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ABSTRACT 

Pulse compression technique is used in many modern radar signal processing 

systems to achieve the range accuracy and resolution of a narrow pulse while 

retaining the detection capability of a long pulse. It is important for improving range 

resolution for target. Matched filtering of binary phase coded radar signals create 

undesirable sidelobes, which may mask important information. The application of 

neural networks for pulse compression has been explored in the past. Nonetheless, 

there is still need for improvement in pulse compression to improve the range 

resolution for target. A novel approach for pulse compression using Feed-forward 

Wavelet Neural Network (WNN) was proposed, using one input layer and output 

layer and one hidden layer that consists three neurons. Each hidden layer uses Morlet 

function as activation function. WNN is a new class of network that combines the 

classic sigmoid neural network and wavelet analysis. We performed a simulation to 

evaluate the effectiveness of the proposed method. The simulation results 

demonstrated great approximation ability of WNN and its ability in prediction and 

system modeling. We performed evaluation using 13-bit, 35-bit and 69-bit Barker 

codes as signal codes to WNN. When compared with other existing methods, WNN 

yields better PSR, low Mean Square Error (MSE), less noise, range resolution ability 

and Doppler shift performance than the previous and some traditional algorithms like 

auto correlation function (ACF) algorithm.  
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ABSTRAK 

Teknik pemampatan denyut digunakan dalam banyak  sistem pemprosesan isyarat 

radar moden  untuk mencapai julat ketepatan dan resolusi denyut yang pendek 

disamping mengekalkan keupayaan pengesanan denyut yang panjang. Adalah 

penting untuk meningkatkan resolusi julat denyut bagi target. Penapisan isyarat radar 

berkod binari yang telah dipadankan  menghasilkan isyarat sampingan yang tidak 

diingini, yang boleh menyembunyikan maklumat penting. Aplikasi rangkaian neural 

untuk pemampatan denyut telah diterokai pada masa lalu. Walau bagaimanapun, 

masih terdapat keperluan penambahbaikan dalam mampatan denyut untuk 

meningkatkan julat resolusi bagi target. Pendekatan baru untuk pemampatan denyut 

menggunakan teknik pincang hadapan Wavelet Neural Network (WNN) telah 

digunakan, menggunakan satu lapisan input dan output serta satu lapisan 

tersembunyi yang mengandungi tiga neuron. Setiap lapisan tersembunyi 

menggunakan fungsi Morlet sebagai fungsi pengaktifan. WNN perupakan satu kelas 

baru rangkaian yang menggabungkan rangkaian neural sigmoid klasik dan analisis 

wavelet.  Simulasi telah dilakukan untuk menilai keberkesanan kaedah yang 

dicadangkan ini. Keputusan simulasi menunjukkan keupayaan penganggaran yang 

tinggi oleh WNN dan keupayaannya dalam membuat ramalan dan pemodelan sistem. 

Kami melakukan penilaian menggunakan 13-bit, 35-bit dan 69-bit kod Barker 

sebagai kod isyarat kepada WNN. Berbanding dengan kaedah-kaedah lain yang sedia 

ada, WNN menghasilkan PSR lebih baik, Ralat Kuasa Dua (MSE) yang lebih rendah, 

kurang gangguan, keupayaan julat resolusi  dan prestasi anjakan Doppler yang lebih 

baik daripada sebelumnya dan beberapa algoritma tradisional seperti fungsi 

algoritma auto korelasi (ACF). 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background  

 

 

Radar is an electromagnetic system for the detection and location of objects. Radar 

stands for Radio Detection And Ranging [1]. It operates by transmitting a particular 

type of waveform, a pulse-modulated sine wave for example, and detects the nature 

of the echo signal. Radar is used to extend the capability of one's senses for observing 

the environment, especially the sense of vision. The value of radar lies not in being a 

substitute for the eye, but in doing what the eye cannot do-Radar cannot resolve detail 

as well the eye, nor is it capable of recognizing the "color" of objects to the degree of 

sophistication which the eye is capable. However, radar can be designed to see through 

those conditions impervious to normal human vision, such as darkness, haze, fog, rain, 

and snow. In addition, radar has the advantage of being able to measure the distance 

or range to the object. This is probably its most important attribute.  

