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ABSTRACT

Title of Thesis : System Performance Criteria in CDMA

Networks Using Gold codes

Yong H. Kim, M. S. E. E., 1988

Thesis directed by : Dr. Joseph Frank

Associate Professor

Department of Electrical Engineering

First, we have presented the autocorrelation and

crosscorrelation properties for periodic and aperiodic

binary sequences. The generation of binary sequences using

shift registers with feedback was reviewed. We have also

included correlation properties for the Gold codes.

Next, we discussed Gold code generation for the

balanced and unbalanced Gold codes.

Thirdly, we investigated the number of simultaneous

users in a CDMA system using Gold codes for the worst case

and the average case of mutual interference.

Finally, we simulated the probability of interference

exceeding a threshold value, and the average

crosscorrelation value caused by interference in a CDMA

network which is using a Gold code. We compared

probability and average crosscorrelation values simulated



with theoretical bounds calculated. Here the simulation

programs are done in C computer language.
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CHAPTER I

GENERAL

One of the applications of spread spectrum systems is

to provide a means other than frequency divison multiple

access(FDMA) or time divison multiple access(TDMA) of

sharing the scarce channel resources. When channel

resources are shared using spread spectrum techniques, a

method known as code division mutiple access(CDMA), all

users are permitted to transmit simultaneously using the

same band of frequencies. Therefore, code division multiple

accessing does not require the time synchronization needed

in TDMA nor the many filters required in FDMA. Users are

each assigned a different spreading code so that they can

be separated in the receiver despreading process. A goal

of the spread spectrum designer for a multiple access

system is to find a set of spreading codes or waveforms

such that as many users as possible can use a band of

frequencies with as little mutual interference as

possible.

Here, the receiver despreading operation is a

correlation operation with the spreading code of the

desired transmitter. Ideally, a received signal that has

been spread using a different spreading code will not be

despread and will cause minimal interference in the



desired signal. The specific amount of interference from a

user employing a different spreading code is related to

the crosscorrelation between the two spreading codes and

the power level of the two signals.

Unfortunately the ideal spreading code would be an

infinite sequence of equally likely random binary digits.

Hence, the use of an infinite random sequence implies

infinite storage in both the transmitter and receiver.

This is clearly not possible, so that the periodic

pseudorandom codes(PN codes) are always employed.

Gold codes are specific PN codes and allow

construction of families of 2n - 1 codes from pairs of

n-stage shift registers in which all codes have well

defined crosscorrelation characteristics. In other words,

Gold codes are combinations of maximal-length(m) codes,

which are by far the most widely used in multiple access

systems.

The Gold codes introduced in this thesis were invented

in 1964 at the Magnavox Corporation specifically for

multiple-access applications of spread spectrum. The first

spread spectrum modem to employ Gold codes was MX-170 and

the first developmental models were demonstrated in

1964[13]. Relatively large sets of Gold codes exists which

have well controlled crosscorrelation properties.



Spread spectrum communication techniques by using Gold

codes have been recognized as a viable method to gain an

advantage in interference environments. Many new military-

oriented systems have been initated and some civil systems

have been attemted.



CHAPTER II

CORRELATION PROPERTY

This is the most fundamental theory when we think

about Gold code. As we discussed before, CDMA that allows

for the simultaneous operation of many signals at the same

carrier frequency is a mutiplexing technique in which many

carriers, all at essentially the same frequency, send

different PN type codes that have the property that the

crosscorrelation is low between any pair of the codes.

That is, the transmitted signals are of the form

where

p is transmitted power

di(t) is the ith data signal (±1)

Gi(t) is the ith Gold code

wo is the carrier radian frequency

e is the carrier phase

Further, it is required that



so that the ith channel will not interfere with the jth

channel for any time shift between them. This interference

problem extends to acquisition, tracking, and data

demodulation. The correlation properties of the code

sequences used in spread spectrum communications depend on

code type, length, chip rate, and even the chip-by-chip

structure of the particular code being used. Both

autocorrelation and crosscorrelation are of interest in

communication system design.

