constant, e(t) = t. 

Lemma 27. For any INT-formula K, l~oS —» K. Furthermore, there is an ef-
fective procedure that takes any INT-formula K and constructs a uniform solution 
for ¿$ —> K. 

9Using the notation o introduced in Section 13 of [7], in precise terms this "something" is 
b(F'oF'). 
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Proof. We construct an EPM £ and verify that it is a uniform solution for o$ —» 
K\ both the construction and the verification will be done by induction on the 
complexity of K. The goal in each case is to show that £ generates a T-won run of 
e[(o$ —» K)*] = ¿e[$*] —> e{K*\ which, according to our convention, we may write 
with "e" omitted. 
Case 1: K = %. This case is taken care of by Lemma 23. 
Case 2: K is a fc-ary nonlogical atom P(t\,..., tk). Let a,...,Ck be the constants 
e(t\),... ,e(ifc), respectively. Evidently in this case e[K*] = e[P*(ci,... ,Cfc)], so, 
the game for which £ needs to generate a winning run is o$* —> P*(c\,..., Ck). 
Assume ( P ( c i , . . . , Ck))* is conjunct # m of (the infinite n-conjunction) $*. We 
define £ to be the EPM that acts as follows. At the beginning, if necessary (i.e. 
unless all U are constants), it reads the valuation tape to find c i , . . . , Cfc. Then, 
using this information, it finds the above number m and makes the move 'l.e.m', 
which can be seen10 to bring the game down to ¿P* ( c i , . . . , cjt) —> P*(c\,... ,ck). 
After this move, £ switches to the strategy whose existence is stated in Lemma 23. 
Case 3: K = bE —> F. By Lemma 17(b), there is a uniform solution for (o$ —> 
F) —» (¿$ A bE —» F). Lemmas 17(d) and 22 allow us to convert the latter into 
a uniform solution V for (¿$ -> F) -> (¿$ (bE -> F)). By the induction 
hypothesis, there is also a uniform solution C for o$ —» F. Applying Lemma 21 to 
C and V, we find a uniform solution £ for ¿$ —» (bE —> F). 
Case 4-' K = U. . . UEn. By the induction hypothesis, we know how to construct 
an EPM Ci with Ci»-A$ E\. Now we define £ to be the EPM that first makes 
the move 2.1, and then plays the rest of the game as Ci would play. £ can be seen 
to be successful because its initial move 2.1 brings (¿$ —> K)* down to (¿$ —> E\)*. 
Case 5: K = Ei n . . . n En. By the induction hypothesis, for each i with 1 < i < n 
we have an EPM Ci with C^AS Et. We define £ to be the EPM that acts as 
follows. At the beginning, £ keeps granting permission until the adversary makes 
a move. The clean environment assumption guarantees that this move should be 
2.i for some 1 < i < n. It brings (A$ - » Ex n . . . n En)* down to (¿$ Ei)*. If 
and after such a move 2.i is made, £ continues the rest of the play as Ci. 
Case 6: K = U x E ( x ) . By the induction hypothesis, there is an EPM Ci with 

—> £(1). Now we define £ to be the EPM that first makes the move 2.1, 
and then plays the rest of the game as C\. £ can be seen to be successful because 
its initial move 2.1 brings (A$ - » Ua ; jE(a ; ) ) * down to (¿$ -> E( 1))*. 
Case 7: K = Q x E ( x ) . By the induction hypothesis, for each constant c there is 
(and can be effectively found) an EPM Cc with Ccm~o$ —> E(c). Now we define £ 
to be the EPM that acts as follows. At the beginning, £ keeps granting permission 
until the adversary makes a move. By the clean environment assumption, such a 
move should be 2.c for some constant c. This move can be seen to bring ((¿$ —» 
rtai?(a;)))* down to (¿$ —'• E(c))*. If and after the above move 2.c is made, £ 
plays the rest of the game as Cc. • 

10See Proposition 13.8 of [7]. 
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Lemma 28. Assume n > 2, 1 < i < n, and t is a term free for x in G(x). Then 
the follovring uniform validities hold. Furthermore, in each case there is an effective 
procedure that takes any particular values ofn, i, t and constructs an EPM which 
is a uniform solution for the corresponding formula no matter what the values of 
F\,..., Fn and/or G(x) (as long as t is free for x in G(x)) are. 

a) H>(FX n ... n Fn) - » ¿F i ; 

b) «-¿riiG(i) - AG(f); 
c) H>(Fi U ... U Fn) - » ¿Fx U . . . U o F n ; 
d) N>UzG(x) -> UxiG(x) . 

Proof. Below come winning strategies for each case. 
Clause (a): Make the move 'l.e.i'. This brings the game down to oF* —> ¿F*. 
Then switch to CCS. 
Clause (b): Let c — e(t). Read c from the valuation tape if necessary, i.e., if t is 
a variable (otherwise, simply c = i). Then make the move 'l.e.c'. This brings the 
game down to oG*(c) —> oG*(c). Now, switch to CCS. 
Clause (c): Keep granting permission until the adversary makes a move 'l.e.j' 
(1 < j < n), bringing the game down to ¿F* —» oFf U . . . U &F*. If and after such 
a move is made (and if not, a win is automatically guaranteed), make the move 
l2.j', which brings the game down to ¿F* —» ¿F*. Finally, switch to CCS. 
Clause (d): Keep granting permission until the adversary makes the move 'l.e.c' 
for some constant c. This brings the game down to AG*(c) —> LJxoG* (x). Now 
make the move '2.c', which brings the game down to ¿G*(c) —> ¿G*(c). Finally, 
switch to CCS. • 
L e m m a 2 9 . l»-nx(F(x) - » G(x)) -> (rixF(x) rixG(x)) . Furthermore, there 
is an EPM £ such that, for any F(x) and G{x), £KFrix(F(x) - » G(x)) -> 
(l~lxF(x) - » [~1 xG{x)). 

Proof. Strategy: Wait till the environment makes the move '2.2.c' for some constant 
c. This brings the 1*1 xG*(x) component down to G*(c) and hence the entire game 
to l~lx(F*(x) G*(x))-+ (rixF* (x) -> G* (c)). Then make the same move c in 
the antecedent and in r~lxF*(x), i.e. make the moves 'l.c' and '2.1.c'. The game 
will be brought down to (F*(c) -> G*(c)) (F*(c) -> G*(c)). Finally, switch to 
CCS. • 
L e m m a 3 0 . ID-r ix (Fi (x ) A . . . A F n ( x ) A F ( x ) - » G ( x ) ) - > ( r i x F i ( x ) A . . . A 
rixFn(x) A UxF(x) —» UxG(x)) . Furthermore, there is an effective procedure 
that takes any particular value of n and constructs an EPM £ such that, for any 
Fi(x), . . . , Fn(x) , F(x), G(x), £H-rix(F1(x) A . . . A Fn (x) A E(x) -> G(x)) - » 
(rixFi(x) A . . . A nxF n ( x ) A UxF( x) —• UxG(x)) . 

Proof. Strategy for n: Wait till the environment makes a move c in the UxF*(x) 
component. Then make the same move c in UxG*(x), r ix (F i (x ) A . . . A F*(x) A 
F*(x) —> G*(x)) and each of the l_lxFi*(x) components. After this series of moves 
the game will have evolved to (F*(c) A . . . A F*{c) A E*(c) -> G*(c)) -> (F{(c) A 
. . . A F* (c) A E* (c) G* (c)). Now switch to CCS. • 
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Lemma 31. Assume t is free for x in F(x) . Then ll-F(i) —> UxF(x ) . Further-
more, there is an effective function that takes any t and constructs an EPM £ such 
that, for any F(x) , whenever t is free for x in F(x) , £1rF(t) —> UxF(x ) . 

Proof. Strategy: Let c = e(t). Read c from the valuation tape if necessary. Then 
make the move '2.c\ bringing the game down to F*(c) —> F*(c). Then switch to 
CCS. • 

Lemma 32. Assume F does not contain x. Then W-F —» l"1 xF. Furthermore, 
there is an EPM £ such that, for any F and x, as long as F does not contain x, 

- F -> n x F . 

Proof. In this case we prefer to explicitly write the usually suppressed parameter 
e. Consider an arbitrary F not containing x, and an arbitrary interpretation * 
admissible for F —> rixF. The formula F —> (~1xF contains x yet F does not. 
From the definition of admissibility and with a little thought we can see that F* 
does not depend on x. In turn, this means — as can be seen with some thought 
— that the move c by the environment (whatever constant c) in e[[~lxF*] brings 
this game down to e[F*]. With this observation in mind, the following strategy can 
be seen to be successful: Wait till the environment makes the move '2.c' for some 
constant c. Then read the sequence ' l .a i ' , . . . , '1.an' of (legal) moves possibly 
made by the environment before it made the move '2.c', and make the n moves 
'2.ai', . . . , '2.an\ It can be seen that now the original game e[F*] —> eff lxF*] will 
have been brought down to ($)e[F*] —> ($)e[F*], where $ = ( T a i , . . . , Ta„ ) . So, 
switching to CCS at this point guarantees success. • 

Lemma 33. Assume F(x) does not contain y. Then IH-riyF(2/) .—» r ixF(x) and 
H J x F ( x ) U y F ( y ) . In fact, CCSbHyFiy) - » l~lxF(x) and CCSW-\JxF(x) -» 
U yF(y). 

Proof. Assuming that F (x) does not contain y and analyzing the relevant defini-
tions, it is not hard to see that, for any interpretation * admissible for f~lyF(y) 
r ixF(x) and/or UxF(x) —> U y F ( y ) , we simply have (Hj/F(y)) = (r ixF(x) ) 
and (Uj/F(j/))* = (UxF(x) )* . So, in both cases we deal with a game of the form 
A —> A, for which the ordinary copy-cat strategy is successful. • 

Our proof of the following lemma is fairly long, for which reason it is given 
separately in Section 11: 

Lemma 34. l~oF —> ¿oF. Furthermore, there is an EPM £ such that, for any F, 
£№-oF —> oAF. 

11 Proof of Lemma 34 
Roughly speaking, the uniform solution £ for ¿ F —> ¿ ¿ F that we are going to 
construct essentially uses a copy-cat strategy between the antecedent and the con-
sequent. However, this strategy cannot be applied directly in the form of our kind 
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old friend CCS. The problem is that the underlying tree-structure (see Remark 
9) of the multiset of (legal) runs of F* that is being generated in the antecedent 
should be a simple tree T, while in the consequent it is in fact what can be called 
a tree T" of trees. The trick that E uses is that it sees each edge of T in one of 
two — blue or yellow — colors. This allows E to associate with each branch y of 
a branch x of T" a single branch 2 of T, and vice versa. Specifically, with x,y,z 
being (encoded by) bit strings, 2 is such that the subsequence of its blue-colored 
bits (=edges) coincides with x, and the subsequence of its yellow-colored bits coin-
cides with y. By appropriately "translating" and "copying" in the antecedent the 
replicative moves made by the environment in the consequent, such an isomorphism 
between the branches of T and the branches of branches of T" can be successfully 
maintained throughout the play. With this one-to-one correspondence in mind, 
every time the environment makes a (nonreplicative) move in the position(s) of F* 
represented by a leaf or a set of leaves of T, the machine repeats the same move in 
the position(s) represented by the corresponding leaf-of-leaf or leaves-of-leaves of 
T", and vice versa. The effect achieved by this strategy is that the multisets of all 
runs of F* in the antecedent and in the consequent of oF* —» ¿0F* are identical, 
which, of course, guarantees a win for E. 

Let us now define things more precisely. A colored bit 6 is a pair (c, d), where c, 
called the content of b, is in {0,1} , and d, called the color of b, is in {blue,yellow}. 
We will be using the notation c ("blue c") for the colored bit whose content is c and 
color is blue, and c ("yellow c") for the bit whose content is c and color is yellow. 

A colored bit string is a finite or infinite sequence of colored bits. Consider 
a colored bit string v. The content of v is the result of "ignoring the colors" in v, 
i.e. replacing every bit of v by the content of that bit. The blue content of v is 
the content of the string that results from deleting in v all but blue bits. Yellow 
content is defined similarly. We use v, v and v to denote the content, blue content 
and yellow content of v, respectively. Example: if v — 10001, we have y_ = 10001, 
v = 10 and v = 001. As in the case of ordinary bit strings, e stands for the empty 
colored bit string. And, for colored bit strings w and u, w <u again means that w 
is a (not necessarily proper) initial segment of u. 

Definition 35. A colored tree is a set T of colored bit strings, called its 
branches, such that the following conditions are satisfied: 

a) The set {v \ v £ T} — that we denote by T — is a tree in the sense of 
Convention 5. 

b) For any w,u£T, ifw_ = U., then w = u. 
c) For no v £T do we have {vO, ul} C T or {t;0, C T. 

A branch v of T is said to be a leaf iff v is a leaf of T. 

When represented in the style of Figure 1 of [7] (page 36), a colored tree will 
look like an ordinary tree, with the only difference that now every edge will have 
one of the colors blue or yellow. Also, by condition (c), both of the outgoing edges 
("sibling" edges) of any non-leaf node will have the same color. 



Intuitionistic computability logic 105 

Lemma 36. Assume T is a colored tree, and w,u are branches of T with w <u 
and w^u. Then w X u. 

Proof. Assume T is a colored tree, w, u £ T, and w u. We want to show that 
then w u or w u. Let v be the longest common initial segment of w and u, so 
we have w = vw' and u = vu' for some w', u' such that w' is nonempty and w' and 
u' do not have a nonempty common initial segment. Assume the first bit of w' is 
0 (the cases when it is 1, 0 or 1, of course, will be similar). If u' is empty, then w 
obviously contains more blue bits than u does, and we are done. Assume now u' 
is nonempty, in particular, b is the first bit of u'. Since w' and u' do not have a 
nonempty common initial segment, b should be different from 0. By condition (b) 
of Definition 35, the content of b cannot be 0 (for otherwise we would have vO = vb 
and hence 6 = 0). Consequently, b is either 1 or 1. The case b = 1 is ruled out 
by condition (c) of Definition 35. Thus, 6 = 1. But the blue content of wO is w0 
while the blue content of v\ is v\. Taking into account the obvious fact that the 
former is an initial segment of w and the latter is an initial segment of u, we find 
w u. • 

Now comes a description of our EPM £. At the beginning, this machine creates 
a record T of the type 'finite colored tree', and initializes it to {e}. After that, £ 
follows the following procedure: 

Procedure LOOP: Keep granting permission until the adversary makes a move 
7. If 7 satisfies the conditions of one of the following four cases, act as the corre-
sponding case prescribes. Otherwise go to an infinite loop in a permission state. 
Case (i): 7 = 2.w: for some bit string w. Let vi,...,vk be11 all of the leaves 
v of T with w = v. Then make the moves l . g j : , . . . , l.gj.:, update T to T U 
{viO, v\l,..., ffcO, « J } , and repeat LOOP. 
Case (ii): 7 = 2.w.u: for some bit strings w,u. Let V\,... ,Vk be all of the leaves v 
of T such that w •< v and u = v. Then make the moves l .g x : , . . . , update T 
to T U {«i0, v\l,..., VkQ, ffcl}, and repeat LOOP. 
Case (Hi): 7 = 2.w.u.a for some bits strings w,u and move a. Let v\,...,vk 
be all of the leaves v of T such that w X v and u X v. Then make the moves 
l .z^.a, . . . , l.Ufc.a, and repeat LOOP. 
Case (iv): 7 = 1 .w.a for some bit string w and move a. Let v\,...,vk be all of 
the leaves v of T with Then make the moves 2.vi.v1.a,..., 2.Vk-vk.a, and 
repeat LOOP. 

Fix any interpretation *, valuation e and e-computation branch B of £. Let 0 
be the run spelled by B. From the above description it is immediately clear that B 
is a fair. Hence, in order to show that £ wins, it would be sufficient to show that 
Wn£ F (O) = T. Notice that the work of £ does not depend on e. And, as 
e is fixed, we can safely and unambiguously omit this parameter (as we often did 
in the previous section) in expressions such as e[A], Lr^ or W n ^ and just write 

11 In each of the four cases we assume that the list v\,. .. is arranged lexicographically. 
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or say A, hrA or W n A . Of course, £ is interpretation-blind, so as long as it wins 
bF* —> ooF", it is a uniform solution for ¿F —> o o f -

Let N = { 1 , . . . ,TO} if LOOP is iterated the finite number m of times in B, 
and N = {1 ,2 ,3 , . . . } otherwise. For i £ jV, we let Ti denote the value of record 
T at the beginning of the ith iteration of LOOP; ©i will mean the initial segment 
of 0 consisting of the moves made by the beginning of the ith iteration of LOOP. 
Finally, will stand for ->©*• and for ©?•. 

From the description of LOOP it is immediately obvious that, for each i £ N, 
Ti is a finite colored tree, and that T\ C T2 C . . . C T,: In our subsequent reasoning 
we will implicitly rely on this fact. 

Lemma 37. For every i with i £ N, we have: 

a) is prelegal and Tree(3>i) = Ti. 
b) i'j is prelegal. 

e) For every leaf x o/Tree^j), is prelegal. 

d) For every leaf z ofTi, z is a leaf of Tree{$i) and z is a leaf of Tree(<S>?z). 

e) For every leaf x o/TVee(\&j) and every leafy ofTree(i'fx), there is a leaf z 
of Ti such that x = z and y = z. By Lemma 36, such a z is unique. 

f) For every leaf z ofTit $f1 = 

g) Qi is a legal position of bF* —> boF*; hence, £ Lr6F and € Lr66F . 

