
MaxSAT Evaluation 2018
Solver and Benchmark Descriptions

Fahiem Bacchus, Matti Järvisalo, and Ruben Martins (editors)

University of Helsinki
Department of Computer Science
Series of Publications B
Report B-2018-2

Helsinki 2018

2

PREFACE

The MaxSAT Evaluations (https://maxsat-evaluations.github.io) are a series of
events focusing on the evaluation of current state-of-the-art systems for solving optimization
problems via the Boolean optimization paradigm of maximum satisfiability (MaxSAT). Or-
ganized yearly starting from 2006, the year 2018 brought on the 13th edition of the MaxSAT
Evaluations. Some of the central motivations for the MaxSAT Evaluation series are to pro-
vide further incentives for further improving the empirical performance of the current state
of the art in MaxSAT solving, to promote MaxSAT as a serious alternative approach to
solving NP-hard optimization problems from the real world, and to provide the community
at large heterogenous benchmark sets for solver development and research purposes. In
the spirit of a true evaluation—rather than a competition, unlike e.g. the SAT Competi-
tion series—no winners are declared, and no awards or medals are handed out to overall
best-performing solvers.

The 2018 instantiation of the evaluation series follows closely the revised arrangements
brought on by the new organization team in 2017.

The 2018 evaluation consisted of two main tracks, one for solvers focusing on unweighted
and one for solvers focusing on weighted MaxSAT instances. As in 2017, no distinction was
made between “industrial” and “crafted” benchmarks, and no track for purely randomly
generated MaxSAT instances was organized. In addition to the main tracks, a special track
for incomplete MaxSAT solvers was organized, using two short per-instance time limits (60
and 300 seconds), differentiating from the per-instance time limit of 1 hour imposed in the
main tracks.

Benchmark selection for the 2018 evaluation was done with the aim of making the bench-
mark set diverse and balanced. As benchmark pool, we considered: (i) all the benchmarks
used in the MaxSAT Evaluation 2017, (ii) all benchmarks submitted to the MaxSAT Eval-
uation 2017, and (iii) all benchmarks submitted to the MaxSAT Evaluation 2018. We
restricted the number of benchmarks per benchmark set to a maximum of 25 for bench-
marks in categories (i) and (ii), and and a maximum of 40 for benchmarks in category (iii),
and randomly picked benchmarks from each benchmark set until we had 600 benchmarks
for both the unweighted and weighted tracks.

Adhering to the new rules introduced in 2017, solvers were now required to be open-
source, and the source codes of all participating solvers were made available online on the
evaluation webpages after the evaluation results were presented at the SAT 2017 conference.
Furthermore, a 1-2 page solver description was required for each solver submission, to
provide some details on the search techniques implemented in the solvers. The solvers
descriptions together with descriptions of new benchmarks for 2018 are collected together
in this compilation.

Finally, we would like to thank everyone who contributed to MaxSAT Evaluation 2018 by
submitting their solvers or new benchmarks. We are also grateful for the computational
resources provided by the StarExec initiative which enabled running the 2018 evaluation
smoothly.

Fahiem Bacchus, Matti Järvisalo, & Ruben Martins
MaxSAT Evaluation 2018 Organizers

3

4

Contents

Preface . 3

Solver Descriptions

LinSBPS
Emir Demirović and Peter J. Stuckey . 8

LMHS in MaxSAT Evaluation 2018
Paul Saikko, Tuukka Korhonen, Jeremias Berg, and Matti Järvisalo 10

MaxHS in the 2018 MaxSat Evaluation
Fahiem Bacchus . 11

Maxino
Mario Alviano . 13

MaxRoster: Solver Description
Takayuki Sugawara . 15

Open-WBO-Inc in MaxSAT Evaluation 2018
Saurabh Joshi, Prateek Kumar, Vasco Manquinho, Ruben Martins, Alexander
Nadel, and Sukrut Rao . 16

Open-WBO MaxSAT 2018
Ruben Martins, Norbert Manthey, Miguel Terra-Neves, Vasco Manquinho, and
Inês Lynce . 18

Pacose: An Iterative SAT-based MaxSAT Solver
Tobias Paxian, Sven Reimer, and Bernd Becker 20

QMaxSAT and MaxSAT Evaluation 2018
Aolong Zha . 21

RC2: a Python-based MaxSAT Solver
Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva 22

SATLike: Solver Description
Zhendong Lei and Shaowei Cai . 23

SATLike-c: Solver Description
Zhendong Lei and Shaowei Cai . 24

Benchmark Descriptions

Generalized Ising Model (Cluster Expansion) Benchmark
Wenxuan Huang . 26

5

MSE18 Benchmarks: DRMX-AtMostK
Alexey Ignatiev . 30

MSE18 Benchmarks: DRMX-CryptoGen
Alexey Ignatiev and Oleg Zaikin . 31

MaxSAT Benchmarks: Maximum Realizability for Linear Temporal Logic Specifications
Rayna Dimitrova, Mahsa Ghasemi, and Ufuk Topcu 33

MaxSAT Instances of the Team Composition Problem in a Classroom
Felip Manyà, Santiago Negrete, and Joan Ramon Soler 35

Approximately Propagation Complete and Approximately Conflict Propagating SAT En-
coding Computation MaxSAT Benchmarks
Rüdiger Ehlers . 38

MSE 2018 Benchmarks: Visibly Pushdown Automata Minimization
Matthias Heizmann and Christian Schilling . 39

RBAC User Query Authorization Problem: MAXSAT Instances
Alessandro Armando and Giorgia Gazzarata . 41

XAI-MinDSet2: Explainable AI with MaxSAT
Alexey Ignatiev and Joao Marques-Silva . 43

Solver Index . 45
Benchmark Index . 46
Author Index . 47

6

SOLVER DESCRIPTIONS

LinSBPS
Emir Demirović and Peter J. Stuckey

Department of Computing and Information Systems
University of Melbourne

Australia
(emir.demirovic ∨ pstuckey) @ unimelb.edu.au

I. INTRODUCTION

The solver was created with the intention to study the effec-
tiveness of local search inspired techniques for maxSAT. This
is a long-term goal where the aim is to develop algorithms that
use techniques similar to those of metaheuristics, in particular
large neighbourhood search, but within a complete algorithmic
setting. Thus, the overall objective would be to improve the
anytime performance of solvers, which is especially important
for large-scale problems where optimality guarantees seem
impractical.

II. THE ALGORITHM

We start with the linear MaxSAT algorithm [1]. It computes
the optimal solution to a maxSAT problem by repeatedly
solving a series of SAT problems, each time adding constraints
that force the new solution to be better than than the previously
computed one. This algorithm, implemented in Open-WBO
[2] with Glucose [3] as the backend solver, was the best
solver for the 60 seconds unweighted incomplete track in the
last maxSAT evaluation 2017. However, it was outperformed
in the same category with 300 seconds and did not provide
competitive solutions for many benchmarks in the weighted
incomplete track. The internal SAT solveris a complete back-
tracking algorithm: it selects a variable, assigns it a truth value,
and then either backtracks if a conflict is found or recursively
repeats the procedure.

Our approach uses the linear MaxSAT algorithm augmented
with two important components: solution-based phase saving
and varying resolution technique, where we start considering
the problem in low resolution and with time increase the
resolution.

A. Solution-Based Phase Saving

The variable selection process partially mimics strategies
used in local search algorithms: it selects a variable that
was frequently involved in recent conflicts (high activity, the
VSIDS scheme [4]). However, the truth value assignment
procedure does not: it is based on phase saving, meaning it
assigns the value used most recently for the variable. While
phase saving is effective for pure SAT problems, solution-
based phase saving has proven to be more efficient for
optimisation [5], where the assignment is based on the best
solution found so far. If the previous search was in a space
where no better solution exists, time is effectively wasted with
standard phase saving. Solution phase saving avoids this by

searching around the best solution found. This is reminiscent
of local search, as the algorithm is directed near the best
solution. It can also be seen as a kind of Large Neighbourhood
Search [6]. Indeed, assigning values to a set of variables based
on the current best soluton and optimising for the remaining
variables is a common strategy in metaheuristic algorithms and
has been used for decades. Such a technique is particularly
relevant for the incomplete track in the maxSAT competition,
where solvers are expected to deliver high quality solution
within tight time budgets.

To boost its performance, we incorporated solution-based
phase saving in the linear algorithm. Solution-based phase
saving is not widely used in MaxSAT solving. It is used by
WPM3 [7] in a core-guided approach. However, we argue
that the technique is more natural for a linear algorithm. As
noted, the basic idea has been used in metaheuristic algorithms
and even in MaxSAT solving [5] [7], but the position of
the linear algorithm with solution-based phase saving among
modern MaxSAT solvers is not clear. Thus, we implemented
solution-based phase saving in Open-WBO [2] and evaluated
its performance using benchmarks from the recent maxSAT
evaluation 2017 and the international timetabling competition
2011. We do not present the results of our study in this short
paper, but we do note that it provided an improvement over the
baseline linear algorithm. In our recent CP paper [8], we stud-
ied solution-based phase saving for constraint programming
solvers and its relation to automated large neighbourhood
search. For CP, it provides substantial improvements. We note
that we have investigated other phase saving variants, but as
of now, the results remain inconclusive.

B. Varying Resolution Approach

While solution-based phase saving does provide improve-
ments, especially for certain classes of problems, it cannot be
used effectively for a large set of the MaxSAT competition
benchmarks. The reason is that the linear algorithm relies
on encoding a single large cardinality constraint, which is
directly dependant of the magnitude of the sum of the weights
of soft clauses. As the sum grows, in the general case, so
does the number of clauses and auxiliary variables that are
needed to encode the cardinality constraint. Thus, the memory
requirements can be significant. This has a direct impact on
the performance of the linear algorithm and it some cases
it completely dominates the solver. We note that this is not
necessarily the case for core-guided approaches, which for a

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

8

large part are uneffected by the magnitude of the weights.
Hence, we developed a simplification strategy where we ini-
tially consider the problem in low resolution where the weights
of the MaxSAT problem are divided by a large value. After the
simplified problem is solved optimally, the resolution of the
problem is increased i.e. the division value is lowered. This
continues iteratively until the full original problem is solved.
Therefore, the technique is theoretically complete, but in
practice for the benchmarks from the last MaxSAT evaluation
and the short time limits, only one or two resolutions are
typically considered. We note that solution-based phase saving
is used during the algorithm, as well as in between resolutions.
With this technique, intuitively, the most important constraints
are dealt with in the beginning and with executation time
other increasing important constraints are added the clause
database, resembling local search style methods. It is related
to the lexicographical optimisation approach for MaxSAT [9].

The main advantage is that the cardinality constraint that
needs to be encoded is orders of magnitude smaller than
from the original problem, offering substantial speed-ups.
However, the varying resolution approach comes at the price
of precision, as an optimum solution for the low-resolution
problem does not necessarily correspond to the optimum for
the higher resolutions and vice versa. Moreover, given two
models for the low-resolution problem and their cost, it is not
possible to determine which one of them is better based on
their cost without consider the complete original problem. The
tendency, heuristically speaking, is that better solutions to the
low-resolution problem correlate with better solutions to the
original problem.

III. CONCLUSION

We presented LinSBPS, the algorithm we submitted for
the MaxSAT Evaluation 2018. It uses a linear MaxSAT
algorithm coupled with solution-based phase saving and a
varying resolution approach. Our experimental results have
shown that significant improvements could be achieved when
compared with maxroster, one of the top performing solvers
from the incomplete track last year. However, more detailed
experimental results, such as those provided by the MaxSAT
competition, are required to draw stronger conclusions.

REFERENCES

[1] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2 system de-
scription,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 7, pp. 59–64, 2010.

[2] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: a modular
maxSAT solver,” in Proceedings of SAT-14, pp. 438–445.

[3] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of IJCAI’09.

[4] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proceedings of DAC’01,
pp. 530–535.

[5] I. Abı́o Roig, “Solving hard industrial combinatorial problems with SAT,”
Ph.D. thesis, Technical University of Catalonia (UPC), 2013.

[6] P. Shaw, “Using constraint programming and local search methods to
solve vehicle routing problems,” in Proceedings of CP’98 (M. Maher
and J.-F. Puget, eds.), pp. 417–431, Springer.

[7] C. Ansótegui, F. Didier, and J. Gabàs, “Exploiting the structure of
unsatisfiable cores in maxSAT,” in Proceedings of IJCAI-15, pp. 283–
289.

[8] E. Demirović and P. J. Stuckey, “Solution-based phase saving and large
neighbourhood search,” in to appear in the proceedings of CP’18’.

[9] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 3-4, pp. 317–343, 2011.

9

LMHS in MaxSAT Evaluation 2018
Paul Saikko and Tuukka Korhonen and Jeremias Berg and Matti Järvisalo

Department of Computer Science, HIIT
University of Helsinki, Finland

Abstract—We describe recent updates to the LMHS MaxSAT
solver, submitted to the 2018 MaxSAT Evaluation.

I. INTRODUCTION

An incremental update of the LMHS MaxSAT solver [1]
is submitted to the 2018 MaxSAT evaluation. Updates the
the 2018 version consist of mostly bugfixes. A notable per-
formance increase was gained by solving small MaxSAT
instances (together with an initial disjoint set of cores) with
the IP solver. The following description of key updates the the
2017 solver apply to the current version as well.

II. IMPLICIT HITTING SET ALGORITHM

Input

MaxPre
preprocess

Fh ∪ Fs

MiniSat
Fh ∪ (Fs \H)

CPLEX
MCHS(K, c)

H

K ← K ∪ {k}
UNSAT

c : Fs → R+

SAT

MaxPre
recontruct

Output

τ,
∑

C∈H c(C)

LMHS implements the implicit hitting set algorithm [2] for
MaxSAT [3], [4]. We apply MaxSAT preprocessing to simplify
the problem before solving. After preprocessing, the MaxSAT
cost function c is input to the optimizer and the CNF formula
(hard clauses Fh and soft clauses Fs) is given to the satisfiabil-
ity checker. MiniSat 2.2 [5] is used as the satisfiability checker,
and CPLEX 12.7 [6] as the optimizer. In short, the implicit
hitting set loop alternates between checking the satisfiability of
the formula (excluding a hitting set H) to find an unsatisfiable
core k. Unsatisfiable cores are accumulated in a set K, for
which the optimizer finds a minimum-cost hitting set wrt.
the cost function c. Upper bounds on the optimal solution
cost (feasible solutions) are found during search LMHS’s core
minimization proceduce and non-optimal hitting set phase (not
pictured). Lower bounds are proved by the optimizer.

III. LCNF PREPROCESSING

LMHS has been updated with a new MaxSAT preprocessor,
MaxPre. MaxPre implements a range of well-known and re-
cent SAT-based preprocessing techniques as well as MaxSAT-
specific techniques that make use of weights of soft clauses.

LMHS uses the MaxSAT preprocessor, MaxPre [7]. MaxPre
implements a range of well-known and recent SAT-based pre-
processing techniques as well as MaxSAT-specific techniques
that make use of weights of soft clauses. MaxSAT specific
techniques include group detection, label matching, group-
subsumed label elimination, and binary core removal. Tight
integration with MaxPre’s C++ API eliminates unnecessary
I/O overhead. LMHS solves the preprocessed instance directly
as a labelled CNF formula [8], which avoids the addition of
new auxiliary variables to soft clauses

IV. REDUCED-COST FIXING

We implement recent reduced-cost fixing techniques for
MaxSAT [9]. LP-based reduced-cost fixing together with
bounds allow for some soft clauses to be hardened or relaxed
during search, simplifying the problem. This inexpensive tech-
nique requires only that the LP relaxation of the hitting set IP
is solved once per iteration.

V. AVAILABILITY

LMHS is open source and available at https://www.cs.
helsinki.fi/group/coreo/lmhs/. MaxPre is available as a stan-
dalone preprocessor at https://www.cs.helsinki.fi/group/coreo/
maxpre/.

REFERENCES

[1] P. Saikko, J. Berg, and M. Järvisalo, “LMHS: A SAT-IP hybrid MaxSAT
solver,” in Proc. SAT, ser. LNCS, vol. 9710. Springer, 2016, pp. 539–546.

[2] R. M. Karp, “Implicit hitting set problems and multi-genome alignment,”
in Proc. CPM, ser. LNCS, vol. 6129. Springer, 2010, p. 151.

[3] J. Davies and F. Bacchus, “Solving MAXSAT by solving a sequence of
simpler SAT instances,” in Proc. CP, ser. LNCS, vol. 6876. Springer,
2011, pp. 225–239.

[4] ——, “Postponing optimization to speed up MAXSAT solving,” in
Proc. CP, ser. LNCS, vol. 8124. Springer, 2013, pp. 247–262.

[5] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. SAT, ser.
LNCS, vol. 2919. Springer, 2003, pp. 502–518.

[6] IBM, “CPLEX Optimizer,” 2017, http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/.

[7] T. Korhonen, J. Berg, P. Saikko, and M. Järvisalo, “MaxPre: An extended
MaxSAT preprocessor,” in Proc. SAT, ser. LNCS, vol. 10491. Springer,
2017, pp. 449–456.

