
I
I
I

I

I
I

I

I
I
i
I

I

i
I

I
I
I

I
I

N87 -28304

SAGA Project Mid-Year Report 1985 Appendix F

PCG: A PROTOTYPE INCREMENTAL COMPILATION

FACILITY FOR THE SAGA ENVIRONMENT

Joseph John Kimball

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois

July, 1985

https://ntrs.nasa.gov/search.jsp?R=19870018871 2020-03-20T10:22:47+00:00Z

I
I
I
I

I
I

I

I
I
i

I
I

I
I

I

I
I

I
I

PCG:, A PROTOTYPE INCREMENTAL COMPILATION FACILITY

FOR THE SAGA ENVIRONMENT

BY

JOSEP_ JOHN KIMBALL

B.A., Creighton University, 1980
Q

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1985

Urbana, Illinois

I
I
I
I

I
I

I

I

i

i

I
I

I
I

I
I

I

I
I

C,_ _0_ _,_Y

iv

TABLE OF CO_S

CHAPTER

1. INTRODUCTION ...• .. I

1.1 Compilation in Software DevelopmentEnviror_nents 1

1.2 Motivation .. 4

1.3 Previous Work ... 6

1.4Overview .. 9

2. DESIGN ... 10

2.1 Overall Structure 10

2.2 Semantic Processing Phase .. 13

2.3 Compilation Phase ...• 15

3. SEMANTIC PHASE IMPLEMENTATION .. 19

3. I Semantic Processing .. 19

3.2 The User Interface ...• . 20

3.3 Overall Structure .. 22

3.4 The Symbol Table Ccmponent and the Pascal Grammar 23
3.5 The Symbol m_l= __. :_ ._ c..._I ,_i_ _......- '_" 1 _-,_-_ _-_,_ _--_-.......... 25

4. (I)MPILATION PHASE IMPLI_MENTATION 31

4.1CodeGeneration .. 31

4.2 Incremental Recompilation .. 37

5. CONCLUSION ... 40

5.1 Statistics for Example Programs 41

5.2 Future Directions .. 43

Appendix A: PCG PASCAL, STANDARD PASCAL, AND BERKELEY PASCAL 46

A.I Compliance with ANSI/IEEE 770 X3.97-1983 Standard Pascal 46

A.2 Differences between Pcg Pascal and Berkeley Pascal 47

Appendix B: MANUAL PAGEFCRPCG .. 50

BIBLIOGRAPHY ' 53
eooooooooooo.oo oe ee OoeooeoooooooouoeoooooeooeooOoooeooo.e

Chapter I

INTRODUCTION

A progranming environment supports the activity of developing and

maintaining software. New environments provide language-oriented tools such

as syntax-directed editors, whose usefulness is e_hanced because they embody

language-specific knowledge. When syntactic and semantic analysis occur early

in the cycle of program production, that is, during editing, the use of a

standard ccrmpiler is inefficient, for it must re-analyze the program before

generating code. Likewise, it is inefficient to recompile an entire file,

when the editor can determine that only portions of it need updating.

The pcg, or Pascal code generation, facility described here generates

code directly from the syntax trees produced by the SAGA syntax-directed

Pascal editor. By preserving the intermediate code used in the previous

compilation, it can limit recompilation to the routines actually modified by

editing.

I .I Compilation in Software Development Environments

Within the formalisms developed to aid the software lifecycle, the actual

process of writing code is itself a cycle: think, edit, compile (and link-edit

I

I
I
I

I

I

I

I
i
i

I

I

I

I
I

I
I

I

I

l
I
I

I
I

I

I
I

l
I
l

I
i

l

I
I
I
I

2

if needed), test, and think again.

A software development environment provides tools for program creation

and maintenance. In the traditional software development environment, the

most visible tools are the editor and the compiler. The division of labor

between the two is as follows. The editor is used for entering and modifying

•code; it is text-oriented, suitable for the entry of any type of text. As a

general-purpose tool, the editor cannot provide assistance for any particular

language. The compiler, on the other hand, is specific to one progranming

language, and does two jobs: I) it must check the source code's syntax and

semantics, to ensure that the code constitutes a legal program in the

language, and 2) it must then translate that legal program into executable

form. Therefore, if the ccmpiler discovers static errors in the source file,

it aborts, and the progran_ner must return to the editing phase to make

corrections. The ccmpiler must be run repeatedly merely to obtain error

diagnoses, making checking for errors very costly [Campbell and Kirslis]

[Medina-Mora and Feiler].

The more helpful of traditional environments provide an automatic

facility to drive the compilation and link-editing phase, for

I

separately-compiled programs. The 'make' program [Feldman] under Unix is an

example. Its knowledge is embodied in I) a user-supplied description of the

dependencies among the various files, and 2) the file system's timestamp which

records when a file was last modified. Given these, Unix make can determine

which files must be updated after a modification to one occurs. If a file has

not been reconstructed since the files from which it is built were modified,

1. Unix is a trademark of Bell Laboratories.

I

I
make will recompile and re-link as needed to update the program.

In the traditional environment, the knowledge-rich tools are applied late I

in the coding cycle: the compiler provides feedback about the legality of the I

source only after the entire file has been produced, and the make facility

uses dependency information only to manage compilation between files. I

The earlier a problem is detected, the easier it is to correct. Newer

software development enviromnents often try to move the language-specific I

knowledge earlier into the coding cycle, and to use the information collected I

by such tools throughout the cycle in an integrated fashion. The environment

then has knowledge about the objects it manipulates and their current state; I

it can respond interactively to errors and anomalies, and it can respond to

queries about the objects' state [Medina-Mora and Feiler]. Lisp prograr_aing I

has long benefited from such language-specific environments as Interlisp

[Teitelman and Masinter]. The development of language-oriented tools is an I

active area of research [Campbell and Kirslis], [Donzeau-Gouge, Huet, Kahn, I

and iang], [Habermann], [Reiss], [Teitelbaum and Reps] ; the progra_ning

environment to be provided for a language is now often a consideration in I

language design [Goldberg] [Teitelman].

The syntax-directed editor is an example of the application of I

language-specific knowledge early in the coding cycle. Such an editor is I

knowledgeable about the syntax of a particular language or languages. It

ensures that the code entered is correct while the progra_ner enters it, I

providing immediate feedback about syntactic (and possibly semantic) errors

and misuses. The editor may also provide the progranmer with access to its I

knowledge about the language and about the source being edited--for instance,

allowing the progranmer to query about the followset of a particular token I

I

I

I
I
I
I

I

I
I

I
I

I
I
I

I

I
I
I

I
I

[Campbell and Kirslis], or about the attributes of a defined identifier or

scope [Reiss], [Teitelman].

A language-oriented editor must perform syntactic analysis, the first

phase of traditional compilation. Usually the editor maintains the source

file in structured form, as a syntax tree, rather than as linear text

[Donzeau-Gouge, Huet, Kahn, and lang], [Medina-Mora and Feiler], [Teitelbaum

and Reps]. When a structured editor is used for program creation, the use of a

standard compiler entails the unparsing of the source file, followed by

redundant syntactic analysis.

Further, just as the programmer can benefit from the editor's feedback,

the compiler can benefit from knowledge of which sections of a source file

have been modified through editing. Such information can enable the compiler

to recompile only the affected routines within a file, providing a

separate-compilation-like facility for languages which do not support separate

compilation (or support it only grudgingly).

I. 2 Motivation

The SAGA project is investigating formal and practical aspects of

computer support for the software lifecycle [Campbell and Kirslis]. Within the

SAGA environment, epos is the language-oriented editor. The prcgra_ner enters

code as with a standard text editor, but can manipulate syntactic entities as

well as textual entities; epos incrementally parses and error-checks the code

as it is entered.

Epos up to now has not had a semantic-evaluation ccmponent; it has only

I

I
checked syntactic constraints. Also, the editor maintains SAGA files as parse

trees, rather than as text. Thus, compiling a SAGA file with a standard I

ccr_piler entails unparsing followed by redundant syntax analysis.

SAGA Make [Badger] was originally designed for Pascal 6000 on the Cyber; I

that syst_n supports the compilation of nested routines without compiling the I

routines which enclose them. Since Berkeley Unix's Pascal compiler pc does

not support this, much of SAGA Make's functionality was lost when the SAGA I

system became Unix-oriented.

In environments which include syntax-directed editors, it is thus most I

efficient for compilers to leave the task of syntax analysis to the editor;

such a compiler would generate code from the parse trees with which the editor I

works [Medina-Mora and Feiler]. SAGA Make demonstrates that the editor can be I

recording a modifications-trace as the programmer is modifying a pre-existing

file; when such information is available, compilation is most efficient if it I

only involves the routines which were affected by the re-edit.