Proof. We proceed by induction on i. The basis case with i — 1 is rather straight-
forward for each clause of the lemma and we do not discuss it. For the induction 
step, assume i + 1 £ N, and the seven clauses of the lemma are true for i. 
Clause (a): By the induction hypothesis, is prelegal and Tree($t) = T{. As-
sume first that the ith iteration of LOOP deals with Case (i), so that $¿+1 = 
(<3>i, . . . , -Lv.k:). Each of . . . ,v_k is a leaf of Tit i.e. a leaf of 7Vee($i). This 
guarantees that $¿+1 is prelegal. Also, by the definition of function Tree, we have 
7Vee(i>i+i) = 2Vee($j)U{g10,I1l,...,SfcO,S fel}- But the latter is nothing but Ti+1 

as can be seen from the description of how Case (i) updates Ti to Tj+i. A similar 
argument applies when the ith iteration of LOOP deals with Case (ii). Assume now 
the ith iteration of LOOP deals with Case (iii). Note that the moves made in the 
antecedent of bF* —> bbF* (the moves that bring to $i+i) are nonreplicative 
— specifically, look like v.a where v £ Tj = 7Vee($i). Such moves yield prelegal 
positions and do not change the value of Tree, so that Tree{$i) = 7Vee($t+i)- It re-
mains to note that T is not updated in this subcase, so that we also have T i + 1 = Ti. 
Hence 7Vee($i+i) = Ti+1. Finally, suppose the ith iteration of LOOP deals with 
Case (iv). It is the environment who moves in the antecedent of oF* —> 0 0 F * , 

and does so before the machine makes any moves. Then the clean environment 
assumption — in conjunction with the induction hypothesis — implies that such a 
move cannot bring to an illegal position of oF* and hence cannot bring it to a 
non-prelegal position. So, $i+i is prelegal. As for Tree($ i+i) = T_i+l, it holds for 
the same reason as in the previous case. 
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Clause (b): If the ith iteration of LOOP deals with Case (i), (ii) or (iii), it is the en-
vironment who moves in the consequent of bF* —> ooF*, and the clean environment 
assumption guarantees that $¿+1 is prelegal. Assume now that the ith iteration 
of LOOP deals with Case (iv), so that i 'i+i = (^i, Tvi.vx.a,..., Tvk.vk.a). By 
the induction hypothesis for clause (d), each Vj (1 < j < k) is a leaf of Tree(i'l), 
so adding the moves Tvi.v1.a,..., Tvk.vk does not bring to a non-prelegal po-
sition, nor does it modify TVee(i'i) because the moves are nonreplicative. Hence 
$¿+1 is prelegal. 
Clause (c): Just as in the previous clause, when the ith iteration of LOOP deals 
with Case (i), (ii) or (iii), the desired conclusion follows from the clean environ-
ment assumption. Assume now that the ith iteration of LOOP deals with Case 
(iv). Consider any leaf x of Tree(^l+\). As noted when discussing Case (iv) in 
the proof of Clause (b), Tree(^i) = Tree(^i+i), so x is also a leaf of Tree($>i). 
Therefore, if Vf'j+i = the conclusion that V t ^ is prelegal follows from the 
induction hypothesis. Suppose now ^ Note that then looks like 

T j / i .a , . . . , Tym.a), where for each yj (1 < j < m) we have z = x and z = yj 
for some leaf z of Tj. By the induction hypothesis for clause (d), each such yj is 
a leaf of Tree(^fx). By the induction hypothesis for the present clause, 'I ' -1 is 
prelegal. Adding to such a position the nonreplicative moves T j / i .a , . . . , Tym .a — 
where the yj are leaves of Tree{^fx) — cannot bring it to a non-prelegal position. 
Thus, remains prelegal. 
Clauses (d) and (e): If the ith iteration of LOOP deals with Cases (iii) or (iv), Ti 
is not modified, and no moves of the form x: or x.y: (where x,y are bit strings) 
are made in the consequent of bF* —» ooF*, so Tree(^i) and Tree(^f*) (any 
leaf x of Tree^i)) are not affected, either. Hence Clauses (d) and (e) for i + 1 
are automatically inherited from the induction hypothesis for these clauses. This 
inheritance also takes place — even if no longer "automatically" — when the ith 
iteration of LOOP deals with Case (i) or (ii). This can be verified by a routine 
analysis of how Cases (i) and (ii) modify Ti and the other relevant parameters. 
Details are left to the reader. 
Clause (f): Consider any leaf z of Tl+i. When the ith iteration of LOOP deals 
with Case (i) or (ii), no moves of the form x.a are made in the antecedent of 
oF* —> ooF*, and no moves of the form x.y.a are made in the consequent (any bit 
strings x, y). Based on this, it is easy to see that for all bit strings x,y — including 
the case x = z and y = z — we have = and ( l ^ ) - " = 
Hence clause (f) for i + 1 is inherited from the same clause for i. Now suppose 
the ith iteration of LOOP deals with Case (iii). Then Tl+\ — Ti and hence z 
is also a leaf of Ti. From the description of Case (iii) one can easily see that if 
ui z or u 2< z, we have <3?^ = and ( " i ^ ) - - = so the equation 

= ( i 1 ^ ) - 2 is true by the induction hypothesis; and if w X z and u < z, 
then ^ = {&?1 , _La) and = <(«£*)-*, -La). But, by the induction 
hypothesis, = ( i ^ 2 ) - 2 . Hence i » ^ = ( vE^) - 2 . A similar argument applies 
when the ith iteration of LOOP deals with Case (iv). 
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Clause (g): Note that all of the moves made in any of Cases (i)-(iv) of LOOP have 
the prefix '1.' or '2.', i.e. are made either in the antecedent or the consequent of 
oF* —> ooF*. Hence, in order to show that 0 i + i is a legal position of bF* —> obF*, 
it would suffice to verify that £ LrAF* and <£¿+1 £ LrAAF*. 

Suppose the ith iteration of LOOP deals with Case (i) or (ii). The clean 
environment assumption guarantees that $¿+1 £ LrAAF . In the antecedent of 
oF* —> boF* only replicative moves are made. Replicative moves can yield an 
illegal position ($¿+1 in our case) of a ¿-game only if they yield a non-prelegal 
position. But, by clause (a), $¿+1 is prelegal. Hence it is a legal position of bF*. 

Suppose now the ¿th iteration of LOOP deals with Case (iii). Again, that 
£ Lr is guaranteed by the clean environment assumption. So, we only 

need to verify that $¿+1 £ LrAF . By clause (a), this position is prelegal. So, it 
remains to see that, for any leaf y of Tree($ i+i). £ LrAF . Pick an arbitrary 
leaf y of 7Vee($i+i) — i.e., by clause (a), of T i + 1 . Let z be the leaf of Ti+1 with 
y = z. We already know that i 'i+i £ LrAAF . By clause (d), we also know that z is 
a leaf of Tree(^i+i). Consequently, ^f^ € LrAF . Again by clause (d), z is a leaf 
of Tree^f^). Hence, (^ j+x) - - should be a legal position of F*. But, by clause 
(f), ^ = ( t f ^ ) ^ . Thus, £ LrF ' . 

Finally, suppose the ith iteration of LOOP deals with Case (iv). By the clean 
environment assumption, $¿+1 £ LrAF . Now consider ^¿+1- This position is 
prelegal by clause (b). So, in order for to be a legal position of obF*, for every 
leaf x of Tree(^fi+i) we should have i 1 ^ £ LrAF . Consider an arbitrary such leaf 
x. By clause (c), ^ ^ is prelegal. Hence, a sufficient condition for ^ ^ £ LrAF 

is that, for every leaf y of Tree^f^), £ LrF . So, let y be an arbitrary 
such leaf. By clause (e), there is a leaf z of Tl+i such that z = x and z = y. 
Therefore, by clause (f), = But we know that $ i + i £ LrAF* and 
hence (with clause (a) in mind) £ LrF*. Consequently, £ LrF*. • 

Lemma 38. For every finite initial segment T of Q, there is i £ N such that 
T is a (not necessarily proper) initial segment of G< and hence of every Qj with 
i <j £ N. 

Proof. The statement of the lemma is straightforward when there are infinitely 
many iterations of LOOP, for each iteration adds a nonzero number of new moves 
to the run and hence there are arbitrarily long ©¿s, each of them being an initial 
segment of 0 . Suppose now LOOP is iterated a finite number m of times. It 
would be (necessary and) sufficient to verify that in this case 0 = 0 m , i.e. no 
moves are made during the last iteration of LOOP. But this is indeed so. From the 
description of LOOP we see that the machine does not make any moves during a 
given iteration unless the environment makes a move 7 first. So, assume _L makes 
move 7 during the mth iteration of LOOP. By the clean environment assumption, 
we should have ( 0 m , ±7 ) £ LrAF _>AiF . It is easy to see that such a 7 would have 
to satisfy the conditions of one of the Cases (i)-(iv) of LOOP. But then there would 
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be an (m + l)th iteration of LOOP, contradicting out assumption that there are 
only m iterations. • 

Let us use $ and to denote -i©1- and Q2 ' , respectively. Of course, the 
statement of Lemma 38 is true for $ and *]/ (instead of ©) as well. Taking into 
account that, by definition, a given run is legal if all of its finite initial segments 
are legal, the following fact is an immediate corollary of Lemmas 38 and 37(g): 

© G Lr i F * _ > i i F * . Hence, $ G LrAF* and ® G LrAAF*. (6) 

To complete our proof of Lemma 34, we need to show that W n S F " " J 4 f ' (©) = 
T. With (6) in mind, if Wn 4 A F" ($) = T, we are done. Assume now Wn 4 4 F* <$) = 
_L. Then, by the definition of ¿, there is an infinite bit string x such that is a 
legal but lost (by T) run of ¿F*. This means that, for some infinite bit string y, 

Wn F * ( ( ^ - x ) - y ) = _L. (7) 

Fix these x and y. For each % G N, let Xi denote the (obviously unique) leaf of 
Tree^i) such that x^ < x; and let yt denote the (again unique) leaf of Tree($fXi) 
such that yi X y. Next, let zl denote the leaf of T* with Z{ = Xi and zx = yi. 
According to Lemma 37(e), such a exists and is unique. 

Consider any i with i + 1 G N. Clearly X and yi X yi+ j. By our choice 
of the Zj, we then have zt X z i + i and z{ < z i + 1 . Hence, by Lemma 36, Zi •< Zi+1. 
Let us fix an infinite bit string z such that for every i G N, ~z{ < z. Based on the 
just-made observation that we always have Zi X zl+i, such a 2 exists. 

In view of Lemma 38, Lemma 37(f) easily allows us to find that <£-z = 
Therefore, by (7), W n F ' ( $ ^ ) = ± . By the definition of ¿, this 

means that W n A F ($) = ± . Hence, by the definition of —» and with (6) in mind, 
WnAF*_>A4F* (0 ) = T. Done. • 

12 Proof of Theorem 12 
Now we are ready to prove our main Theorem 12. Consider an arbitrary sequent 
S with INT I- S. By induction on the INT-derivation of S, we are going to 
show that S has a uniform solution £. This is sufficient to conclude that INT 
is 'uniformly sound'. The theorem also claims 'constructive soundness', i.e. that 
such an £ can be effectively built from a given INT-derivation of S. This claim of 
the theorem will be automatically taken care of by the fact that our proof of the 
existence of £ is constructive: the uniform-validity and closure lemmas on which we 
rely provide a way for actually constructing a corresponding uniform solution. With 
this remark in mind and for the considerations of readability, in what follows we only 
talk about uniform validity without explicitly mentioning uniform solutions for the 
corresponding formulas/sequents and without explicitly showing how to construct 
such solutions. Also, we no longer use => or o—, seeing each sequent F=$Kas the 
formula oF —> K and each subformula E\ 0—E2 of such a formula as ¿Fi E2. 
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This is perfectly legitimate because, by definition, (F => K)* = ( ¿F —> K)* and 
(E^Et)* = E2)\ ~ 

There are 15 cases to consider, corresponding to the 15 possible rules that might 
have been used at the last step of an INT-derivation of 5, with S being the conclu-
sion of the rule. In each non-axiom case below, "induction hypothesis" means the 
assumption that the premise(s) of the corresponding rule is (are) uniformly valid. 
The goal in each case is to show that the conclusion of the rule is also uniformly 
valid. "Modus ponens" should be understood as Lemma 21, and "transitivity" as 
Lemma 22. 

Identity: Immediately from Lemma 23. 

Domination: Immediately from Lemma 27. 

Exchange: By the induction hypothesis, W-pG A ¿ F A ¿ F A oH_ —> K. And, by 
Lemma 17(a), « - (¿GaAFaAFA^H; K) -> {¿Ga^FaIea^H K). Applying 
modus ponens yields B-pG A ¿ F A ¿ F A —> K. 

Weakening: Similar to the previous case, using Lemma 17(b) instead of 17(a). 

Contraction: By Lemma 17(c) (with empty U), Hr()>F - » ¿ F A i F ) -> (¿GApF -> 
¿G A ¿ F A ¿F) . And, by Lemma 26, ^ ¿ F - » ¿ F A ¿F. Hence, by modus ponens, 
N>GaAF -> ¿GAiFA^F. But, by the induction hypothesis, l ^ ¿GA¿FA¿F -> K. 
Hence, by transitivity, ^-¿G A ¿ F —> K. 

Right o - : From Lemma 17(d), ¡ - ( ¿ G A ¿ F -> K) -> (¿G (¿F - » K)). And, 
by the induction hypothesis, A ¿ F —> K. Applying modus ponens, we get 
K G - » ( ¿F -+ K). 

Left o—: By the induction hypothesis, 

^-¿G A ¿F —> Ki] (8) 

(9) 

Our goal is to show that 

^]OGAHH_A^K2^F)^KX. ( 10 ) 

By Lemma 18, (9) implies «-¿(¿tf - » K2). Also, by Lemma 24, »(-¿(¿tf -> 
K2) —> (QQH —> BK2). Applying modus ponens, we get M~o ¿ / / - » OK2. Again 
using Lemma 18, we find №-¿(¿¿7/ —» oK2), which, (again) by Lemma 24 and 
modus ponens, implies 

^ ¿ ¿ ¿ ¿ - ¿ ¿ X 2 . (11) 

Combining Lemmas 17(c) (with empty W,U) and 34, by modus ponens, we 
find i -^ff -> ¿ ¿ f f . Next, by lemma 25, №-¿¿7? -> ¿ ¿ # . Hence, by transitivity, 
HrkH —» ¿ ¿ / f . At the same time, by Lemma 34, IhooH —> ooof f . Again by 
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transitivity, ffi-pH —> booH. This, together with (11), by transitivity, yields 

—> ¿¿K2. (12) 

Next, by Lemma 24, 

№-¿(¿#2 —• F ) —> ( ¿ ¿ # 2 —> ¿F) . (13) 

From Lemma 17(e), « - ( ¿ ( ¿ / fa - » F) - » (AAüfa - » ¿F) ) A ( ¿ i f —> ¿¿üf2 ) 
( ¿ ( ¿ # 2 —> F) (o f f ¿ F ) ) . This, together with (13) and (12), by modus 
ponens, yields 

i - o ( oK 2 —> F) —> (A/f —» ¿F) . (14) 

By Lemma 17(f), 

F) - » (A# ¿ F ) ) A (AG A o F —> K i ) , . 
-» (OGAOH_A^(OI<2 -> F) -> KL). 

From (14), (8) and (15), by modus ponens, we obtain the desired (10). 

Right n: By the induction hypothesis, B-pG —» K\, . . . , IH-qG —> Kn. And, from 
Lemma 17(h), «-(¿G —> Ki) A . . . A (¿G —> I<n) —> (AG —> Ä"i n . . . n Kn). Modus 
ponens yields W-AG —> K\ n . . . n Kn. 

Left n: By Lemma 28(a), » - ¿ (F in . . ,nFn ) -> oFi\ and, by Lemma 17(c), » - ( ¿ (F in 
• • • n Fn) ¿Fi) -> (AG A ¿(Fi n . . . n Fn) —* AG A ¿Fj) . Modus ponens yields 
AGAA(F tn.. .nFn ) -> ¿GA¿Fi• But, by the induction hypothesis, ft-AGAAFj -> K. 
So, by transitivity, M-AG A ¿(Fi n . . . I~l F„ ) —> K. 

Right U: By the induction hypothesis, B~oG —> Kl. According to Lemma 17(j), 
»-(AG -> Ki) -> (AG —» K\ U ... U Kn). Therefore, by modus ponens, M-AG -> 
Ki U . . . U Kn. 

J 

Left U: By the induction hypothesis, » -¿G A ¿Fi —> K, . . . , ffl~AG A ¿F n -> K. 
And, by Lemma 17(i), »-(oGA AFi - » K) A . . . A (AG A ¿Fn - » K) - » (AG A (¿Fi U 
. . . U oF n ) —> K). Hence, by modus ponens, 

ffl-oG A (¿Fi U . . . U ¿F„ ) - » K. (16) 

Next, by Lemma 17(c), » - ( ¿ (F j U . . . U F n ) ¿Fi U . . . U ¿F„ ) —> (AG A ¿(Fi U 
. . . U Fn) —> AG A (¿Fl U . . . U ¿F„ ) ) . But, by Lemma 28(c), N>(Fi U . . . U F„) 
¿FiU. . .UoFn. Modus ponens yields №-AGaA(FiU. . .UFn) AGa(AFiU.! ,uAFn). 
From here and (16), by transitivity, » -¿G A ¿(Fi LI... U Fn) —> K. 

Right I I: First, consider the case when AG is nonempty. By the induction hy-
pothesis, »-¿G K(y). Therefore, by Lemma 19, »-["^(AG -> K(y)) and, by 
Lemma 29 and modus ponens, »-IHt/AG —» \~\yK(y). At the same time, by Lemma 
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32, B-oG l~lyAG. By transitivity, we then get B-AG -> f~lyK(y). But, by Lemma 
33, B-IIyK(y) -> ["IxK(x). Transitivity yields B~AG r\xK(x). The case when 
oG is empty is simpler, for then B~AG —> V\xK(x), i.e. IB—I IxK(x ) , can be obtained 
directly from the induction hypothesis by Lemmas 19, 33 and modus ponens. 

Left l~l: Similar to Left n, only using Lemma 28(b) instead of 28(a). 

Right U: By the induction hypothesis, B-AG —> K(t). And, by Lemma 31, 
B-K(t) U r f ( i ) . Transitivity yields B-AG ^ U x A ' ( i ) . 

Left U : By the induction hypothesis, B~AG A AF(y) —> K. This, by Lemma 19, 
implies B-l~ly(AG A AF(y) —> K). From here, by Lemma 30 and modus ponens, we 
get 

fr-fh/AG A UyAF(y) - UyK. (17) 

By Lemma 17(c), B-(AG -> flyAG) (AGAUyAF(y) nyAGAUyAF(y)). This, 
together with Lemma 32, by modus ponens, implies AG A UyoF(y) —> l~lyAG A 
UyiF(y) . From here and (17), by transitivity, B-AG A \Jyi>F(y) -> K. But, by 
Lemmas 33, 17(c) and modus ponens, B~AG A Ua:AF(x) —> AGAUyAF(y). Hence, 
by transitivity, 

B-oG A UrcAF(x) ^ K. (18) 

Next, by Lemma 17(c), IF(AUxF(x) - » UxAF(x)) (AG A AUxF(x) - » AG A 
UxAF(x)). But, by Lemma 28(d), l-AUxF(x) —> UxAF(x). Modus ponens yields 
AG A AUxF(x) AG A UxAF(x). From here and (18), by transitivity, B-AG A 
AUxF(x) - * K . • 
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On monotone languages and their characterization 
by regular expressions 

György Gyurica* 

To the memory of Balázs Imreh 

Abstract 

In one of their papers, F. Gécseg and B. Imreh gave a characterization 
for monotone string languages by regular expressions. It has turned out 
that the monotone string languages are exactly those languages that can be 
represented by finite unions of seminormal chain languages. In this paper a 
similar characterization is given for monotone DR-languages. 