[8] J. Berg, P. Saikko, and M. Järvisalo, “Improving the effectiveness of sat-
based preprocessing for maxsat,” in Proc. IJCAI, 2015, pp. 239–245.

[9] F. Bacchus, M. Järvisalo, P. Saikko, and A. Hyttinen, “Reduced cost fixing
in MaxSAT,” in Proc. CP, ser. LNCS, vol. 10416. Springer, 2017, pp.
641–651.

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

10

MaxHS in the 2018 MaxSat Evaluation

Fahiem Bacchus
Department of Computer Science

University of Toronto
Ontario, Canada

Email: fbacchus@cs.toronto.edu

1. MaxHS

MaxHS is a MaxSat solver that originated in the PhD
work of Davies [4]. It was the first MaxSat solver to utilize
the Implicit Hitting Set (IHS) approach, and its core com-
ponents are described in [4], [2], [3], [5]. Additional useful
insights into IHS are provided in [6], [7]. IHS solvers utilize
both an integer programming (IP) solver and a SAT solver in
a hybrid approach to MaxSat solving. MaxHS utilizes min-
isat v2.2 as its SAT solver and IBM’s CPLEX v12.8 as its
IP solver. Interestingly experiments with more sophisticated
SAT solvers like Glucose http://www.labri.fr/perso/lsimon/
glucose/ and Lingeling http://fmv.jku.at/lingeling/ yielded
inferior performance. This indicates that the SAT problems
being solved are quite simple, too simple for the more
sophisticated techniques used in these SAT solvers to pay
off. In fact, simpler SAT problems are one of the original
motivations behind MaxHS [2].

The 2018 version of MaxHS is unchanged from the 2017
submission, with the expection that the newest CPLEX-12.8
is being used. To make this document more self contained
we repeat here the main features of v3.0, as compared to
the prior published descriptions of MaxHS are as follows
(familiarity with the basics of the IHS approach is assumed).

1.0.1. Termination based on Bounding. MaxHS v3.0
maintains an upper bound (and best model found so far)
and a lower bound on the cost of an optimal solution (the
IP solver computes valid lower bounds). MaxHS terminates
when the gap between the lower bound and upper bound
is low enough (with integer weights when this gap is less
than 1, the upper bound model is optimal). This means that
MaxHS no longer needs to wait until the IP solver returns an
hitting set whose removal from the set of soft clauses yields
SAT; it can return when the IP solver’s best lower bound is
close enough to show that the best model is optimal.

1.0.2. Early Termination of Cplex. In previous versions
of MaxHS, the IP solver was run to completion forcing it
to find an optimal solution every time it is called. However,
with bounding, optimal solutions are not always needed. In
particular, if the IP solver finds a feasible solution whose
cost is better than the current best model it can return that:
either the IP solution is feasible for the MaxSat problem, in

which case we can lower the upper bound, or it is infeasible
in which case we can obtain additional cores to augment the
IP model (and thus increase the lower bound). Terminating
the IP solver before optimization is complete can yield
significant time savings.

1.0.3. Reduced Cost fixing via the LP-Relaxation. Using
an LP relaxation and the reduced costs associated with the
optimal LP solution, some soft clauses can be hardened or
immediately falsified. See [1] for more details.

1.0.4. Mutually Exclusive Soft Clauses. Sets of soft
clauses of which at most one can be falsified or at most
one can be satisfied are detected. When all of these soft
clauses have the same weight they can all be more compactly
encoded with a single soft clause. This encoding does not
always yield better performance due to some subtle effects.
However, techniques were developed to better exploit such
information, and a fuller description of these techniques is in
preparation. With these techniques performance gains were
achieved.

1.0.5. Other clauses to the IP Solver. Problems with a
small number of variables are given entirely to the IP solver,
so that it directly solves the MaxSat problem. In this case
the SAT solver is used to first compute some additional
clauses and cores, and to find a better initial model for the
IP solver. This additional information from the SAT solver
often makes the IP solver much faster than just running the
IP solver and represents an alternate way of hybridizing SAT
and IP solvers.

1.0.6. Other techniques for finding Cores. MaxHS itera-
tively calls the IP solver to obtain a hitting set of the cores
computed so far. If that hitting set does not yield an optimal
MaxSat solution then more cores must be added to the IP
solver. In some of these iterations very few cores can be
found causing only a slight improvement to the IP solver’s
model. This results in a large number of time consuming
calls to the IP solver. Two method were developed to aid
this situation (a) we ask the IP solver for more solutions and
generate cores from these as hitting sets as well and (b) if
we have a new upper bound model we try to improve this
model by converting it to a minimal correction set (MCS). In

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

11

converting the upper bound model to an MCS we either find
a better model (lowering the upper bound) or we compute
additional conflicts that can be added to the IP solver.

1.0.7. Incomplete MaxSat Solving. The solver maintains
upper bounding models as described above, and in its normal
operation it terminates only when it is able to prove that its
best model is in fact optimal. However, often it is able to find
very good upper bounding models or even optimal models
long before termination (proving a model to be optimal is
generally as hard or even harder than finding it). For the
incomplete track we simply output the best model found so
far at timeout.

References

[1] Bacchus, F., Hyttinen, A., Järvisalo, M., Saikko, P.: Reduced cost fixing
in maxsat. In: Proc. CP. p. in press (2017)

[2] Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence
of simpler SAT instances. In: Proc. CP. Lecture Notes in Computer
Science, vol. 6876, pp. 225–239. Springer (2011)

[3] Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in
MaxSAT. In: Proc. SAT. Lecture Notes in Computer Science, vol.
7962, pp. 166–181. Springer (2013)

[4] Davies, J.: Solving MAXSAT by Decoupling Optimization and Sat-
isfaction. Ph.D. thesis, University of Toronto (2013), http://www.cs.
toronto.edu/∼jdavies/Davies Jessica E 201311 PhD thesis.pdf

[5] Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT
solving. In: Proc. CP. Lecture Notes in Computer Science, vol. 8124,
pp. 247–262. Springer (2013)

[6] Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT
solver. In: Proc. SAT. Lecture Notes in Computer Science, vol. 9710,
pp. 539–546. Springer (2016)

[7] Saikko, P.: Re-implementing and Extending a Hybrid SAT-IP Approach
to Maximum Satisfiability. Master’s thesis, University of Helsinki
(2015), http://hdl.handle.net/10138/159186

12

Maxino
Mario Alviano

Department of Mathematics and Computer Science
University of Calabria

87036 Rende (CS), Italy
Email: alviano@mat.unical.it

Abstract—Maxino is based on the k-ProcessCore algorithm,
a parametric algorithm generalizing OLL, ONE and PMRES.
Parameter k is dynamically determined for each processed
unsatisfiable core by a function taking into account the size of
the core. Roughly, k is in O(logn), where n is the size of the
core. Satisfiability of propositional theories is checked by means
of a pseudo-boolean solver extending Glucose 4.1 (single thread).

A VERY SHORT DESCRIPTION OF THE SOLVER

The solver MAXINO is build on top of the SAT solver
GLUCOSE [7] (version 4.1). MaxSAT instances are normalized
by replacing non-unary soft clauses with fresh variables, a
process known as relaxation. Specifically, the relaxation of
a soft clause φ is the clause φ ∨ ¬x, where x is a variable
not occurring elsewhere; moreover, the weight associated
with clause φ is associated with the soft literal x. Hence,
the normalized input processed by MAXINO comprises hard
clauses and soft literals, so that the computational problem
amounts to maximize a linear function, which is defined by
the soft literals, subject to a set of constraints, which is the
set of hard clauses.

The algorithm implemented by MAXINO to address such a
computational problem is based on unsatisfiable core analysis,
and in particular takes advantage of the following invariant:
A model of the constraints that satisfies all soft literals is an
optimum model. The algorithm then starts by searching such
a model. On the other hand, if an inconsistency arises, the
unsatisfiable core returned by the SAT solver is analyzed. The
analysis of an unsatisfiable core results into new constraints
and new soft literals, which replace the soft literals involved in
the unsatisfiable core. The new constraints are essentially such
that models satisfying all new soft literals actually satisfy all
but one of the replaced soft literals. Since there is no model
that satisfies all replaced soft literals, it turns out that the
invariant is preserved, and the process can be iterated.

Specifically, the algorithm implemented by MAXINO is K,
based on the k-ProcessCore procedure introduced by Alviano
et al. [2]. It is a parametric algorithm generalizing OLL [3],
ONE [2] and PMRES [8]. Intuitively, for an unsatisfiable core
{x0, x1, x2, x3}, ONE introduces the following constraint:

x0 + x1 + x2 + x3 + ¬y1 + ¬y2 + ¬y3 ≥ 3
y1 → y2 y2 → y3

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3). OLL introduces the following con-
straints (the first immediately, the second if a core containing

y1 is subsequently found, and the third if a core containing y2
is subsequently found):

x0 + x1 + x2 + x3 + ¬y1 ≥ 3
x0 + x1 + x2 + x3 + ¬y2 ≥ 2
x0 + x1 + x2 + x3 + ¬y3 ≥ 1

Concerning PMRES, it introduces the following constraints:

x0 ∨ x1 ∨ ¬y1 z1 ↔ x0 ∧ x1
z1 ∨ x2 ∨ ¬y2 z2 ↔ z1 ∧ x2
z2 ∨ x3 ∨ ¬y3

which are essentially equivalent to the following constraints:

x0 + x1 + ¬z1 + ¬y1 ≥ 2 z1 → y1
z1 + x2 + ¬z2 + ¬y2 ≥ 2 z2 → y2
z2 + x3 + ¬y3 ≥ 1

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3), and z1, z2 are fresh auxiliary variables.

Algorithm K, instead, introduces a set of constraints of
bounded size, where the bound is given by the chosen param-
eter k, and is specifically 2 · (k+1). ONE, which is essentially
a smart encoding of OLL, is the special case for k = ∞,
and PMRES is the special case for k = 1. For the example
unsatisfiable core, another possibility is k = 2, which would
results in the following constraints:

x0 + x1 + x2 + ¬z1 + ¬y1 + ¬y2 ≥ 3 z1 → y1 y1 → y2
z1 + x3 + ¬y3 ≥ 1

In this version of MAXINO, the parameter k is dynamically
determined based on the size of the analyzed unsatisfiable
core: k ∈ O(log n), where n is the size of the core.

The analysis of unsatisfiable core is preceded by a shrink
procedure [1]. Specifically, a reiterated progression search
is performed on the unsatisfiable core returned by the SAT
solver. Such a procedure significantly reduce the size of the
unsatisfiable core, even if it does not necessarily returns an
unsatisfiable core of minimal size. Since minimality of the
unsatisfiable cores is not a requirement for the Additionally,
satisfiability checks performed during the shrinking process
are subject to a budget on the number of conflicts, so that the
overhead due to hard checks is limited. Specifically, the budget
is set to the number of conflicts arose in the satisfiability
check that lead to detecting the unsatisfiable core; if such a
number is less than 1000 (one thousand), the budget is raised
to 1000. The budget is divided by 2 every time the progression
is reiterated.

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

13

Weighted instances are handled by stratification and in-
troducing remainders [4]–[6]. Specifically, soft literals are
partitioned in strata depending on the associated weight.
Initially, only soft literals of greatest weight are considered,
and soft literals in the next stratum are added only after a
model satisfying all considered soft literals is found. When
an unsatisfiable core is found, the weight of all soft literals
in the core is decreased by the weight associated with last
added stratum. Soft literals whose weight become zero are
not considered soft literals anymore.

Finally, a preprocessing step is performed on unweighted
instances, which essentially iterates on all hard clauses of
the input theory, sorted by length, and checks whether they
already witness some unsatisfiable core. Specifically, an hard
clause witnesses an unsatisfiable core if all literals in the clause
are the complement of a soft literal. If this is the case, the
unsatisfiable core is analyzed immediately. The rationale for
such a preprocessing step is that hard clauses in the input
theory are often small, and the smaller the better for the
unsatisfiable core based algorithms.

REFERENCES

[1] Mario Alviano and Carmine Dodaro. Anytime answer set optimization
via unsatisfiable core shrinking. TPLP, 16(5-6):533–551, 2016.

[2] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A maxsat
algorithm using cardinality constraints of bounded size. In Qiang Yang
and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 2677–2683. AAAI
Press, 2015.

[3] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub. Unsatisfiability-based optimization in clasp. In 28th International
Conference on Logic Programming, pages 211–221, Budapest, Hungary,
September 2012.

[4] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted)
partial maxsat through satisfiability testing. In SAT 2009, pages 427–440,
Swansea, UK, June 2009. Springer.

[5] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based
MaxSAT algorithms. Artificial Intelligence, 196(0):77–105, March 2013.

[6] Josep Argelich, Inês Lynce, and João P. Marques Silva. On solving
boolean multilevel optimization problems. In 21st International Joint
Conference on Artificial Intelligence, pages 393–398, Pasadena, Califor-
nia, July 2009. IJCAI Organization.

[7] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In 21st International Joint Conference on
Artificial Intelligence, pages 399–404, Pasadena, California, July 2009.
IJCAI Organization.

[8] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using
core-guided MaxSAT resolution. In Twenty-Eighth AAAI Conference on
Artificial Intelligence, pages 2717–2723, Québec City, Canada, July 2014.
AAAI Press.

14

MaxRoster:Solver Description

Takayuki Sugawara

Sugawara Systems

3-24-13 Kitanakayama Izumi-ku Sendai-City,Japan

nurse-support@sugawaras-systems.com

Abstract—In this document, we briefly describe the

techniques employed by the MaxRoster solver participating in
MaxSAT competition 2017.

I. INTRODUCTION

MaxRoster participates in Incomplete Track. MaxRoster
has two engine,one is local search solver Ramp and another is
MapleSAT with CHB. First, Ramp is used 6sec and then
complete maxsat algorithm starts using MapleSAT. Our aim is
to make feasible solution better, though it has ability of getting
optimum solution.

II. IMPLEMENTATION

 Weighted Instances:

 For weighted instances, either incremental version of OLL

algorithm or model-based algorithm is used. Initially,

MaxRoster makes a call to the SAT solver using solely the

hard clauses. If SAT,the cost of this model represents an

initial upper bound on the MaxSAT solution.The ratio of the
cost mainly determines which algorithm should be invoked

later.In model based algorithm, we implemented special clause

counting the inputs with same weight in MapleSAT to

address large and different weights for the instance.

Unweighted Instances:

 For unweighted instances, either incremental version of

MCU3 algorithm or model-based algorithm is used. Initially,

MCU3 algorithm is invoked. If predefined timeout occurs in
the process, then MaxRoster switches to model based

algorithm dynamically.

References

[1] Yi Fan, Zongjie Ma, Kaile Su, Abdul Sattar,Chengqian Li, “Ramp: A

Local Search Solver based on Make-positive Variables “ MaxSAT

Evaluation 2016.

[2] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, Krzysztof Czarnecki:

Exponential Recency Weighted Average Branching Heuristic for SAT
Solvers. AAAI 2016: 3434-3440

[3] A. Morgado, A. Ignatiev, J. Marques-Silva: MSCG: Robust Core-

Guided MaxSAT Solving. Special Issue on SAT 2014 Competitions and
Evaluations. JSAT Volume 9, 2014.

[4] Martins, R., Joshi, S., Manquinho, V.M., Lynce, I.: Incremental

cardinality constraints for MaxSAT. In: CP (2014).

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

15

Open-WBO-Inc in MaxSAT Evaluation 2018
Saurabh Joshi‡, Prateek Kumar‡, Vasco Manquinho∗, Ruben Martins†, Alexander Nadel?, Sukrut Rao‡

‡Indian Institute of Technology Hyderabad, India
∗INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal

†Carnegie Mellon University, USA
?Intel Corporation, Israel

I. INTRODUCTION

Open-WBO-Inc is developed on top of Open-WBO [1],
[2], [3], which is one of the best solvers in the MaxSAT
Evaluations of 2014–2017. For many applications that can be
encoded into MaxSAT, it is important to quickly find solutions
even though these may not be optimal. Open-WBO-Inc is
designed to find a good solution1 in a short amount of time.
Open-WBO-Inc starts with an incomplete stage where it is
not guaranteed to converge to an optimal solution. Once this
stage is completed, we switch to a complete algorithm that can
further improve the solution and eventually find the optimal
solution. Since Open-WBO-Inc is based on Open-WBO, it
can use any MiniSAT-like solver [4]. For this evaluation we
use Glucose 4.1 [5] as our back-end SAT solver.

II. UNWEIGHTED INCOMPLETE MAXSAT

For unweighted incomplete MaxSAT, we submitted two ver-
sions: Open-WBO-Inc-MCS and Open-WBO-Inc-OBV. The
first version is based on Minimal Correction Subset (MCS)
enumeration. A MCS of an unsatisfiable set of constraints is
a minimal subset that, if removed, makes the constraint set
satisfiable. We use a linear search algorithm [6] to enumerate
MCSes. We impose a limit of 100,000 conflicts or a maximum
of 30 MCSes when enumerating MCSes. Once this limit is
reached or all MCSes are found, the solver will continue its
search using a complete linear search algorithm SAT-UNSAT
(LSU) [7] for MaxSAT starting from the best upper bound
value found by MCS enumeration.

