
TDA Progress Report 42-60 September and October 1980 

Implementing the UCSD PASCAL System on the 
MODCOMP Computer 

T. Wolfe 

DSN Data Systems Section 

This article describes the UCSD PASCAL system developed by the University of 
California, San Diego, now available on the MODCOMP computer. The system includes a 
Pascal compiler and many useful utility programs. A BASIC compiler and a FORTRAN 
77 compiler are also available. There is currently a large amount of software available 
written in UCSD PASCAL, including a data base system, word processing systems and a 
MODULA compiler. 

I. Introduction 

The UCSD PASCAL* System isa complete interactive 
software development system consisting of an operating sys
tem, compilers (pascal, BASIC, FORTRAN 77), two text 
editors (screen editor and line-oriented editor), a linker and 
many useful utility programs. The system is written and main
tained in Pascal. The compiler generates code for an idealized 
processor known as the "pseudo-machine." The "pseudo
code" (p-code) generated by the compiler is interpreted at 
runtime by a program (known as the interpreter) which emu
lates the pseudo-machine. Thus, the operating system, com
pilers, editors and all user programs are executed using the 
same interpreter. By writing a new interpreter, the complete 
programming system may be moved to a new computer. 

Because the Pascal and FORTRAN 77 compilers generate 
the same p-codes (Le., use the same interpreter), Pascal pro
grams may call FORTRAN subroutines and vice versa. The 
system also contains an adaptable assembler which is easily 
modified to produce assembly language for a new computer. 

*Trademark of the Regents of the University of California. 

Assembly language subroutines thus produced may also be 
called from either Pascal or FORTRAN. Currently the assem
bler has not been modified to produce MODCOMP machine 
code. A system library program may be used to build libraries 
of useful subroutines and the system linker used to link them 
to user programs. 

Interpreters currently exist for Z80/8080, PDP 11 /LSI-II, 
6800, 9900 and 6502 computers and are being developed for 
other computers. Thus, software could be developed on an 
8080 micro or any existing system and run on a MODCOMP. 

An interpreter for the· MODCOMP II and the MODCOMP 
IV computers has been written in MODCOMP II assembly 
language. The complete Pascal programming system has been 
run successfully on a MODCOMP II and MODCOMP IV under 
both the MAX II/III and MAX IV operating systems. A copy 
of the system was sent to the Oak Ridge National Labs and 
was installed and running within an hour. 

The interpreter requires approximately 4.5K words of 
memory and a work area. The minimum memory requirements 

121 

https://ntrs.nasa.gov/search.jsp?R=19810004712 2020-03-21T14:38:13+00:00Z



for the complete system is 16K words plus the interpreter. The 
maximum is 64K words. 

An error was discovered in the MODCOMP teletype handler 
and several patches for both the MAX II/III and the MAX IV 
operating systems were recommended by MODCOMP. These 
patches are documented and available to anyone who wishes 
to implement the system. 

A large portion of the University of Tasmania's Pascal 
validation suite has been run by JPL, and several errors in the 
interpreter were discovered and corrected. 

II. The Pseudo-Machine 

The UCSD PASCAL program development system is an 
interpreter-based implementation of Pascal. The compiler 
generates code for a pseudo-machine which is emulated by the 
interpreter at runtime. The pseudo-machine has a stack archi
tecture with a stack being built from high memory downward 
(Fig. 1). The interpreter sits in low memory with the heap 
. being built upward from it. 

Large programs that normally would not fit into memory 
may be partitioned into segments, only some of which need be 
resident in memory at a time. User programs may be parti
tioned into a maximum of 7 segments, each with up to 127 
procedures or functions. During the running of a program each 
segment is loaded onto the stack as it is needed and then 
discarded. The first segment to be loaded upon executing the 
Pascal system is segment zero of the operating system. It 
contains all the 10 functions for the system and user programs 
and is never discarded from the stack. 

