View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server
v

NASA Technical Memorandum 87652

OPERATION OF THE HP2250 WITH THE
y HP9000 SERIES 200 USING PASCAL 3.0

John Perry and C. W. Stroud

FEBRUARY 1986

WAR 2 3 1989
/622)444%4)%2214gg5/6 .
&/)77
(MASA-TM-E765Z2) CEERATICN CF 1EE HE2250 N89-1%8¢2
w11H THEE BFSCCO0 SIEIES 20C ULSING EASCAL 3.0
(*2s2) 35 CSCL 1zA

Unclas
G3/59 01928:¢

Date for general release _ LEPTUATY 28, 1989

NNASN

National Aeronautics and
Space Administration

Langley Research Center
Hamptori, Virginia 23665

https://core.ac.uk/display/42829003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OPERATION OF THE HP2250
WITH THE HP9000 USING
PASCAL 3.0

SUMMARY

A computer program has been written to provide an interface between the
HP Series 200 desktop computers, operating under HP Standard PASCAL 3.0, and
the HP2250 Data Acquisition and Control System. PASCAL 3.0 for the HP900Q
desktop computer gives a number of procedures for handling bus communication
at various levels. It is necessary, however, to reach the lowest possible
level in PASCAL to handle the bus protocols required by the HP2250. This
makes programming extremely complex since these protocols are not documented.
The program described herein solves those problems and allows the user to
immedately program, simply and efficiently, any measurement and control
language (MCL/50) application with a few procedure calls. The complete set of
procedures is available on a 5 1/4" diskette from Cosmic. Included in this
group of procedures is an Exerciser which allows the user to exercise his
HP2250 interactively. The Exerciser operates in a fashion similar to the
Series 200 operating system programs, but is adapted to the requirements of
the HP2250.

The requirements for linking to a user's programs are described in detail
when the diskette is used as received. The procedure for communicating with
the HP2250 is very straightforward, once a user's program has been debugged
and compiled. The programs on the diskette and the user's manual assume the
user is acquainted with both the MCL/50 programming language énd HP Standard

PASCAL 3.0 for the HP series 200 desktop computers.

I. Introduction

The Hewlett Packard HP2250 is a high performance data acquisition and
control system that permits users to control and monitor large process control
systems using a host computer to interface with the HP2250. The HP2250's
processor is programmed in a dedicated programming language, MCL/50 (ref. 1).
Communication is via the IEEE 488 standard General Purpose Interface Bus, and
14 secondary addresses give the host access to all data defined by user
programs downloaded to the HP2250 and to numerous status blocks defined within
the system. The HP2250 can be operated by the HP9836A computer from BASIC.
However, this BASIC is too slow for many applications, and no PASCAL-based
operating program is available.

A program named PASCAL HP2250 has been written to give a user full access
to the features of the HP2250 data acquisition system by using a few simple,
efficient procedure calls from PASCAL 3.0 (ref. 2). This paper gives a
functional explaination of PASCAL HP2250, and explains how to operate the
system. The paper is intended to serve as a user's reference and operating
manual for the program, which can be obtained from COSMIC (ref. 3).

The main bus address, secondary 0 (zero), allows loading and execution of
tasks written in MCL. These tasks may be temporary tasks executed immediately
or they may be permanent "resident" tasks identified by a TASK command.

Secondary addresses 1, 2, 3, and 4 give the host computer access to vari-
ous MCL status blocks. The status may only be read: the host may not modify
any status variables. The host must, however, write to Secondary 3 to tell it
which task status is desired.

Secondaries 5 and 6 write to and read from MCL buffers in real time,
i.e., they immediately receive the current values, and these values may change
at any time.

Secondaries 7 and 8 write to and read from MCL variables in real time.

Secondary address 9 allows the host to write down-loaded precompiled
machine code (for the HP1000 computer) subroutines to the HP2250.

Secondary address 10 is not used by the HP2250.

Secondary addresses 11, 12, 13, and 14 are "Ports". MCL tasks may assign
a buffer to a port, whereupon that buffer may not be modified by MCL 1/0
commands until it is read by the host computer. Buffers released to ports are
thus protected from intervening modification and are consequently not real
time.

Pascal 3.0 for the HP9000 series 200 desk top computer gives a number of
procedures for handling bus communications at various levels. It is
necessary, however, to reach the lowest posssible level in Pascal in order to
handle the bus protocols required by the HP2250. This makes programming
extremely complex--particularly since these protocols are not documented.

Pascal HP2250 raises the programming level, giving the user full access
to all features of MCL tasks and permitting the user to program simply and
efficiently any MCL application with a few simple, efficient procedure calls
(figure 1). It does not handle secondary address 9; however, facilities are

present in the module which allow a user to build a procedure analogous to

TRANSFER _TASK which will do this. Such a user must have ready access to an
HP1000 computer, and have a real need for machine language routines.

This report assumes that the user is acquainted with both MCL/50, the
HP2250's programming language, and HP Standard Pascal 3.0 for the HP Series
200 desktop computers. The complete set of procedures is available on a 5
1/4" diskette from COSMIC. Information included as appendix A is a set of
instructions for linking the program as received from COSMIC to a user program

in Pascal. Appendix B is a complete 1isting of the program with a minimal

4
driving program and a sample HP2250 program for demonstration of the Transfer

Task procedure.

II. Decription of Program:

A. Data Structures

The data structures in PASCAL_HP2250 are determined by the HP2250's data
structures.