An elementary form of radar consists of a transmitting antenna emitting 

electromagnetic radiation generated by an oscillator of some sort, a receiving antenna, 

and an energy-detecting device or receiver. A portion of the transmitted signal is 

intercepted by a reflecting object (target) and is reradiated in all directions. It is the 

energy reradiated in the back direction that is of prime interest to the radar. The 

receiving antenna collects the returned energy and delivers it to a receiver, where it is 

processed to detect the presence of the target and to extract its location and relative 

velocity. The distance to the target is determined by measuring the time taken for the 
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radar signal to travel to the target and back. The direction, or angular position, of the 

target may be determined from the direction of arrival of the reflected wave (echo) 

front. The usual method of measuring the direction of arrival is with narrow antenna 

beams. If relative motion exists between target and radar, the shift in the carrier 

frequency of the reflected wave (Doppler Effect) is a measure of the target's relative 

(radial) velocity and may be used to distinguish moving targets from stationary 

objects. In radars which continuously track the movement of a target, a continuous 

indication of the rate of change of target position is also available [2].  

The most common radar signal or waveform, is a series of short duration, 

somewhat rectangular-shaped pulses modulating a sine wave carrier [3] . Short pulses 

are better for range resolution, but contradict with energy, long range detection, carrier 

frequency and SNR. Long pulses are better for signal reception, but contradict with 

range resolution and minimum range. At the transmitter, the signal has relatively small 

amplitude for ease to generate and is large in time to ensure enough energy in the 

signal as shown in Figure 1.1.  At the receiver, the signal has very high amplitude to 

be detected and is small in time [4]. 

A very long pulse is needed for some long-range radar to achieve sufficient 

energy to detect small targets at long range. But long pulse has poor resolution in the 

range dimension. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Transmitter and receiver ultimate signals 

 

 Frequency or phase modulation can be used to increase the spectral width of a 

long pulse to obtain the resolution of a short pulse. This is called “pulse compression”. 

 

P1 



3 
 

1.2 Problem Statements 

 

 

The sidelobe which is as a result of reflection affects the signal causing wastage of 

energy needed for wide range. It is often essential that the time (range) sidelobes of 

the autocorrelation function of the binary phase-coded pulses be reduced to as low 

level as possible, particularly in multiple-target environments that large undesired 

reflectors (point clutter) or in distributed clutter are available, else the time sidelobes 

of one large target may appear as a smaller target at another range, or the integrated 

sidelobes from extended targets or clutter may mask all the interesting structure in a 

scene [3] . Several pulse compression techniques has been proposed by various 

researchers and are used in many modern radar signal processing systems to reducing 

the effects of sidelobe by improving the accuracy of narrow pulse and retaining the 

capability of long pulse detection [5, 6].  

Techniques like Matched filter (MF) [7] is still used for pulse compression 

operation for a narrow pulse. However, the output response of the MF contains high 

range sidelobes which at times leads to false target detection [8]. Also, the linear 

frequency modulated (LFM) which was introduced in the 50s is still used widely today 

to reduce sidelobe as it has the ability to increase the bandwidth of the radar pulse. 

However, there is also a significant drawback in the approach as, it have the existence 

of large near-sidelobes, which block nearby targets and blur radar images [9]. 

Therefore reduction of the sidelobes as much as possible will save much energy and 

increase the main lobe to have a better signal with a wide range and better 

performance.  
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1.3      Objectives of Project  

 

 

The major objective of this project is to study the characterization of Radar signal 

measurable objectives are as follows: 

 

1. To design pulse compression biphase codes of various length for Radar signal 

having lower peak sidelobes.  

 

2. To develop sidelobe reduction method using wavelet neural networks to 

improve the performance of radar. 

 

3. To compare the proposed method Wavelet neural Network  (WNN) with the 

existing methods. 

 

 

1.4      Scopes of Project  

 

 

 Generate various lengths for the Phase-Coded Pulse signal in Barker code form 

using code. 

 Artificial Neural Network (ANN) will be used to evaluate the sidelobe 

reduction. 

 The MATLAB Version (R2013a) program will be used to simulate the study 

in this project.    
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1.5      Research Structure  

 

                

I. Chapter 1 gives an overview of the project design. It covers the introduction 

to Radar and, problem statement, objectives, significant and the scope of work 

in this project. 

II. Chapter 2 gives explanation on the pulse compression, its applications, its 

advantages and disadvantages. This chapter also discuss neural network and 

how it been constructed. Finally this chapter shows the previous studies that 

related to neural network.    