The system described here, pcg, is such a compilation facility for Pascal I

under SAGA. Pcg's symbol table component is a semantic-evaluation component I

added to epos; its cede-generation phase is driven by the SAGA Make facility,

and generates intermediate code directly from a traversal of the parse trees I

used by the SAGA editor. Use of Make enables it to recompile intermediate

code incrementally upon re-edits of the Pascal source; this allows the I

progr_er to keep a Pascal program in one unit, as Pascal encourages, but I
still have the efficiency of separate compilation.

A goal for tools in the SAGA system is that they form standard components I

which can be composed to form new tools. Pcg demonstrates the composition of

SAGA tools to produce a new facility. Besides making use of information I

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I
I

6

generated by epos and Make, pcg uses the SAGA symbol table manager to store

and organize the semantic attributes it collects, and to pass this information

between phases.

Because it makes full use of the parse information collected by epos, Pcg

eliminates the redundant syntactic analysis in compilations generated by the

SAGA Make facility. Pcg is also a step towards making full use of the

semantic information in the SAGA environment. Its symbol table component

serves as a prototype interactive semantic component for the editor. It

provides interactive response to semantic errors, and an ability to query the

symbol table about the attributes of identifiers.

1 .3 Previous Work

Above we noted the traditional role of compilation in programming

environments; other divisions of labor between editor and translator are

possible. :

The classic alternative is the interpreter-based system which is standard

for Lisp. Source code is maintained internally in linked-list form, which can

be directly executed by the interpreter. The system routine which parses user

input thus produces a representation which is simultaneously the internal

representation of the source and its executable representation. Runtime

access to the source' s representation supports sophisticated debugging

facilities. Use of a run-time symbol table enables the progran_er to replace

routines at will. Because compiled routines are likewise managed by the

interpreter, and _icate with other routines via the symbol table, they

7

I

I
too may be replaced freely; but they lose most of the benefits of the

debugging facilities. Interlisp [Teitelman and Masinter] is an advanced I

example of such a system. I

MENTOR [Donzeau-Gouge, Huet, Kahn, and lang], [Donzeau-Gouge, Lang, and

Melese] also maintains program source in structured form; code for various I

languages is maintained as abstract syntax trees. General tree-manipulation

tools are provided, and may be composed into procedures for manipulating I

particular languages. Editing is tree-oriented. MENTOR provides a variety of I

sophisticated interpreters to evaluate and transform the abstract syntax trees

which represent programs. Some perform semantic checking. Compilation is I

performed with standard compilers, after unparsing the source into text form.

In the Cornell Program Synthesizer [Teitelbaum and Reps], source files I

are maintained as abstract syntax trees with associated symbol-tables, and an

interpreter is provided which can directly execute these trees. Thus, I

although a compiler-oriented languages is used, compilation does not occur. I

The interpreter returns to the editor upon encountering a discontinuity in an

incomplete tree, so a partial program can be run up to that point; this allows I

editing and testing to be highly interleaved. The standard Synthesizer is an

educational rather than a development tool, and does not support compilation I

to machine code, nor separate compilation. I

PECAN [Reiss] attempts to provide the user with multiple views of a

program, including its syntax, semantics, and run-time behavior. Its compiler I

is oriented toward giving the user access to the semantics of programs. The

user may query about the symbol table associated with a particular scope, I

including identifiers and their attributes; the compiler also supports the

display of the expression tree representation of a given expression. PECAN's I

I

I

I
I

I
I

I
I

I
i

I
l
I

I
l

I

I
I
I

I

design includes an interpreter, which will execute the internal form of

programs.

Cedar [Teitelman] is a compiler-oriented language whose environment

attempts to be interactive and experimental like interpretive environments.

To this end, it provides both a compiler and an interpreter, which can

interpret the full range of expressions of the language. Cedar's interpreter

allows its user to query about the type of expressions, and evaluate

type-valued expressions. The system keeps track of which files need to be

recompiled, though dependency-analysis is not performed.

The Incremental Programming Environment [Medina-Mora and Feller], under

the Gandalf project [Habermann], is the system which most closely resembles

pcg. It tries to provide the facilities and flexibility of interpreter-based

systems entirely via ccmpilation technology, and is oriented toward the

production of long-lived programs. IPE generates machine code from the syntax

trees which its syntax-directed editor produces, and performs incremental

recompilation on the procedural level. Rather than generating a new

executable object via a standard link-editor, as pcg does, IPE provides an

incremental linker which can replace the machine-code version of a changed

procedure within the executable object; it recompiles procedures in the

background, rather than upon user request, as pcg does. Unlike pcg, it

includes a debugger which is integrated with the rest of the system.

.o

I

1.4 Overview

The design and implementation of pcg is described here. Chapter 2

details the overall structure of the major components of the system, and their

design goals. Chapter 3 describes the implementation of pcg's first phase,

which maintains the symbol table. In chapter 4 we look at the implementation

of the second phase, which performs incremental reccmpilation. Chapter 5

_izes what was accomplished, and points up shortcomings and directions

for further research. Appendix A details the differences between pcg's Pascal
I

and ANSI Standard Pascal, and between pcg' s Pascal and Berkeley Pascal.

Appendix B is a Unix manual page for the pcg incremental reccmpiler.

I

I
I
I

I
I
I

l
I

l
I

I
I

I
I

I
I
i
I

10

Chapter 2

DESIGN

Here we look at the design goals which pcg addresses, with particular

attention to how it is designed to interact with the other tools in the SAGA

system.

2. I Overall Structure

Pcg decomposes into two phases which must be applied in secfaence. In the

semantic processing phase, pcg's symbol table component generates or updates

the symbol table, given the program source in the form of a SAGA parse tree.

In the compilation phase, the incremental recompilation driver of pcg takes

the parse tree and symbol table, and compiles the program. The incremental

recompilation driver relies on the code generator for the actual generation of

intermediate code, which is transformed into machine code by the latter phases

of the Berkeley Pascal compiler.

The symbol table component has two configurations. The editor-resident

configuration constructs a symbol table concurrently with the editing of

program source, and so can provide interactive feedback to the editor's user.

Normally, the editor-resident symbol table component is invisible to the

11

I

I
user. If the user makes a semantic error, the symbol table component opens a

window to emit an error message; also, the user can request information about I

the objects in the symbol table. The symbol table component can also be I

configured as a standalone program, which traverses a static parse tree to

construct or update the symbol table for that program. This configuration is I

meant to be called by other SAGA tools.

When a syntactically-correct parse tree and semantically-correct symbol I

table are available, compilation can occur. This phase of pcg is invoked just I

as a standard compiler would be. The incremental reccmpilation driver

controls the compilation process, using the modifications-trace generated by I

SAGA Make to determine which routines must be recompiied. Fol- the routines

which have been modified, or newly created, the driver calls the code I

generator, to generate intermediate code. The driver merges the new code with

the unchanged code from previous compilations, and invokes the latter phases I

of the Berkeley Pascal ccmpiler to complete compilation. I

Figure 1 shows the interaction between the SAGA Pascal editor and pcg;

the editor-resident symbol table component is displayed. The pcg system is I

separated into self-contained modules with well-defined interfaces, so that

the modification or replacement of one component will not disrupt the I

functionality of the others. I
Although SAGA syntax-directed editors have been generated for several

languages, the Pascal editor is the base editor. Thus, pcg compiles Pascal. I

The language it accepts is currently a Pascal subset, which soon will be

extended to full Pascal; see Appendix A. The particular Pascal dialect is I

Berkeley Pascal [Joy, Graham, and Haley]. I

I

I

I 12

I
I

I
I

I
I

I
I

I
I
l

I

I
I

Language
source text

PASCAL EDITOR

Previous

compilation

parse tree

1

SYMBOL TABLE]COMPONENT

symbol table pce-code

INCREMENTAL
RECOMPILER

CODE GENERATOR

LATTER PC PIIASES

New pcc-code

Executable

object

I

l
l

Figure I. The SAGA Pascal editor and pcg.

13

Below we look at the design goals for the semantic phase's symbol table

component,and the compilation phase's incremental recompilation driver and

code generator.

2.2 Semantic Processing Phase

The symbol table component has two configurations, and serves as a

prototype semantic component for the SAGA system. It had several design

goals.

First, a goal for SAGA tools in general is that they form standardized,

reusable modules which interact through well-defined interfaces [Campbell and

Kirslis]. Therefore, the symbol table component tries to make as few

assumptions as possible about eposand the internals of the parse tree files.

To this end, pcg's symbol table component uses only the standard node-access

interface to obtain parse-tree information; to communicate with the editor

proper and with the progran_aer, it uses only the standard semantic-evaluation

interface. Though dependence on the structure of the Pascal granm_r is

unavoidable, the symbol table component only assumes that the parse tree is

well-structured with respect to that grammar, and that the tree's abstract

internal relationships will not change without explicit editing actions. The

symbol table component does not, for instance, store the internal node-indices

of identifiers whose attributes it records, and thus the SAGA tree ccmpactor

could be run on a parse tree without invalidating the associated symbol

table.