Open-WBO-Inc-OBV is based on bit-vector optimization
and follows a similary strategy to the incomplete approach
used in Mrs. Beaver [8]. This approach operates over a vector
T that represents the relaxation variables introduced in each
soft clause. We run 100 iterations of the following loop:
• Run the UMS-OBV-BS algorithm;
• Reverse T . Run another UMS-OBV-BS iteration;
• Reverse T . Run the OBV-BS algorithm;
• Reverse T . Run another OBV-BS iteration.
At the end of each loop we randomly shuffle the vector
T . We also impose a limit of 10,000 conflicts when calling
the UMS-OBV-BS and OBV-BS algorithms. For a detailed
description of these algorithms we refer the reader to Mrs.
Beaver paper [8]. If this algorithm terminates the incomplete

1By “good solution” we mean that it can be potentially suboptimal but is
not far from the optimal solution.

stage, we continue the search by using LSU algorithm [7] for
MaxSAT starting from the best upper bound value found by
the bit-vector optimization stage.

To restrict the upper bound at each iteration for the LSU
algorithm, we need to encode cardinality constraints into
CNF. Both Open-WBO-Inc-MCS and Open-WBO-Inc-OBV
versions use the Modulo Totalizer encoding [9] for cardinality
constraints.

III. WEIGHTED INCOMPLETE MAXSAT

For weighted incomplete MaxSAT, we submitted two ver-
sions: Open-WBO-Inc-Cluster and Open-WBO-Inc-BMO.
Open-WBO-Inc-Cluster uses a technique described in [10]
where it partitions the clauses in clusters and all the clauses in
a cluster are given a weight equal to the representative weight
of the cluster, which is a function of original weights of the
clauses in the cluster. For the purpose of MaxSAT Evaluation
2018, we use arithmetic mean of the weights of clauses as
representative weight of the cluster. The number of clusters is
set to 2 for the purpose of this evaluation, as it is reported to
strike a good balance between formula size and precision [10].
Open-WBO-Inc-Cluster uses LSU algorithm [7] with the
modified weights after clustering. It uses the Generalized
Totalizer Encoding (GTE) [11] to encode Pseudo-Boolean
constraints that are generated to restrict weighted sum of the
unsatisfied soft clauses. If an optimal solution is found for the
modified MaxSAT instance, this will be an upper bound of the
original MaxSAT instance. When this occurs, we revert the
weights to the original weights and resume the search using
the LSU algorithm starting from the best known solution.

Open-WBO-Inc-BMO version is based on bounded multi-
level optimization [12] using a variant of linear search algo-
rithm SAT-UNSAT [7] along with the partitioning of clauses as
described earlier [10]. The algorithm used in Open-WBO-Inc-
BMO performs optimization on each cluster in the descending
order of its representative weight. This is done by performing
a sequence of calls to a SAT solver and refining an upper
bound µ on the number of unsatisfied soft clauses. To restrict
µ at each iteration, we need to encode cardinality constraints
into CNF, for which, incremental Totalizer encoding [2] has
been used. Once for a given cluster the upper bound µ cannot
be improved, it is frozen, and the next cluster in the order
is optimized. For the purpose of MaxSAT Evaluation 2018,
we set the number of clusters to the total number of different
weights of the clauses of the input formula. Therefore, the

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

16

representative weight and the original weight remains the same
in this case. As in Open-WBO-Inc-Cluster, if an optimal
solution is found using this algorithm, then it is not necessarily
an optimal solution of the input formula. When this occurs,
we keep the best known solution and resume the search using
the LSU algorithm which can potentially find better solutions
and prove optimality.

IV. AVAILABILITY

We submit the source of Open-WBO-Inc as part of our
submissions to the MaxSAT Evaluations 2018. The code
will be later integrated into the main release of Open-WBO
available under a MIT license in GitHub at https://github.com/
sat-group/open-wbo.

ACKNOWLEDGMENTS

We would like to thank Laurent Simon and Gilles Audemard
for allowing us to use Glucose in the MaxSAT Evaluation.
We would also like to thank Mikoláš Janota, Inês Lynce and
Miguel Terra-Neves for their authorship and contributions to
Open-WBO on which Open-WBO-Inc is based.

REFERENCES

[1] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: a Modular
MaxSAT Solver,” in SAT, ser. LNCS, vol. 8561. Springer, 2014, pp.
438–445.

[2] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental Cardi-
nality Constraints for MaxSAT,” in CP. Springer, 2014, pp. 531–548.

[3] M. Neves, R. Martins, M. Janota, I. Lynce, and V. Manquinho, “Exploit-
ing Resolution-Based Representations for MaxSAT Solving,” in SAT.
Springer, 2015, pp. 272–286.

[4] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT.
Springer, 2003, pp. 502–518.

[5] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in IJCAI, 2009, pp. 399–404.

[6] J. Bailey and P. J. Stuckey, “Discovery of Minimal Unsatisfiable Subsets
of Constraints Using Hitting Set Dualization,” in PADL. Springer, 2005,
pp. 174–186.

[7] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 7, no. 2-3, pp.
59–6, 2010.

[8] A. Nadel, “Solving MaxSAT with Bit-Vector Optimization,” in SAT.
Springer, 2018.

[9] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita, “Modulo
Based CNF Encoding of Cardinality Constraints and Its Application to
MaxSAT Solvers,” in ICTAI. IEEE, 2013, pp. 9 – 17.

[10] S. Joshi, P. Kumar, R. Martins, and S. Rao, “Approximation Strategies
for Incomplete MaxSAT,” in CP. Springer, 2018.

[11] S. Joshi, R. Martins, and V. M. Manquinho, “Generalized Totalizer
Encoding for Pseudo-Boolean Constraints,” in CP. Springer, 2015,
pp. 200–209.

[12] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 3-4, pp. 317–343, 2011.

17

Open-WBO @ MaxSAT 2018
Ruben Martins

rubenm@cs.cmu.edu
CMU, USA

Norbert Manthey
nmanthey@conp-solutions.com

Dresden, Germany

Miguel Terra-Neves, Vasco Manquinho, Inês Lynce
{neves,vmm,ines}@inesc-id.pt

INESC-ID/IST, Portugal

I. INTRODUCTION

Open-WBO [1] is an open source MaxSAT solver that
supports several MaxSAT algorithms [2], [3], [4], [5], [6], [7],
[8] and MaxSAT solvers [9], [10]. Open-WBO is particularly
efficient for unweighted MaxSAT and has been one of the
best solvers in the MaxSAT Evaluations from 2014 to 2017.
Two versions of Open-WBO were submitted to the MaxSAT
Evaluation 2018 (MSE2018): OPEN-WBO-RISS and OPEN-
WBO-GLUC. The remainder of this document describes the
MaxSAT algorithms and SAT solvers used in each version.

II. SAT SOLVERS

OPEN-WBO is based on the data structures of MIN-
ISAT 2.2 [9], [11]. Therefore, solvers based on MINISAT 2.2
can be used as potential backend, including formula sim-
plification. The default SAT backend is GLUCOSE 4.1 [10],
[12], which has been improved for incremental search [13].
Furthermore, formula simplification is typically disabled, as
most work on incremental SAT solving with formula simpli-
fication, e.g. [14], has not been backported into MINISAT 2.2
or GLUCOSE 4.1.

Besides GLUCOSE 4.1, OPEN-WBO now supports MIN-
ISAT 2.2 and RISS [15], where MINISAT 2.2 [9] is the latest
version from GitHub [11]. In this version, some data structures
are different, for example the representation of the conflicting
set of assumption literals. Also, the file structure changed.
Both RISS and MINISAT 2.2 support reserving variables when
a SAT solver is created, which allows to store them in a more
compact way. Given the variety of solvers and features, we
adapted OPEN-WBO to support solvers with both the old as
well as the new file structure, and furthermore, allow to select
whether the variable reservation feature is available during
compile time. The different versions submitted to the MaxSAT
Evaluation 2018 differ between themselves on the backend
SAT solver. Namely, OPEN-WBO-RISS and OPEN-WBO-GLUC
use RISS and GLUCOSE 4.1, respectively.

III. MAXSAT ALGORITHMS

In this section we briefly describe the algorithms used for
the complete and incomplete tracks at the MSE2018.

A. Complete Track

For the complete track, OPEN-WBO uses a variant of
the unsatisfiability-based algorithm MSU3 [3] for unweighted
problems and the OLL algorithm [7] for weighted instances.
These algorithms work by iteratively refining a lower bound

λ on the number of unsatisfied soft clauses until an optimum
solution is found. Both MSU3 and OLL use the Totalizer
encoding for incremental MaxSAT solving [4]. For unweighted
MaxSAT, we extended the incremental MSU3 algorithm [4]
with resolution-based partitioning techniques [8]. We represent
a MaxSAT formula using a resolution-based graph representa-
tion and iteratively join partitions by using a proximity mea-
sure extracted from the graph representation of the formula.
The algorithm ends when only one partition remains and
the optimal solution is found. Since the partitioning of some
MaxSAT formulas may be unfeasible or not significant, we
heuristically choose to run MSU3 with or without partitions.
In particular, we do not use partition-based techniques when
one of the following criteria is met: (i) the formula is too
large (> 1,000,000 clauses), (ii) the ratio between the number
of partitions and soft clauses is too high (> 0.8), or (iii) the
sparsity of the graph is too small (< 0.04). For weighted
MaxSAT, we use the OLL algorithm [7] without further
improvements.

B. Incomplete Track

For the incomplete track, OPEN-WBO uses a linear search
algorithm SAT-UNSAT [16] with lexicographical optimization
for weighted problems [17]. This algorithm works by perform-
ing a sequence of calls to a SAT solver and refining an upper
bound µ on the number of unsatisfied soft clauses. To restrict
µ at each iteration, we need to encode a cardinality constraint
(pseudo-Boolean constraint) for unweighted (weighted) prob-
lems into CNF. The LSU version versions uses the Modulo
Totalizer encoding [18] for cardinality constraints and the
Adder [19] or Generalized Totalizer encoding (GTE) [20] for
pseudo-Boolean constraints.

Relatively to the MSE17 version, we did the following
improvements: (i) we incorporated solution-based phase sav-
ing [21], [22], and (ii) for weighted problems, we dynamically
choose between the Adder encoding and the GTE encoding.
We choose the former when the number of auxiliary clauses
created by the GTE encoding exceeds 3,000,000.

IV. AVAILABILITY

The latest release of Open-WBO is available under
a MIT license in GitHub at https://github.com/sat-group/
open-wbo. To contact the authors please send an email to:
open-wbo@sat.inesc-id.pt.

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

18

ACKNOWLEDGMENTS

We would like to thank Laurent Simon and Gilles Audemard
for allowing us to use GLUCOSE 4.1 in the MaxSAT Evalu-
ation. We would also like to thank Niklas Eén and Niklas
Sörensson for the development of MINISAT 2.2. We would
also like to thank all the collaborators on previous versions of
OPEN-WBO, namely Saurabh Joshi and Mikoláš Janota.

REFERENCES

[1] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: a Modular
MaxSAT Solver,” in SAT, ser. LNCS, vol. 8561. Springer, 2014, pp.
438–445.

[2] V. Manquinho, J. Marques-Silva, and J. Planes, “Algorithms for
Weighted Boolean Optimization,” in SAT. Springer, 2009, pp. 495–
508.

[3] J. Marques-Silva and J. Planes, “On Using Unsatisfiability for Solving
Maximum Satisfiability,” CoRR, 2007.

[4] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental Cardi-
nality Constraints for MaxSAT,” in CP. Springer, 2014, pp. 531–548.

[5] R. Martins, V. Manquinho, and I. Lynce, “On Partitioning for Maximum
Satisfiability,” in ECAI. IOS Press, 2012, pp. 913–914.

[6] R. Martins, V. M. Manquinho, and I. Lynce, “Community-based parti-
tioning for maxsat solving,” in SAT. Springer, 2013, pp. 182–191.

[7] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-Guided MaxSAT
with Soft Cardinality Constraints,” in CP. Springer, 2014, pp. 564–573.

[8] M. Neves, R. Martins, M. Janota, I. Lynce, and V. M. Manquinho,
“Exploiting Resolution-Based Representations for MaxSAT Solving,” in
SAT. Springer, 2015, pp. 272–286.

[9] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT.
Springer, 2003, pp. 502–518.

[10] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in IJCAI, 2009, pp. 399–404.

[11] N. Sörensson, N. Een, and N. Manthey. (2018, May) GitHub repository
for MiniSat. https://github.com/conp-solutions/minisat.

[12] G. Audemard and L. Simon. (2018, May) Glucose’s home page.
http://www.labri.fr/perso/lsimon/glucose.

[13] G. Audemard, J.-M. Lagniez, and L. Simon, “Improving glucose for in-
cremental sat solving with assumptions: Application to mus extraction,”
in SAT. Springer, 2013.

[14] A. Nadel, V. Ryvchin, and O. Strichman, “Ultimately incremental sat,”
in SAT, C. Sinz and U. Egly, Eds. Springer, 2014.

[15] N. Manthey. (2018, May) GitHub repository for Riss.
https://github.com/conp-solutions/riss.

[16] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 7, no. 2-3, pp.
59–6, 2010.

[17] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 3-4, pp. 317–343, 2011.

[18] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita, “Modulo
Based CNF Encoding of Cardinality Constraints and Its Application to
MaxSAT Solvers,” in ICTAI. IEEE, 2013, pp. 9 – 17.

[19] J. P. Warners, “A Linear-Time Transformation of Linear Inequalities
into Conjunctive Normal Form,” Information Processing Letters, vol. 68,
no. 2, pp. 63–69, 1998.

[20] S. Joshi, R. Martins, and V. M. Manquinho, “Generalized Totalizer
Encoding for Pseudo-Boolean Constraints,” in CP. Springer, 2015,
pp. 200–209.

[21] C. Ansótegui and J. Gabàs, “WPM3: An (in)complete algorithm for
weighted partial MaxSAT,” Artificial Intelligence, vol. 250, pp. 37–57,
2017.

[22] E. Demirović and P. J. Stuckey, “Local-Style Search in the Linear
MaxSAT Algorithm: A Computational Study of Solution-Based Phase
Saving,” in Pragmatics of SAT Workshop, 2018.

19

Pacose: An Iterative SAT-based MaxSAT Solver
Tobias Paxian, Sven Reimer, Bernd Becker

Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ paxiant | reimer | becker }@informatik.uni-freiburg.de

Abstract—Pacose is a SAT-based MaxSAT solver using a
CNF encoding for Pseudo-Boolean (PB) constraints [1]. It is an
extension of the model guided QMaxSAT1702 [2] solver based on
Glucose 3.0 [3] SAT solver. It uses a simple heuristic to choose
between the Binary Adder [4] encoding of QMaxSAT and the
Dynamic Global Polynomial Watchdog (DGPW) encoding which
is based on [5].

Index Terms—MaxSAT Solver, QMaxSAT, Glucose, Dynamic
Global Polynomial Watchdog

I. TITLE

We use a new constraint encoding for PB-constraints solving
the weighted MaxSAT problem with iterative SAT-based meth-
ods based on the Polynomial Watchdog (PW) CNF encoding
called DGPW. The watchdog of the PW encoding indicates
whether the bound of the PB constraint holds. In our approach,
we lift this static watchdog concept to a dynamic one allowing
an incremental convergence to the optimal result. Conse-
quently, we formulate and implement a SAT-based algorithm
for our new Dynamic Polynomial Watchdog (DPW) encoding
which can be applied for solving the MaxSAT problem.
Furthermore, we introduce three fundamental optimizations of
the PW encoding also suited for the original version leading
to significantly less encoding size.

We integrated this encoding into QMaxSAT (2nd place in
the last MaxSAT Evaluation 2017) and adapt the heuristic of
QMaxSAT to choose between the Binary Adder encoding of
QMaxSAT and our DGPW approach.

REFERENCES

[1] T. Paxian, S. Reimer, and B. Becker, “Dynamic polynomial watchdog
encoding for solving weighted maxsat,” Theory and Applications of
Satisfiability Testing–SAT 2018, 2018.

[2] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A
partial Max-SAT solver system description,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 8, pp. 95–100, 2012.

[3] G. Audemard and L. Simon, “On the glucose sat solver,” International
Journal on Artificial Intelligence Tools, vol. 27, no. 01, p. 1840001, 2018.

[4] J. P. Warners, “A linear-time transformation of linear inequalities into
conjunctive normal form,” Information Processing Letters, vol. 68, no. 2,
pp. 63–69, 1998.

[5] O. Bailleux, Y. Boufkhad, and O. Roussel, “New encodings of pseudo-
boolean constraints into CNF,” in International Conference on Theory
and Applications of Satisfiability Testing. Springer, 2009, pp. 181–194.

This work is partially supported by the DFG project Algebraic Fault Attacks
(funding id PO 1220/7-1, BE 1176 20/1, KR 1907/6-1).