2.1 Autocorrelation

2.1.1 Introduction

Autocorrelation, in general, is defined as the

integral

which is a measure of the similarity between a signal and

a phase-shifted replica of itself. An autocorrelation over

all phase shift (t-r) of the signal, where is one-chip

intervals.

Autocorrelation is of most interest in choosing code

sequences that give the least probability of a false

synchronization. In a communications system designed for

maximum sensitivity it is no mean task to discriminate



between correlation peaks in a poorly chosen code.

Therefore the designer should investigate the code he or

she uses carefully, even if that code is one of the

relatively safe m-sequences. Statements such as our

extremely long 127-bit chip code sequence assures

noiselike properties, which have been observed in the

literature on spread spectrum systems, exhibit a lack of

investigation.

Here, we introduce a term for the property of code

sequences, pairs of sequences, or a sequence and an other

signal that determines a receiver's ability to recognize

the proper point of code synchronization. This property is

called the index of discrimination (ID) and denotes the

difference in correlation between the fully

correlated(perfectly synchronized) code and the minor peak

of autocorrelation or of crosscorrelations. A particular

code will then have seperate ID values for autocorrelation

and crosscorrelation with noncoded signals. The Niger the

ID value, the better the code.

Code sequence autocorrelation is expresed as the

number of agreements minus the number of disagreements

when the code or codes are compared chip by chip. The

following example shows autocorrelation for all shifts of

a three stage shift register generator, generating a

seven-chip maximal linear code:



Reference sequence : 0111001

Here, the net correlation A-D is -1 for all except

zero-shift or synchronous condition and 2n - 1 = 7 for the

zero-shift condition. This is typical of all m-sequences.

That is, the autocorrelation spectrum for an m-sequences

is two valued

N occurs 1 time

-1 occurs N-1 times

In the region between the zero and plus or minus one

chip shifts, correlation increaces linearly so that the

autocorrelation function for an m-sequence is triangular

as shown in Figure 2.1.



Fig. 2.1 M-sequence autocorrelation function

This characteristic autocorrelation is used to great

advantage in communication and ranging systems. Two

communicators may operate simultaneously, for instance, if

their codes are phase-shifted more than one chip. In a

ranging sytem a range measurement is ensured of being

accurate within one chip by using the correlation peak as

the marker for measurement. This may be accomplished by

setting the correlation detector in such a way that it

recognizes the level associated with +1-chip

synchronization and does not recognize the lower level.

when codes other than in-sequences are used,

autocorrelation properties may be markedly different from

those of the m-sequences. Figure 2.2 illustrates a typical

autocorrelation function for a nonmaximal code. The minor



correlation peaks are dependent on the actual code used

and are used by partial correlations of the code with a

phase-shifted replica of itself. When such minor

correlation occur, a receiving system's ability to

synchronize may be impaired because it must discriminate

between the major(±l chip) and minor correlation peaks,

and the margin of discrimination is reduced.

Fig. 2.2 Typical nonmaximal code autocorrelation function

For purposes of illustration, let us consider the

five-stage shift register generator(SRG) shown in Figure

2.3.

If feedback is taken from stages five and three, the

code sequence output is:



....1111100011011101010000100101100....(31 chip)

Fig. 2.3 Variable tap five-stage SRG

The autocorrelation of this sequece is shown in Figure

2.1; its maximum value is 2n - 1 = 31 and its IDauto = 32.

This ID value is, as expected, typical of all linear

maximal sequences(of which this is an example) for which

IDauto is always equal to 2n.

Now if we modify the feedback to come from stages five

and four, one posssible output sequence is only 21 bits

long:

...111110000100011001010...(21 chip)

1 0



This is an example of a nonmaximal linear sequence that

is less than 2n - 1 chip long. There are two other

nonmaximal linear sequences available from this same

feedback configuration whose lengths are seven and three

chip:

...1001110... and ...101...