A second goal for the symbol table component is an ability to be

I
I
I

I
I

l
I
I

I
I

l
I

I
I

I
l
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

14

configured as a s_nantic evaluator, resident in the editor, or as a separate

non-interactive process which performs semantic checking and symbol-table

construction. Semantic evaluation can degrade the performance of

syntax-directed editors [Medina-Mora and Feiler], and so the availability of a

standalone configuration adds flexibility which may be needed when system

resources are strained. In this configuration, the symbol table component

resembles the semantic processing of a more traditional batch compiler.

A third quality sought in the symbol table component is the ability to

collect information for two related but different tasks. I) As the

symbol-table constructor for the pcg compilation system, the symbol table

ccmponent must collect the information needed for compilation. 2) Like a

standard compiler, it also must be able to provide diagnostics about semantic

errors and anomalies; additionally, to make use of the unique interactive

capabilities of an editor-resident evaluator, the in-editor version can

respond to user queries about the attributes of identifiers.

Fourth, in its role as a prototype semantic evaluator for epos, the

symbol table component of pcg provides some support to incremental

modification of the source program. Thus, when the user modifies the parse

tree by re-editing, the in-editor symbol table component responds with

consistent updates to (or deletions of) symbol table entries.

Finally, the symbol table component uses the SAGA Symbol Table Manager

[Richards] for storing, organizing, and retrieving the attributes it

detected. This is the first major exercising of the symbol table manager,

which was designed as a general facility for software development environments

in which multiple tools would have to exchange semantic information.

!

15

!

!

!
2.3 Compilation Phase

!

The compilation phase is managed by the incremental recompilation driver; N

the actual generation of intermediate code is performed by the code

generator. We first look at the design decisions for the incremental I

recompiler as a whole.

The first design decision for the incremental recompiler was that the I

replacement unit for incremental updating would be the prccedure, n

Interpreter-based incremental systems can update their executable code on the

expression level [Teitelbaum and Reps]; interpreted code need not deal with n

the peculiarities of hardware, and can be designed to reflect the structure of

the source language. By contrast, compiled code often bears only implicit U

structural similarity to the original source. Because the procedure or

function is a self-contained unit with a well-defined interface, recompilation l

on the procedural level is a reasonable implementation for incremental I
mm

recompilation [Medina-Mora and Feiler].

The next design decision which determined the structure of the N

incremental recompiler was that it would generate intermediate code, and use a
mm

standard machine-code generating second pass to complete compilation. A code l

generator was developed, which generates intermediate code from a parse tree n

and symbol table. The code produced is binary "portable C compiler"

intermediate code [Kessler], hereafter called (with some inaccuracy) N

'pcc-code'. This intermediate representation is a binary, packed version of

the original portable C compiler intermediate code. It is largely N

I
I
I

I

I
I

I
I

I
I
l

I
I

I
I

I
I
I

16

machine-independent. The Berkeley Pascal Compiler pc, and FORTRAN compiler

f77, use pcc-code as their interface to the _n machine-specific backend,

which generates machine code. Use of this interface enhances the portability

of pcg among Unix systems, with the other SAGA tools.

2.3. I Incremental Reccmpilation Driver

When a user invokes pcg, the ccmponent of the pcg system that responds is

the incremental recompilation driver. This component is the top level for the

compilation phase of pcg. Given a SAGA Pascal file, it does what is necessary

to ensure that its executable object is up-to-date with respect to its

SOurce.

The first design decision for the driver was that it would use SAGA

Make's modifications-trace as a guide to generating new intermediate code.

SAGA Make [Badger] was designed to be a largely language-independent facility

in two phases. Its first phase, resident in the editor, keeps track of which

routines are modified, or have their environments modified, such that they

must be reccmpiled. Make' s second phase used this modifications-trace to

build a shell script which would recompile the program, and then it executed

that script; this phase suffered from Berkeley Pascal's lack of facilities for

compiling nested routines.

A goal met by virtue of using Make is that the code generator need only

recompile the minimal number of routines necessary for updating the pcc-code

and regenerating the object [Badger]. Pcg therefore preserves the pcc-code

file which resulted from the most recent compilation, so that unmodified

routines can be reused. Alternately, the incremental recompiler can be

ordered to discard the old pcc-code and regenerate the entire program from

17

scratch.

A third property sought in the design of the incremental reoompiler is

that its user interface appear as similar to that of a standard compiler as

possible. Pcg can, therefore, be invoked from within Unix make scripts just

as can pc. Similarly, pcg can easily interface with configuration management

schemes which make use of standard compilers [Kirslis, Terwilliger, and

Campbell], [Estublier, Ghoul, and Krakowiak].

This decision implies that pcg does not perform compilations in the

background during editing, as does IPE [Medina-Mora and Feiler]. However,

I
I
I

I
I
i

such a system were desired, epos's capability of spawning filter processes i
RE

could straightforwardly implement it.

The incremental recompilation driver tries to behave reasonably if given i

a SAGA file for which no symbol table, or no modifications-trace, exists,

invoking the standalone symbol table component to build a symbol table if i

i

necessary.

i
2.3.2 Code Generation

The code-generator is modeled on the first pass of the Berkeley Pascal

compiler. It produces poc-code, which the driver then provides to the later

i

i
phases of pc. i

in
As a simplifying assumption, the code generator follows pc's internal

i

logic and algorithms wherever possible. The Berkeley Pascal compiler has i

proven itself as a tool for software development; most of the SAGA system,
n

including most of pcg itself, is compiled with pc. Pc provides a reasonable i

separate compilation facility, and the ability to call routines written in n

other portable c compiler - based languages, including Unix system calls [Joy,

!

I
I

I
I

I
I

I
I

I
I
I

I

I
I

I
I

I
I
i

18

Graham, and I_ley].

This design decision allows pcg to use pc's latter phases unchanged.

Basing the code generator on the Berkeley oompiler also enables a simple test

of its output: if the pcc-code that it generates differs in structure from

that generated by pc for a given Pascal program, then something untoward is

going on.

For the sake of modularity, the code-generator's job was limited to

producing pcc-code, given a parse tree, a symbol table, and a node which is

the root of a subtree for a routine. Managing the further phases of

compilation is left to the incremental recompiler.

The next chapters provides an overview of the implementation which tries

to meet these criteria.

19

Chapter 3

SEMANTICPHASEIMP_ATION

These two chapters examine significant implementation details of pcg. In

looking at the issues in its implementation, we pay special attention to pcg's

interaction with the other tools in the SAGA system, and with the Berkeley

Pascal compiler.

In this chapter we will look at the implementation of the symbol table

component of pcg, which performs the semantic phase of pcg's processing; in

the next, we will look at the compilation phase.

3. I Semantic Processing

The problem of semantic analysis of programs is nontrivial.

syntactic task of parsing has been simplified by the development of the

context free grammar formalism [Aho and Ullman], to the extent that automated

tools such as YACC [Johnson2] and Mystro[Noonan and Collins] can construct

parsers from a formal description of a granmar. But no fully satisfactory

formalism for semantics has been developed, although attribute-gran_nar based

systems for automated semantic analysis and compilation are an active research

area [Paulson], [Ganapathi and Fischer], [Reps].

I
I
I

I
I
I

I
I

I
I

I
I

I

I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

i

i

I

I

I

I

20

[Reps] distinguishes between imperative and declarative semantic

evaluators. The former is procedurally specified, the latter uses a formal

specification to enable the automatic generation of an evaluator. Imperative

evaluators must specify both semantic actions, which are to be performed upon

the insertion of program text, and semantic retractions, which update the

symbol table when a deletion occurs.

The declarative method attempts to avoid the need for retractions, by

eschewing the use of a global symbol table whose state must be kept consistent

with the state of the syntax tree. Rather, it stores semantic information

locally, throughout an attributed tree. It is unclear whether such localized

context is sufficient in general [Johnson and Fischer]. An attribute-granmar

based evaluator, combining both declarative and imperative aspects, is under

development for the SAGA environment [Beshers and Campbell]. In the meantime,

the symbol table component of pcg provides the pcg system with an ad-hoc,

imperative mechanism for collecting semantic attributes and error-checking

SAGA Pascal source.