1 Introduction 
Monotone string and tree languages were introduced by Gécseg and Imreh in [4] 
where these languages were characterized by means of syntactic monoids. They also 
used chain languages to represent monotone string languages by regular expressions, 
and showed that any monotone string language can be represented as the union 
of finitely many seminormal chain languages and that, conversely, any seminormal 
chain language can be recognized by a monotone recognizer. 

In this paper we continue the investigation of monotone string and DR-
languages. Our primary goal was to characterize the monotone DR-languages by 
regular EX-expressions, but we have also introduced the concept of iterational 
height for regular expressions which was useful to state conditions under which 
iteration preserves monotonicity. The same result was adapted to DR-languages, 
too. 

Thereafter, a simple characterization of monotone DR-languages was given. The 
number of the auxiliary variables used in this representation and some decompo-
sition problems were also investigated. Later, we stated some conditions that are 
required to preserve monotonicity when using the operations of x-product and x-
iteration. Finally, we introduced the concept of generalized i?-chain languages, for 
which it will turn out that they represent exactly the monotone DR-languages. For 
notions and notation not defined in this paper we refer the reader to [4] aiid [7]. 
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2 Monotone string languages 
Let X be an alphabet. The set of all words over X is denoted by X*. Let us 
denote the length of a word u £ X* by |ix| which is the number of occurrences of 
letters from X in u. The empty word is denoted by e. The set of words with length 
greater than 0 is denoted by X+(— X* \ {e}). 

An X-recognizer is a system A = (A, X, 5, ao, A'), where A is a finite set of states, 
X is the input alphabet, 5 : A x X —> A is the next-state function, ao € A is the initial 
state, and A' C A is the set of final states. The next-state function can be extended 
to a function S* : A x X* —* A, where S*(a,.e) = a and 6*(a,xu) = 5*(6(a,x),u) 
(a £ A, x G X, u G X*). If there is no danger of confusion, instead of 5*(a,u) we 
can use the notation 5(a, u) or simply au. 

The language L(A) recognized by A is given by 

A language L C X* is called regular or recognizable if it can be recognized by 
an X-recognizer. 

An X-recognizer A = (A, X, 6, ao, A') is monotone if there is a partial ordering 
< on A such that for all a € A and x £ X, a < 6(a,x) holds. It is obvious that 
for all a € A and u £ X*, a < au holds, too. A language L C X* is monotone if 
L = L(A) for a monotone X-recognizer A. Later we will use the fact that every 
partial ordering on a finite set can be extended to a linear ordering. For more 
details we refer the reader to [4]. 

A language L C X* is fundamental, if L = Y* for a Y C X. A language L C X* 
is a chain language if L can be given in the form L = LqX\L\X2 ... Xk-iLk-iXkLk, 
where x\,... ,xk 6 X and every L, (0 < i < k) is a product of fundamental lan-
guages. A chain language L = L0X1L1X2 Xk-iLk-\xkLk is called seminormal 
if Xi 0 Lj-1 for every 1 < i.< k. L is normal if Xi £ Li- i and Xi ^ Li (1 < i < k). 
A seminormal chain language L = LoXiL\x2 .. .Xk-iLk-\XkLk is called simple if 
each Li (0 < i < k) is fundamental. 

Now we recall the main result from the corresponding section in [4]. 

Theorem 1. A language is monotone iff it can be given as a union of finitely many 
seminormal chain languages. • 

Let X be an alphabet. The set RE of all regular expressions and the language 
L(rj) represented by rj £ RE are defined in parallel as follows: 

• if riurne RE, then (m) + £ RE, % ) + fe)) = %)ULM, 

L(A) = {u £ X* | a0u £ A'}. 

• 0 S RE, 

• Vx € X : x £ RE 

L(0) = 0, 

L(x) = {x } 

• if 771,% G RE, then (771) (772) G RE, L((m)(m)) = L(77i)L(T72) 

• if 7? G RE, then (77)* 6 RE, L(( 77)*) = L(V)* 
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Some parentheses can be omitted from regular expressions, if a precedence re-
lation is assumed between the operations of iteration, concatenation, and union in 
the given order. 

A regular expression £ is called a subexpression of 77 if C occurs in the inductive 
definition of 77. The set of all subexpressions of 77 will be denoted by Sub(rj). The 
operation omission on regular expressions is defined as follows: Let us consider 
771,772 £ RE and the regular expressions (771) + (772), (77i){r]2) and (771)*. By omitting 
rji from them we get 772 from the first two ones, and the expression 771 from the 
third one. We also allow the omission of 771 from (771)* to result in (0)*. If we omit 
772 from (771) + (772) and (771) (772) we get 771 and 771 respectively. This way, omission 
is not well-defined, nor does it have to be. Let £ be a subexpression of a regular 
expression 77. We call £ redundant in 77 if £ can be omitted from 77 so that L(rj) 
remains the same after the omission. A regular expression is reduced if it has no 
redundant subexpressions. 

The reduction of a regular expression is not necessarily unique as the following 
example shows. 

Example 2. Let us consider the regular expression 77 = x(yx)* + z + (xy)*x. 
Obviously the first and the third member of the union represent the same language, 
that is, both of them are redundant in 77. If we omit one of them separately, we 
get two different reduced regular expressions: x(yx)* + z and z + (xy)*x which 
represent the same language. 

Now we define the concept of iterational height which is used to identify the 
length of the longest word that will be used in the iteration of a particular lan-
guage. Let 77 be a reduced regular expression in fo.tm (£)*. The nonnegative integer 
max{\u\ : u £ L(C)} will be called the iterational height of 77 (or 1/1(77) for short), 
if L(C) is finite. If L(£) is infinite, then let ih(rf) be the infinity 00 that we will 
treat as the largest integer. Let now 77 be a reduced regular expression in any form. 
We define ih(ri) as max{ih((Q*) \ (Q* 6 Sub(r])}, if Sub(rj) contains an expression 
in form (()*, and 0 otherwise. The iterational height of a regular language L (or 
ih(L) for short) is defined as min{ih(r}) | L = L(r\),r} £ RE}. 

Example 3. Let us take the regular expression ( = xx + xxx. By the defini-
tion of ih((C)*) we have ih((Q*) = 3. Let us now consider the regular expression 
77 = x + (£)* • ft is easy to see that ih(rj) = 3, because 77 has a subexpression in form 
(()*, for which ih((()*) = 3. Let us now take the language L(rj), for which we get 
that ih(L(r})) = 1, because L(77) can also be represented by the regular expression 
(x)*, for which ih((x)*) = 1. 

Lemma 4. Let 77 be a reduced regular expression of the form (£)*. If L(t]) is 
monotone, then ih(L(rj)) < 1. 

Proof Let 77 be a reduced regular expression of the form (C)*, and let the monotone 
X-recognizer A recognize L(rj) with the partial ordering < on A. We can suppose 
without the loss of generality that A is reduced and connected from its initial state, 
hence there is exactly one final state a £ A' such that au = a for every u £ L(C). 
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Using the monotonicity of A we get that ax = a holds for any letter x from the 
words of L(Q. We see that there is no such state a' £ A \ {a} for which a' < a and 
a'x = a' hold for any x £ X, and we also see that there is no final state а" ф a 
such that a < a". Hence rj can be written in form C'C"> where С does not contain 
the operation *, and represents the set of all words taking A from ao to a, and 
where is in form (yi + • • • + yr)*, where yi,..., yT are the letters from the words 
of L(C). Since 1,(77) = L(C'C") and ih{L(C(")) = 1. we get that ih(L(r])) < 1 . • 

3 Monotone DR-languages 
A ranked alphabet is a finite nonempty set of operational symbols, which will be 
denoted by E. The subset of all m-ary operational symbols of E will be denoted 
by Em . We shall suppose in the rest of this paper that Eo — 0. Let p(S) stand for 
the power set of the set S. 

Let X be a set of variables. The set T%(X) of ИХ-trees is defined as follows: 

(i) Х С В Д , 

(ii) a ( p i , . . . , p m ) £ T E (X) , if m > 0, a £ E m and p b . . . ,pm £ T E (X) , 

(iii) every EX-tree can be obtained by applying the rules (г) and (ii) a finite 
number of times. 

In the rest of this paper X will stand for the countable set {x\,x2, • • •}, and for 
every n > 0, Xn will denote the subset { x i , . . . , xn} of X. 

A pair А = (A, E) will represent a deterministic root-to-frontier E-algebra (or 
a DR T,-algebra for short), where A is a nonempty set, and E is a ranked alphabet. 
Every a £ E m is represented as a mapping ал : A —> Am. A is called finite, if E is 
a ranked alphabet and A is finite. 

A. deterministic root-to-frontier HXn-recognizer (or a DR T,Xn-recognizer for 
short) is a system 21 = (Л, a0, a), where Л = (A, E) is a finite DR E-algebra, 
ao £ A is the initial state, and a = (A*1) , . . . , A ^ ) £ p(A)n is the final state 
vector. If E or Xn is not specified, we speak of DR-recognizers. 

Let 21 = (A, ao, a) be a DR EXn-recognizer, and let the mapping a : Т%(Хп) —> 
p(A) be defined as follows. For every p £ Т%(Хп) 

(i) if p = Xi £ Xn, then a(p) = A^, 

(ii) if p = a(pi,... ,pm), then a(p) = {a £ A \cA(a) € a(px) x ...x а(рщ)}. 

The tree language T(2l) recognized by 21 can be given by 

T(2l) = {p £ TS(X„) I a0 £ a(p)}. 

Tree languages that can be recognized by DR-recognizers are also called DR-
languages. 

Let 21 be a DR EXn-recognizer and a € A one of its states. We define the 
tree language T(2l, a) as the set { p £ T^(Xn) \ a £ a(p)}. A state a is called 
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0-state if T(2l, a) = 0. 21 is called normalized if for all a G £ m and a € A it 
holds that each component of crA(a) is a 0-state or no component of crA(a) is a 
0-state. Moreover, 21 is called reduced if for any states a, b £ A it holds that a / 6 
implies T(2l, a) ± T(2l,6). It is a well-known fact that every DR-language can be 
recognized by a normalized and reduced DR-recognizer (cf. [5], [6] and [7]). 

Let 7r¿ be the i-th projection. A DR E-algebra A = (A, E) is called monotone 
if there is a partial ordering < on A such that a < tti(aA(a)) holds for all a £ A, 
a € E m and 1 < i < m. We say that 21 is a monotone DR HXn-recognizer if the 
underlying DR E-algebra A is monotone. Moreover, T C T^(Xn) is a monotone 
DR-language, if T = T(2l) for a monotone DR EXn-recognizer 21 (see, [2] and [4]). 

As every partial ordering on a finite set can be extended to a linear ordering, 
the following lemma hold. 

Lemma 5. For any monotone DR-recognizer 21 we may assume that the partial 
ordering on A is total. 

The following lemma is also obvious. 

Lemma 6. Every finite DR-language is monotone. 

4 Basic observations 
Before we continue the investigation of monotone DR-languages, we need to intro-
duce some concepts and notions (mainly taken from [4], [6] and [7]). 

Let E be a ranked alphabet, and let E be an ordinary alphabet defined as 
follows. For all a, T £ E let 

(i) ECT = {cti, . . . ,am}, if a- £ E m {m > 1), and 

(ii) ta n ET = :0, if a t. 

We define E as E = U(E(T | a £ £) . We say that the alphabet E corresponds to 
the ranked alphabet E. 

Let n > 1 be fixed arbitrarily. The set gXi(t) of Xi-paths of a tree t £ T^(Xn) is 
defined for each i € { 1 , . . . , n} in the following way: 

(i) 9xÁXi) = {e } , and gXi(xj) = 0, if i^j, i, j £ { 1 , . . . , n} , 

(ii) If t = (j{t\ j • • •, ¿m) (c € E m ) , then gXi(t) = <riSXi(ii) U . . . U crmgXi(tm). 

For a tree language T C T^(Xn), let gXi{T) = U/.GT ÍZ .M' which is also denoted 
by TXi (1 <i<n). 

Let E be a ranked alphabet, and let E be the alphabet corresponding to it. Let 
A = (A, E) be a DR E-algebra. For every u £ E* the mapping uA : A —» A is 
defined as follows: 

(i) If u = e, then auA = a, and 
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(ii) if и = <TjV, then auA = •nj(a(a))vA, (a £ A, a £ E m , 1 < j < m, v £ Ё*). 

The mapping defined above can be extended to subsets of E* in a natural way. 
In the rest of this paper we will omit the superscript A in uA if the DR E-algebra 
A inducing uA is obvious. 

A tree language T С T^(Xn) is closed if a tree t £ T^(Xn) is in T if and only 
if 9x{t) Я Tx for all x £ Xn. It is a well known result, that a regular tree language 
is DR-recognizable if and only if it is closed (cf. [1] and [9]). 

Now we need to specify some details regarding particular operations on tree 
languages. The о-product of EXn-tree languages T\, . . . , Tm is the tree language 
a ( T i , . . . , Tm) = {a(ti,..., tm) | U £ Ti, 1 < i < m}, where m > 1 and a £ E m . 
We assume that the reader is already familiar with the operations of union, x-
product and x-iteration. In the rest of this paper, we will use the operation of 
x-product in right-to-left manner, that is, for any tree languages S,T С T^(X n ) 
the x-product T- X S is interpreted as a tree language in which the trees are obtained 
by taking a tree s from S and replacing every leaf symbol x in s by a tree from 
T. Different occurrences of x may be replaced by different trees from T. We will 
also assume that T -y R -x S always means T -y (R -x S) for any tree languages 
5, R, T С Tz{Xn) and variables x, у £ Xn. 

Let E be a ranked alphabet, and let Xn be a set of variables. The set RE(EX„) 
of all regular T,Xn-expressions and the tree language T(rj) represented by r) £ 
RE(T,Xn) are defined in parallel as follows: 

• 0 e RE(£X„), T(0) = 0, 

• Vx G Xn : x £ RE(EXn), T{x) = {x } , 

If <7 G E m , •.. ,r)m £ RE(EXn), x £ Xn, then 

• Ы + (m) G RE&xn), T((m) + (r?2)) = T(Vl) и ТЫ, 

• Ы -x Ш е RE(Exn), T((m) -x (m)) = T(m) -x T(m), 

. W £ RE(EXn), Т{{ъУ'х) = T W , 

• a(m,...,7lm)£RE(ZXn), T(cr(r]i,... ,T]m)) = a(T(rji),... ,T(r]m)). 

Some parentheses can be omitted from regular EXn-expressions, if a precedence 
relation is assumed between the operations of ст-product, x-iteration, x-product, 
and union in the given order. 

A regular EX„-expression £ is subexpression of rj if £ occurs in the inductive 
definition of г]. The set of all subexpressions of 77 will be denoted by Sub(r]). The 
operation omission on regular EXn-expressions is defined as follows: Let us consider 
a £ E m , x £ X, 771,772, • • • ,rjm £ RE(EXn) and the regular EXn-expressions 
(m) + (%), (rn) X (m)*'x and <7(771,... ,77m). By omitting 771 from them we 
get 772, 772, 771 and cr(£, 772,... ,r)m) respectively, where £ is a variable occurring in 
T(77i), if such exists, otherwise С = 0- We allow the omission of щ from (771)*'1 

to result in x as well. If we omit щ from (771) + (772) and (772) •x (771) we get 771 



Oil monotone languages and their characterization by regular expressions 123 

and T)x respectively. Omission on regular EXn-expressions is not well-defined, but 
we do not need it to be so. Let 77 be a regular EA^-expression, and let ( be a 
subexpression of r). We call ( redundant in 77, if ( can be omitted from 77 so that 
T(j]) remains unchanged after omission. A regular EXn-expression is reduced if it 
has no redundant subexpressions. As in the string case, a regular EXn-expression 
may have several different reduced forms. 

Now we adapt the concept of iterational height for tree languages which will 
be used to identify the length of the longest x-path that will be used in an x-
iteration of a particular tree language. Let x € X be a variable, and let 77 be a 
regular EXn-expression in form (C)*'x- The iterational height of x in 77 (ihx(r;) for 
short) is defined as max{\u\ : u € 9x(T(C))}, if gx (T(Q) is finite. If gx{T{Q) is 
infinite, then let ihx(rj) be the infinity 00 that we will treat as the largest integer. 
Let now 77 be a reduced regular EXn-expression in any form. We define ihx(rj) as 
max{ihx((()*'x) | (C)*'x G Sub(r])}, if Sub(r]) contains an expression in form (C)*'x, 
and 0 otherwise. The iterational height of x in a regular tree language T (ihx(T) 
for short) is defined as min{ihx{r]) : T — T(rj)}. 

Example 7. Let E = E2 = {cr} and X = {x,y} hold and let us consider the 
regular EX-expression ( = cr(y,a(y,x)) -f a(y,a(y,a(y,x))). It is easy to see that 
ihx((0*'x) = 3. Taking 77 = cr(y,x) + (C)*'x we have ihx(rf) = 3 because 77 has 
a subexpression in form (C)*'x for which ihx((Q*'x) = 3. Considering the tree 
language T(i7) we get ihx(T(r})) = 1, because T(rj) can be represented also by 
(cr(y, x))*'x, for which ihx((a(y,x))*'x) = 1. 

Lemma 8. Let 77 be a reduced regular Y,Xn-expression of the form (C)*'x- IfT(ri) 
is a monotone DR-language, then ihx(T(r])) < 1. 