The initial start vector contained in the register

determines which of the sequences is generated. For this

region greater care is necessary when nonmaximal sequences

are used, both to ensure that the initial start vector is

correct (or at least is one of the allowable states) and

that noise does not cause the register to go to a state

outside the desired set. (In such a case the output code

could suddenly change from one sequence to another.)

The three sets (not counting the images) of sequence

generator states for the available nonmaximal sequences

are

11



Set 1

12

Set 2 Set 3



Here, a total set of only 31 = 2 5 - 1 states exists in

all of these nonmaximal ; the same number that exists in a

single maximal sequence. It is typical of linear sequence

generators that for every feedback point that produces a

subset of length (2n - 1) - k there are one or more other

nonmaximal feedback connections whose sub sets ( in

combination with the original set) have a total length k.

Nonmaximal sequences often have high minor autocorrelation

peaks. For this reason, the use of nonmaximal codes or

even sectors of maximal codes for communication should be

approached with caution.

Code sequences available from the five-stage generator

of Figure 2.3 are the following:



Six of these sequences are maximal (25 - 1) in length,

whereas two are nonmaximal. Observation of pairs

([5,4,3,2],[5,3,2,1]), ([5,4,3,1],[5,4,2,1]), and

([5,4],[5,1]) will show that they are paired inverse. None

of these 31-chip codes is useful as the spectrum spreading

element for a practical system because of their short

length, but they are listed here to provide a model of the

types of sequences that can be produced.



Fig. 2.4 Autocorrelation for 21-chip maximal code[5,4].

15



Let us examine these sequences for their autocorrelation

properties; autocorrelation of all six maximal codes is

the same (i.e., equal to -1 for all except the 0+1 chip

shift). The zero shift produces an autocorrelation value

of 31 for all of them.

Autocorrelation of one of the 21-chip nonmaximals is

shown in Figure 2.4 (for sequence [5,4]), which is also

typical for the other 21-chip sequence(although backward).

The IDauto value for the 21-chip sequences is 20, which

could cause a reduction of 37.5% in a receiver's

synchronization capibility below that for the 31-chip

maximal code. The detailed discussion for periodic and

aperiodic autocorrelation is given in Section 2.1.2 and

2.1.3 respectively

2.1.2 Periodic autocorrelation

We noticed that m-sequences are certain binary

sequences of length N = 2n - 1, where n is the number of

shift register stages.

A possible representation of the autocorrelation

function is

16



where A is the number of places that the code a0, ,

aN-1 with period N and the cyclic shift a r agree, and D is

the number of places where they disagree, so that A + D =

N.

An m-sequence has the property that a period of the

sequence contains 2n-1 is and 2n-1 - 1 Os because there

are 2n-1 even numbers ending in 1, and 2n -1 - 1 odd

numbers in the same range with binary represntation ending

in O.

The autocorrelation function for m-sequences is

defined by

where the periodic autocorrelation function 0(r) is

defined by

For synchronization purposes this periodic autocorrelation

function is ideal. In fact it can be shown[15] that this

is the best possible autocorrelation function of any

binary sequence of length 2n -1 in the sence of minimizing

max 0(r), 0 < r < N.

The final property justifying the name pseudorandom

for m-sequences is the particular distribution of runs of

is and Os. A run is defined to be a maximal string of

17



consecutive identical symbols. In any m-sequence, one half

of the runs have length 1, one quarter have length 2, one

eighth have length 3 and so on, as long as these fractions

give an integral number of runs. In each case the number

of runs of Os is equal to the number of runs of ls.

All of these properties are the same as one would

expect from a coin tossing sequence. However, one way in

which an m-sequence is seen to be not truly random is that

the properties hold for every sequence, whereas in a coin

tossing sequence there would be some variations from

sequence to sequence.

The m-sequences have a concise description by

polynomials. In the general case the output of an m-stage

binary feedback shift regiser will satisfy a recurrence

relation of order n (see Fig. 2.5):



Fig. 2.5 Binary feedback shift regiser.