3.2 The User Interface

To the user of epos, the symbol table component of pcg is merely another

feature in the editor. The editor proper reports when the user enters

syntactically-incorrect text, and highlights the unparseable portion of the

program. Similarly, the symbol table component opens a window and emits an

error message when the user enters a semantically-incorrect declaration or

statement; the offending string within the program is highlighted. If the

I

21

user modifies a declaration in such a way that previously-entered text which

depends on that declaration is now incorrect, the error is reported and the

I

I
I

now-incorrect strings highlighted. The attempt to re-declare an identifier, []
within the same block as a previous declaration of that identifier, causes the []

generation of an error message, the highlighting of the offending identifier, i
im

and the disregarding of the new declaration. If a new identifier is entered

with a semantically-malformed declaration, the identifier is entered into the I

symbol table, but its attributes note that it is misdeclared. Upon correction

of an error, the corrected code is displayed in the normal font again, i

The editor-resident symbol table component also provides the user with I

the ability to query the symbol table about the attributes of

currently-defined identifiers, including both standard and user-defined types, I

variables, and routines. A similar facility is provided in PECAN [Reiss] and

Cedar [Teitelman]. This facility is particularly useful in a separate i

compilation environment; for instance, one can check the number and types of
[]

the parameters of an imported routine, before entering a call to that i

routine. It is also useful when the symbol table component informs the user i
I

that a symbol has been misused; the symbol's attributes can be inspected, to

determine how to correct the mistake. Normally, the search for an identifier I

starts in the current block and proceeds outwards until a definition is
m

found. It is also possible to enquire about symbols defined within contexts I

which are nested within the user's current context; one prefixes the i

identifier with a path of context names separated by dots. For instance, to

enquire about the field 'i ' within the record 'rec', declared within the i

nested function 'ftn', one enquires about 'ftn.rec.i'.
I

The standalone symbol table component is oriented toward use as a tool by I

I
I
I

I

I
I

I
I

I
I

I
I
i

I

I
I

I
I

22

other tools, unlike the editor-resident configuration of the symbol table

component. The standalone configuration is a self-contained program that

takes one argument, a SAGA file name. It loads an existing symbol table, if

present, and then traverses the parse tree, to produce an updated symbol

table. Nodes generating semantic errors are marked in the parse tree, and the

error messages written to standard output.

3.3 Overall Structure

The task of semantic analysis is significantly complicated by a need to

support incremental modifications of the program source. Existing

declarations can be modified or deleted, necessitating the change or removal

of symbol table entries; such changes can correct or invalidate other entries

which reference the objects declared. Existing executable statements are also

subject to modification or deletion, and must be re-checked for legality. The

user of a syntax-directed editor can enter syntactically-incorrect or

incomplete code, but the symbol table must not thereby be left in an

inconsistent state.

Pcg' s symbol table component is an imperative evaluator, since the

semantic analysis is specified procedurally; it binds action and retraction

procedures to granmar productions. When the editor reduces by such a

production, or when the standalone symbol table component encounters such a

production during tree traversal, then the associated procedure is invoked.

The procedure traverses the affected subtree to gather needed information, and

then it updates the symbol table.

I

23

Below we explore the linkages between the gr_r of Pascal and the

symbol table ccrnponent; this provides background for understanding the use of

actions and retractions. Next we look at the symbol table ccmponent's use of

the SAGA symbol table manager; in this context, the use of action and

retraction routines is described.

3.4 The Symbol Table Ccmponent and the Pascal Gr_r

To support incremental evaluation, pcg' s symbol table component must

respond appropriately to modifications in program text. To this end, it

distinguishes three special subsets of the production rules in the LAI_R(I)

Pascal granmar used by the current Mystro-based SAGA editor [Aho and Ullman],

[Noonan and Collins]. These subsets are the action productions, the checkable

productions, and the user productions.

3.4. I Action productions

Certain productions are distinguished as being 'action productions '.

When an action production is encountered, an entry is installed into the

symbol table. In general, an action production roots a subtree of least

height such that the subtree contains all the information needed to determine

the attributes of an identifier. By delaying until all information needed is

present, the symbol table component does not need to maintain external data

structures containing partial attributes, which would have to be handled

specially if user input were interrupted or discovered to be syntactically

malformed. On the other hand, by not delaying until a reduction to a

I

I
I
I

I
I

i
i

I
I
I

i

i

I
I

I
i
i

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

i

I

I

24

higher-level nonterminal is performed, the symbol table ccmponent can respond

most in_nediately to erroneous input.

3.4.2 Checkable productions

A single production lies in the set of 'checkable productions'. This is

the production whose left hand side is <statement>. Within a statement,

expressions must be typechecked, the use of expressions must be checked for

legality, and references to declared entities must be recorded. Such actions

are performed when the symbol table component encounters a reduction to

<statement >.

3.4.3 User productions

The third subset of Pascal granm_r rules is the set of 'user

productions' These are the productions which contain user-supplied

terminals; reduction by such a grannar rule, during the non-reparsing first

phase of the parse, indicates that a tree modification has occurred, which

should be analyzed. The user productions are significant in the

editor-resident semantic phase. The epos parser is incremental, and attempts

to reparse the minimal amount needed to fit changes into the parse tree

[Ghezzi and Mandrioli]; where possible, it shifts entire subtrees, rather than

their frontiers. It is thus possible that a user modification can be

accommodated into the tree, without the reparse propagating up to the action

or checkable production which is its ancestor. If a reduction by a user

production was not eventually followed with a reduction by an action or

checkable production, the symbol table component detects the need to climb to

I

25

that ancestor and re-evaluate the subtree it roots.

3.5 The Symbol Table Component and the Symbol Table Manager

Much of the work of the symbol table ccmponent is simplified by its use

of the SAGA symbol table manager.

3.5. I Attributes

Use of the symbol table manager is organized around the attributes which

one sets up for the given application. Symbol table manager primitives are

used to record symbol definitions and symbol references; (attribute, value)

pairs can be attached to such entries. The symbol table manager's user must

specify what type the value of an attribute may take on.

Attributes are identified by strings stored in the symbol table's strings

section; referring to a particular attribute is accomplished by a reference to

that string' s internal identifying tag. Thus, for every attribute one

defines, one must maintain a variable containing that tag, to enable one to

refer to the attribute. This is an impetus toward defining record-valued

attributes; such an attribute-complex can hold all the values associated with

a given class of symbol.

By making the user-defined attribute type a variant record, it can be

used for several attributes. The symbol table component uses the user-defined

attribute type for four such 'compound attributes'; the two most important are

called NameAttributes and TypeDefAttributes.

The symbol table component's use of these attributes is straightforward.

I

I
I

I
I
I

I
I

I
I

I
!

I
I
I

i
I

I
I

I
I
I

I
I

I
i
I
I
i
I

I
I
I

I

I
I
I

26

Consider an example Of an action routine. When the symbol table ccmponent

encounters the production

<var_decl_list> ::= <variable_list> : <type>

it invokes an action routine to inspect the <type> subtree. If it is an

actual type definition, then the subtree is traversed and the attributes of

the type collected. For example, if the subtree defines a subrange type, the

host type and endpoints are recorded. The routine returns an anonymous

type-definition symbol, which has one attribute containing the description of

that type. Alternately, the <type> subtree may not be a new type definition,

but an identifier: a reference to a previously-declared type. The symbol

table entry bound to that identifier is retrieved, and its NameAttributes

inspected to determine which anonymous type-definition symbol it names.

In either case, once the <type> subtree has been handled, another action

routine traverses the list of variables. For each, it inserts a non-anonymous

symbol, to be known by the identifier indicated; the new symbol' s

NameAttributes specify that it names a variable, whose type is that

previously-obtained type-definition symbol.

The incremental parser within epos must sometimes reparse

previously-analyzed code, to analyze new material inserted into that code.

The possibility arises that an action routine would be called a second time,

causing a spurious "identifier previously declared" error. An addition has

been made to epos's semantic interface which notifies the symbol table

component when a reparse moves into previously-parsed text; action routines

are not called for such reductions.

I

27

3.5.2 Contexts

With the symbol table manager, when one inserts a symbol definition or

symbol reference, one indicates the 'context' in which to place it. The main

program, each procedure, each function, and each record type, has an

associated context. Identifiers declared within blocks or records are stored

within their contexts. To retrieve a symbol, given an identifier, one

specifies a context in which to search; contexts can be nested, and searches

proceed from an inner context outward. This makes the implementation of

Pascal's block-structured scoping rules trivial.

More complex context interactions are generated by the use of grafted

contexts. Thus, for example, when pcg enters the scope of a Pascal 'with'

statement, it grafts a temporary context onto the current block's context.

When a variable is encountered, the search for its definition is first

performed in the context of the indicated record, seeking the identifier as a

field; then in the current block, seeking it as a variable; and then outwards

in any outer blocks. Variables and fields can therefore be handled by the

same code; use of the symbol table manager promotes the orthogonal

manipulation of symbols.

3.5.3 Symbol References

Besides symbol definitions, the symbol table manager also supports the

recording of symbol references. If a symbol is referred to in a given

context, a reference entry can be made, and attributes given to it; the symbol

definition can be recovered from the symbol reference, and any recorded

I

i
l
I

I
I
l
I

I
i
!

I
I
I

.I

I

I
I

i

I

I
i

I
I

I
I
I

i
i
I

I
I

I
l
I
I
I

28

references can be recovered from the definition. Further, if a definition is

deleted, but there exists a definition of that identifier in an outer block,

any references made to the deleted symbol becomes attached to the now-visible

outer definition.