Type com strg is an 80-character command string; its primary use is to
give a single short command. More complex main tasks may be entered, however,
by simply putting commands into the main address line by line without entering
the "!" character.

Status_type and Interr type are determined by the structure of their
secondary addresses' data; their use is straightforward.

Buffer type is a record having a count field "count" and a data array
field "data". The count field gives the number of valid items in the data
array field.

B. Procedures

1. Exported Procedures.
Each of the exported procedures performs a specific function, and most

completely handle one secondary address. These procedures are:

Init 2250: sets up the internal bus addresses for the module's

other procedures. Must be executed before any other

procedure.
Read main: reads data from the main address.
Write main: writes an MCL command string to the main address.
Transfer_task: reads an MCL task from a disk file and writes it to the

main address.

System status:

Main_status:

Resident status:

Interrupt status:

Write buff:

Read buff:

Write variable:

Read variable:

Read port:

2.

reads system status from secondary address 1.

reads main task status from secondary address 2.
reads resident task status from secondary address 3.
reads interrupt status from secondary address 4.
writes data to an MCL buffer via secondary address 5.
reads data from an MCL buffer via secondary address 6.
writes data to a sequence of MCL variables via
secondary address 7. Since a number of consecutive
variables may be written in one command, buf type is
used to hold the data to be written.

reads data from a sequence of MCL variables via
secondary address 8. Uses buf type in the same way
Write Variable does.

reads data from one of the four port addresses.

Internal Procedures

The internal procedures are not available outside the module

Pascal hp2250.

They are very useful within it, however, for making the

procedures and the bus protocols much easier to understand and use.

Talk_to_sec:

Listen_to_sec:

Word eoi:

3.

Exerciser

sets up the bus to allow the host computer to talk to
the HP2250 secondary addresses.

sets up the bus to allow the host computer to listen.
divides output 16-bit integers into two bytes so that
the EOI control line drops with the last byte.

The exerciser is a procedure which allows the user to handle interac-
tively all the facilities in module Pascal_HP2250. It prompts the user for a
single-character command in the fashion of the operating system, and depending
upon that command executes or prompts for further input. The exerciser in
combination with user-applied MCL commands can exercise every facet of HP2250
operation under Pascal 3.0 except machine language subroutine downloading.

The only external code needed to operate the exerciser is a program call-
ing Init 2250 with the correct interface select code and bus address for the
user's system, and a call to the exerciser. The user may terminate the
program in any convenient manner outside the exerciser.

The main program HPROG supplied on the diskette illustrates the use of
Exerciser and Init 2250 on the system described herein. If the user's

addresses are different, it is necessary to change only the declarations.

III. Use of Program

A. Data Structures

1. Constants: Maxram=16384 is the maximum user ram available in the
HP2250 system processor. It is thus impossible to have

a larger data array than Maxram.

Port a--Port d: The secondary addresses of the
respective ports.

2. Types: Com Strg=String[80]; String variable type that handles
command strings to the hb2250 main address and the file
name for task transfers. It holds an alphanumeric
string up to 80 characters long which the user's

program must fill.

buffer_type=record count: 0..maxram;
data: array[l..maxram] of integer;

end;
Buffer_type is a general-purpose integer array with
associated count variable. A1l secondary addresses
return integers, and some require integer inputs.
Since it is not possible to predict the exact size each
user program will require, buffer type is defined to
include the largest possible data array. The user must
define his own record type similar to buffer type, but

with an appropriate data array size.

The count field in the user's record must always reflect the
true data count in the array; it is strongly recommended
that both the count field and the data array size be limited
with an appropriate constant size in the same manner as
buffer type's were. Since the compiler does not generate
value checking for the "anyvar" declarations in buffer type
usage, careless use of this type can crash your system. It
is further recommended that the count field be updated
immediately whenever the data field is changed: this allows

the user to keep track of the true size of the data array.

B.

Procedures

8
The procedures that use buffer type as an output take care
of these operations internally; the procedures that use
buffer type as input depend upon the count field for their
operation. This affords some protection from trouble, as
long as the user is careful to assign values to the data
field only in concert with correct updating of the count

field.

Status_type=array [1..8] of integer;

A1l status addresses except the interrupt status have an
eight-element integer array as output. These are read-only
arrays which are used as output by their respective

procedures.

Interr type=array [1..16] of integer;
A 16-element array used as output by the interrupt status

procedure.

Port type=port a..port d;

Port type defines the addresses of the ports corresponding to
their namesakes. It is used as input by the Read Port
procedure.

Init 2250 (select code: type isc; addr: type hpib_addr;);

Init 2250 sets up the addressing structure for the

9
user's system. It must be the first call to the module

Pascal_HP2250.

Select code will be 7 if the internal hpib is used; it
will usually be 8 if a single external hpib card is
used. Addr may be determined by the user for his

system.
Read main (anyvar data: buffer_type);
Read main reads the main result buffer from the HP2250's
primary address. It leaves the data in the lowest
elements of data.data, and leaves the number of elements
in data.count.

Write main (strg: com strg);

Write_main sends a user-specified MCL command to the

primary address of the HP2250. Refer to the HP2250

Programmer's manual (ref. 1) for valid MCL commands.
Transfer task (taskfile: com strg);

Transfer Task allows the user to hold complete tasks on

disk and transfer them by specifying the file name

10
holding the task. Taskfile must be the valid file
specifier of an existing text file; this file must

contain an MCL task.

System Status (var status: status_type);

Main Status (var status: Status_type);

System Status and Main Status get the status arrays from
secondaries 1 and 2, respectively. Their parameters are
output only, and the status may be read at any time by

calling the procedure, then examining the array.