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

20

QMAXSAT in MaxSAT Evaluation 2018
Aolong Zha

Faculty of Information Science and Electrical Engineering
Kyushu University

744 Motooka, Nishi-ku, Fukuoka, Japan
cyouryuuryuu@gmail.com

QMAXSAT is a satisfiability-based solver, which uses CNF
encoding of pseudo-Boolean (PB) constraints [1]. The effi-
ciency of MaxSAT solvers depends on critically on which
SAT solver we use and how we encode the PB constraints. The
QMAXSAT is obtained by adapting a CDCL based SAT solver
GLUCOSE 3.0 [2], [3]. In addition, we introduce a new encod-
ing method, called n-level modulo totalizer encoding in to our
solver. This encoding is a hybrid between Modulo Totalizer
(MTO) [4] and Weighted Totalizer (WTO) [5], incorporating
the idea of mixed radix base [6].

Let φ = {(C1, w1), . . . , (Cm, wm), Cm+1, . . . , Cm+m′} be
a MaxSAT [7] instance where Ci is a soft clause with weight
wi (i = 1, . . . ,m) and Cm+j is a hard clause (j = 1, . . . ,m′).
We added a new blocking variable, bi, to each soft clause
Ci(i = 1, . . . ,m). Solving the MaxSAT problem for φ is
reduced to finding a SAT model of φ′ = {C1 ∨ b1, . . . , Cm ∨
bm, Cm+1, . . . , Cm+m′}, which minimizes

∑m
i=1 wibi.

Such SAT models are obtained using a SAT solver as
follows: Run the SAT solver to get an initial model and
calculate k =

∑
i wibi in it, add PB constraint

∑
i wibi < k,

and run the solver again. If φ′ is unsatisfiable, then φ is also
unsatisfiable as the MaxSAT problem. Otherwise, the process
is repeated with the new smaller solution. The latest model is
a MaxSAT solution of φ. QMAXSAT leaves the manipulation
of the PB constraints to GLUCOSE by encoding them into SAT.

We introduce a hybrid encoding [8] which inherits modular
arithmetic from MTO and distinct combinations of weights
from WTO. The latter is essentially the same as Generalized
Totalizer, which only generate auxiliary variables for each
unique combination of weights. We also enhanced the encod-
ing by multi-level modulo arithmetic based on a mixed radix
numeral system [9]. This encoding method always produces a
polynomial-size CNF in the number of input variables.

It is important to find a suitable mixed radix base with
low time-consumption that reduces the number of auxiliary
variables for our new encoding. We select the integer whose
rate of divisibility is the highest for all weights1 as the suitable
modulus for each digit. Furthermore, we also add other heuris-
tics tailored in our implementation, such as evaluating and
voting for the candidates of modulus, dynamically adjusting
the lower limit of the required rate of divisibility, etc.

1Before selecting the next modulus, we update all the weights to their
quotients of dividing the previous selected modulus.

REFERENCES

[1] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A
Partial Max-SAT Solver,” JSAT, vol. 8, no. 1/2, pp. 95–100, 2012.

[2] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in Mod-
ern SAT Solvers,” in IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–404.

[3] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–
518.

[4] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita, “Modulo
Based CNF Encoding of Cardinality Constraints and Its Application to
MaxSAT Solvers,” in 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, Herndon, VA, USA, November 4-6, 2013.
IEEE Computer Society, 2013, pp. 9–17.

[5] S. Hayata and R. Hasegawa, “Improvement in CNF Encoding of Cardi-
nality Constraints for Weighted Partial MaxSAT,” SIG-FPAI, in Japanese,
vol. 4, no. 04, pp. 85–90, 2015.

[6] M. Codish, Y. Fekete, C. Fuhs, and P. Schneider-Kamp, “Optimal Base
Encodings for Pseudo-Boolean Constraints,” in Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference,
TACAS 2011, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, ser. Lecture Notes in Computer Science,
P. A. Abdulla and K. R. M. Leino, Eds., vol. 6605. Springer, 2011, pp.
189–204.

[7] C. M. Li and F. Manyà, “MaxSAT, Hard and Soft Constraints,” in
Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence and
Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds.
IOS Press, 2009, vol. 185, pp. 613–631.

[8] A. Zha, M. Koshimura, and H. Fujita, “A Hybrid Encoding of Pseudo-
Boolean Constraints into CNF,” in Conference on Technologies and Ap-
plications of Artificial Intelligence, TAAI 2017, Taipei, Taiwan, December
1-3, 2017. IEEE, 2017, pp. 9–12.

[9] A. Zha, N. Uemura, M. Koshimura, and H. Fujita, “Mixed Radix Weight
Totalizer Encoding for Pseudo-Boolean Constraints,” in 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence, Boston,
MA, USA, November 6-8, 2017. IEEE Computer Society, 2017, pp.
868–875.

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

21

RC2: a Python-based MaxSAT Solver
Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva

Faculty of Sciences, University of Lisbon, Portugal
{aignatiev,ajmorgado,jpms}@ciencias.ulisboa.pt

I. INTRODUCTION

RC2 is an open-source MaxSAT solver written in Python
and based on the PySAT framework1 [1]. It is designed to
serve as a simple example of how SAT-based problem solving
algorithms can be implemented using PySAT while sacrificing
just a little in terms of performance. In this sense, RC2 can
be seen as a solver prototype and can be made somewhat
more efficient if implemented in a low-level language. RC2
is written from scratch and implements the OLLITI (or RC2,
i.e. relaxable cardinality constraints) MaxSAT algorithm [2],
[3] originally implemented in the MSCG MaxSAT solver [3],
[4]. The RC2 algorithm proved itself efficient in the previous
editions of the MaxSAT Evaluation: namely in 2014, 2015,
and 2016 (see the results of the MSCG solver, which was one
of the best complete MaxSAT solvers in the aforementioned
competitions).

II. DESCRIPTION

RC2 supports incrementally a variety of SAT solvers pro-
vided by PySAT, and its competition version uses Glu-
cose 3.0 [5] as an underlying SAT oracle. Two variants of
the solver were submitted to the MaxSAT Evaluation 2018 in-
cluding RC2-A and RC2-B. Both of these versions implement
the same algorithm [2], [3] and share most of the techniques
used [3]. Their major components and differences are briefly
described below.

III. VARIANTS OF THE SOLVER

The following heuristics are used by both solver vari-
ants submitted to the MaxSAT Evaluation 2018: incremental
SAT solving [6], Boolean lexicographic optimization [7] and
stratification [8] for weighted instances, unsatisfiable core
exhaustion (originally referred to as cover optimization) [8].

Additionally, the following heuristic was used in both vari-
ants of RC2: given a set S of soft clauses, a number of subsets
S′ ⊆ S were identified such that at most one soft clause in
S′ can be satisfied, i.e.

∑
c∈S′ c ≤ 1. Every subset S′ can be

treated as an unsatisfiable core of cost |S′| − 1, which can be
represented as a single clause.

The only difference between the solver variants is the
policy for unsatisfiable core minimization. In contrast to RC2-
A, RC2-B applies heuristic unsatisfiable core minimization
done with a simple deletion-based minimal unsatisfiable subset
(MUS) extraction algorithm [9]. During the core minimization
phase in RC2-B, all SAT calls are dropped after obtaining 1000

1http://pysathq.github.io

conflicts. Note that core minimization in RC2-B is disabled
for large plain MaxSAT formulas, i.e. those having no hard
clauses but more than 100000 soft clauses. The reason is that
having this many soft clauses (and, thus, as many assumption
literals) and no hard clauses is deemed to make SAT calls too
expensive. Although core minimization is disabled in RC2-
A, reducing the size of unsatisfiable cores can be still helpful
for weighted instances due to the nature of the OLLITI/RC2
algorithm, i.e. because of the clause splitting applied to the
clauses of an unsatisfiable core depending on their weight.
Therefore, when dealing with weighted instances RC2-A trims
unsatisfiable cores at most 5 times (e.g. see [3] for details)
aiming at getting rid of unnecessary clauses. Note that core
trimming is disabled in RC2-A for unweighted MaxSAT
instances and it is not used in RC2-B at all.

IV. AVAILABILITY

RC2 is distributed as a part of the PySAT framework, which
is available under an MIT license at https://github.com/
pysathq/pysat. It can also be installed as a Python package
from PyPI:

pip install python-sat

The RC2 solver can be used as a standalone executable
rc2.py and can also integrated into a complex Python-based
problem solving tool, e.g. using the standard import interface
of Python:

from pysat.examples import rc2

REFERENCES

[1] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: a Python toolkit
for prototyping with SAT oracles,” in SAT, 2018, to appear.

[2] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-guided MaxSAT
with soft cardinality constraints,” in CP, 2014, pp. 564–573.

[3] A. Morgado, A. Ignatiev, and J. Marques-Silva, “MSCG: Robust core-
guided MaxSAT solving,” JSAT, vol. 9, pp. 129–134, 2015.

[4] A. Ignatiev, A. Morgado, V. M. Manquinho, I. Lynce, and J. Marques-
Silva, “Progression in maximum satisfiability,” in ECAI, 2014, pp. 453–
458.

[5] G. Audemard, J. Lagniez, and L. Simon, “Improving Glucose for incre-
mental SAT solving with assumptions: Application to MUS extraction,”
in SAT, 2013, pp. 309–317.

[6] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 4, pp. 543–560,
2003.

[7] J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence (AMAI), vol. 62, no. 3-4, pp. 317–343, 2011.

[8] C. Ansótegui, M. L. Bonet, J. Gabàs, and J. Levy, “Improving WPM2
for (weighted) partial maxsat,” in CP, 2013, pp. 117–132.

[9] J. M. Silva, “Minimal unsatisfiability: Models, algorithms and applica-
tions (invited paper),” in ISMVL, 2010, pp. 9–14.

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

22

SATLike:Solver Description
Zhendong Lei

State Key Laboratory of Computer Science
Institute of Software Chinese Academy of Sciences

Beijing, China
leizd@ios.ac.cn

Shaowei Cai
State Key Laboratory of Computer Science

Institute of Software Chinese Academy of Sciences
Beijing, China
caisw@ios.ac.cn

Abstract—In this document, we briefly describe the techniques
employed by the SATLike solver participating in MaxSAT
Evaluation 2018.

I. INTRODUCTION

SATLike participates in incomplete track. Our solver SAT-
Like adopts a local search framework for SAT and does not
need any specialized concept for (W)PMS. There are two main
new ideas used in SATLike. The first one is a new clause
weighting scheme, which works on both hard and soft clauses
while at the same time takes into account the distinction
between hard clauses and soft clauses. The second one is a
novel variable selection heuristic, which adopts a two-mode
dynamic local search framework. SATLike also uses the skill
of decimation to initialize the solution [1].

II. IMPLEMENTATION

SATLike is designed for solving both PMS and WPMS,
and the only difference is the parameters setting. SALike is
implemented in C++ and compiled by g++ with ‘-O3’ option.

REFERENCES

[1] Shaowei Cai, Chuan Luo, Haochen Zhang: From Decimation to Local
Search and Back: A New Approach to MaxSAT. IJCAI 2017: 571-577

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

23

SATLike-c:Solver Description
Zhendong Lei

State Key Laboratory of Computer Science
Institute of Software Chinese Academy of Sciences

Beijing, China
leizd@ios.ac.cn

Shaowei Cai
State Key Laboratory of Computer Science

Institute of Software Chinese Academy of Sciences
Beijing, China
caisw@ios.ac.cn

Abstract—In this document, we briefly describe the techniques
employed by the SATLike-c solver participating in MaxSAT
Evaluation 2018.

I. INTRODUCTION

SATLike-c participates in incomplete track. SATLike-c has
two engine, one is local search solver SATLike and another
is complete sovler Open-WBO. First, SATLike is used 50sec.
After that if SATLike fails to find feasible solution, it will run
Open-WBO-LSU. Actually in more than 90% cases, SATLike
can find feasible solution in 50sec. SATLike adopts a local
search framework for SAT and does not need any specialized
concept for (W)PMS. There are two main new ideas used in
SATLike. The first one is a new clause weighting scheme,
which works on both hard and soft clauses while at the
same time takes into account the distinction between hard
clauses and soft clauses. The second one is a novel variable
selection heuristic, which adopts a two-mode dynamic local
search framework. SATLike also uses the skill of decimation
to initialize the solution [1]. The version of Open-WBO [3] is
the same as MSE2017.

II. IMPLEMENTATION

SATLike is designed for solving both PMS and WPMS,
and the only difference is the parameters setting. SALike is
implemented in C++ and compiled by g++ with ‘-O3’ option.

REFERENCES

[1] Shaowei Cai, Chuan Luo, Haochen Zhang: From Decimation to Local
Search and Back: A New Approach to MaxSAT. IJCAI 2017: 571-577

[2] Ruben Martins, Vasco M. Manquinho, Ins Lynce: Community-Based
Partitioning for MaxSAT Solving. SAT 2013: 182-191

[3] Ruben Martins, Vasco M. Manquinho, Ins Lynce: Open-WBO: A
Modular MaxSAT Solver, . SAT 2014: 438-445

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

24

BENCHMARK DESCRIPTIONS

Generalized Ising Model (Cluster Expansion)
Benchmark

Wenxuan Huang1

1Department of Materials Science and Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
Key01027@mit.edu

Abstract— We constructed the benchmark set of generalized
ising model for MAXSAT competition.

Keywords— Cluster Expansion, Ising Model, Computational
Material Science

I. INTRODUCTION
Lattice models have wide applicability in science [1-10],

and have been used in a wide range of applications, such as
magnetism [11], alloy thermodynamics [12], fluid dynamics
[13], phase transitions in oxides [14], and thermal conductivity
[15]. A lattice model, also referred to as generalized Ising
model [16] or cluster expansion [12], is the discrete
representation of materials properties, e.g., formation energies,
in terms of lattice sites and site interactions. In first-principles
thermodynamics, lattice models take on a particularly
important role as they appear naturally through a coarse
graining of the partition function [17] of systems with
substitutional degrees of freedom. As such, they are invaluable
tools for predicting the structure and phase diagrams of
crystalline solids based on a limited set of ab-initio calculations
[18-22]. In particular, the ground states of a lattice model
determine the 0K phase diagram of the system. However, the
procedure to find and prove the exact ground state of a lattice
model, defined on an arbitrary lattice with any interaction
range and number of species remains an unsolved problem,
with only a limited number of special-case solutions known in
the literature [23-29].

In general systems, an approximation of the ground state is
typically obtained from Monte Carlo simulations, which by
their stochastic nature can prove neither convergence nor
optimality. Thus, in light of the wide applicability of the
generalized Ising model, an efficient approach to finding and
proving its true ground states would not only resolve long-
standing uncertainties in the field and give significant insight
into the behavior of lattice models, but would also facilitate
their use in ab-initio thermodynamics.

Until recently, we develop the strong links between ground
state solving of cluster expansion with MAXSAT [30]. In this
benchmark, we generated a Cluster expansion systems with by
fitting Density Functional Theory (DFT) energies of LixFe1-xO1
systems with grid size of 5 by 5 by 5 with roughly about 100
types of interactions and try to test what is the best possible
solution to the cluster expansion problem.

The general formulation of ground state problem of cluster
expansion is

A lattice model is a set of fixed sites on which objects
(spins, atoms of different types, atoms and vacancies, etc.) are
to be distributed. Its Hamiltonian consists of coupling terms
between pairs, triplets, and other groups of sites, which we
refer to as “clusters”. A formal definition of effective cluster
interactions can be found in [12]. Before discussing the
algorithmic details of our method, it is essential to establish a
precise mathematical definition of a general lattice model
Hamiltonian and the task of determining its ground states. The
ground state problem can formally be stated as follows: Given
a set of effective cluster interactions (ECI’s) J ∈RC , where
C is the set of interacting clusters and R is the set of real
numbers, what is the configuration s :D→ 0,1{ } , where D
is the domain of configuration space, such that the global
Hamiltonian H is minimized:

 (1)

In the Hamiltonian of Eq. (1), each α ∈C is an individual
interacting cluster of sites. In turn, each site within α is
defined by a tuple (x, y, z, p,t) , wherein (x, y, z) is the
index of the primitive cell containing the interacting site, p
denotes the index of the sub-site to distinguish between
multiple sub-lattices in that cell, and t is the species
occupying the site. To discretize the interactions, we introduce
the ‘’spin’’ variables sx,y,z,p,t , where sx,y,z,p,t = 1 indicates

that the pth sub-site of the x, y, z() primitive cell is occupied

by species t , and otherwise sx,y,z,p,t = 0 . The energy can be
represented in terms of spin products, where each cluster α is
associated with an ECI Jα denoting the energy associated
with this particular cluster. To obtain the energy of the entire
system, each cluster needs to be translated over all possible
periodic images of the primitive cell, i.e., we have to consider
all possible translations of the interacting cluster α , defined as
a set of x, y, z, p,t() , by i, j,k() lattice primitive cells

min

s
H = min

s
lim
N→∞

1
(2N +1)3 Jα si+x , j+ y ,k+z ,p,t

(x ,y ,z ,p,t)∈α
∏

α∈C
∑

(i, j ,k)∈{−N ,...,N }3
∑

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

26

translations, yielding the spin product si+x, j+y,k+z,p,t
x,y,z,p,t()∈α
∏ .