The Pascal system has available to it several 10 units which 
may be assigned to MODCOMP logical units. In general it has a 
console, printer and up to 6 Pascal disk units. (A Pascal disk 
unit is a MODCOMP disk partition.) Each Pascal disk unit has 
a directory and may contain up to 77 Pascal files. 

A special 10 unit (unit 0) is also available to the user. This 
unit performs a read or write via a simple REX service call. In 
this manner the user may read or write data not in the Pascal 
format. 

In addition there are three other Pascal 10 units which are 
undefined at this time. They are GRAPHICS, REMIN and 
REMOUT. These could be defined and an appropriate driver 
written into the interpreter. 

122 

III. Design of the Interpreter 

At the start of the project there was no documentation 
available for the design of any of the existing interpreters. The 
implementer was also unfamiliar with the MODCOMP com
puter. The source code (with very poor to nonexistent com
ments) for an 8080 microcomputer version of the interpreter 
written by UCSD was available. This source code was used as 
the design for the MODCOMP interpreter. A mapping of the 
functions within the 8080 interpreter into MODCOMP II 
asseml?ly language was the method used to code the inter
preter. This method allowed the implementer to learn how the 
system was designed and to code the interpreter simultane
ously. It also allowed the implementor to become familiar 
with the MODCOMP. The method worked rather well but 
would have been easier if the source code were properly 
documented. For example, the carry was used as a flag in 
various widely separated places in the code. No comments 
indicated when the carry was set, what it meant or where it 
was used. 

The 8080 interpreter is in reality two separate programs. 
The first loads the interpreter and initializ~s the Pascal system 
and the second is the interpreter. These were combined into 
one program for the MODCOMP interpreter. 

The only interface between the MODCOMP operating sys
tem and the Pascal system is REX service calls. This allows 
the Pascal system to use the flexibility of logical file assign
ments within the MODCOMP operating system and yet main
tain its independence. 

The MODCOMP interpreter has three major functional 
areas. They are: 

(1) The BOOTER, which initializes the work space and 
loads the Pascal operating system. It is executed only 
once at the beginning of the interpreter. 

(2) The BIOS (Basic 10 System), which performs all 10 
operations for the Pascal system. 

(3) The p-code interpretive routines which make up the 
bulk of the interpreter. Program control cycles through 
these routines as various programs are interpreted. 

In order to reduce complexity and the time needed to code 
the interpreter, the floating point intrinsic routines such as 
SIN, LN, COS, LOG, FLOAT INTEGER, etc., were taken 
from the MODCOMP FORTRAN library verbatim. P-code 
interpretative routines which perform these functions make 
calls to these routines. 

All 10 operations in the BIOS are done by 10 unit number 
only. The Pascal operating system maintains all necessary 



parameters for reading or writing files by name, all buffering, 
and directories on all disk units. The BIOS receives only a unit 
number, number of bytes, a memory address and a disk block 
number if a disk unit is being accessed. 

In the BIOS the unit number is used to index into a jump 
table and the appropriate 10 driver executed. Each type of 10 
unit has its own driver, depending on its characteristics. For 
example, each character sent to the printer is saved in a buffer 
until a carriage return; then the complete line is printed out. 
All characters sent to the printer are also converted to upper
case because the standard DSN MODCOMP printer cannot 
handle lowercase characters. 

IV. P-Code Conversion 

The interpreter would be useless without p-code programs 
to interpret. The UCSD PASCAL system consists of approxi
mately 20 programs, all in p-code form. These programs were 
transferred from an 8080 microcomputer to the MODCOMP 
and converted. Three special programs were needed to convert 
the byte-sex (see below) of the p-codes to run on the MOD
COMPo It should be noted that none of the standard system 
programs use floating point. This would require a different 
type of conversion. 

The 8080 micro and the MODCOMP use different ordering 
of bytes in memory (different "byte-sex"). The difference is 
in the way the two computers store 16-bit integer values in 
memory and is due mainly to the 8080 being a byte machine 
and the MODCOMP being a word machine. 

The two different ways of ordering bytes in memory are: 

(1) Byte ZERO is the byte containing the least significant 
half of the word. Byte ONE contains the most signifi
cant half. 