Proof. Let 77 be a reduced regular EXn-expression of the form (C)*'x, and let 21 
be a monotone DR-recognizer which recognizes T(r}) with the partial ordering <. 
Without the loss of generality we can suppose that 21 is reduced and normalized, 
thus there is exactly one state a € A for which a £ a(x) and au = a hold for every 
word u £ gx(T(Q). Since 21 is monotone, we see that aa = a for any letter a that is 
present in any of the words of gx(T(()). Moreover, there is no state a' £ A\ {a} for 
which a < a' and a' £ a(x), and there is no state a" £ a(x) \ {a } for which a" < a 
and a"a — a" hold for every letter a that is present in any of the words of gx(T(()). 
Hence rj can be written in form (C')*'x -x C'> where represents the tree language 
that 21 recognizes by taking A^ = {a} , and leaving A ^ unchanged if j ^ i, and 
where ( " is the representation of the trees that we can get by decomposition of 
every tree t £ T(£) at every point of the paths in gx(t). It is easy to see that 
T(rj) = T((C")*'X -x C) and ihx{T{{CY'x -x C')) = 1- that is ihx(T{77)) < 1 . • 

5 A simple characterization 
Let 21 = (A, ao,a) be a monotone DR EXn-recognizer, where A = (A, E-4), 
A = { a 0 , . . . , a * } and a = ( # ) , . . , # ) ) . Without the loss of generality we 
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can suppose that ao < ai < . . . < ak holds. Let Ek = {£o. • • • , £/t} be a set of 
auxiliary variables for which Xn fl Ek = 0 holds. Furthermore, let <f>: A —> Ek be a 
bijective mapping defined by <j>(a,i) = & (0 < i < k). Now we construct the regular 

n U —¿^-expression TJ as follows: 

V = T]k Vk-i -a-i • • • Vo, 

where for each i = 0 , . . . , k 

rii = (p\ + --- + pi+yi + ••• + yiri) -u (t\ + --- + t)y<*\ 

and where 

1) y\,... ,ylr. are all the elements of the set {xz G Xn\ a» G A ^ } , 

2) Pls = . • • • > &m ) f o r s u c h " ^ m and € Ek (1 < v < m) that <r(cii) = 
( r ' K i . ) . • • - r ' t e J ) and a i i Ui<„<m { * » ( * ( * ) ) } (1 < « < h), 

3) t\ = cr^M, • • -.&,„) for such cr G E m and £ 5 t ( l < u < m ) that o(a,i) = 
).•••. and G U i < u < m K ( * ( « < ) ) } hold (1 < s < ¿ 0 , 

4) I { p l - . - M j I + I { i i . - - - . i U I =1 E |. 

The regular E(Xn U Efc)-expression rj constructed above is called the trivial 
regular expression belonging to 21, and is denoted by rfa. We use the word trivial 
because describes T(2l) by its computation in 21, where for every 0 < i < k, 
rji is responsible for the computation starting in state a*. That part of rji which is 
iterated by the operation is called the iterating part of r]i, and the part of rji 
which is inserted by product into the variables & of the iterating part is called 
the terminating part of 77*. We will call the expressions of the form T]k . . . rji rjo 
by chains. 

Let the ao < a\ < ... < ak linear ordering hold on the state set of the monotone 
DR EX"n-recognizer 21. Let us define the DR EXn-recognizer 21, as follows: 2lj = 
(Ai,ai, a;), where A = (A n {a*,. . . .afcJ.E-4), and 
a; = (Ad) D { a , , . . . , a jt } , . . . , A^"' n {a» , . . . , ajt}). It is obvious that 21* recognizes 

Lemma 9. For a monotone DR HXn-recognizer 21 the equality T(21) = T(r?<a) 
holds. 

Proof. Let 21 be a monotone DR EXn-recognizer, and let 77a be the trivial regular 
expression belonging to 21. Let us also suppose that 21 = (A, ao,a), A = (A, E), 
A = {ao , . . . , at} , and the linear ordering CLQ < ... < ak holds on A. The proof is 
continued by induction on the number of states in 21. 

If k = 0, then T(2l) = TE(Xn n {x»| a0 G A ( i ) } ) holds because A is singleton. 
Obviously 77a = rjo holds, too. By the definition of 77a, every <7 G E is present 
in the iterating part of ijo, and every x G {xi| a0 G A ^ } C Xn is present in 
the terminating part of r/0. Hence,' T(TJ<X) = TS(XN f l {x*| ao G A ^ } ) , that is, 
T(2l) = Tfaa). 
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Let us now suppose as our induction hypothesis that Т(21*) = г]к -(k . . . -(i+1 rji 
holds for every 1 < i < k. Now we construct the T,(Xn U Sfc)-recognizer 21' as 
follows: 2Г = ( A a 0 , a ' ) , where a' = ( Л ^ П { a 0 } , . . . , A™ n { a 0 } , { a 0 } , . . . , {a*}) € 
p(^)n + f c + 1 . To interpret the meaning of T(2t') let us treat Xn U Ek as the 
set Xn+fc+i, where xn+i+1 = and let the mapping a be defined as а(£») = 
a(x n + i+ i ) = A( n + i + 1 ) (i = 0 , . . . , f c ) . 

It can be easily seen that T(21) = T(2lfc) ъ . . . -i2 T(2li) -5l Г(Я'), and T(21') = 
T(r]o). Hence 

T(2i) = r ( a f c ) - £ l k r ( a f c _ 1 ) . C t _ 1 . . . - € a T ( a 1 ) . { l T ( a ' ) 
= T{r}k) -ik Т(щ - i t 77fc_i) . . . -e2 T(rjk -ik... -ia m) T(r)o) = 
= T(r,k) T(Vk-i) . . . -6 T(m) т(г]о) 
= T(vk -ik m-i - a - ! • • • -ъ m -«i vo) 
= T(v). • 

6 Remarks on the decomposition of 77 

In this section we give some remarks on the decomposition of the regular E(XnUEfc)-
expression TJ = Щ • • • Щ Щ. If there is at most one symbol in the terminating 
part of rji, then the decomposition in the т]г part makes no sense, hence we assume 
in this section that there are at least two symbols in the terminating part of 77,. 

We say that г] = щ-^к . . . rji . . . щ can be decomposed in the 77* part 
if it can be given in the form 

4 = 4k~ik--- -Ci+i Vi "ii • • • -ii 4o = 

4k •{»... -€i+i (P\ + • • • +Ph + У\ + •" • + Vrt) Ъ № + ••• + Ъ • • • "ii = 

4k -ii+1 (yl) -fi (*! + ••• + •£< " • • 40 + 

+ 4k 4* • • • -C+i Ш Ъ № + ••• + 'b • • • 'ii Vo + 

+ 4к-цк . . . - i i+1 (Pi) 'ii (¿I + ' ' ' + Ъ • • • -€i + 

+ '£¿+1 Ш '£. (¿i + ' ' • + "ft • • • -Ci 

where 

(i) yj £ X n (1 < s < rit 0 < г, < n), 

(ii) p* = cr(Ci!, • • • ,&m), for some cr e £ m , € Efc, 1 < v < m, 1 < s < h, 

(iii) t\ = • • • .&m), for some cr e E m , 1 < v < m, 1 < s < 
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Now we state a necessary condition for the existence of such decompositions. 

Lemma 10. The expression V = Ik ^ - • - Vi ii Vo can be decomposed in the r]i part, 
if every operational symbol in the iterating part of 77, contains the auxiliary variable 

at most once among its leaves. 

Proof. Let us suppose that the condition of the lemma holds. Let us denote in this 
proof the regular £(XnUEfc)-expressions rjk -£k • • • i+2 Vi+i a n d {t\ H 1 

770 by and ( ' , respectively. It is easy to see that for every tree t £ T((') 
the set g^ (i) is a singleton or the empty set. By the definition of the ^-product of 
tree languages, using the condition of the lemma, we get 

T(v) = T(c" - i i+1 (pi + • • • + pi + y\ + • • • + -Ci C') = 

- T(a -Ci+1 T(p\ + • • •+pi + y\ + • • • + -{4 T(C) = 

= AC) ( T(P\) -£i AC) u . . . u T(PI) -(T T(C) u T(y\) -£l T(C) u . . . 

. . . u r o ^ H T ( c ' ) ) = 

= r(C" pi "ii C' + • • • + C" -€i+1 Pi -Ci C + <" •£«., l/i C + • •. + C" -£i+1 v'r, a -

Hence the decomposition in 77* led to an equivalent regular T,(Xn U Efc)-expression. 
• 

It is clear that if the auxiliary variable & does not occur in the subexpression 
77i_ 1 • • - T/i 770, then the factor 77* can be omitted from the expression of 77. 
Let us note that the decomposed parts will also be called chains, that is, the above 
mentioned chain 77 is decomposed into finite union of chains. 

The variables y\,..., y^.. can be left in any of the decomposed chains, because by 
inserting these variables into the iterating part during the ^¿-product we terminate 
that path, that is, no auxiliary variable can be reached after from these variables. 

Now we state the converse of the Lemma 10. 

Lemma 11. If the expression 77 = rjk -£k . . . rji "£1 Vo can be decomposed in the rji 
part, then every operational symbol in the iterating part of rji contains the auxiliary 
variable at most once among its leaves. 

Proof. Let us suppose that there is an operational symbol a £ E m in the iterating 
part of the decomposed rji, where & occurs at least twice among the leaves of a. Let 

and C' stand for the regular E(XnUEfc)-expressions . ••£i+2 77i+i and 77i_1-ii_1 

• • • 770, respectively. For the sake of simplicity we will write a ( £ i i n s t e a d 
of M V - 6 , £ i V - - > 0 w h e r e G {0 ,1 , . . . , m — 2}, 
V!+V2+V3 = m - 2 , and £ Sfc) (z' £ { 1 , . . . , ^ } , z" £ { l , . . . , ^ } , 
z"' 6 { 1 , . . . , v3}). It is obvious that T(C" -Ci+1 (pi + • • • + pi + y\ + • • • + y\) -€l 

-U O C T(r,). Moreover, T(C" -£i+1 a(«i ,sa) C) C T(77) holds too for 
every different pair of symbols Si, s2 £ {p\,... ,p\.,y\,... ,ylT.}. On the other hand 
T(c"- i i + 1a(S l ,S2HC) 2 Ui<„<^c% + 1 *(pi ,p i ) - i<c ' ) U 1U< r i T(C' - i i + 1 
&{yviDv) '£. <')> which is a contradiction because there are such trees in T(rf) which 
are not present in the decomposed chains of 77. • 
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The above results can be summarized in 

Theorem 12. The expression 77 = r)k -£fc • • - Vi "Ci rlo can be decomposed in the 77j 
part if and only if every operational symbol in the iterating part of r)i contains the 
auxiliary variable & at most once among its leaves. 

7 Remarks on the number of the auxiliary vari-
ables in 7721 

In this section we deal with the number of the auxiliary variables in 77a. We will 
also give some methods by which this number can be possibly reduced. It is obvious 
that if the number of states is k, then the representation can be done with k + 1 
auxiliary variables. 

It is said that we terminate a variable x € Xn in a tree t £ T^(Xn) by a tree 
p € Tz(Xn), if the variable x is not present among the leaves of the trees p-xt. Let 
£ be a regular EXn-expression. It is said that a variable x 6 Xn is terminated in 

if there is no variable x among the leaves of the trees of T(£). 
Obviously, the number of the necessary auxiliary variables can be possibly de-

creased if we decompose 77 at every possible place (as seen in the previous section), 
and we renumber the auxiliary variables from 0 in each decomposed chain of 77 
separately. 

It is clear that a variable & is terminated in the rfe part, that is the variable 
will not occur at any leaf from this point during the right-to-left evaluation of 

77. Hence we can reuse some auxiliary variables within a chain. Let us suppose 
that there is an auxiliary variable in the chain which has its first occurrence in 
the terminating part of rji (during the right-to-left evaluation of the chain). In this 
case every occurrence of in 77 can be replaced with by which we have done an 
equivalent transformation. In fact, we can also use the elements of Xn to decrease 
the number of the auxiliary variables. The idea is the same, that is, an existing 
auxiliary variable f j can be replaced with a variable x if & gets terminated before 
the first occurrence of x. 

On the basis of the remarks above the following steps can possibly reduce the 
number of the auxiliary variables: 

(i) decompose 77a into union of as many chains as possible 

(ii) decrease the number of the auxiliary variables in these decomposed chains 
separately 

(iii) renumber the auxiliary variables starting with 0 in each chain 

Example 13. Let 21 — (A, ao, a) be a DR £X3-recognizer, where A — (A, E), 
A — {a0 ,ai,a2 ,a3}, E = {oi,a2,a3}, Oi € £» (1 < i < 3), and a = 
({ao}, {<10,02}, {11,02,^3})- £ is realized in A as follows: 
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^i(ao) = ( a i ) , &2(ao) = (ao,ai), cr3(a0) = (ao,ao,ai), 
<7i (a i ) = ( a 3 ) , a2(aj) = ( a 2 , a 2 ) , 0-3(01) = ( a i , <13, ¿3) , 
^1(^2) = (03), a - 2 ( a 2 ) = ( a 2 , a 3 ) , c r 3 ( a 2 ) = ( a 2 , a 3 , a 3 ) , 
^ 1 ( 0 3 ) = ( 03 ) , <7 2 (a 3 ) = ( a 3 , a 3 ) , a 3 ( a 3 ) = ( a 3 , a 3 , a 3 ) . 

The resulting regular expression is the following: 

V% = V3 3 i2 T?O = 

= ( ® 3 ) ( 0 - 1 ( ^ 3 ) + ffa(i3,&) + 6 ) ) * ' i 3 - 6 

• & ( * i ( 6 ) + + 1 3 ) •{, ( M f c . f o ) + M & . f e , 6 ) ) * , € a - e a 

• & ( & ! ( & ) + 6 ) + S 3 ) -C. ( M f i . f c . f i O r S . 

We can decompose the above chain in the rj 1 factor by which we get 

(a*) (tri(fo) + <72(6, &) + cr3(e3,6,6))*'i3-i3 

• C a M f o ) + S 2 + ® 3 ) 'f2 + a 3 ( C 2 , & , f o ) r € a - i a 

+ 
(a*) -c, M & ) + M f c . f o ) + *3(&.6,6) )* , C s - fc 

+ S 2 + 3 3 ) + f f 3 ( 6 , 6 , & ) r € a - t a 

Simplifying the above expression we can write 

(x3) -Cs M 6 ) + ff3(e3,i3,6))*,€s-C, 

••&M&)+33) -€l M C i ^ ^ r N , 
• C l M 6 ) + x i +x2) - i 0 ( a 2 ( & , i i ) + C o , 6 ) ) * , i o 

+ 
(*3) "is ( * l ( 6 ) + ^ 2 ( 6 , 6 ) + ^ 3 ( 6 , 6 , 6 ) ) * ' i 3 - i 3 

+S2 +13) "fo M & . & ) + a3(S2,fo,i3)r€a-£a 

&))•«, ( M i l , & ) ) • • * ' • € , 

•€1(̂ 1 (€1) + + sa) -fo ( M £ o , 6 ) + M £ o , £ o , £ i ) r i o 
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Reusing the variables (£o —> £3) and (хз —> £1) in the above chains we get 

•xa fr fa ) + Xi + x 2 ) -(o (аг((;о,хз)+ <гз(£о,{о,хз))*'(° 

+ 
Ы -£o Ы & ) + <T2(£o,£o) 

•£o(ffi(fo) +X2 + x3) -i2 (a2(6>Co) + 0-3(^2,Co,Co))*'i2-£2 

•£2(^2(6.6)) -X3 
• X 3 (<TI(X 3 ) + z i + x2) -£0 (<т2(С0,яз) + <тз(€о,€о,хэ))*'io 

We can see that the initial number of the auxiliary variables is reduced from 4 to 
2. 

We finish the discussion of the section with 

Lemma 14. If £ = £1, then for any monotone DR HXn-recognizer 21 one auxiliary 
variable is enough to represent щ. 

Proof. Let £ = £1, and let щ be the £ ( X n U Efc)-regular expression belonging to 
21. As we have only unary operational symbols, occurs at most once among the 
leaves of an operational symbol from the iterating part of each щ. So 77 can be 
decomposed into finite union of chains, moreover, the decomposition can be done 
at each r/i factor. The condition £ = £1 implies also that during the evaluation at 
every step there is exactly one auxiliary variable which is not terminated. Since the 
variable £0 gets terminated in the terminating part of rjo, we can reuse £0 instead 
of introducing a new auxiliary variable. Continuing the idea we can rewrite all 
decomposed chains so that they will use only £0 as an auxiliary variable. • 

8 Characterization of monotone DR-languages 
It is a well-known fact that the class of DR-languages is closed under cr-products, 
but not under union, x-product, and x-iteration. It means that the x-product, 
x-iteration and union of monotone DR-languages are not always deterministic (cf. 
[3] and [8]). Conversely, using the three operations mentioned above on not closed 
languages can result in a closed (or even monotone) DR-languages, as it can be 
seen from the examples below. 

Example 15. Let us consider the regular tree languages S = {cr(x, x), a(y, y)} and 
T = {a(x,y), a(y,x)}. It is clear that they are not closed, but the tree language 
S U T = {ct(x ,x), cr(y,y), o(x,y), cr(y,x)} is closed, that is, DR-recognizable. 
Moreover, S U T is monotone. 
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Example 16. Let us now consider the regular tree languages S — {z, a(x,x), 
<j(y,y)} and T = {a(x,y), cr(y,x)}. They are not closed, but the tree language 
T -z S = {o(x,x), u(y,y), a{x,y), a(y,x)} is DR-recognizable, and what is more, 
T z S is monotone. 

Example 17. Let S be the following regular tree language: S = {a(x,a(x,y)), 
a(x,a(y,x)), cr(x,x), o(y,y), a(x,y), a(y,x)}. S is not closed, but the tree 
language (S)* , x is closed, moreover, (S)*'x is monotone. 

Let S C Tz(Xn) be a tree language and let p £ T^(Xn) be a tree. The root 
root(p), leaves leaves(p) and the set of subtrees Sub(p) of the tree p are defined as 
follows: 

(i) If p £ Xn, then root(p) = p, leaves(p) = {p} and Sub(p) = {p}. 

(ii) If p = <x(ti,... ,tm), a £ E m , U £ T^(Xn), 1 < i < m, then root(p) = a, 
leaves[p) = \Ji<i<mleaves(ti)' and Sub{p) = {p} U U i ^ K m i 5 " 6 ^ ) ) -

The above functions are extended from trees to tree languages as follows: 
root(S) = {root(p) | p £ S } , leaves(S) = (J 6S leaves(p), and Sub(S) = 

Let Us denote the set of operational symbols appearing in S, and is defined as 
E s = root(Sub(S)) \ Xn. Let E s , x denote the set { a e E | 3u € gx{S), 3v £ 
E*, 3 z£Xn : uv£gz(S), v = (a,»)... (w,j), w g E, i,j £ N}. 

Now we give a condition by which the ^-product of two monotone DR-languages 
is also monotone. 

Theorem 18. Let S, T C T^(Xn) be monotone DR-languages, Xi £ Xn. IfEs,Xi fl 
root(T) = 0, then T •Xi S is monotone. 

Proof. Assume that the conditions of the theorem hold. Let 21 = (.4,ao,a) 
and © = (B, bo, b) be monotone DR EXn-recognizers, where A = {A, 
A = {a 0 , . . . ,a fc } , a = ( ^ D , . . . , ¿<»>), B = (B, E B ) , B = {60, - • • 
b = ( S ( 1 ) , . . . , B ( n ) ) and A n B = 0 such that T(2l) = S and T ( B ) = T. Let 
us also suppose that ao < . • • < ak and bo < . • • < bi hold on the state sets A and 
B, respectively. 