Resident Status (task:integer; var status: status_type);

‘Resident Status differs from Main_status only in that
it may retrieve the status of any task--not just the main
task. It therefore requires an input parameter, task, to
tell it which status to read; status may then be read

from secondary 3 like main_status.

Interrupt Status (var interrupts: interh_type);
Interrupt Status reads the 16-element interrupt status
array from secondary address 4. Interrupts is an output

array only.

Write buff (bufno:integer: anyvar data: buffer type);

11
Write buff writes via secondary 5 the number of elements
given in data.count from the array data.data to the MCL

buffer number given in bufno.

Bufno must contain the integer name of the desired MCL
buffer; data.count must contain the number of words to be
written; and data.data must contain the data values to be

written.

Read buff (bufno:integer; anyvar data: buffer type);

Read buff reads into variable data.data via secondary 6

data from the MCL buffer specified in bufno.

Bufno must contain the integer name of the desired MCL
buffer; data.count must contain the number of words to be
read; and data.data will contain upon return to the
caller the data values in the buffer.

Write variable (varno:integer; anyvar data: buffer type);

Write variable writes via secondary 7 the number of
e1ement$ in data.count from the array data.data to a
sequence of MCL variables starting with that named in

"varno" and continuing until the array is exhausted.

12
varno must contain the integer name of the first desired
MCL variable; data.count must contain the number of data
to be transferred, therefore the number of variables to
be written to; and data.data must contain the values to
be written. There must be exactly as many values in

data.data as are specified by data.count.
Read variable (varno:integer; anyvar data: buffer type);

Read variable reads, via secondary 8, the number of
elements in data.count from a sequence of variables
starting with that named in varno and continuing for the
number of variables given in data.count. The data are

read into the array data.data.

Varno must contain the integer name of the first desired
MCL variable; data.count must contain the number of
variables to be read; and data.data will contain the

values, in order, upon return from Read Variable.
Read port (port:port type; anyvar data: buffer type);
Read port reads a buffer from the port named in "port"

into "data". Before any data can be expected at the

port, an MCL task running in the HP2250 must have

13
executed a RELEASE command to the port named. The array
data.data must be declared large enough to hold the

entire expected buffer.

Port must contain an element of the integer subrange
port_a..port d (11..14); upon return, data.count will
contain the number of data elements found at the port;

data.data will contain the data found.

Exerciser;

The Exerciser allows the user to exercise his HP2250
interactively. It operates in a fashion similar to the
operating system programs; however, it is augmented to

reflect the different nature of the HP2250.

Several levels of prompts must be traversed before a
command is executed; the number of levels and the details
of the level structure depend upon which selection is
made at each level. This is not complex, however,
because the levels and the prompts are arranged in an

orderly, logical fashion.

Each level's prompt gives a set of single-character

commands possible within its level; upon receipt of a

valid character, the level prints out the remainder of

14
the command's text and goes to the next level.

Thus:

rlead, w)rite, t)ask, s)tatus, qluit: expects a single

n_n u II’ lltll’ nw_n n_n

character, "r", "w s, or "q".

If the operator types "r", he will see upon the screen

r)ead, w)rite, t)ask, s)tatus q)uit: Read
m)ain, v)ariable, b)uffer, plort:

If he then types "m", he will see

r)ead, w)rite, t)ask, s)tatus, qluit: read
m)ain, v)ariable, b)uffer, plort: main

0

Since read main requires no more input, the exerciser
immediately reads the main result data, which in this
case was a single word zero. Characters will be accepted
until a "q" or "Q" is typed; the exerciser will then

return to the calling program.

Some levels require input data from the keyboard. In all
cases the prompts are straightforward and depend upon the

parameters required by the procedures they exercise.

15

CONCLUDING REMARKS

This program solves the problem of communication between the HP9000
series 200 computer and the HP220 data acquisition and control system. The
program removes the need for low level access to the Pascal input/output
system, making all facilities of the HP2250 available to the Pascal user in
simple procedure calls. The only facility not currently supported is
machine-language down loading. The complete set of procedures is available
from COSMIC on a 5 1/4" diskette. Included in this group of procedures is an

Exerciser, which allows the user to exercise his HP2250 interactively.

16
APPENDIX A
Linking to a User Program
If the diskette is used as it is, the requirements for
linking are given in the Pascal 3.0 User's Manual for HP
Series 200 Computers. In summary, the requirements for

this program are:

In the text of your Pascal source, insert the line

$ search 'PA2250:PASC 2250'S$.

This tells the compiler where to find the module. 1In

the declaration part of your source, insert

Import Pascal_HP2250;

A1l the export declaration will then be available for

linking to your program.

After the user program has been debugged and compiled, it
will be necessary to link the modules using the

Librarian.

An example is given on the diskette in the stream file
PA2250:HPROG.LNK.TEXT
for the sample program HPROG on the diskette. HP.CODE is

the linked, executable version given for this document.

17
APPENDIX B

The program HP (file HPROG) is a minimum driving program for module
Pascal_HP2250. If the HPIB select code or device number are different, the
sel_code and address must be changed to match your system's. The prograh will
then execute properly.

This program can, in fact, be used to check out your system's operation,
and to train personnel in the use of the HP2250, since its only limitation is
its lack of a procedure to transfer machine code to the HP2250. Every other
facility is available to the user, depending upon the input/output cards

installed in the system.

