250 research outputs found

    TDRSS telecommunications system, PN code analysis

    Get PDF
    The pseudo noise (PN) codes required to support the TDRSS telecommunications services are analyzed and the impact of alternate coding techniques on the user transponder equipment, the TDRSS equipment, and all factors that contribute to the acquisition and performance of these telecommunication services is assessed. Possible alternatives to the currently proposed hybrid FH/direct sequence acquisition procedures are considered and compared relative to acquisition time, implementation complexity, operational reliability, and cost. The hybrid FH/direct sequence technique is analyzed and rejected in favor of a recommended approach which minimizes acquisition time and user transponder complexity while maximizing probability of acquisition and overall link reliability

    Ultrasound imaging using coded signals

    Get PDF

    Nonlinear Suppression of Range Ambiguity in Pulse Doppler Radar

    Get PDF
    Coherent pulse train processing is most commonly used in airborne pulse Doppler radar, achieving adequate transmitter/receiver isolation and excellent resolution properties while inherently inducing ambiguities in Doppler and range. First introduced by Palermo in 1962 using two conjugate LFM pulses, the primary nonlinear suppression objective involves reducing range ambiguity, given the waveform is nominally unambiguous in Doppler, by using interpulse and intrapulse coding (pulse compression) to discriminate received ambiguous pulse responses. By introducing a nonlinear operation on compressed (undesired) pulse responses within individual channels, ambiguous energy levels are reduced in channel outputs. This research expands the NLS concept using discrete coding and processing. A general theory is developed showing how NLS accomplishes ambiguity surface volume removal without requiring orthogonal coding. Useful NLS code sets are generated using combinatorial, simulated annealing optimization techniques - a general algorithm is developed to extended family size, code length, and number of phases (polyphase coding). An adaptive reserved code thresholding scheme is introduced to efficiently and effectively track the matched filter response of a target field over a wide dynamic range, such as normally experienced in airborne radar systems. An evaluation model for characterizing NLS clutter suppression performance is developed - NLS performance is characterized using measured clutter data with analysis indicating the proposed technique performs relatively well even when large clutter cells exist

    Design and performances evaluation of new Costas-based radar waveforms with pulse coding diversity

    No full text
    Costas codes are a variant of pulse compression waveforms, largely studied for their attractive time-frequency properties. Their 'thumbtack-like' ambiguity function (AF) makes them highly suitable for delay and Doppler estimation, in radar and sonar applications. However, this behaviour depends heavily on the length of the code: the improvement in delay-Doppler resolutions and AF sidelobes level needs an increase in the size of the code. In this study, designs that allow good performance without increasing the size of the code are proposed. They are based on a modification of Costas codes by widening frequency separation between hops and replacing rectangular pulses by other waveforms. This will lead to a removal of autocorrelation function grating lobes that normally appear when frequency separation is increased. The originality of the work lies in the proposal of diversified pulse waveforms, such as phase codes, Slepian sequences, and other Costas codes, to encode main Costas pulses. A performance comparison of the proposed approaches is supplied. Such waveforms could also be of interest for applications where waveform diversity is desired

    Comparison of file sanitization techniques in usb based on average file entropy valves

    Get PDF
    Nowadays, the technology has become so advanced that many electronic gadgets are in every household today. The fast growth of technology today gives the ability for digital devices like smartphones and laptops to have a huge size of storage which is letting people to keep many of their infonnation like contact lists, photos, videos and even personal infonnation. When these infonnation are not useful anymore, users will delete them. However, the growth of technology also letting people to recover back data that has been deleted. In this case, users do not realise that their deleted data can be recovered and then used by unauthorized user. The data deleted is invisible but not gone. This is where file sanitization plays it role. File sanitization is the process of deleting the memory of the content and over write it with a different characters. In this research, the methods chosen to sanitize file are Write Zero, Write Zero Randomly and Write Zero Alternately. All of the techniques will overwrite data with zero. The best technique is chosen based on the comparison of average entropy value of the files after they have been overwritten. Write Zero is the only technique that is provided by many software like WipeFile and BitKiller. There is no software that provide Write Zero Randomly technique except for sanitizing disk using dd. As for that, Write Zero Randomly and proposed technique, Write Zero Alternately are developed using C programming language in Dev-C++. In this research, sanitization with Write Zero has the lowest average entropy value for text document (TXT), Microsoft Word (DOCX) and image (JPG) with 100% of data in the files undergone this technique have been zero-filled compared to Write Zero Randomly and Write Zero Alternately. Next, Write Zero Alternately is more efficient in tenns of average entropy by 4.64 bpB to its closest competitor which is Write Zero Randomly with 5.02 bpB. This shows that Write Zero is the best sanitization method. These file sanitization techniques are important to keep the confidentiality against unauthorized user

    Analysis of finite-duration wide-band frequency sweep signals for ocean tomography

    Get PDF
    Author Posting. © IEEE, 1993. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 18 (1993): 87-94, doi:10.1109/48.219528.A group of amplitude and frequency modulated signals which generate narrow synthesized pulses are described. The pulse-compression properties of these signals should approach those of maximal (M) sequence phase-modulated signals now commonly used in ocean experiments. These amplitude-tapered linear frequency-sweep (chirp) type signals should be accurately reproducible with most acoustic sources since they have controllable limited-bandwidth frequency content and differentiable phase. The Doppler response of the signals is calculated using a wideband approach, where the frequency shift from relative motion is not constant throughout the waveform. The resultant Doppler effect on the matched-filter output is a function of the signal duration. The signals are suitable for use with tunable resonant transducers, and have adequate Doppler response for use with Lagrangian ocean drifter

    System performance criteria in CDMA networks using gold codes

    Get PDF
    First, we have presented the autocorrelation and crosscorrelation properties for periodic and aperiodic binary sequences. The generation of binary sequences using shift registers with feedback was reviewed. We have also included correlation properties for the Gold codes. Next, we discussed Gold code generation for the balanced and unbalanced Gold codes. Thirdly, we investigated the number of simultaneous users in a CDMA system using Gold codes for the worst case and the average case of mutual interference. Finally, we simulated the probability of interference exceeding a threshold value, and the average crosscorrelation value caused by interference in a CDMA network which is using a Gold code. We compared probability and average crosscorrelation values simulated with theoretical bounds calculated. Here the simulation programs are done in C computer language
    • …
    corecore