We construct a monotone £ = (C,CQ,C) that recognizes T -Xi S as follows. Let 
C = (C, E c ) , C = A U B, co = ao and c = (C ( x ) , . . . , CW) hold, where c is defined 

\JpeSSub(p). 

as follows: 

' U BÜ) U A « , if Xj £ T , j ^ i 
U ) \ A Ü l u f l « , i f X j t T , i ± i 

if XJ£T,j = i 
. B^, if X j t T , j = i 

i f X j t T , j ^ i 
if Xj £T, j = i 
if Xj (¿T, j = i 

It remains to represent the elements of E in C. For a £ E and c £ C let 

ac(c)= M,a£root(T) 
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The construction of £ relies on the condition H root(T) = 0. It allows 
us to determine at every step during the processing of a tree in € whether the 
next input symbol is evaluated in 21 or in 03. Once we reach a state a G A ^ , the 
symbols from root(T) will lead us to a state b G B, from which we can continue 
the processing in 03. If the input symbol applied in the state a is from E \root(T), 
then we process it according to 21. Therefore, it can be shown by a straightforward 
computation that C recognizes T-Xi S, and C is monotone under the linear ordering 
0.0 < • • • < flfc < bo < ... < bi, which means that T -Xi S is monotone. • 

Corollary 19. Let S, T C T^(Xn) be monotone DR-languages, Xi G Xn. IfEs n 
root(T) = 0, then T -Xi S is monotone. 

Proof. The conditions of Theorem 18 hold because Q Es. • 

The conversion of Theorem 18 does not hold as the counter example below 
shows. 

Example 20. Let T and S stand for the DR-languages {a(z,z)} and {cr(x, z), 
a(a(z, z), z)}, respectively. It is obvious that S and T are monotone and T -x S = 
{ir(cr(z, z), z)} is also monotone. However, Es)X fl root(T) — {a} ^ 0. 

Let x G Xn. A tree language T is called x-homogeneous if there exists no t G T 
for which there are u,v G gx(t), w G E* and z G Xn such that uw G gz{T) and 
vw<tgz{T). 

The condition under which the class of monotone DR-languages is closed under 
^-iteration can be restricted by the following lemmas. 

Lemma 21. Let T C Tz(Xn) be a DR-language, x G Xn, and let T*'x be deter-
ministic. IfT is not x-homogeneous, then T*'x is not monotone. 

Proof. Let us suppose that the conditions of the lemma hold. It means that there 
is a tree t G T for which there are u, v G gx{t) with u ^ v, and there are w G 
E*, z G Xn such that uw G gz{T) and vw £ gz(T). Moreover, let us assume that 
21 is a reduced monotone DR £Xn-recognizer which recognizes T*'x. Let ai = aou 
and aj = aov. Since uw G gz{T) and vw ^ gz(T), we get that ai ^ aj. It is obvious 
that ai,aj G a(x), hence T(2l,fli) = T*'x and T(2l,aj) = T*,x. Using the fact that 
21 is reduced, T(2i, a,) = T(Ql,aj) implies that ai = a3, which is a contradiction. 
Therefore, T*'x is not monotone. • 

Lemma 22. Let T C T^(Xn) be a DR-language, x G Xn, and let T*,x be deter-
ministic. If ihx(T*'x) > 1, then T*'x is not monotone. 

Proof. Let us suppose that T is a DR-language for which T*'x is deterministic and 
ihx(T*'x) > 1. Let the regular £Xn-expression ( represent T. By the definition of 
ihx, there is a reduced regular £Xn-expression r] for which T(r]) = T*'x, ihx(rj) > 1 
and T] is in form (Q*'x. Using Lemma 8 we get that T(rj) is not monotone, therefore 
T*'x is not monotone, too. • 
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Now we give a condition by which the x-iteration of a monotone DR-language 
is also monotone. 

T h e o r e m 23. LetT C TY.(Xn) be a monotone DR-language, Xi £ Xn, and letT*'Xi 

be deterministic. If T is Xi-homogeneous, ihXi(T*,Xi) < 1 and Sr.ii C\root(T) = 0, 
then T*'Xi is monotone. 

Proof. Let us suppose that the conditions of the theorem hold. Let 21 be a reduced 
DR EX„-recognizer for which T(2l) = T, and where 21 = (A, a0 , a), A = (A, T,A), 
A = {ao,. • •, at-}, a = ( A ^ , . . . , A'71'). Let us also assume that 21 is monotone 
under the linear ordering ao < •.. < ak-

We construct the monotone DR EX„-recognizer 2$ = (B, bo, b) with B = 
(B , E B ) which recognizes T*,Xi. Let us define the state set B as AU {bo}, where bo 
is a new state. The final state vector b is 

. . . . . . . . . {a 0 ,6 0 } , B ^ 1 » B W ) , 

where the components are defined by two steps in the following order: 

m r n - c r i i v r - 1 nti) J A^U{bo}, i f a o S A W 
{I) For.all j £{!,...,n}\{i}, B[3)-=^AU)i else, 

(2) For all a € A& and j G { 1 , . . . ,i - 1, i + 1 , . . . , n } if a € then B<-j) := 
B ( i ' u {a 0 } . 

The definition of E e is given by four steps in the following order: 

(3) For all a £ root(T) and a' £ A ( i ) 

/ (-• • ,a0 , - : •), if <JA(a0) = (..., a',...) 
a ( a o ) •= \ c^(ao), else, 

(4) For all a £ E \ root{T) 

B, . / aA(a'), if A& ± 0, (a' 6 A ^ is arbitrarily chosen) 

(5) For all a £ root(T) aB(b0) := aB(a0), 

(6) For all a £ E and a £ A \ {a0} aB{a) := aA(a). 

The construction of 53 relies on the condition E-f jXi C\root(T) = 0. It guarantees 
us that in every state a £ a(x{) for any input symbol a we can determine whether to 
continue an already started processing of a tree, or to start a process from the root 
of a tree from T. In all the other cases 55 is acting as 21 did. The 2^-homogeneous 
property of T and the inequality ihXi(T*'Xi) < 1 ensure us that one state is enough 
to iterate the a^-paths of T, which is the basic idea of any iteration related automata 
construction. Therefore, it can be shown by a straightforward computation that 
T(93) = T*'Xi, and 93 is monotone under the linear ordering bo < ao < • • • < ak, 
which means that T*,Xi is monotone. • 
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The following lemma is obvious. 

Lemma 24. For any fixed variable x 6 Xn the x-product of tree languages is 
associative, that is, for any tree languages S, R and T the equality T -x (R -x S) = 
(T -x R) -x S holds. 

A tree language rj = . r/o is called R-chain language, if every щ is in form 
('Ti) (Si)*'^ (i = 0 , . . . , k), where S¿ and T¿ are finite DR-languages, for which S¿ 
is ^¿-homogeneous, ih^(Si) < 1, root(Si) П Esí,£í = 0 and rooí(T¿) П (root(Sl) U 
Esj,^) = 0- Moreover, let us denote the language 77¿_i . . . 770 by (¿. The 
T] — т]к-£к.. ñ-chain language is called^generalized, if root(T(r)i))nT,T((;i),zi = 0 
holds for every i — 1,... ,k. 

Theorem 25. Let T be a DR-language. T is monotone iff it can be given as a 
generalized R-chain language. 

Proof. Let us suppose that T is a monotone DR-language. Let 21 be the mono-
tone DR-recognizer for which T(2Í) = T. Constructing the regular expression щ 
belonging to 21 we get a generalized .R-chain language for which T = Т(щ). 

Conversely, let us take a generalized .R-chain language r¡ — r¡k • • • щ which 
represents T. Prom Lemma 6, Theorem 18, and Theorem 23 we directly obtain 
that every T(щ) is monotone (i = 0,... ,k). Using Lemma 24 and Theorem 18 we 
directly get that T(r¡) is monotone. • 

9 Conclusion 
As we showed above, the monotone DR-languages can be characterized by means of 
generalized .R-chain languages. We gave several conditions by which some particular 
operations preserve monotonicity, but we did not state conditions by which the 
class of DR-languages is closed under the operations of x-product, x-iteration and 
union. However, it seems possible to give appropriate conditions for each operation 
mentioned above. 
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Self-Regulating Finite Automata 

Alexander Meduna* and Tomás Masopust* 

Abstract 
This paper introduces and discusses self-regulating finite automata. In 

essence, these automata regulate the use of their rules by a sequence of rules 
applied during previous moves. A special attention is paid to turns defined 
as moves during which a self-regulating finite automaton starts a new self-
regulating sequence of moves. Based on the number of turns, the present 
paper establishes two infinite hierarchies of language families resulting from 
two variants of these automata. In addition, it demonstrates that these hier-
archies coincide with the hierarchies resulting from parallel right linear gram-
mars and right linear simple matrix grammars, so the self-regulating finite 
automata can be viewed as the automaton counterparts to these grammars. 
Finally, this paper compares both infinite hierarchies. In addition, as an open 
problem area, it suggests the discussion of self-regulating pushdown automata 
and points out that they give rise to no infinite hierarchy analogical to the 
achieved hierarchies resulting from the self-regulating finite automata. 

Keywords: regulated automata, self-regulation, infinite hierarchies of lan-
guage families, parallel right linear grammars, right linear simple matrix 
grammars 

1 Introduction 
Over its history, automata theory has modified and restricted classical automata 
in many ways (see [3, 5, 6, 7, 8, 16, 22, 24, 26]). Recently, regulated automata have 
been introduced and studied in [17, 18]. In essence, these automata regulate the 
use of their rules according to which they make moves by control languages. In this 
paper, we continue with this topic by defining and investigating self-regulating finite 
automata. Instead of prescribed control languages, however, the self-regulating 
finite automata restrict the selection of a rule according to which the current move 
is made by a rule according to which a previous move was made. 

To give a more precise insight into self-regulating automata, consider a finite 
automaton, M , with a finite binary relation, R, over M's rules. Furthermore, 
suppose that M makes a sequence of moves, p, that leads to the acceptance of a 

'Department of Information Systems, Faculty of Information Technology, Brno University 
of Technology, Bozetechova 2, Brno 61266, Czech Republic E-mail: medunaOfit.vutbr.cz, 
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word, so p can be expressed as a concatenation of n + 1 consecutive subsequences, 
p = poPi • • • Pn, \pi\ = |Pj|. 0 < i,j < n, in which rj denote the rule according to 
which the ith move in pj is made, for all 0 < j < n and 1 < i < \pj\ (as usual, \pj\ 
denotes the length of pj). If for all 0 < j < n, (rj,rJ1+1) € R, then M represents 
an n-tum first-move self-regulating finite automaton with respect to R. If for all 
0 < j <n and all 1 < i < |pi|, (ii,rj+1) e R, then M represents an n-turn all-move 
self-regulating finite automaton with respect to R. 

Based on the number of turns, we establish two infinite hierarchies of language 
families that lie between the families of regular and context-sensitive languages. 
First, we demonstrate that n-turn first-move self-regulating finite automata give 
rise to an infinite hierarchy of language families coinciding with the hierarchy re-
sulting from (n + l)-parallel right linear grammars (see [20, 21, 27, 28]). Recall 
that n-parallel right linear grammars generate a proper language subfamily of the 
language family generated by (n + l)-parallel right linear grammars (see Theorem 
5 in [21]). As a result, n-turn first-move self-regulating finite automata accept a 
proper language subfamily of the language family accepted by (n + l)-turn first-
move self-regulating finite automata, for all n > 0. Similarly, we prove that n-turn 
all-move self-regulating finite automata give rise to an infinite hierarchy of language 
families coinciding with the hierarchy resulting from ( n + l)-right linear simple ma-
trix grammars (see [4, 10, 28]). As n-right linear simple matrix grammars generate 
a proper subfamily of the language family generated by (n + l)-right linear simple 
matrix grammars (see Theorem 1.5.4 in [4]), n-turn all-move self-regulating finite 
automata accept a proper language subfamily of the language family accepted_ by 
(n + l)-turn all-move self-regulating finite automata. Furthermore, since the fam-
ilies of right linear simple matrix languages coincide with the language families 
accepted by multitape nonwriting automata (see [5]) and by finite-turn checking 
automata (see [24]), the all-move self-regulating finite automata characterize these 
families, too. Finally, we summarize the results about both infinite hierarchies. 

In the conclusion of this paper, as an open problem area, we suggest the dis-
cussion of self-regulating pushdown automata. Regarding self-regulating all-move 
pushdown automata, we prove that they do not give rise to any infinite hierarchy 
analogical to the achieved hierarchies resulting from the self-regulating finite au-
tomata. Indeed, zero-turn all-move self-regulating pushdown automata define the 
family of context-free languages while one-turn all-move self-regulating pushdown 
automata define the family of recursively enumerable languages. On the other 
hand, as far as self-regulating first-move pushdown automata are concerned, the 
question whether they define an infinite hierarchy or not is open. 

2 Preliminaries 
We assume that the reader is familiar with the theory of automata and formal 
languages (see [1, 2, 9, 11, 12, 13, 15, 19, 25]). For a set Q, |<2| denotes the 
cardinality of Q. N = { 1 , 2 , 3 , . . . } denotes the set of all natural numbers. For an 
alphabet V, V* represents the free monoid generated by V under the operation of 



Self-Regulating Finite A utomata 137 

concatenation. The identity of V* is denoted by e. Set V+ = V* — {e} ; algebraically, 
V+ is thus the free semigroup generated by V under the operation of concatenation. 
For w £ V*, \w\ denotes the length of w. Let w € V*; then, alph(w) = {a £ V : a 
appears in w}. For every L C V*, alph(L) = \JweLalph(w). 

A finite automaton, M, is a quintuple M = (Q,T,,5,qo, F), where Q is a finite 
set of states, E is a finite input alphabet, 5 is a finite set of rules of the form qw —> p, 
QtP £ Q> w £ Qo G Q is an initial state, and F is a set of final states. Let i ' be 
an alphabet of rule labels such that = |<5|, and tp be a bijection from <5 to Vf. For 
simplicity, to express that ip maps a rule qw —> p 6 5 to r, where r e we write 
r.qw —• p £ <5; in other words, r.qw —> p means ip(qw —> p) = r. A configuration of 
M is any word from QE*. For any configuration qwy, where y £ E*, q £ Q, and 
any r.qw —> p £ <5, M makes a move from configuration qwy to configuration py 
according to r, written as qwy =4> py [r]. Let x be any configuration of M. M makes 
zero moves from x to X according to e, written as x X [£] • Let there exist a 
sequence of configurations xo, Xi5 • • •, Xn, for some n > 1, such that Xi-i Xi [rt]i 
where ri € i = 1,... ,n. Then, M makes n moves from xo to Xn according 
to r\,... ,rn, symbolically written as xo =>n Xn [^i .. • rn]. We write <p =>* K [/i] if 
(p =>n k [/i] for some n > 0. If w £ £* and qow =>* / [/j], for f £ F, then w is 
accepted by M and q^w =>* / [fi] is an acceptance of w in M. The language of M 
is defined as C(M) = {u; £ E* : qow / [/i] is an acceptance of w}. 

For n > 1, an n-parallel right linear grammar, n-PRLG, is an (n + 3)-tuple 
G = (N\,..., Nn,T, S, P), where Ni, 1 < i < n, are mutually disjoint nonterminal 
alphabets, T is a terminal alphabet, S £ N is an initial symbol, N = U • • -UNn, 
and P is a finite set of rules that contains three kinds of rules: 

For x, y £ (N U T U {S})*, x=>yii and only if 

1. either x = S and S —» y £ P, 

2. or x = y 1X1... ynXn, y = yixi... ynxn, where y{ £ T*, Xi £ T*N U T*, 
Xi £ Ni, and Xi —> Xi £ P, 1 < i < n. 

If x,y £ (NUTU {5 } )* and I > 0, then x y if and only if there exists a sequence 
xo x\ => • • • X[, xo — x, xi = y. Then, we say x =>+ y if and only if there 
exists I > 0 such that x =>l y, and x =>* y if and only if x = y or x y. The 
language generated by an n-PRLG, G, is defined as C(G) = {w £T* : S w}. 
Language L C T* is an n-parallel right linear language, n-PRLL, if there is an 
n-PRLG, G, such that L = C(G). The family of n-PRLLs is denoted by R 

For n > 1, an n-right linear simple matrix grammar, n-RLSMG, is an (n + 
3)-tuple G = (N\,..., Nn,T, S, P), where Ni, 1 < i < n, are mutually disjoint 
nonterminal alphabets, T is a terminal alphabet, S 0 N is an initial symbol, 
N = N\ U • • • U Nn, and P is a finite set of matrix rules. A matrix rule can be in 
one of the following three forms: 

1. S —> X\... X, 
2. X - » wY, 
3. X ->w, 3. X 

Xi £ Ni, 1 < i < n; 
X,Y £ Ni for some i, 1 < i < n, w £ T*\ 
X £N,W£T*. 
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1. [ 5 - » X i . . . X n ] , X i Z N i , l < i < n ; 
2. [Xi -> W]Yi,...,Xn -> wnYn], Wi G T*, XuYi € ty, 1 < i < n; 
3. [Xi ->wi,...,Xn-> ion], Xi G Nu Wi G T*, 1 < i < n. 

Let m be a matrix, then m[i] denotes the ith rule of m. For x, y G (N U T U {S} )* , 
x=> y if and only if 

1. either x — S and [5 —> y] G P , 

2. or x = yiXi.. .ynXn, y = yixi...ynxn, where yt G T*, aG T*N U T*, 
Xi G Ni, 1 <i < n, and [Xi —> xi,..., Xn —> xn] G P. 

We define x =$>+ y and x =>* y as above. The language generated by an n-RLSMG, 
G, is defined as C(G) = {w G T* : S u;}. Language L C T* is an n-right 
linear simple matrix language, n-RLSML, if there is an n-RLSMG, G, such that 
L = £(G). The family of n-RLSMLs is denoted by P ( n ] . 

Let G = (Ni,..., Nn,T, S, P) be an n-PRLG, for some n > 1, and 1 < i < n. 
By the ith component of G we understand a 1-PRLG G = (Ni, T, S', P'), where P' 
contains rules of the following forms: 

l.S'^Xi ifS->X1...Xn£P,XieNi; 
2 .X^wY if X -» wY G P and X,Y € iVi ; 

3. X -» w if X - » w G P and X G Ni. 

The ith component of an n-RLSMG is defined analogously. 
Finally, let REG, CF, and CS denote the families of regular, context-free, and 

context-sensitive languages, respectively. 

3 Definitions and Examples 
In this section, we define and illustrate n-turn first-move self-regulating finite au-
tomata and n-turn all-move self-regulating finite automata. 

Definition 1. A self-regulating finite automaton, SFA, M, is a septuple 

M = {Q,H,6,q0,qt,F,R), 

where 

1. (Q,T,,S,qo,F) is a finite automaton, 

<7t € Q is a turn state, and 

3. R C <1/ x ^ is a finite relation on the alphabet of rule labels. 

In this paper, we consider two ways of self-regulation—first-move and all-move. 
According to these two types of self-regulation, two types of n-turn self-regulating 
finite automata are defined. 



