NADM UR- 152579

(NASA-CR-152579) TDRSS TELECOMHUNICATIONS
 SISTE日, PN CCDE AMALISIS Rinal Report (G)
(Robert) Associates. Los angeles, Calif.)
442 P BC A19/AFA01
\csc 17E
N77-29350

RGA

Robert Gold Associates

435 SOUTH LA CIENEGA BOULEVARD - LOS ANGELES, CALIFORNIA 90048

FINAL REPORT

TDRSS TELECOMMUNICATIONS SYSTEM PN CODE ANALYSIS

Contract NAS 5-22546

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE: FLIGHT CENTER

Greenbelt, Maryland 20771

August 31, 1976

Robert Dixon
Robert Gold
Fred Kaiser

Robert Gold Associates 435 South La Cienega Boulevard Los Angeles, California 90048
TABLE OF CONTENTS
Page
LIST OF TABLES v
LIST OF FIGURES vii
1.0 INTRODUCTION 1-1
1.1 General 1-1
1.1.1 Contents of Report 1-1

1. 2 System Design Considerations 1-5
1.3 Link Analysis 1-8
1.3.1 Introduction 1-8
1.3.2 Discussion of Results 1-8
2.0 SUMMARY OF RESULTS 2-1
2. 1 Forward Link Multiple Access 2-1
2.1.1 Recommended Parameters 2-1
2.1.2 User Transponder Description 2-5
2.1.3 System Performance 2-8
2.2 Return Link 2-22
2.2.1 System Parameters 2-22
2.2.2 Ground Receiver 2-24
2.2.3 System Performance 2-27
Appendix A. 2 General Comparison of Biphase and Quadriphase (Double-Binary) Modulation 2-31
3.0 SUBSYSTEM DESIGN 3-1
3.1 User Transponder 3-1
3.1.1 Overall Design 3-2
3.1.2 Electrical Specifications for User Transponders 3-9
3.2 Ground Receiver 3-19
3. 0 SYNCHRONIZATION TECHNIQUES AND ANALYSIS 4-1
4.1 Introduction 4-1

Table of Contents (continued)

Page
4.2 Synchronization of Receive System 4-3
4.2.1 Statement of the Problem 4-3
4.2.2 Outline of Candidate Acquisition Techniques 4-3
4.2.3 Basic Steps in the Acquisition Procedure 4-5
4.3 Analysis of Acquisition Techniques 4-12
4.3.1 Fixed Length Test 4-12
4.3.2 Sequential Detection Test 4-17
4.3.3 Direct Sequence Acquisition Using Dual Mode Detection 7-28
4.3.4 Code Doppler Analysis 4-36
4.3.5 Summary of Acquisition Time Equations 4-37
4.3.6 Interfering Signal Acquisition Analysis 4-39
4.3.7 Multiple Filter Acquisition Approaches 4-₹1
4.4 Application of Analysis to User Transponder - Forward Link 4-57
4.4.1 Performance Summary 4-57
4.4.2 Analysis with Interfering Signal - Forward Link 4-67
4.4.3 Sidelobe False Alarm Analysis 4-80
4.5 Application of Analysis to Ground Receiver 4-92
4.5.1 Performance Summary - Multiple Access Link 4-92
4.6 Impact of Multipath on Direct Sequence Acquisition Parameters 4-100
4.6.1 Introduction 4-100
4.6.2 Multipath Parameters 4-100
4.6.3 Multipath Prediction Model Description 4-103
4.6.4 Analysis Parameters 4-106
4.6.5 Prediction Results 4-106
4.6.6 Extension of Model Predictions 4-122
4.6.7 Analysis Results 4-125
4.6.8 Direct Signal Verification 4-136
4.7 References 4-142
5.0 CODE GENERATION TECHNIQUES FOR TDRS 5-1
5.1 introduction 5-1
5.2 Some Remarks on Code Tables 5-2

Table of Contents (continued)

Page
5.3 Preferred Pairs of Linear PN Codes 5-7
5.4 Generation of TDRS Band Spreading Codes 5-10
5.4.1 Introduction 5-10
5.4.2 Characteristic Phase of a Maximal PN Sequence 5-11
5.4.3 Relative Phases Required for Balanced Codes 5-12
5.4.4 Determination of Initial Conditions 5-13
5.5 The Effect of Clock Error on Acquisition 5-16
5.5.1 Introduction 5-16
5.5.2 Notation 5-16
5.5.3 Analysis 5-16
5. 6 Code Libraries for TDRS 5-21
5.6.1 Forward Link Multiple Access Library 5-21
5.6.2 Code Library for Mode 2 Return Link and Its Properties 5-24
5.6.3 Dedicated Return Link Mode 1 Code 5-29
5. 7 Listing of TDRSS User Code Libraries 5-31
5. 8 Modular Implementation of Shift Register Code Generators 5-36
5.9 References 5-39
Appendix A. 5 Correlation Properties of Gold Codes 5-40
Appendix B. 5 Phase Shift Obtained by Addition Modulo 2 of Output Sequence and Output of kth Tap 5-64
Appendix C. 5 Computer Program Listing for Generation of Phase Shifts of 18-Stage Maximal Codes 5-120
Appendix D. 5 Computer Program Listing for Determination of Sidelobe Distribution of Gold Codes 5-140
Appendix E. 5 Table of Preferred Pairs of Maximal Poly- nomials of Degree 11, 13, 15, 18, 19 5-175
Appendix F. 5 Computer Program Listing for Generation of Preferred Pairs of Maximal PN Sequences 5-190
Appendix G. 5 Code Library for Forward Link Range Channel - Mxximal PN Codes of Period $2^{18}-1$ Having Six or Less Feedback Taps in the Generating Shift Register 5-196
Appendix H. 5 Alternate Code Library for Mode 1 Return Link - Maximal PN Codes of Period $2^{18}-1$ Having Six or Less Feedback Taps in the Generating Shift Fegister 5-198

LIST OF TABLES

Table Page
1.3-1 Link Analysis for MA Forward Link, S-Band 1-9
1.3-2 Link Analysis for SSA Forward Link, S-Band 1-10
1.3-3 Link Analysis for KSA Forward Link 1-11
1.3-4 Return Link Analysis 1-13
2.1-1 PN Code Lengths 2-5
2.1-2 User Transponder Design 2-10
2.1-3 Component Estimate 2-11
2.1-4 Total Power Estimate 2-12
2.1-5 Power Amplifier Estimate 2-12
2.1-6 Total Weight 2-12
2.1-7 Transponder Specifications 2-13
2.1-8 Comparative Summary of Average Acquisition Times for the MA Forward Link Short PN Code 2-19
2.1-9 Summary of Average Acquisition Times for the SA Forward Link Short PN Code 2-19
2.1-10 Comparative Summary of Mean Acquisition Times for Multiple Access Forward Link Long PN Code 2-20
2.2-1 Detection Performance of Desired and Interfering Signals 2-30
2. ¿-2 Average Acquisition Tirne vs. Code Length 2-30
3.1-1 Measured AM/PM Conversion for Various Traveling Wave Tube Amplifiers 3-18
4.2-1 Candidate Acquisition Techniques 4-5
4.2-2 Comparative Evaluation of Candiate Acquisition Techniques 4-8
4.3-1 Cross-Correlation Spectrum 4-43
4.3-2 Baseline IF Signal-to-Noise Ratios 4-50
4.4-1 Threshold SNR Versus IF Bandwidth 4-58
4.4-2 Comparative Summary of Mean Acquisition Times for the Multiple Access Forward Link Short PN Code 4-62
4.4-3 Comparative Summary of Mean Acquisition Times for Multiple Access Forward Link Long PN Code 4-65

List of Tables (continued)

Table Page
4.4-4 Maximum Estimated Time for Sidelobe Rejection Test (Fixed Length) With Threshold 15 dB Above Acquisition Threshold 4-89
4.4-5 Maximum Estimated Time for Sidelobe Rejection Test (Fixed Length) With Threshold 20 dB Above Acquisition Threshold 4-91
4.5-1 Detection Performance of Desired and Interfering Signals 4-98
4.5-2 Average Acquisition Time vs. Code Length 4-98
4.6-1 Differential Delay and Doppler 4-15.9
4.6-2 Channel Parameter Spread Measures (RHC Polarization) 4-110
4. 6-3 Channel Parameter Spread Measures (LHC Polarization) 4-111
4.6-4 $Q(\tau, \xi)$ Spreads and Tap Energy Capture (RHC) 4-112
4.6-5 $\quad Q(\tau, \xi)$ Spreads and Tap Energy Capture (LHC) 4-116
4. 6-6 Comparison Between Actual TDRSS and AEROSAT Extrapolated Spread Measures 4-124
4.6-7 Multipath Interference Parameters (IP) vs. Elevation Angle (EA) 4-129
4.6-8 Maximum Signal Level Above Threshold to Avoid Multipath Acquisition Versus Elevation Angle for Several Antenna Configurations 4-135
5.6-1 Preferred Pairs for Generation of Code Family of Long Codes 5-21
5.6-2 Preferred Pair for Generation of Code Family of Short Codes 5-23
5.6-3 Preferred Pair for Generating Code Library for Mode 2 Return Link 5-24
5.6-4 Probability Distribution of Sidelobes in Mode 2 Codes of Period $2^{11}-1$ 5-27
5. 7.1 Summary of TDRSS Code Libraries 5-32

LIST OF FIGURES

Figure Page
1.2-1 TDRSS Concept 1-6
2.1-1 Composite Signal Modulator 2-2
2.1-2 Composite Signal Structure 2-2
2.1-3 Transponder Block Diagram 2-6
2.1-4 Transponder Code Generator 2-9
2. 2-1 TDRSS Frequency Plan 2-23
2.2-2 Signal Structure 2-25
2. 2-3 Frequencies Used in TDRS for Various Links 2-26
2. 2-4 Simplified Block Diagram of Ground Receiver 2-28
3.1-1 Simplified Modulator and Demodulator Using Simultaneous Signal Approach 3-3
3.1-2 Basic Transponder Frequency Scheme and Signal Flow 3-4
3.1-3 Data Channel Block Diagram and Frequency Scheme 3-6
3.1-4 Range Channel Block Diagram 3-7
3.1-5 Tracking Channel Block Diagram 3-8
3.1-6 Signals Due to Phase Offset 3-10
3.1-7 Direct Sequence Signal with Data/Code Symmetry 3-11
3.1-8 Biphase PSK Modulator 3-14
3.1-9 Quadriphase PSK Modulator 3-14
3. 2-1 Block Diagram of Ground Receiver for TDRSS SMA, TT\&C, and Test Signals 3-20
3.2-2 Block Diagram of Ground Receiver for SA Signals 3-22
3.2-3 Modified UHF Front End (One of 22) 3-23
3. 2-4 Demod Matrix for Ground MA Subsystem 3-25
4.2-1 Pseudo Noise Synchronization Circuits 4-4
4.2-2 Models of Candidate Acquisition Techniques 4-6
4. 2-3 Overall Synchronization Process 4-10
4. 3-1 Functional Diagram of Acquisition Circuit for Fixed Length Test 4-13

List of Figures (continued)

List of Figures (continued)

Figure Page
4.4-11 Sidelobe Rejection Algorithm 4-85
4.4-12 SNR at Envelope Detector Input vs. BT Product 4-9,8
4.6-1 Spread Parameter Definitions 4-104
4.6-2 Tapped Delay Line Representation of Receiver 4-108
4.6-3 Relative SMean Square Total Scatter Coefficients 4-121
4.6-4 Cumulative Multipath Energy Capture as a Function of Time 4-127
4.6-5 Cumulative Multipath Energy Capture as a Function of Time 4-128
4.6-6 Allowable Dynamic Range of Signal for Various Conditions Versus Elevation Angle 4-130
4.6-7 Estimated Fading Bandwidth as a Function of Elevation Angle 4-132
4.6-8 Required $\mathrm{C} / \mathrm{N}_{0}$ in Direct Signal to Lock Onto Multipath Signal When User Gain is -9 dB to TDRS Satellite and +3 d $\overline{\mathrm{B}}$ to Multipath 4-134
4.6-9 Sur a ; of Forward Link Acquisition Algorithm 4-141
5.2-1 Linc... .eedback Shift Register and Its Associated Polynumial 5-3
5.2-2 Description of Available Tables of Binary Polynomials 5-6
5.3-1 Performance of Preferred Pairs Compared with Worst Case Polynomial Pairs 5-8
5.4-1 Code Generator Configuration 5-13
5.4-2 Generation of Balanced Codes of Period $2^{19}-1$ 5-15
5.5-1 A Degradation of θ vs. $\%$ of Window to Complete Decorrelation 5-18
5.5-2 Acquisition Time vs. Clock Accuracy/Chip Rate 5-20
5.6-1 Long Code Generator Forward Link Multiple Access 5-22
5.6-2 Short Code Generator Forward Link Multiple Ascess 5-23
5.6-3 Generator for Mode 2 Return Link Codes 5-25
5.6-4 Probability of More Than s Sidelobes in Cross- Correlation Function of Mode 2 Return Link Codes of Periods ($2^{11}-1$) 5-28

List of Figures (continued)

Figure Page
5. 6-5 Generation of Phase Shifts of a Maximal PN Sequence 5-29
5.6-6 Generation of Phase-Shifted Version of Maximal PN Code 5-30
5. 8-1 Equivalent n-Stage Shift Registers 5-36
5.8-2 Equivalent 10-Stage Simple and Modular Shift Registers 5-37

1.1

1.0 INTRODUCTION

General

This document is the final report on TDRSS Telecommunications System PN Code Analysis, performed by Robert Gold Associates for NASA Goddard Space Flight Center under Contract NAS 5-22546, and represents the work accomplished during the reporting perioc' October 1975 through July 1976.

The purpose of this study was to perform parametric analysis of the pseudo noise (PN) codes required to support the TDRSS telecommunications services and to assess the impact of alternate coding techniques on the user transponder equipment, the TDRSS equipment, and all factors that contribute to the acquisition and performance of these telecommunication services. Specifically, possible alternatives to the currently proposed hybrid FH /direct sequence acquisition procedures have been considered and compared relative to acquisition time, implementation complexity, operational reliability, and cost. The hybrid $\mathrm{FH} /$ direct sequence technic̣ue was analyzed in detail and rejected in favor of the approach described in this report. The recommended approach minimizes acquisition time and user transponder complexity while maximizing probability of acquisition and overall link reliability.

1.1.1 Contents of Report

The remaining sections of this introduction provide a brief overall description of the TURSS and a communication link analysis upon which the overall study conclusions were based. In Section 2, the recommenaed signal structure and associated codes are given. Code characteristics and taps selected to provide the desired characteristics are given. A description of the user transponder subsystem and specifications for system parameters are provided. Both the forward and
return link signals and their operation are described in this section. The emphasis of Section 2 is to provide an overview of the system, its characteristics, and operational capabilities as they are laid out in the selected design.

Subsystem design is described in Section 3. User transponder and ground receiver designs are described, and block diagrams a:ad operational descriptions of these subsystems are given. U ${ }^{\text {(}}$ r transponder design in postulated on the NASA Standard Transponder as a baseline. This permits a familiar transponder configuration to be considered for ready extension of expected complexity.

Phase-shift-keyed signals are employed throughout the system, in all modes, and in forward and return links. The signal format chosen has been based on system performance in acquisition, data tra nission, and ranging operations, and has also been oriented to minimizing overall system complexity-especially in the user transponder subsystem. Signal design and employment of dual PSK signal structures are discussed in detail in Appendix A. 2.

The recommended synchronization techniques of the user transponder for the forward link and the ground receiver of the re urn link are discussed and analyzed in Section 4. Emphasis is placed on the multiple access links which, for both the forward and return channels, have the lowest threshold. The code search algorithm requires the largest amount of the overall synchronization time. Hence, iittle emphasis was placed upon the code loops and carrier loops which are activated upon acquisition. It is estimated that the pull-in, settlir., and tracking times associated with these loops are less than 1 second and hence are almost insignificant contributors to the overall synchronization time.

Section 4 begins with an outline of candidate acquisition techniques. A summary table is given of the candidate $t=\frac{c h n i q u e n ~ w h i c h ~ i s ~ t h e ~ r e s u l t ~}{\text { w }}$ of a first-level analysis documented in the Interim Report.* As a : esult

[^0]of this preliminary study, two techniques were selected for more detailed analysis. In Section 4.3, the basic theory and associated analysis of the fixed length and sequential detection tests is presented. The functional models of the detectors, as well as the derivations of the mean acquisition times, is given. The results are extended to includr a dual state detection algorithm. Several supplementary analyses are also given. These include a code doppler analysis, interfering signal analysis, and bandlimiting analysis. The subsection concludes with a discussion of multiple filter acquisition techniques for doppler resolution.

The application of the developed theory to the user transpond $\begin{aligned} \\ \text { is }\end{aligned}$ given in Section 4.4 and to the ground receiver in Section 4.5. In each case, the discussion begins with a distribution of error and minimum threshold summary. Desired performance requirements are summarized and these parameters are used as inputs and applied to the theoretical development of Section 4.3. The overall performance is then summarized in tables and graphs.

The impact of multipath upon the synchronization parameters is summarized in Section 4.6. The basic multipath characteristics were established in a special study performed by the Boeing Company. A short summary of this study is presented herein with further details given in the Interim Report. The impact of these various parameters is discussed relative to the acquisition of the 3 Mcps PN signal on the forward link to the user receiver. The section concludes with the discussion of an algorithm developed to preclude false lock to a multipath signal.

Code generation techniques and recommended code libraries for the recommended TDRSS signal designs are presented in Secticn 5. Sections 5.1 through 5.4 discuss the general principles and techniques for the selection of the bandspread codes for TDRSS and Section 5.5 contains an analysis of the effect of clock error on acquisition. Specific code libraries for TDRSS are developed in Section 5.6. The Forward Link Multiple Access Library consists of 100 long codes of period $2^{18}-1$. These may be selected
from the family of Gold codes of the period which are generated as described in Section 5.6.1.1, or from the library of maximal PN codes of this period listed in Appendix G.5. The technique for the generation of the code library for the Mode 2 return link is described in Section 5.6.2 and the correlation properties of this family are analyzed and documented in

Appendix A.5. The code library for the dedicated Mode 1 return link consists of maximal PN codes of period $2^{18}-1$. The codes selected are those such that phase-shifted versions in excess of 20,000 chips may be generated by adding the output of two stages of the 18 -stage code generated. This code library, together with the taps which must be added and the resultant phase shift, are contained in Appendix C. 5.

1.2 System Design Considerations

TDRSS is a satellite communication signal relay system intended to provide almost complete earth coverage to users wishing to transmit or receive messages to and from earth stations located within the United States. The system is illustrated in figure 1.2-1.
"The Tracking and Data Relay Satellite System (TDRSS) will consist of two geosynchronous relay satellites, 130 degrees apart in longitude, and a ground terminal located in the continental United States. Additionally, the system will include two spare satellites; one in orbit, and one in configuration for a rapid replacement launch. The purpose of the TDRSS is to provide telecommunications services which will relay communications signals between low earth-orbiting user spacecraft and the user control and/or data processing faciilies. A real-time, bent-pipe concept is utilized in the operation of the TDRSS telecommunications services. The system will be capable of transmitting data to, receiving data from, or tracking user spacecraft over at least 85 percent of the user orbit."*

Services provided by TDRSS are:
Multiple Access - "The multiple access (MA) communicrtion service system is designed to provide simultaneous real-time an. dedicated return link service to low earth-orbiting user spacecraft with realtime data rates to ___bps. Forward and return link service will be provided to all system users."*

Single Access - "The single access (SA) communication service system is designed to provide a high data rate return link to users with real-time, playback, or science data requirements. The system will be utilized on a priority scheduled basis, and will not normally be used for dedicated support to any mission (with the exception of Space Shuttle)."*

Cross-support - "Any mission which is compatible with the MA system can receive forward or return link support from either the MA or SSA systems."*

[^1]

Tracking - All service systems can provide range rate tracking data for the users supported. Tracking accuracy will be comparable to that currently available from the ground-based STDN (Spacecraft Tracking ad Data Network).

Orerating Frequencies

TDRS to User	
SMA	2106.4 MHz
SSA	2.2 to 2.3 GHz
KSA	15.0086 GHz
User to TDRS	
SMA	2287.5 MHz
SSA	2025 to 2120 MHz
KSA	13.775 GHz

The various subsystems and their requirements are described in the sections of this report that follow. Each subsystem is considered, together with its signals, and its functions in handling and/or generating tho $3 e$ signals.

1.3 Link Analysis

1.3.1 Introduction

One of the objectives of this investigation as to determine, based on the link an. lyses, the minirr um received signal level by the user receiver for each of the TDRSS forward links and, similarly, for the ground receiver for each of the return links. One of the primary assumptions was the user antenna gain. Values assumed are those given in the performance specification for the simulation service.* For both the MA and SSA service, an antenna gain of -9 dB was used. For the KSA service, +17 dB gain was assumed.

1.3.2 Discussion of Results

Forward Links. A summary of the forward link analyses is given in tables 1.3-1 through 1.3-3. Considering first the MA forward link, we find the minimum received signal level is approximately -137 dBm . This is the required receiver sensitivity. Continuing on through the link analysis of table 1.3-1, we find that with no design margin the link is just on the edge of being able to support a data rate of 100 bps , the desired objective for the minimum data rate. By increasing the receiver antenna gain, the link is capable of supporting a higher data rate.

The SSA forward link does not require the receiver sensitivity of the MA forward link. It has a minimum received signal level as shown in table 1.3-2 of -127.8 dBm . This link is capable of supporting a data rate in excess of 400 bps with a 3 dB design margin. Compared with the multiple access system, the S-band single access system is characterized by higher S / N_{0} values due to the gain of a dish antenra on the TDRS. Thus, synchronization acquisition on the forward link is less of a problem than with the multiple access system.

[^2]TDRS Antenna Gain (dB)
23.0

TDRS Transmit Power (dBw) 13.0

RF Transmit Loss (dB) -1.0
Transmitted EIRP (dBw) 35.0

TDRS Transponder Loss (dB)
Antenna Pointing Loss (dB)
Signal EIRP (dBw)

Space Loss (dB)
-191. 6
User Antenna Gain (dB)
-9.0
Polarization Loss (dB)
P_{s} - Signal Power Out of User Antenna (dBw)
P_{s} - Signal Power Out of User Antenna (dBm)
T_{s} (Antenna Output) $\left(824^{\circ} \mathrm{K}\right)(\mathrm{dB})$
29.2
$\mathrm{KT}_{\mathrm{s}}(\mathrm{dBw} / \mathrm{Hz})$
$P_{s} / \mathrm{KT}_{\mathrm{s}}(\mathrm{dB}-\mathrm{Hz})$
-199.4

Required $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=9.9 \mathrm{~dB} @ 10^{-5} \mathrm{BER}$ -9.9

Demodulation Loss (dB)

$$
-1.5
$$

PN Loss (dB)
Achievable Data Rate (dB), No Margin
Achievable Data Rate (dB), 3 dB Margin

Table 1.3-2. Link Analysis for SSA Forward Link, S-Band
$\mathrm{f}_{\mathrm{c}}=2106.4 \mathrm{MHz}$

Table 1.3-3. Link Analysis for KSA Forward Link

$$
f_{c}=13.775 \mathrm{GHz}
$$

TDRS Antenna Gain (dB)	52.0
TDRS Transmit Power (dBw)	-3.0
RF Transmit Loss (dB)	-2.0
Transmitted EIRP (dBw)	47.0
TDRS Transponder Loss (dB)	-1.0
Antenna Pointing Loss (dB)	-0.5
Signal EIR P (dBw)	45.5
Space Loss (dB)	-208.6
User Antenna Gain (dB)	17.0
Polarization Loss (dB)	-0.5
P_{s} - Signal Power Out of User Antenna (dBw)	-146.6
$\mathrm{P}_{\mathbf{S}}$ - Signal Power Out of User Antenna (dBm)	-116.6
$\mathrm{T}_{\mathbf{s}}$ (Antenna Output) (893 $\left.{ }^{\circ} \mathrm{K}\right)(\mathrm{dB})$	29.5
$\mathrm{KT}_{\mathrm{S}}(\mathrm{dBw} / \mathrm{Hz})$	-199.1
$\mathrm{P}_{\mathrm{s}} / \mathrm{KT}_{\mathbf{s}}(\mathrm{dB}-\mathrm{Hz})$	52.5

Required $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=9.9 \mathrm{~dB} @ 10^{-5} \mathrm{BER}$
-9.9
Demodulation Loss (dB) -1.5
PN Loss (dB) -1.0

System Margin (dB) -3. 0

Achievable Data Rate (dB)

The link analysis for the KSA forward link is given in table 1.3-3. The received signal power is the greatest of the three links, -116.6 dBm . With a 3 dB design margin, the link is capable of sustaining a data rate in excess of 5 kbps .

One area of investigation which was not considered in the link analyses given in the above reports is that of ionospheric scintillation. Recent investigations have found that it does have an effect on the signal in the $2-4 \mathrm{GHz}$ region. This effect occurs only if the signal penetrates the ionosphere. If the signal does penetrate the ionosphere, peak-to-peak amplitude fluctuations of 2 to 5 dB , as well as phase perturbations, can occur at certain times during a 24 -hour time period. The fluctuations will be the greatest if the propagated signal comes within the influence of the earth's magnetic equator or the aurora zones. The intensity of the scintillation effects is also correlated with the sunspot activity. To obtain a point of reference, an analysis was made to determine the range from the TDRS satellite to a user in a 2000 km orbit at which the signal would penetrate the edge of the ionosphere. Referring to Figure C-7 on page C-16 of the User's Guide,* we see the geometry depicting the range selected for the link calculations. At this range, the closest distance to the earth's surface is 1829 km . For the satellite to be within 500 km of the earth's surface, which would be the outer edge of the ionosphere, the range to the user satellite is $46,550 \mathrm{~km}$. It is at this range and beyond for the spatial relationships given in Figure C-7 that the scintillation effects can be observed.

Return Links. A summary of the multiple access, single access and Ku-band single access return link analyses is given in table 1.3-4. These results are taken from the User's Guide and are included here for completeness.

[^3]Table 1.3-4. Return Link Analysis
$\begin{array}{ll}\text { S-Band: } & f_{c}=2287.5 \mathrm{MHz} \\ \text { Ku-Band: } & f_{c}=15 \mathrm{GHz}\end{array}$

Link Parameters	S-Band		Ku-Band
	Multiple Access	Single Access	Single Access
BER	10^{-5}	10^{-5}	10^{-5}
User EIRP (dBw)	EIRP	EIRP	EIRP
Space Loss (dB)	-192.2	-192.2	-209.2
Polarization Loss (dB)	-1.0	-0.5	-0.5
Pointing Loss (dB)	---	-0.5	-0.5
TDRS Antenna Gain (dB)	28.0	36.0	52.6
$\mathrm{P}_{\mathrm{S}}{ }_{(\mathrm{dBw})}^{\text {at Output of Antenna }}$	$-165.2+$ EIRP	-157.2 + EIRP	-157.6 + EIRP
$\mathrm{T}_{\mathrm{S}} \begin{gathered}\text { (Antenna Output } \\ \text { Terminals) } \\ \left({ }^{\circ} \mathrm{K}\right)\end{gathered}$	824	586	893
T_{i} (Due to Other User Interference) (${ }^{\circ} \mathrm{K}$)	255	---	---
$\mathrm{K}\left(\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\mathrm{i}}\right)(\mathrm{dBw} / \mathrm{Hz})$	-198.3	-200.9	-199.1
$\mathrm{P}_{\mathrm{s}} / \mathrm{K}\left(\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\mathrm{i}}\right)(\mathrm{dB}-\mathrm{Hz})$	33.1 + EIRP	43.7 + EIRP	$41.5+$ EIRP
Transponder Loss (dB)	-2.0	-2.0	-2.0
Demodulation Loss (dB)	-1.5	-1.5	-1.5
PN Loss (dB)	-1.0	---	---
Antenna Beam Forming Loss (dB)	-0.5	---	---
System Margin (dB)	-3.0	-3.0	-3.0
$\underset{\text { PSK }}{\text { Required }} \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}(\mathrm{~dB})$	-9. 9	-9.9	-9.9
Achievable Data Rate (dB)	$15.2+$ EIRP	27.3 + EIRP	25.1 + EIRP
$\begin{aligned} & \text { FEC Gain (dB) } \\ & R=1 / 2, K=7 \end{aligned}$	5.2	5.2	5.2
Achievable Data Rate (dB)	$20.4+$ EIRP	32.5 + EIRP	$30.3+$ EIRP

Data rates on the return link multiple access spread spectrum signal from a user can range up to 50 kbps and rate $1 / 2$ error correction establishes the maximum symbol rate at 100 kbps . Return link performance for a given multiple access user is affected by interference from other users within the reccive beam. An analysis of this degradation is given in Section 4.3.5.

The S-band single access return link may have telemetry data rates in the range from 100 bps up to $6: 3 \mathrm{Mbps}$. As with the multiple access return link, the rates are a function of the operational mouic, the EIRP, whether the data is biphase formatted or convolutionally coded, and whether spectrum spreading is utilized.

The Ku-band single access return link is intended to handle telemetry data rates from 1 kbps to 300 Mbps . The data rates are functions of the same factors as given above for the single access return link.
$\$$
z

(i:

2.0 SUMMARY OF RESULTS

This report section describes the results of studies carried out by Robert Gold Associates. Signal design descriptions are given for both forward and return links, together with recommended system and subsystem parameters.

2.1 Forward Lini Multiple Access

2.1.1 Recommended Parameters

Signal Design

The recommended signal design is a dual format, wherein a pair of PSK (phase-shift-keyed) signals are sent on quadrature-related versions of the same carrier signal. This is illustrated by the modulator of Figure 2.1-1. (It is noted thet the modulator shown is different from a standard quadriphase PSK modulator only in that one of the two biphase PSK signals generated internally to the modulator is held to a level 10 dB below the other.) The signal employed can be considerea to be a composite of two signals, one of which has 10 dB less power than the other, whose carriers happen to be at the same frequency and whose carrier phases are in quadrature. The quadrature phase relationship is assured by actually employing only one carrier signal sotrce and routing properly phase-shifted versions of this carrier to the right place. Frequency coherence is assured by this employment of phase-separated versions of the same carrier reference for the two signals.

The forward link multiple ascess signal is an unbalanced quadriphase pair of signals, as shown in Figure 2.1-2. This signal is made up of a pair of bi-phase signals related in such a way that their combined structure has a constant envelope. That is, in the steady state, the signal always takes one of the four phases as shown in Figure 2.1-2, and the radius vector has the same value in all four phases as long as the two $b^{\text {b }}$-phase signais are maintained in phase quadrature. Constant envelope

Figure 2.1-1. Composite Signal Modulator
$: 1$
?

8

BPSK Signal :
(A $\sin c^{t} \pm 90^{\circ}$)

BPSK Signal 2
$\left(\frac{\mathrm{A}}{10} \cos c^{t \pm 90^{\circ}}\right)$

Composite of Signals 1 and 2

Figure 2.1-2. Composite Signal Structure
power is important in systems employing either traveling wave tube or solid-state power amplifiers, as these exhibit AM-to-PM conversion in the range of 6 to 10 degrees for each 1 dB signal amplitude change. Thus, incidental phase modulation may be caused by unintended amplitude modulation, and this phase modulation can approach the level of the desired signal, causing serious loss or degradation of the intended signal.

A duai bi-phase signal format has been chosen in preference to dual quadriphase because of the relative simplicity of the bi-phase structure from the hardware point of view. In addition, it is necessary to limit the allowable p ase states assumed by the smaller signal in a dual-QPSK modulator, to avoid incidental AM modulation.

Direct sequence spread spectrum modulation is employed in the forward link for several reasons:

1. The spread spectrum modulated signal has relatively low power density, which is necessary to meet system requirements for signal flux density at the earth's surface* due to TDRSS transmissions,
2. The coded modulation provides for code division multiple access operation.
3. The system has reduced sensitivity to interference, as well as furnishing low interference to other link users.
4. Good range resolution is facilitated by the coded modulation.

Demodulation of the dual signals must be accomplished by synchronizing the receiver to both transmitted code sequences. For all practical

purposes, the signal received is treated as if it were two unrelated signals.
Therefore, the optimum receiver is actually a pair of bi-phase PSK receivers rather than a single quadriphase receiver for two unequal signals; even though the two signals are in phase quadrature just as are other quadriphase PSK signals.

As the coded modulation is a key to range resolution, multiple access, interference rejection, and low spectrum density, the codes employed must be plentiful, readily generated, and have good correlation properties. The larger of the dual signal pair is modulated by a 3. $077799 \mathrm{Mbps}, 1023$-bit code sequence of the "Gold" type. This signal is employed for initial acquisition and for data transmission. The second, smaller signal is modulated by a longer code ($2^{18}-25^{\prime}$ bits) at the same bit rate, and is employed for range measurement.

The code sequences employed in the forward link (Codes 1 and 2 of figure 2. 1-1) are of lengths 1023 bits and (1023.256) bits, at a bit rate of 3.077799 Mbps . Gold sequences will be employed for the 1023-bit codes to insure that a large family of usable codes is available. The long code is specifically chosen to have a length which is an integral multiple of the shorter code length, which aids in the long code synchronization process.

In the return link, the f_{1} signal used as a reference for carrier frequency generation may be coherent or noncoherent with the f_{1} signal used in the forward link. This depends on the mode in which the system is operating (see table 2.1-1). In all cases, code rates are related to carrier frequency in the following ratios:

Operation		Ratio	Bit Rate
SMA, SSA		$\frac{31 \mathrm{fc}(\mathrm{fwd})}{221 \times 96}$	3.077799479 Mbps
KSA	$\frac{31 \mathrm{fc}(\mathrm{fwd})}{1469 \times 96}$	3.02803069 Mbps	

The section that follows lists the specific codes that have been selected for use in this program.

Table 2.1-1. PN Code Lengths
i
-

A synchronized signal output in IF2 ${ }_{B}$ is from the 1023 bit code channel, which includes forward link data in its modulation. The synchronized signal output then is a carrier (at 12.25 MHz) that is PSK modulated by the desired data. This signal is then demudulated and the data employed as required.

The IF2 ${ }_{A}$ signal is an unmodulated carrier employed in ranging. Since this signal is unmodulated, the design of Demod A is greatly simplified by a carrier detecior. Further, sinco the IF2 ${ }_{B}$ signal will be acquired prior to the IFt A_{A} signal, coherent carrier detection is farilitated, as a carrier refarence is available from Demod B. If desired, low rate data such as sommands might be sent as baseband modulation on the signal in IF2 A^{-}. Of course, this would impact the demodulator design since it would then be required to accept data, and this would in turn bring about the need for a somewhat wider bandwidth (at least as great as the data rate).

Either coherent or noncoherent signal transmission at $240 \mathrm{f}_{1}$ is facilitated to allow for turnaround ranging or any other operation that might require a return link signal that is coherent with the forward link signa..

Two separate oscillators are provided as $2 f_{1}$ sources. One, a VCO, is phase locked to the forward link signal, which provides a coherent $2 \mathrm{f}_{1}$ source for generating (after multiplication by 120) the return link carrier. In the noncoherent mode, a separate $2 \mathrm{f}_{1}$ oscillator is used to generate the return link carrier. In some instances, the noncoherent mode is necessary to prevent retransmission of a return link signal that is perturbed by forward link carrier phase noise.

Code clock is also derived by operation on the $2 \mathrm{f}_{1}$ VCO or $2 \mathrm{f}_{1}$ oscillator. Again, the decision as to which is used depends on whether coherent or noncoherent turnaround must be employed. The clock rate is $31 / 96 f_{1}$, or 3.077799479 Mbps when the return link carrier frequency is 2287.5 MHz . Code rate does vary as carrier frequency is changed, but within the range of carrier frequencies expected, the code rate will be close to 3.0 Mbps .

Basic code generator design is illustrated in figure 2.1-4. A number of codes must be generated simultaneously for full forward and return link operational capability. The use of a number of codes and availability of a large library of well-defined and carefully selected codes is a feature of the system design and a specific goal of this study program.

The most prominent features of the user transponder design selected are given in table 2.1-2.
2.1.2.2 Estimates of the number of components required to implement the portions of the user transponder that are beyond the subsystem included in present standard transponder design (i.e., code generators, code modulators, and other circuitry associated specifically with spread spectrum modulation and demodulation) are given in "able 2.1-3. Also included in this table is an estimate of the additional power required to operate these additional components. Overall power estimated for a transponder is given in tables 2.1-4 and 2.1-5.

Table 2.1-6 shows overall weight estimated for a spread spectrum user transponder.

It is apparent from considerations of available alternatives that the selected direct sequence approach meets TDRSS requirements and is the best available method for doing so.

Further descriptions of the user transponder and the signal structure employed in TDRSS may be found in section 3.1 of this report.

Table 2,1-7 lists the overall characteristics of the recommended subsystem.

2.1.3 System Performance

The results obtained for the S-band multiple access and single access forward link synchronization study are summarized below. We begin by summarizing the performance objectives and the fstem constraints.

Table 2.1-2. User Transponder Design

Synchronization Technique	1-23 bit sequence Sequential acquisition with doppler resolution filters
Data Transmission	By sequence inversion modulation of the 1023 bit sequence
Ranging Code	$2^{18}-256$ bit sequence ranging code acquisition by derivation from short code timing. Used for ranging only
Signal Format	Unbalanced QPSK, synchronization/ data transmission code on $(90,270)$ degree carrier, range co en (0,180) degree carrier. Range carrier 10 dB below data carrier
Code Rate	3.07799 Mbps
Average Synchronization Time	$\begin{array}{lr}\text { Sequential Search } \\ \text { Short code } & 14.2 \text { seconds } \\ \text { Long code } & 1.5 \text { seconds }\end{array}$
User can synchronize any time, no specific synchronization mode	
Additional Hardware Required (transponder)	75 components
Power Estimated (transponder)	```7.4 watts MIC constuction (not including P.A.) 12.0 watts Hybrid construction (not including P.A.)```
Development Risks	No new transponder circuitry needed. Code generators, frequency synthesizers, modulators, and demodulators use proven circuits and techniques

Table 2.1-3. Component Estimate

			Power
Transmitter			
Coders	8	$33 \mathrm{f}-\mathrm{f}$	0.33 w
	2	$8 \bmod 2$	0.08
	3	3 nor	0.03
Modulator	12	2 B. M.	0
	1	190° hybrid	0
	1	1Σ	0
	1	$110-\mathrm{dB}$ atten.	0
	-		
	28 components		0.44 w

Receiver

Table 2.1-4. Total Power Estimate

SS
Hybrid IF/RF
MIC IF/RF

Hybrid
MIC
2.04 w
10.0 w
5.5 w
12.04 w total
7.54 w total
(No PA)

Table 2.1-5. Power Amplifier Estimate
Power Amplifier (20 watts)

TWT	6.5 lb	$80-133 \mathrm{w}$ prime power	
Trapatt	<4	lb	$50-80 \quad$ w prime power
Transistor	<4	lb	$50-67$

Table 2.1-6. Total Weight

SS
Hybrid IF/RF
MIC IF/RF
Hybrid
MIC
1.6 lb
2.25 lb
1.6 lb
3.85 lb total
3.2 lb total

Table 2.1-7. Transponder Specifications

Center Frequency	2106.40625 MHz
Noise Figure	2.5 dB max
Bandwidth (3 dB)	$5 \mathrm{MHz} \min$ (at 2nd IF)
VSWR	1.1:1 to $\pm 2.25 \mathrm{MHz}$
Phase Response	Linear to within $\pm 5^{\circ} \pm 1.50 \mathrm{MHz}$
Amplitude Response	Flat to within $1 / 2 \mathrm{~dB} \pm 1.50 \mathrm{MHz}$
Dynamic Signal Range	40 dB
Maximum Signal and Noise	$-130 \mathrm{dBW}$
Minimum Signal	-180 dBW
SYNCHRONIZATION PREAMBLE	
Code:	
Type	Pseudorandom, Gold-type
Code Generation	Linear
Code Length	1023 bits
Code Loop: Dither	$T_{\mathrm{d}}=\begin{gathered} 0.5 \text { chip (if } \tau \text { dither used) } \\ \text { delay lock preferred } \end{gathered}$
Order	1 st
Bandwidth (B_{L})	0.1 Hz
Dynamics Aiding	From carrier loop
Acquisition:	
Search Steps	1/2 chip
Average Search Rate	75 chips/second
Signal Detector	Sequential detector
Detector Bandwidth	$\pm 3 \mathrm{kHz}$
Frequency Uncertainty	700 Hz nominal, 3000 Hz maximum
Time Uncertainty	1023 PN ships maxisum

Table 2.1-7. (continued)

PN Losses:

Bandwidth	Negligible
Channel Distortion	0.5 dB
Imperfect Tracking	0.3 dB

CARRIER ACQUISITION AND TRACKING

Type of Loop
Loop Orde"
Loop Bandwidth (B_{L})
Dampirg Factor
Frequency Offset (Max)
Acquisition
Tracking
Incidental FM

Carrier Tracking Losses: Incidental FM

Nonlinearities
AGC Noise

Costas/PLL or Squaring
2nd
32 Hz
0.707
$\pm 3 \mathrm{kHz}$
$\pm 60 \mathrm{kHz}$
6° RMS in 10 Hz with $\operatorname{good} \mathrm{S} / \mathrm{N}$, maximum
0.2 dB
0.5 dB at threshold
0.3 dB at threshold

COMMAND DATA DEMODULATION
Demodulator
Fixed Data Rate
Data Processing
Telemetry Data:
Rate
Clock
External Interface
EDAC Encoding Type
Constraint Length
Rate
Transmission Encoding
T'ype

Costas Loop
1ء5, 1000 bps
Integrate and dump
$1 \mathrm{kbs}-50 \mathrm{kbs}$
Asynchronous, user supplied
TTL compatible

Convolutional
7
$1 / 2$

Differential

Table 2.1-7. (continued)

TRANSMIT CHANNEL

Transmitter:

Type
Center Frequency
Bandwidth (3 dB)
Amplitude Response
Phase Response
Solid State or TWT
2287.5 MHz

6 MHz minimum
Flat to within $1 / 2 \mathrm{~dB}$ bandwidth
Linear to within $\pm 5^{\circ}$
Modulator:
Modulation
Code Families
PN Chip Rate
Code Lengths
Forward Link Return Link
Bandwidth
Filter Type
$\leq 3^{\circ}$ RMS; BW $-6 \mathrm{~Hz}-100 \mathrm{kHz}$
Modulator/Demodulator Phase
$\leq 4^{\circ}$
$\leq 0.5 \mathrm{~dB}$
≤ 1 percent
≤ 0.1 bit time
Differential
Lerived from PN code
TTL

1 dB at 100 bps
0.3 dB
0.2 dB

Table 2.1-7. (continued)

Carrier Suppression
Spurious Responses
AM/PM Conversion
Cross-Modulation
Code Epoch
Local Reference:
Bandwidth (3 dB)
Phase Response
Amplitude Response
Spurious Responses
Acquisition:
Signal Bandwidth
Sigual Detector
Detection Bandwidth
Average Search Rate
Frequency Uncertainty

PN DEMODULATION
PN Code:
Type
Code Family

Code Period
PN Chip Rate
Repetition Interval
Local Reference:
Bandwidth (3 dB)
Phase Response
Amplitude Response
Carrier Suppression

30 dB or greater
20 dB down outside of $\pm 3 \mathrm{MHz}$
$<10^{\circ} / \mathrm{dB}$
≥ 10 aB below signal
$82 \mathrm{msec}, 322 \mu \mathrm{sec}$

3 MHz
Linear to within $\pm 5^{\circ}$ over $\pm 1.5 \mathrm{MiHz}$
Flat to within $1 / 2 \mathrm{~dB}$ over $\pm 1.5 \mathrm{MHz}$
20 dB down outside $\pm 3 \mathrm{MHz}$
3.077 MHz x 2 (nulı-null)

Sequential detector
$\pm 1500 \mathrm{~Hz}$
136 chips/second
700 Hz nominal, 3000 Hz maximum

SQPN (Staggered Quadriphase Pseudonoise)
Naximal code pairs truncated by 255 bits
$2^{18}-256,1023$
3.077 MHz
$82.432 \mathrm{~ms}, 322 \mu \mathrm{sec}$

3 MHz
Linear to within $\pm 5^{\circ}$ over $\pm 1.5 \mathrm{MHz}$
Flat to within $1 / 2 \mathrm{~dB}$ over $\pm 1.5 \mathrm{MHz}$
45 dB or greater

Performance Objectives
Short Code - 1023 chips
Mean Acquisition Time 20 seconds (including long code)
Probability of Detection 0.9
Probability of False Alarm 10^{-6}
Long Code $-2^{18}-256$ chips
Mean Acquisition Time Included in 20 seconds
Probability of Detection 0.9
Probability of False Alarm 10^{-6}
Multipath reje $=$ tion algorithm required
System Constraints
Multiple Access Modu: $\quad C / N_{0}=32.3 \mathrm{~dB}-\mathrm{Hz}$
Data Rate $=125 \mathrm{bps}$
Single Access Mode:
$\mathrm{C} / \mathrm{N}_{0}=41.8 \mathrm{~dB}-\mathrm{Hz}$
Data Rate $=125 \mathrm{bps}$
Total Doppler and Frequency Uncertainty: $\quad 3000 \mathrm{~Hz}$

The recommended synchronization approach for the short code is to use a noncoherent sequential search strategy. The theory and functional description of this search strategy is given in section 4.3.2. The analysis of the technique as applied to the forward link is given in section 4.4.

Both the noncoherent fixed length strategies and sequential test strategies were considered in the study. In order to meet the performance objectives, multiple IF contiguous doppler resolving filters are required. The technique analyzed was a completely parallel processing approach. Techniques for simplifying the hardware, such as the implementation of a maximum detector, are possible. However, with the use of the sequential search strategy, only two doppler cells are required. The same performance could be obtained by using two despreaders with
each local reference stepping through a different set of cells simultaneously. In this case, only one IF filter covering the total uncertainty band would be associated with each despreader.

The performance of the S-band multiple access and single access forward links is summarized in tables 2.1-8 and 2.1-9, respectively. The fixed length test analysis was not performed for the single access link. However, rough estimates indicate that the average acquisition time exceeds the sequential test acquisition time by an order of magnitude.

Either the coherent or noncoherent sequential test strategy can be used for the long code acquisition of the multiple access forward link. Code tracking and carrier lock are obtained at the conclusion of the short code acquisition. Therefore, two possibilities exist. The first is that the long code can be coherently acquired. The second is that the local reference can be doppler corrected permitting the use of a narrowband IF filter which precedes a noncoherent detector. Clearly, the performance is a function of how narrow an IF filter can be utilized. The average acquisition times for a range of IF bandwidth filter cases for the two approaches suggested above are summarized in Table 2.1-10.