Finally, the prefactor
1

(2N +1)3
 normalizes the energy to one

lattice primitive cell, and the limit of N approaching infinity
emphasizes our objective of minimizing the average energy
over the entire infinitely large lattice. One remaining detail is
that the Hamiltonian given in Eq. (1) is constrained such that
that each site in the lattice must be occupied. For the sake of
simplicity, lattice vacancies are included as explicit species in
the Hamiltonian, so that all spin variables associated with the
same site sum up to one:

sx,y,z,p,t = 1
t∈c(p)
∑ ∀ x, y, z, p()∈F (2)

In Eq. (2), F is the set of all sites in the form of
x, y, z, p() , and c(p) denotes the set of species that can

occupy sub-site p . The domain of configuration space D can

be formally defined as the set of all x, y, z, p,t() , with

t ∈c p() .

To further illustrate the notation introduced above, Figure 1
depicts an example of a two-dimensional lattice Hamiltonian
for a square lattice with two sub-sites in each lattice primitive
cell, i.e., p∈ 0,1{ } . Each sub-site may be occupied by 3

types of species, so that t ∈ 0,1,2{ } , where t = 0 shall be
the reference (for example, vacancy) species. Hence, the
energy of the system relative to the reference can be encoded
into t ∈ 1,2{ } . Furthermore, the Hamiltonian shall be defined
by only 2 different pairwise interaction types with the
associated clusters α = 0,0,0,1,2(), 1,2,0,0,1(){ } and

β = 0,1,0,0,2(), 0,0,0,1,2(){ } , and thus the set of all

clusters is C = α ,β{ } . The first three of the five indices
between “()” brackets indicate the initial unit cell position, the
forth index corresponds to the position in the unit cell (sub-site
index), and the last index gives the species. The third
component of the cell index (x,y,z) was retained for generality
but set to 0 for this two-dimensional example. The example
configuration shown in Figure 1 depicts three specific
interactions: The interaction represented on the bottom left in
in the figure is of type α with i, j,k() = 0,0,0() ,

corresponding to the spin product Jα s0,0,0,1,2 ⋅ s1,2,0,0,1 . The
interaction in the center of the figure also belongs to type α
but with i, j,k() = 1,1,0() , corresponding to the spin product

Jα s0+1,0+1,0,1,2 ⋅ s1+1,2+1,0,0,1 = Jα s1,1,0,1,2 ⋅ s2,3,0,0,1 . Lastly, the

interaction on the right represents an interacting β cluster,

with i, j,k() = 3,0,0() , yielding a spin product of

Jβs0+3,1,0,0,2s0+3,0,0,1,2 = Jβs3,1,0,0,2s3,0,0,1,2 .

Figure 1: Illustration of a lattice Hamiltonian and examples

of cluster interactions. The primitive unit of the lattice is
indicated by a thin dashed line, and sites are represented by
circles. Two different site types are distinguished by black and
red borders, respectively. The non-vacancy species that can
occupy the sites are indicated by two different hatchings.

II. MAXSAT ENCODING
To illustrate this approach, we consider the example of a

binary 1D system with a positive point term J0 and a negative
nearest-neighbor interaction JNN , on a 2-site unit cell. For this
system, the transformation is:

E = min⌢s0 ,⌢s1
J0
⌢s0 + J0

⌢s1 + JNN
⌢s0
⌢s1()

= −max J0 1−
⌢s0()− J0 + J0 1− ⌢s1()− J0 − JNN ⌢s0⌢s1()()

= −max J0 (¬
⌢s0)− J0 + J0 ¬⌢s1()− J0 + −JNN() 1−¬⌢s0() ⌢s1()()

= −max J0 (¬
⌢s0)− J0 + J0 ¬⌢s1()− J0 + −JNN() ⌢s1 + −JNN() 1−¬⌢s0⌢s1()− −JNN()()

= 2J0 − JNN()−MAXSAT J0 (¬
⌢s0)∧ J0 (¬

⌢s1)∧ −JNN()(⌢s1)∧ −JNN()(⌢s0 ∨¬⌢s1)() (5)

where the indicator variable
⌢si is now also a Boolean

variable in the MAX-SAT setting, and the ∧ , ∨ and ¬
operators correspond to logical “and”, “or” and “not”
respectively. Note that, although in a MAX-SAT problem the
coefficient of each clause needs to be positive, it is still
possible to transform an arbitrary set of cluster interactions Ji
into a proper MAX-SAT input, as in the example above.

The above encoding is the much much simpler version of
our benchmark system. In our benchmark problems, we have
many more types of interactions, for example, triplet,
Jt1s0s1s2 and quadruplets Jq1s0s1s2s3 etc.

27

III. REFERENCE

1. Li, X., et al., Direct visualization of the Jahn–Teller

effect coupled to Na ordering in Na5/8MnO2. Nature
materials, 2014.

2. Garbulsky, G.D. and G. Ceder, Linear-programming
method for obtaining effective cluster interactions in
alloys from total-energy calculations: Application to
the fcc Pd-V system. Physical Review B, 1995. 51(1):
p. 67.

3. Struck, J., et al., Engineering Ising-XY spin-models in
a triangular lattice using tunable artificial gauge
fields. Nature Physics, 2013. 9(11): p. 738-743.

4. Aidun, C.K. and J.R. Clausen, Lattice-Boltzmann
method for complex flows. Annual review of fluid
mechanics, 2010. 42: p. 439-472.

5. Mueller, T. and G. Ceder, Effective interactions
between the N-H bond orientations in lithium imide
and a proposed ground-state structure. Physical
Review B, 2006. 74(13): p. 134104.

6. Kremer, K. and K. Binder, Monte Carlo simulation of
lattice models for macromolecules. Computer
Physics Reports, 1988. 7(6): p. 259-310.

7. Seko, A., et al., Prediction of ground-state structures
and order-disorder phase transitions in II-III spinel
oxides: A combined cluster-expansion method and
first-principles study. Physical Review B, 2006.
73(18): p. 184117.

8. Rothman, D.H. and S. Zaleski, Lattice-gas cellular
automata: simple models of complex hydrodynamics.
Vol. 5. 2004: Cambridge University Press.

9. van de Walle, A., A complete representation of
structure-property relationships in crystals. Nat
Mater, 2008. 7(6): p. 455-458.

10. Van der Ven, A. and G. Ceder, Vacancies in ordered
and disordered binary alloys treated with the cluster
expansion. Physical Review B, 2005. 71(5): p.
054102.

11. Casola, F., et al., Direct Observation of Impurity-
Induced Magnetism in a Spin-1 2 Antiferromagnetic
Heisenberg Two-Leg Spin Ladder. Physical review
letters, 2010. 105(6): p. 067203.

12. Sanchez, J.M., F. Ducastelle, and D. Gratias,
Generalized cluster description of multicomponent
systems. Physica A: Statistical Mechanics and its
Applications, 1984. 128(1): p. 334-350.

13. Frisch, U., B. Hasslacher, and Y. Pomeau, Lattice-
Gas Automata for the Navier-Stokes Equation.
Physical Review Letters, 1986. 56(14): p. 1505-1508.

14. Li, W., J.N. Reimers, and J.R. Dahn, Crystal
structure of Li x Ni 2-x O 2 and a lattice-gas model
for the order-disorder transition. Physical Review B,
1992. 46(6): p. 3236.

15. Chan, M.K.Y., et al., Cluster expansion and
optimization of thermal conductivity in SiGe

nanowires. Physical Review B, 2010. 81(17): p.
174303.

16. Ising, E., Beitrag zur Theorie des Ferromagnetismus.
Zeitschrift für Physik, 1925. 31(1): p. 253-258.

17. Ceder, G., A derivation of the Ising model for the
computation of phase diagrams. Computational
Materials Science, 1993. 1(2): p. 144-150.

18. Hinuma, Y., Y.S. Meng, and G. Ceder, Temperature-
concentration phase diagram of P 2-Na x CoO 2
from first-principles calculations. Physical Review
B, 2008. 77(22): p. 224111.

19. Ozoliņš, V., C. Wolverton, and A. Zunger, Cu-Au,
Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-
principles study of temperature-composition phase
diagrams and structures. Physical Review B, 1998.
57(11): p. 6427.

20. Asta, M. and V. Ozoliņš, Structural, vibrational, and
thermodynamic properties of Al-Sc alloys and
intermetallic compounds. Physical Review B, 2001.
64(9): p. 094104.

21. Burton, B.P. and A. van de Walle, First principles
phase diagram calculations for the octahedral-
interstitial system. Calphad, 2012. 37(0): p. 151-157.

22. Zhou, F., T. Maxisch, and G. Ceder, Configurational
electronic entropy and the phase diagram of mixed-
valence oxides: The case of Li x FePO 4. Physical
review letters, 2006. 97(15): p. 155704.

23. Dublenych, Y.I., Ground states of the Ising model on
the Shastry-Sutherland lattice and the origin of the
fractional magnetization plateaus in rare-earth-metal
tetraborides. Phys Rev Lett, 2012. 109(16): p.
167202.

24. Dublenych, Y.I., Ground states of the lattice-gas
model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions and with
three-particle interaction: Full-dimensional ground
states. Physical Review E, 2011. 84(1).

25. Dublenych, Y.I., Ground states of the lattice-gas
model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions and with
three-particle interaction: Ground states at
boundaries of full-dimensional regions. Physical
Review E, 2011. 84(6): p. 061102.

26. Teubner, M., Ground states of classical one-
dimensional lattice models. Physica A: Statistical
Mechanics and its Applications, 1990. 169(3): p.
407-420.

27. Kanamori, J. and M. Kaburagi, Exact Ground States
of the Lattice Gas and the Ising Model on the Square
Lattice. Journal of the Physical Society of Japan,
1983. 52(12): p. 4184-4191.

28. Kaburagi, M. and J. Kanamori, Ground State
Structure of Triangular Lattice Gas Model with up to
3rd Neighbor Interactions. Journal of the Physical
Society of Japan, 1978. 44(3): p. 718-727.

29. Finel, A. and F. Ducastelle, On the phase diagram of
the FCC Ising model with antiferromagnetic first-

28

neighbour interactions. EPL (Europhysics Letters),
1986. 1(3): p. 135.

30. Huang, W., et al., Finding and proving the exact
ground state of a generalized Ising model by convex

optimization and MAX-SAT. Physical Review B,
2016. 94(13): p. 134424.

29

MSE18 Benchmarks: DRMX-AtMostK
Alexey Ignatiev

Faculty of Sciences, University of Lisbon, Portugal
aignatiev@ciencias.ulisboa.pt

I. MOTIVATION

This benchmark set is motivated by the recent work on dual-
rail based MaxSAT solving proposed and described in [1],
[2] and further extended in [3]. The idea of [1], [2] enables
reducing SAT into partial MaxSAT by transforming an arbi-
trary formula in conjunctive normal form (CNF) into a partial
MaxSAT formula. The transformation used is a variant of
the dual-rail encoding (DRE) known at least since [4] and
applied in a number of practical settings. As shown in [1],
applying the DRE and core-guided MaxSAT solving can tackle
problems that are known to be hard for general resolution.
More concretely, [1] studied the pigeonhole principle (PHP)
formulas and showed that the dual-rail encoding followed by
core-guided MaxSAT solving (or MaxSAT resolution [5]) can
refute PHP formulas in polynomial time. Moreover, a similar
result was shown to hold for the doubled pigeonhole principle
(2PHP), which is a more general form of the pigeonhole
principle known to be even harder than PHP.

II. DESCRIPTION

The key idea of the polynomial time core-guided MaxSAT-
based refutation of both PHP and 2PHP formulas is to divide
the dual-rail encoded MaxSAT formula into individual parts
that can be handled separately. More concretely, a PHP for-
mula can be represented as a conjunction of disjoint AtLeast1
and AtMost1 constraints1, which are unsatisfiable if conjoined
together. As a result, each AtLeast1 and AtMost1 constraint
together with the corresponding soft clauses of the DRE is
studied separately in [1] when constructing a polynomial time
procedure to refute PHP. Similarly, 2PHP can be seen as a con-
junction of disjoint AtLeast1 and AtMost2 constraints that are
handled separately in [3]. Moreover, a similar observation can
be made for other classes of formulas conventionally studied in
the area of propositional proof complexity, e.g. the renowned
parity principle [3] also includes AtMost1 constraints. Also,
generalizing these principles results in AtMostK constraints to
be considered.

Surprisingly, when analyzing the PHP and Parity formu-
las, we noticed that dealing with only AtMostK constraints
together with the corresponding soft clauses of the DRE can
already be challenging for MaxSAT solvers. As a result, the
DRMX-AtMostK benchmark set contains trivially constructed
partial MaxSAT formulas F(m, k) = Hm,k ∧ Sm, where

1Recall that an AtLeastK constraint (AtMostK constraint, resp.) is a
constraint of the form

∑m
i=1 xi ≥ K (

∑m
i=1 xi ≤ K, resp.) given some

m > K and s.t. each xi ∈ {0, 1}.

H(m, k) is a CNF representation of a cardinality constraint∑m
i=1 xi ≤ k while Sm is a set of unit-size soft clauses, i.e.

Sm = {(x1), . . . , (xm)}. Set Hm,k is a set of hard clauses.
The MaxSAT cost of each instance F(m, k) is equal to

m− k. The instances of the DRMX-AtMostK benchmark set
are constructed by varying the value of m and k and consid-
ering different kinds of cardinality encodings. The following
pairs of (m, k) are considered: (40, 12), (45, 16), (50, 20),
(55, 24), (60, 28), (70, 32). Cardinality encodings used to
represent the hard part Hm,k are sequential counters [6],
sorting networks [7], cardinality networks [8], totalizer [9],
modulo totalizer [10], and k-cardinality modulo totalizer [11].
Note that the hardness of the DRMX-AtMostK formulas (and
so the performance of MaxSAT solvers) depends not only on
the parameters m and k but also the cardinality encoding used.

III. WEIGHTED VARIANT

Additionally to the unweighted instances described above,
their weighted variant was created: (1) all clauses of Sm have
weight 1, (2) all clauses of Hm,k are not hard anymore but
have weight m+1 instead. As a result, the weighted instances
exhibit the Boolean lexicographic optimization property [12].

REFERENCES

[1] A. Ignatiev, A. Morgado, and J. Marques-Silva, “On tackling the limits
of resolution in SAT solving,” in SAT, 2017, pp. 164–183.

[2] J. Marques-Silva, A. Ignatiev, and A. Morgado, “Horn maximum satis-
fiability: Reductions, algorithms and applications,” in EPIA, 2017, pp.
681–694.

[3] M. L. Bonet, S. Buss, A. Ignatiev, J. Marques-Silva, and A. Morgado,
“MaxSAT resolution with the dual rail encoding,” in AAAI, 2018.
[Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16782

[4] R. E. Bryant, D. L. Beatty, K. S. Brace, K. Cho, and T. J. Sheffler,
“COSMOS: A compiled simulator for MOS circuits,” in DAC, 1987,
pp. 9–16.

[5] M. L. Bonet, J. Levy, and F. Manyà, “Resolution for Max-SAT,” Artif.
Intell., vol. 171, no. 8-9, pp. 606–618, 2007.

[6] C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality
constraints,” in CP, 2005, pp. 827–831.

[7] K. E. Batcher, “Sorting networks and their applications,” in AFIPS
Conference, 1968, pp. 307–314.

[8] R. Ası́n, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“Cardinality networks and their applications,” in SAT, 2009, pp. 167–
180.

[9] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of Boolean
cardinality constraints,” in CP, 2003, pp. 108–122.

[10] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita, “Modulo
based CNF encoding of cardinality constraints and its application to
maxsat solvers,” in ICTAI, 2013, pp. 9–17.

[11] A. Morgado, A. Ignatiev, and J. Marques-Silva, “MSCG: Robust core-
guided MaxSAT solving,” JSAT, vol. 9, pp. 129–134, 2015.

[12] J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence (AMAI), vol. 62, no. 3-4, pp. 317–343, 2011.

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

30

MSE18 Benchmarks: DRMX-CryptoGen
Alexey Ignatiev

University of Lisbon, Portugal
aignatiev@ciencias.ulisboa.pt

Oleg Zaikin
ISDCT SB RAS, Irkutsk, Russia

zaikin.icc@gmail.com

I. INTRODUCTION

Recent work on dual-rail based MaxSAT solving [1], [2]
proposed a simple formula transformation, which given a
propositional formula in conjunctive normal form (CNF) cre-
ates a partial CNF formula containing solely Horn clauses.
This formula transformation is referred to as dual-rail encod-
ing (DRE) to MaxSAT and follows the ideas of the original
dual-rail encoding known at least since [3] and applied in a
number of practical settings. The transformation enables one to
solve SAT with the use of the state-of-the-art MaxSAT solvers.
Moreover, as shown in [4], MaxSAT resolution applied to
the dual-rail encoded MaxSAT formulas is strictly stronger
than general resolution, which gives hope of devising generic
solutions for SAT that would be practically more efficient
than conflict-driven clause learning (CDCL) since the latter
is known [5] to be as powerful as resolution. The DRMX-
CryptoGen benchmark set comprises partial and weighted
partial benchmark instances created using the DRE of CNF
formulas encoding cryptanalysis of a few stream cipher gen-
erators, namely Geffe [6], Threshold [7], and Wolfram [8]
generators.

