
The Complexity of Bidirected Reachability in Valence Systems
Moses Ganardi

Max Planck Institute for
Software Systems (MPI-SWS)

Kaiserslautern, Germany

Rupak Majumdar
Max Planck Institute for

Software Systems (MPI-SWS)
Kaiserslautern, Germany

Georg Zetzsche
Max Planck Institute for

Software Systems (MPI-SWS)
Kaiserslautern, Germany

ABSTRACT
Reachability problems in infinite-state systems are often subject
to extremely high complexity. This motivates the investigation of
efficient overapproximations, where we add transitions to obtain a
system in which reachability can be decided more efficiently. We
consider bidirected infinite-state systems, where for every transition
there is a transition with opposite effect.

We study bidirected reachability in the framework of valence
systems, an abstract model featuring finitely many control states
and an infinite-state storage that is specified by a finite graph. By
picking suitable graphs, valence systems can uniformly model coun-
ters as in vector addition systems, pushdowns, integer counters,
and combinations thereof.

We provide a comprehensive complexity landscape for bidirected
reachability and show that the complexity drops (often to polyno-
mial time) from that of general reachability, for almost every storage
mechanism where reachability is known to be decidable.

CCS CONCEPTS
• Theory of computation → Models of computation; Formal
languages and automata theory; Computational complexity
and cryptography.

KEYWORDS
Reachability, complexity, infinite-state systems, bidirected, re-
versible, vector addition systems, pushdown, counters
ACM Reference Format:
Moses Ganardi, Rupak Majumdar, and Georg Zetzsche. 2022. The Com-
plexity of Bidirected Reachability in Valence Systems. In 37th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS) (LICS ’22), Au-
gust 2–5, 2022, Haifa, Israel. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3531130.3533345

1 INTRODUCTION
The reachability problem is one of the most fundamental tasks for
infinite-state systems: It asks for a given infinite-state system and
two configurations c1 and c2, whether it is possible to reach c2 from
c1. It is a basic component in many types of verification (both for
safety and liveness), and has been studied intensively for decades.
Unfortunately, the reachability problem often exhibits prohibitively
high complexity or is subject to long-standing open problems: In

This work is licensed under a Creative Commons Attribution International
4.0 License.

LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9351-5/22/08.
https://doi.org/10.1145/3531130.3533345

vector addition systems with states (VASS), which are systems with
counters over the natural numbers that can be incremented and
decremented, reachability is Ackermann-complete [10, 22]. Further-
more, if we allow a pushdown in addition to the counters, we obtain
pushdown vector addition systems (PVASS), for which decidability
of the reachability problem is a long-standing open problem [23].

One way to circumvent this is to consider overapproximations
of the reachability problem: Instead of deciding reachability in the
original system, we decide reachability in a system that has more
transitions. Then, a negative answer still certifies safety. A promis-
ing overapproximation is bidirected reachability: We assume that
in our system, for each transition, there is another with opposite
effect. For example, in pushdown reachability, a push of a symbol
on the forward edge is reverted by the pop of the symbol on the
backward edge. In a vector addition system, incrementing a counter
is reverted by decrementing it by the same amount. In addition to
its theoretical interest, bidirected reachability is also of practical
interest: for example, several program analysis problems can be
formulated or practically approximated as bidirected pushdown
reachability [7, 48] or bidirected interleaved pushdown reachability
[19, 24, 25, 40, 41, 49]. A remarkable recent result is that bidirected
reachability in PVASS with one counter is decidable [19].

An important measure for the utility of bidirectedness is: Does
bidirectedness reduce complexity? It is known that bidirected reacha-
bility in VASS is EXPSPACE-complete and in logarithmic space for
a fixed number of counters [32]. Bidirected pushdown reachability
can be solved in almost linear time [7] whereas a truly subcubic
algorithm for pushdown reachability is a long-standing open prob-
lem [8]. However, the general complexity landscape is far from
understood. For example, it is hitherto not even known if bidirected
pushdown reachability is P-hard. Further, it is not known whether
bidirected reachability in Z-VASS (which allow counter values to
become negative) is NP-complete as for reachability [15].

Valence systems
In this paper, we systematically compare the complexity of bidi-
rected reachability with general reachability. To this end, we use the
framework of valence systems over graph monoids [44–47], which are
an abstract model that features finitely many control states and an
infinite storage specified by a finite graph (with self-loops allowed).
By picking a suitable graph, one can obtain classical infinite-state
models: A clique of d unlooped nodes corresponds to VASS with
d counters. If the vertices are looped, one obtains Z-VASS. Two
isolated unlooped vertices yield pushdown systems.

In order to compare bidirected with general reachability, we
focus on storage mechanisms where general reachability is known
to be decidable. These mechanisms correspond to a well-understood
class of graphs studied in [46]. The latter work characterizes a class
of graphs that precisely capture PVASS with one counter. Then,

https://orcid.org/0000-0002-0775-7781
https://orcid.org/0000-0003-2136-0542
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.1145/3531130.3533345
https://doi.org/10.1145/3531130.3533345
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3531130.3533345

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

it is shown in [46] that for every graph that avoids these PVASS
graphs as induced subgraphs, reachability is decidable iff the graph
is a transitive forest. This class of graphs is called SC±.

Contribution
We provide a comprehensive complexity landscape for bidirected
reachability for valence systems over graphs in SC±. For every
graph in SC±, we prove that bidirected reachability is either L-
complete or P-complete. More generally, we consider the setting
where the graph is part of the input and drawn from a class G ⊆
SC±: This is the case, e.g. when the input can consist of Z-VASS
with an arbitrary number of counters. Even in this general setting,
we obtain an almost complete complexity picture: Then, bidirected
reachability falls within five possible categories: L-complete, ILD-
complete, P-complete, in EXP, or EXPSPACE-complete. Here, the
complexity class ILD captures those problems that are logspace-
reducible to the feasibility problem for integer linear Diophantine
equations (it lies between L and P).

To obtain the P-hardness, we exploit a connection to algorith-
mic group theory, which allows us to reduce from the subgroup
membership problem for free groups [3]. The same connection
yields undecidability of bidirected reachability if the graph has an
induced 4-cycle via a well-known group theoretic undecidability
due to Mikhailova [34]. In particular, bidirected reachability is un-
decidable in systems with two pushdowns, which answers an open
problem from [25]1. This connection also yields an example of a
graph where reachability is undecidable, but bidirected reachability
is decidable. Finally, we can translate back to group theory: Our re-
sults imply that the subgroup membership problem in graph groups
over any transitive forest is in P.

Our results show that the complexity drops for almost every
storage (pure pushdowns without any additional counters are the
only exceptions). For example, reachability for Z-VASS and for
pushdown Z-VASS (which have a pushdown and several Z-valued
counters) are both known to be NP-complete [15, 17], but we place
bidirected reachability in P. The same holds for Z-VASS that, in
addition, have a fixed number of N-counters. Our results also ap-
ply to stacks where each entry contains several counter values.
Moreover, in addition to such stacks, one can have Z-counters,
then build stacks of such configurations, etc. Our characterization
implies that when the number of alternations between building
stacks and adding Z-counters is not fixed, then bidirected reacha-
bility can still be solved in EXP; in contrast, general reachability is
NEXP-complete [16].

Key techniques
These lower complexities are achieved using novel techniques.
The aforementioned connection to algorithmic group theory is the
logspace inter-reducibility with the subgroup membership problem
if the storage graph has self-loops everywhere. This connection
between bidirected automata and subgroups has been observed
in [29]; we provide logspace reductions.

While the connection to group theory is used for lower bounds,
our upper bounds also require new methods. The decidability
for reachability in SC± in [46] employs VASS with nested zero
1This problem was answered independently in [19].

tests [5, 36], which we manage to avoid completely. Instead, we rely
on results about bidirected VASS reachability sets [20] to essentially
eliminate N-counters in our systems first. However, the main inno-
vation is a modified approach to reachability in systems with stacks
and Z-counters [16, 17]. Those algorithms use a technique of Verma,
Seidl, and Schwentick [38], which constructs, given a context-free
grammar, an existential Presburger formula for its Parikh image.
While existential Presburger arithmetic is equivalent to systems of
integer linear inequalities (where feasibility is NP-complete), we
show that for the new notion of bidirected grammars, the Parikh
image can, in some appropriate sense, be described using only equa-
tions. This leads to a P upper bound, since feasibility of systems of
integer linear equations is in P [9].

Full version
Due to space constraints, some proof details are only available in
the full version of this work, which is available as [14].

ACKNOWLEDGMENTS
The authors are grateful to Markus Lohrey for discussions about
the algorithm in [29]. This work was sponsered in part by the DFG
under project 389792660 TRR 248–CPEC.

2 BIDIRECTED VALENCE SYSTEMS
Algebraic Preliminaries
We assume familiarity with basic notions of monoids, groups,
etc. [21]. A subgroup of a group G is a subset of the elements of G
that themselves form a group; i.e., it is a subset of elements closed
under the binary operation as well as inverses. A subgroup H of
a group G can be used to decompose the underlying set of G into
disjoint equal-size subsets called cosets. The left cosets (resp. right
cosets) of H in G are the sets obtained by multiplying each ele-
ment of H by a fixed element д of G: дH = {д · h | h ∈ H } (resp.
Hд = {h · д | h ∈ H }). For a subset S , we write ⟨S⟩ for the smallest
subgroup containing S ; this is the set of all elements of G that can
be written as finite products of elements from S and their inverses.
If ⟨S⟩ = G, we say S generates G and call the elements of S the
generators of G.

A presentation (Σ | R) of a monoid is a description of a monoid
in terms of a set Σ of generators and a set of binary relations R ⊆
Σ∗ × Σ∗ on the free monoid Σ∗ generated by Σ. For a set R ⊆
Σ∗×Σ∗ define the step relation →R by sut →R svt for all (u,v) ∈ R
and s, t ∈ Σ∗. Define ≡R to be the smallest equivalence relation
containing →R . Then ≡R is a congruence, meaning that if u ≡R v ,
then sut ≡R svt for every s, t ∈ Σ∗. The monoid is then presented
as the quotient of Σ∗ by the congruence ≡R . For a wordw ∈ Σ∗, we
write [w]≡R for the equivalence class ofw under ≡R . A commutative
semigroup presentation is a presentation (Σ | R) where (xy,yx) ∈ R
for all x , y ∈ Σ. The word problem for commutative semigroups
asks, given a commutative semigroup presentation (Σ | R) and two
words u,v ∈ Σ∗, does u ≡R v hold? This problem is known to be
EXPSPACE-complete [32].

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

Graph Monoids
A graph is a tuple Γ = (V , I), where V is a finite set of vertices and
I ⊆ {e ⊆ V | 1 ≤ |e | ≤ 2} is a finite set of undirected edges, which
can be self-loops. Thus, if {v} ∈ I , we say thatv is looped; otherwise,
v is unlooped. If all nodes of Γ are (un)looped, we call Γ (un)looped.
By Γ◦ and Γ−, we denote the graph obtained from Γ by adding
(removing) self-loops on all vertices. The edge relation is also called
an independence relation. We also write uIv for {u,v} ∈ I . A subset
U ⊆ V is a clique if uIv for any two distinct u,v ∈ U . We say
that U ⊆ V is an anti-clique if we do not have uIv for any distinct
u,v ∈ U . Given a graph Γ, we define a monoid as follows. We
define the alphabet XΓ = V ∪ V̄ where V̄ = {v̄ | v ∈ V }. We define
RΓ = {(vv̄, ε) | v ∈ V } ∪ {(xy,yx) | x ∈ {u, ū}, y ∈ {v, v̄}, uIv}.
We write →Γ instead of →RΓ and ≡Γ for the smallest equivalence
relation containing →Γ . As observed above, ≡Γ is a congruence. In
particular, if v has a self-loop, then v̄v ≡Γ ε . We define the monoid
MΓ := X ∗

Γ/≡Γ . We write [w] for the equivalence class of w under
≡Γ and 1 for [ε]. For each word w ∈ X ∗

Γ , we define its inverse w̄ as
follows. Ifw = v for some v ∈ V , then w̄ is the letter v̄ . Ifw = v̄ for
v ∈ V , then w̄ = v . Finally, if w = w1 · · ·wn with w1, . . . ,wn ∈ XΓ ,
then w̄ = w̄n · · · w̄1. It is known that w ≡Γ ε is witnessed by a
derivation w = w0 →Γ w1 →Γ · · · →Γ wn = ε [45, Equation (8.2)].

Valence systems and reachability
Valence systems are an abstract model for studying finite-state
transition systems with “storage”. They consist of a state transition
system on a finite set of states, as well as a monoid that represents
an auxiliary storage and determines which paths in the automata
form valid computations in the presence of the auxiliary storage.
For example, if the underlying storage is a stack, the monoid can
encode push and pops and determine computations that produce
an empty stack.

In this work, we only consider graph monoids as the under-
lying monoids. Many classes of infinite-state systems involving
combinations of stacks and counters can be modeled as valence
systems over graph monoids; see [45] for detailed examples. They
have been studied in terms of expressiveness [6, 42], computing
downward closures [43], and various forms of reachability prob-
lems [12, 33, 37, 46], see [47] for a survey on the latter.

A valence system A over a graph Γ consists of a finite set of
states Q , and a finite transition relation →⊆ Q × X ∗

Γ × Q . We
also write a transition (p,u,q) as p

u→ q. A run is a sequence
(q0,u1,q1)(q1,u2,q2) . . . (qn−1,un ,qn) of transitions, also abbrevi-
ated q0

u→ qn if u = u1 · · ·un .
The reachability problem (REACH) for valence systems is the

following:

Given A valence system A and states s, t in A.
Question Is there a run s

w→ t for some w ∈ X ∗
Γ with [w] = 1?

If the reachability problem is restricted to valence systems over
a particular graph Γ, then we denote the problem by REACH(Γ). If
we restrict the input systems to a class G of graphs, then we write
REACH(G). For example, if V is the class of all unlooped cliques,
then REACH(V) is the reachability problem for vector addition
systems with states (VASS).

A valence system A is bidirected if for any transition p
w→ q, we

also have q w̄→ p. The bidirected reachability problem (BIREACH) is
the reachability problem where A is restricted to bidirected valence
systems. As above, we consider the case where the system is over
a particular graph Γ, denoted BIREACH(Γ), or where the graph is
drawn from a class G, denoted BIREACH(G).

2.1 Decidability Landscape for Reachability
PVASS-graphs
A graph Γ is a PVASS-graph if it is isomorphic to one of the following
three graphs:

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

can be self-loops. Thus, if {v} ∈ I , we say thatv is looped; otherwise,
v is unlooped. If all nodes of Γ are (un)looped, we call Γ (un)looped.
By Γ◦ and Γ−, we denote the graph obtained from Γ by adding
(removing) self-loops on all vertices. The edge relation is also called
an independence relation. We also write uIv for {u,v} ∈ I . A subset
U ⊆ V is a clique if uIv for any two distinct u,v ∈ U . We say
that U ⊆ V is an anti-clique if we do not have uIv for any distinct
u,v ∈ U . Given a graph Γ, we define a monoid as follows. We
define the alphabet XΓ = V ∪ V̄ where V̄ = {v̄ | v ∈ V }. We define
RΓ = {(vv̄, ε) | v ∈ V } ∪ {(xy,yx) | x ∈ {u, ū}, y ∈ {v, v̄}, uIv}.
We write →Γ instead of →RΓ and ≡Γ for the smallest equivalence
relation containing →Γ . As observed above, ≡Γ is a congruence. In
particular, if v has a self-loop, then v̄v ≡Γ ε . We define the monoid
MΓ := X ∗

Γ/≡Γ . We write [w] for the equivalence class of w under
≡Γ and 1 for [ε]. For each word w ∈ X ∗

Γ , we define its inverse w̄ as
follows. Ifw = v for some v ∈ V , then w̄ is the letter v̄ . Ifw = v̄ for
v ∈ V , then w̄ = v . Finally, if w = w1 · · ·wn with w1, . . . ,wn ∈ XΓ ,
then w̄ = w̄n · · · w̄1. It is known that w ≡Γ ε is witnessed by a
derivation w = w0 →Γ w1 →Γ · · · →Γ wn = ε [45, Equation (8.2)].