THE FOLLOWING
PAGES ARE

PROGRAM LISTINGS

“18
Pascal (Rev 2.0 o/ 47841 HPRUG, TEXI 4-Dec-55 14:35:58 Page |

[0 Sli=t on®d

2 } S1ines D85

33D 0 $pagewidth 80%

4:1) 0 %zearch "PAZZLDPASC_22507 3%

NERY 0 PRUGRAM HP (input. output):

bio v

) i import Mascai iP2250, 1ocomasm, iodeclarations;
8:5 ‘

940 Tooonst wel code=a) for the auwthor’ s system:
10:D i address=5Ht
115
teeD - i wvar ohy char
HERSS
140 o begin chp s
1910] init 2250 (sei_code. addres=z),
Tl ! exerciser;
P7:C 1 end, Lhp s

No errors. MNo warmings.

ORIGINAL PAGE 15
OF POOR QUALITY

ORIGINAL FAiGE 13
OF POOR QUALITY

Pascal 1Rev 3.u 6/ 47545 PASC_CZ250. 0Kl 4-Dec-85 14:26:iL Page |

1Y M %L1z ont
2:D £ Zeyeprogd
3:b U $lines 85
4N 0 Fpagewidth 86HS
[
§{§ MODULE Fascai_ tb2250: i1aterface between 983b Fascal
1] 4
o s and hpl25u;
g:5
9.5 ' _ -
10D Poimport hpib_ 0. hpib_', heib_2, hetb_3, general U, general_i,
genera._<,) o o)
Pl i qeneras 3, general_4, iocomasm, lodeciarations, is;
Tdih
REREY ' Cxport
14D f CORST maxram= 16564 {maximum RAM availaole to user
1520 i vort_asily {zecondary addresses of
1610 ‘ port_osis, © oports in HPZ2SG ’
17:D ! poert_c=ls;
;8:}.' 'i ":)Q'l‘t a=] ';
V). O
2013
QY Lype com_strgTscringlat]; icommand string jor al
fa use,
220D o
2540 ‘User ot outter_type must bte careful i1n cail

1Ng program
24400 i that count ALWAYS reflects true dat
P
nu.s

25l i 4 hufrer _type=record

261 ' H L count: U, .maxram; {adat
me 1N array s . _
2700 i data: array (1. maxramil of

er: {data array:
D0y, “
SO L
299
20D ! ztatus_typerarray t1..8) ot integer: '
s data array!
31D i tnterr_type~array o!..16]1 of integer; i

and; ibuffer_type:

3200 ! GOrt_TypeTport_a., ,poro_d) Lsecondar

a iue
inteq

statu

o

nter

y acid

Pascal IRev

[CRN &V
cren

|aviewr R i}

7

dcr)
38:D
39:D
40:D
41:D
420
430
44:D

plb_.

o m &

@)
45

4630
r_type):
471
_type):
48:0D
er_type?
493D
2r_typer,
5010
type):
C,

:D

¢
—
X

3 o 3 i ey =

L/ 47041 PAS

Ypaged

Tiist ons
procadures
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure
proceduars
procedure
procecures

procadure

procedure

2250, 7EXT

20
4-Dec-385 14:26:16 Page 2

addr ! tybemh

imit_ 2250 (select_code:! type_isc;
read_main (anyvar Zatat buffer itype)l:
write_main (strg: com_sir ragr;
trancfer _task (taskfiie: com_strg):
system_status (var status: status_typel:
main_status (var status: :tatus_type):
resident_status (task: integer;
var status: status_typ
xnterruptmatatus (var interrupts: interr_type)
write buft (bufnot integer, anyvdr data: butre
read_buff (pufno: integer: anyvar data: butfer
wiite variable (varno: integer: anyvar data! butff
ead _variable (varno! integer: anyvar data: butt
read_port {(port! pori_type: anyvar Jata: pbutfer_

T .exercise module interactively

T
vl

Xercis

ORIGINAL PAGE IS
NF POOR QUALITY

Pascal Lhev

Lo

~ D
6:5

LT R U O
i

~J

commands ;
b0:5

b | Z.‘“:
LoD
631D
54:8
853(:
66 C
L7:C
.
L5
BY:5
VATRRSS
71D
721D
7345
74:C
75:C
/6.0
77:C
'
YRR
73:5
305
21D
3240
8545
84:0
85 R
{:“:_):(:
a7:C
88:C
09 C
90: 0
91:5
9715
934D

94D
pib_addr);

95:5

QE.:

L

I e

ER

Cvc‘l_rl[-l:
— 0O

ce ee v e

—

Rl

-6

)

o

Sau

PO

K]

[

[o T

RS EN XS

Pous [o

[V AT DR

ORIGINAL PAGE 15
OF POOR QUALITY

b 47340 FASC_Z250. TEXT 4-Dec-85 14:2b:16 Page 3

Tpages

dlist on%

impiement

vy card, type_lsc; thpib card 1nfertace select co
bus _aadr, my_addr: type hpib_addr;
devitvpe _device: icomposite adaress tor certain

it=et up hpib Lo t
;
(%

secondary or the main agdress;
procedure (

sec; type_hpib_addr);

negin

zten (card); talk <carq. my _addr);

listen (card, bus_addr?; if sec<>0 then secondary (card, sec

e italk _to_sec;

{cei up hpto o j1stew to a secondary or the main address
» 5 (s

procequyre listen_to_sec ec! type_hpib_addry,
hegin
dniitsten (card): talk (card, bus_addr);
it cecd<»U then secondary (card. =zec):
listen (card., my_adde); 1f sec<>]) then secondary tcard, sec)
andd LIsTen_To_<Sec)
{put eol s1gnai onto last byte ot a binary message:
procedure word_eol (word: integer),

const byte_sizes2b%6!