The third aspect of the performance analysis was to assess the nature of the multipath between a low orbiting user satellite and the synchronous TDRS satellite (cf. Section 4.6.7). The primary problem is one of false locking to a multipath component. The differential doppler is small enough that most of the multipath energy will fall within the receiver bandwidth. The basic nature of the multipath signal is diffuse rather than specular. The multipath energy tends to be smeared over several tap positions. The degree of smearing is a function of the elevation angle and the antenna polarizations relative to the multipath signal.

Several techniques for avoiding false lock to a multipath signal are suggested. These techniques take advantage of the basic properties of the multipath signal at the output of the despreader. The one approach takes advantage of the diffuse nature of the multipath energy in frequency, thus making it very difficult to falsely code lock and carrier lock to the multipath
0

Table 2.1-8. Comparative Summary of Average Acquisition Times for the MA Forward Link Short PN Code Table 2. 1-8.

Number of Doppler Cells		SNR in Frequency Cell (dB)	Noncoherent Fixed Length Test Strategy		Noncoherent Sequential Test Strategy	
			$\overline{\mathrm{T}}_{\mathrm{acq}}(\mathrm{sec})$	Average Search Rate (chips/sec)	$\overline{\mathrm{T}}_{\mathrm{acq}}(\mathrm{sec})$	Average Search Rate (chips/sec)
1	6000	-9.3	42.9	23.8	28.6	35.8
2	3000	-6. 3	27.5	37.2	14.2	72
5	1200	-2.3	16.5	62.0	5.7	179
10	600	0.7	13.7	74.7	2.9	353

> Table 2.1-9. Summary of Average Acquisition Times for the

			Noncoherent Sequential Test Strategy	
Number of Doppler Cells	IF Bandwidth per Celi (Hz)	SNR in Frequency Cel! (dB)	$\overline{\mathrm{T}}_{\mathrm{acq}}$ (sec)	Average Search Rate (chips/sec)
1	6000	0.2	0.8	1279
2	3000	3.2	0.8	1279

$\begin{gathered} \text { IF } \\ \text { Bandwidth } \\ (\mathrm{Hz}) \end{gathered}$	SNR in IF Bandwidth (dB)	Sequential Test Strategy* Coherent		Sequential Test Strategy Noncoherent	
		$\begin{aligned} & \overline{\mathrm{T}}_{\mathrm{acq}} \\ & (\mathrm{sec}) \end{aligned}$	Mean Search Rate (chips/sec)	$\begin{aligned} & \overline{\mathrm{T}}_{\mathrm{acq}} \\ & (\mathrm{sec}) \end{aligned}$	Mean Search Rate íchips/sec)
6000	-17.2	1.4	182.9	276	0.93
3000	-14.2	1.35	189.6	138	1.9
1200	-10.2	1.3	196.9	55	4. 7
600	-7. 2	1.3	196.9	27	9.5

signal. The other approach makes use of the time spread of the multipath signal. The energy is almost flat across several adjacent time cells. This is in contrast to the direct signal whose cross-correlation function peaks at its in-phase pesition, and is almost negligible at adjacent cell positions. The sequence of steps in the acquisition process for both the short and long codes is given below:

Step 1 Short Code Acquisition
Step 2 Short Code Verification
Step 3 PN Code Tracking with Multiple Test
Step 4 Carrier Lock Search with Coherent Amplitude Detection Multipath Test
Step 5 Long Code Acquisition
Step 6 Long Code Verification
Step 7 Direct Signal Verification

2. 2 Return Link

The return link consists of a path from the user transponder, through TDRS as a re e_{2}, and to the ground receiver. Signals employed in the return link are similar to those employed in the forward link, but differ somewhat in their particulars. The paragraphs that follow delineate these differences.

Figure 2.2-1 shows both forward and return links and the frequencies employed in those links. (Figure 2.2-1 is from TDRSS User's Guide, dated May 1975.)

2.2.1 System Parameters

The user transponder portion of the return link consists of the $2 \mathrm{f}_{1}$ source, multipliers to develop the 2287.5 MHz trnnsmitted signal center frequency, and a modulator for impressing the data transmitted on the signal carrier. It is of some interest to note that the PSK modulation employed in TDRSS cannot be followed by multiplication as in the NASA Standard Transponder, since multiplication of such PSK signals removes the modulation and produces an unmodulated carrier signal at the desired output frequency. For this reason, the return link blocks shown in figure 2.1-3 are reversed in order from those usually seen in the Standard Transponder.

Three signalling modes are provided in the return link. Mode 1 , which employs coherent turn-around of the forward link carrier signal, uses a 1023 bit synchronization and data transmission coded signal, together with a reduced-power $2^{18}-256$ bit range code modulated signal (actually the turn-around ranging signal). This signal is, of course, identical to the structure of the forward link signal, with the exception of the use of different code sequences where required for multiple access operations.

Figure 2.2-1. TDRSS Frequency Plan

Noncoherent turnaround is employed in Mode 2. That is, the independent 2 f oscillator shown in figure 2.1-3 is used to generate the carrier signal. Also in Mode 2, the code length employed is $2^{11}-1$ (2047 bits).

Mode 3 employs a coherent carrier, with a $2^{18}-256$ bit coded ranging signal being present, but the primary signal (transmitted instead of the Mode 1, 1023 bit data and synchronization code) is a clear PSK data signal transmitted at data rates higher than those that could be supported by the Mode 1 PN signal transmissio:!. It is expected that such data will be at rates sufficient to reduce signal power density below critical levels with respect to meeting flux density criteria.

The various signal structures corresponding to Modes 1, 2, and 3 are shown in figure 2.2-2.

2.2.2 Ground Receiver

The TDRS ground receiver system performs three basic receiving functions:

1. Receives multiple access and single access sent to the TDRS relay satellite on both S -band and K -band, at K -band (i.e., both are translated to K-band).
2. Receives test signals returned from the TDRS satellite, when the system is in the test mode.
3. Receives TTNC signals when they are being sent during launch operations.

Figure 2.2-3 illustrates the frequencies used by the TDRS system in links to and from the ground to the satellite, and to and from the TDRS relay satellite to the user satellite (or other user, such as Space Shuttle). TDRS-to-ground signals are:

$$
\begin{array}{ll}
13.937 \mathrm{GHz} & \begin{array}{l}
\text { K-band signal access. } 225 \mathrm{MHz} \text { band- } \\
\text { width provided. May be split into two } \\
88 \mathrm{MHz}-\mathrm{BW} \text { channels. }
\end{array} \\
13.7 \text { to } 13.725 \mathrm{GHz} & \begin{array}{l}
\text { S-band single access signals. Two } 10 \mathrm{MHz} \\
\text { bands provided, with } 5 \mathrm{MHz} \text { guard band } \\
\text { (25 MHz total) }
\end{array}
\end{array}
$$

a. Mode 1 Signal Structure (Coherent Turnaround)

b. Mode 2 Signal Structure (Noncoherent Turnaround)

c. Mode 3 Signal Structure (Coherent Turnaround)

Figure 2.2-2. Signal Structure
-

Figure 2.2-3. Frequencies Used in TDRS for Various Links

0
2106.4 MHz
2287. 5 MHz
13.4 to 13.65 GHz described in section 3.2 of this report.

2.2.3 System Performance

 ance objectives are: ing signal.S-band multiple access users. 42 channels provided. 41 at 6 MHz spacing and one at 4 MHz spacing. 40 slots with 4.5 MHz BW for downlink user signals, 2 slots for turnaround ranging.
Test receive frequency for TDRS sat llite transmitter (same frequency as TDRS-touser)
Receive frequency for TT\&C signals used during satellite launch period. Same frequency as user-to-TDRS.

Figure 2.2-4 illustrates a recei-er design that could serve to meet the requirements of the TDRS-to-ground link. It provides for both K-band and S-band reception of signals, using as much common circuitry and subsystems as possible. A more detailed version of this receiver is

The results obtained for the S-band multiple access return link Mode 2 synchronization analysis are summarized below. One of the objectives in the study was to establish the required lenfth of the PN code sequence. A code length of 2047 chips was recommended. The perform-

Mean Acquisition Time	15 seconds
Probability of Detection	0.9
Probability of False Alarm	10^{-6}
Probability of Detecting \quad Interfering Signal	10^{-2}

The results are obtained for the case where the signal is uncoded and for the case where a half-rate convolutional code with a Viterbi decoding algorithm is employed. One of the major steps in the analysis was the interfering signal analysis and the likelihood of false locking to an interfer-

Figure 2.2-4. Simplified Block Diagram of Ground Receiver

The system constraints are:

C! $/ \mathrm{N}_{0}$ (without coding)	$39.9 \mathrm{dB-Hz}$
$\mathrm{C} / \mathrm{N}_{0}$ (with coding)	$34.9 \mathrm{~dB}-\mathrm{Hz}$
Total doppler and frequency unc'stainty	\cdot
2.5 kHz	

A fixed length test strategy was employed for the ground receiver synchronization analysis. The detection performance analysis results for both the aesired and interfering signals is summarized in table 2.2-1. Although through the verification state, neither the detection probability objective of 0.9 nor the false alarm probability objective of 10^{-6} is satisfied, the code tracking and carrier lock thresholds can be set to achieve the above requirements. The average acquisition time analysis at threshold is summerized in table 2.2-2 for the dual mode fixed length test strategy. A single 5 kHz IF bandpass filter covering the total doppler and frequency offset uncertainty is assumed. Clearly, the acquisition times can be reduced considerably by multiple doppler resolution filters as recommended for the user transponder. For a code length of 2047 chips, both with and without coding, the average acquisition time objectives of 15 sec are achieved.

Table 2.2-1. Detection Performance of Desired and Interfering Signals Code Length $\mathrm{N}=2^{11}-1$

\%		Desired Signal				Undesired Signal			
		Acquisition		Verification		Acquisition		Verification	
8		P_{FA}	P_{D}	P_{FA}	P_{D}	P_{FA}	P_{D}	$P_{\text {FA }}$	P_{D}
	Without Coding	10^{-2}	0.58	10^{-4}	0.95	10^{-2}	$1.0 *$	10^{-4}	2×10^{-4}
$\ddot{ }$	With Coding	10^{-1}	0.47	10^{-2}	0.74	10^{-1}	1.0*	10^{-2}	7×10^{-2}

*This assumes one searches through all possible cell positions.

Table 2.2-2. Average Acquisition Time vs. Code Length

Code Length N	Average Acquisition Time, $\mathrm{T}_{\mathrm{ACQ}}$ (sec)		
Link Condition	$2^{11}-1$	$2^{13}-1$	$2^{15}-1$
Without Coding	3.9	15.4	61.5
With Coding	14.7	58.6	234.5

APPENDIX A. 2

GENERAL COMPARISON OF BIPHASE AND QUADRIPHASE

 (DOUBLE-BINARY) MODULATION
A.2.1 Modulation

Biphase modulation is readily accomplished through use of a simple diode-balanced mixer. These are available from a number of manufacturers (Relcon, H-P, Mini-Circuits Lah, Vari-L, and others). Their equivalent cirnuit is shown in figure A.2-1.

Figure A.2-1. Biphase Modulator

Operation is such that the modulation input causes either d_{1} and d_{3} or d_{2} and d_{4} to conduct at any given time, with the other diode pair cut off. Thus, either one phase of the input carrier or the opposite phase $\left(0^{\circ}\right.$ or 160°) is coupled to the output. If $\mathrm{B} \cos \omega_{\mathrm{m}} \mathrm{t}$ is a code sequence, then a carrier, biphase modulated with the code, is the output signal.

The outpiat signal has a power spectrum which has an envelope having $a(\sin x / x)^{2}$ shape, where the main lobe is $2 R_{c}$ wide (R_{c} is the code sequence clock rate) and the sidelobes are R_{c} wide. The first side lobes are 13 dB down, and the envelope falls off at a 6 dB per octave rate thereafter.

Approximately 10 percent ${ }^{*}$ of the energy falls outside the main lobe.

Quadriphase modulators are approximately three to four times as complex, on the basis of components required, as biphase modulators. (This is true whether the modulator is simple quadriphase or some form of offset quadriphase.) A quadriphase modulator commonly is constructed as in the following diagram (figure A. 2-2).

Figure A. 2-2. QPSK Modulator

[^4]The power spectra for both simple quadriphase and double-binary are the same as for biphase (when all modulating signals are at equal rates). Two advantages exist for the quadriphase signals, however:

1. They can tolerate passage through a limiter simultaneously with a narrowband coherent carrier, which a BPSK signal cannot do.
2. They can be filtered and subsequently limited, without appreciable reconstitution of the undesired sidebands, which is not true of BPSK signals. (In fact, this is true only of the double-binary or offset QPSK signal format.)

The offset quadriphase signal can be filtered to a desired BW and then passed through a saturated power amplifier. This is not practical for BPSK or simple QPSK signals, however. Therefore, in a spacecraft that employs a saturating TWT power amplifier, one must pay the hardware penalty for implementing QPSK modulation and demodulation, but the transmitted signal is more efficient, due to all of the relevant energy being packed into $a \pm R_{c}$ bandwidth around the carrier. Where 10 percent of the BPSK signal goes into sidelobe energy, only 5 percent or less goes into sidelobe energy in the offset QPSK format. Therefore, the savings in signal power can be translated into a direct signal improvement for offset QPSK signals.

A. 2. 2 Demodulation

Demodulators for BPSK and QPSK signals are similar. Where data is sent phase-shift-keyed, a Costas demodulator or squaring demodulator is normally employed, and there is little difference ${ }^{*}$ in them, whether they are for BPSK or QPSK signals.

The amount of hardware needed is similar, so no further receiver demodulator comparison will be made.

The received signal bandpass filter should be considered in the light of sending either QPSK or BPSK signals. That is, if the power amplifier transmits a BPSK signal, it will have a $(\sin x / x)^{2}$ distribution whether it filters before amplification or not. For the offset QPSK signal, however, only the main lobe of the signal may be transmitted. If the

[^5]receiver bandwidth is just wide enough to accept the main lobe, then it throws away the BPSK sidelobe energy. An increase in bandwidth to include the first two sidelobes causes a net signal loss, since the increase in receiver noise is greater than the increase in received signal. Therefore, it is seen that the BPSK signal format is advantageous from the standpoint of transmitter simplicity, but it loses in the area of effective transmitter power. This is illustrated in the patterns of figure A.2-3, one of which is the spectrum of a BPSK signal after limiting, whether filtered or not, and the other shows an offset or staggered QPSK signal spectrum after filtering and limiting. This comparison is at the heart of the tradeoff between BPSK and QPSK, with the possible improvement in signal-to-noise ratio being a maximum of 0.9 dB for SQPN over simple biphase signal transmission.

a. Filtered and limited QPSK signal. Note that the sidelobe level is the same as if filtering had not occured. (This reaction is typical of both biphase and quadriphase direct sequence signals.) Filter bandwidth $=2 \mathrm{R}_{\text {clock }}{ }^{\circ}$

Figure A.2-3. Comparison of Normal and Offset QPSK Signal Spectra
b. Identical filtering and limiting of a doublebinary or staggered quadriphase signal. Firs sj.delobe level is now down 25 dB , or 12 dB . low the level of the signal in (a) above.

We have not considered filtering after the power amplifier, as this does nothing to preserve signal power in any case.
\qquad

A. 2. 3 PSK Modulation Considerations for Simultaneous TDRSS Signals

Phase shift keyed (PSK) modulation offers significant performance and implementation advantages in communication systems when compared to other forms of modulation. Phase shift keying provides the lowest threshold performance available. In addition, this modulation form is directly applicable in the spread spectrum and high data rate areas required in TDRSS.

Two forms of PSK are of primary interest for use in TDRSS: biphase and quadriphase modulation, wherein the information is conveyed as either one of two or one of four phases for each information symbol. These are of interest not only because of their spread spectrum and/or high data rate compatibility but because they lend themselves to transmission of multiple signals with minimal mutual interference between those being sent.

In the following paragraphs, we will examine various combinations of biphase and quadriphase signals to determine the effects of operating with them simultaneously in linear and saturating channels.

Modulation Possibilities

$\frac{\text { Signal } 1}{\text { QPSK }}$	
QPSK	QPSK
BPSK	BPSK
BPSK	QPSK
	BPSK

Let us first consider that one signal (2) is always 10 dB smaller than the other signal (1). (See figures A. 2-4 through A. 2-7.)

Signal 2

Signal $1+$ Signal 2

Figure A.2-4. Case 1 - Linear Summation, Two QPSK Signals

Note that amplitude modulation occurs for some phase states of signal 2. That is, signal 2 may add or subtract from signal 1.

Figure A.2-5. Case 2 -One QPSK and One BPSK (10 dB Smaller) Signal

Signal 1
ab

Signal 2
cd

(Alternate)

$1+a$

$1+c$

Figure A. 2-6. Case 3 - BPSK Signal with Smaller QPSK Signal

Signal 1

$$
x
$$

Signal 2

Signal $1+$ Signal 2

Amplitude modulation occurs for all phase states of case 3.

Figure A. 2-7. Case 4-Two BPSK Signals, Different Amplitudes

$$
1+a
$$

Note that no amplitude modulation* is produced by combining the orthogonal signal pair $\{90,270\}$ and $\{0,180\}$.

How, then, can a signal be modified to produce a constant-amplitude* signal (steady state) when the desire is to transmit two QPSK signals?

The following signal combination would be satisfactory (figure A.2-8):

Figure A. 2-8. QPSK Combined with Selected-Phase QPSK
(Combined Signal)

[^6]This signal can be generated from a pair of QPSK signals, but the signals must be properly managed.

Incidentally, it does not matter whether the signals in question are QPSK or SQPSK. The same considerations hold--since SQPSK differs from QPSK only in that the order of phase shifts is changed by modifying the data (or code) fed to the phase modulators used.

A further modification to the code used by the smaller signal (signal 2) can produce the desired orthogonal pair of QPSK signals.

If the phase mapping for signal 1 is:

Signal 1

$$
45^{\circ}
$$

$$
135^{\circ}
$$

$$
225^{\circ}
$$

$$
315^{\circ}
$$

Signal 2
135° or 315°
45° or 225°
135° or 315°
45° or 225°

This means that only certain code states may be permitted for code pair 2, based on the state of code pair 1. These are:

Code pair 1	Code pair 2
00	10 or 01
10	00 or 11
11	10 or 01
01	00 or 11

This can be accomplished by modifying one code in one of the code pairs used in a double-quadriphase signal set (two quadriphase signals) on the basis of the other code pair. Such a technique is illustrated in the example that follows.

Code pair 1	0	0	1	1	1	0	1	0	1	1	0	0	1	0	0	1	0	\ldots
	0	1	0	0	1	1	0	0	0	1	1	0	1	1	1	0	1	\ldots
		1	0	1	1	0	0	0	1	0	1	1	1	0	1	0	1	1

The only question is - what happens to the correlation properties of the long code. An alternate coding rule would be to repeat the last allowed state when a not-allowed state is next. This would change the code also, but wculd be a more complex rule.

To summarize, where two unequal level signals are to be transmitted simultaneously, then it is recommended that both be either biphase or quadriphase. Combinations of biphase and quadriphase signals do not readily adapt to constant-amplitude signalling. Where saturating amplifiers are employed, both constant-amplitude signals and minimum incidental AM are desirable. For those cases where a combination of two signals produces AM, that AM would be lost in transmission through a saturating amplifier. The case for minimum incidental AM is made because bandpass filtering ahead of the saturating amplifier can suppress small amplitude modulation to an extent that it is not restored to any significant degree in the nonlinear amplification process. This in turn reduces transmitter sidelobe energy and improves signalling efficiency.

The signals that result from combining either two BPSK or two QPSK signals are shown in figure A. 2-9. (One of the two in each case is 10 dB smaller than the others.)

Combined BPSK signals

Combined QPSK signals

Figure A.2-9. Comparison of Combined BPSK and QPSK Phase Diagrams

In both cases, incidental AM due to the combining of signals is only 0.49%. Incidental AM for the individual signals is the same, however, as if the other signal were not there (i.e., 100% for the biphase signals and 30% for staggered quadriphase signals).
II. Consider now the case of equal amplitude carriers, but those having arbitrary phase and/or frequency relationships. (It is considered that the phase and/or frequency of carriers used is known and controlled, but our interest here is in the effect of the relationships between the pair of postulated carriers.)

We will consider that this is the case for transmission of data group 1 and data group 2 signals. Data group 1 and 2 signal characteristics are summarized as follows:

Data Group 1

PN modulated (SQPN)
6 Mbps code, 2^{19} long
Data rate: $1-300 \mathrm{~kb} / \mathrm{sec}$
same on I and Q
data embedded in 6 Mbps code

DG1
Assume the two following QPSK signals (figures A.2-10 and A.2-11):
The Data Group 2 carrier may be asynchronous with the Data Group 1 carrier.

DG2

SQPN 6 Mbps

QPSK 1-300 Mbps (2 @ R/2) or $R=R_{1}+R_{2}$

$$
\left(R_{1}+R_{2} \leq 300 \mathrm{Mbps}\right)
$$

Figure A.2-10. DG1 and DG2 Signals

Data rate has little effect except to determine the rate of phase shifts. QPSK/SQPN also has little bearing except to determint rate of phase shifts and phase difference from shift to shift. (SQPN allows only 90° shifts. QPSK can shift 180° or 90°.)

Carrier amplitude, frequency, and relative phase have much more effect.

Let DG1 power $=$ DG2 power
$\phi_{1}=\phi_{2}$
DG1 carrier \equiv DG2 carrier

Linear channel:

Loci of possible phase positions for two equalvalue 4 -phase signals, linearly added. (Note ambiguity.)

Figure A.2-11. Combination of Two Equal QPSK Signals

The same combined phase mapping results if the two carriers are offset in phase, except that the combined phase map is itself rotated.

There are $4^{2}=16$ possible combinations of two four-phase signals. The combined, linearly-added signals have only 9:

$$
\begin{array}{ll}
1_{1}+2_{1}=\mathrm{G} & \mathrm{G}=2 \mathrm{P} \angle 45 \\
1_{1}+2_{2}=\mathrm{D} & \mathrm{D}=\sqrt{2} \mathrm{P} \angle 90 \\
1_{1} \cdot 2_{3}=\mathrm{E} & \mathrm{E}=0 \angle 0 \\
1_{1}+2_{4}=\mathrm{H} & \mathrm{H}=\sqrt{2} \angle 0 \\
1_{2}+2_{1}=\mathrm{D} & \\
1_{2}+2_{2}=\mathrm{A} & \mathrm{~A}=2 \mathrm{P} \angle 135 \\
1_{2}+2_{3}=\mathrm{B} & \mathrm{~B}=\sqrt{2} \mathrm{P} \angle 180 \\
1_{2}+2_{4}=\mathrm{E} &
\end{array}
$$

$$
\begin{array}{ll}
1_{3}+2_{1}=E & \\
1_{3}+2_{2}=B & \\
1_{3}+2_{3}=C & C=2 P / 225 \\
1_{3}+2_{4}=F & \\
1_{4}+2_{1}=\mathrm{H} & \\
1_{4}+2_{2}=\mathrm{E} & \\
1_{4}+2_{3}=F & \\
1_{4}+2_{4}=I & I=270 / 315
\end{array}
$$ and A. 2-13):

Figure A.2-12. Comivined QPSK Signals in a Limiting Chanr. i

This phase table is the same as for the linear channel, but the amplituic table is different:

$G=P \underline{45}$	$B=P / 180$
$D=P \angle 90$	$\mathrm{C}=\mathrm{P} / 225$
$E=0 \angle 0$	$F=P \angle 270$
$\mathrm{H}=\mathrm{P} \underline{0}$	$I=P / 315$
$\mathrm{A}=\mathrm{P} / 135$	

(letters correspond to linear channel phase diagram)
Occurrences: Same as linear channel if amplitudes of DG1 and ? carriers are precisely equa!.

Figure A. 2-13. Eight-Phase Phase/Amplitude Resultant of Summed Equal-Amplitude QPSK Signais (Carriers Coherent)

If carriers are not equal in amplitude (and they seldom would be), then whichever is larger will dominate in positions A, C, G, and I, as in the following phase tables.
(Remember that the saturating amplifier we are discussing tends to drive any signal above a value α to the point of amplitude limiting. In such a case, if two carriers are not exactly equal, and their difference is $\geq a$, then the larger signal will dominate and suppress the smaller signal.)

Assume PDG1 > PDG2:

$$
\begin{aligned}
& 1_{1}+2_{1}=P \angle 45 \\
& 1_{1}+2_{2}=P \not 90 \\
& 1_{1}+2_{3}=P \angle 45 \\
& 1_{1}+2_{4}=P \not 0 \\
& 1_{2}+2_{1}=P \not Q 0 \\
& 1_{2}+2_{2}=P \angle 135 \\
& 1_{2}+2_{3}=P \angle 180 \\
& 1_{2}+2_{4}=P \angle 135 \\
& 1_{3}+2_{1}=P \angle 225 \\
& 1_{3}+2_{2}=P \angle 180 \\
& 1_{3}+2_{3}=P \angle 225 \\
& 1_{3}+2_{4}=P \angle 270 \\
& 1_{4}+2_{1}=P \angle 0 \\
& 1_{4}+2_{2}=P \angle 315 \\
& 1_{4}+2_{3}=P \angle 270 \\
& 1_{4}+2_{4}=P \angle 315
\end{aligned}
$$

Occurrences: $0=2,45=2,90=2,135=2,180=2,225=2$,

$$
270=2,315=2
$$

Assume PDG2 > PDG1: \quad PDG2-PDG1 $\geq a: a K \geq P$

Occurrences: $0=2,45=2,90=2,135=2,180=2,225=2$,

$$
270=2,315=2
$$

It is most notable that, for a pair of quadriphase signals of equal amplitude, passing through either linear or limiting channels, the combined phase mappings result in ambiguities that cause loss of information. That is, where two quadriphase signals separately represent 16 possible symbol-pairs (and thereby four bits of information), only eight phases result from their combination, with the same phase resulting from more than one signal pairing.

The examples shown consider that the two signals of interest maintain a constant phase relationship. What if the two carriers are not at the same frequency? Where this is true, then the same two QPSK phase diagrams hold, but one of the two may be considered to rotate with respect
to the sther. This then effectively causes the signal that is rotating to add a continuous phase shift component, with rotation at the difference frequency between the two carrier signals. The combined phase diagram for two QPSK signals with different carrier frequencies would be (figure A. 2-14):

Figure A.2-14. Rotating Phase Combination of Two Equal Value But Frequency Offset QPSK Signals
and 100 percent amplitude modulation would result, as well as phase rotation of 360° at the difference frequency rate. This would occur iddition to independent discrete phase modulation by the two data signals

Such a signal would be difficult to handle in the linear channel and could degrade in the saturating channel to the point of being unusable.

Exterding Case 1 (the pairing of a QPSK signal with a second QPSK which is smaller by 10 dB and whose carrier is at 90 degrees), Case 1a, which follows, considers the same QPSK carriers but shifts the smaller signal so that it is at a 45° angie with respect to the larger signal.

The resulting composite signal is an amplitude- and phase-modulated resultant that has very small phase shifts, together with amplitude modulation of approximately 9 percent. Such signals are not useful in a system employing saturated traveling wave tubes (or even solid state RF power amplifiers) that exhibit AM/PM conversion on the order of 4 to 12 degrees per $d B$ of amplitude shift, since the phase modulation produced by the incidental AM is larger than that produced by the intended phase modulation.

Case 1a (see figure A. 2-15) illustrates the problem faced with any form of modulation in TDRS that produces incidental amplitude shifts due to addition of two or more signals, where the composite signal is to be processed in a power amplifier. This especially applies to the two-signal or simultaneous signal approach to TDRS user synchronization and data transmission, whether the signals being sent are direct sequence signals (data group 1) or high speed data signals (data group 2).

Typical AM/PM conversion in a saturated TWT PA is as much as 6 to 8 degrees per dB. For this modulation, amplitude difference is $1.48-1.35=0.12$ or $0.13 / 1.48 \times 100=8.78$ percent. This would be a 0.399 dB difference, for a 2.4° phase shift. Thus, a phase shift produced by an amplitude change would be greater than that produced by modulation of the phase by the data being sent.

Signal 1
$\stackrel{f}{f}$

Signal 2

8

Signal 1 plus Signal 2

Figure A.2-15. Case la - Two QPSK Signals

Signals produced are:

1.35	$\angle 42$
1.48	$\angle 42.3$
1.48	$\angle 47.7$
1.35	$\angle 48$

$1.35 / 222$
$1.48 \angle 42.3$
$1.48 ~ 222.3$
$1.48 \quad 47.7$
$1.48 \quad 227.7$
$1.35 / 48$
$1.35 / 228$
$1.35 / 132$
$1.35 / 312$
$1.48 / 132.3$
$1.48 / 312.3$
$1.48 \quad 137.7$
$1.35 / 138$
$1.48 / 317.7$
$1.35 / 318$

Phase mapping would be:

1.35	$\angle 42$
1.48	$\angle 44.7$
1.48	$\boxed{50.1}$
1.35	$\angle 48$

Compare this phase mapping with the first signal set:

$$
\begin{array}{ll}
1.35 & \angle 42 \\
1.48 & \angle 42.3 \\
1.48 & \angle 47.7 \\
1.35 & \angle 48
\end{array}
$$

In this quadrant, the unintended phase modulation due to AM/PM conversion would be 2.4° greater than the intended modulation, for the conservative estimate of 6 degrees per $d B$ of amplitude shift.

3.0 SUBSYSTEM DESIGN

This report section describes user transponder and ground receiver subsystem designs that are postulated for TDRSS use. These subsystem designs do not represent either final recommendations or optimal designs, but are presented as practical configurations that may, in turn, be used as bases for comparison and for system configuration.

3.1 User Transponder

This section presents a transponder design which reflects possible implementation with contemporarily available components; that is, none of the subsystems presented depends on development of new or higher performance components than those presently available.

The solected approach for TDRS signal structure $: s$ the use of a direct sequence waveform for acquisition, as well as data transmission. A pair of direct sequence modulated signals will be transmitted simultaneously. One signal is BPSK modulated with a 1023 bit code sequence that is, in turn, sequence-inversion-modulated with data. The second signal is BPSK modulated with a $2^{18}-256$ bit code sequence, and has no data modulation. The second signal is transmitted at a level 10 dB below the first, and on a carrier signal phase-shifted by 90 degrees from it.

Both the 1023 bit (short) and $2^{18}-256$ bit (long) codes will use the same $31 \mathrm{f}_{1} / 96=3.077799 \mathrm{Mbps}$ clock, and the all-ones jectors in both the generators will b : set to coincide at a given point in rame. Thus, the long code will repeat in exactly 256 repetitions of the short code all-ones vector.

The receiver will then have to search a maximum of 1023 bit: to acquire short code synchronization; once short code synchronization is achieved, the long code ambiguity is reduced to $1 / 256$. This is true because a receiver synchronized to the short code knows when the long code all-ones vector will occur, except that it occurs only once every 256 short code allones occurrences. If the receiver then resets its long code at each short code all-ones vector, and monitors its correlator for synchronization until the next one, then all it needs to do is decide if it is synchronized. If so,
then it does not reset; but if not, then it resets and tries again during the next interval.

Actually, the long code monitoring or integration period is not just one but may be many periods of the short code. This is done to make up for the reduced (-10 dB) power in the long code modulated signal. If, for example, the integration period is an average of 10 short code periods, then long code acquisition time is $256 \times 10 \times 322 \mu \mathrm{sec}=824 \mathrm{msec}$. (Actual long code acquisition time is expected to be <2 seconds.) This time is in addition to short code acquisition time, since the short code must be acquired first.

The short code modulated acquisition signal employed will be the data transmission signal, and will be transmitted continuously. Therefore, a user may acquire the signal at any time without a need for any special transmission or procedure. The long code modulated signal will be used only to resolve range and multipath ambiguities.

Figure 3.1-1 is a simplified block diagram showing the modulator and demodulator configuration for the selected TDRSS signal acquisition approach.

3.1.1 Overall Design

Figure 3.1-2 illustrates a transponder configuration using a 221/240 frequency turn-around ratio. The configuration shown departs from the Standard Transponder design, in that the second IF is a function of the f_{1} reference oscillator frequency rather than an auxiliary f_{2} oscillator. This configuration has the advantage that it does not employ an f_{2} oscillator (about 12.25 MHz for a standard transponder) but it does have a second IF frequency that changes if the operating frequency is changed. For TDRS, with $221 \mathrm{f}_{1}$ at $2106.40625 \mathrm{MHz}, \mathrm{f}_{1}$ and the second IF would be 9.53125 MHz .

A demodulator is part of this configuration. When relaying data, that data would preferably be demodulated to baseband and used to remodulate the relayed signal. This remodulation would be accomplished by modulo- 2 addition with the transmit code. The alternative is to preserve

Figure 3.1-1. Simplitıed Modulator and Demodulator Using Simultaneous Signal Approach

Figure 3.1-2. Basic Transponder Frequericy Scheme and Signal Flow
the data as carrier PSK, translate this signal to $240 \mathrm{f}_{1}$, and overlay it with code modulation.

In practice, the data would not go directly from the demodulator to be used as a signal for the modulator, but would be processed as required within the spacecraft.

Figure 3.1-3 shows a more detailed block diagram of the data demodulation channel. A $221 \mathrm{f}_{1}$ received signal would be converted to $13 \mathrm{f}_{1}$, where it would be power-divided (by 4). One signal would be multiplied with a local reference (BPSK modulated with the 1023 bit code) which would, when synchronized, produce a signal PSK modulated with data at the IF2 frequency. This would then be demodulated by a squaring loop, anc' the data signal output for processing. A squaring-loop demodulator is shown because it is somewhat simpler than a Costas demodulator, although a Costas loop could readily be substituted for it. \vec{r} erformance of Costas and squaring loop demodulators has been shown to be the same.* The squaring loop VCO would be multiplied to produce the $240 \mathrm{f}_{1}$ freyliency.

Onr of the signals fron the IF1 power divider would be applied to a balanced mixer along with the range code ($2^{18}-128$ bits). When the range code signal is synchronized, a CW output signal appears at the mixer output, passes through a bandpass filter, is amplified and envelope detected, integrated and applied to a threshold detector. When a signal is detected, the range code generator is allowed to continue without reset, and is traced by the data code loop. This range channel subsystem is illustrated in Figure 3.1-4.

The other two signals from the IFl power divider are fed to a pair of balanced mixers (see Figure 3.1-5) whose reference inputs are a pair of time-offset codes. These produce a diffcrential in correlation output signals when filtered and detected, which are differentially amplified, filtered, and used to control the code clock frequency. Thus, the receiver code

[^7]Data

O

rate is tracked with the incoming signal's code rate. (This subsystem is a conventional delay-lock loop.) An alternate technique would be to employ an incremental phase modulator instead of the VCO. This incremental phase modulator would modify the phase of a $31 \mathrm{f}_{1} / 96$ signal derived from the demodulator's f_{2} VCO.

An accurate clock source is vital to any spread spectrum system, since code drift can drastically affect syncbronization time. The quartz crystal oscillators appear to have the edge for on-board spacecraft use, because of their size, weight, power, and reliability. (It is interesting to note that a hydrogen maser has been flown as a frequency source.) One of the atomic standards (cesium or rubidium) would be good for ground use.

3.1.2 Electrical Specifications for User Transponders

A number of electrical specifications for user transponders may directly affect the performance of the TDRSS with respect to achievable data rate(s). Some of these are examined in the following pages, with their effects, in order to arrive at minimal specifications without causing the implementation task to be too difficult.

In addition to analysis oriented to determining the effects of the
. tion limits, ..e given in table 2.1-7. Considerations in determining these specifications are described in the following pages.

User Oscillator Phase Noise

It is desirable to hold user oscillator phase noise to as low a value as is practical for a voltage controlled oscillator. The noise produced by the oscillator is multiplied, and appears at both receive local oscillator frequencies and transmit frequencies as a much larger amount of random phase noise. Invastigation of the capability to hold phase noise down shows
that present systems are capable of $<15^{\circ}$ phase noise, at S-band, where the measurement is made with integration over a 6 Hz to 2.5 MHz bandwidth.

Modulator/Demodulator Phase Imbalance

Phase imbalance is especially important to a quadriphase modulator. (It is equally important to a biphase modulatur, but phase between halves of a transformer winding is difficult to maintain at anything other than 180°, which is that desired for BPSK.) Quadriphase modulation, on the other hand, can easily exhibit phase imbalance-usually occasioned by an offset in the carrier phase input to the two biphase modulators included in a QPSK modulator.

Phase offset in a QPSK modulator would be exhibited by producing signals similar to those seen in figure 3.1-6.

Resultant from correctly phased QPSK signals

Signal 2
Incorrectly phased QPSK signals

Resultant from incorrectly phased QPSK signals

Figure 3.1-6. Signals Due to Phase Ofîset
This phase imbalance would produce an amplitude imbalance that could, in turn, cause large incidental phase shifts in the signal at the power amplifier output (see page 3-13).

It is suggeste i inat ainplitude imbalance be held to a maximum of 1 dB total, for both direct amplitude shifts and for incidental AM caused by paired-signal phase shifts. If 0.5 dB is allocated to each cause, then
signal amplitude would vary from 1 (normalized) to 0.891 . Therefore, the maximum phase shift allowable would be approximately 6.5 degrees.*

Modulator/Demodulator Amplitude Imbalance

Where a pair of signals are unbalanced in amplitude, the signal resulting from their being combined is affected in both amplitude and phase angle. In a previous section of this memorandum, it was considered that amplitude balance could be held to within 0.5 dB . In that same section, it was shown that a 0.5 dB am. plitude shift corresponds to a 6.5 degree phase shift.

Data Asymmetry

$$
\begin{aligned}
& \text { From the formulae derived on page } 3-13: \\
& \qquad \begin{aligned}
(\sin 6.5+1)+j \cos 6.5 & =1.492 \nmid 41.75 \\
(\sin 6.5-1)+j \cos 6.5 & =1.331\lfloor 131.75 \\
\frac{1.331}{1.492} & =0.892 .
\end{aligned}
\end{aligned}
$$

Figure 3.1-7. Direct Sequence Signal with Data/Code Symmetry

F From the formulae derived on page $3-13:^{(\sin 6.5+1)+j \cos 6.5}$	$=1.492 \not 41.75$
$(\sin 6.5-1)+j \cos 6.5$	$=1.331 \angle 131.75$
$\frac{1.331}{1.492}$	$=0.892$.

If data signals are held to symmetry within 1%, then the signals seen at spectrum nulls should be $\geq 10 \log 100=20 \mathrm{~dB}$ below the unsuppressed carrier signal.

Data Skew
Data skew primarily affects the signal shaping, since the effect of such skew is one of causing signal transitions to occur at times other than those for which the system is designed. As long as data transitions are not skewed to the point that both data transitions in a QPSK modulator occur simultaneously, there is no effect. (We restrict this argument, however, to one in which the receiver may separately track the two data streams. Where only one of the two signals is tracked, data skew should be avoided to as great a degree as practical.)

AM-to-PM Conversion
AM/PM conversion and distortion experienced by an amplitude modulated signal in being processed by a TWT power amplifier is discussed on page 3-16. For some of the signals proposed, this AM/PM conversion can produce phase shifting signals that are larger than those that convey the desired information. Therefore, the aim in choosing modulation formats has been to choose a format that has minimum steady-state amplitude shifts. (We note that some amplitude shifting is inevitable during phase transitions, but that proper signal selection can provide minimum amplitude shift after setting to a new phase.)

Phase Characteristics

Both sinusoidal and quadratic phase characteristics and their effect on PSKK signals have been well defined by Jones.* The curves given by Jones may be employed to specify the allowable signal distortion, given a maximum allowable signal degradation or loss in performance.

[^8]
Effect of Phase Shift Between Orthogonal Signal Pairs

A balanced biphase modulator's output (in the modulated signal band of interest) may be written as (see figure 3.1-8):

$$
A^{*} \cos \omega_{c}^{t} \pm \omega_{m}^{t}
$$

where the input carrier is $B \cos \omega_{c}{ }^{t}$ and the modulating signal for the case of interest here is $C \cos \omega_{m}{ }^{t}$.

The modulating signal is $\phi(t)$, where ± 90 degrees is the only accepted modulation, and the period of the modulating signal ω_{m} is that of either a coded signal or data modulation. That is, a +1 is represented by $A \cos \omega_{c} t+90^{\circ}$, and a -1 is represented by $A \cos \omega_{c}{ }^{t}-90^{\circ}$.

This signal format may be extended to quadriphase (QPSK) modulation by realizing that the QPSK modulator is a pair of biphase modulators (figure 3.1-9) whose outputs are summed. The QPSK signal may be expressed as
$A \cos \omega_{c} t \pm 00^{\circ}+D \sin \omega_{c} t \pm 90^{\circ}$
which results in four possible output signals
$A \cos \omega_{c} t+90^{\circ}+D \sin \omega_{c} t+90^{\circ}$
$A \cos \omega_{c} t+90^{\circ}+D \sin \omega_{c} t-90^{\circ}$
$A \cos \omega_{c} t-90^{\circ}+D \sin \omega_{c} t+90^{\circ}$
$A \cos \omega_{c}{ }_{c}-90^{\circ}+D \sin \omega_{c} t-90^{\circ}$
which correspond to signals

$$
\sqrt{A^{2}+D^{2}} \angle 135^{\circ}
$$

$$
\sqrt{A^{2}+D^{2}} \angle 225^{\circ} \quad-\quad \text { input }
$$

[^9]

Figure 3.1-8. Biphase PSK Modulator

Figure 3.1-9. Quadriphase PSK Modulator

$$
\begin{aligned}
& \sqrt{A^{2}+D^{2}} \angle 45^{\circ} \\
& \sqrt{A^{2}+D^{2}} \angle 315^{\circ} .
\end{aligned}
$$

respectively.
Now if there is a phase shift (other than 90 degrees) between the carriers applied to the two uphase modulators contained in the QPSK modulation, then there is no longer a phase and/or amplitude balance in the output signal. Instead, the input and output signals will be

Input signal

Resultant output

If, for example, we choose ϕ as 45 degrees, then the output signal resulting from a pair of equal amplitude input signals is

$$
\begin{aligned}
& (\sin 45+1)+j \cos 45=1.847 \angle 22.5 \\
& (\sin 45-1)+j \cos 45=0.765 \angle 112.5 \\
& (\sin 45-1)-j \cos 45=1.847 \angle 202.5 \\
& (\sin 45+1)-j \cos 45=0.765 \angle 292.5
\end{aligned}
$$

For this kind of signal, there is a large amplitude shift between output positions, which is highly undesirable because of the difficulty which could be engendered due to AM/PM conversion.

Here, for convenience, we have analyzed biphase and quadriphase modulators. We hasten to point out, however, that the signals existing in a quadriphase modulator are identical to those that exist in a linear channel wherein two biphase signals are processed.

AM-to-PM Conversion and Intermodulation Distortion in SpacecraftType Traveling Wave Tube Amplifiers

It is of interest in satellite systems, where traveling wave tube (TWT) amplifiers are employed, to be able to define the incidental phase modulation, and the intermodulation products resulting from processing one or more signals in a communication channel. This is especially true with respect to incidental phase modulation when the signals being processed contain low-de:iation FM or PM signals.

Traveling wave tubes exhibit phase modulation as a function of their input signal level. This phase modulation is a result of a change in beam velocity in the TWT as input signal changes.

The signals of most interes, in TDRS are phase-modulated, and therefore, if they are selected properly should be constant-envelope signals. This is true, however, only in the steady-state case, and amplitude modulation does exist during the transitions from one state to another. Some signal alternatives do exhibit both steady-state amplitude and phase shift and these must be carefully considered before use, since it is possible that the phase modulation introduced by amplitude changes in the signal may be grater than the desired phase modulation.

In addition to characterization of AM/PM conversion, it is also of interest to know the degree of cross-modulation that may be expected when two signals are to be passed through a single TWT amplifier. This parameter is a measure of the self-generated noise that may be expecied under the two-signal condition.

Table 3.1-1 shows typical AM/PM conversion measurements for TWT amplifiers for various frequenries and power levels. It is apparent that, depending on the tube type and its operation, AM/PM conversion may vary widely. For data considered, values covered a range from 1.5°; dB to $8.4^{\circ} / \mathrm{dB}$, with a tendency for low power tubes to exhibit higher AM/PM

[^10]AM/PM
AM/PM Conversion

Source	TWT	Output Power	Sacturated	Linear
"Improved TWT's for Broadband Jamming, " Microwaves, November 1969	WJ 440	$\begin{aligned} & 440 \mathrm{w} \text { (sat) } \\ & (5-10 \mathrm{GHz}) \end{aligned}$	$6^{\circ} / \mathrm{dB}$	$6 \% / \mathrm{dB}$
"New Data Eases TWT Use in Communications, " MSN. July 1971	STC-5215 \& 52161 (Sperry)	$\begin{aligned} & 250 \mathrm{w} \text { (sat) } \\ & (4-8 \mathrm{GHz}) \\ & 100 \mathrm{w} \text { (sat) } \\ & (8-12 \mathrm{GHz}) \\ & 50 \mathrm{w} \text { (sat) } \end{aligned}$	$2.5{ }^{\circ}-3.5 \%$ dB	Same
RCA Technical Builetin MWD-109, September 1969	RCA 4054	$\begin{aligned} & 20 \mathrm{w} \text { (sat) } \\ & (1.7-2.7 \mathrm{GHz}) \end{aligned}$	$7^{\circ}-8^{\circ} / \mathrm{dB}$	3. $5^{\circ} / \mathrm{dB}$
"Designing High Efficiency TWT's'. Microwaves, July 1973	219 HX (Hughes)	$\begin{aligned} & 28 \mathrm{w} \text { (sat) } \\ & \text { (7.7-8.0GHz) } \end{aligned}$	4. $1^{\circ} / \mathrm{dB}$	8. $4^{\circ} / \mathrm{dB}$
"Traveling Wave Tube for Satellite Applications." MW Journal, November 1972	ThomsonCSF	$\begin{aligned} & 20 \mathrm{w} \text { (sat) } \\ & (10.95-11.20, \\ & 11.45-11.7 \mathrm{GHz}) \end{aligned}$	1.5% dB	Same
"High Power Broadband T-W Tubes," MW Journal, April 1969	M5312 (Teledyne- MEC.)	$\begin{aligned} & 150 \mathrm{w} \text { (sat) } \\ & (3.4-3.6 \mathrm{GHz}) \end{aligned}$	$2 \% / \mathrm{dB}$	1.6% dB

Table 3.1-1. Measured AM/PM Conversion for Various Traveling Wave Tube Amplifiers (Linear 6 dB below s iuration)
N
-
-
$\because \cdot 7$

3.2 Ground Receiver

The TDRSS receiver serves the function of reseiving and demodulating all of the information sent down from the various user transponders on the return links. These signals are listed in section 2.2.2 of this report. The receiver description given here is for the purpose of clarifying the design, and does not represent a specified receiver, nor does it represent an "optimum" design. Figure 3.2-1 illustrates a possible receiver for the multiple signals expected, and the remainder of this section describes the operation of this receiver. Block diagrams are given to illustrate possible implementations of the subsystems of this receiver.