III. Chapter 3 discussed the procedure of generating the signal and the procedure 

of constructing feedforward neural network (FFNN) and wavelet neural 

network (WNN). This chapter also explains the way of implementation of 

wavelet neural network to separate sidelobe.  

IV. Chapter 4 presents the results obtained from the simulation process and 

compares these results with the results of previous studies. In this chapter, the 

analyzing of the results to evaluate the performance has been done.  

V. Chapter 5. The concluding remarks for all the chapters are presented in this 

chapter. It also contains some future research area that requires attention and 

further investigation. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

In radar signal transmission, pulse compression causes sidelobes.  It is unwanted by-

products of the pulse compression process. Sidelobe reduction techniques continue to 

be of interest, particularly in the case of relatively short binary codes which have the 

comparatively high level of sidelobes [8]. This chapter presents a review of works that 

deals with Pulse Compression, and sidelobe reduction using Artificial Neural Network 

(ANN) method as well as adaptive filters. 

 

 

2.1 Pulse Compression 

 

 

Pulse compression is important for improving range resolution. The application of 

neural networks for pulse compression has been well explored in the past. Two 

important factors to be considered for radar waveform design are range resolution and 

maximum range detection. Range resolution is the capability of the radar to separate 

closely spaced targets and it is related to the pulse width of the waveform, maximum 

range detection which is the ability of the radar to detect the farthest target and it is 

related to the transmitted energy. The narrower the pulse width the better is the range 

resolution. However, if the pulse width is reduced, the amount of energy in the pulse 

is reduced and hence maximum range detection gets decreases. To overcome this 

issue, pulse compression mechanism is utilized in the radar systems [10].  
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So, pulse compression permits radar to get the resolution of a short pulse and 

simultaneously using long waveforms so as to obtain high energy and that can be 

achieved by internal modulation of the long pulse [11]. The transmitted pulse is 

modified by using frequency modulation or phase modulation.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Concept of Pulse Compression 

 

Then, upon receiving an echo, the received signal is compressed through a filter and 

the output signal will look like the one. It consists of a peak component and some side 

lobes. Figure 2.1 demonstrates the idea in simple way. The approaches by Rihaczek 

and Golden [12] and Baghel and Panda [8] have obtained high level of sidelobe 

reduction using pulse compression filter.  However, this increases a computational 

burden and limits real time possibilities of the hardware filter applications. Pulse 

compression systems require advanced and expensive technology for production. 

 

 

2.1.1    Advantages and Limitations of Pulse Compression 

 

 

To make good range resolution and accuracy compatible with a high detection 

capability while maintaining the low average transmitted power, pulse compression 

processing giving low-range sidelobes is necessary. 
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According to Melvin and Scheer [10] the principle advantages of pulse compression 

are as follows: 

 

1. Increasing system resolving-capability both in range and velocity.  

2. Improving signal-to-noise ratio.  

3. To get a pulse–hiding transmission and thereby making the condition more   

difficult to   the enemy to detect the "code" pulse and know whether there is 

a radar transmission illuminating the enemy's receiver. 

4. More efficient use of the average power available at the radar transmitter and 

in some cases avoidance of peak power problems in the high power sections 

of the transmitter. 

5. Extraction of information from the signals presents at the receiver input to 

obtain an estimation of important parameters associated with the individual 

signals, such as range, velocity, and possibly acceleration. 

6. Increased system accuracy in measuring range and velocity. 

7. Reducing clutter effects by improving the signal-to-noise ratio. 

8. Increased immunity to certain types of interfering signals that do not have 

the same properties as the coded pulse compression waveform. 

 

 

2.1.2    Pulse Compression Modulation Techniques 

 

 

Pulse compression can be accomplished by utilizing Frequency or Phase modulation 

to broaden the signal bandwidth such as in Figure 2.2. Amplitude modulation is also 

probable but is seldom used. The transmitted pulse width (T) is chosen to achieve the 

single-pulse transmit energy (Et) which is required for target detection or tracking [13].  