Valence systems and reachability
Valence systems are an abstract model for studying finite-state
transition systems with “storage”. They consist of a state transition
system on a finite set of states, as well as a monoid that represents
an auxiliary storage and determines which paths in the automata
form valid computations in the presence of the auxiliary storage.
For example, if the underlying storage is a stack, the monoid can
encode push and pops and determine computations that produce
an empty stack.

In this work, we only consider graph monoids as the under-
lying monoids. Many classes of infinite-state systems involving
combinations of stacks and counters can be modeled as valence
systems over graph monoids; see [45] for detailed examples. They
have been studied in terms of expressiveness [6, 42], computing
downward closures [43], and various forms of reachability prob-
lems [12, 33, 37, 46], see [47] for a survey on the latter.

A valence system A over a graph Γ consists of a finite set of
states Q , and a finite transition relation →⊆ Q × X ∗

Γ × Q . We
also write a transition (p,u,q) as p

u→ q. A run is a sequence
(q0,u1,q1)(q1,u2,q2) . . . (qn−1,un,qn) of transitions, also abbrevi-
ated q0

u→ qn if u = u1 · · ·un .
The reachability problem (REACH) for valence systems is the

following:

Given A valence system A and states s, t in A.
Question Is there a run s

w→ t for some w ∈ X ∗
Γ with [w] = 1?

If the reachability problem is restricted to valence systems over
a particular graph Γ, then we denote the problem by REACH(Γ). If
we restrict the input systems to a class G of graphs, then we write
REACH(G). For example, if V is the class of all unlooped cliques,
then REACH(V) is the reachability problem for vector addition
systems with states (VASS).

A valence system A is bidirected if for any transition p
w→ q, we

also have q w̄→ p. The bidirected reachability problem (BIREACH) is
the reachability problem where A is restricted to bidirected valence
systems. As above, we consider the case where the system is over

a particular graph Γ, denoted BIREACH(Γ), or where the graph is
drawn from a class G, denoted BIREACH(G).

2.1 Decidability Landscape for Reachability
PVASS-graphs
A graph Γ is a PVASS-graph if it is isomorphic to one of the following
three graphs:

We say that a graph is PVASS-free if it has no PVASS-graph as
an induced subgraph. Here, a graph Γ′ = (V ′, I ′) is an induced
subgraph of Γ = (V , I) if there is an injective map ι : V ′ → V
with {ι(u), ι(v)} ∈ I iff {u,v} ∈ I ′ for u,v ∈ V ′. Observe that a
graph Γ is PVASS-free if and only if in the neighborhood of each
unlooped vertex, any two vertices are adjacent. The terminology
stems from the fact that if Γ is a PVASS-graph, then REACH(Γ) is
inter-reducible with reachability for PVASS with one counter [46].
Whether reachability is decidable for these is a long-standing open
problem [23] (however, bidirected reachability is decidable [19]).

Transitive forests
A graph Γ is a transitive forest if it can be built as follows. First, the
empty graph is a transitive forest. Moreover, if Γ1 and Γ2 are transi-
tive forests, then (i) the disjoint union of Γ1 and Γ2 is a transitive
forest and (ii) if Γ is the graph obtained by adding one looped or
unlooped vertex v to Γ1 so that v is adjacent to every vertex in Γ1,
then Γ is also a transitive forest.

The complexity of our algorithms will depend on the height of
the trees in transitive forests. Formally, every non-empty transitive
forest is either (i) a disjoint union of connected transitive forests,
or (ii) has a universal vertex, i.e. a vertex that is adjacent to all
other vertices (take the root of the underlying tree). This induces a
successive decomposition of the transitive forest into smaller ones:
For a disjoint union, take the disjoint connected transitive forests.
If there is a universal vertex, remove that vertex to obtain a smaller
transitive forest.

The decomposition is unique up to isomorphism: This is obvious
in the case of a disjoint union. If there are several universal vertices,
then all removals result in isomorphic graphs. We define the height
h(Γ) of a transitive forest Γ = (V , I): If V = ∅, then h(Γ) = 0. If Γ
is a disjoint union of connected transitive forests Γ1, . . . , Γn , then
h(Γ) = max{h(Γi) | i ∈ [1,n]} + 1. If Γ has a universal vertex whose
removal leaves Γ′, then h(Γ) = h(Γ′).

Among the PVASS-free graphs, it is well-understood when reach-
ability is decidable:

Theorem 2.1 ([46]). Let Γ be PVASS-free. Then REACH(Γ) is de-
cidable iff Γ is a transitive forest.

By SC±, we denote the class of PVASS-free graphs Γ that are tran-
sitive forests. The abbreviation SC± reflects that valence systems
over SC± are equivalent to stacked counter machines, as explained
in Section 3. Hence, Theorem 2.1 says that for every graph in SC±,
the reachability problem is decidable. Moreover, for every graph
Γ outside of SC±, either Γ contains a PVASS-graph (thus showing
decidability of REACH(Γ) would in particular solve a long-standing

We say that a graph is PVASS-free if it has no PVASS-graph as
an induced subgraph. Here, a graph Γ′ = (V ′, I ′) is an induced
subgraph of Γ = (V , I) if there is an injective map ι : V ′ → V
with {ι(u), ι(v)} ∈ I iff {u,v} ∈ I ′ for u,v ∈ V ′. Observe that a
graph Γ is PVASS-free if and only if in the neighborhood of each
unlooped vertex, any two vertices are adjacent. The terminology
stems from the fact that if Γ is a PVASS-graph, then REACH(Γ) is
inter-reducible with reachability for PVASS with one counter [46].
Whether reachability is decidable for these is a long-standing open
problem [23] (however, bidirected reachability is decidable [19]).

Transitive forests
A graph Γ is a transitive forest if it can be built as follows. First, the
empty graph is a transitive forest. Moreover, if Γ1 and Γ2 are transi-
tive forests, then (i) the disjoint union of Γ1 and Γ2 is a transitive
forest and (ii) if Γ is the graph obtained by adding one looped or
unlooped vertex v to Γ1 so that v is adjacent to every vertex in Γ1,
then Γ is also a transitive forest.

The complexity of our algorithms will depend on the height of
the trees in transitive forests. Formally, every non-empty transitive
forest is either (i) a disjoint union of connected transitive forests,
or (ii) has a universal vertex, i.e. a vertex that is adjacent to all
other vertices (take the root of the underlying tree). This induces a
successive decomposition of the transitive forest into smaller ones:
For a disjoint union, take the disjoint connected transitive forests.
If there is a universal vertex, remove that vertex to obtain a smaller
transitive forest.

The decomposition is unique up to isomorphism: This is obvious
in the case of a disjoint union. If there are several universal vertices,
then all removals result in isomorphic graphs. We define the height
h(Γ) of a transitive forest Γ = (V , I): If V = ∅, then h(Γ) = 0. If Γ
is a disjoint union of connected transitive forests Γ1, . . . , Γn , then
h(Γ) = max{h(Γi) | i ∈ [1,n]} + 1. If Γ has a universal vertex whose
removal leaves Γ′, then h(Γ) = h(Γ′).

Among the PVASS-free graphs, it is well-understood when reach-
ability is decidable:

Theorem 2.1 ([46]). Let Γ be PVASS-free. Then REACH(Γ) is de-
cidable iff Γ is a transitive forest.

By SC±, we denote the class of PVASS-free graphs Γ that are tran-
sitive forests. The abbreviation SC± reflects that valence systems
over SC± are equivalent to stacked counter machines, as explained
in Section 3. Hence, Theorem 2.1 says that for every graph in SC±,

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

the reachability problem is decidable. Moreover, for every graph
Γ outside of SC±, either Γ contains a PVASS-graph (thus showing
decidability of REACH(Γ) would in particular solve a long-standing
open problem) or REACH(Γ) is known to be undecidable. There-
fore, SC± is the largest class of graphs Γ for which REACH(Γ) is
currently known to be decidable.

3 MAIN RESULTS
We assume familiarity with the basic complexity classes L (deter-
ministic logspace), P (deterministic polynomial time), NP (non-
deterministic polynomial time), EXP (deterministic exponential
time), NEXP (non-deterministic exponential time), and EXPSPACE
(exponential space). By ILD, we denote the class of problems that
are logspace-reducible to the problem of solvability of integer linear
Diophantine equations (ILD):
Given A matrix A ∈ Zm×n and a vector b ∈ Zm .
Question Is there a vector x ∈ Zn with Ax = b?
It is well known that ILD is solvable in polynomial time.

Theorem 3.1 ([9]). ILD is solvable in polynomial time.

See [9, Theorems 1 and 13]. In particular, the class ILD lies in
between L and P. The exact complexity of ILD seems to be open [1].
It is conceivable that ILD coincides with L or P or that it lies strictly
in between. Hence, we have the inclusions

L ⊆ ILD ⊆ P ⊆ NP ⊆ EXP ⊆ NEXP ⊆ EXPSPACE.

In order to formulate our main result about the complexity of
BIREACH, we need some terminology. We say that G is UC-bounded
if there is a k such that for every Γ in G, every unlooped clique in Γ
has size at most k . Otherwise, it is called UC-unbounded. Similarly,
LC-bounded (LC-unbounded, respectively) if the same condition
holds for looped cliques. We say that G is height-bounded if there is a
k with h(Γ) ≤ k for every Γ in G. Otherwise, G is height-unbounded.
We now present an almost complete complexity classification of
BIREACH(G), where G is a subclass of SC±. Here, we assume that G
is closed under taking induced subgraphs. This is a mild assumption
that only rules out some pathological exceptions.

Theorem 3.2 (Classification Theorem). Let G ⊆ SC± be closed
under induced subgraphs. Then BIREACH(G) is

(1) L-complete if G consists of cliques of bounded size,
(2) ILD-complete if G consists of cliques, is UC-bounded, and LC-

unbounded,
(3) P-complete if G contains a graph that is not a clique, and G is

UC-bounded and height-bounded,
(4) in EXP if G is UC-bounded and height-unbounded,
(5) EXPSPACE-complete otherwise.

From Theorem 3.2, we can deduce our dichotomy for individual
graphs Γ: Take as G the set of graphs containing Γ and its in-
duced subgraphs. Then G is UC-bounded, LC-bounded, and height-
bounded and thus falls into case (1) or (3) above.

Corollary 3.3 (Dichotomy for BIREACH). Let Γ ∈ SC± be a
graph. If Γ is a clique, then BIREACH(Γ) is L-complete. Otherwise,
the problem BIREACH(Γ) is P-complete.

We complement Theorem 3.2 with the following undecidability
result. The graph C4 is shown in Fig. 1d.

(a) Two N-counters,
one Z-counter

(b) Three Z-
counters

(c) Pushdown with
three Z-counters

(d) C4 (e) Two pushdowns (f) C4◦

Figure 1: Example graphs for storage mechanisms

Theorem 3.4. If Γ− contains C4 as an induced subgraph, then
BIREACH(Γ) is undecidable.

In the case Γ = C4, undecidability also follows from an indepen-
dent result of Kjelstrøm and Pavlogiannis [19] that uses different
techniques.

Intuition on graph classes
Let us phrase our results in terms of infinite-state systems. In (1)
and (2), we have cliques. A clique with d unlooped vertices and
e looped vertices corresponds to counter machines with d-many
N-counters and e-many Z-counters (see Fig. 1a with d = 2, e = 1).
Thus, (1) and (2) show L-completeness for for fixed d and e , and ILD-
completeness if only d is fixed. This is in contrast to reachability:
Even for fixed d , reachability in machines with d-many N-counters
can be non-elementary [10, 22]. Moreover, for d = 0, these graphs
correspond to Z-VASS (see Fig. 1b for e = 3). Thus, we show: For a
fixed number of counters in Z-VASS, the complexity drops from NL
(for general reachability) to L. If the number of counters in Z-VASS
is not fixed, then we have a drop from NP [15] to ILD ⊆ P.

In (3), we go beyond just counters. Recall the recursive struc-
ture of every graph in SC±. In terms of storage, taking a disjoint
union Γ1 ∪ Γ2 is the same as building stacks: One obtains a stack,
where each entry of the stack is either a storage content of Γ1 or Γ2.
Moreover, adding a universal looped vertex corresponds to adding
a Z-counter [44, 45]: This means, in addition to the configuration
of the previous model, we also have a new Z-counter. After decom-
posing Γ further and further, we are left with a clique of unlooped
vertices. Therefore, valence systems over SC± are called stacked
counter machines: We start with a number ofN-counters and then al-
ternate between building stacks and adding Z-counters. The height
h(Γ) is the number of alternations between the two steps (building
stacks and adding Z-counters).

For example, if Γk has two non-adjacent nodes v1,v2 and looped
nodes u1, . . . ,uk such that each ui is adjacent to all other vertices
(see Fig. 1c for Γ3), then valence systems over Γk are pushdown
Z-VASS with k counters. Thus, (3) says that in stacked counter
automata, with a bounded number of N-counters and a bounded
number of alternations (but arbitrarily many Z-counters!), bidi-
rected reachability is still in P. This is again a striking complexity
drop: In pushdown Z-VASS, reachability is NP-complete [17], and
the same is true for any fixed number of alternations (if there are no

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

N-counters) [16]. In fact, NP-hardness holds for pushdown Z-VASS
already for a single counter [16]. Moreover, our P upper bound still
holds with a bounded number of N-counters.

In (4), not even the number of alternations is fixed. We obtain
an EXP upper bound, which is again a drop from reachability: In
stacked counter automata (without N-counters), reachability is
NEXP-complete [16].

In (5), we show that if neither the alternations nor the num-
ber of N-counters is fixed, BIREACH is EXPSPACE-complete. This
strengthens EXPSPACE-completeness of BIREACH in VASS. Again,
general reachability has much higher complexity: Since our model
includes VASS, the problem is Ackermann-hard [10, 22] and could
be even higher: The algorithm for reachability for general SC±
in [46] uses VASS with nested zero tests, for which no complexity
upper bound is known.

Finally, our undecidability result (Theorem 3.4) says in particular
that reachability in bidirected two-pushdown machines is undecid-
able: By drawing C4 as in Fig. 1e, one can see that it realizes two
stacks (the left two nodes act as a stack, and the right two nodes
act as a stack).