The receiver block diagram shown is for reception of signals in either (or both) K-band and S-band, since TDRSS is capable of and is expected to operate in both bands.

K-band signals would be amplified, split into two components, one of which would be taken for other K-band users. The second signal would be mixed with an 11.2375 GHz signal, producing a 2287.5 MHz intermediate frequency which is passed through a bandpass filier of 250 MHz BW (to pass the 225 MHz KSA signal). The signal is then amplified, mixed with a 1.975 GHz local oscillator, and output as a signal centered at 312.5 MHz . (The signal consists of a number of SMA signals separater at 6 MHz intervals.) After amplifiration again, the signal i. \quad as by 22 and applied to 22 separate demodulations, each of which is $2 . \therefore$ of demodulating one downlink signal. These demodulators are not i.s.r. for demodulation of all signals encour iered, however. Instead. demodulation baridwidths are distributed as follows:

$\frac{\text { Demodulator }}{1 \text { through } 8}$	
	Demodulator Data Rate
9 through 12	
10 kps to 10 kbps to 25 kbps	
12 through 20	25 kbps to 40 kbps
21 and 22	40 kbps to 50 kbps

Figure 3.2-1. Block Diagram of Ground Receiver for TDRSS SMA, TT\&C, and Test Signals

Each selector at the nutput from the $\div 22$ power divider would have channel selection capability which would be contr lable from the TDRS cons sle in the ground station. A demodulator matrix would stser the signal outputs from the selectors to the right signal demodulator and then to the correct user output.

The second signal path in figure 3.2-1 is for S -band signals. Signals arriving $9 t$ the S -band preamp would be amplified, split and routed to both the first IF in the receiver and to a second path that eventually reaches the $\div 22$ power divider. These alternate paths provide for use of the same subsystems for dei..udulation and signal switching, thus minimizing the ground receivpn complexity. Signals at 2287.5 MHz would be routed to the second mixer and 312 MHz IF, while those at 21 vj .4 MHz would be routed to a mixing process which converts them to 318.4 MHz . Thus, if desired, these signals can be received simultaneously.

After power division, all input signals ase applied to a set of tunable selectors (labeled FE1 through FE22) which are modified UHF communications receiver front ends. (The modificatio:..s entail broadening their frequency synthesizers by approximately 20%.) Each would be individually controllable to receive at any of the possible 42 MA and/or turn-around ranging channels. After signal selection, the sig!:als would be routed to a demodulator and output data matriy, which allows the proper demodulator to be connected to any incoming signal frequency and the reculting data to 'e routed to the proper output.

Figure 3.2-2 show the method for providing downlink frequency selection and demodulation of the single access signals, as a simplified block diagram. Figure 3.2. 313 a block diagram showing the modified UHF receiver front end and spread spectrum code correlator. Suread spectrum receivers at UHF (225 to 400 MHz) presently exist 10 perform this exact function. Therefore, it is suggested that a modified version of one of the existing receiver subsystems be investigated.

0

Figure 3.2-2. Block Diagram of Ground Receiver for SA Signals
0
6

- 'J

The demodulator matrix is shown in block diagram form in figure 3.2-4. This matrix would route incoming signals, after frequency selection, to the proper demodulator. Twenty-two demodulators are shown, with varying data rate capabilities. This number could readily be modified or the type of demodulator could be changed to accommodate rifferent requirements.

0

4.0 SYNCHRONIZATION TECHNIQUES AND ANALYSIS

4.1 Introduction

One of the purposes of this investigation was to establish basic system parameters and signal design tect niques for both the S -band forward link and the return links, with particular emphasis on the multiple access modes. Clearly, the synchronization requirements play a pivotal role in establishing the signal design parameters. Among the goals established at the beginning of this investigation were the desire to eliminate the requirements for a synchronization preamble, to limit the average synchronization time of the multiple access forward link to 20 seconds and on the return link to 15 seconds, and to limit the design to technologies for which there are space-qualified components. An additional consideration was the minimization of hardware complexity, in particular, in the user transponder.

In the first step to achieve the above objectives, a set of candidate techniques was selected for which a first-level analysis was performed. This analysis focused on the multiple access forward link to the user, as this is the link with the lovest threshold of performance. The acquisition techniques can be divided into two classes. The first class is termed component (composite) code acquisition. The second class is direct sequence code acquisition. Within each of these classifications, several approaches were analyzed. These include techniques such as serial search with fixed length tests and sequential tests, parallel search, and both digital and analog matched filtering techniques. From the preliminary assessment, a more detailed study vias made of the techniques with the greatest likelihood of achieving the desired acquisition time performance goals and those which could be implemented with relatively low risk technology. The analysis and iradeoffs associated with the candidate techniques are detailct in the Interim Report.

From these various candidate approaches, the fixed length and sequential test strategies of the direct sequence codes were selected for more detailed investigation. The details include a multiple mode acquisition strategy, doppler resolution, and the consideration of bandlimiting losses, subchannel power losses, and multiple access interference. Most of the details of this second-level analysis are given below.

The study concludes with an analysis of the impact of multipath on the recommended acquisition approach. Several ideas are presented for mitigating the effects of multipath. The actual mutlipath parameters were obtained from the Boeing Company under a subcontract to Robert Gold Associates. These multipath parameters were obtained through a simulation program with the specific TDRSS parameters as input data. The simulation model was verified by Boeing through extensive experimental testing for a satellite-to-aircraft link.

Even the more detailed analysis discussed in this section of the report is not optimized. With the use of a computer simulation, a "fine tuning" of the analysis could be performed to further reduce the mean acquisition times.

Both the delay lock chip tracking loop and carrier lock loops have lock times which contribute to the overall acquisition time. It is estimated that the code tracking and carrier pull-in and setting times are less than 1 second and hence are largely insignificant contributors the overall synchronization time. It is for this reason that the major emphasis in this study is directed toward the code acquisition analysis.

4. 2 Synchronization of Receive System

4.2.1 Statement of the Problem

To demodulate the transmitted wideband noiselike signal, the receiver must have knowledge of the pseudorandom code employed during modulation. The receiver not only needs to know which particular code was used by the transmitter, but also the exact code epoch or phase. This is the synchronization problem of the receiver.

A model of the synchronization circuitry is given in Figure 4.2-1.
The receiver removes the pseudorandom code from the received signal by cross-correlating the received signal plus noise with a reference signal. This involves first multiplying the signal plus noise with a reference signal generated by a local PN code generator. The locally generated replica is cross-correlated with the received signal plus noise and integrated in different relative phase positions until the correlation value indicates the two sequences are in phase. The number of correlations which must be performed depend upon the initial phase uncertainty of the received sequence, the length of the sequence before it repeats, the frequency offset between the local reference and the incoming signal, and the specified acquisition probabilities (i.e., probability of detection and false alarm). The acquisition time is a function of the number of correlations required.

Once the acquisition of the received signal is obtained, the codes are close enough in phase to enable the delay lock loop to begin tracking. During this time, the carrier recovery circuit or phase lock loop also begins operating and the data demodulation process can begin.

4.2.2 Outline of Candidate Acquisition Techniques

The basic direct sequence acquisition terhniques considered as candidates for the TDRS receivers are summarized in Table 4.2-1.

Table 4.2-1. Candidate Acquisition Techniques

Serial Search Techniques
- Component codes
- Direct sequence - PN code
Parallel Search Techniques
- Component codes
- Direct sequence - PN code
Matched Filter Techniques
- Analog
- Digital

A simplified model for each of these techniques is given in Figure 4.2-2. In each of these techniques, some form of post-detection integration was employed. During the course of the study, each of the above techniques was analyzed and compared. A first-level summary of this comparison is given in Table 4.2-2. As a consequence of this analysis, the component code techniques were rejected because of their inherent complexity. The matched filter techniques were rejected because of their development risk. Hence, the direct sequence serial search techniques were analyzed in greater depth. The basic concepts and analyses of the techniques which were rejected for further consideration are documented in the Interim Repori ${ }^{(1)}$ and several of the monthly reports.

4.2.3 Basic Steps in the Acquisition Procedure

As noted above, the receiver must perform a search in time to find the correct code epoch to demodulate the transmitted signal.

There are a couple of basic assumptions for the synchronization model. One assumption is that the apriori distribution of the true code position is uniform over the entire PN code period. Another assumption made for the first-level analysis of the candidate techniques is that on!y

0

(b) Parallel Search Technique
Figure 4.2-2. Models of Candidate Acquisition Techniques

ic) Matched Filter with Binary Quantization

Figure 4.2-2. Models of Candidate Acquisition Techniques (continued)
Table 4.2-2. Comparative Evaluation of Candidate Acquisition Techniques

Acquisition Code Type	Acquisition Detection Technique	Received Signal Level (dBm)	Length of Code (chips)	Chip Rate (chips/sec)	Average Acquisition Time (sec)	Complexity	Development Risk
3 Component	Serial search	-137.1	47, 63, 73	3×10^{6}	41.5	Moderate	Low
	Parallel search	-137.1	47, 63, 73	3×10^{6}	10.5	High	Low
	Par allel matched filter Coherent combining	-137.1	47, 63, 73	3×10^{6}	0.23	High	High
	Parallel natched filter Noncoherent combining	-137.1	47, 63, 73	3×10^{6}	1000	High	High
Direct Sequence PN	Digital matched filter Noncoherent combining	-137.1	1000	3×10^{6}	0.13	High	Moderate
	Digital matched filter Majority detector	-137. 1	8000	3×10^{6}	0.15	High	Moderate
	Serial search 1/2 chip increments (fixed length test)	-137. 1	1000	3×10^{6}	110	Low	Low
	Serial search 1/2 chip increments (sequential test)	-137.1	1000	3×10^{6}	16.5	Low	Low

one code chip or time cell is the true synchronization position. This
particular code position is the signal chip, and all other code positions are the noise positions. This assumption is removed in the second-level analysis of the recommended synchronization technique.

The most important parameter of the synchronization process for the present study is the average synchromzation time, $\bar{T}_{\text {acq }}$, which is obviously to be minimized. A complete statistical description of the synchronization time would entail the calculation... higher order statistics which would allow confidence limits to be defincd for the synchronization time. This is an area of future work which can come directly from the synchronization model developed below. The optimization or minimization of $\overline{\mathrm{T}}_{\text {acy }}$ was not performed.

The overall synchronization process can be broken down into a sequence of steps, as illustrated in Figure 4.2-3. The synchr ..izer dwells in a particular cell position for a fixed duration of time. T, or a variable length of time, t, in the case of the sequential test. In the fixed length test, a cell is rejected if no threshold crossing occurs after integrating for T seconds. In the sequential test, a cell is rejected if a lower threshold is crossed.

When cell rejection occurs, the synchronizer advances to the next time cell and repeats the above process. If there is a threshold crossing in the fixed length test and an upper threshold crossing in the sequential test, the synchronizer enters the verification mode in which it tries to arrive at a temporary decision as to whether the time cell under examination is indeed the true synchronization position. If it decides there was no signal, it resumes the search in the rext time cell. If it decides there was a signal, it enters the tracking or demodulation mode with the possibility of having made a fa!se lock in a no-signal cell. If a false lock is recognized in the tracking mode, the loops are unlocked and the synchronizer again resumes the search.

Figure 4.2-3. Overall Synchronization Process

In the initial acquisition process, there is no a priori knowledge limiting the number of cells which may contain the signal. However, during reacquisition, a different strategy should be implemented. The reacquisition search should begin from the cell position where synchronization was last detected and proceed tc search from that point to its nearest neighbors and continue searching cells radiating out from that position. This technique of insuring that the cells are searched in order of their likelihood of containing the signal yields the optimum performance.

Abstract

4. 3 Analysis of Acquisition Techniques

\subsection*{4.3.1 Fixed Length Test}

A block diagram of a noncoherent acquisition detector using an envelope detector and an adaptive threshold is shown in Figure 4.3-1. The search procedure of the fixed length test is relatively straightforward. The local code is correlated with the received signal for a period of time, T, after which the output is compared with a threshold and a decision is made. (The test is of fixed length because the integration period T is a constant.) If the output of the iniegrator falls below the threshold, the code phase is advanced (or retardod) by $1 / 2$ chip time and another test is made. If the output at the sample time is above the threshold, additional tests are made according to the verification mode algorithm. A step size of $1 / 2$ chip time is selected so that, for at least one step in the search sequence, the two codes will be within $1 / 4$ chip of correct synchronization. Since the chip cross-correlation function is a triangular waveform, the basic effect of the synchronization error is to reduce the power spectral density of the despread signal. One can show that the power spectral density is reduced by a factor of $\left(1-|\varepsilon| / T_{c}\right)^{2}$, where $|\varepsilon| \leq \Delta$. Hence, for a maximum phase error of $1 / 4$ cnip, the degradation is (0. 5$)^{2}$ or -2.5 dB . Thus, the signal-to-noise ratio during acquisition is 1 educed by 2.5 dB .

The bandpass filter following the despreader is designed to maximize the predetection signal-to-noise ratio. It must be wide enough to accommodate the data modulation bandwidth and both the doppler and frequency uncertainty offsets.

When the local code is in synchronism with the incoming code, the output is a CW waveform which is envelope detected. If the codes are out of phase by more than one chip period, the signal-to-noise ratio is greatly reduced because the signal bandwidth will be spread at the filter input. The extent to which this occurs is investigated in Section 4.3.5.

Figure 4.3-1. Functional Diagram of Acquisition Circuit for Fixed Length Test

4.3.1.1 Theoretical Analysis

For the fixed length test, the time required to search a given code phase is the integration time, T. Its value is determined by the requiremen's for the detection probability, P_{D}, and the false alarm probability, $P_{\text {I! }}$. The probability density of the noise and signal plus noise required to , alculate these probabilities depends upon the $B T$ product. For $B T=1$, i.e., no post-detection filtering, the probability density functions (PDF) are Rayleigh and Rician. For BT ≈ 10, the PDFs can be approximated ver: accurately by Gaussian densities for both noise only and signal plus noise. We now evaluate the signal-to-noise ratio required to provide a given P_{D} and $P_{F A}$ as a function of BT.

Consider first the case iur $\mathrm{BT}=1$, or no post-detection filtering. If the detector is assumed to be a perfect envelope detector, the PDF of the output noise in the absence of a signal (e.g., when the receiver is out of synchronization) is Rayleigh. Therefore, the probability of false alarm is

$$
\begin{equation*}
P_{F A}=e^{-T h^{2} / 2 \sigma^{2}} \tag{4.3-1}
\end{equation*}
$$

where $\quad \mathrm{Th}=$ threshold voltage

$$
\sigma^{2}=N_{0} B=\text { input noise power. }
$$

The PDF of the detector output when synchronization is obtained is Rician and the probability of detection is given by

$$
\begin{equation*}
\mathrm{D}=\int_{\mathrm{Th}}^{\infty} \frac{\mathrm{V}}{\sigma^{2}} \exp \left[\frac{-\mathrm{V}^{2}+2 \mathrm{~S}_{0}}{2 \sigma^{2}}\right] \mathrm{I}_{0}\left(\frac{\mathrm{~V} \sqrt{2 \mathrm{~S}_{0}}}{\sigma^{2}}\right) \mathrm{dV} \tag{4.3-2}
\end{equation*}
$$

This is the Marcum Q function,

$$
\begin{equation*}
P_{D}=Q\left(\sqrt{\frac{S_{0}}{\sigma^{2}}}, \frac{T h}{\sigma}\right) . \tag{4.3-3}
\end{equation*}
$$

For the raige of P_{D} of interest, an asymptotic expansion of the Q function yjeld;

$$
\begin{equation*}
P_{D} \approx 1-\frac{1}{2} \operatorname{erfc}\left(\frac{\sqrt{\mathrm{~S}_{0}}-\mathrm{Th}}{\sqrt{2} \sigma}\right) \tag{4,3-4}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{erfc}(x)=1-\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{4.3-5}
\end{equation*}
$$

For large BT products, we may use the Central Limit Theorem to approximate the output PDF as Gaussian for both the in-synchronization and out-of-synchronization cases. Consider first the out-of-synchronization case, and assume that the detector is a square-law device. One can show that the mean value of the detector output signal is given by

$$
\begin{equation*}
M_{n}=2 \operatorname{BTN}_{0} \tag{4.3-6}
\end{equation*}
$$

and the variance is given by

$$
\begin{equation*}
\sigma_{\mathrm{n}}^{2}=\frac{\left(2 \mathrm{BTN}_{0}\right)^{2}}{\mathrm{BT}}=4 \mathrm{BTN}_{0}^{2} \tag{4.3-7}
\end{equation*}
$$

The false alarm probability is therefore

$$
\begin{equation*}
P_{F A}=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{T h-M_{n}}{\sqrt{2} \sigma_{n}}\right)\right] \tag{4.3-8}
\end{equation*}
$$

When the local reference is in synchronism with the received signal, then the mean and variance of the detector output can be shown to be

$$
\begin{align*}
M_{s} & =2 \mathrm{BTN}_{0}\left[1+\frac{\mathrm{S}_{0}}{\mathrm{~N}_{0} \mathrm{~B}}\right], \tag{4,3-9}\\
\sigma_{\mathrm{s}}^{2} & =4 \mathrm{BTN}_{0}^{2}\left(1+\frac{2 \mathrm{~S}_{0}}{\mathrm{~N}_{0} \mathrm{~B}}\right) . \tag{4.3-10}
\end{align*}
$$

Thus, the probability of detection is given by

$$
\begin{equation*}
P_{D}=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{\mathrm{Th}-\mathrm{M}_{\mathrm{s}}}{\sqrt{2} \sigma_{\mathrm{s}}}\right)\right] \tag{4.3-11}
\end{equation*}
$$

If we equate the thresholds, Th , in (4.3-8) and (4.3-11), we can plot the signal-to-noise ratio at the input to the detector, $S_{0} / N_{0} B=S N R_{i n}$, as a function of BT. This relationship is plotted in Figure 4.3-2 for a $P_{F A}=10^{-2}$ and two values for $P_{D}, 0.9$ and 0.7 .

4.3.2 Sequential Detection Test

Introduction
Since it is important in the multiple access forward link to speed up the detection proces, , consideration was given to the sequential t.:sts because of their optimum nature. (?) For such tests, the procedure is simply to introduce two thresholds at the detector output such that the signal in a particular cell position is declared present if one threshold is exceeded and declared absent if the other is exceeded. The length of the detection process or integration time is not fixed in advance, but is a random variable which depends upon the progress of the test. The major feature of this technique, which is referred to as sequential detection, is that it minimizes the average detection time.

The sequential detection procedure is illustrated functionally in Figure 4.3-3.

Basic Theory

This acquisition technique is constructed to decide between two alternative hypotheses, these hypotheses being the absence or presence of a signal. However, the amplitude of the signal is usually not known a priori, so that the "signal present" hypothesis does not correspond to a unique statistical distribution of the received data. This is usually circumvented by choosing a "design" signal amplitude on the basis of which the seauential test is constructed. The probabilities of false alarm and detection are pre-chosen for this design signal amplitude.

The basic element within the signal processor is a sequential detection algorithm as developed by Wald. ${ }^{(3)}$

A sequential probability ratio test can be described as follows.
Let $P_{m}(r \mid a)$ denote the conditional probability density function of the m data samples $r_{1}, r_{2}, \ldots, r_{m}$ given the signal parameters $a_{1}, a_{2}, \ldots, a_{j}$, and let $P_{m}(r \mid 0)$ denote the probability density function of the m observed samples given that signal is absent. Then,

$$
\begin{equation*}
\ell_{m}=\frac{P_{m}(r \mid a)}{P_{m}(r \mid 0)} \tag{4.3-12}
\end{equation*}
$$

defines a conditional probability ratio or likelihood ratio for testing the null hypothesis H_{0} against hypothesis H_{1} that signal plus noise is present. Next, two positive constants A and $B(B<A)$ are selected such that, at each stage of the test, if

$$
\begin{equation*}
B<\ell_{m}(r \mid a)<A \tag{4.3-13}
\end{equation*}
$$

the test is continued with an additional observation; if

$$
\ell_{m}(r \mid a) \leq B
$$

the test terminates with the acceptance of hypothesis H_{0} indicating a noise only condition. Similarly, if

$$
\ell_{m}(r \mid a) \geq A
$$

the test terminates with the acceptance of hypothesis H_{1}. The sequential probability ratio test can be summarized as follows:

$$
\begin{array}{lll}
\text { If } & B<\ell_{m}(r \mid a)<A, & \text { continue tes } \\
\text { If } & B P_{m}(r \mid 0) \geq F_{m}(r \mid a), & \text { accept } H_{0} \tag{4.3-14}\\
\text { If } & P_{m}(r \mid a) \geq A P_{m}(r \mid 0), & \text { accept } H_{1} .
\end{array}
$$

The thresholds A and B can be related to the false alarm probability α and the probability of detection $1-\beta$ ty the following relationships:
and, for out-of-synchronization conditions, it is given by

$$
\begin{equation*}
r(t)=\sqrt{N_{c}^{2}(t)+N_{s}^{2}(t)} \tag{4,3-19}
\end{equation*}
$$

Therefore, when the signal is present, the normalized signal plus noise envelope, r_{i}, is governed by the Rician density function:

$$
\begin{equation*}
p\left(r_{i} \mid a\right)=r_{i} \exp -\left(\frac{r_{i}^{2}+a^{2}}{2}\right) I_{0}\left(a r_{i}\right), \quad r_{i}>0, \tag{4.3-20}
\end{equation*}
$$

where a^{2} is the peak signal-to-noise ratio and is assumed to be the same for each sample value.

When the signal is absent, the normalized probability density of the envelope is given by the Rayleigh density function:

$$
\begin{equation*}
p\left(r_{i} \mid 0\right)=r_{i} \exp -\left(\frac{r_{i}^{2}}{2}\right), \quad r_{i}>0 \tag{4.3-21}
\end{equation*}
$$

A simpler technique than computing the likelihood ratio is the computation of the log likelihood ratio. If we let the logarithm of the likelihood ratio defined in equation (4.3-12) be denoted by z_{m}, then for $a=a_{d}$,

$$
\begin{equation*}
z_{m}=\ln \left[\frac{P\left(r_{i} \mid a_{d}\right)}{P\left(\left.r_{i}\right|^{0)}\right.}\right] \tag{4.3-22}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{m}=\sum_{i=1}^{m} \ln \left[\frac{P\left(r_{i} \mid a_{d}\right)}{P\left(r_{i} \mid 0\right)}\right] \tag{4.3-23}
\end{equation*}
$$

The test procedure in terms of z_{m} is: (a) continue taking amples when $\ln B<z_{m}<\ln A ;(b)$ accept H_{0} when $z_{m} \leq \ln B ;$ and (c) accept H_{1} when $z_{m} \geq \ln A$. Substituting (4.3.20) and (4.3-21) into (4.3-22). we arrive at the sequential test variate z_{i} which is given by

$$
\begin{equation*}
z_{i}=-\frac{a_{d}^{2}}{2}+\ln I_{0}\left(a_{d} r_{i}\right) \tag{4.3-24}
\end{equation*}
$$

or mbstfluting in (4.3.23), we get

$$
\begin{equation*}
z_{m}=-\frac{m a_{d}^{2}}{2}+\sum_{i=1}^{m} \ln I_{0}\left(a_{a} r_{i}\right) \tag{4.3-35}
\end{equation*}
$$

where a_{d} is the design signal-to-noise ratio and is given by

$$
\begin{equation*}
a_{d}^{2}=\frac{A^{2}}{N_{0}} \tag{4.3-26}
\end{equation*}
$$

where N_{0} is the noise spectral density.
The test procedure may be implified by adding the bias term - (ma $\left.{ }_{d}^{2}\right) / 2$ to both sides of the test procedure inequalities, which cath then be written $2 s$
$\ln B+\frac{m a_{d}^{2}}{2}<\sum_{i=1}^{m} \ln I_{0}\left(a_{d} r_{i}\right)<\ln A+\frac{m a_{d}^{2}}{2}$, continue test

$$
\begin{equation*}
\sum_{i=1}^{m} \ln I_{0}\left(a_{d} r_{i}\right) \leq \ln B+\frac{m a_{d}^{2}}{2}, \text { accept } H_{0} \tag{4.3-27}
\end{equation*}
$$

where A and B are given by equations (4.3-15) and (4.3-16).
The sequential test concept is illustrated in Figure 4.3-4.
There are two thresholds as shown above, each increasing linearly with the nur.iber of samples m. The detector outputs are also accumulat.d. When the accumutated sum exceeds the upper threshold, synchronization is indicated. When the accumulated sum falls below the lower threshold, it is assumed that no signal if present in that cell position. It is conceivable that the accumulated sum could drift between the two thresholds for a large amount of time; however, Wald hes shown that the test is of finite duration. To avoid an excessive drift situation, it is recommended that, at some point, the test be terminated and an in-synchronization sondition recognized.

The functional operation of the sequential detector is illustrated in Figure 4.3-5. In this configuration, the output of the envelope detector is integrated for time T. At the end of the integration interval, the output is sampled and quantized with an A / D converter. The quantized output is transformed by the process $\ln I_{0}\left(a_{d} r_{i}{ }^{2}\right)$ and the variate z_{i} computed. Tris computation can be made with the use of a ROM lookup table. For a time-bandwidih product of 1, i.e., BT = 1, the integration interval is the inverse of the IF bandwidth. At each sample time, the quantized variate $z_{i}{ }^{*}$ is added to the previous sum and compared with 1 wo thresholds $\mathrm{Th}_{1}(\mathrm{~m})$ anc $\mathrm{Th}_{2}(\mathrm{in})$. If the accumulated sum falls below $\mathrm{Th}_{2}(m)$, the signal is not assumed to be present in that cell position and

Figure 4.3-4. ILLUSTRATION OF SEQUENTIAL SEARCH STRATEGY
; -
the search control moves the local PN code one half chip time. If the accumulated value exceeds $\mathrm{Th}_{1}(\mathrm{~m})$, signal presence is assumed and is then verified. At this point, the accumulator is reset to zero and the thresholds are reset to their initial conditions. Once signal presence is established, the system falls into a tracking mode, at which time, the delay lock and carrier tracking loops are operating.

Operating Characteristic Function (OCF)

One of the relationships of interest in the sequential search test is the so-called opsrating characteristic function (OCF), which gives the detection probabilities for signals having amplitudes ciffering from the design amplitude. The OCF denoted by $L(a)$ is requirer for the evaluation of the average sample number (ASN). L(a) is the conditional probability of accepting hypothesis H_{0} at the end of the test or the probability of a miss. From the definition

$$
\begin{align*}
& L(0)=1-\alpha \tag{4.3-28}\\
& L(a)=\beta(a)
\end{align*}
$$

and

$$
\begin{equation*}
L(a)=\frac{A^{\left[1-2\left(a / a_{d}\right)^{2}\right]}-1}{A^{\left[1-2\left(a / a_{d}\right)^{2}\right]}-B^{\left[1-2\left(a / a_{d}\right)^{2}\right]}} \tag{4.3-29}
\end{equation*}
$$

where $A=\frac{1-\beta}{\alpha}$ and $B=\frac{\beta}{1-\alpha}$, and α is the probability of false alarm, β is the probability of a missed signal, a^{2} is the actual received signol-to-noise ratio, and a_{d}^{2} is the design signal-to-noise ratio.

The OCF can be plotted as is shown in Figure 4. 3-6.

Average Sample Number (ASN)

We now let m denote the number of observations or samples required by the test and let $\mathrm{E}_{\mathrm{a}}(\mathrm{m})$ be the expected value of m when a^{2} is the true value of the signal-to-noise ratio. If we let $\eta=E_{a}(\mathrm{~m})$ denote the average number of observations (ASN) required to terminate the test,
then for independent observations, the average sample number (ASN) is given by

$$
\begin{equation*}
\eta=\frac{L(a) \ln B+[1-L(a)] \ln A}{E(z \mid a)} \tag{4.3-30}
\end{equation*}
$$

where

$$
\begin{equation*}
E(z \mid a)=-\frac{a_{d}^{4}}{8}+\frac{a^{2} a_{d}^{2}}{4} \tag{4.3-31}
\end{equation*}
$$

Substituting (4.3-31) into (4.3-30), we get

$$
\begin{equation*}
=\frac{L(a) \ln B+[1-L(a)] \ln A}{-\frac{a_{d}^{4}}{4}\left[\frac{1}{2}-\left(\frac{a}{a_{d}}\right)^{2}\right]} . \tag{4.3-32}
\end{equation*}
$$

Hence, the ASN is inversely proportional to the square of the design (peak) signal-to-noise ratio.

Average Time to Threshold
At threshold, the peak signal-to-noise ratio is given by

$$
\begin{equation*}
a_{d}^{2}=\frac{2 C^{\prime}}{N_{0} B_{W}} \tag{4.3-33}
\end{equation*}
$$

where $2 C^{\prime} / N_{0} B_{W}$ is the peak effective design signal-to-noive ratio in the IF filter of bandwidth ${ }^{B} W$.

If the output of the envelope detector is sampled at a rate $1 / \mathrm{T}$, then the mean time to decision can be written as

$$
\begin{align*}
& T_{d}=\eta T \\
& \quad T \frac{L(a) \ln B+[1-L(a)] \ln A}{-\left(\frac{C^{\prime}}{N_{0} B_{W}}\right)_{d}^{2}\left[\frac{1}{2}-k^{2}\right]} \tag{4.3-34}
\end{align*}
$$

where $k=a / a_{d}$.

The mean time to cell dismissal, T_{b}, is the case where $a=0$ in equation (4.3-34). For this case, $L(0)=1-\alpha$, and (4.3-34) reduces to

$$
\begin{equation*}
T_{b}=\frac{2 T[(1-\alpha) \ln B+\alpha \ln A]}{-\left(\frac{C^{\prime}}{N_{0} B_{W} W^{\prime}}\right)_{d}^{2}} \tag{4.3-35}
\end{equation*}
$$

The relationship T_{b} / T versus $C^{\prime} / N_{9} B_{X^{r}}$ is plotted in Figure 4.3-7 for several values of the detection probability, $\mathrm{P}_{\mathrm{D}}=1-\beta$. The curves are almost insensitive to the false alarm probability.

For the low false alarm probabilities which are of interest in the TDRSS application, the greatest reduction in expected dwell time Jver the fixed length test occurs when noise alone is present or one is in an out-of-synchronization condition. The expected dwell or integration time is only slightly less than that of the fixed length test in the insynchronization position. Therefore, the benefits of using the sequential detection scheme are greatest when a time uncertainty exists over a large number of chip positions.

4.3.3 Direct Sequence Acquisition Using Dual Mode Detection

Introduction

The purpose of this section is to examine more completely the acquisition technique discussed in sections 4.3.1 and 4.3.2. A more sophisticated model of the acquisition technique will be considered. The model as illustrated in Figure 4. 2-3 has both acquisition and verification tests prior to entering the tracking mode. The basic strategy to be employed is to lower the thresholds during acquisition, which thereby increases the miss and false alarm probabilities. When a signal is indicated, the verification mode is entered and a more careful examination of the cell is made (i.e., increased post-detection integration time corresponding to an increase in the threshold levels;. The effect is that the
9*

Figure 4.3-7. Average Sample Number Versus Threshold Signal-to-Noise Ratio

local reference may very likely cycle through the uncertainty region, which for initial acquisition is all the cells in the PN sequence, several times before locking onto the desired signal. Once the verification state is entered, the delay lock loop begins operating. Failure to confirm the signal presence during verification causes the code search to continue and the delay lock loop is reset. However, once synchronization is confirmed, the Costas loop sweep begins and the tracking mode is entered.

In the tracking mode, a third set of threshold values are established to insure a very low false alarm rate and miss probability. The delay lock loop bandwidth is gradually narrowed. The thresholds are also set so that it is more difficult to drop out of the tracking mode han either of the other modes. This is to insure that rapid signal fades will not cause the receiver to drop out of lock.

The dual mode synchronizer has greater flexibility than the single mode technique. The thresholds can be optimized and yield acquisition times which, in many cases, are lower than the single mode technique. In adtition, the thresholds can be optimized to minimize the probability of locking onto multipath signals.

The optimization of the parameters was not performed during this study. However, an atternpt was made to yield results which are considered to be reasonably close to the optimum parameter values.

Theoretical Analysis

When using the sequential synchronization algorithm defined in section 4.3.2, the average number of samples required at the cutput of the envelope detector for dismissal can be calculated from equation (4.3-34) and is given by

$$
\begin{equation*}
\eta=\frac{8[L(a) \ln B+(1-L(a)) \ln A]}{-\left(\frac{2 C^{i}}{N_{0} B}\right)_{d}^{2}} \tag{4.3-36}
\end{equation*}
$$

where $2 C^{\prime} / N_{0} B$ is the peak effective design signal-to-noise ratio in the $I F$ filter of bandwidth B at threshold. If the output of the envelope detector is integrated for time T and sampled, then the mean time to dismissal can be written as

$$
\begin{equation*}
T_{b}=\eta T=\frac{2 T[L(a) \ln B+(1-L(a)) \ln A]}{-\left(\frac{C^{\prime}}{N_{0} B}\right)_{d}^{2}} \tag{4.3-37}
\end{equation*}
$$

If the length of the code sequence is N chips and the local code reference is stepped in one-half chip increments referred to as cells, then the signal is likely to be in any one of the 2 N cell positions. In actuality, it can occur in two and, in some cases, even three half chip positions. This is due to the spread of the delay lock characteristics. The fact that the signal can occur in two cell positions will be accounted for later on in the analysis. The possibility that some of the signal is in a third cell position will be ignored.

We define $P(i)$ as the probability that exactly i steps ($i=1,2, \ldots, 2 N$) are required to reach the signal. Assume each step requires T_{α} seconds on the average. When N is large, then for all practical purposes, $T_{\alpha}=T_{b}$. The average time of first arrival is then

$$
\begin{equation*}
T_{1}=\sum_{i=1}^{2 N} i T_{\alpha} \mathrm{P}(\mathrm{i})=\frac{\mathrm{T}_{\alpha}}{2 \mathrm{~N}} \sum_{i=1}^{2 N} i=N \mathrm{~T}_{\alpha} \tag{4.3-38}
\end{equation*}
$$

since $P(i)=1 / 2 N$.
As above, we define α as the prob...ility of a false acceptance and β as the probability of a false dismissal. Then the probability that the signal is dismissed upon its first arrival but detected upon its first repeat trial is $\beta(1-\beta)$. The probability that the signal will be initially detected on the j th repeat scan is

$$
\begin{equation*}
P(j)=\beta^{j}(1-\beta) . \tag{4.3-39}
\end{equation*}
$$

The average time required for a repeat scan is $2 \mathrm{~N} \mathrm{~T}_{\alpha}$. Therefore, the average time lost due to a false dismissal is

$$
\begin{align*}
T_{2} & =\sum_{j=1}^{\infty} j(2 N) T_{\alpha} P(j) \\
& =2 N T_{\alpha}(1-\beta) \sum_{j=1}^{\infty} j \beta^{j} \\
& =2 N T_{\alpha} \frac{\beta}{1-\beta} \tag{4.3-40}
\end{align*}
$$

Another basic assumption in this analysis is that the signals are assumed to remain uncorrelated in a single cell position throughout the search process. The time required for synchronization, $T_{\text {acq }}$, is then the sum of T_{1}, the time required to arrive at the correlated cell for the first time, plus T_{2}, the time lost due to false dismissals, plus T_{3}, the time required to correctly accept the correlated cell after arriving at it. Ir all practical cases, T_{3} will be negligible compared to T_{1} and T_{2} for large values of N and will be neglected in the subsequent analysis.

The total average synchronization time, ignoring T_{3}, is

$$
\begin{align*}
\mathrm{T}_{\mathrm{acq}}=\mathrm{T}_{1}+\mathrm{T}_{2} & =\mathrm{N} \mathrm{~T}_{\alpha}+2 \mathrm{~N} \mathrm{~T}_{\alpha}\left(\frac{\beta}{1-\beta}\right) \\
& =\mathrm{N} \mathrm{~T}_{\alpha}\left(\frac{1+\beta}{1-\beta}\right) \tag{4.3-41}
\end{align*}
$$

In Figure 4.3-8, the state diagram of the dismissal process of the two-step synchronizer with a tracking loop is illustrated. We define these states as follows:

State 1 Acquisition State

State 2 Verification State

State 3 Tracking State .

Figure 4.3-8. State Diagram of the Dual Mode Synchronizer

Let us now define the following parameters:
$\mathrm{T}_{\mathrm{a}}=$ average time required to perform an acquisition test leading to an accept decision
$\mathrm{F}_{\mathrm{b}}=$ average time required to perform an acquisition test leading to a dismiss decisic.
$T_{A}=$ average time to perform verification test leading to an accept decision
$T_{B}=$ average time to perform verification test leading to a dismiss decision
$\mathrm{T}_{\mathrm{C}}=$ average time required for tracking loop to perform a test leading to an accept decision
$T_{D}=$ average time required for tracking loop to perform a test leading to a dismiss decision
$P_{a}=$ probability of false acceptance by acquisition test
$P_{b}=$ probability of false dismissal by acquisition test
$P_{A}=$ probability of false acceptance by verification test
$P_{B}=$ probability of false dismissal by verification test
$P_{C}=$ probability of false acceptance by tracking loop
$P_{D}=$ probability of false dismissal by tracking loop
2 N - number of cells to be tested.
In Figure 4. 3-8, the transition probabilities are shown with the times required to perform the tests leading to a new state. If T_{i} is the time required for rejection by the ith path and $P\left(T_{i}\right)$ is the probability of traversing that path, then the average dismissal time is given by

$$
\begin{equation*}
T=\sum_{i} T_{i} P\left(T_{i}\right) \tag{4.3-42}
\end{equation*}
$$

By inspection, the first few terms are

$$
\begin{align*}
T_{\alpha}= & T_{b}\left(1-P_{a}\right)+\left(T_{a}+T_{B}\right) P_{a}\left(1-P_{A}\right) \\
& +\left(T_{a}+T_{A}+T_{D}\right) P_{a} P_{A}\left(1-P_{C}\right) \\
& +\left(T_{a}+T_{A}+T_{C}+T_{D}\right) P_{a} P_{A} P_{C}\left(1-P_{C}\right) \\
& +\left(T_{a}+T_{A}+2 T_{C}+T_{D}\right) P_{a} P_{A} P_{C}^{2}\left(1-P_{C}\right) \\
& +\ldots \tag{4.3-43}
\end{align*}
$$

This leads to the general expression

$$
\begin{align*}
T_{\alpha}= & T_{b}\left(1-P_{a}\right)+\left(T_{a}+T_{B}\right) P_{a}\left(1-P_{A}\right) \\
& +P_{a} P_{A}\left(1-P_{C}\right) \sum_{j=0}^{\infty}\left(T_{a}+T_{A}+j T_{C}+T_{D}\right) P_{C}^{j} \tag{4.3-44}
\end{align*}
$$

which can be summed to yield

$$
\begin{align*}
T_{\alpha}= & T_{b}\left(1-P_{a}\right)+\left(T_{a}+T_{B}\right) P_{a}\left(1-P_{A}\right) \\
& +P_{a} P_{A}\left(1-P_{C}\right)\left[\frac{\left(T_{a}+T_{A}+T_{D}\right)}{1-P_{C}}+\frac{{ }^{T} C_{C} P_{C}}{\left(1-P_{C}\right)^{2}}\right] \tag{4.3-45}
\end{align*}
$$

This can be simplified to yield for the dual mode synchronizer

$$
\begin{align*}
T_{\alpha}= & T_{b}+P_{a}\left(T_{a}-T_{b}+T_{B}\right) \\
& +P_{a} P_{A}\left(T_{A}-T_{B}+T_{D}+\frac{P_{C} T_{C}}{1-P_{C}}\right) .
\end{align*}
$$

The remaining parameter needed to specify the average synchronization time is β, where for the dual mode synchronization

$$
\begin{equation*}
\beta=P_{b}+\left(1-P_{b}\right) P_{B}+\left(1-P_{b}\right)\left(1-P_{B}\right) P_{D} . \tag{4.3-47}
\end{equation*}
$$

4.3.4 Code Doppler Analysis

Because of the frequency error between the local reference and the received code, the local code will slide past the incoming signal over the entire integration interval. The code doppler error is given by

$$
\begin{equation*}
d_{c}=\frac{\Delta f R_{c}}{f_{c}} \tag{4,8-48}
\end{equation*}
$$

where $\quad f_{c}$ is the rf carrier frequency
R_{c} is the chip rate

$$
\Delta f \text { is the frequency uncertainty . }
$$

As an example, in the multiple access forward link,

$$
\begin{aligned}
f_{c} & =2.1064 \times 10^{9} \mathrm{~Hz} \\
R_{c} & =3.0778 \times 10^{6} \mathrm{chips} / \mathrm{sec} \\
\Delta f & = \pm 3 \mathrm{kHz}
\end{aligned}
$$

Substituting these parameters in equation (4.3-48), we get

$$
d_{c}= \pm 4.38 \mathrm{chips} / \mathrm{sec}
$$

as the code drift rate between the local code and the received signal.
During the ith step, the phase change is

$$
\begin{equation*}
\Delta \psi_{i}=d_{c} T_{i}-\frac{\Delta T_{c}}{T_{c}} . \tag{4,3-49}
\end{equation*}
$$

where $\Delta T_{c} / T_{c}$ is the coarse step size, and we assume $\Delta T_{c} / T_{c}=0.5$: that is, we step in one-half chip increments. Therefore. the total change in phase difference betweem two codes expressed in chips after N mept is

$$
\begin{equation*}
\Delta \varphi=\sum_{i=1}^{N} \Delta \varphi_{i}=d_{c} \sum_{i=1}^{N} T_{i}-0.5 \mathrm{~N} \tag{4.3-50}
\end{equation*}
$$

Since N is large, the summation can be expressed in terms of the average dwell time, T_{d}, where

$$
\begin{equation*}
T_{d}=\frac{1}{N} \sum_{i=1}^{N} T_{i} \tag{4.3-51}
\end{equation*}
$$

Clearly, T_{d} is mode dependent. Therefore,

$$
\Delta \phi=d_{c} N T_{d}-0.5 N=N\left(d_{c} T_{d}-0.5\right)
$$

Hence, the average step size in the worst case direction is

$$
\begin{equation*}
\left|0.5-d_{c} T_{d}\right| \tag{4.3-5.2}
\end{equation*}
$$

On the average, the code drift will aid in the performance, as well as degrade the peyformance. For the purposes of tnis analysis, we will assume the worst case condition.

4. 3. 5 Summary of Acquisition Time Equations

Fised Length Test - Noncoherent Detection

For the dual mode fixed length test, the mean (aveiage) acquisition titne is given by the following equation:

$$
\begin{equation*}
\bar{T}_{\mathrm{acq}}=\mathrm{N}\left[\frac{\mathrm{~T}}{\left|1-2 \mathrm{~d}_{\mathrm{c}} \mathrm{~T}\right|}+\mathrm{T}_{\rho}\right]\left(\frac{1+\beta}{1-\beta}\right) \tag{4.3-53}
\end{equation*}
$$

T is the post-detection integration time or dwell time

$$
T_{\beta}=T_{\alpha}-T_{b}, \text { where }
$$

T_{α} is giran by equation (4.3-46)
Also, β is given by equation (4.3-47) and N is the number of chips to be searched in the PN sequence.

The degradation due to code dopr let is ohly assumed to occur during initial acquisition. We assume that the code tracking loop is operating during the verification mode.

Sequential Test - Single Mode

Noncoherent Detection

$$
\begin{equation*}
\bar{T}_{\mathrm{acq}}=\frac{N \mathrm{~T}_{\mathrm{b}}}{\left|1-2 \mathrm{~d}_{\mathrm{c}} \mathrm{~T}\right|} \tag{4.3-54}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{b}=\frac{2 T[L(a) \ln B+(1-L(a)) \ln A]}{-\left(\frac{C^{\prime}}{N_{0} B}\right)_{d}^{2}} \tag{4.3-55}
\end{equation*}
$$

Coherent Detection

$$
\begin{equation*}
\bar{T}_{\mathrm{acq}}=\frac{\mathrm{N} \mathrm{~T}_{\mathrm{b}}}{\left|1-2 \mathrm{~d}_{\mathrm{c}} \mathrm{~T}\right|} \tag{4.3-56}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{b}=\frac{T[L(a) \ln B+(1-亡(a)) \ln A]}{-2\left(\frac{C^{\prime}}{N_{0} B}\right)_{d}} \tag{4.3-57}
\end{equation*}
$$

Sequential Test - Dual Mode
Noncoherent Detection

$$
\begin{equation*}
\overline{\mathrm{T}}_{\mathrm{acq}}=\mathrm{N}\left[\frac{\mathrm{~T}_{\mathrm{b}}}{\left|1-2 \mathrm{~d}_{\mathrm{c}} \mathrm{~T}\right|}+\mathrm{T}_{\beta}\right]\left(\frac{1+\beta}{1-\beta}\right) \tag{4.3-58}
\end{equation*}
$$

where T_{β} and β are defined above and T_{b} is given by equation (4.3-55).

Coherent Detection

Coherent detection is the same as in (4.3-58), with T_{b} given by equation (4.3-57).

4.3.6 Interfering Signal Acquisition Analysis
 Introduction

The primary objective of this analysis is to establish the acquisition parameters of the S-band multiple access return link. The baseline system model is developed; this is followed by a discussion of the receiver model. The analysis is then directed to determining the desired signal power, the interfering signal power and the total noise power at the input to the envelope detector. The effective signal-to-noise ratio at the detector input is determined for both the desired signal in its synchronized condition and, similarly, the interfering signal when it is synchronized to a crosscorrelation peak.

System Model
The model for the TDRSS S-band multiple access return link is shown in figure 4.3-9. For the purposes of this analysis, the desired signal-to-noise ratio is

$$
\begin{equation*}
S N R=\frac{S_{0}}{\sum_{i} I_{i}+N} \tag{4.3-59}
\end{equation*}
$$

where S_{0} is the desired signal power
I_{i} is the $i^{\text {th }}$ interfering power level
N is the receiver noise power.
One of the objectives of this study is to compute for the above system model the probability of acquiring one of the interfering signals rather tha- the desired signal.