 

                                                      Et= Pt T                                  (2.1) 

where Pt is the transmitted power. 
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Figure 2.2: Pulse compression modulation  

 

 

2.1.3    Pulse Compression Effects 

 

 

The major drawback to the pulse compression is the appearance of range sidelobes 

around the main signal peak which leads to smearing of the return signals in range and 

introduces range ambiguities [14]. The existence of a small target may not be inferred 

from the matched filter output when there are a small target and a large target whose 

power is 10 dB larger than the small one. Although the small target is noticeable when 

it is the only present target in the environment, in the existence of the large target the 

small target is masked by the range sidelobes of the large target Figure 2.3 shows 

Matched filter output. 
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Figure 2.3: Matched filter output of received radar signal  

 

 It is possible that large sidelobes can result in detecting spurious targets that are 

sidelobes can be mistaken as real targets. Since high sidelobes of the bigger targets 

can mask nearby smaller targets, suppression of range sidelobes is critical, especially 

in applications with multiple target systems. This effect is tried to be minimized by 

using carefully chosen pairs of codes or by amplitude weighting the long pulse over 

its duration. In general, it is not very easy to design codes with very low sidelobes. 

Moreover, it may not be efficient to use amplitude weighting in respect of power 

efficiency.  

 

 

2.2 Correlation 

 

 

Correlation can be defined as similar operation of the convolution. It involves sliding 

one function past the other and finding the area under the resulting product [15]. 

Unlike convolution, however, no folding is performed. The correlation 𝑟𝑥𝑥(𝑡) of two 

identical functions 𝑥(𝑡) or The convolution x(t)⋆ x(−t) is called autocorrelation. For 

two different functions 𝑥(𝑡) and 𝑦(𝑡), the correlation 𝑟𝑥𝑦(𝑡) or 𝑟𝑦𝑥(𝑡) is referred to as 

cross-correlation. 

Using the symbol ⋆⋆ to denote correlation, we define the two operations as 
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𝑟𝑥𝑥(𝑡) = 𝑥(𝑡) ⋆⋆ x(t) = ∫ 𝑥(𝜆)𝑥(
∞

−∞

𝜆 − 𝑡) 𝑑𝜆 

𝑟𝑥𝑦(𝑡) = 𝑥(𝑡) ⋆⋆ y(t) = ∫ 𝑥(𝜆)𝑦(
∞

−∞

𝜆 − 𝑡) 𝑑𝜆 

𝑟𝑦𝑥(𝑡) = 𝑥(𝑡) ⋆⋆ x(t) = ∫ 𝑦(𝜆)𝑥(
∞

−∞

𝜆 − 𝑡) 𝑑𝜆 

 

The variable t is often referred to as the lag. The definitions of cross- correlation are 

not standard, and some authors prefer to switch the definitions of 𝑟𝑥𝑦(𝑡) and  𝑟𝑦𝑥(𝑡). 

 

 

2.2.1  Properties of Correlation 

 

 

Correlations of sequences Correlation is a measure of similarity between different 

functions and, operation used in many applications in digital signal processing. It is a 

measure of the degree to which two sequences are similar [16]. Given two real-valued 

sequences 𝑥(𝑛) and 𝑦(𝑛) of finite energy, the cross-correlation of 𝑥(𝑛) and 𝑦(𝑛) is a 

sequence 𝑟𝑥𝑦(𝑙) defined as 

𝑟𝑥,𝑦(𝑙) = ∑ 𝑥(𝑛)𝑦(𝑛 − 𝑙)

∞

𝑛=−∞

 

The index 𝑙is called the shift or lag parameter. The special case of (2.3). 

 

 

  Correlation as Convolution 

 

The absence of folding actually implies that the correlation of 𝑥(𝑡) and 𝑦(𝑡) is 

equivalent to the convolution of 𝑥(𝑡) with the folded version 𝑦(−𝑡), and we 

have 𝑟𝑥𝑦(𝑡) = 𝑥(𝑡) ⋆⋆ y(t) = 𝑥(𝑡) ⋆ y(−t).  

 

 

 

 

 

(2.2) 

(2.4) 

(2.3) 
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 Area and Duration  

 

Since folding does not affect the area or duration, the area and duration properties for 

convolution also apply to correlation. The starting and ending time for the cross-

correlation 𝑟𝑥𝑦(𝑡) may be found by using the starting and ending times of 𝑥(𝑡) and the 

folded signal 𝑦(𝑡). 