4 BIREACH AND SUBGROUP MEMBERSHIP
If Γ is looped, then MΓ is a group. The groups of this form are
called graph groups or right-angled Artin groups and have been
studied intensively over the last decades [11, 27, 28, 30], in part be-
cause of their rich subgroup structure (see, e.g. [39]). The subgroup
membership problem (SUBMEM) is the following.
Given A looped graph Γ, words w1, . . . ,wk ,w ∈ X ∗

Γ .
Question Does [w] ∈ ⟨[w1], . . . , [wk]⟩?
If the input graph Γ is fixed, we write SUBMEM(Γ). If Γ is drawn
from a class G, then we write SUBMEM(G). Surprisingly, describ-
ing the class of graphs Γ for which SUBMEM(Γ) is decidable is a
longstanding open problem [26].

Our first observation is that if Γ is looped, then the complexity of
BIREACH(Γ) matches that of subgroup membership overMΓ. The
connection between subgroups and bidirected valence automata
(albeit under different names) is a prominent theme in group theory.
It is implicit in the well-known concept of Stallings graphs and was
used by Lohrey and Steinberg [29] in decidability results. We show
that the conversion can be done in logspace, in both directions.

Theorem 4.1. For any looped graph Γ, the problems BIREACH(Γ)
and SUBMEM(Γ) are logspace inter-reducible.

Reducing SUBMEM(Γ) to BIREACH(Γ) is easy: To test whether
[w] is contained in ⟨[w1], . . . , [wk]⟩ we construct a bidirected va-
lence system A with two states s, t and the transitions s

w̄→ t

and t
wi→ t for all 1 ≤ i ≤ k , and the reverse transitions. Then

[w] ∈ ⟨[w1], . . . , [wk]⟩ holds if and only if there exists u ∈ X ∗
Γ

with s
u→ t and [u] = 1. For the converse, the following lemma

shows that we can compute in logspace a coset representation of
{[w] ∈ MΓ | s w→ t}.

Lemma 4.2. Given a looped graph Γ, a bidirected valence sys-
tem A over Γ and states s, t from A, one can compute words
w0,w1, . . . ,wn ∈ X ∗

Γ in logspace such that {[w] ∈ MΓ | s w→ t} =
[w0]⟨[w1], . . . , [wn]⟩

s t

5

2
3

2

1

(a) (b)

Figure 2: Z-VASS for Example 4.3 (reverse edges are omitted)
and the graph P4◦

Lemma 4.2 reduces reachability to testing membership of [w̄0]
in the set ⟨[w1], . . . , [wn]⟩, which is an instance of SUBMEM. To
show Lemma 4.2, we compute in logspace a spanning tree of the
automaton (using [35]). Then w0 is obtained from the unique path
from s to t in the tree. The words w1, . . . ,wn are obtained as labels
of fundamental cycles [4]: These are cycles consisting of one edge
outside the tree and a path inside the tree.

Example 4.3. Lemma 4.2 can be directly used to show that the
problem BIREACH(G) is in ILD if G consists of looped cliques.
In other words, bidirectional reachability for Z-VASS is in ILD,
whereas standard reachability for Z-VASS is NP-complete [15]. As
an example, consider the bidirected Z-VASS in Fig. 2a. We compute
the value of an arbitrary s-t-path, e.g. w0 = 5 + 2 = 7, a spanning
tree (the bold edges), and the fundamental cycles with values w1 =
5 + 3 − 2 = 6 and w2 = 5 + 2 − 1 − 2 = 4. Since 7 + 6x + 4y = 0 has
no integer solution, there is no s-t-path with value 0.

The connection between BIREACH and SUBMEM can be used
to identify a graph for which the problem REACH(Γ) is undecidable
but BIREACH(Γ) is decidable: Let P4◦ be the graph in Fig. 2b. As
shown by Lohrey and Steinberg [28], the problem REACH(P4◦)
is undecidable. However, a result by Kapovich, Weidmann, and
Myasnikov [18] implies that if a graph Γ is looped and chordal,
then SUBMEM(Γ) is decidable (a simpler proof was then given by
Lohrey and Steinberg [29]). Thus, since P4◦ is looped and chordal,
SUBMEM(P4◦), and hence BIREACH(P4◦), is decidable.

For the proof of Theorem 3.4, we rely on an undecidability result
of Mikhailova [34]:

Theorem 4.4 ([34]). SUBMEM(C4◦) is undecidable.

The graph C4◦ is shown in Figure 1f. The proof of Theorem 4.4
is a simple (but not obvious) reduction of the word problem of any
finitely presented group (since [34] is in Russian, we refer to [31,
Chapter IV, Lemma 4.2] or [30, proof of Lemma 4.2] for short expo-
sitions of this reduction). Since there are finitely presented groups
with an undecidable word problem [31, Chapter IV, Theorem 7.2],
this implies undecidability of SUBMEM(C4◦).

Via Theorem 4.1, Theorem 4.4 implies that BIREACH(C4◦) is
undecidable. Using standard arguments one can transfer the un-
decidability of SUBMEM(C4◦) to SUBMEM(C4), and thus obtain
Theorem 3.4.

5 LOWER BOUNDS
We now prove the lower bounds in Theorem 3.2.

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

L-hardness
We can reduce from the reachability on undirected graphs to
the problem BIREACH(Γ) for any Γ by replacing each undirected
edge by bidirected ε-labeled transitions. Since the former prob-
lem is L-complete under AC0 many-one reductions [2, 35], so is
BIREACH(Γ).

ILD-hardness
Next, assume that G is LC-unbounded. Observe that ILD is the sub-
group membership problem over Zm , where m is part of the input,
and hence log-space reducible to SUBMEM(G). Since the equiva-
lence of SUBMEM and BIREACH for looped graphs is uniform in
the graph Γ (see Section 4), BIREACH(G) is ILD-hard.

P-hardness
Suppose Γ has two non-adjacent vertices u,v . In Γ◦, u and v gen-
erate a free group over two generators, for which subgroup mem-
bership is P-hard [3]. By Theorem 4.1, this implies P-hardness of
BIREACH(Γ◦). Using standard arguments, BIREACH(Γ◦) reduces
to BIREACH(Γ). Thus, BIREACH(Γ) is P-hard.

EXPSPACE-hardness
We reduce from the word problem over commutative semigroups,
which is EXPSPACE-hard [32]. Since G is UC-unbounded and closed
under induced subgraphs, it contains an unlooped clique Γ of size
|Σ|. We can assume that Σ is its node set. Let A be the bidirected
valence system over Γ with three states q0,q1,q2, the transitions
q0

ū→ q1, q1
v→ q2, and the transitions q

x̄y→ q for all (x ,y) ∈ R, and
their reverse transitions. Then u ≡R v holds if and only if q0

w→ q2
for some w ∈ X ∗

Γ with [w] = 1.

6 UPPER BOUNDS I: L AND ILD
In this section we will study BIREACH(G) for classes G of cliques,
and prove the L and ILD upper bounds from Theorem 3.2. If Γ is
an unlooped clique then BIREACH(Γ) is the reachability problem
over bidirected vector addition systems with states or, equivalently,
the word problem for commutative semigroups [32].

Fix a bidirected valence system A = (Q,→) over a clique
Γ = (V , I). Let U and L be the sets of unlooped and looped ver-
tices in Γ, respectively, and let s, t ∈ Q . We can view the unlooped
vertices as N-counters, which may not fall below zero, and the
looped vertices as Z-counters. Formally, the monoid MΓ is iso-
morphic to BU × ZL where B is the bicyclic monoid, i.e. the set
N2 equipped with the associative operation (a−,a+) ⊕ (b−,b+) =
(a− + b− − min(a+,b−),a+ + b+ − min(a+,b−)). We identify each
element (0,a+) in B with a+ ∈ N and each (a−, 0) with −a− ∈ −N.
Let Φ : X ∗

Γ → ZL be the function which computes the value of
the Z-counters, i.e. Φ(w)(v) = |w |v − |w |v̄ for all w ∈ X ∗

Γ , v ∈ L.
Let Ψ : X ∗

Γ → BU be the morphism defined by Ψ(v)(v) = (0, 1)
and Ψ(v̄)(v) = (1, 0) for all v ∈ U , and Ψ(x)(v) = (0, 0) for all
x ∈ (V ∪ V̄) \ {v, v̄}. Then MΓ → BU × ZL , [w] 7→ (Ψ(w),Φ(w))
for w ∈ X ∗

Γ , is an isomorphism.

N-counters
If we consider only N-counters, i.e. A is a bidirected VASS, the
reachability problem and the structure of reachability sets are well
understood:

Lemma 6.1 ([32]). One can decide in deterministic space 2O (|U |) ·
log ∥A∥ whether there exists a path s

w→ t with Ψ(w) = 0 and, if so,
return such a path.

We define Reach(p,q) = {Ψ(w) | p w→A q} ∩ NU for any states
p,q ∈ Q . Lemma 6.2 lets us partition the set U of N-counters
into (exponentially) bounded components B and simultaneously
unbounded components U \ B. In the proof, we employ a represen-
tation of Reach(p,q) as a hybrid linear set

⋃m
i=1{bi +

∑ℓ
j=1 λjpj |

λ1, . . . , λℓ ∈ N} with bi , pj ∈ NΣ as shown in [20]. See our full
version [14] for details.

Lemma 6.2. One can compute in deterministic space 2O (|U |) ·
log ∥A∥ a set B ⊆ U and a number b ≤ 2O (|U |) · ∥A∥ such that for
all q ∈ Q we have:

• v(u) ≤ b for all v ∈ Reach(s,q) and u ∈ B,
• for every c ∈ N there exists v ∈ Reach(s,q) with v(u) ≥ c for

all u ∈ U \ B.

Adding Z-counters
We will decide reachability in A by computing a representation for

Eff(s, t) = {Φ(w) | s w→A t , Ψ(w) = 0}.
Since [w] = 1 if and only if Ψ(w) = 0 and Φ(w) = 0 we only need
to test 0 ∈ Eff(s, t). Observe that Eff(s, t) is either empty or a coset
Eff(s, t) = u + Eff(s, s) for any u ∈ Eff(s, t). Using Lemma 6.1 we
can test whether there is a path s

w→ t with Ψ(w) = 0, and, if so, we
find u := Φ(w) ∈ Eff(s, t). It remains to compute a representation
of the subgroup Eff(s, s).

Proposition 6.3. In deterministic space 2O (|U |) · log ∥A∥, we can
compute L′ ⊇ L, |L′ | ≤ |Γ |, and v1, . . . , vn ∈ ZL′ with Eff(s, s) =
{v|L | v ∈ ⟨v1, . . . , vn⟩, v|L′\L = 0}.
Proof Sketch. We eliminate the N-counters in A by replacing the
unbounded counters by Z-counters and maintaining the bounded
ones in the finite state. We obtain a system A ′ over a looped clique,
for which the statement follows from Lemma 4.2. Clearly, every
valid A-run translates into a valid A ′-run. However, in a valid A ′-
run, the formerly unbounded counters can now take negative values.
We can prepend a cycle run which takes sufficiently large values in
the unbounded components, and append the reverse cycle run to
cancel its effect. This ensures that all counters remain nonnegative
during the run, which can thus be translated into an A-run. □

We can now prove the upper bounds for cases (1) and (2) in
Theorem 3.2. As explained above we can test in exponential space
(logarithmic space if G consists of cliques of bounded size) whether
Eff(s, t) is nonempty and, if so compute a vector u ∈ Eff(s, t). It
remains to test 0 ∈ Eff(s, t), which is equivalent to −u ∈ Eff(s, s).
Using Proposition 6.3, this can be solved in ILD. If |Γ | is bounded
then this is in L (even TC0) [13, Theorem 13].

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

Proposition 6.4. If G is a UC-bounded class of cliques, then the
problem BIREACH(G) belongs to ILD. If G is a class of cliques of
bounded size, then BIREACH(G) belongs to L.

Similarly we can prove the following result, which will be used
in Section 7.

Theorem 6.5. Given a clique Γ ∈ G, a bidirected valence system
A = (Q,→) over Γ, and states s, t ∈ Q , one can test in exponential
space (polynomial time if G is UC-bounded) if Eff(s, t) is nonempty
and, if so, compute a coset representation u+ ⟨v1, . . . , vn⟩ for Eff(s, t).

7 UPPER BOUNDS II: P, EXP, EXPSPACE
We now prove the upper bounds of (3) and (4) in Theorem 3.2. Let
SC±

d be the class of graphs in SC± where each unlooped clique has
size at most d , and let SC±

d, ℓ be the class of those graphs Γ in SC±
d

with h(Γ) ≤ ℓ. We prove that (i) BIREACH(SC±) is in EXPSPACE,
(ii) for every d , BIREACH(SC±

d) is in EXP and (iii) for every d, ℓ ≥ 0,
the problem BIREACH(SC±

d, ℓ) is in P.

Key ideas and outline
The graphs in SC±

d, ℓ correspond to the following storage mecha-
nisms. The simplest case, graphs in SC±

d,0, consist in collections of
d counters with values in N, or d-VASS. The storage mechanism
corresponding to SC±

d,1 is a stack, where each entry contains d
such N-counters. In addition, they have Z-counters in parallel to
such stacks (note that using more N-counters in addition to a stack
would be a PVASS, which we are avoiding). Thus, SC±

d,1 corre-
sponds to “stacks of d N-counters, plus Z-counters”. The building
stacks and adding Z-counters can now be iterated to obtain the stor-
age mechanisms for SC±

d, ℓ for higher ℓ: A storage mechanism with
stacks, where each entry is a configuration of an SC±

d,1 storage,
plus additional Z-counters, is one in SC±

d,2, etc.
Our algorithms work as follows. We first translate a valence

system over SC±
d, ℓ into a type of grammar that we call k-grammar.

This translation is quite similar to existing approaches to show
that general reachability over SC±

1, ℓ is decidable [28] and even
NP-complete [16]. The difference to the previous approaches is
that for bidirected valence systems, we can construct bidirected k-
grammars, which are k-grammars that satisfy a carefully chosen set
of symmetry conditions. In this translation, we also eliminate the d
N-counters: Roughly speaking, Theorem 6.5 lets us replace them
by a gadget that preserves their interaction with the Z-counters.

After the reduction to grammars, the algorithm in [16] (and also
the NP algorithm for pushdown Z-VASS [17], which correspond
to SC±

0,1) employs a result by Verma, Seidl, and Schwentick [38].
It says that given a context-free grammar, one can construct in
polynomial time an existential Presburger formula for its Parikh
image. Existential Presburger arithmetic corresponds to systems of
integer linear inequalities, for which feasibility is NP-complete. (To
be precise, [16] uses Presburger arithmetic extended with Kleene
stars, to deal with SC±

0, ℓ for ℓ > 1.) We show that for bidirected
grammars, we have an analogous result that yields systems of linear
integer equations, which can be solved in P.

This analogue of [38] lets us express emptiness of bidirected
grammars using coset circuits, which are (newly introduced) cir-
cuits to describe cosets C ⊆ Zm . They can be seen as compressed
representations of integer linear equation systems. In the final step,
we observe that those coset circuits translate into exponential-
sized linear equation systems. Moreover, for every fixed ℓ, on input
from SC±

d, ℓ , the coset circuits have bounded depth, resulting in
polynomial-sized equation systems.

Grammars
Let us now define k-grammars. They have a set N of nonterminal
symbols (which can be rewritten by a grammar rule) and a set T
of terminal symbols (which can not be rewritten). We allow letters
in T to occur negatively, but the letters in N can only occur non-
negatively. Hence, we derive vectors in NN + ZT , or equivalently,
vectors u ∈ ZN∪T , where u(a) ≥ 0 for each a ∈ N . We say that a
vector v ∈ NN occurs in such a u if u(a) ≥ v(a) for every a ∈ N .