Receiver Model

The model of the acquisition detector is shown in figure 4.3-10. The input $r(t)$ is given by

$$
\begin{equation*}
r(t)=\sum_{i=1}^{3} \sqrt{2 S_{i}} \quad a_{i}(t) X_{i}(t) \sin \left[\omega_{c} t+\theta_{i}\right]+n(t) \tag{4.3-60}
\end{equation*}
$$

where X_{i} is the pseudorandom PN code of the $i^{\text {th }}$ signal a_{i} is the data modulation of the $i^{\text {th }}$ signal θ_{i} is the relative phase shift of the $i^{\text {th }}$ transmitter $n(t)$ is the thermal noise
S_{i} is the received power of the $i^{\text {th }}$ signal.
The local reference is given by $p(t)$ where

$$
\begin{equation*}
p(t)=2 X_{1}(t) \sin \left(\omega_{1} t+\theta_{j}\right) \tag{4.3-61}
\end{equation*}
$$

and

$$
\omega_{\mathrm{IF}}=\omega_{\mathrm{c}}-\omega_{1} .
$$

For the purposes of this analysis, it will be assumed that the local reference is in chip synchronism with the signal transmitted by User 2 . We will assume that it is not in chip synchronization with the desired signal $S_{1}(t)$ and the other interfering signal $S_{3}(t)$. Clearly, this is the worst-case condition since we maximize the received signal level of $S_{2}(t)$ and minimize the impact of $S_{1}(t)$ and $S_{3}(t)$ which become noise sources. We will also assume that $S_{1}(t)$ and $\vec{J}_{3}(t)$ are both uncorrelated with the local reference.

SIGNAL-TO-NOISE RATIO ANALYSIS
Based on the model developea above, we will compute the probability of acquiring the 50 kbps data rate signal, $\mathrm{S}_{2}(\mathrm{t})$, when the local reference is set to lock onto $S_{1}(t)$ or the 1 kbps data rate signal. This acquisition probability will be computed for three code sequence lengths and assumes the PN codes for each of the three signals are of equal length. and are balanced Gold codes. The cross-correlation code spectrum for the three code lengths assumed in this investigation are summarized in table 4. 3-1.

Table 4.3-1. Cross-Correlation Spectrum

$n=$ length of code				
k	$n=2^{k}-1$		Spectrum	
11	2,047	$63(528)$	$-1(1023)$	$-65(496)$
13	3,191	$127(2080)$	$-1(4095)$	$-129(2016)$
15	32,767	$255(8128)$	$-1(16383)$	$-257(8256)$

The value in parentheses associated with the cross-correltion quantity denotes the number of chip positions containing the particular crosscorrelation value. However, before we compute the detection probabilities, we will determine the IF signal-to noise ratio.

Signal Power

If the signal pcwer of the received signal $\mathrm{S}_{2}(\mathrm{t})$ is given by S_{2}, then the spectra at the output of the despreader is given by

$$
\begin{equation*}
S_{z}(\omega)=S_{2} T_{2} \rho_{1,2}\left[\frac{\sin \left(\omega-\omega_{\mathrm{IF}}\right) \mathrm{T}_{2} / 2}{\left(\omega-\omega_{\mathrm{IF}}\right) \mathrm{T}_{2} / 2}\right]^{2} \tag{4.3-62}
\end{equation*}
$$

where T_{2} is the data baud interval and $1 / \mathrm{T}_{2}=50 \mathrm{kbps}$. The parameter $\rho_{1,2}$ is the cross-correlation coefficient between the local reference, $S_{1}(t)$ with code i, and the signal $S_{2}(t)$ with code 2 . For the peak sidelobe condition,

$$
\begin{equation*}
\rho_{1,2}=\left(\frac{65}{2047}\right)^{2} \tag{4.3-63}
\end{equation*}
$$

The signal power at the output of the bandpass filter is given by .

$$
\begin{equation*}
S_{0}=\int_{-\infty}^{\alpha} S_{z}(f)|H(f)|^{2} d f \tag{4.3-64}
\end{equation*}
$$

where $H(f)$ is the frequency response of the bandpass filter preceding the envelope detector. If we assume that the filter has at least four poles, then an ideal filter approximation can be made so that

$$
\begin{equation*}
S_{0}=\frac{1}{2 \pi} \int_{\omega_{I F}-B / 2}^{\omega_{I F}+B / 2} S_{z}(\omega) d \omega \tag{4.3-65}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
S_{0}=\frac{S_{2}}{\pi} \rho_{1,2} \int_{-\pi \mathrm{BT}_{2} / 2}^{\pi \mathrm{BT}_{2} / 2}(\sin \mathrm{x} / \mathrm{x})^{2} \mathrm{dx} \tag{4.3-66}
\end{equation*}
$$

The bandwidth of the bandpass filter is assumed to be 5 kHz since the data rate is 1 kbps and the total frequency uncertainty is $\pm 1.5 \mathrm{kHz}$. Hence,

$$
\begin{align*}
& S_{0}=\frac{S_{2} \rho_{1,2}}{\pi} \int_{-0.157}^{0.157} \frac{\sin ^{2} x}{x^{2}} d x \tag{4.3-67}\\
& S_{0}=\frac{S_{2} \rho_{1,2}}{\pi}(0.157)(2) \\
& S_{0}=(0.1) S_{2} \rho_{1,2} . \tag{4.3-68}
\end{align*}
$$

Interfering Signals as Noise

If we define signals $S_{1}(t)$ and $S_{3}(t)$ as interfering signals, where

$$
\begin{equation*}
S_{1}(t)=\sqrt{2 S_{1}} a_{1}(t) X_{1}(t) \sin \left[\omega_{c} t+\theta_{1}\right] \tag{4.3-69}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{3}(t)=\sqrt{2 S_{3}} a_{3}(t) x_{3}(t) \sin \left[\omega_{c} t+\theta_{3}\right], \tag{4.3-70}
\end{equation*}
$$

then at the output of the despreader, the cross-correlation between the local reference $p(t)$ and $S_{i}(t)$ is given by

$$
\begin{equation*}
R_{z}(\tau)=\frac{1}{2 T} \int_{-T}^{T} X_{i}(t) X_{i}(t+\tau) p(t) p(t+\tau) d t, i=1,3 \tag{4.3-71}
\end{equation*}
$$

Since the signals $S_{1}(t)$ and $S_{3}(t)$ are assumed to be uncorrelated with $p(t)$,
or

$$
\begin{equation*}
\mathrm{R}_{z}(\tau)=\mathrm{R}_{\mathrm{X}_{\mathrm{i}}}(\tau) \mathrm{R}_{\mathrm{p}}(\tau) \tag{4.3-72}
\end{equation*}
$$

$$
\begin{equation*}
S_{z}^{\prime}(\omega)=S_{X_{i}}(\omega) * S_{p}(\omega) \tag{4.3-73}
\end{equation*}
$$

Now,

$$
\begin{align*}
& R_{X_{i}}(\tau)=S_{i}\left\{1-\left|\frac{\tau}{T_{c}}\right|\right\} \cos \omega_{c} \tau, \quad 0<|\tau|<T_{c} \\
& R_{p}(\tau)=2\left\{1-\left|\frac{\tau}{T_{c}}\right|\right\} \cos \omega_{i} \tau . \tag{4.3-74}
\end{align*}
$$

Therefore,

$$
\begin{array}{rlrl}
R_{z}(\tau) & =2 S_{i}\left\{1-2\left|\frac{\tau}{T_{c}}\right|+\left|\frac{\tau}{T_{c}}\right|^{2}\right\} \cos \omega_{c} \tau & \cos \omega_{1} \tau \\
& 0 \leq|\tau|<T_{c} \\
& =0 & & |\tau|>\mathrm{T}_{\mathrm{c}}
\end{array}
$$

$$
(4.3-75)
$$

where T_{c} is the chip period.
If we take the Fourier transform in the neighborhood of $\omega_{\text {IF }}$, we get (where $\omega_{\text {IF }}=\omega_{c}-\omega_{1}$),

$$
\begin{equation*}
S_{z}^{\prime}(\omega)=\frac{2 S_{i}}{\left(\omega-\omega{ }_{\mathrm{IF}}\right)^{2} \mathrm{~T}_{\mathrm{c}}}\left[1-\frac{\sin \left(\omega-\omega_{\mathrm{IF}}\right) \mathrm{T}_{\mathrm{c}}}{\left(\omega-\omega_{\mathrm{IF}}\right) \mathrm{T}_{\mathrm{c}}}\right] . \tag{4.3-76}
\end{equation*}
$$

The resulting interfering signal power at the output of the IF bandpass filter is given by an equation similar to 4.3-65; that is

$$
\begin{equation*}
I_{i}=\frac{1}{2 \pi} \int_{\omega_{I F}-B / 2}^{\omega_{I F}+B / 2} S_{z}^{\prime}(\omega) d \omega \tag{4.3-77}
\end{equation*}
$$

Clearly, the maximum occurs in the vicinity of $\omega_{I F}=\omega_{c}-\omega_{1}$. Since $B \ll 1 / T_{c}$, substituting 4.3-76 into 4.3-77, we get

$$
\begin{equation*}
I_{i}=\frac{2}{3} S_{i} T_{c} B \tag{4.3-78}
\end{equation*}
$$

Noise Density Reduction

We will attempt in this section to compute the spreading effect of the receiver noise due to the reference signal $p(t)$. Since the noise is
uncorrelated with $p(t)$, the cross-correlation function of the noise with the PN signal is given by

$$
\begin{equation*}
R_{z}(\tau)=R_{n}(\tau) R_{p}(\tau) \tag{4.3-79}
\end{equation*}
$$

The spectral density at the despreader output is

$$
\begin{equation*}
S_{l}(f)=\int_{-\infty}^{\infty} R_{n}(\tau) R_{p}(\tau) e^{-j \omega \tau} d \tau \tag{4.3-80}
\end{equation*}
$$

Since the bandwidth of the received signal is much greater than the bandwidth of the IF filter, the effective spectral height into the IF filter is given by $\mathrm{S}(0)$ where

$$
\begin{equation*}
S_{1}(0)=\int_{-\infty}^{\infty} R_{n}(\tau) R_{p}(\tau) d \tau \tag{4.3-81}
\end{equation*}
$$

We can then write the spectral response of the output of the IF filter as

$$
\begin{equation*}
S_{n}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} N_{0}|H(\omega)|^{2} \quad T_{c}\left(\frac{\sin \left(\omega-\omega_{I F}\right) T_{c}}{\left(\omega-\omega_{I F}\right) T_{c}}\right)^{2} \mathrm{~d} \omega \tag{4.3-82}
\end{equation*}
$$

Using the same argument for $|H(f)|^{2}$ as given above, we can write

$$
\begin{equation*}
S_{n}(0)=\frac{\mathrm{N}_{0}}{\pi} \int_{-\pi B_{1} T_{c} / 2}^{\pi \mathrm{B}_{1} \mathrm{~T}_{\mathrm{c}} / 2}\left(\frac{\sin x}{x}\right)^{2} \mathrm{dx} \tag{4.3-83}
\end{equation*}
$$

Therefore, $\quad S_{n}(0)=N_{0}$
6
and

$$
\begin{equation*}
N=N_{0} B \tag{i.3-84}
\end{equation*}
$$

Effective Undesired Signal-to-Noise Ratio

Substituting equations $4.3-68,4.3-78$ and 1.3.84 into $4.3-59$, we get the signal-to-noise ratio at the output of the bandpass filter:

$$
\begin{equation*}
\mathrm{SNR}_{2}=\frac{(0.1) S_{2} \rho_{1,2}}{\sum_{i=1,3} \frac{2}{3} S_{i} T_{c} B+N_{0} B T_{c}}, \tag{4.3-85}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\mathrm{SNR}_{2}=\frac{0.1 \rho_{1,2}}{\sum_{i=1,3} \frac{2}{3}\left(\frac{\mathrm{~S}_{\mathrm{i}}}{\mathrm{~S}_{2}}\right) \mathrm{T}_{\mathrm{c}} B+\frac{\mathrm{N}_{0} B}{\mathrm{~S}_{2}}} \tag{4.3-86}
\end{equation*}
$$

Effective Desired Signal-to-Noise Ratio

The desired signal-to-noise ratio about which the design parameters of the acquisition technique are established is summarized below. With 0 dB design margin, $\mathrm{C} / \mathrm{N}_{0}=39.9 \mathrm{~dB}-\mathrm{Hz}$.

IF filter bandwidth -5 kHz	37.0 dB
PN filter loss	0.9 dB
One-half chip offset loss	2.5 dB
Total losses	40.4 dB

Therefore, effective $\mathrm{SNR}_{1}=\mathrm{C} / \mathrm{N}_{0}-40.4 \mathrm{~dB}$

$$
\mathrm{SNR}_{1}=-0.5 \mathrm{~dB} .
$$

Now, based on the link analysis given, in section 1.3 for the multiple access return link, the signal-to-noise ratio at the receiver for $S_{2}(t)$ is

$$
\frac{\mathrm{C}_{2}}{\mathrm{~N}_{0}}=33.1+\text { EIRP - System losses }(\mathrm{dB}-\mathrm{Hz}) .
$$

If we alluw 5 dB for system losses, then with an EIRP of 31.8 dBW , we get

$$
\frac{\mathrm{C}_{2}}{\mathrm{~N}_{0}}=59.9 \mathrm{~dB}-\mathrm{Hz} .
$$

Now,

$$
S_{3} / S_{2}=1
$$

and

$$
\begin{aligned}
\mathrm{S}_{2} / \mathrm{N}_{0} \mathrm{~B} & =59.9 \mathrm{~dB}-\mathrm{Hz}-10 \log 5000 \\
& =22.9 \mathrm{~dB} .
\end{aligned}
$$

'Therefore,

$$
\mathrm{S}_{1} / \mathrm{S}_{2}=-23.4 \mathrm{~dB}
$$

Substituting these values into $4.3-86$, we get
or $\quad \mathrm{SNR}_{2}=-17.96 \mathrm{~dB}$.

Therefore, the signal-to-noise ratio at the input to the envelope detector for an interfering signa! at a peak cross-correlation condition is approximately 17.5 dB below the design signal-to-noise ratio. If we assume that the signal is encoded with a rate $1 / 2$ code and decoded using a Viterbi decoding algorithm, the transmitters can then operate with 5 dR less output power. For this case $S N R_{1}=-5.5 \mathrm{~dB}$ and $\mathrm{SNR}_{2}=-23 \mathrm{~dB}$.

The results of this analysis for the desired and interfering received signal-to-noise ratios are summarized in table 4.3-2. Two cases were considered for both the acquisition and verification modes. In the first case no error detection and correction coding was assumed on the multiple access return link. In the second case a rate $1 / 2$ Viterbi convolutional decoding algorithm was assumed. By use of this coding technique it is assumed that a 5 dB performance gain can be achieved. The signal-to-noise ratio for the verification mode is 2 dB higher than that for the acquisition mode. This is because code tracking is assumed during verification and the 0.5 dB loss is due to timing jitter.

*B is assumed to be a $5 \mathrm{kH}=\mathrm{IF}$ bandwidth.

4.3.7 Multiple Filter Acquisition Approaches

In addition to optimizig the parameters of the acquisition strategies described above, further decpeases in acquisition time car be achieved by the use of multiple bandpass filters as shown in figures 4.3-1h and 4.3-12. In these cases a band of contiguous bandpass filters is used to cover the doppler uncertainty range.

A straightforward parallel approach is shown in figure 4.3-11. A set of k bandpass filters cover the frequency uncertainty band. Each filder output is envelope detected and post detection integrated. The outputs ampled and cigitized. Since the sampling rates are relatively slow (less than 6,000 times per second) a single A/D converter can be time shared among the k channels. Each A / D output is then transformed by log ($d_{0}\left(a_{d} r_{i}\right)$) which is simply aceomplished by a KOM lookup table. The outputs are demultiplexed with each channel being independently accumulated and compared with the thresholds using the seq rential search strategy. The same basic technique is also applicable to the fixed length test str бy. The local reference is shifted by one-half chip position only when r of the k frequency cell accumulated outputs fall below the lower ${ }^{+}$. 'shold. Hence, the dwell time is determined by the longest frequer $:$ cell test. If we denote the individual false alarms by α_{k} and the, erall false alarm by α, then the probability of no overall false alarr equals the joint probability of no individual false alarms. Therefore, if $a \ll 1$,

$$
1-\alpha=\left(1-\alpha_{k}\right)^{k} \approx 1-k \alpha_{k}
$$

and hence,

$$
\begin{equation*}
\alpha \approx k \alpha_{k} \tag{4.3-87}
\end{equation*}
$$

Since we testing for the presence of exactly one signal in one of the k drequency aells, the overall probability of a missed detection, β is equal
\therefore

3
to the joint probability that the signal is missed in the ith cell, multiplied by the joint probability of no false alarms in all the other $k-1$ cells.

Hence,

$$
\begin{align*}
\beta & =\beta_{k}\left(1-\alpha_{k}\right)^{k-1}=\frac{\beta_{k}\left(1-\alpha_{k}\right)^{k}}{1-\alpha_{k}} \\
& =\frac{\beta_{k}(1-\alpha)}{1-\alpha_{k}} \tag{4.3-88}
\end{align*}
$$

If $\alpha_{k} \ll 1$, then $\alpha \ll 1$; hence, the overall probability of missed detection is approximately

$$
\begin{equation*}
\beta \approx \beta_{k} \tag{4.3-89}
\end{equation*}
$$

The average sample number (ASN) when noise alone is present is given by

$$
\begin{equation*}
\bar{\eta}_{0}=\alpha \bar{\eta}_{\alpha}+(1-\alpha) \bar{\eta}_{1-\alpha} \tag{4.3-90}
\end{equation*}
$$

where $\bar{\eta}_{\alpha}$ is the average test length when signal presence is falsely declared, $\bar{\eta}_{1-\alpha}$ is the average test length when no signal is correctly indicated. When $\alpha \ll 1$,

$$
\begin{equation*}
\bar{\eta}_{0} \approx \bar{\eta}_{1-\alpha} \tag{4.3-91}
\end{equation*}
$$

Since the number of cells without a signal greatly exceed the number of cells with a signal, the performance is dominated by the average length to reject a cell position. DiFranco and Rubin ${ }^{(4)}$ derive an expression for the average sample number

Where $P(\eta)=\frac{1}{\beta} \Phi\left(\frac{-2 \ln \beta}{a_{d}^{2} \sqrt{\eta}}+a_{d}{ }^{2} \sqrt{\eta}\right)+\Phi\left(\frac{-2 \ln \beta}{a_{d}^{2} \sqrt{\eta}}-a_{d}{ }^{2} \sqrt{\eta}\right)$

Where

$$
\begin{equation*}
a_{d}{ }^{2}=\frac{2 C^{\prime}}{N_{0} B_{k}} \tag{4.3-94}
\end{equation*}
$$

Which is the peak signal-to-noise ratio in the IF filter of bandwidth B_{k}. Typically,

$$
\mathrm{B}_{\mathrm{k}}=\frac{\text { Total Frequency Uncertainty }}{\mathrm{K}}
$$

and $\Phi()$ is the error function.

Hence, equation (4.3-92) replaces equation (4.3-32) when used to compute the average acquisition time with the multiple filter model given in figure 4.3-11. An alternate multiple filter approach is shown in figure 4.3-12. As above a band of contiguous bandpass filters is used to cover the doppler uncertainty range. At each sample interval the maximum output from a set of filters is selected for processing by the sequential decoding algorithm. A detailed analysis of this technique was not made. However, some simulation results by Marcus and Swerling ${ }^{(5)}$ can be used to estimate the performance gains. In [5], the average sample number (ASN) versus the number of resolution elements is plotted for a noncoherent detector. The number of resolution elements corresponds to the number of contiguous filters utilized. These results only go as low as a 0 dB design signal-to-noise ratio. Extrapolaing the results to the threshold SNR pertinent to this study, we can estimate that the ASN is divided by the number

4.4 Application of Analysis to User Transpunder - Forward Link
 4.4.1 Performance Summary

A summary is given in this section of the analysis for the average acquisition time of the recommended signaling technique given in section 2.

Short Code

The short code consists of a 1023 chip sequence which is biphase modulated in quadrature with a similarly n:odulated 2^{18} chip "long" code sequence. The long code channel is transmitted with a signal power which is 10 dB below that in the short code channel.

At threshold, the received signal power-to-noise spectral density ratio is given by $\mathrm{C} / \mathrm{N}_{0}=32.3 \mathrm{~dB}-\mathrm{Hz}$. The total doppler and frequency uncertainties are $\pm 3 \mathrm{kHz}$. The data modulation rate is 125 bps . The parameters for the short code are as follows:
IF Filter Bandwidth $-6 \mathrm{kHz} \quad 37.8 \mathrm{~dB}$

PN Filter Loss
0.9 dB

Power Loss Due to Long Code
0.4 dB

One-Half Chip Offset Loss
2.5 dB

Total Losses
41.6 dB
$\mathrm{C} / \mathrm{N}_{0}$ at Threshold $\quad 32.3 \mathrm{~dB}-\mathrm{Hz}$
Effective Signal-to-Noise Ratio, $\mathrm{C}^{\prime} / \mathrm{N}_{0} \mathrm{~B} \quad-9.3 \mathrm{~dB}$

Long Code

Since the acquisition of the long code follows that of the short code, it is possible (if desired) to coherently acquire the long code. This is because it is assumed that, when the long code acquisition begins, code lock and carrier recovery is achieved. It is also assumed that the code doppler is tracked by each of these loops. Hence, the basic timing losses are timing jitter.

The losses associated with the long code are.

IF Filter Bandwidth -6 kHz	37.8 dB
PN Filter Loss	0.9 dB
Power Loss Due to Short Code	10.5 dB
Timing Jitter Losses	0.3 dB
Total Losses	49.5 dB
$\mathrm{C} / \mathrm{N}_{0}$ at Threshold	$\frac{32.3 \mathrm{~dB}-\mathrm{Hz}}{\text { Effective Signal-to-Noise Ratio, } \mathrm{C}^{1} / \mathrm{N}_{0} \mathrm{~B}}$
$\mathbf{- 1 7 . 2 \mathrm { dB }}$	

As seen from equations (4.3-55) and (4.3-58), the average time to dismissal is inversely related to the effective signal-to-noise ratio in the IF bandwidth. Also, the effective SNR in the IF bandwidth is clearly a function of the IF bandwidth. Table 4.4-1 summarizes the relationships between the IF bandwidths and the threshold signal-to-noise ratios. In the case where the IF bandwidth is 1200 Hz or $\pm 600 \mathrm{~Hz}$, the total 6 kHz frequency uncertainty band is divided into 5 frequency cells. Similarly, with an IF bandwidth of $\pm 300 \mathrm{~Hz}$, there are 10 frequency cells.

Table 4.4-1. Threshold SNR Versus IF Bandwidth

IF Bandwidth	$\mathrm{C}^{\prime} / \mathrm{N}_{0} \mathrm{~B}(\mathrm{~dB})$	
	Short Code	Long Code
6 kHz	-9.3 dB	-17.2 dB
3 kHz	-6.3 dB	-14.2 dB
1.2 kHz	-2.3 dB	-10.2 dB
600 Hz	+0.7 dB	-7.2 dB

For both the long and short codes, the following detertion parameters were assumed for acquisition, verification, and tracking.

Acquisition

The detection probability is based on having two chances during the 2×1023 trials for the short code and 1×256 trials for the long code.

$$
P_{D 1}=0.51 \quad P_{F A 1}=10^{-3}=P_{a}
$$

Verification

$$
P_{D 2}=0.9 \quad P_{F A 2}=10^{-4}=P_{A}
$$

Tracking

$$
P_{\mathrm{D} 3} \gg 0.9=1-\mathrm{D}_{\mathrm{D}} \quad P_{\mathrm{FA} 3}=10^{-6}=\mathrm{P}_{\mathrm{C}}
$$

For the noncoherent dual state acquisition strategy of the short code, the mean acquisition time is shown to be

$$
\begin{equation*}
\bar{T}_{\mathrm{acq}}=\mathrm{N}\left(\frac{\mathrm{~T}_{\mathrm{i}}}{\left|1-2 \mathrm{~d}_{\mathrm{c}} \mathrm{~T}^{\prime}\right|}+\mathrm{T}_{\beta}\right)\left(\frac{1+\beta}{1-\beta}\right) \tag{4.4-1}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{i} & =T \text { for fixed length test } \\
& =T_{b} \text { for sequential test }
\end{aligned}
$$

with the other parameters as defined above. For a good approximation at threshold,

$$
T_{a} \approx T_{b} \quad \text { and } \quad T_{A} \approx T_{B}
$$

Therefore,

$$
\begin{aligned}
T_{a} \approx & T_{b}+P_{a} T_{B}+P_{a} P_{A}\left(T_{D}+\frac{F_{C} T_{C}}{1-P_{C}}\right) . \\
& T_{b} \gg P_{a} T_{B}, \text { since } P_{a}=10^{-3} \\
T_{b} \gg & P_{a} P_{A}\left(T_{D}+\frac{P_{C} T_{C}}{1-P_{C}}\right)
\end{aligned}
$$

since $P_{a} P_{A}=10^{-7}$.

Thus,

$$
\mathrm{T}_{\alpha} \approx \mathrm{T}_{\mathrm{b}}
$$

Also, from (4.3-47),

$$
\begin{equation*}
\beta=P_{b}+\left(1-P_{b}\right) P_{B}+\left(1-P_{b}\right)\left(1-P_{B}\right)\left(1-P_{D 3}\right) \tag{4.4-2}
\end{equation*}
$$

The last term in (4.4-2) is small compared to the first two terms on the right side of the equation; hence,

$$
\beta \approx P_{b}+\left(1-P_{b}\right) P_{B} .
$$

For the fixed length test, to a good approximation,

$$
\begin{equation*}
\overline{\mathrm{T}}_{\mathrm{acq}} \approx \mathrm{~N}\left[\frac{\mathrm{~T}}{\left|1-2 \mathrm{~d}_{\mathrm{c}} \mathrm{~T}\right|}+\mathrm{P}_{\mathrm{a}} \mathrm{~T}_{\mathrm{B}}\right]\left[\frac{1+\mathrm{P}_{\mathrm{b}}+\left(1-\mathrm{P}_{\mathrm{b}}\right) \mathrm{P}_{\mathrm{B}}}{1-\mathrm{P}_{\mathrm{b}}-\left(1-\mathrm{P}_{\mathrm{b}}\right) \mathrm{P}_{\mathrm{B}}}\right] . \tag{4.4-3}
\end{equation*}
$$

Similarly, for the sequential test,

$$
\begin{equation*}
\bar{T}_{a c q} \approx \frac{N T_{b}}{\left|1-2 d_{c} T\right|}\left[\frac{1+P_{b}+\left(1-P_{b}\right) P_{B}}{1-P_{b}-\left(1-P_{b}\right) P_{B}}\right] \tag{4.4-4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{T}_{\mathrm{b}} \approx \frac{2 \mathrm{~T} \ln \beta_{1}}{-\left(\frac{\mathrm{C}^{\prime}}{\mathrm{N}_{0} \mathrm{~B}}\right)_{\mathrm{d}}^{2}} \tag{4.4-5}
\end{equation*}
$$

The parameters used in this analysis for the short code of the multiple access forward li'vk are:

$$
\begin{aligned}
\mathrm{N} & =1023 \\
\mathrm{~d}_{\mathrm{c}} & =4.38 \mathrm{chips} / \mathrm{sec} \\
\beta_{1} & =0.76 \\
\mathrm{P}_{\mathrm{b}} & =0.49 \\
\mathrm{P}_{\mathrm{B}} & =0.1 \\
\mathrm{~T} & =1 / \mathrm{BW} \text { for sequential test }
\end{aligned}
$$

$$
\mathrm{T}: \quad \text { Variable for fixed length test }
$$

The parameters used in this analysis for the long code of the multiple access forward link are similar to those of the short code with the exception of the number of uncertainty cells. The long code is of length $2^{18}-256$ chips. The relationship of the codes is such that, when the short code is acquired, the uncertainty of the long code is reduced to the number of cells given by

$$
\text { Long code uncertai.ltv }=\frac{2^{18}-256}{1023}=256 \text { cells. }
$$

Hence, the search for the long code requires selecting one of 256 cell positions.

The acquisition time results for the long code are summarized in table 4.4-3 with the results plotter in figure 4.4-3. The analysis was performed for only the sequential tests, using equations (4.4-4) and (4.4-5) for the noncoherent test and equation (4.4-4) with T_{b} given by

Figure 4.4-2. Average Acquisition Time Versus Design Signal-to-Noise Ratio for louble Step Sequential Acquisitıon Analysis
\#
\because
-
 7
Table 4. 4.3. Comparative Summary of Mean Acquisition Times for Multiple Access Forward Link Long PN Code

$\begin{gathered} \text { IF } \\ \text { Bandwidth } \\ (\mathrm{Hz}) \end{gathered}$	SNR in IF Bandwidth (dB)	Sequential Test Straiegy Coherent		Sequential Test Strategy Noncoherent	
		$\begin{aligned} & \overline{\mathrm{T}}_{\mathrm{acq}} \\ & \text { (sec) } \end{aligned}$	Mea: Search Rate (chips:'sec)	$\begin{aligned} & \overline{\mathbf{T}} \mathbf{a c q} \\ & \text { (sec) } \end{aligned}$	Mean Search Rate (chips/sec)
6000	-17.2	1.4	182.9	2? 5	0.93
3000	-14.2	1.35	189.6	138	1.9
1200	-10.2	1.3	196.9	55	4. 7
600	-7. 2	1.3	196. ${ }^{\text {o }}$	27	9.5

$$
\begin{equation*}
\mathrm{T}_{\mathrm{b}} \approx \frac{\mathrm{~T} / 2 \ln \beta_{1}}{-\left(\frac{\mathrm{C}^{\prime}}{\mathrm{N}_{0} \mathrm{~B}}\right)_{\mathrm{d}}} \tag{4.4-6}
\end{equation*}
$$

for the coherent test and T_{b} given by equation (4.4-5) for the noncoherent test. For these tests it is assumed that the local reference is stepped in one-half chip increments. Since chip synchronism occurs at the conclusion of the short code acquisition, the long code could be stepped in single chip increments. For this case the average acquisition times are one-half of the values given in table 4.4-3. Another important factor is that carrier lock occurs at the conclusion of short code synchronization. Given carrier lock and the capability for tracking the dnppler frequency offsets, the IF bandwidth can be narrowed significantly. Thus, the performance could actually be significantly better than the acquisition times given in table 4.4-3.

4.4.2 Analysis With an Interfering Signal - Forward Link

 IntroductionA model of the forward link with two TDRSS satellites in view of the user receiver is shown in figure 4.4-4. The desired signal is $S_{1}(t)$ and the interfering signal is $\mathrm{S}_{2}(\mathrm{t})$. The objective of this analysis is to determine the probability that the noncoherent acquisition circuitry locks cnto the interfering signal rather than the desired signal as a function of their relative signal levels.
-1

Figure 4.4-4. Model of TDRSS Multiple Access Forward Link

Analysis

Both the desired and interfering signals can be represented in general as

$$
\begin{equation*}
S_{i}(t)=\sqrt{2 S_{i}} a_{i}(t) x_{i}(t) \sin \left[\left(\omega_{c}+\Delta_{i}\right) t+\theta_{i}\right] \tag{4.4-7}
\end{equation*}
$$

where $X_{i}=$ pseudorandom PN Gold code of the i th signal with code length $\mathrm{n}=1023$ chips

$a_{i}=$ data modulation of the ith signal
$\theta_{i}=$ relative phase shift of the ith received signal
$S_{i}=$ received power of the ith signal
$\Delta_{i}=\underset{\text { sum of the doppler and frequency uncertainties of the ith }}{\text { signal }}$
The cross-correlation code spectrum for the two codes $a_{1}(t)$ and $\mathrm{a}_{2}(\mathrm{t})$ is given by

$$
63(136) \quad-1(767) \quad-65(120)
$$

where the value in parentheses associated with the cross-correlation quantity denotes the number of chip positions containing the particular cross-correlation value. That is, out of a total of 1023 chip positions, 136 positions have a cross-correlation value of 63,767 have a crosscorrelation value of -1 , and 120 have a cross-correlation value of -65 .

In the noncoherent detection analysis, the sign of the c1 cis^{-} correlation value is irrelevant. Since the difference between t. rosscorrelation values of 63 and 65 is so small, for the purposes of this analysis we will assume that there are 256 positions in which the crosi-correlation value is 65 . Typical autocorrelation and cross-correlation functions for the 1023 Gold codes are shown in figure 4.4-5.

The frequency spectrum of the interfering signal power at the output of the despreader is given by equation (4. 3-62). For the forward link, the data bit rate is assumed to be a nominal 125 bits per second. Hence, T_{2} equals 8×10^{-3} seconds. The bandwidth of the bandpass filter is assumed to be 6 kHz since the total frequency uncertainty is $\pm 3.0 \mathrm{kHz}$. Therefore,

Figure 4.4-5. Typical Auto- and Cross-Correlation Functions for the 1023 Gold Codes
the signal power at the output of the bandpass filter is given by equation (4. 3-66) and for the parameters given above, it can be writ:en as

$$
\begin{align*}
& S_{0}=\frac{S_{2} \rho_{1,2}}{\pi} \int_{-94.5}^{94.5} \frac{\sin ^{2} x}{x^{2}} d x \tag{4.4-8}\\
& S_{0} \approx \frac{S_{2} \rho_{1,2}}{\pi}[\pi]=S_{2} \rho_{1,2} . \tag{4.4-9}
\end{align*}
$$

With the use of equations (4.3-78) and (4.3-84), we can write the following, relationship for the signal-to-noise ratio of the interfering signal at the output of the bandpass filter:

$$
\begin{equation*}
\mathrm{SNR}_{2}=\frac{\rho_{1,2}}{\frac{2}{3}\left(\frac{\mathrm{~S}_{1}}{\mathrm{~S}_{2}}\right) \mathrm{T}_{\mathrm{c}} \mathrm{~B}+\frac{\mathrm{N}_{0} \mathrm{~B}}{\mathrm{~S}_{2}}} \tag{4.4-10}
\end{equation*}
$$

In this particular example, the various parameters of (4.4-10) are given by

$$
\begin{align*}
\rho_{1,2} & =\left(\frac{65}{1023}\right)^{2} \\
B & =6000 \mathrm{~Hz} \\
T_{c} & =0.333 \times 10^{-6} \mathrm{sec} . \tag{4.4-11}
\end{align*}
$$

When the threshold signal-to-noise ratio was computed for the desired signal, a one-half chip offset loss of 2.5 dB was assumed. In comparing the signal-to-noise ratio of the interfering signal, we will take the worst-case position and assume that there is no chip timing loss. From section 4.4.1, we have shown that the threshold signal-to-noise ratio of the desired signal is given by

$$
\frac{S_{1}}{\mathrm{~N}_{0} \mathrm{~B}}=-9.3 \mathrm{~dB}
$$

Therefore, we can write the relative signal-to-noise ratio of the interfering signal with respect to the desired signal threshold as

$$
\begin{equation*}
\frac{\mathrm{S}_{2}}{\mathrm{~N}_{0} \mathrm{~B}}=\left.\frac{\mathrm{S}_{1}}{\mathrm{~N}_{0} \mathrm{~B}}\right|_{\text {at }} ^{\text {threshold }}+2.5 \mathrm{~dB}+\left.\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}\right|_{\mathrm{dB}} \tag{4.4-12}
\end{equation*}
$$

Substituting (4.4-11) and (4.4-12) into (4.4-10), we get the following relationship between the relative ratios of the two signals and the signal-to-noise ratio of the interfering signal:

$$
\begin{equation*}
\frac{S_{2}}{N_{0}{ }^{3}}=0.21 \rho_{1,2} \frac{S_{2}}{S_{1}} \tag{4.4-13}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{S_{2}}{\mathrm{~N}_{0} \mathrm{~B}}=-30.8+\left.\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}\right|_{\mathrm{dB}} . \tag{4.4-14}
\end{equation*}
$$

The relationship between the interfering signal and the desired signal threshold or operating point of the sequential test can be given as a function of the relative ratios of the interfering signal level and the desired signal level at the user receiver. This is derived from (4.4-14) and is given by

$$
\begin{equation*}
\frac{\mathrm{a}}{\mathrm{a}_{\mathrm{d}}}=-21.5+\left.\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}\right|_{\mathrm{dB}} . \tag{4.4-15}
\end{equation*}
$$

The probability of detecting the interfering signal fur a given trial is given by $1-L(a)$ where $L(a)$ is defined by equation (4.3-29). This relationship is plotted in figure 4.4-6 for several sets of false alarm probabilities and detection probabilities at threshold.

During the acquisition mode, the detection probability is set equal to 0.5 , whereas for verification, it is set at 0.9 .

The probability of detecting the interfering signal as a function of the ratio of the desired signal level to the interfering signal level is given by

$$
\begin{equation*}
P_{D I}=1-\left(1-P_{D A} \cdot P_{D V}\right)^{m} \tag{4,4-16}
\end{equation*}
$$

where $\quad m=$ number of trials or sidelobe peaks $=256$
$P_{D A}=$ probability of detecting the interfering signal during acquisition and is plotted in figure 4.4-6 as a function of a / a_{d}
relative signal-to-noise ratios and, consequerity, means for further reducing the false detection probability should be considered.

Aids to the Minimization of False Detection

We have seen that, for relatively high interfering signal levels (i.e., greater than 20 dB above the desired signal), the probability of a false lock is high. Once the false lock condition occurs, the local reference is no longer advanced and code tracking begins. One may assume that, by choosing the code loop noise bandwidth B_{L} such that the interfering signal-to-nuise ratio in B_{L} is below loop threshold, the noise will, with high probability, cause a loss of lock after several time constants: This would probably work if the maximum interfering signal level were 15 dB above the desired signal level. However, if the interfering signal should go to a level 20 dB above the desired signal, then there is insufficient margin to cause the loop to drop lock.

While the delay lock loop is tracking, the carrier tracking circuit is attempting to lock to the carrier of the received signal. The same problem as was indicated above for the delay lock loop may exist with the carrier recovery circuit in discriminating against the interfering signal. However, the quadrature output of the phase recovery circuit or the coherent amplitude detector (CAD) is enabled once carrier lock is accomplished. With the CAD operating, the AGC is thus controlled by the received signal level rather than the receiver noise level. As an example, the signal voltage at the input to the phase detector may be held constant at a 1 v rms level, regardless as to whether the signal is the desired or interfering signal. For this condition, the thresholds associated with the verification mode can be set to a predetermined fixed value independent of the noise. Hence, the mean values of the distributions associated with the interfering and desired signals are separated at their peak by $\rho=(65 / 1023)^{2}$ or 24 dB . Thus, even if the interfering signal level is noncoherently acquired and verified, and if the code tracking and phase lock loops lock to the interfering signal, these circuits would be unlocked if the verification test were continued with fixed thresholds that are switched in at the instant the CAD begins functioning.

The probability of unlocking the interfering signal can be made as high as desired by proper selection of the detection threshold. When an interfering signal is detected subsequent to initial acquisition and verification and the acquisition circuitry, code tracking and carrier recovery loops are unlocked, the system should continue searching the cells from the previous point where it had stopped when it had erroneously locked onto an interfering signal.

At the same time the short code is being verified at the conclusion

Impact on Acquisition Time
When the interfering signal is detected, the effect is one of a false alarm. The difference from a false alarm based on noise is that there is a much greater probability of code lock and carrier lock to the interfering signal (provided, of course, that the level is high enough) than there is to noise alone. This necessitates the continuing verification of the short code subsequent to carrie: lock. This additional verification test is one . nich was not considered in the previous sectinns of this report. From figure 4.4-6 and equation (4.3-58), we can compute the mean acquisiticatine as a function of the ratio of the desired signal-to interfering signal. The results for a single doppler cell are shown in figure 4.4-9. Tre mean acquisition time thresholds sharply as the interfering signal approaches 20 dB above the desired signal. This can be seen by looking at figure 4.4-6. As the signal level, a, approaches the design signal level, a ${ }_{d}$, the detection

Figure 4.4-8. Simplified Flow Graph of Forward Link Synchronization Algorithm

Figure 4.4-9. Estimated Mean Acquisition Time Versus Ratio of Desired Signal-to-Interferir'g Signal
probabilities in both the acquisition and verification modes approach the design detection probability levels. Since the cross-correlatinn sidelobes are 24 dB below the autocorrelation peaks, when the inierfering signal level approaches 20 dB above the desired signal level, the false alarms due to the cross-correlation peaks approach the design detection μ obaLilities. Therefore, as the code search progresses, each time the crosscorrelation sidelobe peak occurs (which is about one-fourth of the t:me), there is a high likelihood of it appearing as a real signal. It then progresses through the various synchronization steps and is finally :ejected with the short code verification test with a fixed threshold after the coherent AGC is switched in. The time to PN code lock, carrier lock, and perform the post-lock verificatic:i test was estimated to be 0.5 seconds. This accounts for the "estimated" mean acquisition times given in figure 4.4-9.

Impact on Hardware

The impact of the post-lock ve-ification test is veny small when microprocessor techniques are employed in processing tiee synchronization algorithm. It tasically involves a few additional in. St_{1} uctions and some logic th unlnck '.e code tracking locp, carrier lock loop, end switch back to a noncenerent AGC operation.

4.4.3 Sidelobe Felse Alarm Analysis

Introduction

The short codes of the forward link are pscudorandom Gold codes of length 1023 with properties enumerated in section 5 . The autocorrelation spectra of the Gold codes is similar to the cross correlation spectrum given in section 4.4.2. To simplify this analysis we will assume that there are 256 positions in which the autocorrelation value is 65 , one position where it is 1023, and the remaining 766 positions where the autocorrelation value is -1 .

The dynamic rance of the received signal is assumed to be 35 dB . The objective of this analysis is first to determine the probability of erroneously detecting the sidelobes as in-synchronization positions and then second to consider techniques for either detecting false alarms due to sidelobe detection or reducing the false alarm probability due to sidelobes. A conceptual approach for achieving the former of these objectives is recommended. The impact of this technique on the overall acquisition time is considered, as well as its hardware implications.

The subsequent discussion is primarily conceptual with a level of analysis which is intended to give a first-cut estimate of the system performance. It should be noted that ther $=$ is room for considerable optimization which could further enhance the overall system performance.

False Sidelobe Detection Probability

The first step in this analysis is to determine the probability of false alarms due to the "self noise" of the received signal (i.e., sidelobe partial correlations) as a function of the received signal level.

The probability of detecting a sidelobe in a given trial for the sequentiai test algorithm is $1-\mathrm{L}(\mathrm{a})$ where $\mathrm{L}(\mathrm{a})$ is defined by equation 4.3-29. The parameter a is the normalized received signal level. The function $L(a)$ is also dependent upon the normalized threshold or design signal level, a_{d}, which has a preset value.

Tise probability of false detection on a sidelube in a given cell position is plottec in figure 4.4-10 as a function of the received signal level above threshold. This is the r,robability that a sidelobe of the 1023 Gold cude passes both the acquisition and verification tests. The sidelobe levels are 24 dB below the peak correlation level. If the signal is 24 dB above threshold, then the sidelobe level is at threshold and, hence, the probability of detecting the sidelobe equals the probability of the product of the detection and verification probabilities, which are 0.45 . As the signal level becomes even greater, the detection probability of the sidelobes rapidly

Figure 4.4-10. Probability of Detection of Sidelobe as a Function ${ }^{1}$

40 5403

```
M! LUSARITHIN:
```


approaches unity. These results do not consider the effect of the "self noise" which contributes more significantly to the total noise as the received signal level increases. The results also assume a perfect noise estimate which is used in normaiizing the design and received signal levels. Both of these factors t ' nd to make the sidelobe false alarm probability higher than would actually be the case.

Sidelobe Rejection Algorithm

From figure 4.4-10, we can see that, as the input signal level increases, the partial correlation of a sidelobe is sufficiently high to result in a high probability of false detections. The partially correlated signal level may also be high enough so as to achieve both code and carrier lock. A method must therefore be provided to detect a false synchronization condition, unlock the receiver, and permit it to acquire the correct synchronization position.

There are several ways of detecting a sidelobe lock position. One particularly attractive approach will be considered. The technique takes advantage of the Gold code properties in that the sidelobes with no noise are deterministic and in the case of this code are 24 dB below the peak correlation level. The following discussion presents the case for the sidelobe rejection algorithm.

After initial acquisition, verification, code and carrier lock, a postdetection verification algorithm is employed. This algorithm can be similar to the initial acquisition algorithm with the exception that the threshold is increased by some factor. Two cases are considered. In c.ie case the threshold is increased by 15 dB and in the other it is increased by 20 dB . If the sidelobe rejection algorithm is performed with a sequential test, increasing the threshold corresponds to increasing the design signal level, a_{d}. For a fixed length test, it implies that the post-detection integration time is such that a pre-established detection and false alarm probability will be achieved for some higher signal-to-noise ratio. Let us firot consider the case where the threshold is increased by 15 dB . If the received

Abstract

will also exceed the second threshold by 20 dB . The partially correlated

 sidelobe is 24 dB below the peak. It nominally exceeds the first threshold by 11 dB which results in its high likelihood of being detected. However, it falls below the second threshold by 4 dB on the average; therefore, from figure 4.4-10, its probability of exceeding the second threshold on a per trial basis is 1×10^{-5} for the maximum received signal level case. Since there are 256 sidelobes with close the same average partial correlation level, the probability that any one of them will exceed the threshold in the process of scanning through all 1023 chip positions is$$
1-\left(1-1 \times 10^{-5}\right)^{256}
$$

which equals 2.5×10^{-3}. However, the probability is almost unity that the mainlcbe will exceed the increased threshold given that a partially correlated sidelobe has exceeded the initial thresholds. This assumes that the AGC level is held constant and is controlled by the partial correlation sidelobe level throughout the duration of the sidelobe rejection test. By increasing the sidelobe rejection threshold io 20 dB above its previous level, the probability of the maximum sidelobe level exceeding the new threshold on a per trial basis is decreased to 6×10^{-7}, which yields a probability of 1.5×10^{-4} when scanning through all 1023 cell positions. This reduces the margin between the mainlobe exceeding the increased threshold given that a sidelobe has exceeded the initial synchronization thresholds. However, this margin is stıll sufficient to yield a detecion probability well in excess of 0.9.

The sidelobe rejection test sequence as outlined in the flow chart of firare 4.4-11 can be summarized as follows. After the initial acquisition, verification, code tracking and carrier lock tests are satisfied, the acquisition threshold is increased $\mathrm{t}, \mathrm{y} 15 \mathrm{~dB}$ or 20 dB . The same cell position is checked with the new design parameters. If the new threshold is exceeded, then the position tested is the mainlobe fully correlated cell positior. If the threshold is not exceeded, then either the position tested is the mainlobe

Figure 4.4-11. Sidelobe Rejection Algorithm

cell position or a sidelobe position. The local reference is stepped in successive chip positions and the same test is made at each successive cell position. Because code lock exists, sirsle chip steps are sufficient. If the test indicates a signal in any one of the 1023 positions, that position is assumed to be the mainlobe cell. The local reference is then shifted to the new synchr mization position. If the threshold is not exceeded in any one of the 1023 potential synchronization positions, then the original cell position is assumed to be the mainlobe synchronization position. For this case, the received signal level is with high probability above threshold but less than 15 or 20 dB above the original design thres. old. This sidelobe rejection test can be either a fixed length or a sequential test. For the sequential test, the probability of detecting a sidelobe for a given trial with the new design signal-to-noise ratio 15 dB above the original design threshold is also plotted in figure 4.4-10.