 

 Commutation 

 

The absence of folding means that the correlation depends on which function is shifted 

and, in general,  𝑥(𝑡) ⋆⋆ y(t) ≠ 𝑦(𝑡) ⋆ x(t). Since shifting one function to the right is 

actually equivalent to shifting the other function to the left by an equal amount, the 

correlation 𝑟𝑥𝑦(𝑡) is related to𝑟𝑦𝑥(𝑡) by𝑟𝑥𝑦(𝑡) = 𝑟𝑦𝑥(−𝑡). correlation is the 

convolution of one signal with a folded version of the other 

 

𝑟𝑥ℎ(𝑡) = 𝑥(𝑡) ⋆⋆ ℎ(𝑡) = 𝑥(𝑡) ⋆ ℎ(−𝑡) 

𝑟ℎ𝑥(𝑡) = ℎ(𝑡) ⋆⋆ 𝑥(𝑡) = ℎ(𝑡) ⋆ 𝑥(−𝑡) 

    

Periodic Correlation 

 

The correlation of two periodic signals or power signals is defined in the same sense 

as periodic convolution:  

 

𝑟𝑥𝑦(𝑡) =
1

𝑇
∫ 𝑥(𝜆)𝑦(𝜆 − 𝑡)𝑑𝜆    
𝑇

𝑟𝑥𝑦(𝑡) = lim
𝑇0→∞

1

𝑇0
∫ 𝑥(𝜆)𝑦(𝜆 − 𝑡)𝑑𝜆
𝑇0

 

 

The first form defines the correlation of periodic signals with identical periods T, 

which is also periodic with the same period T. The second form is reserved for no 

periodic power signals or random signals. 

 

 

 

 

(2.5) 

(2.6) 
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2.2.2  Autocorrelation 

 

 

The autocorrelation operation involves identical functions. It can thus be performed in 

any order and represents a commutative operation. Autocorrelation may be viewed as 

a measure of similarity, or coherence, between a function 𝑥(𝑡) and its shifted version. 

Clearly, under no shift, the two functions “match” and result in a maximum for the 

autocorrelation. But with increasing shift, it would be natural to expect the similarity 

and hence the correlation between 𝑥(𝑡) and its shifted version to decrease. As the shift 

approaches infinity, all traces of similarity vanish, and the autocorrelation decays to 

zero. 

 

 Symmetry 

Since 𝑟𝑥𝑦(𝑡) =  𝑟𝑦𝑥(−𝑡) we have 𝑟𝑥𝑥(𝑡) =  𝑟𝑥𝑥(−𝑡). This means that the 

autocorrelation of a real function is even. The autocorrelation of an even function 𝑥(𝑡) 

also equals the convolution of 𝑥(𝑡)  with itself, because the folding operation leaves 

an even function unchanged. 

 

 Maximum Value 

It turns out that autocorrelation function is symmetric about the origin where it attains 

its maximum value. It thus satisfies  

𝑟𝑥𝑥(𝑡)≤ 𝑟𝑥𝑥(0)                             

It follows that the autocorrelation 𝑟𝑥𝑥(𝑡) is finite and nonnegative for all t. 

 

 Periodic Autocorrelation 

For periodic signals, we define periodic autocorrelation in much the same way as 

periodic convolution. If we shift a periodic signal with period 𝑇 past itself, the two 

line up after every period, and the periodic autocorrelation also has period  𝑇. 

 

 

 

 

 

(2.7) 
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2.2.3  Matched Filters 

 

 

Correlation forms the basis for many methods of signal detection and delay estimation 

(usually in the presence of noise). An example is target ranging by radar, illustrated in 

Figure 2.4, where the objective is to estimate the target distance (or range) R. 

 

 

 

 

 

 

 

 

 

Figure 2.4: Illustrating the concept of matched filtering 

 

A transmitter sends out an interrogating signal𝑠(𝑡), and the reflected and 

delayed signal (the echo) s(t − t0) is processed by a correlation receiver, or matched 

filter, whose impulse response is matched to the signal to obtain the target range. In 

fact, its impulse response is chosen as h(t) = s(−t), a folded version of the transmitted 

signal, in order to maximize the signal-to-noise ratio. The response y(t) of the matched 

filter is the convolution of the received echo and the folded signal h(t) = s(−t) or the  

correlation of s(t−t0) (the echo) and s(t) (the signal). This response attains a maximum 

at t = t0, which represents the time taken to cover the round-trip distance 2R. The target 

range R is then given by 

𝑅 =
𝑐𝑡0
2

 

 where c is the velocity of signal propagation.  