citecnar ‘card, chr (word div byte_size));
set_hpip (card, =0l _line);
itechar (card, chr (woro mod byte_=z=ize));
iword_eol!

met up =elect code, bus address, and device address for <2505

procedure init 2250 {(select_code! type_isc: addr: type_h

begin
Cardi-seleci_code: bus_addri=aadr; devi=card=!JU+tbus_addr;
ress (card)

my _addy:=my __add
and; fimit_Zo500

2

Pascal tRev 3.0 b/ 4/841 PASC 2250, 1EXT 4-Dec-85 14:26:16 Page 4

102:D -8 1 %paged

USRSV -8 1 %list on%

104:D -5 1 iread main address message from hp2Z250;

105:D 1 procedure read_main (anyvar data: buffer_type);

[RVISERS

107:0 -8 ¢ var i, words: i1nteger;

108:D -40 2 status: status_type;

109:5

110:C ¢ begin

INR Y 2 systam_status (status);

11210 2 listen_to_sec (U):

113:C 2 for i1:=1 to statusl4] do readword (card, data.datalil);

1174:C Z data.count:~statusl4];

115:C 2 untalk (card); unlisten (card);

196:0 2 end; {reac_malin}’

117:8

11815

119:0 & | fwurite a commanad to thne main addresst ,

120D -32 1 procedure write_main (strg: com_strgl;

121:8

12210 -390 2 wvar i. werds: integer;

123:8

1¢4:C 2 begtin

125:C 2 writestrina (dev.strg); set_hpib (card, eoi_line);

12610 e writechar (card, chr(10)3:

127:C Z untalik (cara); unlisten (card):

128:C Z end; {wrifte_main’

129:5

13015

131:0 -3 1 iwrite task to main adaress from a dick filer

13214 -32 1 procedure transfer task (taskfile: com_strg);

133:5

124D -746 2 var task: text; {f1le containing tasx code--must be iy
pe text:

13%:D -828 ¢ command: com_strg; cname of file--form XAXXXXAX.T
EXT

136:5

1370 s begin

1380 p reset (task, tasktile);

1330 Z while not eofttask) do

1404 3 DedqLn

ARV 3 roadlin (task. command); writestringln (dev. command):

T42:0 3 end; iwhile’

V4300 z set_hpib (card, eoi_line): writechar (card, chr 1oy

144:(Z untatk (card); unlisten (card);

145:C 2 end: {transter_task:

146:5

1475

ORIGINAL PAGE IS
OF POOR QUALITY

v
hil
w
n
B
-
Lv'

=]

[nlv'e RN Al WAN SRSV SNUPSER e R ¥ o0 &

oo~

[

h a s e s
L
TN U e T T

e

P

i

L

Pt ae vt aw P se e +a e e e ag

PG P P Pl T

fa

<
;-
e e w

gL Londn

DERES o [I —

Ry

A

h? ek e 8 ek Y d oY ——e

o

he Pt sr ey wa

O

—_— e e
~ O

PR

o g O

(o NI Al N E SR sl K 6y

—

S N S U N &]

PRGN g
[N S AR S AN

LT L

Bt

ol =3 3 s
. T e

P e

T
-
-
s
N
@

(o

P
s
o™

o —
WA

foa Fo

.

e

B

Foy

Qo 00 0 QL ~g ™~

o

IR

Aaepl
ey

O
i T P T P

RS e

!

000~ T n B o NG = S 10~

e TP ee P ey 4t g aa

e
W

— e e i a3 e e} b i D b) b

[val)

ORIGINAL PAGE IS
OF POCP nuaLiTy
23
b/ 47845 PRASC_2I50TEXT 4-Dec-55 14:26:16b Fage

bpaget

Tiist on%

fget system status trom secondary i

procedure system_status (var status: status_typed

VAP 1. integer,

Degin
iisten_to _sec (1))
for it=1 to ¥ ao readword (card, =ztatuslii);
untalk (card:; wnlisten (card);,
end. izystem_status)
fgei maln task status trom secondary £«
prrcedur' main_status (var status! status_type?!

Degin _
iisten_to_saec (J))
for i:=1 10 8 do readuword ¢(card, statusliil);
untalr (card?: wnlisten (card);

and imaln_statusi

{net resident task status irom secondary 37
procedure resident_status (task: 1nteger.
var status: status_ityp

var 17 1nteqger!

begin

talk_to_sec (2):
word_ 2ol (tazk !
untalk (cara); uniisten (card):

tisten_to_sec (d)!
for 31:=1 to 8 do readword (cara., ztatuslily)
untalk <(card); uniisten (cara);

end! ireszident_statust

Pascal tHev 3.0 t/ 4/847 PASC_Z250.7EXT 4-Dec~-85 14:26:16 Fage b
150:D -& 1 Ppagek
1910 -4 1 %iist on%
192D -8 1 {get interrupt status irom =zecondary 4;
153D 1 procedure interrupt _status (var i1nterrupis: interr_type)
(9415
195:D -4 2 var 1! irnteger;
196:85
197:C Z vegin
198:C 2 listen_to _sec (4):
199:C 2 for i:=! to '6 do reaauword (card, interruptsiil);
290:C 2 untail (card’: unlisten (card);
201:C 2 end; {interrupt_status!
20215 '
203:5
204D -2 1 iwrite data to puffer with secondary 9:

20550 1 procedure write buff (pufno: integer; anyvar data: bufte
r_type):

206:5

SU7D -4 : wvar i: 1nteger,

2085

209:C J beglin

210:C 2 talk _to_sec (5

211:C 2 writeword (rcard, bufrno);

212:C 2 writeword {(card. data.count);

213:C & for i:=1 to data.count do writeword (card, data.datal:ii):

214:C Z unrntalk (card?); unlisten (cara’;:

215:C 2 end; {write_buffi

216:5

21745

218:0 8 1 iread data from buffer with secondary bHJ

219:0 i procedure read_buff (bufno: integer; anyvar data: butfer
type).