II. DUAL-RAIL ENCODING

Given a CNF formula F over N variables X =
{x1, . . . , xN}, the dual-rail MaxSAT encoding [1], [2], [4]
creates a (Horn) MaxSAT problem 〈S,H〉, where H is the set
of hard clauses and S is the set of soft clauses s.t. |S| = 2N .
Each variable xi ∈ X is encoded by a distinct pair of variables
pi and ni s.t. pi is true iff xi is true while ni is true iff xi

is false. Moreover, for each variable xi ∈ X the DRE creates
a pair of unit soft clauses, i.e. S = {(pi), (ni) |xi ∈ X}.
Additionally, a new hard clause (¬pi ∨ ¬ni) is added to H.
Each clause c of F is encoded into a hard clause c′ ∈ H s.t.
c′ = {¬pi | ¬xi ∈ c} ∪ {¬nj |xj ∈ c}. It holds [1] that F is
satisfiable iff there exists an assignment that satisfies H and
at least N clauses in S.

III. GENERATORS CONSIDERED

The DRE procedure was applied to CNF instances en-
coding cryptanalysis of a few stream cipher generators. In
order to make the benchmarks more challenging, the original
CNF instances are guaranteed to have exactly one model.
All instances were created with the use of an automated
encoder TRANSALG [9]. The parameters of the generators
are selected such that the SAT formulas are relatively easy

to solve by a modern SAT solver [10]. However, the dual-
rail encoded MaxSAT instances are expected to be harder to
deal with using a MaxSAT solver. The following description
of the used generators assumes some familiarity with the
basic concepts used in cryptography, e.g. linear feedback shift
register (LFSR) [11].

A. Geffe Generator

We considered the Geffe generator [6] based on LFSRs with
the following primitive polynomials:
• LFSR 1: X38 +X41 + 1;
• LFSR 2: X37 +X38 +X42 +X43 + 1;
• LFSR 3: X17 +X18 +X43 +X44 + 1;

The following cryptanalysis problem was encoded into SAT:
given the first 200 keystream bits produced by the generator, it
is required to find a secret key of 128 bits, i.e. the initial state
of the generator’s registers, that “matches” this keystream.

B. Threshold Generator

The Threshold generator [7] considered is based on the same
3 LFSRs as those of the Geffe generator described above. And
again, the cryptanalysis problem encoded is to find a secret key
of size 128 given the first 200 bits of a known keystream.

C. Wolfram Generator

The Wolfram generator [8] is based on a one-dimensional
cellular automaton [12]. Two cryptanalysis problems were
constructed: to find a secret key of size 72 (80, resp.) given
the first 144 (160, resp.) bits of a known keystream.

All the constructed CNF instances encoding the cryptanal-
ysis of the considered generators can be reproduced using the
corresponding algorithmic implementations of the generators
written for the TRANSALG encoder [13]. Regarding the Geffe
and Threshold generators, one should replace the primitive
polynomials with the ones described above and change the
size of the keystream. In the case of the Wolfram generator,
the size of the secret key and the keystream should be changed.

IV. WEIGHTED VARIANT

Additionally to the unweighted instances described above,
their weighted variant was created: (1) all clauses of S have
weight 1, (2) all clauses of H are not hard anymore but have
weight 2N + 1 instead. As a result, the weighted instances
exhibit the Boolean lexicographic optimization property [14].

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

31

REFERENCES

[1] A. Ignatiev, A. Morgado, and J. Marques-Silva, “On tackling the limits
of resolution in SAT solving,” in SAT, 2017, pp. 164–183.

[2] J. Marques-Silva, A. Ignatiev, and A. Morgado, “Horn maximum satis-
fiability: Reductions, algorithms and applications,” in EPIA, 2017, pp.
681–694.

[3] R. E. Bryant, D. L. Beatty, K. S. Brace, K. Cho, and T. J. Sheffler,
“COSMOS: A compiled simulator for MOS circuits,” in DAC, 1987,
pp. 9–16.

[4] M. L. Bonet, S. Buss, A. Ignatiev, J. Marques-Silva, and A. Morgado,
“MaxSAT resolution with the dual rail encoding,” in AAAI, 2018.
[Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16782

[5] P. Beame, H. A. Kautz, and A. Sabharwal, “Towards understanding and
harnessing the potential of clause learning,” J. Artif. Intell. Res., vol. 22,
pp. 319–351, 2004.

[6] P. Geffe, “How to protect data with ciphers that are really hard to break,”
Electronics, vol. 46, no. 1, pp. 99–101, Jan. 1973.

[7] J. O. Bruer, “On pseudo random sequences as crypto generators,” in
Proc. International Zurich Seminar on Digital Communication, Switzer-
land, 1984, pp. 157–161.

[8] S. Wolfram, “Random sequence generation by cellular automata,” Ad-
vances in Applied Mathematics, vol. 7, no. 2, pp. 123 – 169, 1986.

[9] I. Otpuschennikov, A. Semenov, I. Gribanova, O. Zaikin, and
S. Kochemazov, “Encoding cryptographic functions to SAT using
Transalg system,” in ECAI, 2016, pp. 1594–1595.

[10] G. Audemard, J. Lagniez, and L. Simon, “Improving Glucose for incre-
mental SAT solving with assumptions: Application to MUS extraction,”
in SAT, 2013, pp. 309–317.

[11] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[12] J. von Neumann, “The general and logical theory of automata,” in
Cerebral Mechanisms in Behavior – The Hixon Symposium, L. A.
Jeffress, Ed. John Wiley & Sons, 1951, pp. 1–31.

[13] I. Otpuschennikov, “Programs for the Transalg SAT encoder.
URL: https://gitlab.com/satencodings/satencodings.” [Online]. Available:
https://gitlab.com/satencodings/satencodings

[14] J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence (AMAI), vol. 62, no. 3-4, pp. 317–343, 2011.

32

MaxSAT Benchmarks: Maximum Realizability for
Linear Temporal Logic Specifications

Rayna Dimitrova
University of Leicester
rd307@leicester.ac.uk

Mahsa Ghasemi
The University of Texas at Austin

mahsa.ghasemi@utexas.edu

Ufuk Topcu
The University of Texas at Austin

utopcu@utexas.edu

I. PROBLEM OVERVIEW

Linear-time temporal logic (LTL) [4] is a standard specifica-
tion language for formalizing requirements on the behaviour
of reactive systems. The synthesis problem for LTL asks to
automatically construct a system (i.e., an implementation) that
satisfies a given LTL formula, or determine that such a system
does not exist, i.e., the specification is unrealizable.

In [1] we studied the synthesis problem in settings where
the overall specification is unrealizable, more precisely, when
some of the desirable properties have to be (temporarily)
violated in order to satisfy the system’s objective. In such cases
it is desirable that the synthesis procedure provides a “best-
effort” implementation, either according to some user-given
criteria, or according to the semantics of the specification lan-
guage. This motivates the development of synthesis methods
for maximum realizability, where the input to the synthesis
tool consists of a hard specification which must be satisfied,
and soft specifications which describe other desired, possibly
prioritized properties. More precisely, we considered hard
specifications given as LTL formulas and soft specifications
of the form ϕ1, . . . , ϕn, where is the LTL ”globally”
operator, and each ϕi is a syntactically safe LTL formula.

In order to give a formal meaning to the notion of “best-
effort” implementation, we defined a quantitative semantics
for soft specifications, which accounts for how often each
ϕi is satisfied. In particular, we considered truth values
corresponding to ϕi being satisfied at every point of an
execution, being violated only finitely many times, being both
violated and satisfied infinitely often, or being continuously
violated from some point on. Based on this semantics, we
defined the numerical value val(S, ϕ1 ∧ . . . ∧ ϕn) of a
conjunction ϕ1∧ . . .∧ ϕn of soft specifications in a given
implementation S. We proposed a method for synthesizing an
implementation that maximizes the value of the soft specifi-
cations, based on a reduction to partial weighted MaxSAT.

We showed that the maximum realizability problem that we
studied can be reduced to its bounded version where the size
of the sought implementation is bounded from above by some
constant. In turn, the bounded maximum realizability problem
can be reduced to a partial weighted MaxSAT problem.

Formally, the bounded maximum realizability problem asks,
given an LTL formula ϕ and formulas ϕ1, . . . , ϕn, where
each ϕi is a syntactically safe LTL formula, and a bound

b ∈ N>0, to synthesize a system S with at most b states that
satisfies ϕ and such is that val(S, ϕ1∧. . .∧ ϕn) is maximal
among the systems of size not exceeding b satisfying ϕ.

II. MAXSAT ENCODING

Our reduction to MaxSAT is similar to the SAT-based
technique for bounded synthesis [3]. Similarly to [3], LTL
specifications are translated to automata, which are then used
to construct a constraint system that encodes the existence of
an implementation with the desired properties.

1) Variables: The MaxSAT formulation, similarly to [2]
has variables that represent the sought transition system, and
variables that represent annotations, which are required to
witness the satisfaction of the LTL specifications.

2) Hard constraints for valid annotations: The hard clauses
in the MaxSAT formulation express the requirements for the
annotation corresponding to the hard LTL specification, as well
a part of the requirements for each annotation for a soft LTL
specification. The remaining part of the requirements for the
soft specifications are expressed by the soft clauses.

3) Soft constraints for valid annotations: For each soft
specification ϕi there are three soft clauses, corresponding
to the different ”levels of satisfaction” of ϕi. their weights are
1, n and n2, where n is the number of soft specifications in
ϕ1, . . . , ϕn. The weights reflect the ordering of implemen-

tations with respect to their satisfaction of ϕ1 ∧ . . .∧ ϕn.

III. BENCHMARK INSTANCES

In [1] we applied our method for maximum realizability to
two examples, resulting in two sets of MaxSAT benchmarks.

1) Robotic Navigation: We applied our method to the strat-
egy synthesis for a robotic museum guide. The full set of hard
and soft LTL specifications is given in [1]. The smallest bound
on the implementation size for which the hard LTL specifica-
tion is realizable is 8. The MaxSAT instances are named

robot_navigation_<bound>.wcnf

where <bound>∈ {8, 9, 10} is the bound on the implemen-
tation size (number of states in the transition system).

2) Power Distribution Network: We considered also the
problem of dynamic reconfiguration of power distribution
networks. A power network consists of a set of power supplies
(generators) and a set of loads (consumers). The network is a
bipartite graph with edges between supplies and loads, where

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

33

each supply is connected to multiple loads and each load is
connected to multiple supplies. Each power supply has an
associated capacity, which determines how many loads it can
power at a given time. It is possible that not all loads can
be powered all the time. Some loads are critical and must
be powered continuously, while others are not and should
be powered when possible. Some loads can be initializing,
meaning they must be powered only initially for several steps.
Power supplies can become faulty during operation, which
necessitates dynamic network reconfiguration.

The hard LTL specification asserts that the critical loads
must always be powered, the initializing loads should be
powered initially, a load is powered by at most one supply,
the capacity of supplies is not exceeded, and when a supply
is faulty it is not in use. The soft LTL specifications state that
non-critical loads are always powered, and possibly also that
a powered load should remain powered unless its supply fails.
The full formal specifications are given in [1].

We considered 12 different instances determined by
• the network connectivity (full or sparse),
• the number of generators,
• the number of loads,
• the capacity of the generators,
• the numbers of critical and initial loads,
• the number/type of soft LTL specifications.
The resulting MaxSAT instances are named

power-distribution_<id>_<bound>.wcnf

where <id>∈ {1, 2, . . . , 12} is the benchmark id, and
<bound>∈ {2, 3, . . . , 8} is the implementation size bound.

REFERENCES

[1] Rayna Dimitrova, Mahsa Ghasemi, and Ufuk Topcu. Maximum realiz-
ability for linear temporal logic specifications. CoRR, abs/1804.00415,
2018.

[2] Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander
Tentrup. Encodings of bounded synthesis. In Axel Legay and Tiziana
Margaria, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I,
volume 10205 of Lecture Notes in Computer Science, pages 354–370,
2017.

[3] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT, 15(5-
6):519–539, 2013.

[4] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

34

MaxSAT Instances of the Team Composition
Problem in a Classroom

Felip Manyà
IIIA, CSIC

Bellaterra, Spain

Santiago Negrete
Universidad Autónoma Metropolitana (DCCD, Cuajimalpa)

CDMX, Mexico

Joan Ramon Soler
IIIA, CSIC

Bellaterra, Spain

Abstract—Given a classroom containing a fixed number of
students and a fixed number of tables that can be of different
sizes, as well as a list of preferred classmates to sit with for each
student, the team composition problem in a classroom (TCPC) is
the problem of finding an assignment of students to tables in such
a way that preferences are maximally-satisfied. In this paper, we
formally define the the TCPC, describe how this problem can be
encoded to MaxSAT and give the most relevant features of the
instances submitted to the MaxSAT Evaluation.

I. THE PROBLEM

The version of the TCPC that we use in this paper has the
following constraints:
• The classroom has n students.
• The classroom has tables of 2 and 3 students with a

combined capacity for n students.
• Each student has provided a list of classmates she would

prefer to sit with.
The objective is to find an assignment of students to tables

such that preferences are maximally-satisfied. Notice that the
first two constraints are hard whereas the last one is soft. We
will say that a solution is fully-satisfied if, and only if, all the
students in the same table have the rest of the students of the
table in their list of preferences. We will say that a solution
is maximally-satisfied if, and only if, the number of students
who have their preferences satisfied is maximized. Note that a
fully-satisfied solution is also a maximally-satisfied solution.
It was proved in [2] that the TCPC is NP-hard.

II. THE ENCODING

We present two different ways of encoding the TCPC in the
weighted partial MaxSAT formalism [1]. In the first approach,
the objective is to maximize the quality of the solution and we
refer to it as the maximizing encoding. In the second approach,
the objective is to minimize the quality loss and we refer to
it as the minimizing encoding.

A. The maximizing encoding

To illustrate how to model the problem, we will consider
that the classroom has 28 students and there are 8 tables of 2
students and 4 tables of 3 students. This is a typical classroom
distribution in many secondary schools.

This work was partially supported by the project LOGISTAR from the
EU H2020 Research and Innovation Programme under Grant Agreement No.
769142 and the MINECO-FEDER project RASO TIN2015-71799-C2-1-P.

First of all, we define the set of Boolean variables of our
encoding: {xij |1 ≤ i < j ≤ 28} ∪ {xijk|1 ≤ i < j < k ≤
28} ∪ {yi|1 ≤ i ≤ 28}. These variables have the following
intended meaning: xij is true iff students i and j sit together
in a table of 2; xijk is true iff students i, j and k sit together
in a table of 3; and yi is true if student i sits in a table of 2
and is false if student i sits in a table of 3.

Using the previous Boolean variables, we create a Weighted
Partial MaxSAT instance that encodes the constraints of the
problem. The proposed encoding has the following hard
clauses:

(i) For each student i, where 1 ≤ i ≤ 28, the encoding
contains a set of hard clauses that encode the following
cardinality constraint:

1) If i = 1, then
28∑

j=2

x1j +
27∑

j=2

28∑

k=j+1

x1jk = 1

2) If 2 ≤ i ≤ 27, then
i−1∑

j=1

xji +
28∑

j=i+1

xij +

i−1∑

j=1

28∑

k=i+1

xjik +
27∑

j=i+1

28∑

k=j+1

xijk = 1

3) If i = 28, then
27∑

j=1

xj28 +
26∑

j=1

27∑

k=j+1

xjk28 = 1

This cardinality constraint states that student i sits exactly
in one table, and the table is either of 2 or 3.

(ii) For each variable xij , the encoding contains the hard
clauses ¬xij ∨yi and ¬xij ∨yj . These clauses state that if xij

is true, then students i and j sit in a table of 2.

(iii) For each variable xijk, the encoding contains the hard
clauses ¬xijk ∨ ¬yi, ¬xijk ∨ ¬yj and ¬xijk ∨ ¬yk. These
clauses states that if xijk is true, then students i, j and k sit
in a table of 3.

(iv) The encoding contains a a set of hard clauses that
encode the following cardinality constraints:

∑28
i=1 yi = 16

and
∑28

i=1 ¬yi = 12. These cardinality constraints state that
there are 16 students sitting in tables of 2 and 12 students
sitting in tables of 3.

In practice, it is sufficient to add either the constraint∑28
i=1 yi = 16 or the constraint

∑28
i=1 ¬yi = 12 because

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

35

if there are exactly 16 (12) variables yi, 1 ≤ i ≤ 28, that
evaluate to true (false), then the remaining 12 (16) variables
must evaluate to false.

The submitted instances encode the previous cardinality
constraints using PBLib1, which is a C++ tool for efficiently
encoding pseudo-Boolean constraints to CNF.

The soft clauses of our encoding are the following weighted
unit clauses:

1) For each variable xij , 1 ≤ i < j ≤ 28, the encoding
contains the weighted unit clause (xij , wij).

2) For each variable xijk, 1 ≤ i < j < k ≤ 28, the
encoding contains the weighted unit clause (xijk, wijk).