 

 The received signal cannot be used directly to estimate the delay. This is 

due to the fact that we may not be able to detect the presence (let alone the exact onset) 

of the received signal because it is usually much weaker than the transmitted signal 

and contaminated by additive noise. However, if the noise is uncorrelated with the 

 

 

(2.8) 
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original signal (as it usually is), their cross-correlation is very small (ideally zero), and 

the cross-correlation of the original signal with the noisy echo yields a peak (at t = t0) 

that stands out and is much easier to detect. Ideally, of course, we would like to 

transmit narrow pulses (approximating impulses) whose autocorrelation attains a 

sharp peak [15]. 

 

 

2.3 Neural Network 

 

 

The neural network is defined by [17] as a massively parallel distributed processor 

made up of simple processing units, which has a natural propensity for storing 

experiential knowledge and making it available for use. The system emulates the brain 

in two ways as described below. 

 

i. Knowledge is acquired by the network from its environment through a learning 

process. 

ii. Interneuron connection strengths, known as synaptic weights, are used to store 

the acquired knowledge. 

 

  

2.3.1   Biological Neuron Model 

 

 

The human brain consists of more than billions of neural cells that process 

information. Each cell works like a simple processor. The massive interaction between 

all cells and their parallel processing only makes the brain's abilities possible. 

The Biological Neuron as shown in Figure 2.5 consists of the following:  

Dendrites: are branching fibers that extend from the cell body or soma. Soma or cell 

body of a neuron contains the nucleus and other structures, support chemical 

processing and production of neurotransmitters. 

Axon: It is a singular fiber carries information away from the soma to the synaptic 

sites of other neurons (dendrites and somas), muscles, or glands. Axon hillock is the 

site of summation information. At any for incoming moment, the collective influence 
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of all neurons that conduct impulses to a given neuron will determine whether or not 

an action potential will be initiated at the axon hillock and propagated along the axon. 

 

Figure 2.5: Structure of Biological Neuron [18] 

 

Myelin Sheath: consists of fat-containing cells that insulate the axon from the 

electrical activity. This insulation acts to increase the rate of transmission of signals. 

A gap exists between each myelin sheath cell along the axon. Since fat inhibits the 

propagation of electricity, the signals jump from one gap to the next. 

Nodes of Ranvier: are the gaps (about 1μm) between myelin sheath cells long axons 

are since fat serves as a good insulator, the myelin sheaths speed the rate of 

transmission of an electrical impulse along the axon. 

Synapse: is the point of connection between two neurons or a neuron and a muscle or 

a gland. Electrochemical communication between neurons takes place at these 

junctions. Terminal Buttons: of a neuron are the small knobs at the end of an axon that 

release chemicals called neurotransmitters [18]. 
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2.3.2  Artificial Neural Network 

 

 

An Artificial Neural Network (ANN) is an information-processing paradigm that is 

inspired, by the way, the biological nervous system such as brain process information 

[19, 20]. The first artificial neuron was developed in 1943 by the neurophysiologist 

Warren McCulloch and the logician Walter Pits. But the technology available at that 

time did not allow them to proceed further. In past few decades, the ANN has emerged 

as a powerful learning tool to perform complex tasks in the highly nonlinear dynamic 

environment. The ANN is capable of performing nonlinear mapping between the input 

and output space due to its large parallel interconnection between different layers and 

the nonlinear processing characteristic. Therefore, the ANN is used extensively in the 

field of communication, some control systems, instrumentation and forecasting [21, 

22]. ANN technique is also used for classification, modeling and optimization 

problems [23].   

  An artificial neuron basically consists of a computing element that performs 

the weighted sum of the input signal and the connecting weight. The sum is added 

with the bias or threshold and the resultant signal is then passed through an activation 

function of the sigmoid or hyperbolic tangent type. Each neuron is associated with 

three parameters whose learning can be adjusted. These are the connecting weights, 

the bias and the slope of the nonlinear function. For the structural point of view, a 

neural network (NN) may be a single layer or it may be multilayer. In Multi-layer 

Perceptron MLP, there is a number of layers and each layer contains one or many 

artificial neurons. Each neuron of the one layer is connected to each and every neuron 

of the next layer. A trained neural network can be thought of as an “expert” in the 

category of information it has been given to analyze. The advantages of ANN are: 

 

a) Adaptive learning: It is the ability of the network to learn how to do tasks   

based on the data given for training or initial experience. 

 

b) Self-organization: An ANN can create its own organization or representation 

of the information as it receives during learning time. 
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c) Real-time operation: The ANN computations may be carried out in parallel, 

and special hardware devices are being designed and manufactured which take 

advantage of this capability. 