Formal definition. A k-grammar is a tuple G = (N ,T , P), where
• N is a finite alphabet of nonterminals, which is a disjoint

union N =
⋃k
i=0 Ni ,

• T is a finite alphabet of terminals, which is a disjoint union
T =

⋃k
i=0Ti ,

• P is a finite set of productions of one of two forms:
– a → b with a ∈ Ni , b ∈ Nj , |i − j | = 1.
– a → u with a ∈ N0 and u ∈ NN0 + ZT .

The letters in Ti (Ni) are the level-i (non)terminals. We write

N[i, j] =
⋃

i≤r ≤j
Nr ,

and analogously for T[i, j]. Define R ⊆ N as the subset of a ∈ N
that appear on some right-hand side of the grammar. We also write
Ri = R ∩ Ni and use the notation R[i, j] as for N and T .

Derivations. In these grammars, derivations produce vectors in
NN +ZT instead of words.2 A configuration is a vector v ∈ NN +ZT .
For i ∈ [0,k], we define the i-derivation relation ⇒i as follows.
We begin with defining ⇒0 and then define each ⇒i based on
⇒i−1 . For configurations v, v′ ∈ NN + ZT , we have v ⇒0 v′ if
there is some a ∈ N0 and a production a → u with u ∈ ZN0∪T or
u ∈ N1 such that v(a) > 0 and v′ = v − a + u.

In order to define ⇒i inductively for i > 0, we first need to
define generated sets. Let

∗⇒i denote the reflexive transitive closure
of ⇒i . We define the generated set L(a) for each a ∈ Ni :

L(a) = {u ∈ NN[i+1,k] + ZT[i+1,k] | a ∗⇒i u}.
We define ⇒i based on ⇒i−1 : We have v ⇒i v′ if there is an
a ∈ Ni with v(a) > 0 and a production a → a′ for some a′ ∈ Ni−1
and a u ∈ ZN∪T with u ∈ L(a′) and v′ = v − a + u. If a → b is a
production witha ∈ Ni andb ∈ Ni+1 and v(a) > 0 and v′ = v−a+b,
then we also have v ⇒i v′. The emptiness problem asks, given a
k-grammar G and a nonterminal a of G, is L(a) , ∅?

2 Usually, grammars derive strings rather than vectors. We could also develop our
theory using grammars that generate strings, but since we are only interested in the
generated strings up to reordering of letters, we simplify the exposition by working
directly with vectors.

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Intuition. We give some intuition on how REACH(SC±
0, ℓ) is trans-

lated into a grammar. Each nonterminal is of the form (p, sx ,q),
where p,q are states of the valence system and sx specifies some
part of the storage mechanism (see the full version [14] for details).
Then (p, sx ,q) represents the set of all runs of the system from p to
q such that on part sx , the run has overall neutral effect.

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0, ℓ , ℓ > 1, we need to simulate stacks with SC±

0, ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d, ℓ machine, there is an entire run of an SC±
d, ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b

∗⇒0 a + u†,
(3) for every production a → b with a ∈ Ni , b ∈ Nj with

|i − j | = 1 and a ∈ R, we also have b → a,
(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t , sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t , sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For

example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production
(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirected k-
grammars. If the input graphs are from SC±

d, ℓ , then we only use
k-grammars with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

and b

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

represent only the node
a and b, respectively. Second, c

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

represents the set {a,b}. Third,
c△ represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

,b

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

}}, N1 = {(p, sx ,q) | sx =c

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

} and
N2 = {(p, sx ,q) | sx = c△}. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

a c b

(a) The graph Γ

q0 q1
a

b c

(b) Valence system over Γ (re-
verse edges are not shown)

level 2

level 1

level 0

c

c

a b

c

a b

(c) Decomposition of Γ into a tree.

1

Figure 3: Graph and example valence system

can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

,q1) and (q1,u

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neu-
tral effect w.r.t a and ā. Therefore, we will not use these nonter-
minals on the right-hand side. However, all other nonterminals
(p, sx ,q) have non-empty languages. Thus, the set R ⊆ N contains
all nonterminals (p, sx ,q) with p = q.

We begin with productions for nonterminals (p,a

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

Specifically, in the case of SC±
0,1, i.e. pushdownZ-VASS, reachabil-

ity amounts to checking whether a context-free language contains
a word whose letter counts satisfy some linear condition. In a 0-
grammar, we have context-free rewriting rules (a → u), which
involve nonterminals (N) and terminals (T). In addition, the defini-
tion of L(a) requires that a derived contains no terminal from T0
anymore: This is used to implement the linear condition on letter
counts for pushdown Z-VASS.

For SC±
0,ℓ , ℓ > 1, we need to simulate stacks with SC±

0,ℓ−1 con-
figurations in each stack entry. Here, we can use a higher k : A
derivation step at level k involves an entire derivation at level k − 1.
This corresponds to the fact that between a pair of push and pop of
a SC±

d ,ℓ machine, there is an entire run of an SC±
d ,ℓ−1 machine.

Bidirected grammars
We are now ready to present the symmetry conditions of bidirected
grammars. For a k-grammar G, an involution is a map ·† : N → N

such that for a ∈ Ni , we have a† ∈ Ni for i ∈ [0,k] and (a†)† = a.
Then, for u ∈ ZN∪T , we define u† ∈ ZN∪T as u†(a) = u(a†) for
a ∈ N and u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as
the inverse of u.

We say that a k-grammar G is bidirected if there is an involution
·† : N → N such that

(1) for every production a → u in P , we have a production
a† → u† in P ,

(2) for every a ∈ R0 and every production a → b+u withb ∈ R0,
u ∈ NR0 + ZT , we have b ∗⇒0 a + u†,

(3) for every production a → b with a ∈ Ni , b ∈ Nj with
|i − j | = 1 and a ∈ R, we also have b → a,

(4) for every a ∈ R, we have L(a) , ∅,
(5) if a ∈ R0, then a

∗⇒0 a + a + a†.

Intuition on bidirectedness. We give some intuition on these sym-
metry conditions. Recall that in the translation from automata to
grammars, each nonterminal is of the form (p, sx ,q), where p,q are
states and sx represents part of the storage mechanism. The invo-
lution is given by (p, sx ,q)† = (q, sx ,p). Since the map ·† negates
terminal letters, which represent counter values, condition (1) re-
flects the existence of paths that go in the opposite direction with
opposite effect.

Conditions (2),(3) let us reverse productions: Consider a pro-
duction (p, sx ,q) → (p, sx , t) + (t, sx ,q). It says one can get a run
from p to q by combining one from p to t with one from t to q.
Now (2) yields a derivation (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† =
(p, sx ,q) + (q, sx , t). This reflects that paths from p to t can be ob-
tained from ones from p to q and ones from q to t .

Cross-level productions a → b with a ∈ Ni , b ∈ Nj with |i − j | =
1 describe the relationship between comparable parts sx of the
storage. Here, “comparable” means “a subset of the counters.” For
example, if ry represents a subset of the counters in sx , we have
productions (p, sx ,q) → (p, ry ,q), which tell us: A run ρ from p
to q that is neutral on ry is also neutral on sx if ρ’s effect on the
additional counters in sx is zero (recall that a derivation on level
i − 1 can only be used as a step on level i if its effect on the terminal
letters is zero). Now (3) says that this is symmetric: The production

(p, ry ,q) → (p, sx ,q) tells us that any run that is even neutral on
sx is in particular neutral on ry .

The last two conditions (4) and (5) stem from the fact that we
sometimes construct derivations that, as a byproduct, create vectors
a + a† = (p, sx ,q) + (q, sx ,p). On the one hand, we want to argue
that such cycles can always be eliminated by further derivation.
This is guaranteed by (4), which lets us derive some vector u from
a and then because of (2), the inverse u† from a†. This results in
the vector u + u†, but the nonterminals in u are on a higher level
than a. Thus, inside of a derivation on level k , we can completely
get rid of it. Finally, (5) complements this by letting us create such
cycles. This simplifies the set of derived vectors.

Constructing bidirected grammars. We obtain the following reduc-
tion. It is technically involved, but since it follows similar ideas
to existing approaches ([16, 28]), we defer details to the full ver-
sion [14].

Proposition 7.1. There is a polynomial-time Turing reduction
from BIREACH(SC±

d) to the emptiness problem for bidirectedk-grammars.
If the input graphs are from SC±

d ,ℓ , then we only use k-grammars
with k ≤ 2ℓ.

Note that the reduction described in Proposition 7.1 is a Turing
reduction. This is because we need to ensure (4). To this end, the
reduction involves a saturation that successively enlarges the set
of nonterminals that are known to generate a non-empty set: At
first, it only allows a small set of triples (p, sx ,q) ∈ N , whose
language is non-empty by construction, to appear on right-hand
sides. It then invokes the emptiness check, which yields more triples
(nonterminals) that can then appear on right-hand sides in the next
iteration, etc.

Example 7.2. Let us see Proposition 7.1 in an example. Consider
the graph Γ in Fig. 3a and the valence system in Fig. 3b. Observe that
Γ corresponds to a pushdown Z-VASS: The nodes a,b realize a stack,
and c acts as a Z-counter. For simplicity, we show the translation
in the final step of the saturation (described after Proposition 7.1),
i.e. where the set of triples (p, sx ,q) ∈ N with L((p, sx ,q)) , ∅ has
stabilized. The entry sx in the nonterminals represents to a subset
of the nodes in the graph: First, a and b represent only the node
a and b, respectively. Second, c represents the set {a,b}. Third,
c represents {a,b, c}. This decomposition into subsets is derived
from the tree structure of Γ as a transitive forest, see Fig. 3c. The
decomposition also determines the nonterminal levels: We have
N0 = {(p, sx ,q) | sx ∈ {a ,b }}, N1 = {(p, sx ,q) | sx = c } and
N2 = {(p, sx ,q) | sx = c }. The terminal letters correspond to
looped nodes, and their levels also stem from the decomposition
into a tree, i.e. T0 = T1 = ∅ and T2 = {c}.

Intuitively, a nonterminal (p, sx ,q) represents runs of the valence
system in which only transitions over nodes (in Γ) in sx and its
ancestors in the tree are used and where the effect on the storage is
neutral w.r.t. nodes in sx . However, the derived multisets of (p, sx ,q)
can also contain nonterminals (p′, ry ,q′) as “placeholders”, where
ry is above sx in the tree decomposition. This allows derivations
at a higher level to insert neutral runs into each other to simulate
runs that are neutral on the union of two subtrees.

Note that (q0,u ,q1) and (q1,u ,q0) have empty languages for
u ∈ {a,b}, because there is no run between q0 and q1 with a neutral

,p):

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

a c b

(a) The graph Γ

q0 q1
a

b c

(b) Valence system over Γ (re-
verse edges are not shown)

level 2

level 1

level 0

c

c

a b

c

a b

(c) Decomposition of Γ into a tree.

Figure 3: Graph and example valence system

effect w.r.t a and ā. Therefore, we will not use these nonterminals
on the right-hand side. However, all other nonterminals (p, sx ,q)
have non-empty languages. Thus, the set R ⊆ N contains all non-
terminals (p, sx ,q) with p = q.

We begin with productions for nonterminals (p,a ,p):
(p,u ,p) → (p,u ,p) + (p,u ,p) p ∈ {q0,q1}, u ∈ {a,b}
(p,a ,p) → (q,a ,q) p,q ∈ {q0,q1}

Note that the second production stems from the fact that we can
start from q0, then move to q1 with a, then execute a loop from q
to q, and then go back to q0 with ā. We also have productions for
the c and −c loops at q1:

(q1,u ,q1) → c, (q1,u ,q1) → −c for u ∈ {a,b}
Finally, we have cross-level productions:

(p, c ,p) → (p,u ,p) (p,u ,p) → (p, c ,p) (level 0/1)
(p, c ,p) → (p, c ,p) (p, c ,p) → (p, c ,p) (level 1/2)

for every p ∈ {q0,q1} and u ∈ {a,b}.

Reversing derivations on each level
We will show an analogue of (2) at levels i > 0, by induction on i .
Since a step on level i > 0 involves an entire derivation on level i−1
(which can result in several nonterminals), the induction works
with a stronger property where the reverse derivation can not only
start in one produced nonterminal (as in (2)), but arbitrary vectors
in NRi . But then, suppose we want to reverse

(p, sx ,q) ⇒0 (p, sx , t) + (t, sx ,q).
Deriving (p, sx ,q) from (p, sx , t) + (t, sx ,q) would require either
(p, sx , t) or (t, sx ,q) to derive a vector without nonterminals, which
would be too strong a condition. However, we can use a slight
relaxation: We will show that derivations can be reversed up to a
byproduct of cycles b + b†. For instance, in our example, the condi-
tion (2) yields (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† and hence

(p, sx , t) + (t, sx ,q) ∗⇒0 (p, sx ,q) + (t, sx ,q)† + (t, sx ,q).
To make “up to cycles b + b†” precise, we now introduce the equiv-
alence relations ≈a .

First, we define the relation { on N as follows. For a ∈ Ni
and b ∈ N[i ,k], we have a { b iff there is a configuration u ∈
NN[i ,k] + ZT[i ,k] with u(b) ≥ 1 and a ⇒i u. In other words, for
a ∈ Ni and b ∈ N[i ,k], we have a { b if b can be reached from a
in one derivation step on level i .

Let ∗{ denote the reflexive transitive closure of {. For each
a ∈ Ni , we define the monoid ∆a , which is generated by all b + b†
with b ∈ N[i+1,k] and a

∗{ b. Hence, ∆a ⊆ NN[i+1,k] . For u, u′ ∈
NN[i ,k] +ZT[i ,k] , we have u ≈a u′ if and only if there are d, d′ ∈ ∆a
with u+ d = u′ + d′. A k-grammar is called i-bidirected if for every
a ∈ Ri and every derivation a

∗⇒i u + v with u ∈ NRi , u , 0,
v ∈ NR[i ,k] + ZT[i ,k] , then u ∗⇒i a + v′ for some v′ with v′ ≈a v†.
In short, up to differences in ∆a , we can reverse derivations on level
i that start in nonterminals in R. Note that if G is i-bidirected, then
on Ri , the relation ∗{ is symmetric and thus an equivalence. We
show the following:

Lemma 7.3. If G is bidirected, then it is i-bidirected for each i ∈
[0,k].

Expressing emptiness using cosets
An important ingredient in our proof is to work with integer linear
equations instead of inequalities. While solution sets of systems
of inequalities are semilinear sets in Zm , solution sets of equation
systems are cosets of Zm . Recall that a coset in Zm is a set of the
form u+U , where u ∈ Zm andU ⊆ Zm is a subgroup. In this section,
we will translate emptiness in bidirected grammars into a problem
about cosets of ZN∪T . In general, we employ three operations for
constructing cosets. First, we can take u + ⟨S⟩ for u ∈ ZN∪T and
any set S ⊆ ZN∪T . Recall that ⟨S⟩ is the subgroup generated by
S . Second, if C1,C2 ⊆ ZN∪T are cosets, then their point-wise sum
C1 +C2 is a coset, and the set C1 ∩C2 is either a coset or empty.