(2) Byte ZERO is the byte containing the most significant 
half of the word. Byte ONE contains the least signifi
cant half. 

For example: Storing the hex value 47B8. 

MODCOMP 1471 B81 +- word 

o 1 +- byte 

8080 IB81 471 

o +- byte 

This requires all integer values in the p-codes to have their 
byte-sex changed when run on the MODCOMP. It was decided 

to write conversion programs rather than to change the byte
sex at runtime in the interpreter to avoid slowing the runtime 
execution speed. 

As shown in Fig. 2, two programs are necessary to change 
the byte-sex of a Pascal disk unit to a form usable by the 
MODCOMP. Each Pascal disk unit contains a directory and 
files, only some of which may be code files. 

The first program (DSKMOD) converts the disk directory 
and the segment dictionary of all code files. The second 
program (CODMOD) converts the p-code segments of all code 
files or any non-code files containing p-codes. For example, 
the operating system (SYSTEM.PASCAL) is not a code file, 
although in all other respects it looks like a code file. Library 
files are also noncode files, but contain code segments. 

A third conversion program was also found necessary to 
convert the op-code data file (OPCODES.lI.O) used by the 
p-code disassembler program. Conversion is not necessary if 
you never use this program. 

It should be noted that these conversion programs are not 
needed unless the user is transferring a code file from the 8080 
micro to the MODCOMP. 

A copy program, called appropriately enough "COPY," was 
written to simplify the transfer of the Pascal system from one 
MODCOMP computer to another. It copies a MODCOMP disk 
partition containing a Pascal disk unit (directory and files) to 
another disk partition or tape. This simple program and the 
interpreter are all that are needed to install the system on a 
new MODCOMP computer. 

V. System Software Problems 

Two system programs were found to have problems. Both 
were corrected by making small changes in their Pascal source 
code and recompiling them. 

The program PATCH is used to display and modify mem
ory directly. The program displays memory in reverse order 
for the 8080 micro. Fortunately, the source code for this 
program contained comments indicating what to change to 
correct this problem. 

The second program with a problem was the system linker 
(SYSTEM.LINKER). This problem was due to the design of 
the program. It was designed with the architecture of the 8080 
micro in mind. The code was therefore not machine
independent Pascal. Several patches were added to the code, 
modifying it to work on a word machine. No effort was made 
to redesign the program. 

123 



VI. Conclusion 

The UCSD PASCAL programming system is now available 
on the MODCOMP II and MODCOMP IV computers. It pro
vides a useful program development environment for its users. 
Using the interactive editors, compilers, linker and libraries, 
software in Pascal or FORTRAN 77 may be developed 
quickly. The ability to develop software on a microcomputer 

and transfer it to a MODCOMP has the large advantage of 
relieving the overworked MODCOMP computers from software 
development work. 

Follow-on activities should include modifying the assembler 
to produce MODCOMP machine code and looking into code 
generation and optimization from the p-code. 

References 

124 

1. UCSD PASCAL System II.O User's Manual, Institute for Information Systems, Univer
sity of California, San Diego Campus, March 1979. 

2. UCSD PASCAL System Synchronous Input/Output Subsystem Implementation Guide 
(Release Level 11.1 Preliminary), University of California, San Diego Campus, 10 April 
1979. 

3. Bowles, K. L., Beginner's Guide for the UCSD PASCAL System, Byte Books, 1980. 



INTE 
WOR 

RPRETER 
KAREA 

HIGH MEWORY 

SEGMENT 0 

SEGMENT 8 

SEGMENT 2 

HEAP 

INTERPRETER 

LOW MEMORY 

Fig. 1. The general configuration of memory. Segments are 
loaded into memory as they are needed 

DSKMOD t---- P-CODES 

CODMOD I---~ MODIFIED P-CODES 

Fig. 2. Flowchart showing the general flow of data 
and programs necessary to change the byte-sex of 
a Pascal disk unit containing p-code files 

125 