 

d) Fault tolerance via redundant information coding: Partial destruction of a 

network     leads to the corresponding degradation in performance. However, 

some network capabilities may be retained even with major network damage. 

 

The structure of ANN is described as follow: 

 

I. Single Neuron Structure 

 

A neuron is an information processing unit for the operation of a neural network. The 

operation in a single neuron involves the computation of the weighted sum of inputs 

and threshold [23]. The resultant signal is then passed through activation function.   

The activation functions can be defined as a limiting the amplitude of the output of the 

neuron and it is also called a squashing function in that it squashes (limits) the 

permissible amplitude range of the output signal to the some finite value. The neuronal 

model also includes an externally applied bias, expressed by bi, the bias bi has the 

effect of increasing or lowering the net input of the activation function, depending on 

whether it is positive or negative, respectively. The basic structure of a single neuron 

is shown in Figure 2.6.  

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Single neuron structure 
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In mathematical terms, we may describe a neuron 𝐾 by writing the following pair of 

equations:  

𝑎𝑘 = ∑𝑊𝑘𝑗𝑋𝑗

𝑁

𝑗=1

 

 

The output associated with the neuron is computed as 

 

                                                     Y=𝑓[∑    𝑁 
𝑖=1 𝑎𝑖 + b]                                         (2.11) 

 

Where xi, i = 1, 2...N, are inputs to the neuron; wi is the synaptic weights of the ith 

input; b is the bias; 𝑓 is the activation function for each neuron; and y is the output 

signal of the neuron. The use of bias (b) has the effect of applying an affine 

transformation to the output (a). The most common types of activation function are 

discussed below [23]. 

 

  Log-sigmoid function 

This transfer function takes the input and squashes the output into the range of 0 to 1,   

according to expression given below: 

 

 

                                             𝑓(𝑥) =
1

1+𝑒−𝑥
                                                        (2.12) 

 

 

Figure 2.7: The sigmoid activation function 
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       (2.10) 
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 Hyperbolic tangent Sigmoid: 

This function is expressed in equation 2.13 

 

                                            𝑓(𝑥) = tanh(x) =  
ex−e−x

ex+e−x
                                 (2.13) 

 

 

Figure 2.8: Tansig activation function 

 

 Signum Function: 

 

The expression for this activation function is given by 

 

                   𝑓(𝑥) = {
        1        if     𝑥 > 1
        0        if     𝑥 = 0
     −1       if     𝑥 < 0

                                                       (2.14) 

 

 

Figure 2.9: Signum activation Function 
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 Threshold function 

This function is given by the expression 

 

                                 𝑓(𝑥) = {
   1        if     𝑥 ≥ 1

     
   0       if     𝑥 < 0

                                                 (2.15) 

 

 Piecewise linear function 

This function is represented as 

 

                               𝑓(𝑥) = {
   1                if                         𝑥 > 0.5
  𝑥               if      − 0.5 ≤  𝑥 ≤ 0.5
−1             if                       𝑥 < 0.5

                         (2.16) 

 

 

II. ANN learning 

 

 

Learning rules mean the procedure by which modifying the weights and biases of 

ANN, this procedure may also be referred to as training algorithm, the purpose of 

learning rule is to train the network to perform some special tasks. There are many 

types of NNs learning rules; they fall into three basic categories: supervised learning, 

unsupervised learning, and reinforcement learning [24]. 

In supervised learning, the learning rules are provided with a set of examples 

(training set) of proper network behavior. Supervised learning rewards accurate 

classifications or associations and punishes those which yield inaccurate responses. 

The teacher estimates the negative error gradient direction and reduces the error 

accordingly [24]. 

In unsupervised learning, the weights and biases are modified in response to 

the network inputs only. There is no target output available. At first glance, this might 

seem to be impractical. This learning is based on clustering of input data. No, a priori 

knowledge is assumed to be available regarding an input's membership in a particular 

class [25].  There are several issues involved in designing and training a multilayer 

neural network [26], which are:  
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(a)   The Selecting appropriate number of hidden layers in the network. 

(b)   Selecting the number of neurons to be used in each hidden layer. 

(c)   Finding a globally optimal solution, that avoids local minima. 

(d)   Converging to an optimal solution in a reasonable period of time. 

(e)  Validating the neural network to test for over-fitting. 

Depending on the architecture in which the individual neurons are connected and the 

choice of the error minimization procedure, there can be several possible ANN 

configurations. 