A central role will be played by the group Ha , which we define
for each a ∈ Ri :

Ha = ⟨−b + u | b ∈ Ri and b ⇒i u and a
∗{ b⟩ (1)

Hence, Ha is the group generated by all differences that are added
when applying derivation steps b ⇒i u for a ∗{ b. We observe
that if a ∗⇒i u, then −a + u ∈ Ha . We will need a coset to express
that in such a derivation, there are no level-i letters (resp. no level-i
terminals) left. We will do this by intersecting with the cosets

Si = Z
N[i+1,k]∪T[i+1,k] , S ′i = Z

N[i+1,k] + ZT[i ,k] .

Using Ha and Si , we can now define the coset that will essentially
characterize L(a). For a ∈ Ri , we set

La = (a + Ha) ∩ Si . (2)

One of the main results of this section will be that for a ∈ Ri , we
can describe L(a) in terms of La . Following the theme that we can
do things only “up to differences in ∆a” on each level, we need
a group version of ∆a . For every a ∈ Ni , we have the subgroup
Da ⊆ ZNi+1 , which we define next. If a ∈ Ni with i ∈ [0,k − 1],
we set Da = ⟨b + b† | b ∈ Ni+1, a

∗{ b⟩. For a ∈ Nk , we define
Da = {0}. In other words, Da is the group generated by ∆a , for
every a ∈ N . With this notation, one of the crucial ingredients in
our proof is to show that La = L(a) + Da , i.e. La describes L(a) up
to differences in Da (see Theorem 7.4). By our observation about

Note that the second production stems from the fact that we can
start from q0, then move to q1 with a, then execute a loop from q
to q, and then go back to q0 with ā. We also have productions for
the c and −c loops at q1:

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

a c b

(a) The graph Γ

q0 q1
a

b c

(b) Valence system over Γ (re-
verse edges are not shown)

level 2

level 1

level 0

c

c

a b

c

a b

(c) Decomposition of Γ into a tree.

Figure 3: Graph and example valence system

effect w.r.t a and ā. Therefore, we will not use these nonterminals
on the right-hand side. However, all other nonterminals (p, sx ,q)
have non-empty languages. Thus, the set R ⊆ N contains all non-
terminals (p, sx ,q) with p = q.

We begin with productions for nonterminals (p,a ,p):
(p,u ,p) → (p,u ,p) + (p,u ,p) p ∈ {q0,q1}, u ∈ {a,b}
(p,a ,p) → (q,a ,q) p,q ∈ {q0,q1}

Note that the second production stems from the fact that we can
start from q0, then move to q1 with a, then execute a loop from q
to q, and then go back to q0 with ā. We also have productions for
the c and −c loops at q1:

(q1,u ,q1) → c, (q1,u ,q1) → −c for u ∈ {a,b}
Finally, we have cross-level productions:

(p, c ,p) → (p,u ,p) (p,u ,p) → (p, c ,p) (level 0/1)
(p, c ,p) → (p, c ,p) (p, c ,p) → (p, c ,p) (level 1/2)

for every p ∈ {q0,q1} and u ∈ {a,b}.

Reversing derivations on each level
We will show an analogue of (2) at levels i > 0, by induction on i .
Since a step on level i > 0 involves an entire derivation on level i−1
(which can result in several nonterminals), the induction works
with a stronger property where the reverse derivation can not only
start in one produced nonterminal (as in (2)), but arbitrary vectors
in NRi . But then, suppose we want to reverse

(p, sx ,q) ⇒0 (p, sx , t) + (t, sx ,q).
Deriving (p, sx ,q) from (p, sx , t) + (t, sx ,q) would require either
(p, sx , t) or (t, sx ,q) to derive a vector without nonterminals, which
would be too strong a condition. However, we can use a slight
relaxation: We will show that derivations can be reversed up to a
byproduct of cycles b + b†. For instance, in our example, the condi-
tion (2) yields (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† and hence

(p, sx , t) + (t, sx ,q) ∗⇒0 (p, sx ,q) + (t, sx ,q)† + (t, sx ,q).
To make “up to cycles b + b†” precise, we now introduce the equiv-
alence relations ≈a .

First, we define the relation { on N as follows. For a ∈ Ni
and b ∈ N[i ,k], we have a { b iff there is a configuration u ∈
NN[i ,k] + ZT[i ,k] with u(b) ≥ 1 and a ⇒i u. In other words, for
a ∈ Ni and b ∈ N[i ,k], we have a { b if b can be reached from a
in one derivation step on level i .

Let ∗{ denote the reflexive transitive closure of {. For each
a ∈ Ni , we define the monoid ∆a , which is generated by all b + b†
with b ∈ N[i+1,k] and a

∗{ b. Hence, ∆a ⊆ NN[i+1,k] . For u, u′ ∈
NN[i ,k] +ZT[i ,k] , we have u ≈a u′ if and only if there are d, d′ ∈ ∆a
with u+ d = u′ + d′. A k-grammar is called i-bidirected if for every
a ∈ Ri and every derivation a

∗⇒i u + v with u ∈ NRi , u , 0,
v ∈ NR[i ,k] + ZT[i ,k] , then u ∗⇒i a + v′ for some v′ with v′ ≈a v†.
In short, up to differences in ∆a , we can reverse derivations on level
i that start in nonterminals in R. Note that if G is i-bidirected, then
on Ri , the relation ∗{ is symmetric and thus an equivalence. We
show the following:

Lemma 7.3. If G is bidirected, then it is i-bidirected for each i ∈
[0,k].

Expressing emptiness using cosets
An important ingredient in our proof is to work with integer linear
equations instead of inequalities. While solution sets of systems
of inequalities are semilinear sets in Zm , solution sets of equation
systems are cosets of Zm . Recall that a coset in Zm is a set of the
form u+U , where u ∈ Zm andU ⊆ Zm is a subgroup. In this section,
we will translate emptiness in bidirected grammars into a problem
about cosets of ZN∪T . In general, we employ three operations for
constructing cosets. First, we can take u + ⟨S⟩ for u ∈ ZN∪T and
any set S ⊆ ZN∪T . Recall that ⟨S⟩ is the subgroup generated by
S . Second, if C1,C2 ⊆ ZN∪T are cosets, then their point-wise sum
C1 +C2 is a coset, and the set C1 ∩C2 is either a coset or empty.

A central role will be played by the group Ha , which we define
for each a ∈ Ri :

Ha = ⟨−b + u | b ∈ Ri and b ⇒i u and a
∗{ b⟩ (1)

Hence, Ha is the group generated by all differences that are added
when applying derivation steps b ⇒i u for a ∗{ b. We observe
that if a ∗⇒i u, then −a + u ∈ Ha . We will need a coset to express
that in such a derivation, there are no level-i letters (resp. no level-i
terminals) left. We will do this by intersecting with the cosets

Si = Z
N[i+1,k]∪T[i+1,k] , S ′i = Z

N[i+1,k] + ZT[i ,k] .

Using Ha and Si , we can now define the coset that will essentially
characterize L(a). For a ∈ Ri , we set

La = (a + Ha) ∩ Si . (2)

One of the main results of this section will be that for a ∈ Ri , we
can describe L(a) in terms of La . Following the theme that we can
do things only “up to differences in ∆a” on each level, we need
a group version of ∆a . For every a ∈ Ni , we have the subgroup
Da ⊆ ZNi+1 , which we define next. If a ∈ Ni with i ∈ [0,k − 1],
we set Da = ⟨b + b† | b ∈ Ni+1, a

∗{ b⟩. For a ∈ Nk , we define
Da = {0}. In other words, Da is the group generated by ∆a , for
every a ∈ N . With this notation, one of the crucial ingredients in
our proof is to show that La = L(a) + Da , i.e. La describes L(a) up
to differences in Da (see Theorem 7.4). By our observation about

Finally, we have cross-level productions:

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

a c b

(a) The graph Γ

q0 q1
a

b c

(b) Valence system over Γ (re-
verse edges are not shown)

level 2

level 1

level 0

c

c

a b

c

a b

(c) Decomposition of Γ into a tree.

Figure 3: Graph and example valence system

effect w.r.t a and ā. Therefore, we will not use these nonterminals
on the right-hand side. However, all other nonterminals (p, sx ,q)
have non-empty languages. Thus, the set R ⊆ N contains all non-
terminals (p, sx ,q) with p = q.

We begin with productions for nonterminals (p,a ,p):
(p,u ,p) → (p,u ,p) + (p,u ,p) p ∈ {q0,q1}, u ∈ {a,b}
(p,a ,p) → (q,a ,q) p,q ∈ {q0,q1}

Note that the second production stems from the fact that we can
start from q0, then move to q1 with a, then execute a loop from q
to q, and then go back to q0 with ā. We also have productions for
the c and −c loops at q1:

(q1,u ,q1) → c, (q1,u ,q1) → −c for u ∈ {a,b}
Finally, we have cross-level productions:

(p, c ,p) → (p,u ,p) (p,u ,p) → (p, c ,p) (level 0/1)
(p, c ,p) → (p, c ,p) (p, c ,p) → (p, c ,p) (level 1/2)

for every p ∈ {q0,q1} and u ∈ {a,b}.

Reversing derivations on each level
We will show an analogue of (2) at levels i > 0, by induction on i .
Since a step on level i > 0 involves an entire derivation on level i−1
(which can result in several nonterminals), the induction works
with a stronger property where the reverse derivation can not only
start in one produced nonterminal (as in (2)), but arbitrary vectors
in NRi . But then, suppose we want to reverse

(p, sx ,q) ⇒0 (p, sx , t) + (t, sx ,q).
Deriving (p, sx ,q) from (p, sx , t) + (t, sx ,q) would require either
(p, sx , t) or (t, sx ,q) to derive a vector without nonterminals, which
would be too strong a condition. However, we can use a slight
relaxation: We will show that derivations can be reversed up to a
byproduct of cycles b + b†. For instance, in our example, the condi-
tion (2) yields (p, sx , t) ∗⇒0 (p, sx ,q) + (t, sx ,q)† and hence

(p, sx , t) + (t, sx ,q) ∗⇒0 (p, sx ,q) + (t, sx ,q)† + (t, sx ,q).
To make “up to cycles b + b†” precise, we now introduce the equiv-
alence relations ≈a .

First, we define the relation { on N as follows. For a ∈ Ni
and b ∈ N[i ,k], we have a { b iff there is a configuration u ∈
NN[i ,k] + ZT[i ,k] with u(b) ≥ 1 and a ⇒i u. In other words, for
a ∈ Ni and b ∈ N[i ,k], we have a { b if b can be reached from a
in one derivation step on level i .

Let ∗{ denote the reflexive transitive closure of {. For each
a ∈ Ni , we define the monoid ∆a , which is generated by all b + b†
with b ∈ N[i+1,k] and a

∗{ b. Hence, ∆a ⊆ NN[i+1,k] . For u, u′ ∈
NN[i ,k] +ZT[i ,k] , we have u ≈a u′ if and only if there are d, d′ ∈ ∆a
with u+ d = u′ + d′. A k-grammar is called i-bidirected if for every
a ∈ Ri and every derivation a

∗⇒i u + v with u ∈ NRi , u , 0,
v ∈ NR[i ,k] + ZT[i ,k] , then u ∗⇒i a + v′ for some v′ with v′ ≈a v†.
In short, up to differences in ∆a , we can reverse derivations on level
i that start in nonterminals in R. Note that if G is i-bidirected, then
on Ri , the relation ∗{ is symmetric and thus an equivalence. We
show the following:

Lemma 7.3. If G is bidirected, then it is i-bidirected for each i ∈
[0,k].

Expressing emptiness using cosets
An important ingredient in our proof is to work with integer linear
equations instead of inequalities. While solution sets of systems
of inequalities are semilinear sets in Zm , solution sets of equation
systems are cosets of Zm . Recall that a coset in Zm is a set of the
form u+U , where u ∈ Zm andU ⊆ Zm is a subgroup. In this section,
we will translate emptiness in bidirected grammars into a problem
about cosets of ZN∪T . In general, we employ three operations for
constructing cosets. First, we can take u + ⟨S⟩ for u ∈ ZN∪T and
any set S ⊆ ZN∪T . Recall that ⟨S⟩ is the subgroup generated by
S . Second, if C1,C2 ⊆ ZN∪T are cosets, then their point-wise sum
C1 +C2 is a coset, and the set C1 ∩C2 is either a coset or empty.

A central role will be played by the group Ha , which we define
for each a ∈ Ri :

Ha = ⟨−b + u | b ∈ Ri and b ⇒i u and a
∗{ b⟩ (1)

Hence, Ha is the group generated by all differences that are added
when applying derivation steps b ⇒i u for a ∗{ b. We observe
that if a ∗⇒i u, then −a + u ∈ Ha . We will need a coset to express
that in such a derivation, there are no level-i letters (resp. no level-i
terminals) left. We will do this by intersecting with the cosets

Si = Z
N[i+1,k]∪T[i+1,k] , S ′i = Z

N[i+1,k] + ZT[i ,k] .

Using Ha and Si , we can now define the coset that will essentially
characterize L(a). For a ∈ Ri , we set

La = (a + Ha) ∩ Si . (2)

One of the main results of this section will be that for a ∈ Ri , we
can describe L(a) in terms of La . Following the theme that we can
do things only “up to differences in ∆a” on each level, we need
a group version of ∆a . For every a ∈ Ni , we have the subgroup
Da ⊆ ZNi+1 , which we define next. If a ∈ Ni with i ∈ [0,k − 1],
we set Da = ⟨b + b† | b ∈ Ni+1, a

∗{ b⟩. For a ∈ Nk , we define
Da = {0}. In other words, Da is the group generated by ∆a , for
every a ∈ N . With this notation, one of the crucial ingredients in
our proof is to show that La = L(a) + Da , i.e. La describes L(a) up
to differences in Da (see Theorem 7.4). By our observation about

for every p ∈ {q0,q1} and u ∈ {a,b}.

Reversing derivations on each level
We will show an analogue of (2) at levels i > 0, by induction on i .
Since a step on level i > 0 involves an entire derivation on level i−1
(which can result in several nonterminals), the induction works
with a stronger property where the reverse derivation can not only
start in one produced nonterminal (as in (2)), but arbitrary vectors
in NRi . But then, suppose we want to reverse

(p, sx ,q) ⇒0 (p, sx , t) + (t , sx ,q).
Deriving (p, sx ,q) from (p, sx , t) + (t , sx ,q) would require either
(p, sx , t) or (t , sx ,q) to derive a vector without nonterminals, which
would be too strong a condition. However, we can use a slight
relaxation: We will show that derivations can be reversed up to a

byproduct of cycles b + b†. For instance, in our example, the condi-
tion (2) yields (p, sx , t) ∗⇒0 (p, sx ,q) + (t , sx ,q)† and hence

(p, sx , t) + (t , sx ,q) ∗⇒0 (p, sx ,q) + (t , sx ,q)† + (t , sx ,q).
To make “up to cycles b + b†” precise, we now introduce the equiv-
alence relations ≈a .

First, we define the relation { on N as follows. For a ∈ Ni
and b ∈ N[i,k], we have a { b iff there is a configuration u ∈
NN[i,k] + ZT[i,k] with u(b) ≥ 1 and a ⇒i u. In other words, for
a ∈ Ni and b ∈ N[i,k], we have a { b if b can be reached from a
in one derivation step on level i .