22015

2210 ~4 2 var i: intedger;

22215

223:C S begin

2240 pE taik _to_sec (b}

22550 P writeword tcard, buinoj;

22610 2 word _eot {data.count?’:

227:C 2 untalk {(cardr; unlisten (card’;

228:C o listen_to_sec (B

229:C Z for i:=! to data.count do readword (card, data.datalil);

230:C g pntalk (card): uniltsten (card);

2210 2 end; {read_buffr

23215

23335

ORIGINAL PAGE IS
OF POOR QUALITY

CRIGINAL PAGE IS
OF POOR QUALITY

Pascal i(Kev 3.0 &/ 4/8545 PASC_2250, TEXT 4-Dec-85 14:26:16 Page 7
234:D -2 1 %pageb
235:D -5 1 Blist ond
236D -8 1 fwrite cata to variable with secondary /1
237D 1 procedure write variable (varno: integer; anyvar data: buff
er_typel:
238:5
239:D -4 2 war it 1nteger:
24015
241:C 2 begin
242:C e talk _to_sec (7).
243:C 2 writeword tcard, varnol;
244:C 2 writeword (card, data.count);.
245:C i far 1:-] to data.count-! do writeword (card, data.agatali1l);
245:0 2 word =01 (data.datatdata.counti?;
247 ¢ 2 untalk (carg?y unlisten (card):
248:C < end, iwrlile_variable’
2493
2505
251D -8 1 ‘read aata from variable with zecondary 8
2520 1 procedure tead_vartable (varnc: integer: anyvar data: Huff
or _type)l;
2535 :
25410 -4 7 war it integer;
25555
256:C 2 begin
257:C 2 talk _to_sec (8
258:C Z writeword {(card, varnol;
25590 2 word_eoi {data.count),
260:C 2 untalk (card?; unlisten (card);
2ot 2 listen_to_sec (&)
1 C 2 ‘or 112! to data.court do readword (card., data.datalii’:
1 C 2 pnialy (cardr! uniisten (card):
e 2 oend; {read_var:iable;
05
3
]

M PaPS PO PO DI PO,

e (0 Q0 TR I O N

L)

5

&

t

:

bb:

675

1 R) -8 | {read oata from port with secondary 11145
£9:D 1 procedure read_port {(port: port_type; anyvar data: buffer_

type);

270:5
2710 -4 2 var it integer:

272:0 ~30 status: status_type:
27315
27450 & begin

275:C 2 systam_status (status);

2/6:C 2 data.court:=statusiport-ti;

277:C g listen_to_sec (port))

2780 Z for 1:=1 to datae.count do readwora (card, data.datal:l);
279:C 2 untalk (card): unlisten (card):

260:C 2 end; {read_port;

28115

282:5
2835

Y:A

P
N
(]
i
fom

F K
oo

.-

[A (N
oLCeC

30O

o

4e e e e

S v R vl wif wsl ey R usll ww R w Jf Oy RO €5

W P P Tl B T P 0 P T B B

O LD 0l (O LD (T D O

-

L'JL")(".(‘J""::(")(_."

PO OO G TS Lo e S0 Q0

)
L

o
[awilen:
—

Lt

%Q%

304

S04

205 ¢

Jouit
3Qb:

307

308:

30

!

B s

L

L

.
*
.

.

<

(“J""—"t")t'“;vc—

Oy

has

it
L]
<

3.U

[adN e

b

QL D - N

i
RN Yo aNsa R oW

P s LN RS

J

P

P BTG o T P TN P P

GO L i P

IOl

L/ 4

/581 PASC_2250.,

TEXT

interactiveiy

integer,;

$pageb
Zlist ond
procedure exerciser; {exerclse module
CONSL cr=chr(id): {carriage recurn char;
va.r status: ztatus_type;
row, col, 1. J, varno, bufno, task:
cht chnar;
command., filename: com_strg;
data: record count: 0O..32:
gata: array [1..321 of 1nteger;
end; {data record;
intery: intery_type,;
cortt port_type,
pegin
repeat _
{for i:=0 to i do begin

.
e
t

+
T

gotoxy (output,
g
gotoxy (output,

getxy (GUIpPUT.
epeat

fgotoxy toutput., ©ol, row); read (ch)

r

until en 1w L1

Uyid,

U, i)

zol.

£y

LR

for ji1=7 to 1 do write
write (1lead, w)rite,

Tow) .

u}.N.t 1“‘.‘5»‘{";

ORIGINAL PAGE IS
OF POOR QUALITY

¢

trask,

")

sytatus

: ORIGINAL PAGE IS
OF POOR QUALITY

Pascal (Rev 5.0 &/ 4/84) Prsl_z250.ieXT 4-Dec-85% 14:26:16 Page 9

311:C 3 ‘bpaged

312:C 3 %lizt ong

313:C 3 casze ora (ch) of

314:%

315:C 4 read. ..