 

 

2.4 Wavelet Analysis  

 

 

Wavelet analysis is a mathematical tool used in various areas of research. Recently, 

wavelets have been used especially to analyze time series, data, and images. Time 

series are represented by local information such as frequency, duration, intensity, and 

time position, and by global information such as the mean states over different time 

periods [27]. Both global and local information is needed for the correct analysis of a 

signal. The Wavelet Transform (WT) is a generalization of the Fourier Transform (FT) 

and the Windowed Fourier Transform (WFT). 

 A wavelet 𝜓 is a waveform of effectively limited duration that has an average 

value of zero. The Wavelet Analysis (WA) procedure adopts a particular wavelet 

function called a mother wavelet. A wavelet family is a set of orthogonal basis 

functions generated by dilation and translation of a compactly supported scaling 

function 𝜑 (or father wavelet), and a wavelet function 𝜓 (or mother wavelet). The 

father wavelets 𝜑 and mother wavelets 𝜓 satisfy 

 

∫𝜑(𝑡) 𝑑𝑡 = 1 

 

∫𝜓(𝑡)𝑑𝑡 = 0  
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The wavelet family consists of wavelet children which are dilated and translated forms 

of a mother wavelet: 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎𝑗
 𝜓 (

𝑡 − 𝑏

𝑎
) 

 

 where a is the scale or dilation parameter and b is the shift or translation parameter. 

The value of the scale parameter determines the level of stretch or compression of the 

wavelet. The term 1 √𝑎⁄  normalizes‖𝜓𝑎,𝑏(𝑡)‖ = 1. 

In general, wavelets can be separated in orthogonal and nonorthogonal 

wavelets. The term wavelet function is used generically to refer to either orthogonal 

or nonorthogonal wavelets. An orthogonal set of wavelets is called a wavelet basis, 

and a set of nonorthogonal wavelets is termed a wavelet frame. The use of an 

orthogonal basis implies the use of the Discrete Wavelet Transform (DWT), whereas 

frames can be used with either the discrete or the continuous transform.  

Over the years a substantial number of wavelet functions have been proposed 

in the literature. The Gaussian, the Morlet, and the Mexican hat wavelets are crude 

wavelets that can be used only in continuous decomposition. The wavelets in the 

Meyer wavelet family are infinitely regular wavelets that can be used in both 

Continues Wavelet Transform (CWT) and DWT. The equations that represent the 

Gaussian, Morlet, Shannon, Meyer and Mexican hat wavelet families are presented In 

the next sections [27]. 

 

 

2.5 Wavelet Neural Network 

 

 

Wavelet networks are a new class of networks that combine the classic sigmoid neural 

networks and wavelet analysis. Wavelet networks were proposed by Zhang and 

Benveniste [28] as an alternative to feedforward neural networks which would 

alleviate the weaknesses associated with wavelet analysis and neural networks while 

preserving the advantages of each method. 

Recently, wavelet networks have gained a lot of attention and have been used 

with great success in a wide range of applications, ranging from engineering; control; 

financial modeling; short-term load forecasting; time-series prediction; signal 

(2.17) 
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classification and compression; signal denoising; static, dynamic, and nonlinear 

modeling; to nonlinear static function approximation [27]. 

Wavelet networks are hidden layer networks that use a wavelet for activation 

instead of the classic sigmoidal family. It is important to mention here that 

multidimensional wavelets preserve the “universal approximation” property that 

characterizes neural networks. The nodes (or wavelons) of wavelet networks are 

wavelet coefficients of the function expansion that have a significant value. Bernard, 

Mallat [29], various reasons were presented for why wavelets should be used instead 

of other transfer functions as illustrated in points below:  

1. wavelets have high compression abilities. 

2. computing the value at a single point or updating a function estimate from a    

            new local measure involves only a small subset of coefficients. 

 

 

2.5.1 Single Wavelet Neuron Structure 

 

 

The structure of the single wavelet neuron is the same as the neural network structure. 

neural network is one with a single input and a single output. The hidden layer of 

neurons consist of hidden layer (wavelons), whose input parameters (possibly fixed) 

include the wavelet dilation and translation coefficients. These wavelons produce a 

non-zero output when the input lies within a small area of the input domain. The output 

of a wavelet neural network is a linear weighted combination of the wavelet activation 

functions. Figure 2.10 shows the single Wavelet Neuron Structure. 

 

 

 

 

 

 

 

 

 

Figure 2.10: Single Wavelet Neuron Structure 
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