Let ∗
{ denote the reflexive transitive closure of {. For each

a ∈ Ni , we define the monoid ∆a , which is generated by all b + b†

with b ∈ N[i+1,k] and a
∗
{ b. Hence, ∆a ⊆ NN[i+1,k] . For u, u′ ∈

NN[i,k] +ZT[i,k] , we have u ≈a u′ if and only if there are d, d′ ∈ ∆a
with u+ d = u′ + d′. A k-grammar is called i-bidirected if for every
a ∈ Ri and every derivation a

∗⇒i u + v with u ∈ NRi , u , 0,
v ∈ NR[i,k] + ZT[i,k] , then u

∗⇒i a + v′ for some v′ with v′ ≈a v†.
In short, up to differences in ∆a , we can reverse derivations on level
i that start in nonterminals in R. Note that if G is i-bidirected, then
on Ri , the relation ∗

{ is symmetric and thus an equivalence. We
show the following:

Lemma 7.3. If G is bidirected, then it is i-bidirected for each i ∈
[0,k].

Expressing emptiness using cosets
An important ingredient in our proof is to work with integer linear
equations instead of inequalities. While solution sets of systems
of inequalities are semilinear sets in Zm , solution sets of equation
systems are cosets of Zm . Recall that a coset in Zm is a set of the
form u+U , where u ∈ Zm andU ⊆ Zm is a subgroup. In this section,
we will translate emptiness in bidirected grammars into a problem
about cosets of ZN∪T . In general, we employ three operations for
constructing cosets. First, we can take u + ⟨S⟩ for u ∈ ZN∪T and
any set S ⊆ ZN∪T . Recall that ⟨S⟩ is the subgroup generated by
S . Second, if C1,C2 ⊆ ZN∪T are cosets, then their point-wise sum
C1 +C2 is a coset, and the set C1 ∩C2 is either a coset or empty.

A central role will be played by the group Ha , which we define
for each a ∈ Ri :

Ha = ⟨−b + u | b ∈ Ri and b ⇒i u and a
∗
{ b⟩ (1)

Hence, Ha is the group generated by all differences that are added
when applying derivation steps b ⇒i u for a ∗

{ b. We observe
that if a

∗⇒i u, then −a + u ∈ Ha . We will need a coset to express
that in such a derivation, there are no level-i letters (resp. no level-i
terminals) left. We will do this by intersecting with the cosets

Si = Z
N[i+1,k]∪T[i+1,k] , S ′i = Z

N[i+1,k] + ZT[i,k] .

Using Ha and Si , we can now define the coset that will essentially
characterize L(a). For a ∈ Ri , we set

La = (a + Ha) ∩ Si . (2)
One of the main results of this section will be that for a ∈ Ri , we
can describe L(a) in terms of La . Following the theme that we can
do things only “up to differences in ∆a” on each level, we need

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

a group version of ∆a . For every a ∈ Ni , we have the subgroup
Da ⊆ ZNi+1 , which we define next. If a ∈ Ni with i ∈ [0,k − 1],
we set Da = ⟨b + b† | b ∈ Ni+1, a

∗
{ b⟩. For a ∈ Nk , we define

Da = {0}. In other words, Da is the group generated by ∆a , for
every a ∈ N . With this notation, one of the crucial ingredients in
our proof is to show that La = L(a) + Da , i.e. La describes L(a) up
to differences in Da (see Theorem 7.4). By our observation about
Ha , it is obvious that L(a) + Da ⊆ La . The key step is that also
La ⊆ L(a) + Da .

While the cosets La are coset versions of the sets L(a), we will
also need coset versions of a slight variant of L(a). For each a ∈ Ri ,
by M(a), we denote the vectors that are derivable from a, but may
still contain level-i terminals:

M(a) = {u ∈ NN[i+1,k] + ZT[i,k] | a ∗⇒i u}.
Thus, M(a) differs from L(a) by collecting all derivable u ∈
NN[i+1,k] +ZT , where all level-i nonterminals have been eliminated,
but not necessarily all level-i terminals, meaning L(a) = M(a) ∩ Si .
Just as La is a coset analogue of L(a), we have a coset analogue of
M(a):

Ma = (a + Ha) ∩ S ′i .
The cosets Ma will be needed to express, using cosets, whether L(a)
is empty for nonterminals a ∈ Ni that do not necessarily belong to
Ri : Those are the nonterminals for which we do not know whether
L(a) is empty. Such sets L(a) do not directly correspond to cosets.
However, we will be able to use cosets to characterize when L(a) is
empty. Here, we use the cosets Ka for a ∈ Ni , i ∈ [0,k − 1]:

Ka = (La + ⟨−b +Mb | b ∈ Ri+1, a
∗
{ b⟩) ∩ Si+1.

We shall see that the coset Ka corresponds to those vectors in
NN[i+1,k] +ZT[i+1,k] that can be derived using a. Using the cosets Kb
for b ∈ N[0,k−1], we will be able to characterize emptiness of L(a)
for a ∈ N[1,k]. In order to do the same for a ∈ N0, we need a final
type of cosets. For each production a → u with u = b1+ · · ·+bn +v
in our grammar with b1, . . . ,bn ∈ N0 and v ∈ ZT , we define

Ka→u = (Mb1 + · · · +Mbn + v) ∩ S0.

The key ingredient in our proof is the following analogue of
the translation of Verma, Seidl, and Schwentick [38] to Presburger
arithmetic. Here, we express the set L(a) of derivable vectors of a
nonterminal a as a coset.

Theorem 7.4. IfG = (N ,T , P) is bidirected, thenM(a)+Da = Ma
for every a ∈ R. In particular, L(a) + Da = La .

Intuition for the proof of Theorem 7.4. Before we sketch the proof,
let us compare it with the construction of [38]. They show that
if we assign to each production p in a context-free grammar a
number x(p) saying how oftenp is applied, then there is a derivation
consistent with x if and only if:

(i) each nonterminal is produced as many times as it is con-
sumed (except for the start-symbol, which is consumed once
more) and

(ii) the participating nonterminals (i.e. for which x(p) > 0) must
be connected: The latter means, for each nonterminal, it must
be possible to reach its consumed nonterminal by way of
productions that occur in x.

Essentially, we will argue that for bidirected grammars, one can
drop (ii). This is because, independently of a particular derivation,
each set Ni decomposes into connected components with respect
to ∗
{. Then, instead of stipulating connectedness of the set of used

nonterminals, we only need all used nonterminals to be in the same
∗
{-component. To construct a derivation inside one ∗

{ component,
we need to show that there exist “connecting derivations” between
each pair in ∗

{. This is made precise in the notion of Kirchhoff
graphs, which we define next.

Kirchhoff graphs. Let a ∈ Ri . A Kirchhoff graph for a is a directed
graph whose set of vertices is {b ∈ Ri | a ∗

{ b}, such that there
exists an edge (b, c) for each b, c ∈ Ri with a

∗
{ b and a

∗
{ c , and

where an edge (b, c) is weighted by an element gb,c ∈ NN[i+1,k] +

ZT[i+1,k] such that the following holds:

(i) b
∗⇒i c + gb,c for every b, c ,

(ii) gb,b = 0 for every b, and
(iii) for any vertices b, c,d , we have gb,c + gc,d ≈a gb,d .

The term stems from the fact that these graphs satisfy (up to ≈a) a
condition like Kirchhoff’s law on voltage drops: The weight sum
of every cycle is zero. In our case, adding up the gb,c along a cycle
will yield zero up to ≈a . This implies the following property:

Lemma 7.5. If e1, . . . , eℓ , f1, . . . , fℓ ∈ Ri satisfy a
∗
{ ej and

a
∗
{ fj for j ∈ {1, . . . , ℓ} and π is a permutation of {1, . . . , ℓ}, then

in a Kirchhoff graph for a, we have

ge1,f1 + · · · + geℓ,fℓ ≈a ge1,fπ (1) + · · · + geℓ,fπ (ℓ) .

Proof. Let us first observe that for any e ∈ {e1, . . . , eℓ} and
f ∈ { f1, . . . , fℓ}, the relation

ge,f + ge ′,f ′ ≈a (ge,e ′ + ge ′,f) + (ge ′,e + ge,f ′)
≈a (ge,e ′ + ge ′,e) + (ge ′,f + ge,f ′)
≈a ge ′,f + ge,f ′

follows from the definition of Kirchhoff graphs. This is the case of

ge1,f1 + · · · + geℓ,fℓ ≈a ge1,fπ (1) + · · · + geℓ,fπ (ℓ) (3)

where π is a transposition, i.e. a permutation that swaps two points
and lets all others fixed. Since every permutation of {1, . . . , ℓ} can
be written as a composition of several transpositions, (3) follows in
full generality. □

Lemma 7.6. If G is i-bidirected, then for each a ∈ Ri , there exists a
Kirchhoff graph for a.

Proof. Write {b ∈ Ri | a ∗
{ b} = {b1, . . . ,bn }. To simplify

notation, we write gr,s instead of gbr ,bs . We have to pick gj, j = 0.
SinceG is i-bidirected, we know that ∗

{ is symmetric. In particular,
for any j ∈ [1,n − 1], there exists a gj, j+1 such that bj

∗⇒i bj+1 +
gj, j+1. Moreover, i-bidirectedness of G guarantees that there exists
a gj+1, j with gj+1, j ≈bj gj, j+1† such thatbj+1

∗⇒i bj+gj+1, j . Note
that since a

∗
{ bj and ∗

{ is symmetric, we have ∆bj = ∆a and
thus gj+1, j ≈a gj, j+1†. Finally, for r , s ∈ [1,n] with r < s , we pick
gr,s = gr,r+1+ · · ·+gs−1,s and similarly gs,r = gs,s−1+ · · ·+gr+1,r .

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

Let us now show that this is indeed a Kirchhoff graph for a. We
clearly have br

∗⇒i bs + gr,s for any r , s ∈ [1,n]. It remains to
show that

gr,s + gs,t ≈a gr,t
for any r , s, t ∈ [1,n]. It suffices to do this in the case that |s − t | = 1,
because the other cases follow by induction. Consider the case
t = s + 1 (the case s = t + 1 is analogous). We have to show that

gr,s + gs,s+1 ≈a gr,s+1.

If r ≤ s , then both sides are identical by definition. If r > s , then
gr,s is defined as gr,s = gr,s+1 +gs+1,s . By the choice of gs+1,s , we
know that gs+1,s ≈a gs,s+1† and thus gs+1,s + gs,s+1 ≈a 0. Hence:

gr,s + gs,s+1 = gr,s+1 + gs+1,s + gs,s+1 ≈a gr,s+1. □

For Theorem 7.4, we need two additional lemmas. The first fol-
lows from property (5) and induction on i .

Lemma 7.7. For bidirected G = (N ,T , P) and a ∈ Ri , we have
Da ⊆ Ha .

Next observe that La contains vectors obtained by adding, but
also subtracting effects of derivation steps. We now show that if our
grammar is i-bidirected, then each such subtraction can be realized
by a sequence of ordinary derivation steps: The lemma says that
every element of Ha can be written as a positive sum of derivation
effects (up to a difference in Da).

Lemma 7.8. If G is i-bidirected, then

Ha = {−b + u | ∃b ∈ Ri : b ⇒i u and a
∗
{ b}∗ + Da

for every a ∈ Ri

Here, F ∗ denotes the submonoid of ZN∪T generated by the set
F . We are now ready to prove Theorem 7.4.

Proof of Theorem 7.4. We begin with the inclusion “⊆”. A sim-
ple induction on the length of a derivation shows that every element
of M(a) belongs to Ma . Lemma 7.7 tells us that Da ⊆ Ha , and since
Da ⊆ Si , this implies Ma + Da ⊆ Ma , hence M(a) + Da ⊆ Ma .

We now prove “⊇”. An element of Ma is of the form a + v with
v ∈ Ha and a+v ∈ S ′i . We claim that then a+v belongs toM(a)+Da .
Since v ∈ Ha , Lemma 7.8 tells us that

v =
n∑
j=1

−bj + uj + xj

with bj ∈ Ri , a
∗
{ bj , uj ∈ NRi , xj ∈ NN[i+1,k] + ZT[i,k] where

bj ⇒i uj + xj for j ∈ [1,n].
Since G is i-bidirected by Lemma 7.3, Lemma 7.6 yields a Kirch-

hoff graph for a with weights gb,c for any b, c ∈ Ri with a
∗
{ b and

a
∗
{ c . Let us now construct a derivation inG . Without loss of gener-

ality, we may assume that u1, . . . , uℓ , 0 and uℓ+1 = · · · = un = 0.
For each j ∈ [1, ℓ], we pick some nonterminal c j ∈ Ri such that
c1 = a and uj−1(c j) > 0 for j ∈ [2, ℓ]. By our choice of the g’s, we can
now derive as follows. We use the derivation steps bj ⇒i uj + xj .
But since it is possible that bj+1 ⇒i uj+1 + xj+1 cannot be applied
after bj ⇒i uj + xj , we use derivations c j

∗⇒i bj + gc j ,bj as
connecting derivations. Here, we think of the gc j ,bj as “garbage”

that we produce in order to use the connecting derivations. After-
wards, we will cancel out these garbage elements. We begin with a
connecting derivation in order to apply b1 ⇒i u1 + x1:

a = c1
∗⇒i b1 + gc1,b1

⇒i u1 + x1 + gc1,b1 = a + (−c1 + u1) + gc1,b1 .

Since c2 must occur in a + (−c1 + u1 + x1) + gc1,b1 , we can apply
c2

∗⇒i b2 + gc2,b2 , etc. Doing this ℓ times yields

a
∗⇒i a +

ℓ∑
j=1

−c j + uj + xj + gc j ,bj .

Let us denote the sum on the right-hand side by y. Since want
to derive a +

∑ℓ
j=1(−bj + uj + xj) instead of a + y, we now need

to correct two aspects: (i) Our derivation subtracted c1, . . . , cℓ in-
stead of b1, . . . ,bℓ , so we need to add c’s and subtract b’s and
(ii) we need to cancel out the garbage elements gc j ,bj . When re-
placing b’s by c’s, it could be that some c’s are equal to b’s, so for
(i), we don’t have to change those. So we pick a permutation π of
{1, . . . , ℓ} and a number r ∈ [1, ℓ] so that (a) c j = bπ (j) for j ∈ [1, r]
and (b) {bπ (r+1), . . . ,bπ (ℓ)} and {cr+1, . . . , cℓ} are disjoint. Now
observe that the nonterminals {bπ (r+1), . . . ,bπ (ℓ)} are never con-
sumed in the derivation arriving at a+y. However, since a+v ∈ Si ,
we know that b1 + · · ·+bℓ must occur in

∑ℓ
j=1 uj . Therefore, in par-

ticular bπ (r+1) + · · ·+bπ (ℓ) must occur in y. But this means we can,
for each j ∈ [r + 1, ℓ], apply the derivation bπ (j)

∗⇒i c j + gbπ (j),c j

to y (in any order). Thus, from a, using
∗⇒i , we can derive

a +
ℓ∑
j=1

−c j + uj + xj + gc j ,bj +
ℓ∑

j=r+1
−bπ (j) + c j + gbπ (j),c j

= a +
ℓ∑
j=1

−bj + uj + xj +
©­«

ℓ∑
j=1

gc j ,bj +
ℓ∑

j=r+1
gbπ (j),c j

ª®¬ .
Moreover, since a + v ∈ Si , we know that bℓ+1 + · · · + bn must
occur in

∑ℓ
j=1 −bj + uj + xj , and so we can just apply the steps

bj ⇒i uj + xj for j ∈ [ℓ + 1,n] in any order to obtain:

a
∗⇒i a +

n∑
j=1

−bj + uj + xj +
©­«

ℓ∑
j=1

gc j ,bj +
ℓ∑

j=r+1
gbπ (j),c j

ª®¬ .
Now since a + v ∈ S ′i , the right-hand side contains no more level-i
nonterminals. Hence, the right-hand side belongs to M(a). Finally,
since π (j) = j for j ∈ [1, r] and gc j ,c j ≈ 0 for j ∈ [1, ℓ], the term in
parentheses belongs to Da by Lemma 7.5. Hence, a+v ∈ M(a)+Da .