Impact on Acquisition Time

In this subsection, we will estimate the increase in the overall synchronization time which is due to the sidelobe rejection test. The estimate is made based on a fixed length test for reasons given below. Also, it should be noted that no attempt was made to optimize the synchronization parameters.

The test is to occur after code lock and carrier lock are achieved. When the signal level is near threshold, the probability of false lock io a sidelobe is very small. Since this condition is not known a priori, the sidelobe rejection test must be made. In this case, all 1023 cells will be tested once code and car"ier lock are obtained. Thus, in considering the impact on overall acquisition time, we must consider the case where all the cells are tested with the new threshold. Either a coherent or noncoherent test can be made. We will assume the latter. We also assume that the code lock detection probability is high enough that it establishes the overall synchronization detection probability. Therefore, only one scan through the sidelobe rejection test is anticipated per acquisition
attempt. Hence, we can just compute the time required to dismiss each position with the threshold SNR set 15 or 20 dB above the threshold for the initial acquisition test. The new threshold 15 dB above the acquisition threshold yields a design SNR greater than 0 dB ir the detection bandwidth. The mean time to dismissa omputations given in section 4.3.2 are generally only valid if the design SNR is less than 0 dB . Hence, to simplify the analysis, a fixed length test is assumed. If we draw upon the analysis given in section 4.3.1.1, we obtain the relationship shown in figure 4.4-12, which is a plot of the signal-to-noise ratio at the input to the detector as a function of the time-bandwidth product BT , where $\mathrm{P}_{\mathrm{FA}}=10^{-6}$ and $\mathrm{P}_{\mathrm{D}}=0.99$. The design SNR threshold was calculated to be -9.3 dB for the sequential analysis acquisition test with a single doppler cell of 6 kHz (cf. page 4-57). Increasing this threshold by 15 dB yields an SNR of 5.7 dB . To achieve a detection probability of 0.99 with a false alarm probability of 10^{-6} requires, as determined from figure 4.4-12, a BT of 9. Hence, the time to search all 1023 cells with this BT requires approximately 1.5 seconds. These results are slightly optimistic since the sidelobe noise is neglected and does become a significant factor at the higher signal-to-noise ratios. This time can be reduced as shown in table 4.4-4 by increasirg the number of doppler cells. The results, however, are only approximate since the analysis for computing the results in figure 4.4-12 are based upon BT products much sreater than unity. If one reduces the detection probability to 0.9 and the false alarm probability to 10^{-5}, then with five doppler cells, a BT of 1 is all that is required and this yields a sidelobe rejectir. test time of 0.85 seconds.

Because of the potential frequency offset between the local reference and the incoming signal, the code doppler shift may be as great as 1 chip per second oi more. This shift does not present a problem since the sidelobe rejection test occurs after code lock is attaned and consequently the relative code drift is continuously tracked.

The results discussed above are extended to the case where the threshold is increased by 20 dB . These estimated results are summarized

in table 4.4-5 and show that the impact on acquisition time of the sidelobe rejection test can be reduced to below 0.5 seconds.

Impact on Hardware Complexity

The additional impact of the sidelobe false alarm detection algorithm to the hardware complexity is small. A separate correlator with a bandpass filter, envelope detector and post-detection integrator as shown in figure 4.3-3 is part of the receiver hardware for the purpose of estimating the receiver noise and the "self noise" level. This hardware can also serve in performing the decorrelator part of the sidelobe rejection test. The other logic, counter and control operations contribute minimally when microprocessor techniques are employed in processing the overall synchronization algorithm.
:
Table 4.4-5. Maximum Estimated Time for Sidelobe Rejection Test (Fixed Length) With Threshold 20 dB Above Acquisition Threshold

Number of Doppler Cells	Bandwidth per Cell, B (Hz)	Signal-to-Noise Ratio for Increased Threshold (dB)	Required Time- Bandwidth Product (BT)	Time to Search 1023 Cells (sec)
1	6000	10.7	2.5	0.43
2	3000	13.7	1.2	0.41
5	1200	17.7	0.45	0.4

$$
\begin{aligned}
& ? \\
& : \\
& : \\
&
\end{aligned}
$$

4.5 Application of Analysis to Ground Receiver

4.5.1 Performance Summary - Multiple Access Rêurn Link

A summary is given in this section of the analysid of the average acquisition time for Mode 2 of the multiple access return link. The modulation technique is staggered QPSK with a recommended chip sequence consisting of $2^{11}-1$ chips.

At threshold, the receivieu sigral nower-to-noise spectrai density ratio without coding is given by $\mathrm{C} / \mathrm{N}_{0}=39.9 \mathrm{~dB}-\mathrm{Hz}$ and $\mathrm{C} / \mathrm{N}_{0}=$ $34.9 \mathrm{~dB}-\mathrm{Hz}$ with $\mathrm{l} / 2$ rate Viterbi coding. Fror the single IF filter configuration, an IF filter bandwidth of 5 kHz is required to accommodate the fre-
where $N=$ number of chips in code length
$T=$ Post Detection Integration Time
$T_{B}=\begin{aligned} & \text { Average time to perform verification test } \\ & \\ & \text { leading to a dismiss decision }\end{aligned}$
$P_{a}=$ probability of false acceptance by acquisition test

$$
\begin{aligned}
& d_{c}=\text { code doppler error } \\
& \beta=P_{b}+\left(1+P_{b}\right) P_{B}
\end{aligned}
$$

Three code lengths were considered: $N=2^{11}-1,2^{13}-1$ and $2^{15}-1$. In order to avoid the problem of partial correlaticas, the post detection integration interval was selected to correspond to at least as a minimum one complete cycle of the PN code. Since B is assumed to be 5 kHz , for the code length $\mathrm{N}=2^{\text {ll }}-1$.

$$
\mathrm{BT}=\frac{2^{11}-\frac{i}{6}}{3,} \quad\left(5 \times 10^{3}\right)=3.4
$$

as a minimum to satisfy the above conditions. If BT is much greater than 3.4, whether or not the integration time is integrally related to the cr ee length period is not all that critical.

No Coding Case

If we consider first the case without coding, we have from table 4. 3-2 a signal-to-noise ratio of -0.5 dB during acquisition for the desired signal and 1.5 dE during verification for the desired signal. If we assume a false alarm probability of 0.01 during acquisition, then the detection probability for the desired signal is

$$
\begin{equation*}
P_{J}=1-\left(1-P_{D}^{\prime}\right)^{2} \tag{4.5-2}
\end{equation*}
$$

where

$$
P_{D}^{\prime}=\frac{1}{2}[1-\operatorname{erf}(.292)]=.35
$$

from 4.3-11,

and hence, $P_{D} \approx .58$.

Equation (4.5-2) is used because during acquisition there are at least two chances for detecting the synchronization position when the local reference is stepped in one-half chip increments.

The interfering signal is at -18.0 dB during acquisition. Since th: threshel. s set for the desired signal with some minimum false alarm probatility, the detection probability of the interfering signal for a given trial is 1.18×10^{-2}, which is very close to the false alarm probability. The total detection probavility is a function of the number of trials. For the Gold codes, we will assume that half of the cell positions have sidelobe cross-correlation power corresponding to an $\operatorname{SNR}_{\text {IN }}=. .18 \mathrm{~dB}$. Therefore, the overall probability of detection is

For all practical purposes, if the sidelobe cross-correlation $\operatorname{SNR}_{\text {IN }}$ is as low as -18 dB , the undesired signal appears as noise and the probability of detecting the interfering signal is about the same as the false alarm probability. This leads to the verification mode which is designed to reject the acquisition mode false alarms.

During verification, we set the false alarm probability at 10^{-4}. We will also assume a $B T=25$. In other words, the post-detection integration interval is set for 5 ms . From table 4.3-2, the SNR $_{\text {IN }}$ for the desired signal is 1.5 dB and for the interfering signal is -16.5 dB . With these parameters, using equations $4.3-8$ and $4.3-11$, we get

$$
\begin{aligned}
& F_{,}(\text {desired signal })=0.95 \\
& P_{I}(\text { interfering signal })=2 \times 10^{-4}
\end{aligned}
$$

In the verification mode, there is only one cell position in which the interfering signal will be detected and that is the position where acquisition is indicated. From the above results, we see that the probability of detecting the interfering signal for the above conditions is only twice that of the false alarm probability.

We can now substitute the above parameters into (4.5-2) to compute the average acquisition time, $\mathrm{T}_{\mathrm{ACQ}}$ of the desired signal. A summary of the parameters is:

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{b}}=.42 & \mathrm{~d}_{\mathrm{c}}=2.02 \mathrm{~Hz} \\
\mathrm{P}_{\mathrm{B}}=.05 & \mathrm{~T}=6.8 \times 10^{-4} \mathrm{sec} . \\
\mathrm{P}_{\mathrm{a}}=10^{-2} & \mathrm{~T}_{\mathrm{B}}=5 \times 10^{-3} \mathrm{sec} \\
\mathrm{P}_{\mathrm{A}}=10^{-4} &
\end{array}
$$

Hence, $\quad T_{A C Q}=3.85 \mathrm{sec}$.

If we assume the same time-bandwidth products, for the code lengths $2^{13}-1$ and $2^{15}-1$, then the acquisition times for each of these cases is 30.8 sec . and $123 \mathrm{sec} .$, respectively. This is a lower bound since the post detection integration time during acquisition for these two cases results in a partial correlation condition.

Coding Case

Now, if we consider the case with coding we have during acquisition a $C / N_{0} B$ for the desired signal of -5.5 dB . If we set the threshold
for a false alarm probahility of 0.1 , then the probability of detection is given by (4. 3-12) where

$$
P_{D}=\frac{1}{2} \quad[1-\operatorname{erf}(.432)]
$$

and

$$
P_{D}=.47
$$

Since the cross-correlation sidelcbes with an undesired signal are 17.5 dB below the desired signal, the $C / N_{0} B$ for this condition is -23 dB . This corresponds to a detection probability per trial of 0.1015 , which is essentially the false alarm probability.

If during verification, the time bendwidth product is set at 50 and the false alarm probability is set for 0.01 , then the probability of detection is 0.74 for the desired signal. The probability of detection of the undesired

$$
\begin{array}{ll}
\underline{D}_{b}=.53 & \mathrm{~d}_{\mathrm{c}}=2.02 \mathrm{~Hz} \\
\mathrm{P}_{\mathrm{B}}=.26 & \mathrm{~T}=6.8 \times 10^{-4} \mathrm{sec} . \\
\mathrm{P}_{\mathrm{a}}=.1 & \mathrm{~T}_{\mathrm{B}}=10^{-2} \mathrm{sec} . \\
\mathrm{P}_{\mathrm{A}}=.01 & \text { Code length }=2^{11}-1
\end{array}
$$

then $\mathrm{T}_{\mathrm{ACQ}}=14.65 \mathrm{sec}$.
Again, if the code lengths are increased to $2^{13}-1$ and $2^{15}-1$, the average acquisition times with the parameters given above are 58.6 seconds and 234.5 seconds, respectively.

The nonoptimized performance results are summarixed in tables 4.5-1 and 4.5-2.

The desired average acquisition time is 15 seconds. Since it is currently planned to use rate $1 / 2$ coding on the multiple access return link, the code length $N=2^{11}-1$ is the only one which can realistically meet the investigation for the return link, it also is a candidate technique for reducing the mean acquisition time. There is only one potential problem with the sequential test in this application: The fixed length test has a threshold set for fixed detection and false alarm probabilities and a fixed integration interval. In the sequential test, the integation (accumulation) interval is variable and the thresholds are set for fixed false alarm and detection probabilities about a design signal-to-noise ratio. The capability of the sequential test to reject an interfering signal and the degree of test truncation required bears more detailed investigation.

There are cother possibilities for shortening the acquisition time, some of which were discussed above. One solution is to use parallel correlation, each correlator independently searching separate cells. Two

Table 4.5-1 Detection Performance ci Desired and Interfering Signals

Performance Línk Condition	Desired Signal				Undesired Signal			
	Acquisition		Verification		Acquisition		Verification	
	P_{FA}	P_{D}	P_{FA}	P_{D}	P_{FA}	P_{D}	P_{FA}	P_{D}
Without Coding	10^{-2}	0.58	10^{-4}	0.95	10^{-2}	1.0*	10^{-4}	2×10^{-4}
With Coding	10^{-1}	0.47	10^{-2}	0.74	10^{-1}	$1.0 *$	10^{-2}	7×10^{-2}

*This assumes one searches through all possible cell positions.

Table 4.5-2 Average Acquisition Time vs. Code Length

Code Length N	Average Acquisition Time, $\left.\mathrm{T}_{\mathrm{ACQ}}{ }^{(\mathrm{sec}}\right)$		
Link Condition	$2^{11}-1$	$2^{13}-1$	$2^{15}-1$
Without Coding	3.85	15.4	61.5
With Coding	14.65	58.6	234.5

such correlators would, except for some power losses, approach the possibility of halving the acquisition time. Optimization of the acquisition parameters (i.e., optimum selection of BT products for both acquisition and verification) can be used to shorten the mean acquisition time. Another approach is to use a bank of contiguous doppler resolving filters instead of just one IF filter. At the same time, the maximum output of each filter can be selected for further processing, or each path can be processed independently as discussed above for the forward link.

4.6 Impact of Multipath on Direct Sequence Acquisition $\overline{\text { Parameters }}$

4.6.1 Introduction

The purpose of this investigation was to assess the impact that multipath may have on the candidate acquisition techniques. The primary acquisition technique of concern is the recommended short code/long code technique described in Section 2. As part of this study, a short subcontract was granted to the Boeing Company to characterize multipath parameters between a low orbiting (200 km altitude) user satellite and the synchronous TDRS satellite. A short summary of these resti is is presented below. A detailed summary of the results is given in the Interim Report. The impact of these various parameters is discussed relative to acquisition of the 3 Mcps PN signal on the forward link to the user satellite. This is followed by an analysis of the data in an attempt to quantify the multipath impact upon the user receiver. A detailed theoretical analysis, taking into account fading parameters, etc., was not performed.

The Boeing Company has been investigating rnultipath parameters of satellite-to-aircraft links at L-band for several years. Tests have been run, and computer models have been developed. These models were compared with the test results and a close correlation with the test results was achieved. Thus, the theoretical model is considered to be quite adequate for predicting the results.

4.6.2 Multipath Parameters

The purpose of this section is to define the multipath parameters used in the subsequent discussions.

The multipath channel is a linear system and may be characterized by a time-invariant transfer function which we denote by $\mathrm{T}_{\mathrm{m}}(\mathrm{f}, \mathrm{t})$. The time-invariant impulse response is denoted by $h_{m}(t, \zeta)$. If the transmitted signal is denoted by $Z(t)$ with transfer function $Z(f)$, then the input-output relationships corresponding to the use of $T(f, t)$ and $h(t, \zeta)$ are

$$
\begin{align*}
& w(t)=\int Z(f) T(f, t) e^{j 2 \pi f t} d f \tag{4.6-1}\\
& w(t)=\int Z(t-\zeta) h(t, \zeta) d \zeta \tag{4.6-2}
\end{align*}
$$

where $w(t)$ is the output signal (complex) and $Z(f)$ is the spectrum of $Z(t)$.
The transfer function $T_{m}(f, t)$ and the impulse response $h_{m}(t, \zeta)$ are Fourier transform pairs,

$$
\begin{align*}
& T_{m}(f, t)=\int h_{m}(t, \zeta) e^{j 2 \pi f \zeta} d \zeta \tag{4.6-3}\\
& h_{m}(t, \zeta)=\int T_{m}(f, t) e^{j 2 \pi f \zeta} d f \tag{4.6-4}
\end{align*}
$$

The width of the spectrum of a received carrier, i.e., the spectral width of $T_{m}(f, t)$ with f fixed, is called the Doppler spread of the channel at $f_{0}+f$. This doppler spread determines the rate of fading of the channel.

If another carrier is transmitted at a different frequency, $f_{0}+f+\Omega$, sufficiently close to $f_{0}+f$ it will be found that the envelopes and phases of the two received carriers essentially fade in step. As the separation frequency Ω is increased, $T_{m}(f, t)$ and $T_{m}(f+\Omega, t)$ will begin to depart. The term coherence bandwidth, $w_{\text {coh }}$, will be used to define the frequency interval for which $T_{m}(f, t)$ and $T_{m}(f+\Omega, t)$ are 50 percent correlated.

If the spectrum $Z(f)$ of the transmitted signal occupies a bandwidth $w<w_{\text {soh }}$, then the output is given approximately by

$$
\begin{equation*}
w(t) \approx Z(f) T(0, t) \tag{4.6-5}
\end{equation*}
$$

That is, the channel acts as a complex multiplier $\mathrm{T}(0, t)$, causing all the frequency components of $Z(t)$ to fluctuate in step. This is referred to as flat fading. If the input signal bandwidths exceed $w_{c o h}$, frequency selective distortion or fading will result, i.e., not all the frequency components will fluctuate in unison.

A complete description of the channel multipath statistics is obtained from the delay Doppler scatter function, $S(\tau, \omega)$, which represents the power spectral density (PSD) of energy returned with a specified delay τ and Doppler ω. Equivalent and lower order multipath parameters are obtained via Fourier and integral operations on $S(r, \omega)$.

A summary of the channel parameters pertinent to this study and their mathematical relationships to $S(\tau, \omega)$ is given below.

Delay Spectrum - Fower spectral density (PSD) of energy arrivi:ng at the receiver with specified deizy τ :

$$
\begin{equation*}
Q(\tau)=\int_{\omega} S(\tau, \omega) d \omega . \tag{4.6-6}
\end{equation*}
$$

Doppler Spectrum - PSD of energy arriving at the receiver with specified Doppler frequency shift ω :

$$
\begin{equation*}
\mathrm{D}(\omega)=\int_{\tau} \mathrm{S}(\tau, \omega) \mathrm{d} \tau \tag{4.6-7}
\end{equation*}
$$

Frequency Autocorrelation Function - Complex cross-correlation between two received surface moduiated carriers transmitted $\Omega \mathrm{Hz}$ apart:

$$
\begin{equation*}
R(0, \Omega)=\int_{\tau} Q(\tau) e^{-j 2 \pi \tau \Omega} d \tau \tag{4.6-8}
\end{equation*}
$$

Time Autocorrelation Function - Time autocorrelation function of the received surface modulated carrier signals complex amplitude:

$$
\begin{equation*}
R(\zeta, 0)=\int_{\omega} D(\omega) e^{-j \omega \zeta} d \omega . \tag{4.6-9}
\end{equation*}
$$

Tap-Gain Autocorrelation Function - Autocorrelation function of energy arriving at the receiver with specified delay:

$$
\begin{equation*}
Q(\tau, \zeta)=\int_{\omega} S(\tau, \omega) e^{-j \omega \zeta} d \omega . \tag{4.6-10}
\end{equation*}
$$

Mean Square Energy - Total mean square multipath signal strength intercepted by the receive antenna:

$$
\begin{equation*}
\Gamma=\int_{\tau} \int_{\omega} S(\tau, \omega) d \tau d \omega . \tag{4.6-11}
\end{equation*}
$$

Channel Parameter Spreads - The spread measure provides a compact description of the effective width of a given channel parameter. Figure 4.6-1 illustrates the definitions of the 3 dB and 10 dB measures as they pertain to $Q(\tau), D(\omega),|R(0, \Omega)|,|R(\zeta, 0)|$, and $|Q(\tau, \zeta)|$.

4.6.3 Multipath Prediction Model Description

The following section was extracted to a large extent from the Boeing report.

The choice of an appropriate model for the analysis of electromagnetic surface scatter is determined almost exclusively by the roughness characteristics of the reflecting medium. Surfaces are usually classified as slightly rough, very rough, or composite, depending upon the magnitude of the height irregularities. In general, different scatter theories are utilized in each of these situations.

For $t^{2} \quad$-se of oceanic scatter at a frequency of 2.1 GHz , the surface will st always appear to be very rough; this implies that the following is approximately satisfied:

$$
\begin{equation*}
\frac{2 \pi \sigma_{H}}{\lambda} \cos \theta_{i}>1.0 \tag{4.6-12}
\end{equation*}
$$

where $\quad \lambda=$ electromagnetic wavelength
$\sigma_{\mathrm{H}}=$ standard deviation of surface height irregularities
$\theta_{i}=$ incident angle of ray upon the surface as measured from the normal .

Analysis of scattering from very rough surfaces is usually developed through the physical optics tangent-plane method. Commonly called the Kirchoff approximation, this model is based upon the assumption of a locally plane surface over the distance of many wavelengths. This constraint is considered to be satisfied if the radius of curvature of the surface undulations (ρ_{c}) is much greater than λ, i.e.,
-

:

Figure 4.6-1 Spread Parameter Definitions

[^11]\[

$$
\begin{equation*}
\lambda \ll 4 \rho_{c} \cos \theta_{i} \tag{4.6-13}
\end{equation*}
$$

\]

For this study, we have employed the vector formulation of the physical optics model and are thus able to properly account for the electromagnetic polarization dependencies of each particular scattering facet on the surface. Due to the complexity of this model, it is not possible to arrive at adequate channel parameter solutions in a closed form. This is circumvented through use of a computerized technique whirh subdivides the spherical scatter surface into incrementally small areas and then determines the scatter cross-section (including polarization transformation factors), Doppler shift, and time delay associated with each area. The complex vector representation of the scattered signal is coupled to the receiver antenna characteristics, thereby providing an estimation of the received power from the particular surface patch. This allows the channels delay Doppler scatter function, $S(\tau, \omega)$, to be constructed. From $S(\tau, \omega)$, integral and Fourier transform steps identical to those described in Section 4.6.2 are employed to determine the channels delay spectrum, Doppler spectrum, time autocorrelation function, frequency autocorrelation function, total energy content, tap-gain autocorrelation function, and spread values of the unidimensional distributions.

4.6.4 Analysis Parameters

Predictions were generated for the following ensemble of system and sea surface parameters:

Transmitter altitude	Synch ronous
Receiver altitude	200,000 meters
Receiver speed	$7.8 \mathrm{~km} / \mathrm{sec}$
Receiver heading	(a) . Nard transmitter; great circle path, and (b) broadside to transmitter; great circle path
	RHC
Transmitter polarization	RHC
Receiver polarization	Vertical, horizontal, RHC, LHC
Antenna directivities	Isotropic
Grazing angles	$7^{\circ}, 30^{\circ}, 60^{\circ}, 85^{\circ}$
Surface type	Sea water
Surface total RMS slope	6°

Although all combinations of the above parameters were analyzed, detailed spectra and correlation function prediction were generated only for he circular polarization receiver conditions. A coarser and correspondingly less expensive surface integration procedure was used to predict total RMS scattered energy coefficients for the vertical and horizontal polarizations. In general, one may use the LHC results to provide a relatively close estimation of the linear polarization spectra and correlation function distribution.

4.6.5 Prediction Results

As previously outlined, the multipath channels delay-Doppler scattex function, $S(T, \omega)$, is the basic parameter calculated by the computer model. The delay and Doppler coordinates of this function are evaluated with respect to the attributes of the return arriving from a scattering element located at the specular point. For this part. . lar analysis, the delay bins (referred to in the following figures and tables (as delay taps) were chosen to be $2 \mu s$ in width and tap number 2 was

Channel Parameter Spread Measures

Spreads of the delay spectra, Doppler spectra, frequency autocorrelation function (coherence bandwidth), and time autocorrelation function (decorrelation time) are given in tables 4.6-2 and 4.6-3 for the RHC and LHC polarization cases, respectively. These parameters refer to the characteristics of the total multipath signal and consequently may be thought of as pertaining to the multipath effects upon a $C W$ signal (or signals).

Q(τ, ζ) Spreads and Tap Energy Percent Capture

Tables 4.6-4 and 4.6-5 present the $Q(T, \zeta)$ spreads and tap energy percent capture for the RHC and LHC polarization cases, respectively. The spread of $Q(\tau, 5)$ represents, in essence, the decorrelation time (0.5 correlation coefficient) of the multipath signal which is captured in tap τ.

Table 4.6-1 Differential Delay and Doppler

Grazing Angle	Differential Delay	Differential Doppler	
	$98 \mu \mathrm{~s}$	0 Hz	2.0 kHz
30°	$634 \mu \mathrm{~s}$	0 Hz	2.9 kHz
60°	$1150 \mu \mathrm{~s}$	0 Hz	1.8 kHz
85°	$1330 \mu \mathrm{~s}$	0 Hz	0.3 kHz

Table 4.6-2 Channel Parameter Spread Measures (RHC Polarizaiion)

Spread Measure	Grazing Angle			
	7^{0}	30^{0}	60°	85°
Delay (3dB)	$2.1 \mu \mathrm{~s}$	$8.0 \mu \mathrm{~s}$	$10.0 \mu \mathrm{~s}$	$41.8 \mu \mathrm{~s}$
Delay (10dB)	$14.6 \mu \mathrm{~s}$	$29.7 \mu \mathrm{~s}$	$37.8 \mu \mathrm{~s}$	$80.2 \mu \mathrm{~s}$
Coherence B.W.	37.1 kHz	18.6 KHz	16.4 KHz	9.3 KHz
Doppler (3dB) In-Plane	.25 KHz	6.1 kHz	13.6 KHz	11.9 kHz
Coppler (10dB) In-Plane	.83 KHz	11.8 KHz	24.6 KHz	26.9 KHz
Doppler (3 dB) X-Plane	2.2 KHz	7.5 KHz	17.0 KHz	30.0 KHz
Doppler (10dB) X-Plane	4.2 KHz	15.3 KHz	28.0 KHz	45.0 KHz
Decorr. Time In-Plane	$8.9 \times 10^{-4} \mathrm{~s}$	$6.7 \times 10^{-5} \mathrm{~s}$	$3.2 \times 10^{-5} \mathrm{~s}$	$2.8 \times 10^{-5} \mathrm{~s}$
Decorr. Time X-Plane	$1.9 \times 10^{-4} \mathrm{~s}$	$5.1 \times 10^{-5} \mathrm{~s}$	$2.8 \times 10^{-5} \mathrm{~s}$	$1.7 \times 10^{-5} \mathrm{~s}$

Table 4.6-3 Channel Parameter Spread Measures (LHC Polarization)

Table 4.6-4 $Q(\tau, \zeta)$ Spreads and Tap Energy Capture (RHC)

Tap Number	$\%$ Energy Capture	$Q(\tau, \zeta)$ (In-Plane)	Q($\tau, \zeta)$ $(X-$ Plane $)$
2	2%	.12 ms	.093 ms
3	3	.10	.054
4	3	.098	.042
5	4	.085	.035
6	4	.075	.031
7	4	.095	.028
8	5	.094	.026
9	4	.065	.023
10	4	.066	.023

Grazing Angle $=85^{\circ}$
Receiver Polarization $=$ RHC

C

Table 4.6-4 (continued)

Tap Number	$\%$ Energy Capture	Q($\tau, \xi)$ $(\operatorname{In}-P)$ ane $)$	$\eta(\tau, \xi)$ $(x-P$ Plane $)$
2	11%	.11 ms	.095 ms
3	10	.063	.052
4	9	.048	.042
5	8	.043	.035
6	7	.039	.031
7	6	.038	.028
8	6	.034	.027
9	5	.034	.025
10	4	.034	.024

Grazing Angle $=60^{\circ}$
Receiver Polarization $=$ RHC

0

Table 4.6-4 (continued)

Tap Number	\% Energy Capture	$Q\left(\tau, r_{)}\right)$ $($In-Plane $)$	$\eta\left(\tau, \xi_{1}\right)$ $(X-P$ Plane $)$
2	14%	.24 ms	.12 ms
3	12	.14	.07
4	9.4	.11	.056
5	7.9	.086	.050
6	7.7	.074	.045
7	6.0	.066	.043
8	4.9	.058	.042
9	4.4	.055	.039
10	3.6	.052	.039

Grazing Angle $=30^{\circ}$
Receiver Polarization $=$ RHC

Table 4.6-4 (continued)

Grazing Angle $=7^{0}$
Receiver Polarization $=$ RHC

Table 4.6-5 $Q(\tau, \zeta)$ Spreads and Tap Energy Capture (LHC)

Tap Number	$\%$ Energy Capture	O(r, 1.$)$ $($ In-Plane $)$
2	14%	$9.6 \times 10^{-5} \mathrm{~s}$
3	11	5.1
4	10	3.9
5	9	3.2
6	8	2.8
7	6	2.5
8	6	2.3
9	5	2.1
10	4	1.8

Grazing Angle $=85^{\circ}$
Receiver Polarization $=$ LHC

Table 4.6-5 (continued)

Tap Nunher	$\%$ Energy Capture	$\eta(\mathrm{r}, r)$ (In-Plane)
2	13%	.11 ms
3	12	.061
4	10	.045
5	9	.039
6	7	.034
7	6	.030
8	6	.027
9	5	.026
10	4	.024

```
Grazing Angle = 60
Receiver Polarization = LHC
```


> Grazing Angle $=30^{\circ}$
> Receiver Polarization $=$ LHC

Table 4.6-5 (continued)

Tap Nunni)er	$\%_{\text {Enerqy }}$ Capture	$Q(\tau, \tau)$ $(\operatorname{In}-P 1$ ane $)$
2	28%	2.2 ms
3	15	1.2
4	10	.85
5	8	.80
6	6	.63
7	5	.55
8	4	.52
9	4	.49
10	3	.45
6		

Grazing Angle $=7^{\circ}$
Receiver Polarization = LHC

Total Mean Square Scatter Coefficient (r)

The parameter Γ which represents the ratio of the total multipath signal power to the direct line of sight signal level is giren in figure 4.6-3. These data are given for horizontal, vertical, RHC, and LHC polarization modes of the receiving antenna. It is noted that for the LHC results, we assume the antenna polarization is RHC towards the synchronous satellite and LHC everywhere else. For the other polarization cases, the antenna is take: to have the same polarization regardless of elevation or azimuth angle.
4-121

4.6.6 Extension of Model Predictions

The results generated for this study have direct application only to the list of system parameters delineated in Section 4.6.4. Although these parameters were chosen to represent typical TDRSS configurations and operating environments, one may desire to extend the study results to alternate altitudes and velocities of the low orbit satellite and to different sea surface RMS slope conditions. To provide this extension, we make use of: (1) Model predicted results for both the TDRSS channel and for an AEROSAT channel, and (2) Closed form solution to the scatter channel characterization.

Closed form multipath characterizations, ${ }^{(7,8)}$ applicable to "very rough" surface forward scatter, have been gen srated for a somewhat restrictive set of surface and geometrical conditions which allow one to apply steepest descent integration techniques to the surface integral formulations. Although this procedure has a variety of shortcomings (for example, the steepest descent model predicts no polarization dependence apart from the absolute magnitude of the total scattered energy), it provides a compact description of the altitude, velocity, and surface RMS slope dependencies of the multipath signal. In particular, the dispersion of $S(\tau, \omega)$ in the delay and Doppler variables has the following approximate functional relationship to altitude (h), velocity (v), frequency (f), and RMS slope (η):

Delay Dispersion
$\alpha \mathrm{h} \eta^{2}$
Doppler Dispersion*
$\alpha \mathrm{vf} \eta$
Apart from the effects of f and h on the spherical earth divergence factor and the Fresnel reflection coefficient, respectively, the above parameters are predicted to have only a minor influence upon the total received signal power level. A measure of the applicability of the above

[^12]dispersion relationships is given in table 4.6-6, where we present data pertaining to model predictions for an AEROSAT channel at 1.65 GHz and for the TDRSS channel. For both channels, sea surface and grazing angle conditions were identical (6° RMS slope and 30° grazing angle). The entry under the column titled, "TDRSS EXTRAP," pertains to the results extrapolated from the AFROSAT predictions via the relationship contained under column, "APPROX CLOSED FORM DEPENDENCE." In general, the extrapolated values are seen to be in fairly close accord with the actual TDRSS model predictions. However, it is also noted that the actual predictions tended to lie below the extrapolated results and, as one would expect, the data for the LHC mode pruvides a somewhat closer fit to the extrapolated results.

Table 4.6-6 Comparison Between Actual TDRSS and AEROSAT Extrapolated Spread Measures

SPREAD PaRAMETER ${ }^{\prime}$	AEROSAT PREDICTION ${ }^{2}$	APPROX CLOSED FORM DEPENDENCE	TDRSS EXTRAP ${ }^{3}$	ACTUAL TDRSS MODEL PREDICTION ${ }^{4}$	ACTUAL TDRSS MODEL PREDICTION ${ }^{5}$
Delay (3dB)	. $46 \mu \mathrm{~s}$	$\mathrm{h}_{\mathrm{s} / h_{a}}$	$9.2 \mu^{5}$	$8.0 \mu^{1.5}$	$8.1 \mu \mathrm{~s}$
Delay (10dB)	$1.76 \mu \mathrm{~s}$	$h_{s / h_{a}}$	$35.2 \mu \mathrm{~s}$	$29.7 \mu \mathrm{~s}$	$28.8 \mu \mathrm{~s}$
Doppler (3dB)	188 Hz	$v_{s / v_{a}}{ }^{f} f_{f}$	9.3 kHz	6.1 kHz	7.5 KHz
Doppler (10dB)	326 Hz	$V_{s / v_{a}}{ }^{f} f_{f}$	16.1 KHz	11.8 KHz	13.7 KHz

1 Grazing Angle $=30^{\circ}$
2 In-plane geometry (horizontal polarization) with aircraft at 10 KM altitude (h_{a}) flying $200 \mathrm{~m} / \mathrm{s}\left(\mathrm{V}_{\mathrm{a}}\right)$; frequency of 1.65 GHz
3 In-plane geometry with low orbit satellite at 200 KM altitude (h_{s}) traveling at $7800 \mathrm{~m} / \mathrm{s}\left(\mathrm{V}_{\mathrm{s}}\right)$; frequency of $2.1 \mathrm{GHz}\left(\mathrm{f}_{\mathrm{s}}\right)$
4 From Table 4.6-2 - RHC polarization
5 From Table 4.6-3 - LHC polarization

4.6.7 Analysis Results

The primary purpose of this analysis was to examine the multipath parameters and assess their impact upon the recommended TDRSS signal waveform and, in particular, the acquisition strategy of this waveform. The analysis is preliminary and was intended to $\mathrm{tr}_{\mathrm{y}} \mathrm{y}$ to cover each of the areas to the extent necessary to determine the seriousness of the multipath problem relative to the recommended signal waveform.

As can be observed from the data presented in the tables of Section 4.6.r, the multipath parameters are in most cases greatly dependent upon the antenna configuration and the orientation of the user spacecraf relative to the synchronous satellite.

The period of the 1023 chip short code, as described in Section 2, is $341 \mu \mathrm{sec}$. The width of the main lobe of the autocorrelation function at mid-amplitude is about 1 chip period or 334 nsec . The differential delay and differential Doppler between the direct sig:al and the first tap out ut of the multipath signal is shown in table 4.6-1 as a function of the grazing angle. The differential delay varies from $98 \mu \mathrm{sec}$ to greater than 1300 $\mu \mathrm{sec}$ as the grazing angle increases from 7° to 85°. Thus, at the low grazing angles, the differential delay is such that the multipath signal falls between the main lobes of the direct signal. Hence, there is no impact to the main lobe of the direct signal and the basic problem is one of false locking to a multipath component. However, as the grazing angle increases, the differential delay increases to a point where the multipath component could overlap the main lobe and therefore result in some fading of the direct signa!. The overlap is probabilistic and the intensity is a function of the reflection coefficient and the scatter spreads both in time and frequency.

The differential Doppler is a function of the relative spatial vectors of the user satellite and synchronous satellite. From the data given in table 4.6-1, the differential doppler is small enough so that most of the multipath energy in the majority of the cases will fall within the receiver

IF bandwidth. In this preliminary analysis, all of the multipath energy is assumed to fall within the IF bandwidth.

Tables 4.6-4 and 4.6-5 summarize the tap energy percent capture for the RHC ans LHC polarization cases, respectively. The energy spread is given over 9 taps or an $18 \mu \mathrm{sec}$ interval. The energy for most of the cases is spread beyond these 9 taps as is seen from the 10 dB delay spread given in tables 4.6-2 and 4.6-3. However, except for high grazing angles, most of the energy is concentrated about the first few taps. A cumulative plot of the multipath energy capture as a function of time is given in figures 4.6-4 and 4.6-5 for the RHC and LHC cases, respectively. The results are plotted with elevation angle as a parameter. The mean square scatter coefficient is plotted as a function of grazing angle in figure 4.6-3 for several antenna polarization configurations. The scatter coefficient Γ is a measure of the total reflected energy captured in frequency and time and is given in $\mathrm{C} B$ below the direct signal.

Table 4.6-7 summarizes some of this iata pertinent to the analysis under consideration. The reflection coefficient is shown versus elevation angle for the RHC and LHC antennas. The percent energy captured in $2 \mu \mathrm{sec}$ by the tap with the largest energy captured is also shown as a function of elevation angle. For the TDRS application, we are interested in the energy captured within a single tap of its 3 Mcps signal or $0.33 \mu \mathrm{sec}$. For each of the cases, this was determined from figures 4.6-4 and 4.6-5 and is also given in table 4.6-7. Thus, knowing the relative total reflected energy and knowing the percentage of that energy which falls within a single chip time window, we can compute the minimum signal-to-interference level, assuming we refer to the multipath as interference. These parameters are also shown in table 4.6-7.

The significance of the signal-to-multipath interference parameter is shown in figure 4.6-6. This figure illustrates the allowable dynamic range of the received signal level above threshold before the possibility exists of locking onto the multipath signal. There are two underlying assumptions. The first assumption is that there is no differential antenna
4-128

Using this approach, the estimated fading bandwidth is plotted in figure 4.6-7 for the RHC antenna configuration as a function of elevation angle. The fading bandwidth is seen to vary from 100 Hz at low elevation angles to greater than 3 kHz at high elevation angles. The LHC case was not plotted since it follows very closely the RHC case, which is plotted. The significance of the fading bandwidth is that it determines the degree of correlation between samples taken at the output of the envelope detector during acquisition. Clearly, as the fading rate increases, the successive samples are less correlated and hence a larger signal-to-noise ratio is required to achieve a given detection probability.

From a system point of view, the more difficult it is to acquire a multipath signal, the more desirable the situation. Hence, the best case is when the samples are independent and the effect is as though the multipath component is Rayleigh fading. By making the Rayleigh fading assumption, the increase in the allowable dynamic range is approximately that shown by the dashed lines in figure 4.6-6. The results are plotted for both the acquisition and verify modes in accord with the parameters assumed in Section 4.5.

The dynamic range is least with a minimum value of 18.5 dB when the user receive antenna is RHC toward the surdite and LHC toward the multipath.

A specific case of figure 4.6-6 is shown in figure 4.6-8. In this case, a user antenna gain of -9 AB is assumed in the direction of the TDRS satellite and $a+3 d B$ gain is assumed in the direction of the multipath signal. For this case, with the RHC to the satellite and LHC to the multipath, there is slightly more than 6 dB of margin. For the case when the antenna is RHC toward both the satellite and multipath, the margin is much more favorable.

A summary of maximum signal dynamic range against multipath for several elevation angles and antenna configurations is shown in table 4.6-8. The entries in this table assume the worst case condition in that the multipath signal remains constant throughout the duration of the acquisition test.

4.6.8 Direct Signal Verification

There may well be conditions for which the multipath signal level exceeds the threshold, thereby opening the opportunity for the receiver to lock up to the multipath signal. One potential technique for avoiding locking to a multipath signal is to advance the local clock by an amount exceeding the maximum differential path delay after the first indication of acquisition. Search could then be continued perhaps at a slower rate and the loops enabled when the second indication of acquisition occurs. However, for this approach to work, the PN code period must exceed at least twice the maximum multipath delay. This is not the case for the short code as was shown in Section 4.6.7. The long code in quadrature with the short code could potentially be used to resolve the direct signal from the multipath. The difficulty in this case is that the maximum multipath delay is 13 msec for a 2000 km circular user orbit. At a 3 Mcps PN rate, the receiver must search over 39,000 PN chips to resolve the direct signal. At threshold for the long code using a sequential search strategy, it would require 3 minutes to search through this uncertainty region which is an excessive amount of time.

At the conclusion of short code acquisition the code tracking loop is enabled. When PN lock is indicated carrier acquisition is initiated. Normally carrier lock will occur within some prescribed period of time which is short compared to the short code acquisition time. One of the considerations is whether it is possible to code lock and carrier lock onto a multipath signal. Due to the diffuse nature of the multipath signal the cross-correlation function would tend to be smeared thus precluding the locking ont i stable point. Hence, PN code lock would not be achieved and the algorithm would return to the initial acquisition mode. If code lock is attained by the multipath signal, acquisition of the desired signal is precluded. One possible method of eliminating this problem is through the carrier lock loop. We will just briefly consider this possibility. To
achieve carrier lock, a circuit is used to iweep the VCO over the frequency uncertainty range. The bandwidth of the carrier tracking loop is nominally 32 Hz . The primary consideration is whether it is possible to carrier lrok onto a multipath signal. The multipath signal as discussed above consists of a large composit of reflected signals phase-shifted and frequency-shifted. The cumposite waveform is spread in frequency and time.

If we neglect the frequency spreading of the scattered signal, we can write the received multipath signal as

$$
\begin{equation*}
r(t)=\sum_{i=1}^{N} a_{i}\left(t-\tau_{i}\right) d\left(t-\tau_{i}\right) \cos \left(\omega_{c} t+\theta_{i}\right)+n(t) \tag{4.6-15}
\end{equation*}
$$

where $a_{i}\left(t-\tau_{i}\right)$ is the amplitude of the $i^{\text {th }}$ reflected signal with relative delay τ_{i}. The amplitude has Rayleigh statistics. The parame،er $d\left(t-\tau_{i}\right)$ represents the chip polarity and takes the value of either plus or minus one. The phase angle θ_{i} is uniformly distributed between 0 and π. The value $n(t)$ is the additive Gaussian noise.

If we assume that the delay lock loop is noncoherently tracking the chip sequence, then the output of the despreader can be written as

$$
\begin{equation*}
Z(t)=a_{j}(t) \cos \left(\omega_{I F}(t)+\theta_{j}\right)+n(t)+m(t) \tag{4.6-16}
\end{equation*}
$$

where the delay lock ioop has locked onto the $\mathrm{j}^{\text {th }}$ reflected multipath signal. Typically, one would anticipate that it would lock onto the largest signal which, for most elevation angles, is the earliest returned signal. The additive noise term $m(t)$ is the cross-correlation of the local PN reference with the N-1 multipath signals that are out of chip synch with the $j^{\text {th }}$ signal. Because of the processing gain of the receiver, this term appears as an additional noise factor.

If the carrier loop is to lock cnto the multipath signal, then it must lock to $Z(t)$ above. We will briefly consider the possibility of this occurring. First of all, the amplitude is Rayleigh fading and the phase θ_{j} which the carrier lock loop must track is uniformly distributed between 0 and 2π. We will consider two effects. The first is the signal-to-noise ratio in the loop bandwidth due to the multipath signal and the other is the fading bandwidth relative to the loop bandwidth.

We will assume that a signal-to-noise ratio of 10 dB is required in the loop bandwidth to give a lock indication. From table 4.6-8, we see that, at an elevation angle of 7°, the average reflected signal is 21 dB below the direct signal in the tap with the largest output. This is then the dynamic range which the direct signal can have so that, under the best conditions, the multipath would be below the carrier loop lock threshold. This dynamic range value changes, of course, as the antenna gain relative to the satellite and multipath varies. The second factor is that the code tracked multipath signal is fluctuating in amplitude and phase. The rate of these fluctuations is a function of the elevation angle (cf.figure 4.6-7). At a 7° elevation angle, this fading banawidth is approximately 150 Hz which is substantially larger than the 32 Hz loop bandwidth. In addition, as the elevation angle increases the fading bandwidth increases. Hence, coupling these two factors together, that is, the fading bandwidth which exceeds the loop bandwidth and the signal-to-noise ratio in the loop bandwidth, one would conclude tiat only under very unusual circumstances would the carrier loop be able to track the phase of the multipath signal. Therefore, the second check on having acquired a multipath signal is the subsequent inability to achieve carrier lock. To test for carrier lock the output of the coherent amplitude detector (CAD) can be compared with a threshold. If within a predetermined period of time, the threshold is not exceeded, then either a false acquisition or multipath acquisition of the short code is assumed. The receiver will then automatically unlock the short code loop and a new short code search would be initiated. Another
multipath rejection technique was suggested by Mr. L. Deerkoski. This technique will probably only work successfully if the long code is noncoherently detected. Coherent detection was recommended above for the long code. This was primarily due to the excessive acquisition time required for noncoherent sequential acquisition of the long code. However, by the use of multiple filters this time could be reduced considerably as shown in table 4.4-2.

The proposed technique takes advantage of the time spread of the multipath signal. Based on the Boeing data, the multipath energy is smeared over a number of chips. The extent to which this is true can be seen from figures 4.6-4 and 4.6-5. The rolloff in energy for most elevation angles is quite slow for 5 or more PN chips. This is in contrast to the PN correlation function which approaches zero when the received and reference codes are out of synchronism by one PN chip.

The suggestion is that this multipath time smear be used to discriminate the multipath from the direct signal. The concept could be implemented in the long code detection strategy by adding a multipath detection test subsequent to initial long code acquisition and verification. The multipath detection test could involve offsetting the long code by 2 PN chips relative to the synch position and determining whether correlation is within 10 dB of the initial long code synch correlation. If it is within the 10 dB or some threshold level to be determined, then the time spread of the arriving signal must be present to identify it as the multipath signal. If this is the case, the receiver would then unlock the short code loop and a new short code search would be initiated. If the multipath detection test fails, then time spread is absent and direct signal acquisition is declared.

With this technique, a direct signal verification step would follow the long code verification. The overall acquisition strategy would then take the following form.

Step 1 Short Code Acquisition
Step 2 Short Code Verification
Step 3 PN Code Tracking with Multipath Test
Step 4 Carrier Lock Search with Coherent Amplitude Detector Multipath Test
Step 5 Long Code Acquisition
Step 6 Long Code Verification
Step 7 Direct Signal Verification

To prevent the possibility of multipath capture of the PN tracking receiver, the PN code tracking circuit should be switched to the long code subsequent to direct signal resolution. Since the long code acquisition mode requires searching 128 PN code cells on the average, the addition of another cell for direct signal verification has a very small impact on the long code acquisition time. The entire acquisition process is summarized in the flow chart of figure 4.6-9.