This autcmatic action of the symbol table manager is very useful in

dealing with deletions in an incremental environment. In the standard Cornell

Program Synthesizer, for instance, the deletion of a declaration invalidates

the entire symbol table, and necessitates re-traversing the entire parse tree

2

to build a new one [Teitelba_n and Reps]. In pcg's symbol table component,

outer blocks are not invalidated, since the deleted symbol was invisible

there, and any nested blocks which do not refer to the deleted symbol need not

be re-evaluated.

3.5.4 Retractions, Attributes, and References

We saw above that the action routines are grammar-driven. In contrast,

the retraction routines are driven more by the structure of the

attribute-records. The top-level retraction routine traverses the subtree

given to it, seeking definitions of identifiers. On encountering such a

definition, the identifier's attributes are retrieved from the symbol table,

and further actions are based on those attributes. Consider the variable

declaration described above. The variable' s symbol table entry must be

deleted. The type recorded for it is also inspected. If its attributes

indicate that no identifier was hound to it, then the type definition entry is

2. This is handled more economically in Synthesizer-Generator based systems,

which use attributed trees rather than a standard symbol table [Reps].

I

29

deleted. Otherwise, the entry which records that the variable referenced the

type is deleted.

If references to the deleted entry existed, then the contexts which made

those references are noted. Upon completion of the retraction, those contexts

are re-evaluated, to ensure their validity. Re-evaluation consists simply of

the retraction of entries defined in the routine's subtree, followed by a new

tree traversal to re-install these entries and re-inspect the routine's

executable statements.

3.5.5 Other Features and Limitations

Each symbol table primitive returns an error code. This provides

considerable consistency-checking to the symbol table component; if an

internal error occurs, then at some point a symbol-table primitive will be

unable to complete its task, and an error will be reported.

Limitations of the prototype symbol table manager also affect the symbol

table component. No provision is made for anonymous symbols, nor for lists of

symbols; the symbol table component must simulate these features.

The symbol table manager is oriented toward the support of separate

compilation, by allowing multiple symbol tables to be open simultaneously;

however, the support presently provided is limited by the requirement that

each such table have a unique permanent identifier. This prevents the re-use

of standard modules, if the permanent-ids assigned to them clash with the

identifiers of other modules already in use. A new version of the symbol

table manager has been proposed; this new version will provide a virtual

naming scheme for multiple open tables. Because this version is not currently

available, pcg does not yet support separate compilation.

I
I

I

i
I
I
I

I

I
i
I
I
I

I
I

I
I
I

I

I

l

I

I

I

I

I

I

I

i

I

I

l

I

I

I

I

I

I

30

In the Berkeley Pascal model of separate compilation, included header

files contain declarations of external entities; these are considered to be

global, that is, declared at the level of the main program context. Although

the incremental recfmpiler can compile separate code modules, the limitation

mentioned above makes it is currently impossible for references to be made

across modules. Enabling separate compilation in pcg should not be difficult

when the new facility becomes available.

The next chapter is an overview of the implementation of pcg's next

phase, the incremental recompilation phase.

31

Chapter 4

COMPILATIONPHASEIMP_ATION

Here we examine someof the issues involved in the implementation of the

compilation phase of pcg. The major work of compilation is performed by the

code generator, which generates pcc-code from a SAGAparse tree and a symbol

table. Incremental recompilation is achieved by the incremental recompilation

driver, which calls the code generator as needed to generate new code for

modified routines. First, we look at the code generator.

4. I Code Generation

The c0de-generator is very similar to the pc0 phase of the Berkeley

Pascal compiler. It is essentially a translation into Pascal of the relevant

parts of that program; instead of pc's namelist and parse tree, the SAGA

symbol table and parse tree are its input. As output, it produces the same

sort of Portable C compiler intermediate code as pc0 produces.

To examine the code generation component of pcg, we will first look at

pcc-code itself, and its use in representing Pascal programs. Next we view

the overall structure of the Berkeley Pascal compiler, and the system it

implements. Then we will be ready to examine the general structure of the pcg

I
I
I

I
I

I
I
I

I
i

I

I
I
I

I
I

I

I
I

I

I

I

I

i

I

I

I

I

i

I

I

I

I

I

I

I

I

code generator.

32

4.1.1 Pcc-code

The structure and content of pcc-code is described in [Kessler]; the

philosophy and organization of the Portable C compiler is detailed in

[Johnsonl].

Pcc-code is a postorder linearization of the binary expression trees, and

flow-of-control operators, produced by the Portable C compiler to represent C

code. It makes explicit the content of the original C program, and decomposes

it into simpler structures. For instance, in pcc-code, all operators and

operands are explicitly typed, and needed conversion operators inserted.

Also, C's structured statements are converted into simple tests and jumps.

Much of pcc-code is machine independent. The first pass is required to

handle r'_=_'t-_in m_nh'im: rl==r'_nrl:ni" r,_n:i--rllrff-: :11nh m_ rmNf-'in_ n'rnlr_n1_ mnrl

epilogues, the code for switch (that is, case) statements, and

initializations. This is done by emitting assembly code which will be passed

unchanged through the next pass, which generates assembler from pcc-code.

Since pcc-code was designed to represent C, there is some mismatch to be

dealt with in representing Pascal code. To represent Pascal expressions, C's

wealth of operators are more than sufficient; many pcc-code operators are

never used by pc0. On the other hand, Pascal's rich type structure sometimes

requires simulation; several Pascal types (for instance, sets) are by default

represented as C structures, and operations on these types are implemented by

library functions. (The overhead thus incurred is obviated somewhat by the

pc2 phase of the Berkeley compiler, described below.) C's structure type is

convenient for such use because it is a structured type which may be the

I

33

target of assignment, may be passed to functions, and may be returned

functions. (But C's support for these operations on structures causes some

complication in pcc-code; pcc-code must assume, for instance, that the value

of a structure-valued expression is actually a pointer to a structure, rather

than the structure itself.)

I

4.1.2 Structure of the Berkeley Pascal Compiler

The Berkeley Pascal compiler is a five-pass compiler. The first pass,

pc0, does syntax analysis, semantic checking, and generation of pcc-code. The

second pass, pcl, is actually the fl pass of the f77 FORTRAN compiler; this is

the pass derived from the second pass of the Portable C compiler, which takes

binary pcc-code as input and produces assembler as output. The resulting

assembly language is the input to pc2, the inline expander. This filter

passes most of the assembler unchanged; calls on frequently-used system

functions are expanded in place into the assembly code which implements them.

Pc2's output is given to the Unix assembler as, which produces unlinked

binary. The pc3 phase examines the symbol tables of binaries produced in this

way, prior to linking; it does several checks on the use of globally-visible

routines and variables, to enforce the rules of separate compilation in

Berkeley Pascal. Finally, the binary is link-edited via Unix's id, to produce

an executable object.

Because the pcg code generator produces pcc-code such as the pc0 phase

would produce, pcg can run the latter four phases of pc unchanged. Thus, pc0

is the pass most of interest here.

Pc0 is driven by its YACC-based parser [Johnson2]. The parser constructs

the parse tree such that the structure of a subtree can be determined by

I
_I

I
I
I

i

I
I
i

I

I
I
i

I
i
I

I

I

I
I
I

I
I

I
i

I
I
I

I

I
i

i

I
I

I

I

34

examining its first node. As the parser recognizes declarations, routines are

invoked to make entries in pc0' s namelist (symbol table). The structure of

namelist entries is a bit baroque, consisting of many overloaded fields,

rather than a variant record structure such as is encouraged by the SAGA

symbol table manager. Whenever the parser recognizes a complete procedure,

function, or program, a function is" invoked which traverses the resulting

subtree simultaneously to check semantics and to generate pcc-code.

The runtime system created by the Berkeley compiler is essentially that

of the Berkeley Pascal interpreter px, as described in [Joy and McKusick]. Px

defines many system functions to implement both Pascal operators and built-in

routines, such as the input and output procedures. This simplifies the use of

this run-time system with C-oriented pcc-code; where pcc-code is deficient,

the appropriate library function can be used. The px runtime system is almost

purely stack oriented. The objects operated on are assumed to be on the

stack, or else in e_e heap area, =_ =_ __d on by __h.einterpreter's

Pascal-oriented operators. In contrast, the pc system' s use of pcc-code

enables it to make use of the abilities of the fl code generator, which

generates assembly code targeted for the actual hardware, and attempts to

place operands in registers as much as possible. Pc uses the stack for

activation records, structured objects, parameter-passing, and extra

temporaries. A display is maintained for referencing nonlocal variables from

nested routines.

4 .I .3 Structure of the Pcg Code Generator

The interface to pcg's code generator is simple. It takes a node, a

context, and a job-specification; the node must be the root of a procedure,

I

35

function, or program subtree, and the context must be the symbol-table context

associated with that routine. Based on the job-specification, the code

generator either generates code for the indicated routine, or else performs

semantic checks on the statements within the routine.

