37,061 research outputs found

    A Tutorial Introduction to Mosaic Pascal

    Get PDF
    In this report we describe a Pascal system that has been developed for programming Mosaic multi- computers. The system that we discuss runs on our Sun workstations, and we assume some familiarity with the use thereof. We assume the reader to be also familiar with programming in Pascal, and with message-passing programs. We describe how the Pascal language has been extended to perform message passing. We discuss a few implementation aspects that are relevant only to those users who have a need (or desire) to control some machine-specific aspects. The latter requires some detailed knowledge of the Mosaic system

    PASCAL/48 reference manual

    Get PDF
    PASCAL/48 is a programming language for the Intel MCS-48 series of microcomputers. In particular, it can be used with the Intel 8748. It is designed to allow the programmer to control most of the instructions being generated and the allocation of storage. The language can be used instead of ASSEMBLY language in most applications while allowing the user the necessary degree of control over hardware resources. Although it is called PASCAL/48, the language differs in many ways from PASCAL. The program structure and statements of the two languages are similar, but the expression mechanism and data types are different. The PASCAL/48 cross-compiler is written in PASCAL and runs on the CDC CYBER NOS system. It generates object code in Intel hexadecimal format that can be used to program the MCS-48 series of microcomputers. This reference manual defines the language, describes the predeclared procedures, lists error messages, illustrates use, and includes language syntax diagrams

    Development of a prototype multi-processing interactive software invocation system

    Get PDF
    The Interactive Software Invocation System (NASA-ISIS) was first transported to the M68000 microcomputer, and then rewritten in the programming language Path Pascal. Path Pascal is a significantly enhanced derivative of Pascal, allowing concurrent algorithms to be expressed using the simple and elegant concept of Path Expressions. The primary results of this contract was to verify the viability of Path Pascal as a system's development language. The NASA-ISIS implementation using Path Pascal is a prototype of a large, interactive system in Path Pascal. As such, it is an excellent demonstration of the feasibility of using Path Pascal to write even more extensive systems. It is hoped that future efforts will build upon this research and, ultimately, that a full Path Pascal/ISIS Operating System (PPIOS) might be developed

    Vector Pascal: a computer programming language for the FPS-164 array processor

    Get PDF
    Support for vector operations in computer programming languages is analyzed to determine if programs employing such operations run faster;The programming language Vector Pascal is defined and compared to Fortran 8X and Actus. Vector Pascal contains definitions for matrix and vector operations and the Vector Pascal compiler translates vector expressions. The Vector Pascal compiler executes on an IBM Personal Computer AT and produces code for a Floating Point Systems FPS-164 Scientific Computer;The standard benchmark LINPACK, which solves systems of linear equations, is transcribed from Fortran to Standard Pascal and Vector Pascal. The Vector Pascal version of LINPACK exploits vector operations defined in the language. The speedup of the Vector Pascal version of LINPACK over the Standard Pascal version is presented

    Operation of the HP2250 with the HP9000 series 200 using PASCAL 3.0

    Get PDF
    A computer program has been written to provide an interface between the HP Series 200 desktop computers, operating under HP Standard Pascal 3.0, and the HP2250 Data Acquisition and Control System. Pascal 3.0 for the HP9000 desktop computer gives a number of procedures for handling bus communication at various levels. It is necessary, however, to reach the lowest possible level in Pascal to handle the bus protocols required by the HP2250. This makes programming extremely complex since these protocols are not documented. The program described solves those problems and allows the user to immediately program, simply and efficiently, any measurement and control language (MCL/50) application with a few procedure calls. The complete set of procedures is available on a 5 1/4 inch diskette from Cosmic. Included in this group of procedures is an Exerciser which allows the user to exercise his HP2250 interactively. The exerciser operates in a fashion similar to the Series 200 operating system programs, but is adapted to the requirements of the HP2250. The programs on the diskette and the user's manual assume the user is acquainted with both the MCL/50 programming language and HP Standard Pascal 3.0 for the HP series 200 desktop computers

    Implementing the UCSD PASCAL system on the MODCOMP computer

    Get PDF
    The implementation of an interactive software development system (UCSD PASCAL) on the MODCOMP computer is discussed. The development of an interpreter for the MODCOMP II and the MODCOMP IV computers, written in MODCOMP II assembly language, is described. The complete Pascal programming system was run successfully on a MODCOMP II and MODCOMP IV under both the MAX II/III and MAX IV operating systems. The source code for an 8080 microcomputer version of the interpreter was used as the design for the MODCOMP interpreter. A mapping of the functions within the 8080 interpreter into MODCOMP II assembly language was the method used to code the interpreter

    Adoption of Python in arts faculties of Sri Lankan universities

    Get PDF
    A variety of programming languages are used to teach fundamentals of programming in Universities in Sri Lanka. Among them Python is a modern language with readable and clean syntax. Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy emphasizes code readability, and its syntax allows programmers to express concepts in fewer lines of code than possible in languages such as C++ or Java. The language provides constructs intended to enable writing clear programs on both a small and large scale. Python supports multiple programming paradigms, including object-oriented, imperative, functional programming, and procedural styles. It features a dynamic type system and automatic memory management and has a large and comprehensive standard library. Its design was informed by experiences with other teaching languages so it is considered suitable for such use. However some universities teach PASCAL which is rarely used now. In this research I will discuss the possibility of replacing this Pascal with Python

    PCG: A prototype incremental compilation facility for the SAGA environment, appendix F

    Get PDF
    A programming environment supports the activity of developing and maintaining software. New environments provide language-oriented tools such as syntax-directed editors, whose usefulness is enhanced because they embody language-specific knowledge. When syntactic and semantic analysis occur early in the cycle of program production, that is, during editing, the use of a standard compiler is inefficient, for it must re-analyze the program before generating code. Likewise, it is inefficient to recompile an entire file, when the editor can determine that only portions of it need updating. The pcg, or Pascal code generation, facility described here generates code directly from the syntax trees produced by the SAGA syntax directed Pascal editor. By preserving the intermediate code used in the previous compilation, it can limit recompilation to the routines actually modified by editing
    corecore