3ib:C 4 ordt v). org ('R7): pegin

317:C 4 writeln (eaa Vi write ¢ mdain, variable. butrer, p)
ort: ")

318:C 4 tgetxy touwtput, col, row):

319:C 4 receat

320:C 5 fgotoxy touatput, col, row); read tch);

321:C = gntil ch tn tom WM, vV B, By TR T FT

3220 4 case ord (on) of

3235

324:C o {tead main;

3259:C 5 orc ¢ m'), ord ("M):

32614 C > Deain

327:C 5 gritein <ain)y read_malin (data):

325:C 5 for 1:=1 te data.count do write (data.datalii:3): wr
iteln

3¢90 o) end forg Cmy, ord ¢ MY

33005

-
' 28

ccal tRev 3.0 L/ 4/84) PHSC,ZZbO.YEXT 4-Dec-85 14:26:16 Fage 10
331:0 S $paged

35240 € sijsgt ond

333:C 5 iread variaple?

934:C 5 ard (v),ord ('Y pegin

335:C 5 writeirn ("ariable "

3536:C 5 grite (start variable, ¥ variables:)3 readin {var
data.count):

337:C o read_vai tabie (varno. data)

338:C S for 1:=1 to data.count do urite (data.qatait]:B):
339:C 5 end sord vy ord 'V

34015

541:C N ireag butters :

342:C 5 ord (b),ord ("B i bedin

2430 5 writeln ("uffer "1

3u44:C 5 write ¢ pufrer pumber, £ words: 24 readin (bufno,ua
count)i

34%:C 5 sead outt (hufno, data):

3460 5 for 1:=1 to data.count 4o write (data.datail;;e);
347:C 5 and; {ord (b)), ord (B

34815

349 C o L read porty

350:C 5 ovd ('p),ord (P’ begin

351:C 5 yriteln (Tort)

35230 o) write (port name (f,6.C,D) T

35350) rgetxy (output, col. row?

354:C b repeat

355:C £ faotoxy Coutput, col. row): read (ch)

356:C (=) prtil ch o 1m i'A, B LC D I

3570) port:ford(ch)“SA;

358:C 5 read_port (port, Jata’:

259:0 5 igr i:=1 toO data.count do write (data.datailizg);
360:C B end: iord (p’), ord (TR

361:C 5

362:C 5 otherwise :do nothing’

363:C 5 end; icase ord (ch)?b

3640 4 end: fara (), ord CROY

365:5

ORIGINAL PAGE
IS
OF POOR QUALITY

Fascal

n <

Tno

ta,

1>

i Rev

3/8:
JZS.L
380:C
30710
rommano)

OO
"
.
[Eae

(&0

— SO U I L P

[SNR AR IS X CRN SN ON

0 CC 5 O

PO pj e ** ae

\
LN YT T O Cr e VY T

ce a4 *t e re e

D L OO G0 LS G0 o L2 Lo Lo -
L0 L0 D LD 0 D (L O

~ T I Ll Y

.o

count);
398:C
399:C
400 ¢
4017 :C

LIPIF

442 L
4UZ:C
444
405:C
406.{

namP)’

2.4

a.count

)

4

R S N S

o

KR SZL Ca B N

—

P i U

(]

[RN

i e

U7 Lm0 L

s

T

[TV N Sl Val

[Ss X7

R

~
-—

N A

[

I~

ORIGINAL PAGE IS
OF POOR QUALITY

write_ma.

reaclin {(va

tati1i’;

(bufno.da

tariid;

transter_ta

29 .
&/ 4/547 PASC_ 2250, e XT 4-Dec-85 14:26:16 Fage 11
bpage¥
Zlist ond
turite., .,
oraC w)Y, ocd C W): begin
writeln ¢ rite’),
write C(or, miain, variable, tb)uffer: ")
tgetxy (output. col, row);
repeat
fgotoxy toutput, c01‘ row) read (ch)
until c¢h or U'm", "M, VY ‘B 1y
case ord ‘fch) of
LWTLITE malins
orgd ("mY),ord ("M begin
writeln Cain)
write (MCL command: ! readin (command):
and ford < 'm’), ord ¢ M)}
twrlie variabiler
ord ¢"v),ord "V begin
writeln (Tariable)
write (start var:able, # variables: ")
write (Jata.count:c, values: "),
for 1!=" to aata.count-i do reau tdata.da
readln (data.dataldata.countl?
write variablie (varno, data?
enid ford Cv7), crd (V7)Y
lwrite ﬁu?fer‘
ord (b).nru ('B"J: begin
!ﬁr11‘1rn(affer’ ¥,
write (putrer nwaber, £ words:), readln
urite (data.count:d, values: ")
for ir=7 to agata.count-i deo read (data.ca
readln (oata.cataldata.countl);
write butt (pufnc. data)
end . rvord C'b7), ord (B
otherwise :do nothingi
end: icase ord (chby)
end, fordCw’)y ord (W)
viranster task. ..
ordt t7), ord ("T7): begin
writein ¢ ranstfer task)i _
write (task fiilename: Yireadln (tilename);
writeln (t+1lename, sent)
ana: fordl " t"Y, ord (' 770%

Pascal (Rev 3.U

" ae v .o

WO OO T

e ee *o o

e v

e 2o 40 P 4. e

o *o aa

3

e wa
T C

O e N N S N N N N N N L N N N N T

O 0 L0 Lo 00 Lo OO Lo PO PR PO PO PO PO PO NI PO P et ma 2 e

I
Qo O

SNTUIEWWMN =IO O~NE U S WM — D000~ T
2T

PN

. e e

sk, status):