Self-Regulating Finite A utomata 139 

Definition 2. Let n > 0 and M = (Q,T,,6,qo,qt, F, R) be a self-regulating finite 
automaton. M is said to be an n-turn first-move self-regulating finite automaton, 
n-first-SFA, if M accepts w in the following way. There is an acceptance of the 
form qow =>* f [fi] such that 

where fc 6 N, r° is the first rule of the form qx —> qt, for some q € Q, x € £*, and 

( r } , r } + 1 ) e R 

for all 0 < j < n. 
The family of languages accepted by n-first-SFAs is denoted by Wn. 

Example 3. Consider a 1-turn first-move self-regulating finite automaton, M = 
({s,t,f}, {a,b}, 6, s, t, { / } , { (1,3)}) , with 5 containing rules l.sa —» s, 2.sa =-* t, 
3.tb -* / , and 4 . fb -> / (see Fig. 1). 

a b 

Figure 1: 1-turn first-move self-regulating finite automaton M. 

With aabb, M makes 

saabb =*> sabb [1] => tbb [2] fb [3] =i> / [4]. 

In brief, saabb f [1234]. Observe that C(M) = {anbn : n > 1}, which belongs 
to CF - REG. 

Definition 4. Let n > 0 and M = (Q,E,S, qo,qt,F, R) be a self-regulating finite 
automaton. M is said to be an n-turn all-move self-regulating finite automaton, n-
all-SFA, if M accepts w in the following way. There is an acceptance qow =>* / [/¿] 
such that 

.. _ „0 0 1 1 n n 

M - ri • --rkrl • • • rk • • • ri • • - rfci 

where k £ N, rk is the first rule of the form qx —> qt, for some q S Q, x £ E*, and 

. (ri,ri+1)eR 

for all 1 < i < k, 0 < j < n. 
The family of languages accepted by n-all-SFAs is denoted by Sn. 
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a,b a,b 

Figure 2: 1-turn all-move self-regulating finite automaton M. 

Example 5. Consider a 1-turn all-move self-regulating finite automaton, M = 
({s, t, / } , {a, 6}, <5, s, t, { / } , {(1,4), (2,5), (3,6)}), with 6 containing rules l.sa —• s, 
2.sb —> s, 3.s —> t, 4.ta —• t, b.tb —> i, and 6.i —> / (see Fig. 2). 
With abab, M makes 

sabab => sbab [1] sab [2] tab [3] => tb [4] => t [5] / [6]. 

In brief, sabab =>* /[123456]. Observe that £ ( M ) = {ww : w € {a, 6}*}, which 
belongs to CS - CF. 

4 Results 
We prove that the family of languages accepted by n-first-SFAs coincides with the 
family of languages generated by (n + l)-PRLGs. Furthermore, we demonstrate 
that the family of languages accepted by n-all-SFAs coincides with the family of 
languages generated by n-RLSMGs. 

4.1 n-Turn First-Move Self-Regulating Finite Automata 
Section 4.1 establishes the identity between the family of languages accepted by 
n-first-SFAs and the family of languages generated by (n + l)-PRLGs. To do so, 
we need the following form of parallel right linear grammars. 

Lemma 6. For every n-PRLG G = (N\,..., Nn, T, S, P), there is an equivalent 
n-PRLG G' = (N[,..., N^, T, 5, P') that satisfies: 

1. if S —> X\... Xn £ P', then Xi does not occur on the right-hand side of any 
rule, for 1 < i < n; 

2. if S a, S -> P € P' and a ± ¡3, then alph(a) n alph(P) = 0. 

Proof. If G does not satisfy conditions from the lemma, then we will construct a 
new n-PRLG G' = (N[,..., N^, T, S, P'), where P' contains all rules of the form 
X — p € P, X ^ S, and Nj C N'p 1 < j < n. For each rule S — Xx... Xn € P, 
we add new nonterminals Yj £ Nj into /Vj, and rules include S —* Y\... Yn and 
Yj X j in P', 1 < j < n. Clearly, 

S =>G Xi... Xn if and only if S =>G- Yx... Yn => X i . . . Xn. 
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Thus, £(G) = C(G'). • 
Lemma 7. Let G be an n-PRLG. Then, there is an (n - l)-first-SFA, M, such 
that C(G) = C(M). 

Proof. Informally, M is divided into n parts (see Fig. 3). The ith part represents a 
finite automaton accepting the language of G's ith component, and R also connects 
the ith part to the (i + l)st part as depicted in Fig. 3. 

Formally, without loss of generality, we assume G = (Ni,..., Nn, T, 5, P) 
to be in the form from Lemma 6. We construct an (n - l)-first-SFA M = 
0Q,T,5,q0 ,q t ,F,R), where Q = {q0,...,qn} UN, N = Ni U ••• U Nn, 
{<70,<7i,-••,<?«} niV = 0, F = {<?„}, 5 = {qi -» Xi+i : S Xi...Xn £ 
P, 0 < i < n) U {Xw -* Y : X wY € P } U {Xw qi : X -» w £ 
P,w £ T*, X e Ni, i £ { 1 , . . . , « } } , qt = qi, V - 6 with the identity map, 
and R = {(qi - Xi+1,qi+1 Xi+2) : S ^ X1...Xn£ P,0<i<n-2}. 

Next, we prove C(G) = £(M). To prove C(G) C C(M), consider a derivation of 
w in G and construct an acceptance of w in M depicted in Fig. 3. This figure clearly 

Figure 3: A derivation of w in G and the corresponding acceptance of w in M. 

demonstrates the fundamental idea behind this part of the proof; its complete and 
rigorous version is lengthy and left to the reader. Thus, for each derivation S =>* w, 
w £T*, there is an acceptance of w in M. 

To prove C(M) C C(G), let w £ C(M). Consider an acceptance of w in M. 
Observe that the acceptance is of the form depicted on the right-hand side of Fig. 
3. It means that the number of steps M made from qi-\ to q, is the same as 
from qi to qi+i since the only rule in the relation with qi-\ —• X{ is the rule 
qi —+ Moreover, M can never come back to a state corresponding to a 
previous component. (By a component of M, we mean the finite automaton Mi = 
(Q, E, <5, <7t_i, {<7i}), for 1 < i < n.) Now, construct a derivation of w in- G. By 
Lemma 6, we have |{X : {qi -* -> X) £ i?}| = 1, for all 0 < i < 
n - 1. Thus, S X\Xl.. .Xj" £ P. Moreover, if Xjx* X)+l, we apply 

w = 

in G in M 
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X) 6 P, and if Xlxl - » <?i, we apply X* — x\ £ P, 1 < i < n, 
l<j<k. 

Hence, Lemma 7 holds. • 

Lemma 8. Let M be an n-first-SFA. There is an (n + 1 )-PRLG, G, such that 
C(G) = C{M). 

Proof. Let M = (Q,Y,,6,q0,qt,F,R). Consider G = (No, • • •, Nn, E, 5, P), where 
N = (QT,1 xQx{i}xQ)U (Q x {¿} x Q), I = max{|u;| : qw p £ J}, 0 < i < n, 
and 

P = {S -> [qoxo,qa,0,qt][qtxx,ql,l,qil\[qi1x2,q2,2,qh\...[qin_lxn,qn,n,qin\ : 
ro-qoxo -» q°, ri.qtx\ -<• q1, r2.qhx2 q2,..., rn.9i„_1xn -> qn £ 5, 
(ro,n),(rx,r2),... ,(rn_l,rn) £ R, qin £ F}U 
{[px, q,i,r] x[q,i,r]}\J 

{[<7,i,p] -> w[q',i,p\ :qw^>q' £ ¿}. 

Next, we prove £(G) = £ (M) . To prove £(G) C £ (M) , observe that we make 
n + 1 copies of M and go through them similarly to Fig. 3. Consider a derivation 
of w in G. Then, in greater detail, this derivation is of the form 

S => [go^o. 9i> • - • [^„-iaro. 9i„] 
=> £o [<??, 0, qt} 4 [<?}, 1, qi, ]... x£ fa?, n, qin ] 
=» i g ® i [ 9 § ) 0 I g t ] x 5 x i [ ^ , l I 9 i l ] . . . x 5 s y [ 9 J > n 1 f t n ] (1) 

xgx? ...x°k[qt, 0, qt]xox\... x ^ , 1, q^].... x£x? . . . x£fain, n, ft J 
^ „0„0 0„1 1 1 -V.™ =?• XQXJ . . . X^XqXJ . . . Xfc . . . X g • • • Xk 

and r0.q0x% •-» n.qtxl0 -» q\, r2.qirxl q\,..., r„.g in_,xft - » £ S, (r0 ,r i ) , 
(ri,r2),..., ( r n _ ! , r n ) £ R, and qin £ F. 

Thus, the list of rules used in the acceptance of w in M is 

M = (90®8 —' 9i)(9?®? «§)--• 9t) 
(qtx0 - » ^ H g j z } ->q2)--- (<?M -»•?»J 

9i)(9i®i 9a) • • • (9*®fc ( 2 ) 

- q?)(q?x? - 92) • • • ( « - <?iJ-

Now, we prove C(M) C £(G). Informally, the acceptance is divided into n + 1 
parts of the same length. Grammar G generates the ith part by the ith component 
and records the state from which the next component starts. 
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Let /j. be a list of rules used in an acceptance of w in M of the form (2), where 
w = XoX? . . . x°xlx\.. .xl... XqXi Then, the derivation of the form (1) 
is the corresponding.derivation of w in G since [<?j,i,p] —» x1j[qtJ+l,i,p] e P and 
[q, i, 9] —» £, for all 0 < i < n, 1 < j < k. 

Hence, Lemma 8 holds. • 

The first main result of this paper follows next. 

Theorem 9. For all n > 0, Wn - Rn+i-

Proof. This proof follows from Lemma 7 and 8. • 

Corollary 10. The following statements hold true. 

1. REG = W0 C Wi C W2 C • • • C CS. 

2. W\ C CF. 
3. W2 % CF. 
4. CF g Wn for any n> 0. 
5. For all n > 0, Wn is closed under union, finite substitution, homomorphism, 

intersection with a regular language, and right quotient with a regular lan-
guage. 

6. For all n > 1, Wn is not closed under intersection and complement. 

Proof. Recall the following statements proved in [21]: 

, • REG = R1CR2CR3C- -CCS. 
• R2 C CF. 
• CF % Rn, n > 1. 
• For all n > 1, Rn is closed under union, finite substitution, homomorphism, 

intersection with a regular language, and right quotient with a regular lan-
guage. 

• For all n > 2, Rn is not closed under intersection and complement. 

These statements and Theorem 9 imply statements 1, 2, 4, 5, 6 of Corollary 10. 
Moreover, observe that {anbnc2n : n > 0} e W2 — CF, which proves 3. • 

Theorem 11. For all n> I, Wn is not closed under inverse homomorphism. 

Proof. For n = 1, let L = {akbk : k > 1}, and let the homomorphism 
h : {a, b, c}* —• {a, b}* be defined as h{a) = a, h(b) = b, and h(c) = e. Then, 
L e W i , but 

L' = h~\L) n c*a*b* = {c*akbk :k>\}$.Wx. 

Assume that L' is in W\. Then, by Theorem 9, there is a 2-PRLG G = 
{NUN2,T,S,P) such that C(G) = L'. Let k > |P| • max{|to| : X — wY e P}. 
Consider a derivation of ckakbk € L'. The second component can generate only 
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finitely many as; otherwise, it derives {akbn : k < n}, which is not regular. Anal-
ogously, the first component generates only finitely many bs. Therefore, the first 
component generates any number of as, and the second component generates any 
number of bs. Moreover, there is a derivation of the form X =>m X, for some 
X G N2, and m > 1, used in the derivation in the second component. In the first 
component, there is a derivation A a3A, for some A G N\, and s,l > 1. Then, 
we can modify the derivation of ckakbk so that in the first component, we repeat 
the cycle A =>' a3A (m + l)-times, and in the second component, we repeat the 
cycle X =>m X (I + l)-times. The derivations of both components have the same 
length—the added cycles are of length ml, and the rest is of the same length, as in 
the derivation of ckakbk. Therefore, we have derived ckarbk, where r > k, which is 
not in L'—a contradiction. 

For n > 1, the proof is analogous and left to the reader. • 

Corollary 12. For all n > 1, Wn is not closed under concatenation. Therefore, it 
is not closed under Kleene closure either. 

Proof. For n — 1, let Li = {c}* and L2 = {akbk : k > 1}. Then, LiL2 = {c*akbk : 
k > 1}. Analogously, prove this corollary for n > 1. • 

4.2 n-Turn All-Move Self-Regulating Finite Automata 
This section discusses n-turn all-move self-regulating finite automata. It proves 
that the family of languages accepted by n-all-SFAs coincides with the family of 
languages generated by n-RLSMGs. 

Lemma 13. For every n-RLSMG, G = (N\,..., Nn, T, S, P), there is an equivalent 
n-RLSMG, G', that satisfies: 

1. if [iS —> X\... Xn], then Xi does not occur on the right-hand side of any rule, 
1 < i < n; 

2. if [S a], [S -* /3} G P and a ± (3,- then alph(a) n alph(P) = 0; 
3. for any two matrices m\,m2 G P, if m\[i) = mj[i], for some 1 < i < n, then 

mi = m2. 

Proof. The first two conditions can be proved analogously to Lemma 6. Suppose 
that there axe matrices m and m' such that m[i] = m'[i], for some 1 < i < n. 
Let m = [Xi -> xi,...,Xn -* zn] , m! = [Yi yi,...,Yn yn). Replace 
these matrices with matrices mi = [Xi —• X[,..., Xn —* X^], m2 = [X{ —> 
xi,...,X'n - » ! „ ] , and mi = [yx - Y{',..,,Yn -» y^'], m'2 = - yu ..., Y^ 
yn], where X[, Y" are new nonterminals for all i. These new matrices satisfy 
condition 3. Repeat this replacement until the resulting grammar satisfies the 
properties of G' given in this lemma. • 

Lemma 14. Let G be an n-RLSMG. There is an (n - 1 )-all-SFA, M, such that 
C(G)=C(M). 
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Proof. Without loss of generality, we assume that G = (N\,..., Nn,T, S, P) 
is in the form described in Lemma 13. We construct (n — l)-all-SFA M = 
{Q,T, 6,qo,qt, F, R), where Q = {q0,..., qn} U N, N = U • • • U Nn, 
{9o,9i, • • • ,9n} C\ N — 0, F = {(?„}, S = {qi - Xi+1 : [S Xl...Xn] € P, 0 < 
i < n} U {XiWi — Yi : [Xi — WlYu..., Xn — w n y n ] € P, 1 < » < n} U {XiWi — 

: [Xi wi,..., Xn —> ion] G P, Wi G T*, 1 < i < n} , qt = <ji, ^ = J with the 
identity map, and R = {(<?i —> X i + i , —• Xi+2) : [5 —> X\... X n ] G P, 0 < i < 
n - 2} U {(XiWi — Yu Xi+lwi+l - » y i + 1 ) : [Xi —ti>iYi,. ..,Xn-> wnYn] G P, 1 < 
i < n} U {(XiXWi —• qi, Xi+iwi+1 -> 9 i + i ) : [Xi wu..., Xn -» wn] G P, G 
T*,l<i< n}. 

We next prove C(G) = C(M). The proof of C{G) C C(M) is very similar to the 
proof of the same inclusion of Lemma 7, so it is left to the reader. 

To prove C(M) C C(G), consider w G £ ( M ) and an acceptance of w in M. 
As in Lemma 7, the derivation looks like the one depicted on the right-hand side 
of Fig. 3. Next, we generate w in G as follows. By Lemma 13, there is matrix 
[S — X i X f - . - X i 1 ] in P. Moreover, if X)x) Xlj+1, 1 < i < n, then ( X j 
xiXj+1,X}+1 - » x}+ 1X)X\) G R, for 1 < i < n, 1 < j < k. We apply [Xj -
x}X]+1,...,XV- _> x?X?+1] from P. If Xlx\ -> qit 1 < i < n, then - » 
4> x k + l 4 + 1 ) S ii, for 1 < i < n, and we apply [Jfjj x £ , . . . , X £ — arJJ] G P. 
Thus, w G £(G). 

Hence, Lemma 14 holds. • 

Lemma 15. Let M be an n-all-SFA. There is an (n + 1 )-RLSMG, G, such that 
C(G) = £(M). 

Proof. Let M = (Q,Y,,6,q0,qt,F,R). Consider G = (¿V0 , . . . , Nn, 5, P) , where 
Ni = (QE' x Q x { i } x Q ) U (Q x {¿} xQ),l= m a x { H : qw -» p G <5}, 0 < i < n, 
and 

P = { [5 [q0x0,q°, O.^Kitari,«1,!, qh\ • • •[<lin-1xn,qn, n , ^ ] ] : 
ro-qoxo -> 90,ri.Qta;i -» g 1 , . . . ,rn .g i n_,x„. qn € 5, 

71— 1J ' 71 )GP,<? i n G F } U 
{[bo^o,9o,0,ro] —> xo[9o,0,ro],.. . , [p „x „ ,g n ,n , r n ] - » x„[gn ,n,rn]]}U 
{[[9o,0,9o] - » e , . . . , [ ? „ ,n ,g„ ] e] : q{ G Q, 0 < i < n}U 
{[[9o,0,po] wo[q'o,0,Po], • • • ,[qn,n,pn] wn[q'n,n,pn}} : rj.qjWj -> gj G 
(5, 0 < j < n, (ri,ri+1) G R, 0 < i < n} . 

Next, we prove C(G) = C(M). To prove C(G) C C(M), consider a derivation 
of w in G. Then, the derivation is of the form (1) and there are rules 7'0.(J0Xq —> 
9?,n-9tz0 9i, • • •,rn-9t„_ 1^0 9" in <5 such that (r0 ,r i ) , . . . , ( r „ _ i , r „ ) G R. 
Moreover, ( r j , G R, where r^.q^Xj —» qlj+1 G 5, and (r^r1^1) G R, where 
A-^Wk Qi, G S, 0 < I < n, 1 < j < k, qio denotes qt, and qin G F. Thus, M 
accepts w with the list of rules ¡1 of the form (2). 

To prove C(M) C C(G), let n be a list of rules used in an acceptance of 

W = XqXi . . . X®XQX\ . . . x\ . . . Xq x " . . . xjj 
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in M of the form (2). Then, the derivation is of the form (1) because 

[[<#,0,9t] -» z°[<z°+1>0,<Zt], • • •, - x^ + l,n,q i n}} 6 P, 

for all q) G Q, 1 < i < n, 1 < j < k, and [[qt, 0, qt] ->£,..., [qin, n, qin] e] G P. 
Hence, Lemma 15 holds. • 

The second main result of this paper follows next. 