A key aspect of our encoding is how weights are assigned
to the variables of the form xij and xijk. First of all, we build
a directed graph G = (V,E), where V contains a vertex i for
each student i in the classroom, and E contains an edge (i, j)
if student i wants to sit with student j. The weight associated
with each student i in G, denoted by w(i), is the out-degree
of the vertex i of G.2 The weight associated with the variable
xij , denoted by wij , is 2(w(i)×w(j)), where w(i) and w(j)
are the weights associated with vertices i and j, respectively,
in the subgraph of G induced by the set of vertices {i, j}
(i.e.; the weight of student i and j in G({i, j})). The weight
associated with the variable xijk, denoted by wijk, is 3(w(i)×
w(j)×w(k)/8), where w(i), w(j) and w(k) are the weights
associated with vertices i, j and k, respectively, in G({i, j, k}).
The value of w(i) × w(j) ranges from 0 to 1 and the value
of w(i)× w(j)× w(k) ranges from 0 to 8. This explains the
fact that w(i) × w(j) × w(k) is divided by 8. Moreover, we
multiply the weights by 2 in the tables of 2 and by 3 in the
tables of 3. In this way, we maximize the number of satisfied
students. Note that if the weight assigned to xij is 2, there are 2
satisfied students if they sit together in a table of 2, whereas if
the weight assigned to xijk is 3, there are 3 satisfied students
if they sit together in a table of 3. The weight wij (wijk)
associated with a table of 2 (3) indicates the quality of the
assignment of students i and j (i, j and k) to a table of 2 (3):
the bigger the weight, the better the assignment of students to
tables.3

In the previous encoding, if the weight associated with a
variable is 0, then the negation of this variable is added as
a unit clause in the hard part. Moreover, an optimal solution
corresponds to a fully-satisfied solution if, and only if, all the
satisfied soft clauses of the form (xij , wij) and (xijk, wijk)
have weight 2 and 3, respectively.

For fully-satisfied instances, if we add to the hard part
the negation of xij (i.e., the unit hard clause ¬xij) for each
variable xij whose associated weight is different from 2 and
the negation of xijk (i.e., the unit hard clause ¬xijk) for each

1http://tools.computational-logic.org/content/pblib.php
2The out-degree of a vertex is the number of edges going out of a vertex

in a directed graph.
3Since most of the MaxSAT solvers deal with weights that are positive

integers, in the experiments we multiply the weights by 100 and take the
integer part.

variable xijk whose associated weight is different from 3,
then we do not need to add any soft clause. Moreover, any
satisfying assignment of the hard part allows us to derive a
fully-satisfied solution. This case can be solved either with
a SAT solver or with a MaxSAT solver fed with a MaxSAT
instance that only contains hard clauses. Actually, to find a
fully-satisfied solution is a decision problem.

If there is no fully-satisfied solution, the problem becomes
an optimization problem and the objective is to find a solution
that satisfies students as much as possible. Because of that, in
the general case, we add the clauses (xij , wij) and (xijk, wijk)
such that wij 6= 0 and wijk 6= 0 in the soft part of the
encoding. In this way, we provide a solution that maximizes
the number of satisfied students. In this case, we say that we
have a maximally-satisfied solution.

An optimal solution to the TCPC is obtained from a
MaxSAT optimal interpretation by assigning students i and j
to the same table of 2 if, and only if, the literal xij is satisfied
by the optimal interpretation; and by assigning students i, j
and k to the same table of 3 if, and only if, the literal xijk is
satisfied by the optimal interpretation.

If an optimal interpretation satisfies the soft clause
(xij , wij), then this interpretation falsifies all the soft clauses
(xlm, wlm) and (xlmn, wlmn) such that l, m or n are equal to
i or j because of the cardinality constraint that states that
every student sits exactly in one table. A similar situation
happens when the satisfied clause is of the form (xijk, wijk),
corresponding to a table of 3. Thus, the number of falsified
soft clauses is usually greater than the number of satisfied soft
clauses, and the maximum sum of weights of satisfied clauses
indicates the maximum quality that can be reached taking into
account the preferences of the students.

B. The minimizing encoding

The minimizing encoding focus on minimizing the quality
loss instead of maximizing the quality of the solution as in the
maximizing encoding. So, the challenge now is to adequately
represent the notion of quality loss in the TCPC and derive a
more efficient encoding.

The minimizing encoding is defined over the same set
of Boolean variables and has the hard constraints of the
maximizing encoding. The soft clauses are derived from the
soft clauses of the maximizing encoding as follows:

1) each soft clause (xij , wij) is replaced with the soft
clause (¬xij , wmax − wij), and

2) each soft clause (xijk, wijk) is replaced with the soft
clause (¬xijk, w

′
max − wijk),

where wmax is the maximum weight that can be assigned to
a table of 2 and w′max is the maximum weight that can be
assigned to a table of 3. In our encoding, wmax = 2 and
w′max = 3.

An optimal solution to the TCPC is obtained from a
MaxSAT optimal interpretation by assigning students i and
j to the same table of 2 if, and only if, the literal ¬xij

is falsified by the optimal interpretation; and by assigning
students i, j and k to the same table of 3 if, and only if, the

36

literal ¬xijk is falsified by the optimal interpretation. Note that
¬xij and ¬xijk are falsified if, and only if, xij and xijk are
satisfied. If an optimal interpretation falsifies the soft clause
(¬xij , w

′
ij), then it satisfies all the soft clauses (¬xlm, w′lm)

and (¬xlmn, w
′
lmn) such that l, m or n are equal to i or

j because of the cardinality constraint that states that every
student sits exactly in one table. A similar situation happens
when the falsified clause is of the form (¬xijk, w

′
ijk).

In contrast to the maximizing encoding, the number of
satisfied soft clauses in an optimal solution of the minimizing
encoding is usually greater than the number of falsified soft
clauses. This implies that the number of conflicts that a
MaxSAT solver has to identify for finding an optimal solution
is greater in the maximizing encoding than in the minimizing
encoding and may have some impact on the performance of
the solver.

The weight of the soft clause (¬xij , wmax − wij)
((¬xijk, w

′
max−wijk)) indicates the quality loss if students i

and j (i, j and k) sit together in a table of 2 (3): the smaller
the weight, the better the assignment of students to tables. In
fact, the weight wmax − wij (w′max − wijk) is the penalty to
be paid by students i and j (i, j and k) if they sit in the same
table. So, the minimum sum of weights of falsified clauses
indicates the minimum quality loss that can be reached taking
into account the preferences of the students.

If the minimum sum of weights of falsified clauses in an
optimal solution is 0, then this solution is fully-satisfied. Note
that the clauses of the form (¬xij , 0) correspond to tables of
2 in which students i and j prefer to sit together, and the
clauses of the form (¬xijk, 0) correspond to tables of 3 in
which students i, j and k prefer to sit together. In practice,
the clauses (¬xij , 0) and (¬xijk, 0) can be removed from the
soft part and the encoding remains correct.

It is worth mentioning that the minimization approach
proposed here can be extended to other combinatorial opti-
mization problems. It is particularly useful when the resulting
MaxSAT encoding has subsets of soft unit clauses whose
literals are involved in cardinality constraints in the hard part,
because it can reduce considerably the number of conflicts
needed to find an optimal solution. The main difficulty of the
minimizing encoding is to define a suitable weighting function
that preserves the optimal solutions between the maximizing
and the minimizing encodings.

C. The Instances

We submitted 60 TCPC instances encoded to weighted
partial MaxSAT using the minimizing encoding. There 4 sets
of 15 instances. The first set corresponds to instances with
91 students, the second set corresponds to instances with
98 students, the third set corresponds to instances with 105
students and the fourth set corresponds to instances with 112
students. In all the instances the number of tables of 2 is the
double of the number of tables of 3. For example, the instances
with 91 students contain 26 tables of 2 and 13 tables of 3.

REFERENCES

[1] Li CM, Manyà F. MaxSAT, Hard and Soft Constraints. In: Biere A,
van Maaren H, Walsh T (eds.), Handbook of Satisfiability, pp. 613–631.
IOS Press, 2009.

[2] Manyà F, Negrete S, Roig C, Soler JR. A MaxSAT-Based Approach to
the Team Composition Problem in a Classroom. In: Autonomous Agents
and Multiagent Systems - AAMAS 2017 Workshops, Visionary Papers,
São Paulo, Brazil, Revised Selected Papers. Springer LNCS 10643, 2017
pp. 164–173.

37

1

Approximately Propagation Complete and
Approximately Conflict Propagating SAT Encoding

Computation MaxSAT Benchmarks
Rüdiger Ehlers

University of Bremen & DFKI GmbH
Germany

I. DESCRIPTION

This benchmark set contains MaxSAT instances that encode
the problem of finding approximately propagation complete
and approximately conflict propagating conjunctive normal
form (CNF) encodings for a couple of interesting constraints.
The approach for reducing this problem to MaxSAT is ex-
plained in a paper [1] to be published at the 21st International
Conference on Theory and Applications of Satisfiability Test-
ing (SAT 2018).

The benchmark set is based the experimental evaluation of
the paper mentioned above, where constraint encodings for the
propagation quality tuples (∞,∞), (1,∞), (2,∞), (3,∞),
(3, 3), and (∞, 1) are computed. The meaning of these tuples
is also mentioned in the said paper.

To keep the benchmark set small, a couple of benchmarks
for which both the solvers LMHS [2] (in the version from
March 2018) and maxino-2015-k16 [3] both need less
than 3 seconds of solving time on a moderately modern
computer (using an Intel(R) Core(TM) i5-4200U CPU with
a 1.60 GHz clock rate) have been removed. Furthermore,
MaxSAT instances whose computation takes more than 30
minutes on the said computer are also left out.

The benchmark file names contain:
• the name of the constraint that is to be encoded into

conjunctive normal form, and

• the propagation quality tuple, where the elements are
concatenated and ∞ elements are replaced by “99”.

Some of the constraints to be encoded into CNF are taken
from the set of examples supplied with the GenPCE tool by
Brain et al. [4]. That tool computes propagation complete CNF
encodings of constraints.

The program to compute the MaxSAT benchmarks is
available at https://github.com/progirep/optic in the branch
“MaxSATEvaluationBenchmarkGeneration”.

REFERENCES

[1] R. Ehlers and F. Palau Romero, “Approximately propagation complete
and conflict propagating constraint encodings,” in 21st International
Conference on Theory and Applications of Satisfiability Testing (SAT),
2018, accepted paper.

[2] P. Saikko, J. Berg, and M. Järvisalo, “LMHS: A SAT-IP hybrid MaxSAT
solver,” in Theory and Applications of Satisfiability Testing - SAT 2016 -
19th International Conference, Bordeaux, France, July 5-8, 2016, 2016,
pp. 539–546.

[3] M. Alviano, C. Dodaro, and F. Ricca, “A MaxSAT algorithm using
cardinality constraints of bounded size,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 2015, pp. 2677–2683.

[4] M. Brain, L. Hadarean, D. Kroening, and R. Martins, “Automatic gen-
eration of propagation complete SAT encodings,” in Verification, Model
Checking, and Abstract Interpretation - 17th International Conference,
VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016, 2016, pp.
536–556.

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

38

MSE 2018 Benchmarks:
Visibly Pushdown Automata Minimization

Matthias Heizmann
Computer science institute

University of Freiburg
Freiburg, Germany

heizmann@informatik.uni-freiburg.de

Christian Schilling
Computer science institute

University of Freiburg
Freiburg, Germany

schillic@informatik.uni-freiburg.de

Abstract—We describe a benchmark set consisting of 67
partial Max-SAT problem instances. The benchmarks come from
an automata minimization approach. Each benchmark formula
encodes constraints on an equivalence relation over automaton
states. Any assignment satisfying the constraints corresponds to a
relation that allows us to reduce the size of the automaton without
changing its language. The more soft clauses are set to true, the
coarser the relation and the smaller the resulting automaton.

I. INTRODUCTION

The benchmarks presented in this article stem from a
automata minimization approach. Automata minimization is
a crucial component of the software verifier ULTIMATE AU-
TOMIZER [1]. Our benchmarks were produced while UL-
TIMATE AUTOMIZER was analyzing computer programs. In
this section we briefly explain why automata minimization is
important in this approach.

The verification approach [2] of ULTIMATE AUTOMIZER
maintains an automaton that represents an abstraction of the
program. Typically this automaton is growing in each iteration
of a refinement loop. In practice this growth may lead to out-
of-memory problems. ULTIMATE AUTOMIZER addresses this
problem by using automata minimization. For finite automata
there exist many known minimization techniques. However,
for its interprocedural analysis [3] ULTIMATE AUTOMIZER
uses visibly pushdown automata [4], to which these techniques
cannot be applied. We have proposed an approach [5] that
reduces the minimization problem for visibly pushdown au-
tomata to a PMax-SAT problem.

In the following we first explain our approach for finite
automata and later extend it to visibly pushdown automata.

II. MINIMIZATION VIA QUOTIENTING

The most common approach to automata minimization is
to identify and merge “equivalent” states (and corresponding
transitions), which is also called quotienting. The resulting
quotient automaton is uniquely determined by defining an
equivalence relation over the automaton’s states. We give a
simple example for a finite automaton in Figure 1.

III. ALGORITHM & ENCODING

In [5] (see [6] for an extended version) we described
sufficient constraints for equivalence relations in order to be

q0

q1

q2

q3

a1

a2

a1

a1

a2

q0

q1

q2

q3
a1
a2

a1
a2

Fig. 1. A finite automaton (top) and a quotient automaton (bottom) with re-
spect to the relation {(q0, q0), (q1, q1), (q2, q2), (q1, q2), (q2, q1), (q3, q3)}.

suitable for quotienting, meaning that the quotient automaton
preserves the language. These constraints can be encoded
as a Boolean formula such that any satisfying assignment
corresponds to a suitable relation in our sense.

Next we outline the encoding for finite automata. For each
unordered pair of states p, q we introduce a variable X{p,q}
that encodes whether the pair can be merged.

For every two states p, q where exactly one state is accepting
we introduce a unit clause.

¬X{p,q} (1)

For all transitions (p, a, p′) and all states q we add the
following clause which states that, if the pair p, q is equivalent,
then at least one of q’s a-successors qa1 , . . . , q

a
na

is equivalent
to p′.

¬X{p,q} ∨ (X{p′,qa1} ∨ · · · ∨ X{p′,qana
}) (2)

We also need to express the equivalence relation constraints.
We handle reflexivity internally (by simply ignoring variables
X{q,q}), and our variables already ensure symmetry. It remains
to add transitivity clauses for any distinct states q1, q2, q3.

¬X{q1,q2} ∨ ¬X{q2,q3} ∨ X{q1,q3} (3)

We are interested in satisfying assignments that result in
quotient automata with few states. Since a variable encodes
whether a pair of states will be merged, the more variables are
assigned true, the more states can be merged. For instance,

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

39

q0

q1

q2

q3 q4

a1

a2

c

c

r1/q1

r2/q2
a2

q0

q1

q2

q3 q4
a1
a2

c r1/{q1, q2}
r2/{q1, q2}

a2

Fig. 2. A visibly pushdown automaton (top) and a quotient automaton
(bottom) with respect to the relation {(q0, q0), (q1, q1), (q2, q2), (q1, q2),
(q2, q1), (q3, q3), (q4, q4)}.

the constraints are always trivially satisfied by assigning
false to all variables, which is hence completely useless for
our goal. We thus want to maximize the number of variables
that are assigned the value true. This optimization can be
added by introducing for each variable a soft clause

X{qi,qj} (4)

of weight 1 and making all previous clauses hard, thereby
obtaining a partial MaxSAT problem.

IV. EXTENSION TO VISIBLY PUSHDOWN AUTOMATA

A visibly pushdown automaton extends the finite automaton
model by adding a stack. Unlike an ordinary pushdown
automaton, the stack access is determined by the type of the
input symbol. A symbol can have one of three types: internal,
in which case the stack is neither read from nor written to;
call, in which case the stack is written to (“push”), where in
our case the written symbol is always the current state; and
return, in which case the stack is read from (“pop”). We give
a simple example in Figure 2.

To update the encoding, we need to reflect the new transition
types. The internal transitions correspond to the finite automa-
ton transitions above. For call transitions (p, c, p′) and return
transitions (p, r, p̂, p′) and all states q and q̂ we respectively
construct one of the following clauses.

¬X{p,q} ∨ (X{p′,qc1} ∨ · · · ∨ X{p′,qcnc
}) (5)

¬X{p,q} ∨ ¬X{p̂,q̂} ∨ (X{p′,qr1} ∨ · · · ∨ X{p′,qrnr
}) (6)

Again, the states qci are the respective c-successors of q, and
the states qri are the r-successors of q with stack symbol q̂.

V. DISCUSSION

We note that for deterministic finite automata, quotienting
is sufficient to obtain the unique minimal automaton. This
property neither holds for nondeterministic finite automata nor
for visibly pushdown automata, and moreover, the minimal au-
tomaton is not unique. For finite automata, the above algorithm
at least always results in a unique maximal relation, which is
also known as direct bisimulation and can be computed more
efficiently [7]. For visibly pushdown automata, the maximal

relation is not unique anymore. That makes the problem a
perfect candidate for a reduction to PMax-SAT, where also no
unique solution exists in general.