Figure 4.6-9. Summary of Forward Link Acquisition Algorithm

4. 7 References

1. R. Dixon, R. Gold, and F. Kaiser, "Interim Report - TDRSS Telecommunications System PN Code innalysis, " Contract NAS22546, Robert Gold Associates, April 30, 1976.
2. A. Wald and J. Wolfowitz, "Optimum Character of the Sequential Probability Ratio Test," Ann. Math. Stat., 19:326, 1948.
3. A. Wald, Sequential Analysis, Wiley, New York, 1947.
4. DiFranco and Rubin, Radar Detection, Prentice-Hall, 1968.
5. M. B. Marcus and P. Swerling, "Sequential Detection in Radar with Multiple Resolution Circuits," IRE Transactions on Information Theory, IT-8 (3), pp. 237-245, April 1962.
6. Allan D. Thompson, "Multipath Characteristics of the Oceanic Tracking and Data Relay Satellite System (TDRSS) Channel," Boeing Commercial Airplane Company, April 15, 1976.
7. S. H. Durrani and H. Staras, "Multipath Problems in Communication Between Spacecraft and Stationary Satellite," RCA Review, March 1968.
8. A. J. Mallincrodt, "Propagation Error," Unpublished UCLA Short Course notes: Satellite Based Navigation, Traffic Control and Communications to Mobile Terminals, October 1969.
9. L. F. Deerkoski, "Direct Signal Resolution for TDRSS Alternate Signal Parameters," Technical Memo, April 16, 1976.

4* 4 encoding sequences which will achieve the TDRSS signal characteristics stated above and employ these techniques to generate code families having the desired properties.

5.2 Some Remarks on Code Tables

A linear shift register code generator is characterized by the number of its shift register stages and its feedback configuration. This information is equivalent to specifying an irreducible polynomial with binary coefficients whose degree is equal to the number of stages in the shift register (Figure 5.2-1). The correspordence between linear feedback shift registers and binary polynomials has been well documented ${ }^{(1,2)}$ and it has been shown that the properties of the sequences generated by the shift register are determined by the algebraic properties of its corresponding binary polynorıial.

Many tables of irreducible binary polynomials have been compiled and these serve as useful design tools for the configuration of feedback shift registers which will generate linear binary code sequences having specified properties. However useful these tables of irreducible polynomials may be, no one table or even all available tables used iogether are adequate for the complete design task. In this section, we explain the use of the tibles of irreducible polynomials, discuss the advantages and deficiencies of specific tables, and present supplementary techniques which provide the needed information for code generator design which is not available in currently available tables.

The tables by Marsh ${ }^{(3)}$ list all irreducible binary polynomials to degree 19 and the period of the sequences generated by the shift register corresponding to each polynomial. (All phase distinct sequences generated by a linear shift register corresponding to an irreducible polynomial have the same period.) Thus, these tables may be used to generate, for example, maximal linear PN sequences up to periori $2^{19}-1$. Since there is no way to determine larger degree irreducible polynomials from those of smaller degree, other tables must be used for PN codes of period exceeding $2^{19}-1$.

A more important deficiency of Marsh's tables concerns the relationship between the different irreducible polynomials of a given degree and hence between the binary coding sequences generated by the corresponding

shift registers. Taken individually, one maximal linear sequence is indistinguishable from another of the same period with r spect to most of its basic properties and thus there is generally no advantage or disadvantage in choosing one such sequence over any other when such a sequence is used by itself in a particular communication system. However, the relationship between two or more maximal linear sequences of the same period is strongly dependent upon the particular set of sequences chosen and the manner in which such sequences interact (e.g., their cross correlation function) may strongly affect the performance of systems in which such sets of codes are employed.

Marsh's tables provide no means of distinguishing between irreducible polynomials which correspond to linear sequences of the same period. This important defect is supplied in part by the tables of irreducible polynomials published by Peterson. (4) In these tables, each irreducible polynomial and the relationship between the polynomials is characterized by identifying the roots of the polynomials. Thus, in later work, when a particular pair of binary polynomials is specified as corresponding to linear feedback shift registers which generate maximal PN sequences having particularly desirable properties with respect to one another, this polynomial pair is described from the table of irreducible polynomials by specifying the roots of each polynomial as listed in the table. A prosedure requiring the selection of particular sets of polynomials of a given degree from the tabular listing will, in general, require a complete listing of the irreducible polynomials of that degree. Peterson's tables provide a complete listing of irreducible polynomials and their roots up to degree 16 and partial listings to degree 34. A complete listing of irreducible polynomials of degree 17 and degree 31 would require 7,710 and 69, 273, 666 entries, respectively. Thus, for example, a pair of 18 th degree binary polynomials which generate optimum codes for the TDRSS multiple access service category are specified by their roots 1 and 1025, as listed in Peterson's tables. The first polynomial of irreducible pclynomials.

Gold ${ }^{(2)}$ has compiled a table of maximal polynomials to degree 13. which also identify the roots of the listed polynomials in the same manner as do Peterson's tables. In addition, Gold's tables list the cross correlation function of the maximal PN sequences generated by the listed polynomials. These tables are thus extremely useful in selecting sets of maximal sequences which are most nearly orthogonal. When one maximal polynomial of a given degree is known, then all irreducible polynomials of this degree may be readily computed by a variety of known techniques, ${ }^{(2)}$ i.e., the table of irreducible polynomials may be compiled and their characterizing roots identified. However, there is no known technique for the direct computation of a maximal polynomial O_{4} a given degree and, hence, the production of an initial such polynomial must be largely a matter of trial and error. In this connection, Bradford ${ }^{(5)}$ has published tables which list selected maximal polynomials to degree 58. No identification of these polynomials by means of their roots is provided. Watson ${ }^{(6)}$ has published a list consisting of one maximal polynomial of each degree between 2 and 100 which, for most applications, solves the problem of finding an initial maximal polynomial. A summary of available tables discussed herein is provided in Figure 5. 2-2.
is present but the latter is not included in the incomplete tabular listing

\cdots	资等思 צ Z苗氝宗发号萿	8	\bigcirc	\bigcirc	哭	\％
＊		$\stackrel{8}{2}$	$\underset{\sim}{0}$	\bigcirc	盗	？
8	鬼 U 䓢	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	악	$\stackrel{m}{\sim}$	∞
$\cdots \bigcirc$		品	等	－	$\xrightarrow{\text { H }}$	或
＊	$\begin{aligned} & \text { 법 } \\ & \text { 品 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{N}{\wedge}$	$\underset{\sim}{2}$	\bigcirc	\bigcirc	\bigcirc
0				z O 0 4 4 3 3	言僉	禺

Figure 5．2－2．Descrıption of Available $\mathrm{T} \ldots$ es of Binary Polynomials

1

5. 3 Preferred Pairs of Linear PN Codes

Gold ${ }^{(2)}$ has shown that the relationship between PN codes corresponding to irreducible poiynomials of the same degree is not homogeneous and that, for example, a given set of maximal PN codes may be more nearly orthogenal than another set of such codes of the same period. In (7), Gold introduced the notion of a preferred pair of irreducible polynomials and gave the criteria in terms of their roots for specifying such pairs. A preferred pair of irreducible polynomials is one such that the corresponding linear PN sequences have minimal cross-correlation function. Thus, for e:ample, for degree 12 the maximum vaiue for the cross-correlation function for maximal PN sequences corresponding to the pair of polynomials $(10123,10727)$ is $\theta=1407$, while the maximum cross-correlation value corresponding to the preferred pair of polynomials $(10123,14501)$ is $\theta=127$, the difierence between the two cases heing 21 dB . A comparison of the cross-correlation function bet een the maximal PN sequences generated by a preferred pair and the worst case polynomial pair for polynomials to degree 13 is given in Figure 5.3-1.

A preferred pair of polynomials corresponding to a pair of feedback shift regısters which generate binary PN sequences with minimal corre' tion is determined by specifying the roots of each of the polynomials of the pair. If $\alpha^{1} \equiv 1$ is a root of any maximal polynomial of degree n, then the other member of the pair is the polynomial $\alpha^{2^{k}+1}=2^{k}+1($ any $k)$ for polynomials of odd degree and $\alpha^{2^{(n+2) / 2}+1} \equiv$ $2^{(\mathrm{n}+2) / 2}+1$ for polynomials of even degree. The maximuin value of the cross-correlation sidelobes for the sequerices corresponding to the preferred pair are then shown to be $2^{(\mathrm{n}+1) / 2}+1$ for n odd and $2^{(\mathrm{n}+2) / 2}+1$ for n even.

The TDRSS communication links will use a code pair consisting of two PN codes, one modulating the I channel and one modulating the Q channel of a staggered quadriphase $P N$ modulation technique. In order to achieve maximum isolation between these channels, it is recommended

that the pairs of maximal PN codes chosen for this purpose in single access forward and return links be preferred pairs, or codes generated using preferred pairs.

To find the preferred pair, we select an arbitrary maximal polynomial having root $\alpha^{j} \equiv j$ from its listing in the table of irreducible polynomials and then find the polynomial having root $\left(\alpha^{j}\right)^{t} \equiv j \cdot t$ from the same table, where t is as given above. Clearly, only the tables of Peterson and Gold can be used for this procedure, since only these tables assign roots to each polynomial. For preferred pairs of polynomials to degree 16, computational techniques must be used to obtain the polynomial having the specified roots. A computer program for the generation of preferred pairs has been written (Appendix F. 5), and a table of the preferred pairs for code lengths as currently described in the TDRSS User's Guide was generated, and is included in Appendix E. 5. The code polynomials are listed in octal notation.

5.4 Generation of TDRS Band Spreading Codes

5.4.1 Introduction

The basic bandspreading codes recommended for use in the TDRSS MA service are balanced Gold codes of the appropriate length. In this section, we describe the method for implementing the shift register configuration and determining the register initial conditions which will generate these codes.

The family of $2^{n}+1$ Gold codes of period $2^{n}-1$ is generated by taking the modulo 2 sum of a preferred pair of maximal PN sequences where each of the $2^{n}-1$ relative phases of the two maximal sequences produces one of the $2^{n}-1$ members of the family. It has been shown ${ }^{(8)}$ that the codes of the family fall into one of three categories according to the relative number of ones and zeroes in the code sequence:
(a)

Number of ones in code sequence

> Number of codes of family having this number of ones
(c)

$$
2^{n-1}
$$

$$
2^{n-1}+1
$$

$$
\text { (b) } \quad 2^{n-1}+2^{(n-1) / 2}
$$

$$
2^{n-2}-2^{(n-3) / 2}
$$

(c)

$$
2^{n-1}-2^{(n-1) / 2}
$$

$$
2^{\mathrm{r}-2}+2^{(\mathrm{n}-3) / 2}
$$

We note that the $2^{\mathrm{n}-1}+1$ codes of category (a) have $2^{\mathrm{n}-1}$ ones and hence (since the code length is $2^{\mathrm{n}}-1$) $2^{\mathrm{n}-1}-1$ zeroes. The codes of this category are thus balanced in the sense of having only one more one than zeros (this is the best possible balance since the codes have odd period). The codes of categories (b) and (c) have a surplus and deficiency of ones, respectively, and thus have less desirable spectral characteristics. In order to generate balanced code members of the family, we must determine and select the proper relative phases of the two original maximal sequences. In what follows we describe how this is accomplished.

5.4.2 Characteristic Phase of a Maximal PN Sequence

Each maximal PN sequence has a natural "characteristic" phase which is unique to it. ${ }^{\text {(9) }}$ The sequence in this phase position has many useful properties. For example, if a maximal PN sequence in its characteristic phase is sampled by every other bit, the result is the same sequence. The required relative phases of the preferred pair of maximal sequences in order to generate balanced members of the code family are described with reference to their characteristic phase and hence it is necessary to show how the characteristic phase and the shift register initial conditions which determine the c'laracteristic phase are determined. If $f(x)$ is the $n^{\text {th }}$ degree binary polynomial corresponding to the maximal PN shift register, than any phase of the maximal sequences generated by the shift register can be represented by the ratio $g(x) / f(x)$, where $g(x)$ is a binary polynomial of degree less than n. Long division of these polynomials results in a formal binary power series whose binary coefficients are the bits of the sequence generated by the shift register. The formula for the polynomial $g(x)$ which results in the characteristic phase for the maximal sequence has been shown ${ }^{(9)}$ to be

$$
\begin{array}{ll}
g(x)=\frac{d(x f(x))}{d x} & \text { for } f(x) \text { of odd degree } \\
g(x)=f(x)+\frac{d(x f(x))}{d x} & \text { for } f(x) \text { of even degree }
\end{array}
$$

Here differentiation is carried out in the usual way and then the coefficients are interpreted modulo 2.

For example, the characteristic phase for the maximal PN sequence generated by the 3 -stage shift register corresponding to the polynomial $f(x)=1+x^{2}+x^{3}$ is found as follows:

$$
g(x)=\frac{d(x f(x))}{d x}=\frac{d\left(x+x^{3}+x^{4}\right)}{d x}=1+3 x^{2}+4 x^{3}=1+x^{2} .
$$

The characteristic phase for maximal sequences is thus represented by the quotient

$$
\frac{1+x^{2}}{1+x^{2}+x^{3}}=1+0 \cdot x+0 \cdot x^{2}+\ldots
$$

and the initial conditions of the 3 -stage shift register which will result in the characteristic phase are [100].

5.4.3 Relative Phases Required for Balanced Codes

The relative phases in which the preferred pair of maximal PN sequences must be added in order to result in a balanced member of the family may now be described in terms of the characteristic phases of the preferred pair.

Let a and b be the preferred pair of maximal sequences in their characteristic phase. It is easily seen from the polynomial representation that a characteristic maximal sequence generated by a shift register with an odd number of stages has its initial bit equal to one. Any relative phase shifts of the sequences a and b which are obtained by shifting the sequence b until its initial one corresponds to a zero in the sequence a will result in a balanced Gold code when the two sequences are added together. For example, if the two maximal characteristic sequences a and b are given as:

$$
\begin{aligned}
& \mathrm{a}=1110100 \\
& \mathrm{~b}=1001011
\end{aligned}
$$

shifting the sequence b cyclically three, five or six positions to the rigat places the initial one of the characteristic sequence b under a zero of the sequence a. Adding the two sequences in each case produces a balanced code, e.g.,

$$
\begin{aligned}
a & =1110100 \\
b_{3} & =0111001 \\
a+b_{3} & =1001101
\end{aligned}
$$

$$
\begin{aligned}
a & =1110100 \\
b_{5} & =0101110 \\
a+b_{5} & =1011010 \\
a & =1110100 \\
b_{6} & =0010111 \\
a+b_{6} & =1100011
\end{aligned}
$$

Shifting the sequence b by any other phase and adding the resultant sequences yields an unbalanced code:

$$
\begin{aligned}
a & =1110100 \\
b_{1} & =1100101 \\
a+b_{1} & =0010001
\end{aligned}
$$

5.4.4 Determination of Initial Conditions

The initial conditions for the Gold code generator which will result in balanced codes is now readily determined. The required shift register configuration is shown in Figure 5.4-1.

Figure 5.4-1. Code Generator Configuration

The initial conditions for the shift register (B) corresponding to the polynomial $f_{2}(x)$ are those initial conditions which determine the characteristic phase of the maximal PN sequence generated by shift register (B). These initial conditions are determined from the representation of the characteristic sequence $\left[d\left(x f_{2}(x)\right) / d x\right] / f_{2}(x)$ by taking the first n coefficients obtained by performing the indicated long division.

The initial conditions for the shift register (A) corresponding to the polynomial $f_{1}(x)$ are only subject to the constraint that the first stage con*ain a zero. This corresponds to a relative phase shift of the characteristic sequences a and b such that sequence a is shifted such that its initial bit corresponds to a zero in the sequence b. We have noted in Section III that the sum of two such relative phase shifts results in a balanced Gold code.

As an example of the above technique, we construct the shift register configuration required to generate balanced Gold codes of period ($2^{19}-1$). A preferred pair of 19-stage maximal polynomials is found in the table contained in (10).
(A) $2105575-1+\mathrm{x}^{2}+\mathrm{x}^{3}+\mathrm{x}^{4}+\mathrm{x}^{5}+\mathrm{x}^{6}+\mathrm{x}^{8}+\mathrm{x}^{9}+\mathrm{x}^{11}+\mathrm{x}^{15}+\mathrm{x}^{19}$
(B) $2000605-1+\mathrm{x}^{2}+\mathrm{x}^{7}+\mathrm{x}^{8}+\mathrm{x}^{19}$

The characteristic sequence generated by the shift register corresponding to the polynomial (B) is represented by the ratio
$\frac{g(x)}{1+x^{2}+x^{7}+x^{8}+x^{19}}$ where $g(x)=\frac{d}{d x}\left(x+x^{3}+x^{8}+x^{9}+x^{20}\right)=1+x^{2}+x^{8}$
and the initial conditions required for the register (B) are found as the coefficients of the quotient of the two polynomials:
$\frac{1+x^{2}+x^{8}}{1+x^{2}+x^{7}+x^{8}+x^{19}}=1+x^{7}+x^{9}+x^{11}+x^{13}+x^{14}+x^{17}+x^{18}+\ldots$
Initial condition for (B) register $=\left[\begin{array}{lllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0101010110011\end{array}\right.$.

The only constraint on the initial conditions of the (A) register is that the entry in the first stage be zero. Given that 2^{k} different codes are required, e.g., 32 codes for the TDRS forward link, then a simple configuration for the initial conditions of the A register is to set stages 1 and $k+2$ through n to zero while each of the remaining 2^{k} possible initial conditions for the k stages 2 through $k+1$ determine 2^{k} distinct balanced Gold codes. The resultant configuration for the generation of balanced Gold codes of period $2^{19}-1$ is shown in Figure 5.4-2.
(A)

(B)

Figure 5.4-2. Generation of Balanced Codes of Period 2 ${ }^{19}$-1

The Effect of Clock Error on Acquisition

5.5.1 Introduction

In this section, we consider the effect of clock error on acquisition of a PN signal. We suppose that the chipping rate c of the received signal is in error by one part in n and we compute the acquisition time of the received signal as a function of the error free acquisition time and the ratio $r=n / c$ of clock accuracy to chipping rate. We find that the effect of clock error on the acquisition time increases with increasing error-free acquisition time (no clock error). This is to be expected, since the effect of clock error is to cause the received code to become increasingly decor related with time. Specifically, for an error-free acquisition time of not more than 20 seconds, a ratio of clock accuracy to chipping rat. of 4×10^{2} will add less than 1 second to the acquisition time.

5.5.2 Notation

Let $\boldsymbol{E}=$ clock error in chips/sec.
Let $P=$ code rate in chips/sec.
Then, $\left(\frac{\varepsilon}{\rho}\right)=\frac{1}{n}=$ clock accuracy

$$
\Delta=\frac{1}{\rho}=\text { correct chip width }
$$

$$
\Delta_{c}=\frac{1}{\rho+\varepsilon}=\text { erroleous chip width }
$$

$$
\Delta_{c}=\frac{1}{\rho+\varepsilon}=\frac{1}{\rho}\left(\frac{1}{1+\frac{\varepsilon}{\rho}}\right) \sim \Delta\left(1-\frac{\varepsilon}{\rho}\right)=\Delta\left(\frac{n-1}{n}\right)
$$

5.5.3 Analysis

Suppose the received and reference codes are in sychronism and that the clock is in error by $\left(\frac{\varepsilon}{r}\right)=\frac{1}{n}$. Since the ratio of the correct chip width to the erroneous chip width is $\frac{n-1}{n}$, each successive chip becomes decorrelated by an additional $\frac{1}{n}$ of its width and the codes are completely decorrelated after n chips.

The correlation function between the received and reference codes when the clock is in error by $\frac{1}{n}$ may be written as

$$
\begin{aligned}
\boldsymbol{\theta}= & {\left[a(0) a(0)\left(\frac{n-1}{n}\right)+a(0) a(1) \frac{1}{n}\right]+\left[a(1) a(1)\left(\frac{n-2}{n}\right)+a(1) a(2) \frac{2}{n}\right] } \\
& +\cdots\left[a(i) a(i) \frac{n-(i+1)}{n}+a(i) a(i+1)\left(\frac{i+1}{n}\right)\right]+\cdots \\
\theta= & \sum_{i=0} a(i) a(i) \frac{n-(i+1)}{n}+\sum_{i=0} a(i) a(i+1)\left(\frac{i+1}{n}\right) .
\end{aligned}
$$

Since the out-of-phase terms are uncorrelated, the second sum may be taken as zero, and we have

$$
\theta=\frac{1}{n} \sum_{i=1}^{w}(n-i)=w\left[1-\frac{w+1}{2 n}\right] \sim w\left[1-\frac{w}{2 n}\right] .
$$

where w is the number of chips over which we integrate.
The ratio of the correlation function when the clock is correct to the correlation function when the clock is in error is given by $\left[1-\frac{w}{2 n}\right]$ and the maximum degradation which is achieved for $\mathrm{w}=\mathrm{n}$ is seen to be 6 dB . A plot of the degradation of θ as a function of the number of chips integrated is given in figure 5.5-1.

For a 6000 Hz doppler on the S-band carrier, the maximum doppler on the PN clock is approximately $\varepsilon=10 \mathrm{chips} / \mathrm{sec}$, which results in a clock accuracy of $n=3 \times 10^{5}$. The degradation in the correlation function as a function of the integration interval is shown in figure 5.5-1.

5.5.4 Effect of Clock Accuracy on Integration Time

The starting point of this analysis is the following equation which was derived in Section 4.0, where acquisition time T_{a} for an accurate clock is given by

$$
T_{a}=\frac{P_{i}}{\theta^{2}}\left(\frac{E}{N_{0}}\right)\left(\frac{N_{0}}{S}\right)
$$

Using the conclusion of the above section, we have

$$
\theta^{\prime}=\theta\left(1-\frac{T c}{2 n}\right)
$$

where $\theta^{\prime}=$ degraded correlation function
n = clock accuracy (i.e., 1 part in n)
$T=$ new acquisition time
$c=$ chipping rate.
Substituting θ^{\prime} into the equation for T_{a}, we have

$$
T=\frac{P_{i}\left(\frac{E}{N_{0}}\right)\left(\frac{N_{0}}{S}\right)}{\theta^{2}\left(1-\frac{T c}{2 n}\right)^{2}}=-\frac{T_{a}}{\left(1-\frac{T c}{2 n}\right)^{2}}=\frac{T_{a}}{\left(1-\frac{T}{2 r}\right)^{2}}
$$

where r is the ratio of clock accuracy to chipping rate.
This equation may be used to compute T, the acquisition time with clock error as a function of r, the ratio of clock accuracy to chipping rate with T_{a}, the acquisition time with an accurate clock as a parameter.

For large $r\left(\frac{T}{2 r} \ll 1\right)$, we have
$T=\frac{T_{a}}{\left(1-\frac{T}{r}\right)}$
$T=\frac{r-\sqrt{r^{2}-4 r T_{a}}}{2}$.

The acquisition times are plotted as a function of r for various error-free acquisition times in Figure 5.5-2.

5. 6 Code Libraries for TDRS

5.6.1 Forward Link Multiple Access Library

This code library consists of 100 code pairs. The first member of each pair is a code of period ($2^{10}-1$) • (256) (long code). The second member of each pair is a code of period $\left(2^{10}-1\right)$ (short code). The 100 long and short codes are chosen as balanced members of respective Gold families. In what follows, we describe the technique for generating the required library of code pairs.

5.6.1.1 Forward Link Multiple Access Long Code

The code family from which the long code library is selected may be either a set of maximal PN sequences, each of period $2^{18}-1$, or a set of balanced Gold codes generated by a preferred pair of maximal PN sequences. The former approach has the advantage of a simpler implementation (18 shift register stages versus 36 shift register stages) and the code library for this approach consists of the listing of maximal PN codes of period ($2^{18}-1$) given in Appendix E. 5.

In what follu vs, we describe the shift register configuration to be used for the generation of 127 balanced Gold codes of period $2^{18}-1$.

The preferred pair of maximal PN generators used to generate the desired family is selected from the table of Appendix E.5. The description of one such preferred pair is given in table 5.6-1.

Table 5. 6-1. Preferred Pairs for Generation of Code Family of Long Codes

Octal Representations	Polynomial
1000201	$1+x^{7}+x^{18}$
1325427	$1+x+x^{2}+x^{4}+x^{8}+x^{0}+x^{11}+x^{13}+x^{15}+x^{16}+x^{18}$

The shift register configuration which will generate the desired code family is illustrated in figure 5.6-1.

Figure 5.6-1. Long Code Generator Forward Link Multiple Access

In order to generate balanced members of the code family, the relative phases of the two maximal generators must be specified. This is accomplished by requiring that the initial bit of the A_{L} register be zero and that the initial conditions of the B_{L} register be as given in figure 5.6-1. The 7 unspecified initial conditions of the A_{L} register will result in 127 kalanced Gold codes whose cross-correlation peaks are -48 dB .

Simmary of Parameters for Multiple Access Long Code

(a) A_{L} register feedback - $1325427-$

$$
1 \cdot x+x^{2}+x^{4}+x^{8}+x^{9}+x^{11}+x^{13}+x^{15}+x^{16}+x^{18}
$$

(b) B_{L} register feedback $-1000201-1+\mathrm{x}^{7}+\mathrm{x}^{18}$
(c) Initial conditions for A register - $0000000000 \times \times \times \times \times \times \times 0$
(d) Initial conditions for B register - 000010000001000000

5.6.1.2 Forward Liak Multiple Access Short Code

The code family from which the short code library is selected is generated by the preferred pair of 10 -stage maximal generators given in table 5.6-2.

Table 5.6-2. Preferred Pair for Generation of Codes for Forward Link Command Channel

Octal Representation	Polynomial
3515	$1+\mathrm{x}^{2}+\mathrm{x}^{3}+\mathrm{x}^{6}+\mathrm{x}^{8}+\mathrm{x}^{0}+\mathrm{x}^{10}$
2011	$1+\mathrm{x}^{3}+\mathrm{x}^{10}$

The shift register configuration which will generate the desired code family is illustrated in figure 5.6-2.

Figure 5.6-2. Short Code Generator Forward Link Multiple Access
5.6.2 Code Library for Mode 2 Return Link and Its Properties

The code library for the Mode 2 return link consists of 100 code pairs of period ($2^{11}-1$) selected from the balanced members of a Gold family. The code family from which the code library is selected is generated by the preferred pair of 11-stage maximal generators given in table 5.6-3.

Table 5.6-3. Preferred Pair for Generating Code Library for Mode 2 Return Link

Octal Representation	Polynomial
4445	$1+\mathrm{x}^{2}+\mathrm{x}^{5}+\mathrm{x}^{8}+\mathrm{x}^{11}$
4005	$1+\mathrm{x}^{2}+\mathrm{x}^{11}$

The shift register configuration which will generate the desired code family is illustrated in figure 5.6-3.

Figure 5.6-3. Generator for Mode 2 Return Link Codes

The requirement that the first bit of the A_{M} and C_{M} registers be zero and that the in tial conditions of the B_{M} register be as indicated in figure 5. 6-3 guarantees that the code generator will produce balanced codes. Each subset of initial conditions $[x \times \ldots x]$ of the A_{M} and C_{M} registers determines a unique code, while the alternate values of 0 and 1 in the third stage determine the code pair.

Properties of the Code Library for Mod 2 Return Link

The acquisition performance of the Mod 2 return link is dependent upon the distribution of the cross-correlation sidelobes and the RMS value of the cross-correlation functinn of the code library used for this link. Two algo thms have been developed which make the determination of this distribution feasible; these procedures are documented in the following sections. In this section, we summarize one of these algorithms
and the properties of the recommended Mod 2 return link code family whose implementation was described above.

The cross-correlation sidelobes of any two codes of the recommended family have magnitude $65 / 2047$ or $63 / 2047$, which is approximately 30 dB down from the main correlation peak. The general formula for the number of these sidelobes which occur in the cross-correlation function between two codes a and b of such a family of codes of period $2^{\mathrm{n}}-1$ is shown in Appendix A. 5 to be

$$
x+y=\frac{\sum_{\theta}^{2}+2 \sum_{\theta+\left(2^{n}-1\right)}}{2^{n+1}}
$$

where

$$
\begin{aligned}
& \sum_{\theta}^{2}=\sum_{\tau=0}^{2^{\mathrm{n}}-2} \theta^{2}(\mathrm{a}, \mathrm{~b})(\tau)=\sum_{\tau=0}^{2^{\mathrm{n}}-2} \theta(\mathrm{a}, \mathrm{a})(\tau) \theta(\mathrm{b}, \mathrm{~b})(\tau) \\
& \sum_{\theta}=\sum_{r=0}^{2^{\mathrm{n}}-2} \theta(\mathrm{a}, \mathrm{~b})(\tau)=\theta(\mathrm{a}) \cdot \theta(\mathrm{b}) .
\end{aligned}
$$

The above formula expresses the number of sidelobes in the crosscorrelation function of any pair of codes in terms of the parameters of each of the individual codes. Thus, once the required parameters are computed for each member of the family, the number of sidelobes may be determined using the above formula, rather than by the lengthy process of computing the cross-correlation functions. For a famıly of n codes, the required computation, using this technique, is reduced by a factor of n.

The sidelobe distribution data for the code family of 100 codes described above is given in table 5.6-4. There are (100)(101)/2=5050 code pairs and, hence, 5050 cross-correlation functions. The data in the table presents the cumulative frequency function for the number of sidelobes (of magnitude 65 or 63) which occur in each of the 5050 crosscorrelation functions. Thus, for example, 104 of the 5050 crosscorrelation functions have 1070 sidelobes or more. This cumulative frequency function is plotted in figure 5.6-4.

Table 5.6-4. Probability Distribution of Sidelobes in Mode 2 Codes of Period $2^{11}-1$

NO. OF CUM. PROBABILITY SIDE LOBES FREQ. DISTRIBUTION

1115	2	. 000
1110	3	. 001
1105	4	. 001
1100	6	. 001
1095	7	. 001
1090	12	. 002
1085	20	. 004
1080	39	. 008
1075	68	. 013
1070	104	. 021
1065	166	. 033
1060	265	. 052
1055	413	. 082
1050	594	. 118
1045	869	. 172
1040	1209	. 239
1035	1557	. 308
1030	1991	. 394
1025	2400	. 475
1020	2862	. 567
1015	3282	. 650
1010	3675	. 728
1005	4039	. 800
1000	4348	. 861
995	4564	. 904
990	4755	. 942
985	4852	. 961
980	4909	. 972
975	4974	. 985
970	4999	. 990
965	5028	. 996
960	5034	. 997
955	5047	. 999
950	5049	1.000
945	5050	1.000

5.6.3 Dedicated Return Link Mode 1 Code

In this section, we descr ibe a library of code pairs, each consisting of a maximal PN shift register code and a proper phase shift of this cnde which can be obtained from it via the shift-and-add property discussed in Appendix A.5. The phase difference between the PN codes of each pair is required to be at least 5000 chips. Any prespecified phase shift of a maximal PN code may be generated by taking an appropriate modulo 2 linear combination of the outputs of the taps of the shift register generating the code, as indicated in figure 5.6-5.

Figure 5.6-5. Generation of Phase Shifts of Maximal PN Sequences

There are $2^{18}-1$ settings of the indicated switches, each corresponding to a phase shift $a_{j}\left(j=0,1, \ldots, 2^{18}-1\right)$ of the maximal PN sequence a_{0}. Thus, any prespecified phase shift a_{k} may be obtained by the proper switch settings. We may, however, obtain phase shifts in excess of 5000 chips by adding the sequence a_{0} to the output sequence obtained from closing one of the switches as indicated in iigure 5.6-6.

This is to be expected, since the probability of a phase shift generated at random being less than 5000 chips is less than 2×10^{-2}. The code library given in Appendi: B. 5 lists the phase shift a_{j} obtained when the output sequence is added modulo 2 to the output sequence obtained from the kth tap of the shift register. The computer program used for obtaining this data is included in Appendix C. 5.

Figure 5.6-6. Generation of Phase-Shifted Version of Maximal PN Code

5. $7 \quad$ Listing of TDRSS User Code Libraries

A listing of the TDRSS user code libraries is contained in table 5.7-1. In what follows, we give a brief description of the contents of this table and reference the appropriate sections of this report for further details.

Column 2 contains the user-unique initial conditions for the seven stages of the 10 -stage A register used to generate the 1023 bit code for the forward link command channel, as illustrated in figure 5.6-2. The code generator configuration and the remaining initial conditions for the A and B registers are chosen so that the user-unique initial conditions can consist of the binary representation of the user number.

Column 3 contains the octal representation of the feedback taps for maximal PN generators of period $2^{18}-1$ to be used for the forward link range channel: Each feedback configuration requires no more than six feedback taps.

Column 4 contains the octal representation of the feedback taps for maximal PN generators of period $2^{18}-1$ to be used for the Mode 1 return link. These feedback configurations each have the pronerty that, if the output of the first stage is added modulo- 2 to the output of the tenth stage, the resultant code differs in phase from the code at the first stage by at least 20,000 cnips. The exact phase difference betwern the two codes is given in Column 5. The numbering of the shift register stages is further described in Appendix B.5. Each feedback configuration of this code library will use no more than eight feedback taps.

Column 6 contains initial conditions for the seven stages of the A and C registers of the configurations generating Mode 2 return link codes, as described in 5.6.2. As in the case of the forward link range channel, these initial conditions mav be taken to be the binary representation of the user number.

Column 7 contains the octal representation of the feedback taps for maximal PN generators of period $2^{18}-1$ to be used as Alternate Mode 1 return link codes. No more than six feedback taps are used for any configuration of this library.

Table 5.7-1 (continued)

1	2	3	4	5	6	7
User Number	Forward Link Command Channel Initial Conditions Register A	Fr,rwaid Link Range Channel Feedback Taps	Mode 1 Return Link Feedback Taps	Morle 1 Return Link Channel Phase Difference in Chips	Mode 2 Return Link Initial Conditions Registers A \& C	Alternate Mode 1 Return Link Feedback Taps
26	0101100	1030145	1201011	38185	0101100	1004313
27	1101100	1030161	1007543	117247	1101100	1004405
28	0011100	1030215	1013625	98985	0011100	1004447
29	1011100	1030303	1007501	40045	1011100	1004455
30	01111.0	1030311	1014555	49892	0111100	1004545
31	1111160	1030321	1007417	91623	1111100	1004623
32	0000010	1030341	1716201	124677	0000010	1004643
33	1000010	1030407	1007315	124514	1000010	1004645
34	0100010	1034013	1015037	25407	0100010	1004711
35	1100010	1034051	1007263	79938	1100010	1005035
36	0010010	1034105	1230121	53510	0010010	1005213
37	1010010	1035021	1014365	38428	1010010	1005225
38	0110010	1049043	1014475	33738	0110010	1005305
39	1110010	1040051	1007165	45911	1110010	1005341
40	0001010	1040117	1141703	30125	0001010	1005431
41	1001010	1040205	1007121	57531	1001010	1005451
42	0101010	1040247	1021553	26301	0101010	1005521
43	1101010	1040361	1001705	83753	1101010	1006113
44	0011010	1040463	1020277	22264	0011010	1006161
45	1011010	1040465	1001661	59945	1011010	1006605
46	0111010	1040545	1017611	113772	0111010	1007031
47	1111010	1040645	1001651	106789	1111010	1010045
48	0000110	1340721	1017511	103124	0000110	1010051
49	1000110	1041011	1001631	65712	1000110	1010463
50	0100110	1041035	$101731:$	58281	0100110	1010551

1	2	3	4	5	6	7
User Number	Fo.-ward Link Command Channel Inilial Corditions Register A	Forward Lini Range Channel Feedback Taps	Mode 1 Return Link Feedback Taps	Mode 1 Return :. nk Channel Phase Difference in Chips	Mode 2 Return Link Initial Conditions Registers A \& C	Alternate Mode 1 Return Lirk Feedback Taps
51	1:00110	1041207	1011625	112199	1100110	1010613
52	0610110	1041225	1017161	123002	0010110	1010615
53	1010:10	1041423	1001607	77447	1010110	1010741
54	0110110	1041445	1017071	25412	0110110	1011041
55	1110110	1041451	1001567	130143	1110110	1011245
36	0001110	1041505	1016705	y 533 ?	0001110	1310001
57	1001110	1200441	1021473	95661	1001110	1436001
58	0101110	1640441	1021475	111502	0101110	+136001
59	1101110	1320441	1001453	62504	1101110	1561001
60	0011110	1150441	1133015	74581	0011110	1140401
61	1011110	1230441	1001427	130092	1011110	1060401
$6{ }^{-}$	0111110	1244441	1101533	91020	0111110	1360401
63	1111110	1114441	1001361	94465	1111110	1550401
64	0000001	1422441	1402335	+2879	0000001	1170401
65	1000001	1062441	1001253	39646	1000001	1104401
66	0100001	1046441	1301323	25494	0100001	1024401
67	1100001	1221441	1001165	128965	1100001	1022401
68	0010001	1411441	1015681	115634	0010001	1446401
69	1010001	1111441	1001141	25479	1010001	1216401
70	0110001	1045441	1025051	78323	0110001	1036401
71	111000:	1203441	1001023	- 03808	1110001	1101401
72	0001001	1700241	1021355	42612	0001001	1341401
73	1001001	1640241	1010615	98036	1001001	1521401
74	01010%	1460241	1021363	27778	0101001	1305401
75	110103:	1260241	1000757	77032	1101001	1123401

5.8 Modular Implementation of Shift Register Code Generators

In this section, we discuss the modular configuration for shift register generators. The output of these shift registers is equivalent to the simple shift registers; however, the modular configuration has some advantages in its hardware implementation. The general n -stage linear shift register and the equivalent n-stage modular register are illustrated below in figure 5.8-1.

(b) n -Stage Modular Shift Register

Figure 5.8-1. Equivalent n-Stage Shift Registers

In figure 5.8-2 below, we illustrate the equivalence between the simple and modular form of the shift register using the A_{S} short code generator of figure 5.6-2. The polynomial corresponding to this shift register generator is

$$
f(x)=1+x^{2}+x^{3}+x^{6}+x^{8}+x^{9}+x^{10}
$$

and hence

$$
f(0)=f(2)=f(3)=f(6)=f(8)=f(9)=f(10)=1
$$

and

$$
f(1)=f(4)=f(5)=f(7)=0 .
$$

(b) Equivalent Modular Shift Register

Figure 5.8-2. Equivalent 10-Stage Simple and Modular Shift Regísters

We note that the general rule for constructing the n-stage modular register from the shift register polynomial is that the output of the last stage on the right of the modular register feeds back to the kth stage (counting from left to right) if and only if $f(n-k+1)=1$. Thus, in the above example, the output of the tenth stage is fed back to stage $k=3$ since $f(10-3+1)=f(8)=1$.

5.9 References

1. N. Zierler, "Linear Recurring Sequences," J. Soc. Indust. Appl. Math., Vol. 7, No. 1, March 1959, 31-48
2. Robert Gold Associates, 'Properties of Linear Binary Encoding Sequerces, " November 1973.
3. R. W. Marsh, "Tables of Irreducible Polynomials Over GF(2) Through Degree 19," Clearinghouse of Federal Scientific and Technical Information, U.S. Department of Commerce, October 24, 1957.
4. W. W. Peterson, Error-Correcting Codes, The MIT Press and John Wiley \& Sons, Inc., 1961.
5. M. Bradiord, "Some Further Generating Polynomials for Binary M-Sequences (U)," DRTE Report No. 1144, Defence Research Telecommunications Establishment, Canada, June 1965.
6. E. J. Watson, ''Primitjve Polynomials (Mod 2),' J. Soc. Indust. Appl. Math., Vol. 10, INo. 1, March 1962, 368-369.
7. R. Gold, "Optimal Binary Sequences for Spread Spectrum Multiplexing, ' IEEE Transactions on Information Theory, IT-13, No. 4, October 1967, 619-621.
8. R. Gold, "Maximal Recursive Sequences with 3-Valued Recursive Cross-Correlation Functions, " IEEE Transactions on Information Theory: Vol. IT-14, No. 1, January, 1968, 154-156.
9. R. Gold, "Characteristic Linear Sequences and Their Coset Functions," J. SIAM Appl. Maih., Vol. 14, No. 5, September 1966, 98@-985.
10. W. W. Peterson, Error Correcting Codes, The MIT Press and John Wiley \& Sons, Inc., 1961
11. Magnavox Co., "TDRSS Telecommunications Study, Phase I Final Report," MRL Report R-4953, September 15, 1974.

APPENDIX A. 5

CORRELATION PROPERTIES OF GOLD CODES

A. 5.1 INTRODUCTION

In this appendix, we give a detailed description and derivation of the two algorithms which may be used to determine the data presented in section 5.6.2.

Let $G(a, b)$ be the family of Gold codes generated by taking all linear combinations of the maximal PN sequences a and b. The cross-correlation function of any two members of the family $G(a, b)$ takes on values which are selected from the values of the cross-correlation function of the maximal sequences a and b. Thus, once a bound on the cross-correlation function of the sequences a and b has been determined, the same bound holds for the correlation function of any two sequences of the family $G(a, b)$.

The distribution of the ross-correlation values and the rms value of the cross-correlation function for any pair of Gold codes are of interest in the calculation of the acquisition performance of these codes. However, although this distribution and rms value have been determined for preferred pairs of maximal sequences and have been used as an approximation to the distribution and rms value for the corresponding family of codes generated by the pair of maxinal PN sequences, the precise distribution of correlation values and the rms value for the codes of the family have not been determined. In what follows, we present two algorithms for the determination of the distribution of the cross-correlation values of any pair of Gold codes.

A. 5. 2 RESULTS FOR MAXIMAL PN SEQUENCES

We first note the distribution function of the cross-cnrrelation values of a preferred pair of maximal PN sequences and the rms vilue of the crosscorrelation function of any two maximal PN sequences.

A.5.2.1 Distribution of Correiation Values

The following result holds for the distribuiton of the $2^{n}-1$ correlation values of a preferred pair of maximal PN sequences of period $2^{n}-1$ (n odd).
$\frac{\theta(a, b)}{-\left(2^{(n+1) / 2}+1\right)}$
$\left.2^{(n+1) / 2}-1\right)$
Frequency of occurrence

$$
\begin{aligned}
& 2^{n-2}-2^{(n-3) / 2} \\
& 2^{n-2}+2^{(n-3) / 2} \\
& \frac{2^{n-1}-1}{2^{n}-1}
\end{aligned}
$$

We thus note that the cross-correlation sidelobes occur at $2^{\mathrm{n}-1}$ of the $2^{\mathrm{n}}-1$ correlation values.

A.5.2.2 RMS Value of Correlation Function of Maximal Sequences

The sum of the squares of the correlation values of any two maximal sequences of period $p=2^{n}-1$ is given by $p^{2}+p-1$ from which the rms value of the distribution of the corcelation function is readily computed to be $\sqrt{p+1-(1 / p)} \sim \sqrt{p}$ for large periods p. To see this, we use the following relationship between the cross- and autocorrelation function of binary sequences, which is proved in sec. A.5.3.4.3.

$$
\sum_{T=0}^{p-1} \theta^{2}(a, b)(T)=\sum_{T=0}^{p-1} \theta(a, a)(T) \theta(b, b)(T)
$$

Since for maximal linear sequences we have:

$$
\begin{aligned}
& \theta(a, a)(\tau)=\theta(b, b)(\tau)=p \text { for } \tau=0 \\
&=-1 \text { for } \tau \neq 0, \\
& \sum_{\tau=0}^{p-1} \theta^{2}(a, b)(\tau)=p^{2}+p-1, \text { and the result follows. }
\end{aligned}
$$

For $p=15$, we have

$$
\sum_{T=0}^{15} \theta^{2}(a, b)(T)=239 .
$$

However, we note from Table 2 that, in fact, the sum of the squares of the correlation function for the Gold codes of this example vary from 79 to 62.3 and, hence, a more precise estimate of their performance than that derived
from the cross-correlation function of the maximal PN sequences which generate the family is desirable. An algorithm to obtain more precise estimates of code performance is discussed in the following section.

A.5.3 DERIVATION OF ALGORITHM

In this section, we derive an algorithm fur the computation of the precise correlation functions of the Gold codes. The resultant expression will give the cross-correlation values of any two codes of the family in terms of the cross-correlation values and the shift-and-add function of the maximal PN codes which generate the family. In sec. A.5.3.1, we define the shift-and-add function of maximal linear PN sequences and indicate how these functions may be computed efficiently. In sec. A.5.3.2, we describe fur ther properties of Gold codes which are required, and in sec. A.5.3.3, we detail the algorithm frr the efficient computation of the cross-correlation function of these codes.

A.5.3.1 Shift-and-Add Function of a Maximal Linear Sequence

Let a_{0} be a maximal $P N$ sequence and let a_{i} denote the sequence obtained from a_{0} by cyclically shifting this sequence i positions to the right. Since the modulo-2 sum of a maximal sequence with a proper phase shift of itself is another phase shift of the original sequence (i.e., the shift-and-add property of maximal linear sequences), we have:

$$
a_{k}+a_{k+i}=a_{\phi_{a}}(i)+k,
$$

where ϕ_{a} is the shift-and-add function of the sequence a. Thus, $\phi_{a}(i)$ is the shift of the sequence a_{k} obtained when the sequence a_{k} is added modulo- 2 to an $i^{\text {th }}$ cyclic shift of itself. The shift-and-add function of a maximal linear sequence of period $2^{n}-1$ is a permutation of the integers $1,2, \ldots, 2^{n}-2$. This permutation may be determined from a reduced number of values since it is the product of transpositions and, if (i, j) is one of the transpositions, so is ($2 \mathrm{i}, 2 \mathrm{j}$).

Thus, for example, for the maximal PN sequence given by $a=1110100$:

$$
\begin{aligned}
\phi_{a} & =\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 1 & 5 & 4 & 2
\end{array}\right) \\
& =(13)(26)(45) \\
(2,6) & =2(1,3) \\
(4,5) & =2(2,6) .
\end{aligned}
$$

Thus, onec we have determined that $\phi_{a}(1)=3$, the permutation ϕ_{a} is readily determined.