Finally, note that L(a) +Da = La follows from M(a) +Da = Ma ,
because Da ⊆ Si and thus L(a)+Da = (M(a) ∩ Si)+Da = (M(a)+
Da) ∩ Si = Ma ∩ Si = La . □

While Theorem 7.4 describes what nonterminals a ∈ Ri can
derive, we also need an analogue a ∈ Ni \Ri . It is a straightforward
consequence of previous steps:

Corollary 7.9. Suppose G is i-bidirected. (1) For a ∈ Ni for
i ∈ [1,k], we have L(a) , ∅ iff there is some a′ ∈ Ni−1 and a
production a → a′ such that Ka′ , ∅. (2) For a ∈ N0, we have

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

L(a) , ∅ iff there is some production a → u with u ∈ NN0 +ZT such
that Ka→u , ∅.

Constructing coset circuits
We will express our cosets in compact representations called coset
circuits. Let Y be a finite set. A matrix representation of a coset
S ⊆ ZY is a matrix A ∈ ZX×Z and a vector b ∈ ZX such that Y ⊆ Z
and S = {πY (x) | Ax = b}, where πY : ZZ → ZY is the projection
onto ZY . Note that for a coset given as S = v + ⟨u1, . . . , un⟩, we
can directly compute a matrix representation. A coset circuit over
ZY is a directed acyclic graphC , whose vertices are called gates and

(1) Leaves, i.e. gates д with in-degree 0, are labeled by a matrix
representation of a coset C(д).

(2) Gates with in-degree > 0 are labeled by + or ∩.
In a coset circuit, each gate д evaluates to a coset C(д) of ZY (or
the empty set): The leaves evaluate to their labels. A gate д with
incoming edges from д1, . . . ,дm ,m ≥ 1, evaluates to eitherC(д1)+
· · · +C(дm) orC(д1) ∩ · · · ∩C(дm) depending on whether v’s label
is + or ∩.

We will construct a coset circuit that has for each a ∈ N , a gate
for Ha ,La ,Ma ,Ka and also for Ka→u for productions a → u ∈ P .
By Corollary 7.9, this lets us check emptiness of L(a) for each a ∈ N .
For Ha ,La ,Ka→u with a ∈ N0, we can directly create leaves with
matrix representations. For the others, the definitions do not tell us
directly how to compute the cosets using sums and intersections,
e.g.: Ha is defined by a (potentially infinite) generating set. Thus,
we first show that Ha is generated by finitely many cosets.

Lemma 7.10. Let G = (N ,T , P) be a bidirected k-grammar. For
every a ∈ Ri , i ∈ [1,k], we have

Ha = ⟨−b + Lc | b ∈ Ri , c ∈ Ri−1,a
∗
{ b,b → c ∈ P⟩.

Proof. By definition, we have Ha = ⟨−b + L(c) | b ∈ Ri , c ∈
Ri−1,a

∗
{ b,b → c ∈ P⟩. Since Theorem 7.4 tells us that Lc = L(c)+

Dc , the inclusion “⊆” is immediate. For “⊇”, because of L(c) + Dc ,
we shall prove that Dc ⊆ Ha . (Note that this is not an immediate
consequence of Lemma 7.7, because a ∈ Ri and c ∈ Ri−1 are on
different levels).

For Dc ⊆ Ha , it suffices to prove that every generator e + e†

with e ∈ Ri , c
∗
{ e , of Dc belongs to Ha . Since c ∗

{ e , e appears
on a right-hand side of a production and thus L(e) , ∅. Hence,
there is some u ∈ ZN[i+1,k]∪T with e

∗⇒i u. This implies that
e + e†

∗⇒i u + u†. Since u + u† ∈ Da ⊆ Ha (Lemma 7.7) and
e + e† − (u + u†) ∈ Ha , this proves that e + e† ∈ Ha . □

This is a straightforward consequence of Theorem 7.4. We have
now described each coset in terms of other cosets using sum, in-
tersection, but also generated subgroup (such as in Lemma 7.10). In
order to describe cosets only using sums and intersections, we use:

Lemma 7.11. Letд1, . . . ,дn ∈ Zm and letU , S ⊆ Zm be subgroups
with (дi +U) ∩ S , ∅ for all i ∈ [1,n]. Then

⟨(д1 +U) ∩ S, . . . , (дn +U) ∩ S⟩ = (⟨д1, . . . ,дn⟩ +U) ∩ S . (4)

In other words, Lemma 7.11 says that instead of imposing the
condition of belonging to S locally at each summand дi + U , it
suffices to impose it globally on the sum ⟨д1, . . . ,дn⟩ +U .

Proof of Lemma 7.11. The inclusion “⊆” is obvious because U
and S are subgroups. Conversely, supposeh = x1д1+· · ·+xnдn+u ∈
S for some x1, . . . ,xn ∈ Z and u ∈ U . Since (дi +U) ∩ S , ∅, we
can choose ui ∈ U for each i ∈ [1,n] such that дi + ui ∈ S . We
compute in the quotient A/S . Note that since h ∈ S and дi +ui ∈ S ,
we have [u] = −[x1д1 + · · · + xnдn] = [x1u1 + · · · + xnun] and thus
u − x1u1 − · · · − xnun ∈ S . Therefore, we have

h = x1(д1 + u1)︸ ︷︷ ︸
∈⟨(д1+U)∩S ⟩

+ · · · + xn (дn + un)︸ ︷︷ ︸
∈⟨(дn+U)∩S ⟩

+ u − x1u1 − · · · − xnun︸ ︷︷ ︸
∈U∩S

.
(5)

This proves that h belongs to the left-hand side of (4), since that set
is closed under adding U ∩ S . □

Hence, if we have built gates for U and S and are given vectors
д1, . . . ,дn , then to create a gate for ⟨(д1 + U), . . . , (дn + U)⟩ ∩ S ,
we can create one for (⟨д1, . . . ,дn⟩ +U) ∩ S . Since we can directly
compute a matrix representation for ⟨д1, . . . ,дn⟩, we can introduce
a leaf for this subgroup.

Let us now describe how, using Lemma 7.11, each coset can be
expressed using only sums and intersection. To simplify notation,
for any a ∈ Ni , we write Pa = {(b, c) | b ∈ Ni , c ∈ Ni−1,a

∗
{

b,b → c ∈ P}. Note that

Ha = ⟨−b + u | a ∗
{ b, b → u ∈ P⟩ for a ∈ R0,

Ha = ⟨−b + Lc | (b, c) ∈ Pa⟩ for a ∈ R[1,k].

Thus, for a ∈ R0, we have a finite generating set for Ha given
explicitly in the grammar and can thus create a leaf gate for Ha
labeled by an explicit matrix representation for Ha . However, for
a ∈ R[1,k], we need to eliminate the the ⟨·⟩ operator. To this end,
we write

Ha = ⟨−b + Lc | (b, c) ∈ Pa⟩
=

∑
(b,c)∈Pa

⟨(−b + c + Hc) ∩ Si−1⟩

=
∑

(b,c)∈Pa
(⟨−b + c⟩ + Hc) ∩ Si−1

(6)

where in the first step, we plug in the definition of Lc and in the
second step, we apply Lemma 7.11. Here, the sum on the right only
uses those (b, c) ∈ Pa for which (⟨−b + c⟩ + Hc) ∩ Si−1 , ∅. Now,
each ⟨−b + c⟩ is a group for which we can create a gate with an
explicit representation.

We also need to express Ka in terms of sum and intersection.
First note that for b ∈ Ri+1,

⟨−b +Mb ⟩ = ⟨−b + ((b + Hb) ∩ S ′i+1)⟩
= ⟨(−b + S ′i+1) ∩ Hb ⟩
= Hb ∩ ⟨−b + S ′i+1⟩

(7)

provided that (−b + S ′i+1) ∩ Hb , ∅; otherwise, ⟨−b +Mb ⟩ is the
trivial group {0}. In the first equality, we plug in the definition
of Mb . The second is due to the definition of S ′i+1, and the third
applies Lemma 7.11, relying on (−b + S ′i+1) ∩ Hb being non-empty.

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

Algorithm 1: Construction of coset circuit for a bidirected
k-grammar

Input :Bidirected k-grammar G = (N ,T , P)
Create gates for Si , S ′i , Oa , and ⟨−a + b⟩ for each i ∈ [1,k],
a,b ∈ N

Compute{ on N0
Create gates for Ha , La , and Ma for each a ∈ R0
Create gates for Ka→u for productions a → u, a ∈ N0,

u ∈ NN0 + ZT

for i = 1, . . . ,k do
Create gate for Lc ∩Ob for each c ∈ Ri−1, b ∈ Ni
Compute the relation{ on Ni based on non-emptiness

of Lc ∩Ob with c ∈ Ni−1, b ∈ Ni

Compute ∗
{ on Ni and then Pa for each a ∈ Ni

Create gate for Ha , then for La , then for Ma for each
a ∈ Ri according to (2), (6) and (8)

Create gate for Ka for each a ∈ Ri−1

This implies that for a ∈ Ni ,

Ka = (La + ⟨−b +Mb | b ∈ Ri+1,a
∗
{ b⟩) ∩ Si+1

=
©­­«La +

∑
b ∈Ri+1,a

∗
{b

⟨−b +Mb ⟩
ª®®¬ ∩ Si+1

=
©­­«La +

∑
b ∈Ri+1,a

∗
{b

Hb ∩ ⟨−b + S ′i+1⟩
ª®®¬ ∩ Si+1,

(8)

where the last sum only uses those Hb ∩ ⟨−b + S ′i+1⟩ for which
(−b + S ′i+1) ∩ Hb , ∅. The equality follows from the definition of
Ka and (7). Note that for −b + S ′i+1, it is again easy to construct a
matrix representation.

Finally, observe that all these coset definitions rely on the relation
{. On N0, we can compute{ directly. On N[1,k], we have to rely
on cosets. To this, note that for a,b ∈ Ni , we have a { b if and
only if there is a c ∈ Ri−1 with a production a → c and some u ∈ Lc
with u(b) = 1. In other words, if and only if Lc ∩Ob , ∅, where Ob
is the coset {u ∈ ZN∪T | u(b) = 1}.

The exact order in which the gates are constructed is given in
Algorithm 1. We observe that the constructed coset circuit has depth
≤ ck for some constant c : The gates for Ha , La , Ma only depend on
gates created in the last iteration of the for-loop. Moreover, each of
them only adds a constant depth to the gates produced before. The
gates Ka depend on gates Hb created in the same iteration, thus
also adding only constant depth. Finally, note that the entries in the
matrices in the labels of the leaves require at most polynomially
many bits: The gates for Si , S ′i , Oa , ⟨−a + b⟩ and for Ha , La , and
Ma for a ∈ R0 are obtained directly from the productions of G . The
numbers in those, in turn, have at most polynomially many bits as
they are computed using Theorem 6.5.

From coset circuits to equations
In each of our three algorithms for BIREACH, we check emptiness
of coset circuits by translating them into integer linear equation
systems. Let n = |Y |. We compute, for each gate д, a matrix Aд ∈

Zsд×tд and a vector bд ∈ Zsд such that C(д) = {πn (x) | x ∈
Ztд , Aдx = bд}, where for any r ∈ N, by πn , we denote the
projection πn : Zr → Zn onto the last n coordinates for any r ≥ n.
If д has in-degree 0, then д is already labeled with such a matrix
A and vector b. Now suppose д has incoming gates д1, . . . ,дr . Let
A1, . . . ,Ar and b1, . . . , br with Ai ∈ Zsi×ti , b ∈ Zsi , denote the
matrices and vectors constructed for the gates д1, . . . ,дr . Then the
matrix A ∈ Zs×t and b ∈ Zs for д have the shape

A =
©­­­­«

A1
. . .

Ar

0

B C

ª®®®®¬
, b =

©­­­­«
b1
...

br
0

ª®®®®¬
where B and C are chosen depending on whether д is labeled with
+ or ∩. If the label is +, then B ∈ Zn×(t1+· · ·+tr),C ∈ Zn×n , are
chosen so that Bx = c expresses that in x, the last n coordinates
are the sum of y1 + · · · + yr , where for each i ∈ [1, r], the vector
yi ∈ Zn contains the coordinates t1 + · · · + ti − n, . . . , t1 + · · · + ti ,
i.e. the last n coordinates corresponding to Ai . Hence, we have
s = s1 + · · · + sr + n and t = t1 + · · · + tr + n. If the label is ∩,
then B ∈ Zrn×(t1+· · ·+tr),C ∈ Zrn×n are chosen so that Bx = c
expresses that for each i ∈ [1, r], the last n coordinates of x agree
with coordinates t1 + · · ·+ ti −n, . . . , t1 + · · ·+ ti of x, i.e. the last n
coordinates corresponding to Ai . Thus, we obtain s = s1+· · ·+sr+rn
and t = t1 + · · · + tr + n.

Thus, in any case, we have max{s, t} ≤ (r + 1) ·maxi max{si , ti }.
If A is a matrix, then we define its norm, denoted ∥A∥, as the maxi-
mal absolute value of any entry. Observe that the norm in the above
constructions does not grow at all: We have ∥A∥ ≤ max{∥Ai ∥ |
i ∈ [1, r]} and ∥b∥ ≤ max{∥bi ∥ | i ∈ [1, r]}. Supposem is an upper
bound on the number of rows and columns of the matrices in the
leafs of C , and M is an upper bound on their norm. Then for any
gate д of depth i , the resulting matrix Aд ∈ Zsд×tд and vector
bд ∈ Zsд satisfy max{sд , tд} ≤ (r + 1)i ·m and ∥Aд ∥, ∥bд ∥ ≤ M .
Hence, the dimensions of the matrices grow exponentially in the
depth of the circuit, but polynomially for fixed depth. Moreover,
their entries require no more bits than the matrices in the leaves.

Proposition 7.12. (1) For every fixed number d ∈ N, the prob-
lem BIREACH(SC±

d) is in EXP. (2) If ℓ ∈ N is fixed as well, then
BIREACH(SC±

d, ℓ) is in P. (3) BIREACH(SC±) is in EXPSPACE.

Proof sketch. We begin with (1) and (2). According to Proposi-
tion 7.1, we need to show that emptiness for bidirected k-grammars
is in EXP, and in P for fixed k .