Theorem 16. For all n > 0, Sn = #[n+i]-

Proof. This proof follows from Lemma 14 and 15. • 

Corollary 17. The following statements hold: 

1. REG = So C Si C S2 C • • • C-CS. 

2. Si %CF. 

. 3. CF % Sn, for every n > 0. 
4- For all n > 0, Sn is closed under union, concatenation, finite substitution, 

homomorphism, intersection with a regular language, and right quotient with 
a regular language. 

5. For all n > 1, Sn is not closed under intersection, complement, and Kleene 
closure. 

Proof. Recall the following statements proved in [28]: 

• REG = i fy ] C R[2] C % C • • • C CS. 

• For all n > 1, P[n] is closed under union, finite substitution, homomorphism, 
intersection with a regular language, and right quotient with a regular lan-
guage. 

• For all n > 2, R[n] is not closed under intersection and complement. 

Furthermore, recall these statements proved in [23] and [24]: 

• For all n > 1, P[n] is closed under concatenation. 
• For all n > 2, i?[n] is not closed under Kleene closure. 

These statements and Theorem 16 imply statements 1, 4, and 5 of Corollary 17. 
Moreover, observe that {ww : w G {a, 6}*} G Si — CF (see Example 3), which 
proves 2. Finally, let L = {wcwR : w G {a,6}*} . In [4, Theorem 1.5.2], there is a 
proof that L # R[n], for any n > 1. Thus, 3 follows from Theorem 16. • 

Theorem 18, given next, follows from Theorem 16 and from Corollary 3.3.3 
in [24]. However, Corollary 3.3.3 in [24] is not proved effectively. We next prove 
Theorem 18 effectively. • • 

Theorem 18. Sn is closed under inverse homomorphism, for all n > 0. 
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Proof. For n = 1, let M = (Q, £, S, q0, ft, F, R) be a 1-all-SFA, and let h : A* - » E* 
be a homomorphism. Next, we construct 1-all-SFA M' = (Q', A , 5', q'0, q't, {q'f}, R') 
accepting h~1(C(M)) as follows. Denote k = max{|tu| : qw —> p £ <5} + max{|/i(a)| : 
a £ A } . Let Q' = q'0 U {[x,<7,?/] : x,y £ £*, |y| < k, q £ Q}. Initially, set 5' and 
R' to 0. Then, extend 5' and R' by performing 1 through 5: 

1. For y £ £*, \y\ < k, add 
Wo [e,qo,y],q't [y,qt,e]) to R'-, 

2. For A £ Q', q ^ qt, add 
(\x,q,y]a -» [xh(a),q,y],A —> A) to R'; 

3. For A € Q', add 
(A —> A, [x,?, e]o —• [x/i(a), g,e]) to ii ' ; 

4. For (qx —» p, g V —> p') S ii, q ^ ft, add 
([iiy,9,'2/] -> [iD,p,ji] ,(xV,g',£] [u;',p',£]) to R'; 

5. For € .F, add 
q't, [e,qj,e] 9/) to 

In essence, M ' simulates M in the following way. In a state of the form [x, q, y], 
the three components have the following meaning: 

• x = h(a\... an), where a i . . . an is the input string that M' has already read; 

• q is the current state of M ; 

• y is the suffix remaining as the first component of the state that M' enters 
during a turn; y is thus obtained when M' reads the last symbol right before 
the turn occurs in M\ M reads y after the turn. 

More precisely, h(w) = wiyw2, where w is an input string, w\ is accepted by M 
before making the turn, i.e. from qo to ft, and yw2 is accepted by M after making 
the turn, i.e. from ft to qj £ F. A rigorous version of this proof is left to the 
reader. 

For n > 1, the proof is analogous and left to the reader. • 

4.3 Language Families Accepted by n-first-SFAs and n-all-
SFAs 

In this section, we compare the family of languages accepted by n-first-SFAs with 
the family of languages accepted by n-all-SFAs. 

Theorem 19. For all n > 1, W„ C Sn-

Proof In [21] and [28], it is proved that for all n > 1, Rn C ii[„]. The proof of 
Theorem 19 thus follows from Theorem 9 and 16. • 

Theorem 20. Wn % 5 „_ 1, n > 1. 
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Proof. It is easy to see that L = {a^a^ • • : fc > 1} E Wn = Rn+i- However, 
L Sn-i = R{n) (see Lemma 1.5.6 in [4]). • 

Lemma 21. For each regular language, L, language {wn : w 6 L} € Sn-i-

Proof. Let L = C(M), where M is a finite automaton. Make n copies of M. 
Rename their states so all the sets of states are pairwise disjoint. In this way, 
also rename the states in the rules of each of these n automata; however, keep the 
labels of the rules unchanged. For each rule label r, include (r, r) into R. As a 
result, we obtain an n-turn all-move self-regulating finite automaton that accepts 
{wn : w £ L}. A rigorous version of this proof is left to the reader. • 

Theorem 22. Sn - W ± 0, for all n> 1, where W = U ~ = 1 Wm. 

Proof. By induction on n > 1, we prove that language L = {(cu>)n+1 : w € 
{a, 6}*} ^ W. From Lemma 21, L £ Sn. 

Basis: For n = 1, let G be an m-PRLG generating L, for some positive integer 
m. Consider a sufficiently large string cw\cu>2 £ L such that w\ = = anibn2, 
n2 > ni > 1 . Then, there is a derivation of the form 

S =>p 

X\Aix2A2 .. =>k x i y i A i x 2 y 2 A 2 . . (3) 

in G, where cycle (3) generates more than one a in wi. The derivation continues 
as 

x i j / iA i . . • ^ml/mAm 
• ^m Vm ¿m ̂ m xiyiZiUiBi.. (4) 

(cycle (4) generates no as) =>3 cw\cw2. 

Next, modify the left derivation, the derivation in components generating cw\, so 
that the a-generating cycle (3) is repeated (I + l)-times. Similarly, modify the right 
derivation, the derivation in the other components, so that the no-a-generating 
cycle (4) is repeated (k + l)-times. Thus, the modified left derivation is of length 
p + k(l + I) + r +1 + s — p + k + r + l(k +1) + s, which is the length of the modified 
right derivation. Moreover, the modified left derivation generates more as in wi 
than the right derivation in w2—a contradiction. 

Induction step: Suppose that the theorem holds for all n < k, for some fc > 1. 
Consider n + 1 and let {(cto)n + 1 : w £ {a, b}*} € Wi, for some I > 1. As W; is closed 
under the right quotient with a regular language, and language {cw : w £ {a, 6}*} 
is regular, we obtain {(cu>)n : w £ {a, 6}*} £ Wi C W—a contradiction. • 

Fig. 4 summarizes the language families discussed in this paper. 
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Figure 4: The hierarchy of languages. 

5 Conclusion and Discussion 
This paper has discussed self-regulating finite automata. As demonstrated next, 
we can analogically introduce and discuss self-regulating pushdown automata. 

Recall that a pushdown automaton (see [15]), M, is a septuple M = (Q, E, T, 5, 
qo,Zo,F), where Q, E, f/o 6 Q, F are as in a finite automaton, T is a finite 
pushdown alphabet, 6 is a finite set of rules of the form Zqw —» 7p, q,p £ Q, 
Z £ T, w £ E*, 7 £ r*, and ZQ is an initial pushdown symbol. Again, let ip denote 
the bijection from 5 to and write r.Zqw —> 7p instead of ip(Zqw —> 7p) = r. 
A configuration of M is any word from T*QE*. For any configuration xAqwy, 
where x £ T*, y £ £*, q £ Q, and any r.Aqw —> jp £ 6, M makes a move from 
xAqwy to 17py according to r, written as xAqwy =S> xjpy [r]. As usual, we define 
closure =>•*. If w £ E* and Zoqow =>* / [/i], f £ F, then w is accepted by M 
and Z0qow =>* / [/x] is an acceptance of w in M. The language of M is defined as 
£ (M) = {u; £ E* : Zoqow f [fx] is an acceptance of w}. 

Definition 23. A self-regulating pushdown automaton, SPDA, M, is a nonuple 

M = {Q,E,r,5,qo,qt,Zo,F,R), 

where 

1. (Q, E,r,<5, qo,Za,F) is a pushdown automaton, 

2. qt £ Q is a turn state, and 

3. R C <]> x $ is a finite relation, where ^ is an alphabet of rule labels. 
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Definition 24. Let n > 0 and M = (Q, E, T, <5, qo, qt, ZQ, F, R) 6e a self-regulating 
pushdown automaton. M is said to be an n-turn first-move self-regulating push-
down automaton, n-first-SPDA, if M accepts w in the following way. There is an 
acceptance Zoqow / [/i] such that 

¡i = r? .. .r°kr{.. .rl.. .r? .. ,r£, 

where k £ N, rk is the first rule of the form Zqx —> 7qt, for some Z € T, q £ Q, 
x £ £*, 7 £ T*, and 

(ri,r{+1)£R 

for all O < j < n. 
The family of languages accepted by n-first-SPDAs is denoted by C(n-first-

SPDA). 

Definition 25. Let n > 0 and M = (Q, T,,r,5,qo,qt,Zo,F, R) be a self-regulating 
pushdown automaton. M is said to be an n-turn all-move self-regulating push-
down automaton, n-all-SPDA, if M accepts w in the following way. There is an 
acceptance Zoqow =>* / [p.] such that 

p = r01...r°krl,:r1k...r?...rnk, 

where k £ N, rk is the first rule of the form Zqx —> 7qt, for some Z £ T, q £ Q, 
x £ E*, 7 € r*, and 

( r j , r i + 1 y & R 

for all 1 < i < k, 0 < j < n. 
The family of languages accepted by n-all-SPDAs is denoted by C(n-all-SPDA). 

5.1 n-Turn All-Move Self-Regulating Pushdown Automata 

It is easy, to see that an n-turn all-move self-regulating pushdown automaton with-
out any turn state is exactly a common pushdown automaton. Therefore, £(0-all-
SPDA) = CF. Moreover, if we consider 1-turn all-move self-regulating pushdown 
automata, their power is that of the Turing machines. 

Theorem 26. £(1 -all-SPDA) = RE. 

Proof. For any L € RE, L C A*, there are context-free languages C(G) and C(H) 
and a homomorphism h : £* —> A* such that L = h(C(G) fl C(H)) (see Theorem 
1.12 in [14]). Suppose that G = {NG, E, PG, SG), H = (NH,E,PH,SH) are in the 
Greibach normal form, i.e. all rules are of the form A —> aa, where A is a nonter-
minal, a is a terminal, and a is a (possibly empty) string of nonterminals. Let us 
construct 1-all-SPDA M = ({<70, q, QuP, / } , A, EU JVG U NH U {Zj, S,q0, Z, {/}, R), 
Z E U NG U NH, with R made as follows: 

1. add (Zqo —» ZSGq, Zqt —> ZSHP) to R 
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2. add (Aq -> Bn... B\aq, Cp —> Dm ... D\ap) to R if 
A —» aBi ...BnePG and 
C -» aDi... Dm g Ptf 

3. add (aqh(a) —» q,ap —» p) to i i 
4. add (Zg Zg t ) Zp f ) to R 

Moreover, 5 contains only the rules from the definition of i?. 
Now, we prove w g / i (£(G) D £ ( # ) ) if and only if w € C(M). 

Only if Part: Let w g h(C(G) fl C(H)). There are a\,a2,... ,an g E such that 
a\a2 • • .an g C(G) n C(H) and w = h(aia2...an), for some n > 0. There are 
leftmost derivations SG axa2 .. .an and SH =$>n a\a2.. ,an of length n in G 
and H, respectively, because in every derivation step exactly one terminal element 
is derived. Thus, M accepts h(a\)... h(an) as 

Zq0h(ai)... h(an) => ZSGqh(ai)... h(an),..., Zanqh(an) => Zq, Zq Zqt, 

Zqt ZSHP,---, Zanp Zp, Zp /. 

In state q, by using its pushdown, M simulates G's derivation of a\... an but reads 
h(ai)... h(an) as the input. In p, M simulates H's derivation of aia2... an but 
reads no input. As a\a2 ... an can be derived in both G and H by making the same 
number of steps, the automaton can successfully complete the acceptance of w. 

If Part: Notice that in one step, M can read only h(a) g A*, for some a g E. 
Let w g £ ( M ) , then w = h(ai)... h(an), for some a\,...,an € E. Consider M's 
acceptance of w 

Zq0h(ai)... h(an) ZSGqh{a\)... h(an),..., Zanqh(an) Zq, Zq =*> Zqt, 

Zqt => ZSHP, •••, Zanp => Zp, Zp => /. 

As stated above, in q, M simulates G's derivation of a\a2 ... an, and then in p, M 
simulates H's derivation of a\a2 .. ,an. It successfully completes the acceptance of 
w only if axa2... an can be derived in both G and H. Hence, the if part holds, 
too. • 

5.2 Open Problems 
Although the fundamental results about self-regulating automata have been 
achieved in this paper, there still remain several open problems concerning them. 
Perhaps most importantly, these open problem areas include 1 through 3 given 
next: 

1. What is the language family accepted by n-turn first-move self-regulating 
pushdown automata, when n > 1 (see Definition 24)? 

2. By analogy with the standard deterministic finite and pushdown automata 
(see page 145 and page 437 in [15]), introduce the deterministic versions of 
self-regulating automata. What is their power? 
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3. Discuss the closure properties of other language operations, such as the re-
versal. 
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Automata with Finite Congruence Lattices* 

István Babcsányi* 

To the memory of Balázs Imreh 

Abstract 

In this paper we prove that if the congruence lattice of an automaton A is 
finite then the endomorphism semigroup E( A) of A is finite. Moreover, if A is 
commutative then A is A-finite. We prove that if 3 < |/1| then a commutative 
automaton A is simple if and only if it is a cyclic permutation automaton of 
prime order. We also give some results concerning cyclic, strongly connected 
and strongly trap-connected automata. 

1 Preliminaries 
In this paper, by an automaton A = (A, X, S) we mean always an automaton 
without outputs, where A ^ 0 is the state set and X ^ 0 is the input set. Denote 
|A| the cardinality of the set A. The automaton A is called A-finite if |A| < oo. 
If |A| = n then we say that n is the order of A and if n is a prime then A is 
an automaton of prime order. The input monoid [semigroup] X* [X + ] of A is 
the free monoid [semigroup] over X. The transition function S : A x X —> A can 
be extended in the usual way. If e e X* is the empty word then let ő(a, e) = a 
for every a S A; if a e A, p € X* and x e X then let 6(a,px) = 5(S(a,p),x). 
Sometimes, we shall use the notation ap instead of 5(a,p). 

As known, every automaton can be considered as a unary algebra. Thus the 
notions such as subautomaton, congruence, homomomorphism, isomorphism etc. 
can be introduced in the following natural way. 

An equivalence relation p of state set A of the automaton A is called a congru-
ence on A if 

(a, h) € p =£> (ax, bx) e p, 

for all a, b e A and x £ X. The p-class of A containing the state a is denoted 
by p\a]. Denote C(A) the congruence lattice of A. Let LA [wa] be the equality 
[universal] relation on A. The automaton A is called simple if C(A) = {LA,VA}-
It is evident that if |A| < 2 then A is simple. 

'Research supported by the Hungarian NFSR grant No 67639. 
t Department of Algebra, Mathematical Institute, Budapest University of Technology and Eco-

nomics, 1111 Budapest, Egry József u. 1, Hungary. E-mail: babcs8math.bme.hu 
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The automaton A' = (A' ,X,S' ) is a subautomaton of the automaton A = 
(A, X, (5) if A' C A and 5' is the restriction of 5 to A' x X. The congruence 

PA• = {(a, b) e A2; a - 6 or a, b £ A'} 

is called the Rees congruence of A induced by A' ([2]). The set R(A) of Rees 
congruences of A is a sublattice of G(A). It is called the Rees congruence lattice 
of A. 

Let A = (A,X,S) and B = (B,X,S' ) be arbitrary automata. We say that a 
mapping ip : A —* B is a homomorphism of A into B if 

(p(ax) = <p(a)x, 

for all a € A and x € X. The kernel of <p is the congruence Ker <p defined by 
(a, b) G Ker</? if and only if ip(a) '= ip(b) (a,b € A). If A = B then tp is an 
endomorphism of A. Furthermore, if <p is bijective then it is an automorphism of 
A. The set E(A) [G(A)] of all endomorphisms [automorphisms] of A is a monoid 
[group] under the usual multiplication of mappings. E(A) [G(A)j is called the 
endomorphism semigroup [automorphism group] of A. 

For notations and notions not defined here we refer to the books P.M. Cohn [5], 
F. Gecseg [7], F. Gecseg, F. and I. Peak [8], K.H. Kim and F.W. Roush [10] and 
G. Lallement [11]. 

2 Automata with finite congruence lattices 
Let B be a nonempty subset of the state set A of an automaton A = (A,X:S). 
Denote [B] = 5') the subautomaton of A generated by B, that is, [B] = 
{bp; b e B,p e X* } . Specially, denote [a] = ([a], X, 5') the subautomaton generated 
by a S A. If A = [£?] then B is called a generating set of A. If there exists a finite 
generating set of A then we say that A is finitely generated. Specially, if there exists 
a generating set containing only one element a then A is called a cyclic automaton 
and we say that a is a generating element of A. 

Lemma 1. If the congruence-lattice of an automaton A is finite then A has finitely 
many subautomata and the congruence lattices of its subautomata are also finite. 

Proof. Assume that the congruence lattice C(A) of the automaton A = (A, X, S) 
is finite. Thus the Rees congruence lattice R(A) is finite. From this it follows that 
A has finitely many subautomata. 

If A' = (A', X, 5') is a subautomaton of A and p £ G(A') then p U LA G C(A). 
Furthermore, if p, p' e C(A') and p ^ p' then p U IA ^ p' U IA- Thus G(A ' ) is also 
finite. • 

Corollary 2. If the congruence lattice of an automaton is finite then the automaton 
is finitely generated. 
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Proof. If the congruence lattice of an automaton is finite then by Lemma 1, the 
number of its subautomata and thus the number of its cyclic subautomata is finite. 
Therefore, the automaton is finitely generated. • 

S. Radeleczki has prowed in [15] that if the congruence lattice of a unary algebra 
is finite then its automorphism group is finite, too. The following theorem is a 
generalization of this result. 

Theorem 3. If the congruence lattice C(A) of an automaton A = (A, X, á) is 
finite then the endomorphism semigroup E(A) is finite. 