For ease of interfacing with the other SAGA tools, particularly the

symbol table manager, the code generator is implemented in Pascal. The

low-level routines which actually produce the binary pcc-code are written in

C, as are a set of routine which are used for bit-level operations which are

occasionally necessary.

[Medina-Mora and Feiler] note that an advantage of compiler-based

environments over those which are interpreter-based is the ability to produce

code for a target machine which is different from the host on which the

environment is running. The current implementation of the pcg code generator

3

is targeted for the VAX . The pc sources can be configured to generate code

for the VAX or for the MC68000, and this capability has been provided in pcg,

although the 68000-oriented code-generator has not been tested.

The pcg code generator routines can be partitioned into four sets: those

which interface with the symbol table; those which actually walk the parse

tree and generate intermediate code; those support routines which implement

the machine-dependent aspects of code generation; and those support routines

which implement the aspects of code generation dependent on the Pascal runtime

system.

3. Vax is a trademark of Digital Equipment Corporation.

I
I,

I
I

I
I

i
I

l
I
I

I
I

I
I
I
I

I

36

4. I. 3. I Symbol table interface.

To prevent too tight a coupling between the symbol table component and

the code generator ccmponent, all symbol table accesses are isolated into a

set of routines which are invoked to query the symbol table, and to change the

context. Thus, for example, predicates are provided to indicate the

attributes of types and variables; the isintegral predicate returns true if

its argument is type integer, or a user-defined type which is a subrange of

integer. Similarly, graftrecordcontext grafts a temporary context onto the

current context, to implement the scoping effect of a Pascal 'with' :statement

or field selector. This modularity should ease the transition to the

attribute-grammar based evaluator planned for the SAGA system.

4. I. 3.2 Code-producing routines.

The pcc-code producing routines walk the parse tree to emit C code.

Because they must walk the tree, they are very dependent on the structure of

the Pascal granm_r; for instance, the structure expected in a subtree is

determined by checking its production number. This tight coupling is slightly

alleviated by the usage of symbollic names (Pascal constants) for the

rule-numbers in the granmar; however, there is no way to eliminate the

dependence on the internal structure of the productions.

The code-producing routines mirror the Algol-family structure of Pascal

and C. The top-level routine generates code for a procedure, function, or

program; it handles program unit prologues and epilogues, and the emitting of

symbol table directives which provide information to pc3 and the Unix

I

37

debugger. It invokes other routines to deal with the executable statements in

the program unit's body.

For each Pascal statement, there is a procedure to traverse its subtree

and emit code; these emit the flow-of-control operators. At the bottom level

are the routines to generate code for 1-values (locations) and r-values

(expressions); these emit the pcc-code expression trees.

4. I. 3.3 Machine-dependent aspects.

The third class of routines in the code generator are those which

implement machine-dependent aspects of code generation. An example is the

alignment module, which is used by by the symbol table component to allocate

offsets for variables; another is the temporaries module, which handles the

allocation of temporary variables for the current block (placing them in

registers when possible).

4. I. 3.4 Runtime system routines.

The fourth group of routines are those which support the use of the

Berkeley Pascal run-time system. A good example of this group is the sets

module. Routines from this module have diverse duties relating to the Pascal

set type, such as determining whether a set expression is a constant set,

determining the type of a constant set, or emitting the proper Pascal-system

function call to perform the indicated set operation.

I
I

I
I

I
I
I

I
I
I

I
I

I
I
I
l
I

I
I

I
I
I

I

I

I

I
I
I

I
I

I
I

I
I

I
I

I

38

4.2 Incremental Recompilation

The code generator component of pcg is controlled by the incr_nental

recompilation driver. The driver for the pcg incremental recompiler is

straightforward. When pcg is invoked to compile a SAGA file, the driver first

checks that a symbol table file exists within the SAGA directory which

implements the SAGA file; if no symbol table exists, the standalone symbol

table component is invoked to generate one. Next, the incremental recompiler

checks that a modifications-trace is available. If not, then it assumes that

the entire file is to be reccmpiled. Alternately, the user may demand that

the incremental recompiler ignore the modifications-trace, and recompile the

entire file.

When a SAGA source file has been previously compiled with pcg, its SAGA

directory will contain two additional file. One is the pcc-code which

resulted from the last compilation. The other is a list of the routines

present in that file; for each routine, tile location of its last word of code,

within the pcc-code file, is recorded.

The process of recompilation is a simultaneous post-order traversal of

three tree of routines: the tree of routines represented by the parse tree,

and the linearizations of that tree present in the two files described above.

For each routine in the parse tree, if the modifications-trace indicates that

the routine must be recompiled (or if the modifications-trace is unavailable),

then the code-generator is invoked to generate new pcc-code from the routine's

subtree and its context in the symbol table. The pointer into the file of old

I

39

pcc-code is advanced past the routine. If the modifications-trace indicates

that the routine need not be recompiled, then its pcc-code from the old

compilation is copied verabatim into the new file, advancing the pointer.

Pcg then invokes the later phases of the Berkeley Pascal compiler, with

the new pcc-code as input, to complete the compilation. If the -c (separate

compilation) option was specified, then the last two phases of pc are not run,

and the result of the compilation is an unlinked object, just as with pc. If

the separate compilation option was not invoked, then an executable object is

produced. In either case, the process produces three other files: a new

pcc-code file, a new routine-locations file, and a modifications trace which

now indicates that all routines are up-to-date.

I
I
I

I
I

I
I
I

I
I
I

I
I

I
I

I
I
I

I

I
I
I

I
g

H
i

!
I
i

I

I
I
I
I

i
I

I

40

Chapter 5

OONCI/JSION

Pcg demonstrates that a compiler in a language-oriented environment can

make use of the information gathered by other tools to improve the efficiency

of compilation. The parse trees produced by the epos syntax-directed editor

are sufficient for ccrnpilation; an interactive semantic evaluator, implemented

with the symbol table manager, can build a symbol table to enable compilation;

and the modifications-trace collected by SAGA Make can be used to eliminate

redundant compilations. The final result shows the usefulness of tools which

share information to avoid duplication of effort.

Pcg demonstrates the composition of tools in the SAGA environment. The

SAGA tools pcg uses had not previously all been required to cooperate

simultaneously. Occasionally a tool did not correctly implement its

interface, or the interfaces of two tools clashed so that they could not

con_nunicate with each other without difficulty. Though such real-world

difficulties occurred, the tools were composed to generate a complex

application.

!

41

5.1 Statistics for Example Programs

Pcg moves the task of symbol table construction, along with the task of

syntactic analysis, from the translation phase of the coding cycle into the

editing phase. Further, it attempts to _nprove the efficiency of compilation

by incrementally compiling within files. We consider figures on time and

space costs collected for two sample programs.

I
I

I
I

I

I
i
i

epos without
semantic

evaluation

epos with
semantic

evaluation

declarat ions. p

(147 lines)

11.0 user seconds

3.0 system seconds

23.2 user seconds

4.8 system seconds

pxre f.p

(389 lines)

43.8 user seconds

6.7 system seconds

61.3 user seconds

9.6 system seconds

I
I
I

Table I. Times required for the editor to read and

analyze two files.

Table 1 shows the time required for epos to read in and analyze two

files: the first consists entirely of ccmplex declarations; the second,

Wirth's cross-reference program, is a more realistic mix of declarations and

code. In the first case, the symbol table component makes the editor run

approximately twice as slow. These worst-case figures may be misleading. In

actual interactive editing, the time cost of semantic evaluation is spread out

over many interactions; subjectively, the response time of the editor does not

deteriorate significantly when semantics evaluation is included.

I
I

I
I

I

I
I
I

I
I
I

I
I

I

I
l
I

I
I

I
I

I
I

I
I
I

42

declarations, p pxref, p

standard text 3682 7955

executable object 15360 27648

pcc-code 4308 38592

parse tree 69644 262156

Table 2. Size in bytes of four representations of two
files.

Table 2 shows t/%at, although the pcc-code representation can be

significantly larger than the straight text representation of a given program,

it is not expensive compared to the current SAGA parse tree representation.

Thus, preserving pcc-code files between compilations is a reasonable course.

pc0

pc

code

gen_ator

pcg

declarations, p

0.8 user seconds

0.8 system seconds

4.0 user seconds

3.7 system seconds

pxre f.p

5.7 user seconds

I. I system seconds

31.6 user seconds

6.8 system seconds

Table 3. Compilation times for two files, in which one

20-1ine procedure was modified.

Does pcg improve the efficiency of compilations? Table 3 shows that pcg

performs code generation faster than pc0, but, unfortunately, the first phase

consumes only about a fifth of the time of a compilation. The latter four

phases of compilation are shared by pc and pcg; peg' s incremental

recompilation efforts are aimed at efficiently producing an intermediate code

version of a file, which must then be given to the non-incremental pc backend

to complete compilation.