The coefficients C r = 1 if the stage S r is added to the

feedback path and C r = 0 otherwise. The highest term St+f_ n

must always be present, and it is also assumed that Co =

1.

The solution to equation 2.3 is closely related to the

roots of the characteristic polynomial taking the form

The number of such polynomials describing the feedback

required to generate m-sequences is the same as the number

of irreducible and primitive polynomials of degree m. This

is given by Euler's phi functions:

19



positive integers including 1 that are relatively prime to

and less than 2n - 1. As an example of the use of this

formula let us observe a five-stage register, for which

2n - 1 is 31. From equation 2.5 the five-stage regiser has

maximal linear sequences available:

The six m-sequences of period 31 will all have the ideal

periodic autocorrelation described by equation 2.2, and

the periodic autocorrelation function will not depend on

the initial content of the shift register. This is

expressed by saying that the periodic autocorrelation

function of m-sequences are insensitive to the phase of

the sequence.

2.1.3 Aperiodic autocorrelation

To complete the description of autocorrelation

properties of m-sequences, calculation of the aperiodic

function is also needed.

20



The aperiodic autocorrelation depend strongly on the

phase of sequences. That is to say, sidelobes and possible

multipath interference will depend on the initial starting

condition of the shift registers producing the spreading

codes. This gives a multitude of codes for any given

sequence period N corresponding to the N possible choices

of phase for each of the cyclically distinct m-sequences.

The result is roughly 10 6 possible codes of periods 31 to

4095 (there are 474 m-sequences of periods 31 to 4095),

and there is a need for some criteria for sorting out the

'best' codes from this large selection. However, since no

expression similar to equation 2.2 exists for the

aperiodic parameters, one is left with an exhaustive

search. Using a computer to find the phase for which 6k(1)

is minimized will give, for several of the sequences, more

than one possible phase. Hence such a first sieve does not

generally give a unique set of optimal sequences.

A second condition that might be applied to reduce the

probability of acquiring false synchronization, and which

reduces the number of times. Both these sieves are

concerned with peak aperiodic autocorrelation values.

However, in a multiple access system the degree of mutual

interference is very important. In particular, knowledge

of the sidelobe energy of a sequence defined as

21



can be used to bound the value of the average other user

interference between codes[5]. This parameter can be

selected as the final sieve in sorting out a cyclic shift

optimal to the sequence in question.

Applying these sieves in successive order gives a

unique cyclic shift for all the m-sequences with periods

from 31 to 4095.

The conditions satisfied for optimal sequences with

least sidelobe energy can then formally be written as;

2. When the number of elements of a finite set A is

denoted by the cardinal number 'Ai, the cardinality of the

minimized.

3. Sk is kept at a minimum.

Table 3.1 in the reference[7] gives the numerical results

of the codes chosen from these criteria for all m-

sequences with periods from 31 to 4095.

For many applications the sidelobe energy parameter may

be more important than the peak correlation parameters. A

reversal of the priority on peak correlation parameters

22



and sidelobe energy, to give a set of phases which are

auto-optimal among the set of phases, produces the

numerical values in Table 2.1. The first column identifies

the m-sequence in octal notation. The next column shows

the initial or start position of the sequence when in

auto-optimal phase. The third and fourth columns contain

the same information as the first two for the reciprocal

sequence. The fifth column gives the value of the sidelobe

energy. The sixth column gives the peak aperiodic

autocorrelation for the m-sequence pair, and the final

includes the number of times the peak correlation value

occurs. This table only covers sequence periods from 31 to

255. Here we can notice that there are a few sequences

that are optimal irrespective of where the priority is

put.