A.5.3.2 Properties of Gold Family of Codes

The members of the family of codes $G\left(a, b_{0}\right)$ consisting of the linear combinations of the maximal PN sequences a_{0} and b_{0} and all phase shifts of these linear combinations may be represented by all phase shifts of the set of sequences given by

$$
g_{i}=a_{0}+b_{i} \quad i=0,1,2, \ldots
$$

where b_{i} denotes the $i^{\text {th }}$ cyclic shift of the sequence b_{0}. The codes $\left\{g_{i}\right\}_{i=0}^{n^{n}-2}$ and their proper phase shifts are all distinct, since $\left(g_{i}\right)_{T_{1}}=\left(g_{j}\right)_{T_{2}}$ implies $\left(a_{0}+b_{i}\right)_{\tau_{1}}=\left(a_{0}+b_{j}\right)_{\tau_{2}}$ implies $a_{\tau_{1}}+b_{i+\tau_{1}}=a_{T_{2}}+b_{j+\tau_{2}}$ implies $a_{T_{1}}+\phi_{a}\left(\tau_{2}-\tau_{1}\right)=b_{\left(i+\tau_{1}\right)+\phi_{b}\left(\left(\tau_{2}-T_{1}\right)+(j-i)\right) .}$

This latter equation implie? that phase shifts of two different maximal PN sequences are equal, which is impossible.

We also ncte that the family of codes $G(a, b)$ is closed with respect to modulo- 2 addition, i.e., the modulo- 2 sum of any two codes of the family $G(a, b)$ is another member of the family:

$$
\begin{aligned}
& \left(g_{i}\right)_{\tau_{1}}+\left(g_{j}\right)_{\tau_{2}} \\
& \left(a_{0}+b_{i}\right)_{\tau_{1}}+\left(a_{0}+b_{j}\right)_{\tau_{2}} \\
& a_{\tau_{1}}+b_{i+\tau_{1}}+a_{\tau_{2}}+b_{j+\tau_{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{\tau_{1}}+\phi_{a}\left(\tau_{2}-\tau_{1}\right)+b_{i+\tau_{1}}+\phi_{b}\left(\left(\tau_{2}-\tau_{1}\right)+(j-i)\right) \\
& \left(a_{0}+b_{k}\right)_{\tau_{3}}=\left(g_{k}\right)_{3}
\end{aligned}
$$

$$
k=i+\phi_{b}\left(\left(\tau_{2}-\tau_{1}\right)+j-i\right)-\phi_{a}\left(\tau_{2}-\tau_{1}\right)
$$

and

$$
\tau_{3}=\tau_{1}+\phi_{a}\left(\tau_{2}-\tau_{1}\right)
$$

A.5.3.3 Correlation Function of Gold Codes

To compute the cross-correlation function $\theta(a, b)$ of 20 des a and b of period $2^{n}-1$, we add the codes in each of their relative phase shifts and count the number of zeroes minus the number of ones in their modulo- 2 sum, i.e.,

$$
\theta(a, b)(i)=\left(n_{0}-n_{1}\right)\left(a+b_{i}\right)=\left(n_{0}-n_{1}\right)\left(g_{i}\right) \quad i=0,1,2, \ldots, 2^{n}-2 .
$$

Since the family of codes $G(a, b)$ is closed with respect to modulo- 2 addition, the cross-correlation function of any two members g_{i}, g_{j} of the family takes correlation values from the set of values $\{\theta(a, b)(i)\}$, i.e.,

$$
\theta\left(g_{i}, g_{j}\right)(t)=\left(n_{0}-n_{1}\right)\left(g_{i}+g_{j+t}\right)=\left(n_{0}-n_{1}\right)\left(g_{k}\right)=\theta(a, b)(k)
$$

for some integer k. Unfortunately, as t varies from 0 to $2^{n}-2, k$ does not cover all integers from 0 to $2^{n}-2$ (the mapping from t to k is not one-to-one) and, hence, the distribution of the values of $\theta\left(g_{i}, g_{j}\right)$ is not the same as the known distribution of the values of $\theta(a, b)$. In what follows, we present an algorithm for the computation of the cross-correlation function $\theta\left(g_{j}, g_{j}\right)$ of any two members of the family $\mathrm{G}(\mathrm{a}, \mathrm{b})$ in terms of the cross-correlation function of the maximal PN codes a and b which generate the family.

Theorem: Let g_{S} and g_{t} be any two codes of the family $G\left(a_{0}, b_{0}\right)$ where $g_{s}=a_{0}+b_{s}$ and $g_{t}=a_{0}+b_{t}$. Then,

$$
\begin{array}{rlrl}
\theta\left(z_{s}, g_{t}\right)(\tau) & =\theta(\mathrm{a}, \mathrm{~b})\left(\mathrm{s}+\phi_{\mathrm{b}}(\mathrm{t}-\mathrm{s}+\tau)-\phi_{\mathrm{a}}(\tau)\right), & \begin{aligned}
\tau \neq 0 \\
t-s+\tau \neq 0
\end{aligned} \\
& =-1, \text { oth 2rwise. }
\end{array}
$$

ϕ_{a} and ϕ_{b} are the shift-and-add functions of the sequences a and b, respectively.

Proof:
Case $1-\mathrm{T} \neq 0, \mathrm{t}-\mathrm{s}+\mathrm{t} \neq 0$
$\theta\left(g_{s}, g_{t}\right)(T)$
$\left(n_{0}-n_{1} \lambda\left(g_{s}+\left(g_{t}\right)_{T}\right) \quad\right.$ Number of zeroes - number of ones in $\mathrm{g}_{\mathrm{s}}+\mathrm{g}_{\mathrm{t}+\mathrm{T}}$
$\left(n_{0}-n_{1}\right)\left(a_{0}+b_{S}+\left(a_{0}+b_{t}\right)_{T}\right)$
$\left(n_{0}-n_{1}\right)\left(\left(a_{0}+a_{T}\right)+\left(b_{s}+b_{t+\tau}\right)\right)$
$\left(n_{0}-n_{1}\right)\left(a_{\phi_{a}}(\tau)+b_{s+\phi_{b}}(t-s+\tau)\right.$
$\left(n_{0}-n_{1}\right)\left(a_{0}+b{ }_{s+\phi_{b}}(t-s+T)-\phi_{a}(T)\right)$
$\theta\left(\mathrm{a}_{0}: \mathrm{b}_{0}\right)\left(\mathrm{s}+\phi_{\mathrm{b}}(\mathrm{t}-\mathrm{s}+\tau)-\phi_{\mathrm{a}}(\mathrm{r})\right)$

Case 2-- T=0

$$
\begin{aligned}
& \theta\left(g_{s}, g_{t}\right)(0) \\
& \left(n_{0}-n_{1}\right)\left(g_{s}+g_{t}\right) \\
& \left(n_{0}-n_{1}\right)\left(a_{0}+b_{s}+a_{0}+b_{t}\right) \\
& \left(n_{0}-n_{1}\right)\left(b_{s}+b_{t}\right)=-1 \quad \text { since } b \text { is a maximal linear PN sequence. }
\end{aligned}
$$

The proof for the case $t-s+\tau=0$ is similar.

A. 5.3.4 Computational Example of Algorithm

A.5.3.4.1 G generated by any two maximal PN sequences

In this section, we illustrate the application of the above theore in ar algorithm for the compi ion of the cross-correlation function of any
$=-1$, otherwise.
Let $\tau^{\prime}=\left(2+\phi_{b}(1+\tau)-\phi_{a}(\tau)\right)$.

τ	T^{\prime}	$\theta(\mathrm{a}, \mathrm{b})\left(\tau^{\prime}\right)$	$\theta\left(g_{2}, g_{3}\right)(\tau)$
0	--	--	-1
1	7	-1	-1
2	13	-1	-1
3	6	3	3
4	11	-1	-1
5	0	-:	-1
6	2	-5	- 5
7	14	-1	-1
8	2	-5	-5
9	0	-1	-1
10	11	-1	-1
11	6	3	3
12	13	-1	-1
13	7	-1	-1
14	--	--	--

Table 1. Input Date for Algorithm

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14
\end{array} \\
& a_{0}=0 \begin{array}{llllllllllllll}
& 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0
\end{array} \\
& b_{0}=0 \begin{array}{llllllllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1
\end{array} \\
& \mathrm{~g}_{0}=\begin{array}{lllllllllllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & \theta\left(g_{0}\right)=-1
\end{array} \\
& g_{1}=1 \begin{array}{llllllllllllllll}
& 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \theta\left(g_{1}\right)
\end{array}=-5 \\
& \mathrm{~g}_{2}=1 \begin{array}{lllllllllllllllll}
& 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & n & 1 & 1 & 1 & 1 & g\left(g_{2}\right) & =-5
\end{array} \\
& \mathrm{~g}_{3}=1 \begin{array}{lllllllllllllllll}
& 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & \mathrm{~J} & 0 & 0 & 1 & \theta\left(\mathrm{~g}_{3}\right) & =3
\end{array} \\
& \mathrm{~g}_{4}=1 \begin{array}{llllllllllllllllll}
& 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \theta\left(g_{4}\right) & =-5
\end{array} \\
& \mathrm{~g}_{5}=0 \begin{array}{lllllllllllllllll}
& 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & & 9\left(g_{5}\right)
\end{array}=7 \\
& g_{6}=1 \begin{array}{lllllllllllllllll}
& 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \theta\left(g_{6}\right) & =3
\end{array} \\
& \mathrm{~g}_{7}=0 \begin{array}{llllllllllllllllll}
& 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & \theta\left(g_{7}\right)=-1
\end{array} \\
& \mathrm{~g}_{8}=1 \begin{array}{llllllllllllllllll}
& 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & \theta\left(g_{8}\right) & =-5
\end{array} \\
& \mathrm{~g}_{9}=1 \begin{array}{llllllllllllllll}
& 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \theta\left(g_{9}\right)
\end{array}=3 \\
& \mathrm{~g}_{10}=0 \begin{array}{llllllllllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & \theta\left(g_{10}\right) & =7
\end{array} \\
& \mathrm{~g}_{11}=\begin{array}{llllllllllllllll}
0 & 1 & 0 & n & : & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & \theta\left(g_{11}\right)=-1
\end{array} \\
& E_{12}=1 \begin{array}{lllllllllllllllll}
& 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 3\left(g_{12}\right) & =3
\end{array} \\
& \mathrm{~g}_{13}=0 \begin{array}{llllllllllllllll}
& 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & \theta\left(g_{13}\right)=-1
\end{array} \\
& \mathrm{~g}_{14}=0 \begin{array}{llllllllllllllll}
& 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & \theta\left(g_{14}\right)=-1
\end{array} \\
& \theta\left(g_{i}\right)=\text { number of zeroes - number of ones in } g_{i} \\
& \begin{array}{lllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14
\end{array} \\
& \phi_{a}-\begin{array}{lllllllllllllll}
4 & 8 & 14 & 1 & 10 & 13 & 9 & 2 & 7 & 5 & 12 & 11 & 6 & 3
\end{array} \\
& \begin{array}{llllllllllllllll}
\phi_{b} & -12 & 9 & 4 & 3 & 10 & 8 & 13 & 6 & 2 & 5 & 14 & 1 & 7 & 11
\end{array}
\end{aligned}
$$

As an example of the above computation, we have (see Table 1):

$$
\begin{gathered}
\theta\left(g_{2}, g_{3}\right)(6) \\
\theta(a, b)\left(2 \because \phi_{b}(7)-\phi_{a}(6)\right) \\
\theta(a, b)(2+13-13) \\
\theta(a, b)(2)=-5 .
\end{gathered}
$$

A.5.3.4.2 Case for a and b reverse sequences

The formula for the correlation of members of the code family which was presented in sec. A.. i. 4.1 may be simplified in the casf. where the pair of maximal PN sequences gent.atiag the code family consists of sequences $\phi_{a}(\tau)=\because \phi_{b}(\tau)$ and in any case we have $\phi_{b}(\tau)-\phi_{b}(-\tau)=$. Using these two formulas results in the above exoression for $\theta\left(g_{s}, g_{t}\right)(\tau)$.

It is also useful to note that, in the present case, the cross-correlation function $\theta\left(g_{s}, g_{t}\right)$ is symmetric about some value of τ. To see this, we note that $\mathrm{t}-\mathrm{s}+\tau_{0}=-\tau_{0} \mathrm{fc} \cdot \tau_{\mathrm{n}}$ a solution of the congruence $2 \tau \equiv \mathrm{~s}-\mathrm{t}$ modulo $2^{n}-1$. Then $\theta\left(g_{s}, g_{t}\right)$ is symmetric about T_{0} and hence we reed only compute the values of $\theta\left(g_{,}, g_{\mathfrak{t}}\right)$ at $\tau_{0},{ }_{0} 0^{+1}, \tau_{0}+2, \ldots, \tau_{0}+2^{n-2}-1$. As an example, we again consider the family of Gold codes of period 15 given in sec. A.5.3 4.1. We note from the data of that section.

$$
\theta\left(g_{0}, g_{1}\right)=\begin{array}{rrrrrrrrrrrrrrr}
0 & 1 & 2 & ? & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1.2 & 13 & 14 \\
-1 & 7 & -1 & -5 & 3 & -1 & -1 & 3 & -1 & -1 & 3 & -5 & -1 & 7 & -1
\end{array}
$$

Solving the congrience $2 T=-1$ modulc 15 , we f.nd $T_{0}=7$ ard note that $\theta\left(g_{0}, g_{!}\right)$is in fact symmetric about $\tau_{c}=7$.
o

A. 5.3.4.3 Proof of basic formulas

In this section, we present the proofs of the basic formulas used in the previous sections.

Theorem: Let a and b be any two binary sequences of period p.
p. 1

Then:
$\because_{\tau=0} \theta(a, b)(\tau)=\theta(a) \cdot \theta(b)$, where
$\theta(a)=$ number of zeroes - number of ones in a period of the sequence a

Proof:
$\sum_{\tau=0}^{p-1} \theta(a, b)(\tau)$
$\sum_{\tau=0}^{p-1} \sum_{i=0}^{p-1} a(i) b(i-\tau)$
$\sum_{i=0}^{p-1} a(i) \sum_{\tau=0}^{p-1} b(i-\tau)$
$\left(\sum_{i=0}^{p-1} a(i)\right) \theta(b)$
$\theta(a) \theta(b)$

Theorem: Let a and b be any two binary (+) sequences of period p. Let $\theta(a, b)(r)=\sum_{i=0}^{p-1} a(i) b(1-i)$

Then: $\sum_{\tau=0}^{p-1}[\theta(a, b)(\tau)]^{2}=\sum_{\tau=0}^{p-1} \theta(a, a)(\tau) \theta(b, b)(\tau)$
Proof:

$$
\sum_{\tau=0}^{\mathrm{p}-1}[\theta(\mathrm{a}, \mathrm{~b})(\tau)]^{2}
$$

$$
\begin{aligned}
& \sum_{\tau=0}^{p-1} \sum_{j=0}^{p-1} a(j) a(j-\ell) \theta(b, b)(\ell) \\
& \sum_{\tau=0}^{p-1} \theta(a, a)(\ell) \theta(b, b)(\ell)
\end{aligned}
$$

Theorem: Let F be any family of binary sequences of period p. For any two sequences $a, b \in F$, we have:

$$
\sum_{\tau=0}^{p-1} \theta^{2}(a, b)(\tau) \leq \max _{c \in F} \sum_{\tau=0}^{p-1} \theta^{2}(c, c)(\tau)
$$

Proof:

$$
\begin{aligned}
& \sum_{\tau=0}^{\mathrm{p}-1} \theta^{2}(\mathrm{a}, \mathrm{~b})(\tau) \\
& \sum_{\tau=0}^{\mathrm{p}-1} \theta(\mathrm{a}, \mathrm{a})(\tau) \theta(\mathrm{b}, \mathrm{~b})(\tau) \quad \text { by previous theorem } \\
& \leq \sqrt{\sum_{\tau=0}^{\mathrm{p}-1} \theta^{2}(\mathrm{a}, \mathrm{a})(\tau)} \sqrt{\sum_{\tau=0}^{\mathrm{p}-1} \theta^{2}(\mathrm{~b}, \mathrm{~b})(\tau)}
\end{aligned}
$$

$$
\leq \max _{c \in F} \sum_{\tau=0}^{p-1} \theta^{2}(c, c)(\tau)
$$

The following example shows that, in general, this bound cannot be improved. Let $F=\{a, b\}$ where a and b are maximal $P N$ sequences. Then,

$$
\sum_{\tau=0}^{p-1} \theta^{2}(a, b)(\tau)=\sum_{\tau=0}^{p-1} \theta(a, a)(\tau) \theta(b, b)(\tau)=p^{2}+p-1 .
$$

The significance of this result is that it provides a bound for the rms value of the cross-correlation function of members of a family of sequences F from an examination of the rms values of the autocorrelation function of the members of the family.

Example: Let G be the family of 15 binary PN sequences of the example of sec. A.5.3.4.1 (Table 1). The sum of the squares of the crosscorrelation function

$$
\sum_{\tau=0}^{p-1} \theta^{2}\left(g_{i}, g_{j}\right)(\tau)
$$

are listed in Table 2. We note that

$$
\sum_{\tau=0}^{\mathrm{p}-1} \theta^{2}\left(\mathrm{~g}_{\mathrm{i}}, \mathrm{~g}_{\mathrm{j}}\right)(\tau) \leq \max \sum_{\tau=0}^{p-1} \theta^{2}\left(\mathrm{~g}_{\mathrm{i}}, \mathrm{~g}_{\mathrm{j}}\right)(\tau)=623 \text { for all } \mathrm{i}, \mathrm{j} .
$$

This bound may be reduced to 497 by omitting the sequence g_{1} from the family; however, this will not in fact improve the overall crosscorrelation bound.

A. 5. 4 ALTERNATE TECHNIGUES FOR THE DETERMINATION OF CROSS-CORRELATION FUNCTION OF GOLD CODES

In what follows, we present formulas for the number of times each of the possible three correlation values appears in the cross-correlation function of any two Gold codes. The input data for these formulas depends on the autocorrelation function of the codes being correlated and hence, while some preliminary calculations are required, the determination of

Table 2. Sum of Squares of Cross-Correlation Values of Gold Codes of Period 15

$\theta\left(g_{i}, g_{j}\right)$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	623	183	183	135	183	255	135	239	183	135	255	239	135	239	239
1		479	287	239	191	199	271	311	287	79	167	119	143	215	215
2			479	79	287	161	239	119	191	143	199	215	271	215	311
3				447	143	151	191	295	271	191	311	231	287	199	199
4					479	199	79	215	287	271	167	215	239	311	119
5						463	311	223	167	311	271	159	151	223	159
6							447	231	143	287	151	199	191	199	295
7								367	215	199	159	143	199	303	143
8									479	239	199	311	79	119	215
9										447	151	295	191	231	199
10											463	223	311	159	223
11												367	199	143	303
12													447	295	231
13														367	143
14															367

the distribution function of the sidelobes of the cross-correlation values of a family of Gold codes is reduced by w.eans of these formulas to a feasible computational problem.

A.5.4.1 Statement of Formulas

Theorem: Let g_{1} and g_{2} be any two Gold codes of period $2^{n}-1$ (n odd). The cross-correlation function $\theta\left(g_{1}, g_{2}\right)$ is known to assume the three values:

$$
\theta_{1}=-\left(2^{(n+1) / 2}+1\right) ; \theta_{2}=2^{(n+1) / 2}-1 ; \theta_{3}=-1 .
$$

The number of times each of these values is assumed is given by

$$
\begin{aligned}
& N\left(\theta_{1}\right)=\frac{\left(\sum_{\theta}^{2}\right)-\left(\sum \theta\right)\left(2^{(n+1) / 2}-2\right)-\left(2^{n}-1\right)\left(2^{(n+1) / 2}-1\right)}{2^{n+2}} \\
& N\left(\theta_{2}\right)=\frac{\left(\sum_{\theta}^{2}\right)+\left(\sum_{\theta)\left(2^{(n+1) / 2}+2\right)-\left(2^{n}-1\right)\left(2^{(n+1) / 2}+1\right)}^{2^{n+2}}\right.}{\left(\frac{1}{}\right.} \\
& N\left(\theta_{3}\right)=\frac{\left(2^{n}-1\right)\left(2^{n+1}-1\right)-\sum_{\theta}^{2}-2 \sum_{\theta}}{2^{n+1}}
\end{aligned}
$$

where

$$
\sum \theta^{2}=\sum_{\tau=0}^{2^{n}-2} \theta^{2}\left(g_{1}, g_{2}\right)(\tau) \sum_{\tau=0}^{2^{n}-1} \theta\left(g_{1}, g_{2}\right)(\tau)
$$

The autocorrelation function of any such Gold code assumes the same three values. The number of times each of these values is assumed in the autocorrelation function is given by

$$
\begin{aligned}
& N\left(\theta_{1}\right)=\frac{\sum_{\theta}{ }^{2}-\left(\sum_{\theta)\left(2^{(n+1) / 2}-2\right)-\left(2^{2 n}-2^{n}-2^{(n+1) / 2}+1\right)}^{2^{n+2}}\right.}{\text { (n) }} \\
& N\left(\theta_{2}\right)=\frac{\sum_{\theta}^{2}+\left(\sum_{\theta)\left(2^{(n+1) / 2}+2\right)-\left(2^{2 n}-2^{n}+2^{(n+1) / 2}+1\right)}^{2^{n+2}}\right.}{\text { (n) }}
\end{aligned}
$$

$$
N\left(\theta_{3}\right)=\frac{\left(3 \cdot 2^{2 n}-2^{n+2}+2^{n}+1\right)-\sum_{\theta}^{2}-2 \sum_{\theta}}{2^{n+1}}
$$

Since
and

$$
\begin{aligned}
& \sum_{\tau=0}^{2^{n}-2} \theta^{2}\left(g_{1}, g_{2}\right)(\tau)=\sum_{\tau=0}^{2^{n}-2} \theta\left(g_{1}, g_{1}\right)(\tau) \theta\left(g_{2}, g_{2}\right)(\tau) \\
& 2^{n}-2 \\
& \sum_{\tau=0} \theta\left(g_{1}, g_{2}\right)(\tau)=\theta\left(g_{1}\right) \cdot \theta\left(g_{2}\right),
\end{aligned}
$$

where $\theta\left(g_{i}\right)=$ number of zeroes - number of ones in the sequence g_{i}, the number of sidelobes in the cross-correlation function of any two Gold codes may be determined in terms of the parameters of each of the codes itself.

A. 5.4.2 Example

Let $\mathrm{n}=3$. We consider the following family of Gold codes:

$$
\begin{aligned}
& g_{0}=0111111 \quad \theta\left(g_{0}\right)=-5 \\
& g_{1}=0010001 \quad \theta\left(g_{1}\right)=3 \\
& g_{2}=0000110 \quad \theta\left(g_{2}\right)=3 \\
& g_{3}=1001101 \quad \theta\left(g_{3}\right)=-1 \\
& g_{4}=0101000 \quad \theta\left(g_{4}\right)=3 \\
& g_{5}=1011010 \quad \theta\left(g_{5}\right)=-1 \\
& g_{6}=1100011 \quad \theta\left(g_{6}\right)=-1
\end{aligned}
$$

$$
\begin{aligned}
& \theta\left(g_{1}, \mathrm{~g}_{1}\right) \quad 7 \quad-1-1 \quad 3 \quad 3-1-1 \\
& \theta\left(g_{2}, g_{2}\right) \quad 7 \quad 3 \quad-1-1-1-1-1 \quad 3 \\
& \theta\left(g_{3}, g_{3}\right) \quad 7 \quad-1 \quad-5 \quad 3 \quad 3-5 \quad-1 \\
& \theta\left(\mathrm{~g}_{4}, \mathrm{~g}_{4}\right) \quad 7 \quad-1 \quad 3 \quad-1-1 \quad 3-1 \\
& \theta\left(g_{5}, g_{5}\right) \quad 7 \quad-5 \quad 3-1-1 \quad 3-5 \\
& \theta\left(g_{6}, g_{6}\right) \quad 7 \quad 3 \quad-1-5-5 \quad . \quad 3
\end{aligned}
$$

The product $\quad \sum_{\tau=0}^{2^{n}-2} \theta^{2}\left(g_{j}, g_{j}\right)(\tau)=\sum_{\tau=0}^{2^{n}-2} \theta\left(g_{i}, g_{i}\right)(\tau) \cdot \theta\left(g_{j}, g_{j}\right)(\tau)$

$$
=\theta\left(g_{i}, g_{i}\right) \cdot \theta\left(g_{j}, g_{j}\right)
$$

is given as follows:

$$
\theta\left(g_{i}, g_{i}\right) \cdot \theta\left(g_{j}, g_{j}\right)
$$

	0	1	2	3	4	5	6
0	103	55	55	31	55	31	31
1		71	39	79	39	47	15
2			71	47	39	15	79
3				119	15	23	23
4					71	79	47
5						119	23
6							119

The products $\theta\left(g_{i}\right) \cdot \theta\left(g_{j}\right)$ are given as follows:

	0	1	2	3	4	5	6
0	25	-15	-15	5	-15	5	5
1		9	9	-3	9	-3	-3
2			9	-3	9	-3	-3
3				1	-3	1	1
4					9	-3	-3
5						1	1
6							1

The data in the previous two tables represents the required inputs to the formulas for determining the distribution of sidelobes in the correlation function of any two Gold codes. In this example, the general formulas become:

Cross-Correlation

$$
\begin{aligned}
& \mathrm{N}\left(\theta_{1}\right)=\frac{\sum_{\theta^{2}}-2 \sum_{\theta-21}}{32} \\
& \mathrm{~N}\left(\theta_{2}\right)=\frac{\sum_{\theta}^{2}+6 \sum_{\theta+35}}{32} \\
& \mathrm{~N}\left(\theta_{3}\right)=\frac{105-2 \sum_{\theta}-\sum_{\theta}^{2}}{16}
\end{aligned}
$$

Autocorrelation

$$
\begin{aligned}
& N\left(\theta_{1}\right)=\frac{\sum \theta^{2}-2\left(\sum \theta\right)-53}{32} \\
& N\left(\theta_{2}\right)=\frac{\sum \theta^{2}+6\left(\sum \theta\right)-61}{32} \\
& N\left(\theta_{3}\right)=\frac{153-2 \sum_{\theta}-\sum_{\theta}^{2}}{16}
\end{aligned}
$$

We note that the distribution of the sidelobes in the case of actocorrelation could be obtained during the computation of

$$
\sum_{\tau=0}^{2^{n}-1} \theta\left(g_{i}, g_{i}\right)(\tau) ;
$$

however, the given formulas are useful with respect to unifying the required computer programming.

Using the above formulas, we may compute the following table of sidelobe distributions, $N\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$:

	0	1	2	3	4	5	6
0	$(0,6,0)$	$(2,0,5)$	$(2,0,5)$	$(0,3,4)$	$(2,0,5)$	$(0,3,4)$	$(0,3,4)$
1		$(0,2,4)$	$(0,4,3)$	$(2,3,2)$	$(0,4,3)$	$(1,2,4)$	$(0,1,6)$
2			$(0,2,4)$	$(1,2,4)$	$(0,4,3)$	$(0,1,6)$	$(2,3,2)$
3				$(2,2,2)$	$(0,1,6)$	$(0,2,5)$	$(0,2,5)$
4					$(0,2,4)$	$(2,3,2)$	$(1,2,4)$
5						$(2,2,2)$	$(0,2,5)$
6						.	$(2,2,2)$

A. 5.4.3 Proof of Formulas

Let x, y, z be the number of times the values $-\left(2^{(n+1) / 2}+1\right)$, $\left(^{(n+1) / 2}-1\right),-1$, respectively, occur in the cross-correlation function of two Gold codes, g_{1} and g_{2}, of period $\left(2^{n}-1\right)$. We then have the system of equations:

$$
\begin{aligned}
& x \quad\left(2^{(n+1) / 2}+1\right)^{2}+y\left(2^{(n+1) / 2}-1\right)^{2}+z=\sum_{\tau=0}^{2^{n}-2} \theta^{2}\left(g_{1}, g_{2}\right)(\tau)=\sum_{\theta^{2}}+y=2^{n}-1 \\
& x \quad x-\left(2^{(n+1) / 2}+1\right)+y\left(2^{(n+1) / 2}-1\right)-z=\sum_{\tau=0}^{n} \theta\left(g_{1}, g_{2}\right)(\tau)=\sum_{\theta}
\end{aligned}
$$

Solving this system of equations, we have

$$
\begin{aligned}
& x=\frac{\left.\sum_{\theta}^{2}-\sum_{\theta(2}(n+1) / 2-2\right)-\left(2^{n}-1\right)\left(2^{(n+1) / 2}-1\right)}{2^{n+2}} \\
& y=\frac{\sum_{\theta}^{2}+\sum_{\theta\left(2^{(n+1) / 2}+2\right)+\left(2^{n}-1\right)\left(2^{(n+1) / 2}+1\right)}^{2^{n+2}}}{z=\frac{\left(2^{n}-1\right)\left(2^{n+1}-1\right)-\sum_{\theta}^{2}-2 \sum_{\theta}}{2^{n+1}}}=\$.
\end{aligned}
$$

The number of sidelobes in the cross-correlation function of two Gold codes, $x+y$, may be obtained more directly using the following argument.

The possible values for $\theta(a, b)(\tau)$ are $-2^{(n+1) / 2}-1,2^{(n+1) / 2}-1,-1$, and hence the values for $[\theta(a, b)(\tau)+1]^{2}$ are 2^{n+1} when there is a sidelobe and 0 when there is no sidelobe. Thus,

$$
\sum_{\tau=0}^{2^{n}-2}[\theta(a, b)(\tau)+1]^{2}=(x+y) \cdot 2^{n+1}
$$

or

$$
(x+y)=\frac{\sum_{\tau=0}^{2^{n}-2}[\theta(a, b)(\tau)+1]^{2}}{2^{n+1}}=\frac{\sum_{\theta}^{2}+2 \sum_{\theta+\left(2^{n}-1\right)}^{2^{n+1}}}{2^{n}}
$$

Autocorrelation

> In this case, our system of equations is:

$$
x\left(2^{(1)}+1\right)^{2}+y\left(2^{(n+1) / 2}-1\right)^{2}+z=\sum_{\tau=0}^{2^{n}-2} \theta^{2}(g, g)(\tau)-\left(2^{n}-1\right)^{2}
$$

s

$$
\begin{array}{ll}
x & +y \\
\left.x-2^{(n+1) / 2}+1\right)+y\left(2^{(n+1) / 2}-1\right)-z= & 2^{n}-2 \\
x=0 \\
\end{array}
$$

Solving this system of equations, we obtain:

$$
\begin{aligned}
& x=\frac{\sum_{\theta}^{2}-\left(\sum_{\theta)\left(2^{(n+1) / 2}-2\right)-\left(2^{2 n}-2^{n}-2^{(n+1) / 2}+1\right)}^{2^{n+2}}\right.}{y=\frac{\sum_{\theta}^{2}+\left(\sum_{\theta)\left(2^{(n+1) / 2}+2\right)-\left(2^{2 n}-2^{n}+2^{(n+1) / 2}+1\right)}^{2^{n+2}}\right.}{l}}=\frac{}{y}
\end{aligned}
$$

$$
z=\frac{\left(3 \cdot 2^{2 n}-2^{n+2}-2^{n}+1\right)-\sum \theta^{2}-2 \sum_{\theta}}{2^{n+1}}
$$

As in the case of the cross-correlation function, the number of sidelobes in the autocorrelation function of a Gold code, $x+y$, may be obtained more directly.

The possible values for $\theta(a, b)(\tau)$ are $-2^{(n+1) / 2}-1,2^{(n+1) / 2}-1,-1$, $\left.2^{n}-1 \& \tau=0\right)$, and hence the values for $[\theta(a, b)(\tau)+1]^{2}$ are 2^{n+1} when there is a sidelobe, 0 when there is no sidelobe, and $2^{2 n}$ (for $\tau=0$). Thus, we have

$$
\sum_{\tau=0}^{2^{n}-2}[\theta(a, b)(\tau)+1]^{2}=2^{2 n}+(x+y) 2^{n+1}
$$

or

$$
(x+y)=\frac{\sum_{\theta}^{2}+2 \sum_{\theta-\left(2^{2 n}-2^{n}+1\right)}^{2^{n+1}}}{x^{n}}
$$

The required computation to obtain the sidelobe distribution in the cross-correlation of Gold codes may be reduced by noting that the sidelobe structure is the same for the pair of codes $g_{t^{\prime}} g_{g}$ and $g_{2} k_{t}, g_{2} k_{s}$ for any k. This follows from the fact that

$$
\sum_{\tau=0}^{2^{n}-2} \theta^{2}\left(g_{t^{\prime}} g_{s}\right)(\tau)=\sum_{\tau=0}^{2^{n}-2} \theta^{2}\left(g_{2 k_{t^{\prime}}} g_{2 k_{s}}\right)(\tau)
$$

and

$$
\sum_{\tau=0}^{2^{n}-2} \theta\left(g_{\mathrm{t}^{\prime}} \mathrm{g}_{\mathrm{s}}\right)(\tau)=\sum_{\tau=0}^{2^{\mathrm{n}}-2} \theta\left(\mathrm{~g}_{2} \mathrm{k}_{\mathrm{t}}, \mathrm{~g}_{2 \mathrm{k}_{\mathrm{s}}}\right)(\tau)
$$

and the number of sidelobes of each kind is seen from the previously derived formulas to depend only upon these quantities. Thus, in the example given for $n=3$, the tables of input data may be reduced to:

	0	1	2	3	4	5	6
0	103	55		31			
1		71	39	79	39	47	15
3				119	15	23	23
	$0\left(g_{i}\right) \cdot \theta\left(g_{j}\right)$						
	0	1	2	3	4	5	6
0	25	-15		5			
1		9	9	-3	9	-3	-3
3				1	-3	1	1

The table of sidelobe distributions becomes:

A. 5. 5 FURTHER PROPERTIES OF GOLD CODES

Result: Let $G(a, b)$ be a family of Gold codes of period $2^{n}-1$ generated by the characteristic maximal linear sequences a_{0}, b_{0}. Denote $g_{i}=a_{0}+b_{i}$. Let $T a$ be the sequence obtained from a by sampling every other term. Then, $T^{k}\left(g_{i}\right)=g_{i} \cdot 2^{n-k}$.

Proof:
(5)

$$
\begin{aligned}
& T^{k}\left(g_{i}\right) \\
& T^{k}\left(a_{0}+b_{i}\right) \\
& T^{k} a_{0}+T^{k} b_{i}
\end{aligned}
$$

$$
\begin{array}{ll}
a_{i}+b_{i} \cdot 2^{\text {h-k }} & \text { by sampling property of characteristic } \\
\text { maximal sequences }
\end{array}
$$

$$
g_{i} \cdot 2^{n-k}
$$

Exampie: A Gold family of codes of period $2^{4}-1=15$ is given below.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\mathbf{g}_{0}	0	1	1	0	1	0	0	1	1	0	0	1	1	0	0
\mathbf{g}_{1}	1	1	1	0	0	1	1	0	1	1	0	0	1	1	1
\mathbf{g}_{2}	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0
\mathbf{g}_{3}	1	1	0	0	0	1	0	1	0	0	0	1	1	0	0
\mathbf{g}_{4}	1	0	1	1	1	1	1	1	1	1	1	1	0	0	0
\mathbf{g}_{5}	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0
\mathbf{g}_{6}	1	0	1	0	0	0	0	1	0	1	1	0	0	0	1
\mathbf{g}_{7}	0	1	1	1	0	1	1	1	0	0	1	0	0	1	0
\mathbf{g}_{8}	1	1	0	1	1	0	1	1	1	0	1	0	1	0	1
\mathbf{g}_{9}	1	0	0	0	0	0	1	0	1	0	1	1	0	1	0
\mathbf{g}_{10}	0	0	1	1	0	0	0	0	1	0	0	0	1	0	0
\mathbf{g}_{11}	0	1	0	1	0	1	0	0	1	1	1	1	0	0	1
\mathbf{g}_{12}	1	0	0	1	1	1	0	0	0	0	0	0	0	1	1
\mathbf{g}_{13}	0	0	0	0	1	1	0	1	1	1	1	0	1	1	0
\mathbf{g}_{14}	0	0	1	0	1	1	1	0	0	0	1	1	1	0	1

We note that

$$
\begin{aligned}
\mathrm{Tg}_{1} & =\mathrm{T}(111001101 \ldots)=11011 \ldots \\
& =E_{8}=E_{1 \times n^{4-1}}
\end{aligned}
$$

Result:
Let $G(a, b)$ be a family c : Gold codes of period ${ }^{\prime} \cdot 1$ generated by the characteristic maximal inear sequences a_{0}, b_{0}. Denote $g_{i}=a_{0}+b_{i}$. Then,

$$
\left\{\theta\left(g_{s^{\prime}} g_{t}\right)(r) \mid \tau=0,1, \ldots, 2^{n}-1\right\}=\left\{\theta\left(g_{2 k_{g}}, g_{2 k_{t}}\right)(\tau) \mid \tau=0,1 \ldots, 2^{n}-1\right\}
$$

for any k.

$$
\begin{aligned}
& \left(n_{0}-n_{1}\right)\left(g_{s}+\left(g_{t}\right)\right) \\
& \left(n_{0}-n_{1}\right)\left(a_{0}+b_{S}+a_{\tau}+b_{t+\tau}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(n_{0}-n_{1}\right) T^{n-k}\left(a_{0}+b_{s}+a_{\tau}+b_{t+\tau}\right) \quad \text { since } n_{0}-n_{1} \text { in sampled sequence } \\
& =n_{0}-n_{1}^{0} \text { in original sequence } \\
& \left(n_{0}-n_{1}\right)\left(a_{0}+b_{s \cdot 2^{k}}+a_{\tau \cdot} 2^{k+b_{t}} 2^{k}+\tau \cdot 2^{k}\right) \\
& \left(n_{0}-n_{1}\right)\left(g_{s \cdot 2^{k}}+\left(g_{t \cdot 2^{k}}\right)_{\tau \cdot 2^{k}}\right) \\
& \theta\left(g_{s \cdot 2^{k}} g_{t \cdot 2^{k}}\right)\left(\tau \cdot 2^{k}\right)
\end{aligned}
$$

As τ goes through the numbers $0,1, \ldots, 2^{n}-1$, so does $\tau \cdot 2^{\mathrm{k}}$, although in a different order. Thus, the result follows.

This latter result shows that the set of correlation values for g_{s} and g_{t} is the same as the set of correlation values for $g_{2} k_{s}$ and $g_{2} k_{t}$, and hence the equations:

$$
\sum_{\tau=0}^{2^{n}-2} \theta^{2}\left(g_{s}, g_{t}\right)(\tau)=\sum_{\tau=0}^{2^{n}-2} \theta^{2}\left(g_{2^{k}}, g_{2} k_{t}\right)(\tau)
$$

and

$$
\sum_{\tau=0}^{2^{n}-2} \theta\left(g_{s}, g_{t}\right)(\tau)=\sum_{\tau=0}^{2^{n}-2} \theta\left(g_{2} k_{s}, g_{2 k_{t}}\right)(\tau)
$$

Using the above results, the data of Table 2 may be reduced to that of the following table.

Table 3. Reduced Listing of Cross-Correlation Values

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 623 | 183 | 183 | 135 | 183 | 255 | 135 | 239 | 183 | 135 | 255 | 239 | 135 | 239 | 239 |
| 1 | | 479 | 287 | 239 | 191 | 199 | 271 | 311 | 287 | 79 | 167 | 119 | 143 | 215 | 215 |
| 3 | | | | 447 | 143 | 151 | 191 | 295 | 271 | 191 | 311 | 231 | 287 | 199 | 199 |
| 5 | | | | | | 463 | 311 | 223 | 167 | 311 | 271 | 159 | 151 | 223 | 159 |
| 7 | | | | | | | | 367 | 215 | 199 | 159 | 143 | 199 | 303 | 143 |

The table lists the phase shift $\phi(k)$ obtained when the sequence A_{1} is added to the sequence A_{k} obtained at the k th stage of the shift register. For the 100 maximal codes listed, the tap $k=10$ will yield a maximum phase shift of more than 20,000 chips. The maximum number of feedback taps required for any of the 112 listed generators is 8 .