Certain implementation problems remain. As a prototype, pcg is

I

43

insufficient for a true development environment. It will soon be extended to

support full Pascal, but it must also support separate compilation if it is to

be useful; this requires the resolution of the limitation in the symbol table

manager previously mentioned.

5.2 Future Directions

Pcg suggests several directions for future work.

The most fundamental limitation of the pcg system is its dependence on a

non-incremental machine-code generator. Any efficiency gained from

incremental recompilation in the early phase is overshadowed by the time

required to recompile the resulting code non-incrementally. A straightforward

extension to pcg would be a facility for merging assembly-language rather than

intermediate-code files; preserving assembly-language between compilations

would make the first machine-dependent phase of compilation incremental. But

recompilation should be incremental throughout all phases. A facility for

merging binaries, such as existed in the original Cyber-based SAGA Make, or an

incremental loader, such as in IPE, is required. Once such a facility is

provided, pcg-style code generators can be developed for a variety of

languages, and use the con_nonbackend. •

If one is willing to sacrifice language-independence, then SAGA Make can

be made more efficient, by using the symbol table manager's ability to record

symbol references. Nested routines which do not reference a modified

declaration in the outer environment need not be recompiled in response to

that modification. Further, when the ability to use multiple symbol tables is

I

I
I

I
I
i
I

I

I
I
I

I

I
i
l

I
I
I

I

I
I

I
l

I
I

I

I
l
I

l
l
I

I

I
l
I

I

44

realized, it will be possible to record inter-file dependencies on the

procedural level; this would make it possible, for instance, to avoid

reccmpiling a file which references an unchanged interface even though the

interface resides in a file where other interfaces were modified.

Pcg only deals with Pascal. The SAGA environment is meant to support

several progranming languages [Campbell and Kirslis] ; SAGA editors exist for

Pascal, C, Ada, and Backus' FP. Since pcc-code is also used to implement

FORTRAN and C, the development of pcg-type compilers for these languages would

be straightforward. As we have seen, the use of standard compilers which

expect text input is inappropriate for an environment such as SAGA. But the

hand-coded production of pcg-style code generators could be prohibitively

costly in human time, for an environment which supports many languages. The

addition of the attribute-grammar based semantic evaluator to SAGA will make

the production of symbol table components far less ad-hoc. Since the symbol

table component is a major part of a code generating system, producing such

systems will become much less costly. The attribute-grammar specification for

one language, which details the attributes needed to generate a given

intermediate code from that language, could serve as the basis for developing

specifications for other languages which will use that same intermediate

code. Also promising is research on the automatic generation of compilers

from attribute-grammar specifications of a language and an architecture

[Ganapathi and Fischer], [Paulson]. It may be that such a formal specification

can be used to generate an entire language-based environment, including

editor, compiler, and debugger.

Pcg incrementally recompiles on the procedural level. Just as in IPE, a

natural development would be the integration of a source-level debugger into

I

45

the editor/recompiler system, giving the ability to immediately run the actual

machine code routines on sample input. This would enable rapid interleaving

of program creation with program testing, as is possible in an

interpreter-based environment. But by incrementally recompiling rather than

interpreting, the true machine-code implementation would be the object of

debugging, and the faster execution characteristic of non-interpreted code

would be available.

I
I
I

I
I
I
I

I
I

I
I

I

I
I
I

I
I
I

I

I

I
I

I
I

I
I

I
I

I
I
I

i
I

I

l
I
I
I

46

__ A

PCG PASCAL, STANDARD PASCAL, AND BERKELEY PASCAL

A.I Compliance with ANSI/IEEE 770 X3.97-1983 Standard Pascal

The SAGA pcg system complies with the requirements of ANSI/IEEE 770

X3.97-1983 with the following exceptions:

6.1 .I. The case of letters making up identifiers and reserved words is

significant. This follows the Unix convention.

6.1.3. Identifiers cannot be longer than 127 characters in length.

6.1.4. The directive #include may occur outside procedure-declarations

and function-declarations.

6. I. 5. Integers occupy the range minint..maxint, where minint =

-2147483648, and maxint = 2147483647.

6.1.6. Labels may be longer than four digits in length; a warning is

issued if such a label is declared.

6.1.8. If a conlnent begins with one type of delimiter and ends with

another, a warning is issued. Nested comments are allcwed.

6.2.2.10. The required identifiers 'write' and 'writeln' have special

47

significance within the granm_r, and should not be redeclared.

6.4.3. I. (The keyword packed has no effect.)

6.4.3.2. To be a string, an array of characters need not be packed, and
's

the lower limit of its subscript need not be I.

6.4.3.5. The predefined type 'text' is equivalent to 'file of char'

6.8.3.5. The case statement is currently not implemented.

6.8.3.9. The for statement is currently not implemented.

A.2 Differences between Pcg Pascal and Berkeley Pascal

This section constitutes an addendum to Appendix A of the Berkeley Pascal

User's Manual. See that manual for a full description of Berkeley Pascal.

A.I. Extensions to the language Pascal.

String Padding. Pcg Pascal pads constant strings with blanks as

necessary, just as Berkeley Pascal does.

Octal constants, octal and hexadecimal write. Pcg does not support these

Berkeley extensions.

Assert statement. The assert statement is not supported.

Enumerated type input-output. Pcg Pascal performs the

extension of enumerated type input-output just as does Berkeley Pascal.

Structure returning functions. Pcg Pascal allow functions to

records, sets, and arrays, just as Berkeley Pascal does.

A.I. Resolution o__fth___eundefined specifications.

File name - file variable associations. Pcg Pascal associates

nonstandard

return

Pascal

I

I
I

l
I

l
I

I
I

I
I

I
I

I
l
I

I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

i

I

I

I

I

48

file variables with named Unix files following the Berkeley conventions.

The files input and output. These are handled as in Berkeley Pascal.

Buffering. The buffering of 'output' is controlled by the b option, just

as with Berkeley.

The character set. Just as in Berkeley, upper and lower case are

distinct, and all keywords and required identifiers are expected to be all

lower case. Use of , &, I, and # as synonyms for not, and, or, and ', are

not supported.

Co_nents. Comments that start with one style of delimiter and end with

another cause a warning message, as in Berkeley.

Option control. Options may be set in the pcg command line, in the

standard Unix convention. Pcg Pascal does not support the control of options

via flags in comments. See Appendix B for the options available.

Listings. No listings are produced. When errors are detected, their

locations are indicted by setting a flag in the token causing the error; the

token is thereby highlighted in epos's screen mode.

A. 3. Restrictions and limitations.

Statements. Pcg Pascal does not currently support the following

statements: goto, case, and for.

Files. The restriction that files cannot contain files is now part of the

standard. As in Berkeley Pascal, files are also restricted from being m_3ers

of dynamically-allocated structures.

Arrays, sets, and strings. The Berkeley restriction applies:

arrays--including strings--and sets may have no more than 655355 elements;

array and string subscripts are limited to the range -32768..32767.

Line and symbol length. Symbols are limited to 127 characters in

I

49

length.

Procedure and function nestinq and program size. The arbitrary

restriction of a maximum nesting depth of 20 is maintained in pcg. There is an

unknown maximum program size; it is comfortable large.

Overflow. As Berkeley notes, the Vax does overflow checking in hardware.

A. 4. Added types, operators, procedures r and functions

Additional predefined types. Alfa is predefined (and may be redeclared,

of course). Intset is predefined to be set of 0..127.

Additional predefined operators. '<' and '>' may be used on sets to test

for proper set inclusion, as in Berkeley Pascal.

Non-standard procedures. The following Berkeley non-standard procedures

are supported by pcg: argv, flush, halt, remove, and the extended two-argument

reset and rewrite. These are

stlimit, and time.

Non-standard functions.

are supported: argc, card, and expo.

seed, sysclock, and wallclock.

not supported: date, linelimit, message, null,

The following Berkeley non-standard functions

These are not supported: clock, randcm,

I
I

I
I

I

I
I
i

I
I

I
I

I
I
I

I
I
I

I

50

Appendix B

MANUAL PAGE FOR P(3G

NAME

pcg - Pascal code generator

SYNOPSIS

pcg[option] filename...

DESCRIPTION

Pcg functions as a Pascal compiler in the SAGA Pascal

environment. If given an argument SAGA file ending with .p,

it will ccmpile the file and load it into an executable file,

called, by default, a.out.

Pcg currently does not support the following Pascal

statements: case, goto, for.

Pcg compiles directly from the parse tree representation

of the source file used by epos. Pcg expects the SAGA file

(directory) to include a symbol table, generated by the

epos-resident symbol table component of pcg; but in the

absence of a symbol table, pcg will generate one. If the file

was compiled previously with pcg, then a subsequent

recompilation will reuse unchanged procedures from the

previous compilation, for efficiency' s sake.

Currently, pcg does not support separate cempilation.