Proof. First, we show that the automorphism group G(A) is finite. Assume that 
the order of a € G(A) is infinite. For every positive integer m, we define the binary 
relation pam on A, as follows. For a,b £ A, (a, b) € pQm if and only if there is an 
element c of A and there are integers i,k, I such that 0 < i < m — 1 and 

a = akm+i(c), b — alm+i(c). 

It can be easily verified that pam is a congruence of A. Furthermore, if m ± n 
then pam Pan in a contradiction with our assumption that the congruence lattice 
C( A) is finite. Thus the order of every a £ G( A) is finite. 

Let r be the order of a £ G(A). Take the binary relation pa on A for which 
(a, b) £ pa if and only if there are c £ A and integers 0 < i, j < r — 1 such that 

a — al(c), b = cc'(c). 

For every a £ G(A), the relation pa is a congruence of A. Assume that 

pa =Pf), 0 £ G{A). 

By Corollary 2, the automaton A is finitely generated. If {ci, c 2 , . . . , ck} is a finite 
generating set of A then 

Pp[c\] = poc[C\], pp[c2} = Pa [C2], • • -,pp[ck] = Pa [Cfc], 

that is, 
0(d) = a i l ( c i ) , 0(c2) = a i 2 ( c 2 ) , . . ,,0(ck) = aik(ck) 

(0 < ¿i, ¿2, . . . , ife < r — 1). This means that /3 = a l j on [Cj} ( j = 1 ,2 , . . . , k). From 
this it follows that the number of such /3 is finite for arbitrary a € G(A). Since 
C(A) is finite, the number of different pa's is finite. From these results it follows 
that G(A) is finite. 

Now we show that the endomorphism semigroup E( A) is also finite. If a £ E( A) 
then Aa = (a(A), X, <5') is a subautomaton of A, where a(A) = {a(a); a £ A}. Let 
/3 G E(A) such that 

Ker 0 = Ker a and 0(A) = a(A). 
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Define the mapping tp0^ : a(A) —> ß(A) such that 

<pa,0{a(a)) =ß{a) 

for every a £ A. This means that 

faßCt = ß. 

Since Ker/? = Ker a, ipa,p is a bijective mapping. If a £ A and x e X then 

ipaß(a{a)x) = ipa£a(ax) - ß(ax) = ß(a)x — (pa,p(a(a))x, 

that is, <ßa,ß £ G(Aa). By Lemma 1, C(Aa) is finite and thus, by the first part of 
this proof, G(Aa) is finite. Furthermore, if 

Kerß = Kerß' = Kera. ß(A) = ß'(A) = a(A) . 

and 
'Paß = 'Paß', 

then ß — ß'. Thus, for arbitrary a £ E(A), the number of ß G E(A) such that 
Kerß = Ker a and ß(A) = a(A) is finite. Since the number of different Ker a's and 
different ß(A)'s (a,ß G E(A)) is finite, E(A) is also finite. • 

For every a G A, consider the binary relation PA,A on X* defined as 

(P,Q) G PA.a AP = aq {p,q G X*). 

It is clear that pA,a (a £ A) is a right congruence on X*. The relation 
PA = R>A€APA,A is congruence on X*. The characteristic semigroup 5 ( A ) of the 
automaton A is the factor semigroup X*/pA. 

R.H. Oehmke has shown in [13] the first part of the following lemma, that is, 
for arbitrary cyclic automaton A = (A, X, 6), |-E(A)| < We have shown in our 
paper [1] that \A\ < |S(A)|. 

Lemma 4. For every cyclic automaton A = (A,X,S), 

|£(A)| < \A\ < |S(A)|. 

Proof. If ao is a generating element of A and a(ao) = /3(a0) (a,ß £ E(A)) then, 
for every p £ X*, 

a(aop) = a(a0)p = ß{ao)p = ß(aop), 

that is, a = ß. Thus the mapping ip : E(A) -+ A such that <p(a) = a(ao), for every 
a £ E(A), is an injective mapping of E(A) into A. This means that |i?(A)| < 

If aop ^ a0q (P,q £ X*) then pA\p\ £ PA[Q}- From this it follows that |A| < 
|S(A)|. • 
Lemma 5. If the relation pA,a0 is a congruence on X*, for a generating element 
ao of a cyclic automaton A = (A, X, S), then E(A) = S(A) and |£(A)| = |A|. 
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Proof. If the relation PA,a0 is a congruence on X* then PA.A0 = PA- Define the 
mapping ap : A —* A, for every p G X*, such that 

ap(a0q) = a0pq (q G X*). 

It can easily be shown that ap G E(A). Furthermore, if a G E( A ) and a(oo) = aor 
(r G X*) then a — ar. The mapping tp : E(A) —» 5 (A ) such that 

V(<*p) = PA\P) (V G X*) 

is an isomorphism of E(A) onto 5 ( A ) . By Lemma, |i?(A)| = |A|. • 

From Theorem 3, Lemma 4 and Lemma 5, we get the following corollary. 

Corollary 6. Let the congruence lattice C{A) of the cyclic automaton A = 
(A, X, 5) be finite. If the relation pA,a0 is a congruence on X*, for a generating 
element ao, then A is A-finite. 

The automaton A is commutative if apq = aqp for every a G A and p,q G 
X*. It is immediate that every subautomaton of a commutative automaton is also 
commutative. I. Peak proved in [14] that E(A) = 5 (A ) and |£(A)| = |A| for 
arbitrary cyclic commutative automaton A . (See also F. Gecseg and I. Peak [8], Z. 
Esik and B. Imreh [6].) The statement of Lemma 5 is a generalization of this result. 
A.P. Grillet showed in [9] that if the congruence lattice of a commutative semigroup 
5 is finite then 5 is finite. The following theorem generalizes this statement for 
commutative automata. 

Theorem 7. If the congruence lattice C(A) of a commutative automaton A = 
(A,X, 5) is finite then the automaton A is A-finite. 

Proof. By Corollary 2, A is finitely generated. Then, it is a union of commutative 
cyclic subautomata Ai = (A,, X, ¿¿) (¿ = 1 ,2 , . . . , n). But, if ai G A, is a generating 
element of A i then PAI,at is a congruence on X*, since A j (i = 1,2, . . . , n ) is 
commutative. By Corollary 6, A , (i = 1,2,... ,n) is A-finite and thus A is also 
finite. • 

3 Simple automata 
We discussed in our papers [3] and [4] the simple Mealy and Moore automata. In 
this paper we investigate the simplicity of the automata A = (A,X,8) without 
outputs. In this case C(A) = {la,^a}-

Let H ^ 0 be a subset of the state set A and let Hp = {ap; a G H} for every 
p e X*. Define the binary relation Th on A as follows. 

(a, b) G TH if and only if (ap G H bp G H) 

for every p G X*. TH is a congruence of A and H is a union of certain TH-
congruence classes. The state a G A is called disjunctive, if T{0} = LA-
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The set H is called a separator of A if, for every p £ X*, 

HpCH or HpC\H = %. 

The one-element subsets of A and itself A are separators of A. We say that these 
separators are the trivial separators. 

Lemma 8. The automaton A = (A, X, 6) is simple if and only if every separator 
of A is trivial. 

Proof. Assume that all separators of A are trivial. If p is a congruence of A then 
every p-class is a separator of A. Therefore, p = TA or p = UJa, that is, A is a 
simple automaton. 

Conversely, assume that A is simple. If H is a separator of A then 77/ is a 
congruence of A such that H is a r//-class. But t h = tA or 77/ = wA. Thus 
|H| = 1 or H = A therefore H is a trivial separator of A. • 

If every state of an automaton A = (A, X, 5) is a generating element of A then 
we say that- A is strongly connected. In other words, A is strongly connected if, 
for arbitrary states a,b £ A, there exists a p £ X+ such that ap = b. If [c] = { c } 
then the state c £ A is called a trap of A. The automaton A is called strongly 
trap-connected if it has a trap c and for every state a € A — { c } and b £ A, there 
exists a p € X* such that ap — b. It is known that the automaton A is strongly 
connected if and only if it has no subautomaton A' = (A',X, 8) of A such that 
A! / A: Furthermore, if A strongly trap-connected then it has only one trap. 

Corollary 9 (G. Thierrin [16]). Every simple automaton with at least three states 
is strongly connected or strongly trap-connected. 

Proof. If A' — (A', X, 5') is a subautomaton of the automaton A = (A, X, 6) then 
A! is a separator of A. Thus A! = A or ¡A'l = 1. If A is not strongly connected, 
then it has only one subautomaton A' = (A' ,X, <5), namely = 1. In the latter 
case if A! = {c } then c is a trap of A. Hence if A is not strongly connected then it 
is strongly trap-connected. • 

Theorem 10. The strongly trap-connected automaton A = (A, X, 5) with at least 
three states is simple if and only if the trap of A is disjunctive. 

Proof. Let c £ A be the trap of A. First, we show that if p is a congruence of 
A and p t̂  o>A then p[c] = {c}. Let a,b £ A be arbitrary states. Assume that 
(a, c) £ p. li a ^ c then there exists a p £ X* such that ap — b. Thus 

(b, c) = (ap, cp) € p. 

From this it follows that p = u>a- This is impossible. Thus we get that a = c and 
P[c] = {c}-

Now assume that c is disjunctive, that is, 7"{c} = IA • Let p ^ U>A be a congruence 
of A. .Since p[c) = {c} , if a, b €. A — { c } and (a, b) £ p then (a,b) £ r{ c} , that is, 
a = b. We get p = LA and thus A is simple. 



Automata with Finite Congruence Lattices 161 

Conversely, assume that A is simple. But A is strongly trap-connected au-
tomaton with at least three states, thus T{c} =/= U>A- Therefore T{cj = and so c is 
disjunctive. • 

4 Commutativity of simple automata 
Theorem 11. If the strongly trap-connected automaton A = (A, X, 6) with at least 
three states is simple then it is not commutative. Furthermore G(A) = {m} and 
E(A) = {iA,ctc}, where c is the trap of A, and ac defined by ac(a) = c (a £ A). 

Proof. Assume that A is commutative. Let a,b £ A — { c } and a ^ b. Since A is 
strongly trap-connected, there are q, r £ X* such that aq = b and br = a. Thus, 
for arbitrary p £ X*, 

bp = aqp = apq and ap — brp = bpr. 

Then, ap = c if and only if bp = c. Thus (a,b) £ T{c}, that is, a = b, which 
contradicts the assumption. We get that A is not commutative. 

It is evident that ac £ E(A). If a £ E(A) then, for every p £ X*, 

a(c)p = a(cp) = a(c), 

and so a(c) is a trap of A , that is a(c) = c. If a £ A — { c } and a(a) = c then, for 
every p £ X*, 

a(ap) = a(a)p = cp = c, 

that is, a = ac. Assume that a, b £ A — { c } , a ^ b and ct(a) = a(b). If, for every 
p £ X*, ap = c if and only if bp = c then (a, b) £ T{c}. By Theorem 10, a — b. This 
is a contradiction. Thus there exists a q £ X* such that for instance aq = c and 
bq i c. Then 

a(bq) = a{b)q = ce(a)q = a(aq) = a(c) = c. 

From this it follows that a = ac, thus G(A) = and E(A) = {¿a^c}- • 

Lemma 12. Every endomorphism of a strongly connected automaton is swrjective. 

Proof. Let A = (A, X, 5) be a strongly connected automaton. If a 6 E(A) then 
A a = ( a ( A ) , X , S ' ) is a subautomaton of A. Therefore, a(A) = A, that is, a is a 
surjective mapping. • 

Theorem 13. Let the strongly connected automaton A = (A, X, 6) with at least 
three states be simple. If E(A) = {m} then A is not commutative. If E(A) ^ { t^ } 
then A is an A-finite commutative automaton, |i5(A| = |A| and E(A) = G(A) is 
a cyclic group of prime order. 

Proof. First, we show that if the strongly connected automaton A with at least 
three states is simple then E( A) = G(A) is a finite group. Since Kera (a £ E(A)) 
is a congruence of A, Kera = LA or Kera = OJA- By Lemma 12, a is surjective 
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mapping. Prom this it follows that Kera = la and thus a £ G(A). This means 
that E{A) = G(A). By Theorem 3, E(A) is finite. 

Assume that E(A) = {t / i } and A is commutative. Since A is strongly con-
nected, there are ao £ A and p € X+ such that ao ^ aop. Define the mapping ap 

in the same way as in the proof of Lemma 5. Since the relation PA,a0 is a congruence 
on X*, ap £ E(A) and ap IA- This is impossible, and so A is not commutative. 

Now assume that E(A) = G(A) ^ { m } - Let a £ G(A) and a ^ LA- Consider 
the congruence pa defined in the proof of Theorem 3. Since A is simple, pa — iA 

or pa = wa- If pa = M then a = iA- If pa = oja then, for arbitrary state d E A, 

A={d,a(d),...,ar~l(d)}. 

If P £ G(A) then there exists an integer 0 < j < r — 1 such that P(d) = a^(d). 
Thus, for every p £ X*, we have ,6(dp) = aj (dp), that is, P = a?. Then, G( A is a 
cyclic group. 

If r is not prime then r = In (1 < l,n < r). Define the binary relation „ on 
A as follows. For a,b € A (a, b) £ p/ n if and only if there are integers 0 < i < I — 1 
and 0 < j, k < n — 1 such that 

a = ai+ji(d), b = ai+kl(d). 

It is easy to show that P^N is a congruence of A and p; n ^ LA-.^A- It is a contra-
diction. Hence r is a prime number. 

We show that A is commutative, lip, q £ X* then let ap = ak(a) and aq = a1 (a) 
(0 < k, I < r - 1). Then, for arbitrary 0 < i < r - 1, 

ai(a)pq — al(ap)q = alak(a)q = alak(aq) = 

= alakal(a) = aialak(a) = 

= ofctfap) — a%al(a)p = az(aq)p = aL(a)qp, 

that is, A is commutative. 
By Theorem 7, the automaton A is A-finite. By Lemma 4 and Lemma 5, 

|£?(A| = \A\. • 

We note that W. Lex proved in [12], if A is a simple automaton then |G(A)| = 1 
or G(A) is a cyclic group of prime order. 

The automaton A = (A, X, 5) is called a permutation automaton if every input 
sign x £ X is a permutation sign, that is, if ax = bx (a, b £ A) then a = b. Let 
the automaton A be A-finite and |A| = r. The input sign x £ X is called cyclic 
permutation sign if, for any a £ A, 

A = {a, ax, ax2,..., axr~1} (axr = a). 

The input sign x £ X is called identical permutation sign if ax — a for every a € A. 
The permutation automaton A is called a cyclic permutation automaton of order 
r if there exists an x £ X cyclic permutation sign. 

The congruence p of the automaton A = (A, X, 5) is called uniform if, for every 
a,be A, |p[a]| = |p[6]|. 
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Lemma 14. Every congruence of a strongly connected permutation automaton is 
uniform. • 

Proof. Let A = (A, X, 5) be a strongly connected permutation automaton. Assume 
that p is a congruence of A and a, b 6 A arbitrary states. Since A is strongly 
connected, there axe p,q £ X* such that b = ap and a = bq. Then p[a)p C p[b] and 
p[b]q C p[a\. As every input sign is a permutation sign, we get 

I p M I = I p H p I < \p[b\\ = \p[b]q\ < I p H I , 

that is, |p[a]| = \p{b}\. • 

Prom Lemma 14 it follows that every strongly connected permutation automa-
ton of prime order is simple. By the following example this is generally not true. 
Example 15. If A = {1,2,3} , X = {x, y} and 

lx = 2x = 3, 3x = 2, 1 y = 2, 2y = 1, 3y = 1, 

then the automaton A = (A, X, S) is strongly connected of prime order, but not 
simple. 

By the following example, there is a simple strongly connected permutation 
automaton whose order is not a prime number. 
Example 16. A = {1,2,3,4} , X = {x ,y }and 

lx = 2, 2x = 3, 3x = 4, 4x = 1, 1 y = 1, 2y = 2, 3y = 4, 4y = 3. 

The automaton A = (A, X, 5) is a cyclic permutation automaton. 
Theorem 17. The commutative automaton A = (A, X, 8) with at least three states 
is simple if and only if it is a cyclic permutation automaton of prime order. 

Proof Assume that the commutative automaton A is simple. By Theorem 13, 
A is an A-finite automaton of prime order. By Corollary 9 and Theorem 11, A 
is strongly connected. Let x € X be an arbitrary input sign. Define the binary 
relation px on A as follows. 

(a, 6) € px if and only if ax = bx. 

Using the commutativity of A, it is not difficult to seen that the relation px is a 
congruence of A. If px = UJA then there is an element c € A such that for every 
a.£ A ax = c. Hence c is a trap of A. It is impossible. Thus px = i A, that is, x is 
a permutation sign. We get that A is a permutation automaton. Since A strongly 
connected and 3 < |A|, there are a € A and x € X such that ax a. But a; is a 
permutation sign. Therefore, if ax% — ax? (0 < i < j) then a = ax^"1 and 2 < j—i. 
Let k be the smallest positive integer for which axk = a. Since ax ^ a, therefore 
2 < k. The set H — {a, ax,... ,axk~1} is a separator of A. Prom this it follows 
that H = A. Thus x is a cyclic permutation sign, that is, A is a cyclic permutation 
automaton of prime order. 
. Conversely, if A is a cyclic permutation automaton of prime order then, by 

Lemma 14, A is simple. • 
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If a commutative automaton is a cyclic permutation automaton of prime order 
then every input sign is an identical permutation sign or a cyclic permutation sign. 

We remark that in [16] G. Thierrin proved that if G(A) ^ {t^}, for a simple 
automaton A, then A is a permutation automaton, |G(A| = |A| and |G(A)| is a 
prime number. By Theorem 13, every commutative simple automaton is A-finite. 
By the following examples, it is generally not true. 

Example 18. If A = { 1 ,2 , . . . , n , . . . }, X = {x, y} and 

\y = 1, 2y = 2, nx — n 4-1, n = 1 ,2 , . . . , 

m = 2, ni+i = rii + i, i = 1 ,2 , . . . , 

v-i+iy = 1, (ni+1 + 1 )y = (ni+1 + 2 ) y = ••• = (ni+i +i)y = 2, ¿ = 1 ,2 , . . . , 

then the infinite automaton A = (A, X, (5) is strongly connected, simple and not 
commutative. 

Example 19. If A = {0 ,1 ,2 , . . . , n , . . . } , X = { x , y } and 

Ox = 0y = ly = 0, nx — n + 1, n = l , 2 , . . . , 

ni=2, ni+i = ni + i, i = 1 ,2 , . . . , 

rny = 1, (n i + i + 1 )y = (n i+1 + 2)y = • • • = (n i + i + i)y = 2, i = 1,2,..., 

then the infinite automaton A = (A , X, 5) is strongly trap-connected with the trap 
0, simple and not commutative. 
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