Given a bidirected k-grammar, we construct a coset circuit C
as described in Algorithm 1 by alternating emptiness checks for
gates and building new gates. To check gates for emptiness, recall
that the circuit has depth ≤ ck for some constant c ∈ N. Thus, it
remains to decide emptiness of a gate д in exponential time, resp.
in polynomial time for bounded depth circuits. For each gate д
in this coset circuit, we compute a matrix representation for the
coset C(д). As argued above, the resulting matrix A ∈ Zs×t and
vector b ∈ Zs will satisfy s, t ≤ (r + 1)ck , where r is the largest
in-degree of a gate in C . The norm of A and b is at most the norm
of the matrices in the leaves of C , which means the entries of A
and b only require polynomially many bits. Therefore, the size of

LICS ’22, August 2–5, 2022, Haifa, Israel Moses Ganardi, Rupak Majumdar, and Georg Zetzsche

A and b is polynomial in (r + 1)ck . Hence, by Theorem 3.1, we can
decide emptiness of C(д) in time polynomial in (r + 1)ck . Hence,
Theorem 3.1 yields the desired algorithms.

For (3), we proceed slightly differently. Instead of Proposition 7.1,
we use a variant with an exponential space reduction. The resulting
grammars still use polynomially many productions, but the occur-
ring numbers can be doubly exponential. Our matrix encoding thus
yields matrices with exponential dimension and their entries have
exponentially many bits. This still allows us to check for emptiness
of coset circuits in exponential time, resulting in an EXPSPACE
algorithm overall. □

REFERENCES
[1] Eric Allender, Robert Beals, and Mitsunori Ogihara. 1999. The Complexity of

Matrix Rank and Feasible Systems of Linear Equations. Comput. Complex. 8, 2
(1999), 99–126. https://doi.org/10.1007/s000370050023

[2] Carme Àlvarez and Raymond Greenlaw. 2000. A compendium of problems
complete for symmetric logarithmic space. Comput. Complex. 9, 2 (2000), 123–145.
https://doi.org/10.1007/PL00001603

[3] Jürgen Avenhaus and Klaus Madlener. 1984. The Nielsen reduction and P-
complete problems in free groups. Theoretical Computer Science 32, 1-2 (1984),
61–76.

[4] Norman Biggs. 1997. Algebraic potential theory on graphs. Bulletin of the London
Mathematical Society 29, 6 (1997), 641–682.

[5] Rémi Bonnet. 2011. The Reachability Problem for Vector Addition System with
One Zero-Test. In Mathematical Foundations of Computer Science 2011 - 36th Inter-
national Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings
(Lecture Notes in Computer Science, Vol. 6907), Filip Murlak and Piotr Sankowski
(Eds.). Springer, 145–157. https://doi.org/10.1007/978-3-642-22993-0_16

[6] P. Buckheister and Georg Zetzsche. 2013. Semilinearity and Context-Freeness
of Languages Accepted by Valence Automata. In Proc. of the 38th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2013) (LNCS,
Vol. 8087), Krishnendu Chatterjee and Jirí Sgall (Eds.). Springer, Berlin Heidelberg,
231–242. https://doi.org/10.1007/978-3-642-40313-2_22

[7] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2018.
Optimal Dyck Reachability for Data-Dependence and Alias Analysis. Proc. ACM
Program. Lang. 2, POPL, Article 30 (Dec. 2018), 30 pages. https://doi.org/10.1145/
3158118

[8] Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state machines. In
POPL ’08. ACM, 159–169.

[9] Tsu-Wu J. Chou and George E. Collins. 1982. Algorithms for the Solution of
Systems of Linear Diophantine Equations. SIAM J. Comput. 11, 4 (1982), 687–708.
https://doi.org/10.1137/0211057

[10] Wojciech Czerwiński and Łukasz Orlikowski. 2021. Reachability in Vector Ad-
dition Systems is Ackermann-complete. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022.
IEEE, 1229–1240. https://doi.org/10.1109/FOCS52979.2021.00120

[11] Volker Diekert and Anca Muscholl. 2006. Solvability of Equations in Graph
Groups Is Decidable. Int. J. Algebra Comput. 16, 6 (2006), 1047–1070. https:
//doi.org/10.1142/S0218196706003372

[12] Emanuele D’Osualdo, Roland Meyer, and Georg Zetzsche. 2016. First-order logic
with reachability for infinite-state systems. In Proc. of the Thirty-First Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2016). ACM, New York,
NY, USA, 457–466.

[13] Michael Elberfeld, Andreas Jakoby, and Till Tantau. 2012. Algorithmic Meta
Theorems for Circuit Classes of Constant and Logarithmic Depth. In 29th In-
ternational Symposium on Theoretical Aspects of Computer Science, STACS 2012,
February 29th - March 3rd, 2012, Paris, France (LIPIcs, Vol. 14), Christoph Dürr and
Thomas Wilke (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 66–77.
https://doi.org/10.4230/LIPIcs.STACS.2012.66

[14] Moses Ganardi, Rupak Majumdar, and Georg Zetzsche. 2021. The complexity
of bidirected reachability in valence systems. (2021). https://doi.org/10.48550/
arXiv.2110.03654 arXiv:2110.03654

[15] Christoph Haase and Simon Halfon. 2014. Integer Vector Addition Systems with
States. In Reachability Problems - 8th International Workshop, RP 2014, Oxford, UK,
September 22-24, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8762),
Joël Ouaknine, Igor Potapov, and James Worrell (Eds.). Springer, 112–124. https:
//doi.org/10.1007/978-3-319-11439-2_9

[16] Christoph Haase and Georg Zetzsche. 2019. Presburger arithmetic with stars,
rational subsets of graph groups, and nested zero tests. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24-27, 2019. IEEE, 1–14. https://doi.org/10.1109/LICS.2019.8785850

[17] Matthew Hague and Anthony Widjaja Lin. 2011. Model Checking Recursive
Programs with Numeric Data Types. In Computer Aided Verification - 23rd Inter-
national Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings
(Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz
Qadeer (Eds.). Springer, 743–759. https://doi.org/10.1007/978-3-642-22110-1_60

[18] Ilya Kapovich, Richard Weidmann, and Alexei Myasnikov. 2005. Foldings, graphs
of groups and the membership problem. International Journal of Algebra and
Computation 15, 01 (2005), 95–128.

[19] Adam Husted Kjelstrøm and Andreas Pavlogiannis. 2022. The decidability and
complexity of interleaved bidirected Dyck reachability. Proc. ACM Program. Lang.
6, POPL (2022), 1–26. https://doi.org/10.1145/3498673

[20] Ulla Koppenhagen and Ernst W. Mayr. 1997. The Complexity of the Coverability,
the Containment, and the Equivalence Problems for Commutative Semigroups.
In Fundamentals of Computation Theory, 11th International Symposium, FCT ’97,
Kraków, Poland, September 1-3, 1997, Proceedings (Lecture Notes in Computer
Science, Vol. 1279), Bogdan S. Chlebus and Ludwik Czaja (Eds.). Springer, 257–268.
https://doi.org/10.1007/BFb0036189

[21] Serge Lang. 2005. Algebra (revised third edition ed.). Springer-Verlag.
[22] Jérôme Leroux. 2021. The Reachability Problem for Petri Nets is Not Primitive

Recursive. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 1241–1252. https://doi.
org/10.1109/FOCS52979.2021.00121

[23] Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. 2015. On the Coverability
Problem for Pushdown Vector Addition Systems in One Dimension. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 9135), Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann (Eds.). Springer, 324–336. https://doi.org/10.1007/978-3-662-47666-
6_26

[24] Yuanbo Li, Qirun Zhang, and Thomas W. Reps. 2020. Fast graph simplification
for interleaved Dyck-reachability. In Proceedings of the 41st ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak
(Eds.). ACM, 780–793. https://doi.org/10.1145/3385412.3386021

[25] Yuanbo Li, Qirun Zhang, and Thomas W. Reps. 2021. On the complexity of
bidirected interleaved Dyck-reachability. Proc. ACM Program. Lang. 5, POPL
(2021), 1–28. https://doi.org/10.1145/3434340

[26] Markus Lohrey. 2013. The rational subset membership problem for groups: a
survey. In Groups St Andrews, Vol. 422. 368–389.

[27] Markus Lohrey and Géraud Sénizergues. 2007. When is a graph product of groups
virtually-free? Communications in Algebra® 35, 2 (2007), 617–621.

[28] Markus Lohrey and Benjamin Steinberg. 2008. The submonoid and rational
subset membership problems for graph groups. Journal of Algebra 320, 2 (2008),
728–755.

[29] Markus Lohrey and Benjamin Steinberg. 2010. An automata theoretic approach
to the generalized word problem in graphs of groups. Proc. Amer. Math. Soc. 138,
2 (2010), 445–453.

[30] Markus Lohrey and Georg Zetzsche. 2018. Knapsack in Graph Groups. Theory
Comput. Syst. 62, 1 (2018), 192–246. https://doi.org/10.1007/s00224-017-9808-3

[31] Roger C Lyndon and Paul E Schupp. 1977. Combinatorial Group Theory. Springer-
Verlag.

[32] Ernst W Mayr and Albert R Meyer. 1982. The complexity of the word problems
for commutative semigroups and polynomial ideals. Advances in Mathematics
46, 3 (1982), 305–329. https://doi.org/10.1016/0001-8708(82)90048-2

[33] Roland Meyer, Sebastian Muskalla, and Georg Zetzsche. 2018. Bounded Context
Switching for Valence Systems. In Proc. of the 29th International Conference on
Concurrency Theory (CONCUR 2018) (LIPIcs, Vol. 118). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 12:1–12:18. https://doi.org/10.4230/LIPIcs.CONCUR.
2018.12

[34] K. A. Mikhailova. 1966. The occurrence problem for direct products of groups.
Matematicheskii Sbornik (Novaya Seriya) 70(112) (1966), 241–251. Issue 2.

[35] Omer Reingold. 2008. Undirected connectivity in log-space. J. ACM 55, 4 (2008),
17:1–17:24. https://doi.org/10.1145/1391289.1391291

[36] Klaus Reinhardt. 2008. Reachability in Petri nets with inhibitor arcs. Electronic
Notes in Theoretical Computer Science 223 (2008), 239–264.

[37] Aneesh Shetty, Krishna S., and Georg Zetzsche. 2021. Scope-Bounded Reachability
in Valence Systems. In Proc. of the 32nd International Conference on Concurrency
Theory (CONCUR 2021) (LIPIcs, Vol. 118). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2021.29

[38] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. 2005. On the
Complexity of Equational Horn Clauses. In Automated Deduction - CADE-20, 20th
International Conference on Automated Deduction, Tallinn, Estonia, July 22-27, 2005,
Proceedings (Lecture Notes in Computer Science, Vol. 3632), Robert Nieuwenhuis
(Ed.). Springer, 337–352. https://doi.org/10.1007/11532231_25

[39] D. Wise. 2012. From Riches to RAAGs: 3-maniforld, right-angled Artin groups, and
cubical geometry. American Mathematical Society.

[40] Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-
Reachability-Based Points-To Analysis Using Context-Sensitive Must-Not-Alias

https://doi.org/10.1007/s000370050023
https://doi.org/10.1007/PL00001603
https://doi.org/10.1007/978-3-642-22993-0_16
https://doi.org/10.1007/978-3-642-40313-2_22
https://doi.org/10.1145/3158118
https://doi.org/10.1145/3158118
https://doi.org/10.1137/0211057
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1142/S0218196706003372
https://doi.org/10.1142/S0218196706003372
https://doi.org/10.4230/LIPIcs.STACS.2012.66
https://doi.org/10.48550/arXiv.2110.03654
https://doi.org/10.48550/arXiv.2110.03654
https://arxiv.org/abs/2110.03654
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1145/3498673
https://doi.org/10.1007/BFb0036189
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3434340
https://doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.4230/LIPIcs.CONCUR.2018.12
https://doi.org/10.4230/LIPIcs.CONCUR.2018.12
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.4230/LIPIcs.CONCUR.2021.29
https://doi.org/10.1007/11532231_25

The Complexity of Bidirected Reachability in Valence Systems LICS ’22, August 2–5, 2022, Haifa, Israel

Analysis. In ECOOP 2009 - Object-Oriented Programming, 23rd European Confer-
ence, Genoa, Italy, July 6-10, 2009. Proceedings (Lecture Notes in Computer Science,
Vol. 5653), Sophia Drossopoulou (Ed.). Springer, 98–122. https://doi.org/10.1007/
978-3-642-03013-0_6

[41] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven context-
sensitive alias analysis for Java. In Proceedings of the 20th International Symposium
on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21,
2011, Matthew B. Dwyer and Frank Tip (Eds.). ACM, 155–165. https://doi.org/10.
1145/2001420.2001440

[42] Georg Zetzsche. 2013. Silent Transitions in Automata with Storage. In Proc. of the
40th International Colloquium on Automata, Languages and Programming (ICALP
2013) (LNCS, Vol. 7966), Fedor V. Fomin, Rūsin, š Freivalds, Marta Kwiatkowska,
and David Peleg (Eds.). Springer, Berlin Heidelberg, 434–445. https://doi.org/10.
1007/978-3-642-39212-2_39

[43] Georg Zetzsche. 2015. Computing downward closures for stacked counter au-
tomata. In Proc. of the 32nd International Symposium on Theoretical Aspects
of Computer Science (STACS 2015) (Leibniz International Proceedings in Infor-
matics (LIPIcs), Vol. 30), Ernst W. Mayr and Nicolas Ollinger (Eds.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 743–756. https:
//doi.org/10.4230/LIPIcs.STACS.2015.743

[44] Georg Zetzsche. 2016. Monoids as Storage Mechanisms. Bull. EATCS 120 (2016).
http://eatcs.org/beatcs/index.php/beatcs/article/view/459

[45] Georg Zetzsche. 2016. Monoids as Storage Mechanisms. PhD thesis.
[46] Georg Zetzsche. 2021. The emptiness problem for valence automata over graph

monoids. Inf. Comput. 277 (2021), 104583. https://doi.org/10.1016/j.ic.2020.104583
[47] Georg Zetzsche. 2021. Recent Advances on Reachability Problems for Valence

Systems (Invited Talk). In Reachability Problems - 15th International Conference,
RP 2021, Liverpool, UK, October 25-27, 2021, Proceedings (Lecture Notes in Computer
Science, Vol. 13035), Paul C. Bell, Patrick Totzke, and Igor Potapov (Eds.). Springer,
52–65. https://doi.org/10.1007/978-3-030-89716-1_4

[48] Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. 2013. Fast algorithms
for Dyck-CFL-reachability with applications to alias analysis. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seat-
tle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.).
ACM, 435–446. https://doi.org/10.1145/2491956.2462159

[49] Qirun Zhang and Zhendong Su. 2017. Context-sensitive data-dependence analysis
via linear conjunctive language reachability. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.).
ACM, 344–358. https://doi.org/10.1145/3009837.3009848

https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.4230/LIPIcs.STACS.2015.743
https://doi.org/10.4230/LIPIcs.STACS.2015.743
http://eatcs.org/beatcs/index.php/beatcs/article/view/459
https://doi.org/10.1016/j.ic.2020.104583
https://doi.org/10.1007/978-3-030-89716-1_4
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/3009837.3009848

	Abstract
	1 Introduction
	Acknowledgments
	2 Bidirected Valence Systems
	2.1 Decidability Landscape for Reachability

	3 Main Results
	4 BIREACH and subgroup membership
	5 Lower Bounds
	6 Upper Bounds I: L and ILD
	7 Upper Bounds II: P, EXP, EXPSPACE
	References