When such support becomes available, it will be modeled on

the example of Berkeley pc; see pc(I).

Pcg does not support profiling with pxp(1).

The following options have the same meaning as in pc (I),

cc(1), and f77(I). See id(1) for link-edit time options.

-c Suppress link-editing and produce '.o' file(s)

from source file(s).

51

-g Generate additional symbol table information for
sdb (which is obsolete).

-w Suppress warning messages.

-p Prepare object files for profiling; see prof(1).

-0 Invoke an object-code optimizer.

-S Generate assembler code only; do not generate
'.o' files.

-o name
Namethe final output file 'name' instead of 'a.out'.

The following options are the sameas in pc(1).

-C Compile code to perform runtime checks, and initialize
all variables to 0.

-b Block buffer the file output.

The following options are peculiar to pcg.

-F Force the generation of new intermediate code,
ignoring code maintained from previous compilations.

-d Generate debugging output.

FILES
file.p
-saga/bin/epospcg
~saga/bin/pcg
~saga/bin/pcgcodegen

/lib/fl

/usr/lib/pc2

/usr/lib/pc3

/lib/c2

/usr/lib/libpc.a

/usr/lib/libm.a

/lib/libc.a

~saga/src/pcg/semantic

-saga/src/pcg/codegen

-saga/src/pcg/increm

Pascal source files

editor with resident symbol table component

incremental recompilation driver

portable C compiler intermediate

code generator

assembler generator

inline expander

separate ccmpilation consistency

checker

peephole optimizer
intrinsic functions and I/O library

math library

standard library, see intro(3)

semantic phase sources

code generator sources

incremental recompilation driver sources

SEE ALSO

"Pcg: A Prototype Incremental Ccmpilation Facility for the
SAGA Environment".

Berkeley Pascal User's Manual.

I
I

I
I
I

l
I

l
l
I

I

I
I

I
I
I
I

I

I

I

I

I

I

I

I

I

l

I

I

I

I

I

I

i

I

I

I

AUTHOR

BUGS

52

John Kimball

Pcg is a prototype system, and bug reports should be sent
to the author.

53

BIBLI_I[Y

[Aho and Ullman] Aho, Alfred V. and Jeffrey D. Ullman.

Principles of Compiler Desiq! !. Addison-Wesley, Reading, MA
(1977).

[ANSI] Joint ANSI/X3J9-IEEE Pascal Standards Ccr_nittee. An

American National Standard: IEEE Standard Pascal Computer

Progr_ning language. New York: Institute of Electrical and

Electronics Engineers, Inc. (1983).

[Badger] Badger, Wayne H. "Make: A Separate Compilation Facility

for the SAGA Environment," Master's Thesis, University of

Illinois at Urbana-Champaign (1984).

[Beshers and Campbell] Beshers, George M, and Roy H. Campbell.

"Maintained and Constructor Attributes." AC_4 SIGPLAN Symposium

on Language Issues in Programming Environments (June 1985).

[Campbell and Kirslis] Campbell, Roy H. and Peter A. Kirslis. "The SAGA

Project, a System for Software Development," Proceedings of the

ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, Pittsburgh, PA (April 1984).

[Cooper] Cooper, Doug. Standard Pascal User Reference Manual.

W. W. Norton and Co., New York, NY (1983).

[Donzeau-Gouge, Huet, Kahn, and Lang] Donzeau-Gogue, Veronique,

Gerard Huet, Gilles Kahn, and Bernard Lang. "Programming

Environments Based on Structured Editors: The MENTOR

Experience," INRIAResearch Report No. 26, Rocquencourt, France

(May 1980).

[Donzeau-Gouge, Lang, and Melese] Donzeau-Gogue, V., B. Lang, and

B. Melese. "Practical Applications of a Syntax-Directed Program

Manipulation Environment," Proceedings of the Seventh

International Conference on Software Engineering, _; Orlando,

FA (March 1984).

[Estublier, Ghoul, and Krakowiak] Estublier, J., S. Ghoul,

and S. Krakowiak. "Preliminary Experience with a Configuration

Control System for Modular Programs," Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, Pittsburg, PA (April 1984).

[Feldman] Feldman, S. I. "Make--A Program for Maintaining

Computer Progran_," Unix Programmer's _anual, Seventh Edition,

volume 2; Bell Laboratories, Murray Hill, NJ (1980).

I
I
I

I
I

I

I
I
i
I

I
I

I

I
I

I
I
I

I

I

I

I

I

I

I

i

I

I

I

I

I

I

I

I

I

I

I

l

|

54

[Ganapathi and Fischer] Ganapathi, Mahadevan, and Charles N.

Fischer. "Description-driven Code Generation using Attribute

Grits," Conference Record of the Ninth A_M Symposium

on the Principles of Programming Languages, Albuquerque, NM

(January 1982).

[Ghezzi and Mandrioli] Ghezzi, C. and D. Mandrioli, "Augmenting Parsers

to Support Incrementality," Journal of the A_4, Vol. 27, No. 3

(July 1980).

[Goldberg] Goldberg, A. Smal!talk-80: The Interactive

Programming Enviror_nent, Addison-Wesley, Reading, MA (1984).

[Habermann] Habermann, A.N. "An Overview of the Gandalf Project,"

Computer Science Research Reviews (1980).

[Johnsonl] Johnson, S. C. "A Tour through the Portable C Compiler,"

Unix Programmer's Manual, Seventh Edition, volume 2; Bell

Laboratories, Murray Hill, NJ (1980).

[Johnson2] Johnson, S. C. "YACC: Yet Another Compiler-Compiler,"

Unix Programmer's Manual, Seventh Edition, volume 2; Bell

Laboratories, Murray Hill, NJ (1980).

[Johnson and Fischer] Johnson, G. F., and C. N. Fischer.

"Non-syntactic Attribute Flow in Language-based Editors,"

Conference Record of the Ninth ACM Symposiu_n onthe Principles of

Programming Languages, Albuquerque, NM (January 1982).

[Joy, Graham, and Haley] Joy, William N6, Susan L. Graham,

and Charles B. Haley. "Berkeley Pascal User's Manual Version

3.0," Computer Science Division, Department of Electrical

Engineering and Computer Science, University of California at

Berkeley (July 1983).

[Joy and Md<usick] Joy, William N., and M. Kirk McKusick.

"Berkeley Pascal PX Implementation Notes Version 2.0," Technical

Report, Computer Science Division, Department of Electrical

Engineering and Computer Science, University of California at

Berkeley (January 1979).

[Kessler] Kessler, Peter B. "The Intermediate Representation of

the Portable C Compiler, as used by the Berkeley Pascal

Compiler," Technical Report, Computer Science Division, Department

of Electrical Engineering and Computer Science, University of

California at Berkeley (April 1983).

[Kirslis, Terwilliger, and Campbell] Kirslis, Peter A., Robert

B. Ter_;illiger, and Roy H. Campbell. "The SAGA Approach to Large

Prccram Development in an Integrated Modular Ehvironment,"

Proceedings of the GTE Software Engineering Environments for

Programming-in-_e-Large Workshop, Harwichport, MA (June 1985).

|

55

[Medina-Mora and Feiler] Medina-Mora, Raul, and Peter H.

Feiler. "An Incremental Progran_ning Environment," IEEE

Transactions on Software Engineering, volume SE-7, number 5

(September 1981).

[Noonan and Collins] Noonin, R. E., and W. R. Collins. "The

Mystro Parser Generator, PARGEN User's Manual, Version 6.3,"

College of William and Mary, Williamsburg, VA (1983).

[Paulson] Paulson, Lawrence. "A Semantics-directed Compiler Generator,"

Conference Record of the Ninth ACM Symposium on the Principles

of Programming Languages, Albuquerque, NM (January 1982).

[Reiss] Reiss, Steven P. "PECAN: Program Development Systems

that Support Multiple Views," _ Transactions on Software

Engineering, volume SE-11, number 3 (March 1985).

[Reps] Reps, Thomas W. Generating Language-Based Environments.

MIT Press, Cambridge, MA (1984).

[Richards] Richards, Paul G. "A Prototype Symbol Table Manager for

the SAGA Environment," Master's Thesis, Department of Computer

Science, University of Illinois at Urbana-Champaign (1984).

[Teitelbaum and Reps] Teitelbaum, Tim, and Thomas Reps. "The Cornell

Program Synthesizer: A Syntax-Directed Programming Environment",

Cc_nunications of the AGM, volume 24, number 9 (September 1981).

[Teitelman] Teitelman, Warren. "A Tour Through Cedar,"

Proceedings of the Seventh International Conference on Software

Engineering, IEEE; Orlando, FA (March 1984).

[Teitelman and Masinter] Teitelman, Warren, and Larry

Masinter. "The Interlisp Progranmling Environment," IEEE

Computer, volume 14, number 4 (April 1981).

I
I
i

I
i
I

I
I

I
I

I
I

I
I
I

I
I
I

I