SHIFT REGISTER TAP COINECTIONS
POSITION
OF
SECOND
TAP
K

PHASE SHIFT OF

1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047 1000047

SUM SEQUENCE

$$
\operatorname{PHI}(K)
$$

125999
10165
112241
20330
96872
37661
30947
40660
94672 68399 28005 75322 23897 61894 16045 81320 21624

	POSITION
SHIFT	OF
REGISTER	SFCOND
NNECTIONS	TAP
	K

PHASE SHIFT OF SUM SEQUENCE

PHI(K)

1431503
1431503
1431503
1431503
1431503
1431573
1431503
1431503
1431503
1431503
1431503
1431503
1431503
1431503
1431503
1431503
1431503

POSITION SFCOND K

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

96930
58283
113163
125577
116535
35817
116062
10980
35529
29073
74626
71634
91302
30019
107836
21978 45909

	POSITION	PHASE SHIFT OF
SHIFT	OF	SUM SEQUENCE
REGISTER	SECOND	
TAP CONNECTIONS	TAP	
	K	PHI (K)

1012633	2	43572
1012633	3	87144
1012633	4	127381
1012633	5	87855
1012633	6	45227
1012633	7	7381
1012633	8	13863
1012633	9	86433
1012633	10	100097
1012633	11	90454
1012633	12	102506
1012633	13	14762
1012633	14	118450
1012633	15	27726
1012633	16	58664
1012633	17	89277
1012633	18	31935

	POSITION	PHASE SHIFT OF
SHIFT	OF	SUM SEQUENCE
REGISTER	SECOND	
TAP CONNECTIONS	TAP	
	K	PHI (K)

$1010-15$	2	45391
1012715	3	90732
$\vdots 112715$	4	126062
1012715	5	80579
1012715	6	20544
1012715	7	10019
1012715	8	3954
1012715	9	100985
1012715	10	37927
$101<715$	11	41088
1012715	12	58801
1012715	13	20038
1012715	14	122582
1012715	15	7908
1012715	16	97624
1012715	17	60173
1012715	18	56405

SHIFT REGISTER TAP CONNECTIONS
POSITION
OF
SECOND
TAP
K

PHASE SHIFT OF SUIA SEQUENCE

PHI(K)

1017551	2	62969
1010551	3	125938
1010551	4	82800
1010551	5	10267
1010551	6	26517
1010551	7	96543
1010551	8	631
1010551	9	20534
1010551	10	20125
1010551	11	53034
1010551	12	76220
1010551	13	69057
10.0551	14	127531
1010551	15	1656
1010551	16	65374
1010551	17	41068
1010551	18	26830

SHIFT REGISTER
POSITION
OF
SECOND
TAP
K

PHASE SHIFT OF SUM SEQUFNCE

PHI(K)

1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063
1101063 1101063

65808
130527
5534
39749
11363
52355
2178
48528
79498
43678
22736
44129
104710
73446
129074

	POSITION	PHASE SHIFT OF
RHIFT	OF	SUM SEQUENCE
RAP CONNECTIONS	SECOND	
	TAP	
	K	PHI (K)

1010313	2	69277
1010313	3	123589
1010313	4	64382
1010313	5	14965
1010313	6	123891
1010313	7	128764
1010313	8	2663
1010313	9	29930
1010313	10	122601
1010313	11	14361
1010313	12	53592
1010313	13	4615
1010313	14	40054
1010313	15	5326
1010313	16	5594
1010313	17	59860
1010313	18	77369

	POSITION	PHASE SHIFT OF
SHIFT	OF	SUH SEQUENCE
REGISTER	SECOND	
TAP CONNECTIONS	TAP	
	K	PHI (K)

1125611	2	110099
1125611	3	41945
1125611	4	1533
1125611	5	83890
1125611	6	82283
1125611	7	3065
1125611	8	39706
1125611	9	94363
1125611	10	130803
1125611	11	97577
1125611	12	129371
1125611	13	6132
1125611	14	123547
1125611	15	79412
1125611	16	123310
1125511	17	73417
1125511	18	22468

3	SHIFT REGISTER TAP CONNECTIONS	$\begin{aligned} & \text { POSITION } \\ & \text { OF } \\ & \text { SECOND } \\ & \text { TAP } \\ & K \end{aligned}$	PHASE SHIFT OF SUM SEQUENCE PHI(K)
6	1010211	2	127055
	1010211	3	8031
	1010211	4	52599
	1010211	5	16062
	1010211	6	107711
	1010?11	7	105198
	1010211	8	17771
	1010211	9	32124
0	1010211	10	42628
	1010211	11	46721
	1010211	12	47123
	1010211	13	51747
	1010211	14	93726
	1010211	15	35542
:	1010211	16	121897
	1010211	17	64248
	1010211	18	2180
C_{6}			
6		POSITION	PHASE SHIFT OF
	SHIFT REGISTER	OF SECOND	SUM SEQUENCE
	TAP CONNECTIONS	$\begin{gathered} \mathrm{TAP} \\ \mathrm{~K} \end{gathered}$	PH.i ${ }^{\text {(}}$ ($)$
*			125793
	1011333	3	10557
	1011333	4	108058
	1011333	5	21114
	1011333	6	2463
	1011333	7	46027
	1011333	3	81832
	1011333	9	42228
	1011333	10	121824
	1011333	11	4926
	1011333	12	70058
	1011333	13	92054
	1011333	14	116935
	1011333	15	98479
	1011333	16	38478
	1011333	17	84456
	1011333	18	103740

TAP CONNECTIONS

POSITION	PHASE SHIFT OF
OF	SUM SEQUENCE
SECOND	
TAP	
K	PHI(K)

108919
44305 71027 88610 15978
120089 63469
84923
81188
31956
6569
21965
70101
126938
24856
92297
71392

SHIFT REGISTER TAP CONNECTIONS

POSITION	PiAASE SHIFT OF
OF	
SECOND	SUMQUENCE
TAP	
K	
2	103089
3	43965
4	85850
5	87930
6	40235
7	90443
8	62483
9	86283
10	61209
11	80472
12	68904
13	81257
14	36828
15	124966
16	82924
17	89577
18	116317

1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533
1011533

	POSITION	PHASE SHIFT OF
SHIFT	OF	SUM SEQUENCE
REGISTER	SECOND	
TAP CONNECTIONS	TAP	
	K	PHI (K)

1011261	2	65170
1011261	3	130340
1011261	4	103440
1011261	5	1463
1011261	6	6539
1011261	7	55263
1011261	8	40315
1011261	3	2926
1011261	10	104408
1011261	11	13078
1011261	12	110441
1011261	13	110526
1711261	14	79325
1011261	15	81630
1011261	16	17499
1011261	17	5852
1011261	19	46245

	POSITION
SHIFT	OF
REGISTER	SECONL
TAP CONNECTIONS	TAP
	K

PHASE SHIFT OF SUM SEQUENCE
PHI (K)

1011571	2	120780
1011571	3	20583
1011571	4	121799
1011579	5	41166
1011571	6	123121
1011571	7	18545
1011571	8	33727
1011571	9	82332
1011579	10	102103
1011571	11	15901
1011571	12	25502
1011571	13	37090
1011571	14	28367
1011571	15	67454
1011571	16	56481
1011571	17	97479
1011571	18	8166

5		$\begin{aligned} & \text { POSITION } \\ & \text { OF } \\ & \text { SECOND } \\ & \text { TAP } \\ & K \end{aligned}$	PHASE SHI SUM SEzUE PHI (K)
	1012527	2	107643
	1012527	3	46857
	1012527	4	112118
5	1012527	${ }_{5}$	93714
+	1012527	6	85834
	1012527	7	37907
	1012527	8	62
	1012527	9	74715
	1012527	10	97306
1	1012527	11	90475
	$10125<7$	12	31364
	1012527	13	75814
	1012527	14	72472
	1012527	15	124
	1012527	16	122007
*	10125 ? 7	17	112713
	1012527	18	46975

	POSITION	PHASE SHIFT OF
SHIFT	$0 F$	SU\#1 SEQUENCE
REGISTER	SECOND	
TAP CONNECTIONS	TAP	
	K	PHI (K)

1012547	2	3973
1012547	3	7946
1012547	4	80251
1012547	5	15892
1012547	6	25576
1012547	7	101641
1012547	8	79868
1012547	9	31784
1012547	10	82029
1012547	19	51152
1012547	12	94429
1012547	17	58861
1012547	17	89109
1012547	15	102407
1012547	16	128621
1012547	17	63568
1012547	18	9903

	POSITION	PHASE SHIFT OF
SHIFT	OF	SUM SEQUENCE
REGISTER	SECOND	
TAP CONNECTIONS	TAP	PHI(K)

1007705	2	119517
1007705	3	23109
1007705	4	67235
1007705	5	46218
1007705	6	19445
1007705	7	127673
1007705	8	62063
1007705	9	92436
$100: 05$	10	88320
1007705	11	38890
1007705	12	75428
1007705	13	6797
1007705	14	8860
1007705	15	124126
1007705	16	30767
1007705	17	77271
1007705	18	130531

	POSITION	PHASE SHIET OF
SHIFT	OF	SUM SEQUENCE
REGTER	SECOND	
TAP CONNECTIONS	TAP	
	K	PHI (K)

1012363	2	79592
1012363	3	102959
1012363	4	116388
1012363	5	56225
1012363	6	39135
1012363	7	29367
1012363	8	$i 29619$
1012363	9	112450
1012363	10	106369
1012363	11	78270
1012363	12	33952
1012363	13	58734
1012363	14	69808
1012363	15	2905
1012363	16	91035
1012363	17	37243
1012363	18	57988

ISTER REGISTER TAP CONNECTIONS

POSITION	PHASE SHIFT OF
OF	SU:1 SEQUENCE
SECOND	
TAP	
K	$\operatorname{PHI}(K)$

1013525	2	54440
1013525	3	103880
1013525	4	86343
1013525	5	44383
1013525	6	56316
1013525	7	89457
1013525	8	98147
1013525	9	88766
1013525	10	43037
1013525	11	112632
1013525	12	1349
1013525	13	83229
1013525	14	45493
1013525	15	65849
1013525	16	68680
1013525	17	84611
1013525	18	29623

POSITION PHASE SHIFT OF OF SECOND TAP
 $K \quad$ PHI (K)

1201011	2	89998
1201011	3	82147
1201011	4	19196
1201011	5	97849
1201011	6	75595
1201011	7	38392
1201011	8	125173
1201011	9	66445
1201011	10	38185
1201011	11	110953
1201011	12	2333
1201011	13	76784
1201011	14	92305
1201011	15	11797
1201011	16	114324
1201011	17	129253
1201011	18	68333

3		```MOSITION```	PHASE SIIIFT OF SUM SEQUENCE PHI (K)
	1007543 1007543	2	124152 13839
c	1007543	4	101302
	1007543	5	27678
	1007543	6	16408
	1007543	7	59539
	1007543	8	? 8526
	1007543	9	55356
ε	1007543	10	117247
	1007543	11	32816
	1007543	12	56175
	1007543	13	119078
	1007543	14	16287
	1007543	15	57052
i	1007543	16	123516
0	1007543	17	110712
	1007543	18	34854
E1			
0	SHIFTREGISTERTAP CONNECTIONS	$\underset{\text { POS }}{\underset{\text { POSITION }}{ }}$	PHASE SHIFT OF SUM SEQUENCE
		SECOND	
			PHI (K)
6		2	33103
	1013625	3	66206
	1013625	4	37898
	1013525	5	129731
	1013625	6	50960
	1013525	7	75796
	1013625	8	11097
	1013625	9	2681
	1013625	10	98985
	1013625	11	101920
	1013625	12	111316
	1013625	13	110551
-	1013625	14	30138
	1013625	15	22194
	1013625	16	90110
	1013625	17	5362
	1013625	18	116167

PHASE SHIET OF CUM SEQUEIJCE

PHI(K)

49910
99820
7386
62503
128667
14772
60767
125006
79938
4809
113194
29544
34789
121534
74419
12131
112531

SHIFT
REGISTER
TAP CONNECTIONS

POSITION	PHASE SHIFT OF
OF	SUM SEQUENCE
SECOND	
TAP	
K	$\operatorname{PHI}(K)$

29048
58096
17471
116192
13645
34942
10503
29759
38428
27290
103669 69884
24555
21006
15851
59518
127041

SHIFT REGISTER TAP CONNECTIONS

1014475
1014475
1014475
1014475
1014475
1014475
1014475
1014475
1014475
1014475
1014475
1014475
1014475
1014475 1014475 1014475 1014475

POSITION	PHASE SHIFT OF
OF	SUM SEQUENCE
SECOND	
TAP	
K	$\operatorname{PHI}(K)$

56737
113474
101120
35195
10454
59903
60239
70390
33738
20328
31333
119806
56454
56454
120478
85344
121363
118672

	POSITION	PHASE SHIFT OF
SHIFT	OF	SUM SEQUENCE
REGISTER	SECOND	
TAP CONNECTIONS	TAP	
	K	PHI (K)

1007165	2	18934
1007165	3	37868
1007165	4	21299
1007165	5	75736
1007165	6	45044
1007165	7	42598
1007165	8	78255
1007165	9	110671
1007165	10	45941
1007165	11	90088
1007165	12	36499
1007165	13	114847
1007165	14	105633
1007165	15	7680
1007165	16	40801
1007165	17	7949
1007165	18	

SHIFT REGISTER TAP CONNECTIONS

POSITION	PHASE SHIFT OF
OF	SUM SEQUENCE
SECOND	
TAP	
K	PHI(K)

	POSITION	PHASE SHIFT OF
REGIFT	OF	SUM SEQUENCE
TAP CONNECTIONS	SECOND	
	TAP	
	K	PHI(K)

1007121
1007121
1007121
1007121
1007121
1007121
1007121
1007121
1007121
1007121
1007121
1007121
1007121
1007121
100712 ?
1007121
1007121
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
25635
51270
127449
102540
82629
7245
103140
57063
57531
96885
55203
14490
92893
55863
$1915 ?$
114126
114621

Silff REGISTER TAP CONNECTIONS

POSITION	PHASE SHIFT OF
OF	SUM SEQUENCE
SECOND	
TAP	
K	PHI (K)

1021553
2
1021553
1021553
1021553
1021553
1021553
1021553
1021553
1021553
1021553
11
1021553
12
1021553
1021553
1021553
1021553
1021553
1021553
17
18
47405
34810
22051
72523
43913
44122
6934
$1: 7097$
26391
87826
103968
88244
32423
13868
72642
27949
85283

POSITION OF SECOND TAP K

PHASE SHIFT OF SUM SEQUENCE,

PHI (K)

1001661	2	36517
1001651	3	73034
1001661	4	74422
1001661	5	116075
1001669	6	80742
1001661	7	113299
1001651	8	128084
1001669	9	29993
1001661	10	59945
1001661	11	100659
1001661	12	30346
1001661	13	35545
1001661	14	22633
1001661	15	5975
1001661	16	19777
1001661	17	59986
1001661	18	31680

SHIFT REGISTER TAP CONNECTIONS

POSITION OF
 SECOND
 TAP

PHASE SHIFT OF SUM SEQUENCE

PHI (K)

1017611	2	6338
1017611	3	12676
1017611	4	16649
1017611	5	25352
1017611	6	39888
1017611	7	33298
1017611	8	29767
1017611	9	50704
1017611	19	113772
1017611	11	79776
1017611	12	14667
1017611	13	66596
1017611	14	16536
1017611	15	53534
1017611	16	32361
1017611	17	101408
1017611	18	35877

20270
40540
100996
81080
1170
60151
98141
99983
123092
2340
25295
20302
65861
39012
43349

POSITILN	PHASE SHIFT OF
OF	SUM SEQUENCE
SECOND	
TAP	
K	PHI (K)

1001607

1001607

$$
41857
$$

$$
83714
$$ 1001607

$$
24734
$$ 1001607

$$
94715
$$ 1001607

$$
76 E 52
$$ 1001607

$$
49468
$$ 1001607

$$
17132
$$ 1001607

$$
72713
$$ 1001607

$$
77447
$$ 1001607

$$
108839
$$ 1001607 100!607

$$
68362
$$

$$
98936
$$ 1001607

$$
120869
$$ 1001607

$$
34264
$$ 1001607

$$
121992
$$ 1001607 1001607

$$
\begin{array}{r}
116717 \\
03802
\end{array}
$$

$$
93803
$$

POSITION	PHASE SHIET OF
OF	SUY SEQUENCE
SECOND	
TAP	
K	PHI (K)

1017071	2	104367
1017071	3	52403
1017071	4	35443
1017071	5	104318
1017071	6	121603
1017071	7	70886
1017071	8	80471
1017071	9	52507
1017071	10	25412
1017071	11	18927
1017071	12	24920
1017071	13	120371
1017071	14	15524
1017071	15	101201
1017071	16	18779
1017071	17	105014
1017071	18	12674

	POSITION	PHASE FIFT OF
SHIFT	OF	SUM SL ENCE
REGISTER	SECOND	
TAP CONNECTIONS	TAP	
	K	PHI (K)

1001567	2	103393
1001567	3	55357
1001567	4	59109
1001567	5	110714
1001567	6	113709
1001557	7	118218
1001567	8	1800
1001567	9	40715
1001567	10	130143
1001567	11	34725
1001567	12	108128
1001567	13	25707
1001557	14	123389
1001567	15	3600
1001567	16	67577
1001567	17	81430
1001567	18	87968

SHIET
REGISTER
TAP CONNECTIONS

POSITION	PHASE SHIFT OF
OF	SUH SEQUENCE
SECOND	
TAP	
K	PHI (K)

1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705
1016705

		POSITION
	SHIFT	OF
	REGISTER	SECOND
TAP CONNECTIONS	TAP	
		K

PHASE SHIFT OF SUM SEQUENCE

PHI (K)
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475
1021475

SHIFT
REGISTER
TAP CONNECTIONS
POSITION
OF
SECOND
TAP
K

PHASE SHIFT OF SUM SEQUENCE PHI (K)

1001427

1001427
1001427
1001427
1001427
1001427
1001427
1001427
1001427
1001427
1001427
1001427
1001427
1001427
1001427
1001427 1001427

SHIFT REGISTER TAP CONNECTIONS

POSITION	PHASE SHIFT OF
OF	SUM SEQUENCE
SECOND	
TAP	
K	PHI (K)

1101533	2	5685
1101533	3	11370
1101533	4	33792
1101533	5	22740
1101533	6	9596
1101533	7	67584
1101533	8	41333
1101533	9	45480
1101533	10	91020
1101533	11	19192
1101533	12	36154
1101533	13	126975
1101533	14	128420
1101533	15	82666
1101533	16	12424
1101533	17	90950
1101533	18	8268

POSITION	PHASE SHIFT OF
OF	SUM SEQUENCE
SECOND	
TAP	
K	PHI (K)

1001361	2	8790
1001361	3	17580
1001361	4	18210
1001361	5	35160
1001361	6	18158
1001361	7	36420
1001361	8	42786
1001361	9	70320
1001361	10	94465
1001361	11	36316
1001361	12	48857
1001361	13	72840
1001361	14	120952
1001359	15	85572
1001361	16	69945
1001361	17	121503
1001361	18	8591

SHIFT REGISTER

 TAP CONNECTIONSOF SECOND TAP K

```
POSITION
POSITION
PHASE SHIFT OF SUM SEQUENCE
PHI(K)
\begin{tabular}{rrr}
1402335 & 2 & 97889 \\
1402335 & 3 & 66365 \\
1402335 & 4 & 35344 \\
1402335 & 5 & 129413 \\
1402335 & 6 & 2894 \\
1402335 & 7 & 70688 \\
1402335 & 8 & 40059 \\
1402335 & 9 & 3317 \\
1402335 & 10 & 92879 \\
1402335 & 19 & 5768 \\
1402335 & 12 & 129880 \\
1402335 & 13 & 120767 \\
1402335 & 14 & 50377 \\
1402335 & 15 & 80118 \\
1402335 & 16 & 33787 \\
1402335 & 17 & 6634 \\
1402335 & 18 & 84390
\end{tabular}


\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & \(\operatorname{PHI}(K)\)
\end{tabular}

1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165 1001165

61729
123458 6928 ! 15227 85582
123581 73098 30454 128965 90979 4480 14081 93604 115947 126834 60908 127726
\begin{tabular}{cc} 
POSITION & PHASE SUIFT OF \\
OF & SUM SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & \(\operatorname{PHI}(K)\)
\end{tabular}
\begin{tabular}{rrr}
1015631 & 2 & 94174 \\
1015531 & 3 & 73795 \\
1015631 & 4 & 29044 \\
1015631 & 5 & 114553 \\
1015631 & 6 & 60382 \\
1015631 & 7 & 58088 \\
1015631 & 8 & 60036 \\
1015631 & 9 & 33037 \\
1015631 & 10 & 115634 \\
1015631 & 11 & 120764 \\
1015631 & 12 & 104679 \\
1015631 & 13 & 116176 \\
1015531 & 14 & 31417 \\
1015631 & 15 & 120072 \\
1015631 & 16 & 93673 \\
1015631 & 17 & 66074 \\
1015631 & 18 & 37258
\end{tabular}
\begin{tabular}{rcc} 
& POSITION & PHASE SHIFT OF \\
SHIFT & OF & SUM SEQUENCE \\
REGISTER & SECOND & \\
TAP CONNECTIONS & TAP & \\
& K & \\
& & \\
1001141 & 2 & 35505 \\
1001141 & 3 & 91133 \\
1001141 & 4 & 110402 \\
1001141 & 5 & 79877 \\
1001141 & 6 & 34226 \\
1001149 & 7 & 41339 \\
1001111 & 8 & 14992 \\
1001141 & 9 & 102389 \\
1001141 & 10 & 25409 \\
1001141 & 11 & 68452 \\
1001141 & 12 & 23309 \\
1001149 & 13 & 82678 \\
1001141 & 14 & 18414 \\
1001141 & 15 & 29934 \\
1001141 & 16 & 30916 \\
1001949 & 17 & 57365 \\
1001141 & 18 & 1695
\end{tabular}

SHIFT REGISTER TAP CONNECTIONS
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEQUFNCE \\
SECOND & \\
TAP & \\
\(K\) & PHI \((K)\)
\end{tabular}
1025051
1025059
1025059
1025051
1025051
1025051
1025051
1025051
1025051
1025051
1025051
1025051
1025051
1025051
1025051
1025051
1025051
\begin{tabular}{rr}
2 & 55834 \\
3 & 111668 \\
4 & 52553 \\
5 & 38807 \\
6 & 83433 \\
7 & 105106 \\
8 & 33388 \\
9 & 77614 \\
10 & 78323 \\
11 & 95277 \\
12 & 778 \\
13 & 51931 \\
14 & 110554 \\
15 & 66776 \\
16 & 117317 \\
17 & 106915 \\
18 & 125806
\end{tabular}
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SU:I SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & PHI \((K)\)
\end{tabular}
\begin{tabular}{rrr}
1010615 & 2 & 114760 \\
1010615 & 3 & 32623 \\
1010617 & 4 & 43589 \\
1010615 & 5 & 55245 \\
1010615 & 6 & 97291 \\
1010615 & 7 & 87178 \\
1010615 & 8 & 73503 \\
1010615 & 3 & 130492 \\
1010615 & 10 & 98035 \\
1010615 & 11 & 67561 \\
1010615 & 12 & 42818 \\
1010615 & 13 & 87787 \\
1010015 & 14 & 49025 \\
1010615 & 15 & 155137 \\
1010615 & 16 & 97491 \\
1010615 & 17 & 1157 \\
1010615 & 18 & 79179
\end{tabular}


SHIFT REGISTER TAP CONNECTIONS
\begin{tabular}{lrr}
1000757 & 2 & 3265 \\
1000757 & 3 & 6530 \\
1000757 & 4 & 73075 \\
1000757 & 5 & 13060 \\
1000757 & 6 & 115995 \\
1000757 & 7 & 94993 \\
1000757 & 8 & 26120 \\
1000757 & 9 & 77032 \\
1000757 & 10 & 19570 \\
1000757 & 19 & 30896 \\
1000757 & 12 & 127570 \\
1000757 & 13 & 73757 \\
1000757 & 14 & 89729 \\
1000757 & 15 & 52240 \\
1000757 & 16 & 98580 \\
1000757 & 17 & 18
\end{tabular}


SHIFT REGISTER TAP CONVECTIONS
\begin{tabular}{cc} 
POSITION & PIASE SHIFT OF \\
OF & SUA SEQUFHCE \\
SECGND & \\
TAP & \\
\(K\) & PHI(K)
\end{tabular}
\begin{tabular}{rrr}
1010741 & 2 & 127874 \\
1010741 & 3 & 6395 \\
1010741 & 4 & 63516 \\
1010741 & 5 & 12990 \\
1010741 & 6 & 52184 \\
1010741 & 7 & 127032 \\
1010741 & 8 & 78180 \\
1010741 & 9 & 25580 \\
1010741 & 10 & 75695 \\
2010741 & 19 & 124368 \\
1010741 & 12 & 39336 \\
1010741 & 13 & 8079 \\
1010741 & 14 & 52160 \\
1010741 & 15 & 105783 \\
1090741 & 46 & 10583 \\
1010744 & 17 & 51160 \\
1010741 & 18 & 111061
\end{tabular}
\begin{tabular}{ccc} 
& POSITION & PHASE SHIFT OF \\
SHIFT & OF & SU: 1 SEQUENCE \\
REGISTER & SECOND & \\
NECTIONS & TAP & \\
& \(K\) & PHI (K9
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1205*51 & 2 & 84556 \\
\hline 1205651 & 3 & 93031 \\
\hline 1205651 & 4 & \$05166 \\
\hline \$205659 & 5 & 76081 \\
\hline 1205651 & 6 & 38953 \\
\hline 1205551 & 7 & 59811 \\
\hline 1205551 & 8 & 119487 \\
\hline 1205551 & 9 & 10¢981 \\
\hline 1205659 & 40 & 78275 \\
\hline 1205651 & 11 & 77926 \\
\hline 1205651 & 12 & 30692 \\
\hline 1205551 & 13 & 103622 \\
\hline 1205651 & 14 & 113547 \\
\hline 1205551 & 15 & 23169 \\
\hline 4205651 & 16 & 119270 \\
\hline 1205 f5 1 & 17 & 42181 \\
\hline 1205551 & 18 & 33526 \\
\hline
\end{tabular}

SHIFT
REGISTER TAP CONNECTIONS
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEOUENCE \\
SECOND & \\
TAP & \\
\(K\) & \(\operatorname{PHI}(K)\)
\end{tabular}


1000743
1000743
1000743
1000743 1000743 1000743 1000743 1000743 1000743 1000743 1000743 1000743 100074 ? 1000743 1000743 1000743

19416
38832
16811
77664
24907
\(3: 622\)
96058
106815
39070
49814
5717
67244
58030
70027
55555
48513
27895
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & \(\operatorname{PHI}(K)\)
\end{tabular}
\begin{tabular}{lrr}
1021237 & 2 & 32161 \\
1021237 & 3 & 64322 \\
1021237 & 4 & 105583 \\
1021237 & 5 & 123544 \\
1021237 & 6 & 21691 \\
1021237 & 7 & 48977 \\
1021237 & 8 & 107756 \\
1021237 & 9 & 4355 \\
1021237 & 10 & 25929 \\
1021237 & 11 & 43382 \\
1021237 & 12 & 95537 \\
1021237 & 13 & 97954 \\
1021237 & 14 & 79342 \\
1021237 & 15 & 45631 \\
1021237 & 16 & 114995 \\
1021237 & 17 & 9710 \\
1021237 & 18 & 90728
\end{tabular}

```

TAP CONNECTIONS

```
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUHI SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & PHI \((K)\)
\end{tabular}
\begin{tabular}{rrr}
1000517 & 2 & 37444 \\
1000517 & 3 & 74888 \\
1000517 & 4 & 42803 \\
1000517 & 5 & 112367 \\
1000517 & 6 & 83784 \\
1000517 & 7 & 85606 \\
1000517 & 8 & 113742 \\
1000517 & 9 & 37409 \\
1000517 & 10 & 121793 \\
1000517 & 11 & 94575 \\
1000517 & 12 & 125387 \\
1000517 & 13 & 90931 \\
1000517 & 14 & 106447 \\
1000517 & 15 & 34659 \\
1000517 & 16 & 106396 \\
1000517 & 17 & 74818 \\
1000517 & 18 & 51470
\end{tabular}

SHIFT FEGISTER TAP CONNECTIONS
```

POSITION
OF
SECOND
TAP

```
                            K PHI (K)
\begin{tabular}{rrr}
1021273 & 2 & 110124 \\
1021273 & 3 & 41895 \\
1021273 & 4 & 60706 \\
1021273 & 5 & 83790 \\
1021273 & 6 & 5183 \\
1021273 & 7 & 121412 \\
1021273 & 8 & 37551 \\
1021273 & 9 & 94563 \\
1021273 & 10 & 67616 \\
1021273 & 11 & 12356 \\
1021273 & 12 & 100630 \\
1021273 & 13 & 19319 \\
1021273 & 14 & 57707 \\
1021273 & 15 & 75102 \\
1021273 & 16 & 2393 \\
1021273 & 17 & 73017 \\
1021273 & 18 & 46888
\end{tabular}

Pilase shift of SUM SEQUEICE

PHI(K)

10124
60706
3790
5183
21412
37551
94563
12356
00630
19319
57707
2393
46888
\begin{tabular}{|c|c|c|c|c|}
\hline 0 & TAP & \[
\begin{array}{r}
\text { SHIFT } \\
\text { REGISTER } \\
\text { CONNECTIONS }
\end{array}
\] & \[
\begin{gathered}
\text { POSITION } \\
\text { OF } \\
\text { SECOND } \\
\text { TAP } \\
K
\end{gathered}
\] & PHASE SHIFT OF SUM SEQUENCE
PHI (K) \\
\hline \multirow{8}{*}{3} & & 1000407 & 2 & 49350 \\
\hline & & 1000407 & 3 & 98700 \\
\hline & & 1000407 & 4 & 19403 \\
\hline & & 1000407 & 5 & 64743 \\
\hline & & 1000407 & 6 & 116090 \\
\hline & & 1000407 & 7 & 38806 \\
\hline & & 1000407 & 8 & 56729 \\
\hline & & 1000407 & 9 & 129486 \\
\hline \multirow[t]{6}{*}{0} & & 1000407 & 10 & 61200 \\
\hline & & 1000407 & 11 & 29963 \\
\hline & & 1000407 & 12 & 75745 \\
\hline & & 1000407 & 13 & 77612 \\
\hline & & 1000407 & 14 & 55780 \\
\hline & & 1000407 & 15 & 113458 \\
\hline \multirow[t]{3}{*}{0} & & 1000407 & 16 & 25159 \\
\hline & & 1000407 & 17 & 3171 \\
\hline & & 1000407 & 18 & 124381 \\
\hline \multicolumn{5}{|l|}{01} \\
\hline \multirow[t]{4}{*}{6} & & & POSITION & PHASE SHIFT OF \\
\hline & & SHIFT REGISTER & OF SECOND & SUM SEQUENCE \\
\hline & TAP & CONNECTIONS & TAP & \\
\hline & & & K & PHI (K) \\
\hline \multirow[t]{5}{*}{C} & & 1324243 & 2 & 98331 \\
\hline & & 1324243 & 3 & 65431 \\
\hline & & 1324243 & 4 & 15974 \\
\hline & & 1324243 & 5 & 130962 \\
\hline & & 1324243 & 6 & 119625 \\
\hline \multirow[t]{6}{*}{\%} & & 1324243 & 7 & 31948 \\
\hline & & 1324243 & 8 & 66716 \\
\hline & & 1324243 & 9 & 219 \\
\hline & & 1324243 & 10 & 80039 \\
\hline & & 1324243 & 11 & 22893 \\
\hline & & 1324243 & 12 & 7845 \\
\hline , & & 1324243 & 13 & 63896 \\
\hline \multirow[t]{5}{*}{3} & & 1324243 & 14 & 20033 \\
\hline & & 1324243 & 15 & 128711 \\
\hline & & 1324243 & 16 & 72882 \\
\hline & & 1324243 & 17 & 438 \\
\hline & & 1324243 & 18 & 85765 \\
\hline
\end{tabular}
\begin{tabular}{rcc} 
& POSITION & PHASE SHIFT OF \\
SHIFT & OF & SUM SEQUENCE \\
REGISTER & SECOND & \\
TAP CONNECTIONS & TAP & PHI(K)
\end{tabular}
\begin{tabular}{rrr}
1000355 & 2 & 3923 \\
1000355 & 3 & 7846 \\
1000355 & 4 & 110343 \\
1000355 & 5 & 15692 \\
1000355 & 6 & 30094 \\
1000355 & 7 & 41457 \\
1000355 & 8 & 124439 \\
1000355 & 9 & 31384 \\
1000355 & 10 & 86513 \\
1000355 & 11 & 60188 \\
1000355 & 12 & 15525 \\
10003.55 & 13 & 82914 \\
1000355 & 14 & 10309 \\
1000355 & 15 & 13265 \\
1000355 & 16 & 79337 \\
1000355 & 17 & 62768 \\
1000355 & 18 & 95230
\end{tabular}
\begin{tabular}{rcc} 
& POSITION & PHASE SHIFT OF \\
SHIFT & OF & SUM SEQUENCE \\
REGISTER & SECOND & \\
TAP CONNECTIONS & TAP & PHI \((K)\)
\end{tabular}
\begin{tabular}{lrr}
1020753 & 2 & 18925 \\
1020753 & 3 & 37850 \\
1020753 & 4 & 114295 \\
1020753 & 5 & 75700 \\
1020753 & 5 & 129427 \\
1020753 & 7 & 33551 \\
1020753 & 8 & 42170 \\
1020753 & 9 & 110743 \\
1020753 & 10 & 60361 \\
1020753 & 11 & 3289 \\
1020753 & 12 & 50317 \\
1020753 & 13 & 67102 \\
1020753 & 14 & 10065 \\
1020753 & 15 & 84340 \\
1020753 & 16 & 73295 \\
1020753 & 17 & 40657 \\
1020753 & 18 & 65856
\end{tabular}
\begin{tabular}{rcc} 
& POSITION & PHASE SHIFT OF \\
SHIFT & OF & SUM SEQUENCE \\
REGISTER & SECOND & \\
TAP COMNECTIONS & TAP & \\
& \(K\) & PHI \((K)\)
\end{tabular}

1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
1000347
2
3
4
5
K
PHI(K)

41418
82836
11047
96471
30382
22094
73939
67201
56667
60764
105487
44188
8729
114265
378
123741
80962

SHIFT REGISTER TAP CONNECTIONS
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & \(\operatorname{PHI}(K)\)
\end{tabular}

1020771
1020771
1020771
1020771
1020771 1020771
1020771 1020771 1020771 1020771 1020771 1020771 1020771 1020771 1020771 1020771

2
3
5
6
7
8
9
10
11
12
13
14
15
16
1020771
17
121382
19379
56262
38758
116539
112524
124481
77516
105837
29065
15770
37095
55190
13181
92539
107111
85278

SHIFT
REGISTER
TAP CONNECTIONS
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & PHI \((K)\)
\end{tabular}

1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
1000333
2
3
4
5
6
7
927
38546
27896
77092
43690
55792
81602
107959
47180
87380
67198
111584
66887
98939
57643
46225
48009

SHIFT
REGISTER TAP CONNECTIONS
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEOUENCE \\
SECOND & \\
TAP & \\
K & PHI \((K)\)
\end{tabular}

1032057
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067
1032067

\section*{POSITION COND \\ K}

\section*{2}

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
i8

PHI (K)

109793
42557
6240
85114
16939
12480
90341
91915
25351
33878
10443
24960
122556
81461
14015
78313
118872
\begin{tabular}{|c|c|c|}
\hline SHIFT
REGISTER
TAP CONNECTIONS & \[
\begin{gathered}
\text { POSITION } \\
\text { OF } \\
\text { SECOND } \\
\text { TAP } \\
K
\end{gathered}
\] & PHASE SHIFT OF SUM SEQUEINCE
PHI (K) \\
\hline 1000201 & 2 & 52379 \\
\hline 1000201 & 3 & 104758 \\
\hline 1000201 & 4 & 126258 \\
\hline 1000201 & 5 & 52627 \\
\hline 1000201 & 6 & 114090 \\
\hline 1000201 & 7 & 9627 \\
\hline 1000201 & 8 & 11 \\
\hline 1000201 & 9 & 105254 \\
\hline 1000201 & 10 & 131066 \\
\hline 1000201 & 11 & 33963 \\
\hline 1000201 & 12 & 18 \\
\hline 1000201 & 13 & 19254 \\
\hline 1000201 & 14 & 28738 \\
\hline 1000201 & 15 & 22 \\
\hline 1000201 & 16 & 103274 \\
\hline 1000201 & 17 & 51635 \\
\hline 1000201 & 18 & 50628 \\
\hline
\end{tabular}
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & \(\operatorname{PHI}(K)\)
\end{tabular}
\begin{tabular}{rrr}
1017243 & 2 & 47380 \\
1017243 & 3 & 94760 \\
1017243 & 4 & 17348 \\
1017243 & 5 & 72623 \\
1017243 & 6 & 24675 \\
1017243 & 7 & 34636 \\
1017243 & 8 & 71413 \\
1017243 & 9 & 115897 \\
1017243 & 10 & 55015 \\
1017243 & 11 & 69350 \\
1017243 & 12 & 6342 \\
1017243 & 13 & 69392 \\
1017243 & 14 & 115368 \\
1017243 & 15 & 119317 \\
1017243 & 16 & 13875 \\
1017243 & 17 & 28349 \\
1017243 & 18 & 84744
\end{tabular}

\begin{tabular}{lrr}
1017261 & 2 & 57114 \\
1017261 & 3 & 114228 \\
1017261 & 4 & 33002 \\
1017261 & 5 & 33687 \\
1017261 & 6 & 75527 \\
1017261 & 7 & 66004 \\
1017261 & 8 & 101252 \\
1017261 & 9 & 67374 \\
1017261 & 10 & 27451 \\
1017261 & 11 & 111089 \\
1017261 & 12 & 63666 \\
1017261 & 13 & 130135 \\
1017261 & 14 & 124968 \\
1017261 & 15 & 57639 \\
1017261 & 16 & 127054 \\
1017261 & 17 & 127395 \\
1017261 & 18 & 33291
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & TAP & \begin{tabular}{l}
SHIFT \\
REGISTER CONNECTIONS
\end{tabular} & \[
\begin{aligned}
& \text { POSITION } \\
& \text { OF } \\
& \text { SECOND } \\
& \text { TAP } \\
& K
\end{aligned}
\] & PHASE SUIFT OF SUY SEQUENCE
PHI (K) \\
\hline & & 1011055 & 2 & 1956 \\
\hline & & 1011055 & 3 & 3912 \\
\hline & & 1011055 & 4 & 122800 \\
\hline * & & 1011055 & 5 & 7824 \\
\hline & & 1011055 & 6 & 63199 \\
\hline & & 1011055 & 7 & 16543 \\
\hline & & 1011055 & 8 & 45547 \\
\hline & & 1011055 & 9 & 15648 \\
\hline & & 1011055 & 10 & 122434 \\
\hline C & & 1011055 & 11 & 123745 \\
\hline & & 1011055 & 12 & 38728 \\
\hline & & 1011055 & 13 & 33036 \\
\hline & & 1011055 & 14 & 9889 \\
\hline & & 1011055 & 15 & 91094 \\
\hline & & 1011055 & 16 & 14283 \\
\hline * & & 1011055 & 17 & 31296 \\
\hline & & 1011055 & 18 & 27351 \\
\hline \multicolumn{5}{|l|}{i} \\
\hline \multirow[t]{3}{*}{6} & \multirow[b]{3}{*}{TAP} & SHIFT & \[
\begin{gathered}
\text { POSITION } \\
\text { OF }
\end{gathered}
\] & PHASE SHIFT OF SUM SEQUEINCE \\
\hline & & REGISTER & SECOND & \\
\hline & & CONNESTIONS & & PHI (K) \\
\hline \multirow[t]{5}{*}{\(\delta\)} & & 1016435 & 2 & 53310 \\
\hline & & 1016435 & 3 & 107620 \\
\hline & & 1016435 & 4 & 67218 \\
\hline & & 1016435 & 5 & 45903 \\
\hline & & 1016435 & 6 & 114963 \\
\hline \multirow{6}{*}{8} & & 1016435 & 7 & 123707 \\
\hline & & 1016435 & 8 & 10645 \\
\hline & & 1016435 & 9 & 93805 \\
\hline & & 1016435 & 10 & 111283 \\
\hline & & 1016435 & 11 & 32217 \\
\hline & & 1016435 & 12 & 65098 \\
\hline & & 1016435 & 13 & 14723 \\
\hline - & & 1016435 & 14 & 24942 \\
\hline \multirow[t]{4}{*}{\[
0
\]} & & 1016435 & 15 & 21290 \\
\hline & & 1016435 & 16 & 35636 \\
\hline & & 1016435 & 17 & 74531 \\
\hline & & 1016435 & 18 & 61443 \\
\hline
\end{tabular}

SHIFT
POSITION OF

PHASE SHIFT OF SUM SEQUENCE REGISTER TAP CONNECTIONS SECOND TAP \(K \quad \mathrm{PHI}(\mathrm{K})\)
\begin{tabular}{rrr}
1000077 & 2 & 66335 \\
1000077 & 3 & 129473 \\
1000077 & 4 & 33161 \\
1000077 & 5 & 3197 \\
1000077 & 6 & 94555 \\
1000077 & 7 & 66322 \\
1000077 & 8 & 63176 \\
1000077 & 9 & 6394 \\
1000077 & 10 & 50633 \\
1000077 & 11 & 73033 \\
1000077 & 12 & 127109 \\
1000077 & 13 & 129499 \\
1000077 & 14 & 101267 \\
1000077 & 15 & 126352 \\
1000077 & 16 & 899 \\
1000077 & 17 & 12788 \\
1000077 & 18 & 104092
\end{tabular}
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEQUENCE \\
SECOND & \\
TAP & \\
K & PHI (K)
\end{tabular}

106962
48219
17509
96438
116241
35018
94698
69267
112817
29661
38299
70036
119902
72747
113295
123609
64876
\begin{tabular}{rcc} 
& POSITIUN & PHASE SHIFT OF \\
SHIFT & \(0 F\) & SUM SEQUENCE \\
REGISTER & SECOND & \\
TAP CONNECTIONS & TAP & \\
& \(K\) & PHI \((K)\)
\end{tabular}
\begin{tabular}{rrr}
1013263 & 2 & 9315 \\
1013263 & 3 & 18630 \\
1013263 & 4 & 56725 \\
1013263 & 5 & 37260 \\
1013263 & 5 & 120631 \\
1013263 & 7 & 113450 \\
1013263 & 8 & 89070 \\
1013263 & 9 & 74520 \\
1013263 & 10 & 114337 \\
1013263 & 11 & 20761 \\
1013263 & 12 & 92104 \\
1013263 & 13 & 35243 \\
1013263 & 14 & 76365 \\
1013263 & 15 & 94003 \\
1013263 & 16 & 109756 \\
1013263 & 17 & 113103 \\
1013263 & 18 & 126373
\end{tabular}
\begin{tabular}{rcc} 
& POSITION & PHASE SHIFT OF \\
REGIFT & OF & SUM SEOUEISE \\
TAP CONNECTIONS & SECOND & \\
& TAP & \\
& \(K\) & PHI \((K)\)
\end{tabular}
\begin{tabular}{rrr}
1013323 & 2 & 122983 \\
1013323 & 3 & 16177 \\
1013323 & 4 & 80100 \\
1013323 & 5 & 32354 \\
1013323 & 6 & 78104 \\
1013323 & 7 & 101943 \\
1013323 & 8 & 62546 \\
1013323 & 0 & 64708 \\
1013323 & 10 & 48320 \\
1013323 & 11 & 105935 \\
1013323 & 12 & 72654 \\
1013323 & 13 & 58257 \\
1013323 & 14 & 99335 \\
1013323 & 15 & 125092 \\
1013323 & 16 & 75458 \\
1013323 & 17 & 129416 \\
1013323 & 18 & 115767
\end{tabular}
\begin{tabular}{rcc} 
& POSITION & PHASE SHIFT OF \\
SHIFT & OF & SUY SEQUENCE \\
REGISTER & SECOND & \\
TAP CONNECTIONS & TAP & \\
& \(K\) & PHI \((K)\)
\end{tabular}
\begin{tabular}{rrr}
1013331 & 2 & 31802 \\
1013331 & 3 & 98539 \\
1013331 & 4 & 89998 \\
1013331 & 5 & 65055 \\
1013331 & 6 & 56632 \\
1013331 & 7 & 82147 \\
1013331 & 8 & 21153 \\
1013331 & 9 & 130130 \\
1013331 & 10 & 96803 \\
1013331 & 11 & 113264 \\
1013331 & 12 & 38646 \\
1013331 & 13 & 97849 \\
1013331 & 14 & 105232 \\
1013331 & 15 & 42306 \\
1013331 & 16 & 78633 \\
1013331 & 17 & 1883 \\
1013331 & 18 & 39511
\end{tabular}


\section*{POSITION OF SECOND TAP K}

PIWASE SHIFT OF SU:I SEOUENCE

PII(K)

TAP CONNECTIONS

SHIFT register
\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SEQUENCE \\
SECOND & \\
TAP & \\
\(K\) & \(\operatorname{PHI}(K)\)
\end{tabular}
\begin{tabular}{rrr}
1015155 & 2 & 84157 \\
1015155 & 3 & 93829 \\
1015155 & 4 & 80057 \\
1015155 & 5 & 74485 \\
1015155 & 6 & 121733 \\
1015155 & 7 & 102029 \\
1015155 & 8 & 41730 \\
1015155 & 9 & 113173 \\
1015155 & 10 & 130006 \\
1015155 & 11 & 18677 \\
1015155 & 12 & 27877 \\
1015155 & 13 & 58085 \\
1015155 & 14 & 100083 \\
1015155 & 15 & 83460 \\
1015155 & 16 & 21301 \\
1015155 & 17 & 35797 \\
1015155 & 18 & 122794
\end{tabular}
tap CONHECTIONS
PHI(K)

> POSITION
> OF SECOND TAP
\(K \quad \mathrm{PHI}(\mathrm{K})\)
TAP CONNECTIONS
PHASE SHIFT OF SU:1 SEQUENCE
\begin{tabular}{rrr}
1015253 & 2 & 130336 \\
1015253 & 3 & 1471 \\
1015253 & 4 & 130529 \\
1015253 & 5 & 2942 \\
1015253 & 6 & 5690 \\
1015253 & 7 & 885 \\
1015253 & 8 & 1557 \\
1015253 & 9 & 5884 \\
1015253 & 10 & 93131 \\
1015253 & 11 & 11380 \\
1015253 & 12 & 122935 \\
1015253 & 13 & 1770 \\
1015253 & 14 & 65102 \\
1015253 & 15 & 3114 \\
1015253 & 16 & 21200 \\
1015253 & 17 & 11768 \\
1015253 & 18 & 114622
\end{tabular}

\begin{tabular}{cc} 
POSITION & PHASE SHIFT OF \\
OF & SUM SECUENCE \\
SECOND & \\
TAP & \\
K & PHI \((K)\)
\end{tabular}

60672
121344
17874
19455
5186
35748
66351
38910
63236
10372
68148
71496
121562
129421
116454
77820
55416








RUAX COMRILER UXER \(2 \cdot 3 \mathrm{M}\) I
\(\begin{aligned} & \text { SUBPRCGRAM LENGTH } \\ & \text { OCOOGO }\end{aligned}\)
statement functicn references


SILAT CF CCNSTAMIS
CCOOO 32
START EF TEMPORARIES
COCOOSG
START CF INDIRECTS
EXTERNAL REFERENCES
CHACOEE SEYT
CORPILER SPACE
LNUSER - CIOSCO
LNUSEC - CIESCO USED - C37300










\section*{APPEN.DIX D. 5}

\section*{COMPUTER PROGRAM LISTING FOR DETERMINATION OF SIDELOBE DISTRIBUTION OF GOLD CODES}

The following listing is the computer program used for the generation of the sidelobe distribution of Gold codes of period \(2^{11}-1\). The program computes the number of sidelobes in the cross-correlation function \(\theta\) of any Gold codes of period \(2^{n}-1\) by making use of the formula for the number \(S\) of cross-correlation sidelobes given in A.5.4, i.e.,
\[
S=\frac{\sum \theta^{2}+2 \sum_{\theta+2^{n}-1}}{2^{n+1}}
\]

For each code, the program first computes its unbalance and its autocorrelation function. For each pair of codes to be correlated, the program then computes the product of the unbalances which yields the quantity \(\sum_{\theta}\) and the dot product of the autocorrelation function, which yields the quantity \(\sum_{\theta}{ }^{2}\). The above formula then is used to compute the number of sidelohes for given cross-correlation and the distribution of code pairs with a given number of sidelobes.
















\(\cdots\)...














\section*{APPENDIX E. 5}

TABLE OF PREFERRED PAIRS OF MAXIMAL POLYNOMIALS OF DEGREE 11, 13, 15, 18, 19














\section*{APPENDIX F. 5}
c
COMPUTER PROGRAM LISTING FOR GENERATION OF PREFERRED PAIRS OF MAXIMAL PN SEQUENCES




\title{
ORIGINAL PAGE IS OF POOR QUALITY
}



CODE LIBRARY FOR FORWARD LINK RANGE CHANNEL MAXIMAL PN CODES OF PERIOD \(2^{18}-1\) HAVING SIX OR LESS FEEDBACK TAPS IN THE GENERATING SHIFT REGISTER

3
\(: 1\)

5


SHIFI REGISTERS WITH LESS THAN OR EOUAL NUMGER OF TAPS THAN 6

1822805
1822027
1022255
1822131
1022145
1822225
1022311
1022443
1022461
1222621
1023045
1823103
1023111
1823221
1023465
1824817
1024827
1024063
1824065
1024305
1025105
1025141
1026023
1026861
1030145
1030161
1030215
1030303
1036311
1030321
1230341
1034013
1034051
1834125
1835821
1040043
1040851
1040117
048235

1940361
1040463
1840465
1040545
1040645
1040721
1041811
1041035
1041287
1041225
1841423
1041445
1041585

\section*{APPENDIX H-5}

ALTERNATE CODE LIBRARY FOR MODE 1 RETURN LINK MAXIMAL PN CODES OF PERIOD \(2^{18}-1\) HAVING SIX OR LESS FEEDBACK TAPS IN THE GENERATING SHIFT REGISTER
\begin{tabular}{ll}
1000115 & 1004455 \\
1000743 & 1004545 \\
1000751 & 1004623 \\
1001013 & 1004643 \\
1002031 & 1004645 \\
1002061 & 1004711 \\
1002075 & 1005035 \\
1002133 & 1005213 \\
1002171 & 1005225 \\
1002211 & 1005305 \\
1002241 & 1005341 \\
1002441 & 1005431 \\
1002623 & 1005451 \\
1002705 & 1005521 \\
1002741 & 1006113 \\
1003011 & 1006161 \\
1003035 & 1006605 \\
1003053 & 1007031 \\
1003215 & 1010045 \\
1003451 & 1010051 \\
1003461 & 1003521
\end{tabular}

1004447```


[^0]:    Interim Report, TDRSS Telecommunications System PN Code Analysis. Robert Gold Associates (under Contract NAS 5-22546), April 30, 1976.

[^1]:    *TDRSS User's Guide, May 1975.

[^2]:    *Performance Specification for Telecommunications Service Via the Tracking and Data Relay Satellite System, Goddard Space Flight Center, S-805-1, June 1975, p. 25.

[^3]:    Tracking and Data Relay Satellite System (TDRSS) User's Guide, Goddard Space Flight Center, STDN No. 101.2, Rev. 2, May 1975, pp. C5 --C16.

[^4]:    *R. C. Dixon, Spread Spectrum Systems, John Wiley \& Sons, 197.6, p. 21, 234.

[^5]:    Costas and squaring demodulators are different, but there is little difference in a Costas demod for BPSK or one for QPSK. Squaring demods are in a similar vein.

[^6]:    *These signals are constant-amplitude only in their steady-state condition. Incidental amplitude modulation does occur in the transition from one phase state to another. Where a phase shift is $\phi$ degrees, the incidental amplitude modulation that can be expected is

    $$
    \% A M=(1-\cos \phi / 2) \times 100 .
    $$

    That is, the carrier signal can be expected to drop to an amplitude equal to $\cos \phi / 2$ times its steady state value during a phase transition. Thus, it is easy to see the advantage of SQPN modulation ( $90^{\circ}$ phase shifts) over standard QPSK modulation ( $90^{\circ}$ and $180^{\circ}$ phase shifts) since the incidental AM produced is $30 \%$ rather than $100 \%$.

[^7]:    R. L. Didday and W. C. Lindsey, "Subcarrier Tracking Methods Communication System Design," JPL Report 32-1317, August 1968.

[^8]:    *J. J. Jones, "Filter Distortion and Intersymbol Interference Effects on QPSK," Proc. Hawaii Conf. Syst. Sci., January 1970.

[^9]:    * $B \cos \omega_{c} t C \cos \omega_{m} t=(B C) / 2 \cos \omega_{c} t \pm \omega_{m} t=A \cos \omega_{c}^{t} \pm \omega_{m}{ }^{t}$.

[^10]:    * It is of some interest to note that a preliminary check with JPL brought a quotation of $12^{\circ} / \mathrm{dB}$ for the tube type employed on the typical spacecraft transponder. This agrees with Hughes data.

[^11]:    0

[^12]:    * Doppler dispersion is also very weakly dependent upon altitude.