444 C
445 C
4465
447 C
448 ;¢
449:C
450 C
451 C
452 ¢
453:C
454 ¢
435 C
456:C
457 .5
4581 C

No errors, No warrnings.)
#=%xx Nonstandard lanquage teatures enabled »==x»

ST

(SRS R Ol Ga i@ el

CAemeaCnen

(S ke TN U

¢« -

onihon L onnion

o > b

6/ 4/64) PASC_2250. TEXT

unti1l ¢h oin U'a U7

30 .
4-Dec-85 14:26:16 Page 12

st on$
istatus of ...}
ord(' s’), ord (G

"):. begin

writeln (tatus of: 7,
wurite ¢’ s)ystem, m)ain, rlesident, 1)nterrupt: ")}
Fgetxy (output., col, row);
repeat

fgotoxy (output, coi. row): read (ch);
until ch in L' 'SV 'm 'MW xR, T, T
case ord (ch) of

iatatus ot systems
ord ("=), ord ("57):
begirn

writeln (ystem); sysiem_status (status):
for 1:=1 to 8 do write ($taﬁus[11:4); writeln
end; ford "2, ord (57

Latatas of maing
ord ("m j,ord ("M). beuin

writeln ¢ain’); main_status (status):

for i:=%7 to 8 do write (statuslii:4); writein
end | ford {'m’), crd (M)

‘ztatus ot resident task:s
ord (“r Y,ord ("R7); begin
writeln (Tesident task),
write (“task: ") reaaln (task); resident_status

tor 1:°1 to o do uwrite (ctatuslil:®); writeln
end ! ford (' r’'), ord ("R);

\wtartus of Interruptsi
ord ¢("i"),ord ("1"): begin

writeln ("nterrupt’)

interrupt _status Cinterr)

tor i1:~1 ta 16 do write Cinterr{il:4); writeln
ena; tord ¢ 17), ord 170}

otherwise ido nothingt
and: icase ord (ch)j

end; ford ¢"e7), ord (577

otherwise ido nothing’

{case ord (chyi

lexercisers

{Pascal HPe250)

ORIGINAL PAGE IS
OF POOR QUALITY

(ta

ORIGINAL PAGE |5

OF POOR QUALITY
cxGTREAME LLE THFROG. LKL TREXT
from operating system ievel

ues =tream command on this tile
to link HPRUOG anag PASC_2J50. ‘

- -

_OHP

_ 1HPROG
AIPASC_2250

ALK

»<CTLe INLTDAS

LIEK e
use this as source Tor Transfer_task command. Defines 11 tasks,
10 variables, 10 butfers each 10U words long,
amount of availiabie memory.

2

ang asks for

atasks (U), ntask=z (10) almension o0, 10.82,12,10)
cib(1): clb (2'; clb (31 aon (0!

1.

2.

32

REFERENCES
Hewlett-Packard Measurement and Control Processor Programmer's Manual, HP
part number 25580-90001, Mar. 1981.

Hewlett-Packard Pascal Language Reference for the HP9000 series 200
computers. HP part number 98615-90050, Feb. 1984.

Computer Software Management and Information Center, 112 Barrow Hall,
The University of Georgia, Athens, GA, 30602. VPD 7744/7-82.

USERS CALLING PROGRAM

PASCAL _ HP2250

PASCAL 1/0 PROCEDURE LIBRARY

mBlock diagram

33

Standard Bibliographic Page

1. Report No. 2. Government Accession No.

NASA TM-87652

3. Recipient’s Catalog No.

4. Title and Subtitle

OPERATION OF THE HP2250 WITH THE HP9000 SERIES 200
USING PASCAL 3.0

5. Report Date
February

1986

7. Author(s)

John Perry (PRC Kentron, Inc.) and C. W. Stroud (LaRC)

6. Performing Organization Code

506-43-81

8. Performing Organization Report No.

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

10. Work Unit No.

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

A computer program has been written to provide an interface between the
HP Series 200 desktop computers, operating under HP Standard PASCAL 3.0, and
the HP2250 Data Acquisition and Control System. PASCAL 3.0 for the HP9000
desktop computer gives a number of procedures for handling bus communication
at various levels. It is necessary, however, to reach the lowest possible
level in PASCAL to handle the bus protocols required by the HP2250. This
makes programming extremely complex since these protocols are not documented.
The program described herein solves those problems and allows the user to
immedately program, simply and efficiently, any measurement and control
language (MCL/50) application with a few procedure calls. The complete set of
procedures is available on a 5 1/4" diskette from Cosmic. Included in this
group of procedures is an Exerciser which allows the user to exercise his
HP2250 interactively. The Exerciser operates in a fashion similar to the
Series 200 operating system programs, but is adapted to the requirements of
the HP2250.

The requirements for linking to a user's programs are described in detail
when the diskette is used as received. The procedure for communicating with
the HP2250 is very straightforward, once a user's program has been debugged
and compiled. The programs on the diskette and the user's manual assume the
user is acquainted with both the MCL/50 programming language and HP Standard
PASCAL 3.0 for the HP series 200 desktop computers.

17. Key Words (Suggested by Authors(s)) * | 18. Distribution Statement

wrozed O
HP9000

PASCAL 3.0

Subject Category 59

19. Security Classif.(of this report) 20. Security Classif,(of this page)
Unclassified Unclassified

21. No. of Pages

34

22. Price

]