VI. BENCHMARK FILE DESCRIPTION

We have implemented the above algorithm in the automata
library of the ULTIMATE framework1. The automata library is
also available via a web interface2.

To construct the benchmarks, we applied ULTIMATE AU-
TOMIZER to C programs from the SV-COMP 2016 [8]
to produce 67 automata, which our implementation then
encoded in a .wcnf file. The file name convention is
UAutomizer_P_AbstractionK.wcnf, where P is the
name of the program that was analyzed and K is the iteration
in which the automaton was produced.

The benchmark size grows cubically with the number of
states. The input automaton sizes range between 11 and 104
states, which are considered small in the practical application
(the automata easily grow to tens of thousands of states).

The above-mentioned constraints are added in the following
order to each file.

1) acceptance (unit clauses of type (1))
2) transitions (clauses of types (2), (5), and (6))
3) transitivity (ternary clauses of type (3))
4) soft clauses (unit clauses of type (4))

The arity of the transition clauses depends on the nondeter-
minism in the automaton. Typically the transitivity clauses
dominate a benchmark file because their number is cubic in
the number of variables.

REFERENCES

[1] M. Heizmann, Y. Chen, D. Dietsch, M. Greitschus, J. Hoenicke,
Y. Li, A. Nutz, B. Musa, C. Schilling, T. Schindler, and A. Podelski,
“Ultimate Automizer and the search for perfect interpolants -
(competition contribution),” in TACAS II, ser. LNCS, vol. 10806.
Springer, 2018, pp. 447–451. [Online]. Available: https://doi.org/10.
1007/978-3-319-89963-3 30

[2] M. Heizmann, J. Hoenicke, and A. Podelski, “Software model
checking for people who love automata,” in CAV, ser. LNCS,
vol. 8044. Springer, 2013, pp. 36–52. [Online]. Available: https:
//doi.org/10.1007/978-3-642-39799-8 2

[3] ——, “Nested interpolants,” in POPL. ACM, 2010, pp. 471–482.
[Online]. Available: http://doi.acm.org/10.1145/1706299.1706353

[4] R. Alur and P. Madhusudan, “Visibly pushdown languages,” in STOC.
ACM, 2004, pp. 202–211. [Online]. Available: http://doi.acm.org/10.
1145/1007352.1007390

[5] M. Heizmann, C. Schilling, and D. Tischner, “Minimization of visibly
pushdown automata using partial Max-SAT,” in TACAS (1), ser.
LNCS, vol. 10205. Springer, 2017, pp. 461–478. [Online]. Available:
https://doi.org/10.1007/978-3-662-54577-5 27

[6] ——, “Minimization of visibly pushdown automata using partial
Max-SAT,” CoRR, vol. abs/1701.05160, 2017. [Online]. Available:
http://arxiv.org/abs/1701.05160

[7] K. Etessami, T. Wilke, and R. A. Schuller, “Fair simulation relations,
parity games, and state space reduction for Büchi automata,” SIAM
J. Comput., vol. 34, no. 5, pp. 1159–1175, 2005. [Online]. Available:
https://doi.org/10.1137/S0097539703420675

[8] D. Beyer, “Reliable and reproducible competition results with benchexec
and witnesses (report on SV-COMP 2016),” in TACAS, ser. LNCS,
vol. 9636. Springer, 2016, pp. 887–904. [Online]. Available: https:
//doi.org/10.1007/978-3-662-49674-9 55

1https://github.com/ultimate-pa/ultimate
2https://ultimate.informatik.uni-freiburg.de/automata library

40

RBAC User Query Authorization Problem:
MAXSAT Instances

Alessandro Armando
DIBRIS

University of Genova
Genova, Italy

alessandro.armando@unige.it

Giorgia Gazzarata
DIBRIS

University of Genova
Genova, Italy

giorgia.gazzarata@dibris.unige.it

Abstract—The User Authorization Query problem is an impor-
tant optimization problem that arises in the context of Role-Based
Access Control. Although the problem is intractable in the worst
case, a number of approaches to tackle the problem have been
put forward, including the reduction to MAXSAT. We propose a
set of benchmarks of MAXSAT problems obtained by encoding
a number of synthetically generated, yet realistic, UAQ problems
of increasing complexity.

I. INTRODUCTION/PROBLEM OVERVIEW

Role-based Access Control (RBAC) [1] is one of the
most popular access control models. Instead of assigning
permissions directly to subjects (e.g. applications), in RBAC
permissions are assigned to roles and roles are assigned to
subjects. It is widely recognized that the use of roles simplifies
the definition and administration of the policy. To illustrate
consider the RBAC policy where roles Admin, DBReader,
DBUpdater are assigned permissions WriteTape, ReadDB
and WriteDB respectively, while application BackupApp is
assigned roles Admin and DBReader and application WebApp
is assigned roles DBReader and DBUpdater. This policy grants
BackupApp the permissions ReadDB and WriteTape, while it
grants WebApp the permission ReadDB and WriteDB.

Not all roles assigned to a subject need to be readily
available to that subject: they must be activated first. In the
RBAC model a session represents the set of active roles. Thus,
in a given session a subject can only use the permissions
associated to the roles that are active in that session. RBAC
policies may also include Dynamic Mutually Exclusive Roles
(DMER) constraints, i.e. contraints of the form

DMER({R1, ..., Rn}, k)

stating that n or more roles from the set of (conflicting)
roles {R1, ..., Rn} cannot be simultaneously active in any
session. DMER constraints are useful to enforce Separa-
tion of Duty constraints. For instance, let App be assigned
roles Admin, DBReader and DBUpdater. The constraint
DMER({Admin,DBUpdater}, 2) ensures that in any given
session App cannot possibly activate roles Admin and DBUp-
dater, whereas DMER({Admin,DBReader,DBUpdater}, 3)
ensures that in any given session App can activate at most
two out of the roles in the given set.

Let Plb and Pub be two sets of permissions such that Plb ⊆
Pub. The User Authorization Query (UAQ) Problem [2] is the
problem of determining an optimum set of roles to activate
in order to grant the subject the permissions in Plb, while
satisfying a given set of DMER constraints. The selected roles
may additionally grant a subset of permissions in Pub, but this
is subject to the objective of either minimizing or maximizing
this subset.

The UAQ problem is key for systems offering permission
level user-system interaction (as opposed to role level interac-
tion, where the user must explicitly tell the roles she wants to
activate). The UAQ problem has received a growing attention
in the last few years by the scientific community: the problem
has been shown to be intractable in the worst case [3], yet a
number of procedures have been put forward.

An encoding of the UAQ problem into MAXSAT is pro-
posed in [4] along with experimental results obtained by
using zChaff [1] as solver (following the maximal satisfaction
algorithms introduced in [3] to implement the minimal and
maximal satisfaction cases) with solving times in the order
of seconds even for relatively simple problems. For instance,
finding a minimal solution to UAQ problems with 33 roles
takes more than 7 seconds on average. More recently [5]
extends the encoding proposed in [4] so to support a wider
class of constraints, including DMER constraints spanning
over the session histories as well as over multiple sessions
of the same user. The experimental results, obtained with a
state-of-the-art solver, namely QMaxSAT [6], show than even
large UAQ problems can be solved with ease.

Unsurprisingly, UAQ problems whose MAXSAT encodings
are difficult to solve even by state-of-the-art solvers do exist.
The MAXSAT instances in our porposed benchmark set have
been obtained by encoding samples from four families of
synthetically generated UAQ problems.

II. MAXSAT EVALUATION 2018

The benchmark set uaq consists of 97 instances obtained
by encoding different families of synthetically generated UAQ
problems:

• nr (number of roles): these problems are parametric in
the number of roles (|R|); the number of permissions
grows linearly with the number of roles; permissions are

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

41

assigned randomly to roles under the proviso that each
permission is assigned to at least four roles and, dually,
that each role has assigned at least two permissions; |Plb|
is set to 50.

• plb: these problems are parametric in |Plb|. Permissions
are assigned randomly to roles under the proviso that each
permission is assigned to three roles and five permissions
are assigned to each role.

• rpp (roles per permission): these problems are paramet-
ric in the number of roles to which each permission
is assigned. Permissions are assigned randomly to roles
under the proviso that two permissions are assigned to
each role; the number of roles |R| is set to 100 and |Plb|
is set to 20.

• ppr (permissions per role): these problems are paramet-
ric in the number of permissions assigned to each role
(ppr), while the number of roles to which each permission
is assigned is set to either 4 or 6. The number of roles,
i.e. |R|, is set to 200 while |Plb| is set to 100.

Each problem instance has one DMER constraint every 3 roles,
i.e. the total number of DMER constraints is equal to |R|/3.
Thus, for example, instances with 60 roles have 20 constraints.
All DMER constraints have k = 2; the value of n is 3 for nr
and rpp, 5 for plb and ppr.

The instances are named using following convention: uaq-
family-nrNR-ncNC-nN-kK-rppRPP-pprPPR-plbPlb.dimacs,
where:

• family is the family of the problem instance (i.e. nr, plb,
rpp or ppr),

• NR is the number of roles,
• NC is the number of DMER constraints,
• n and k are the parameters of the DMER constraints,
• rpp is the number of roles assigned to each permission,
• ppr is the number of permissions assigned to each role

and
• Plb is the number of permissions whose activation is

requested.

REFERENCES

[1] R. Sandhu, E. Coyne, H. Feinstein, and C. Youmann, “Role-Based Access
Control Models,” IEEE Computer, vol. 2, no. 29, pp. 38–47, 1996.

[2] Y. Zhang and J. B. D. Joshi, “UAQ: a framework for user authorization
query processing in RBAC extended with hybrid hierarchy and con-
straints,” in SACMAT, 2008, pp. 83–92.

[3] L. Chen and J. Crampton, “Set covering problems in role-based access
control,” in Proceedings of the 14th European conference on Research in
computer security, ser. ESORICS’09, 2009, pp. 689–704.

[4] G. T. Wickramaarachchi, W. H. Qardaji, and N. Li, “An efficient frame-
work for user authorization queries in RBAC systems,” in SACMAT, 2009,
pp. 23–32.

[5] A. Armando, S. Ranise, F. Turkmen, and B. Crispo, “Efficient run-time
solving of rbac user authorization queries: pushing the envelope,” in
Second ACM Conference on Data and Application Security and Privacy
(CODASPY), 2012, pp. 241–248.

[6] M. Koshimura, “Qmaxsat: Q-dai maxsat solver,” in
http://sites.google.com/site/qmaxsat/, 2011.

42

XAI-MinDSet2: Explainable AI with MaxSAT
Alexey Ignatiev and Joao Marques-Silva

Faculty of Sciences, University of Lisbon, Portugal
{aignatiev,jpms}@ciencias.ulisboa.pt

I. INTRODUCTION

Machine learning (ML) has witnessed remarkable progress
and important successes in recent years. In some settings, pre-
dictions made by machine learning algorithms should provide
explanations, preferably explanations that can be interpreted
(or understood) by human decision makers. Concrete examples
include safety-critical situations, but also when transparency
of decisions is paramount. An often used approach to pro-
vide explanations for ML predictions is to resort to some
sort of logic-related model, including rule/decision lists [1],
rule/decision sets [2], and decision trees [3]. These logic-
related models can in most cases associate explanations with
predictions, represented as conjunctions of literals, that follow
from the actual model representation. Clearly, the smaller the
model representation is, the simpler the explanations are likely
to be, and so easier to understand by human decision makers.

A novel SAT-based approach to computing smallest size
interpretable decision sets has been recently proposed [4]. As
shown in [4], the proposed iterative procedure exploiting a
SAT oracle to compute the smallest number of rules in a
decision set significantly pushes the state of the art in decision
set learning [2] and, thus, in explainable machine learning.
The XAI-MinDSet2 benchmark set briefly1 described below
comprises (unweighted) partial MaxSAT instances encoding
the problem of literal minimization given a target (smallest
size) set of rules.

II. DESCRIPTION

The classification problem can be roughly formulated in the
following way. Given a training dataset (e.g. set of example
itemsets each being marked by a label, or class), one needs
to find a set of rules covering all the itemsets in the training
dataset and generalizing well on the unseen data, i.e. itemsets
not presented in the training dataset.

Depending of the policy for handling the rule overlap in
the target decision sets, several problem formulations were
presented and studied in [4]. One of the formulations, which
is referred to as MinDSet2 (or MinDS2), consists in computing
a minimum size set of rules that has no overlap on the training
data and covers all the example itemsets, i.e. it classifies all
of them correctly.

The MinDS2 problem encoding into SAT is omitted here but
can be found in [4]. It should be noted that the approach of [4]
is an iterative procedure that (1) encodes the MinDS2 problem
into SAT, given a training dataset and an integer parameter k,

1The reader is referred to [4] for details.

and (2) invokes a SAT oracle to decide whether there is a
decision set with k rules that is a solution for the MinDS2
problem. The process starts with k being equal to the number
of distinct classes and increases k at every iteration. As soon
as the SAT oracle decides that the input CNF formula Fk

is satisfiable, the smallest size decision set (i.e. a decision
set containing k rules) can be extracted from the assignment
satisfying Fk.

Although value k computed this way is typically very small,
the rules of the resulting decision sets may be large; in other
words, the computed decision sets can be too expensive in
terms of the total number of literals used. This is where
MaxSAT can be of help. As suggested by [4], when smallest
k is computed, an additional optimization problem can be
devised to compute a decision set of size k minimizing the
total number of literals used. This approach follows the idea
of Boolean lexicographic optimization [5]. One can easily
formulate such MaxSAT problem by (1) considering the CNF
formula encoding the MinDS2 problem of size k as the hard
part and (2) adding unit size soft clauses, which prefer to
deselect every literal in the target decision set. The number of
clauses falsified by a MaxSAT model is equal to the minimum
number of literals that have to be used in the smallest size
decision set for a given dataset. Such optimization problem
was proposed and studied in [4] for a subset of the PMLB
benchmark repository [6], [7]. As in [4], the total number
of used datasets is 45 and so is the number of MaxSAT
benchmarks. Each benchmark of the XAI-MinDSet2 family
is named after the corresponding training dataset.

REFERENCES

[1] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin,
“Learning certifiably optimal rule lists,” in KDD, 2017, pp. 35–44.

[2] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets:
A joint framework for description and prediction,” in KDD, 2016, pp.
1675–1684.

[3] C. Bessiere, E. Hebrard, and B. O’Sullivan, “Minimising decision tree
size as combinatorial optimisation,” in CP, 2009, pp. 173–187.

[4] A. Ignatiev, F. Pereira, N. Narodytska, and J. Marques-Silva, “A SAT-
based approach to learn explainable decision sets,” in IJCAR, 2018, to
appear.

[5] J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence (AMAI), vol. 62, no. 3-4, pp. 317–343, 2011.

[6] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and
J. H. Moore, “PMLB: a large benchmark suite for machine learning
evaluation and comparison,” BioData Mining, vol. 10, no. 1, p. 36, Dec
2017. [Online]. Available: https://doi.org/10.1186/s13040-017-0154-4

[7] “Penn machine learning benchmarks.” [Online]. Available: https:
//github.com/EpistasisLab/penn-ml-benchmarks/

MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki 2018.

43

44

Solver Index

LinSBPS, 8
LMHS, 10

MaxHS, 11
Maxino, 13
MaxRoster, 15

Open-WBO, 18
Open-WBO-Inc, 16

Pacose, 20

QMaxSAT, 21

RC2, 22

SATLike, 23
SATLike-c, 24

45

Benchmark Index

Cluster expansion, 26

Decision set learning, 43
Dual-rail encodings of cardinal-

ity constraints, 30
Dual-rail encodings of stream ci-

phers, 31

LTL maximum reachability, 33

Propagation properties of CNF
formulas, 38

Pushdown automata minimiza-
tion, 39

Team composition, 35

User authorization query, 41

46

Author Index

Alviano, Mario, 13
Armando, Alessandro, 41

Bacchus, Fahiem, 11
Becker, Bernd, 20
Berg, Jeremias, 10

Cai, Shaowei, 23, 24

Demirović, Emir, 8
Dimitrova, Rayna, 33

Ehlers, Rüdiger, 38

Gazzarata, Giorgia, 41
Ghasemi, Mahsa, 33

Heizmann, Matthias, 39
Huang, Wenxuan, 26

Ignatiev, Alexey, 22, 30, 31, 43

Järvisalo, Matti, 10
Joshi, Saurabh, 16

Korhonen, Tuukka, 10
Kumar, Prateek, 16

Lei, Zhendong, 23, 24
Lynce, Inês, 18

Manquinho, Vasco, 16, 18
Manthey, Norbert, 18
Manyà, Felip, 35
Marques-Silva, Joao, 22, 43
Martins, Ruben, 16, 18
Morgado, Antonio, 22

Nadel, Alexander, 16
Negrete, Santiago, 35

Paxian, Tobias, 20

Rao, Sukrut, 16
Reimer, Sven, 20

Saikko, Paul, 10
Schilling, Christian, 39
Soler, Joan Ramon, 35

Stuckey, Peter J., 8
Sugawara, Takayuki, 15

Terra-Neves, Miguel, 18
Topcu, Ufuk, 33

Zaikin, Oleg, 31
Zha, Aolong, 21

47