Sequence 	 Loading Sequence Loading SE Min C

(a) n = 5, N = 31
45 	 10011 51 10100 103 9 2
67 	 11000 73 01010 115 9 2
75 	 11110 57 10010 91 7 2

(b) n = 6, N = 63
103 	 000010 141 011111 427 11 2
133 	 100010 155 101100 492 11 4
147 	 110001 163 101011 351 13 2

(c) n = 7, N = 127
211 	 1100100 221 0100111 1915 21 2
217 	 0000101 361 1111111 2015 15 12
235 	 0110000 271 0010001 2107 21 4
247 	 0010111 345 0110001 2255 17 8
277 	 1001101 375 0000111 2167 21 2
357 	 1011110 367 0000010 2199 21 4
323 	 1111011 313 0001110 2055 21 2
203 	 0110111 301 1011011 2043 21 2
325 	 0101011 253 0100101 2191 27 2

(d) n = 8, N = 255
455 	 11011110 551 00000011 9463 29 2
453 	 11111111 651 01001000 9099 27 6
435 	 11000010 561 11111100 9059 27 4
537 	 10110100 765 00111100 8833 25 8
545 	 00110011 515 10110110 9383 29 2
543 	 01000110 615 10101001 9215 33 2
607 	 11100001 703 10111011 9223 29 2
717 	 01110011 747 00111100 8899 31 2

Table 2.1 Least energy sequences maximized for auto-
optimality with periods from 31 to 255(PURSEY, M. B. and
ROEFS, H. F. A., 'Numberical evaluation of correlation
parameters for optimal phases of binary shift-register
sequences', IEEE Trans., 1979, COM-27(10), pp. 1597-1604.
Copyright c 1979 IEEE)

We noticed that the periodic autocorrelation for m-

sequences is ideal. The aperiodic autocorrelation

parameters are obtained by a compuer search which does not

reveal any ideal m-sequences, only best ones selected from

24



a large set. It would therefore be worth while to know how

optimal these m-sequences are compared with a more general

set of possible periodic spreading codes. Sarwate[6]

showed that the aperiodic autocorrelation functions for a

set of K complex valued sequences of period N are bounded

by

For ranges of K from 2 to K = N and large N, this lower

bound varies from = (( 1/2)N) 1/ 2 to = N1/2. With N = 1023

ranges from = 23 to = 32 when K = 2 and K is large

respectively.

Golay[8] derives a 'merit factor' for general binary

sequences as

and establishes a conjectured asymptotic value for F that

will be valued for every long binary sequences. The bound

on F is given by

25



From equation 2.7 it is clear that choosing m-sequences

with a high merit factor is the same as selecting the

sequences by the least sidelobe energy criteria, the

result of which is shown in Table 2.1. For a random binary

sequence the average F value becomes

for N values of interest. Thus optimal m-sequences perform

considerably better with respect to the merit factor than

true random sequences.



2.2 Crosscorrelation

2.2.1 Introduction

Crosscorrelation is of interest in several area such

as CDMA systems(or any code addressed system) in which

response of the receiver to any signal other than the

proper addressing sequence is not allowable, and

antijamming systems that may employ codes with extremely

low crosscorrelation as well as unambiguous

autocorrelation.

Crosscorrelation is the measure of similarity between

two different code sequences. The only difference

between autocorrelation and crosscorrelation is that in

the general convolution integal for autocorrelation a

different term is substituted

Crosscorrelation for different code sequences can be

tabulated by generating a comparison table and curve of

agreements minus disagreements

That is, it is expressed as the number of agreements

minus the number of disagreements when the code or codes

are compared chip by chip the same as for autocorrelation.

27



But even the linear maximal sequences are not immune

to crosscorrelation problems, though they are, in general,

the best available. It is also of some interest to note,

even when the the codes used exhibit excellent

crosscorrelation properties when averaged over their

entire length, that short-term crosscorrelations, which

are quite effective in disrupting communications, can(and

do) occur.

Here, we have restricted our consideration in this

section to integration over a long period (- 04 to m). This

is essentially (for our simple case) the same as

integrating over the code length, for the codes spoken of

here repeat at intervals of 2n - 1 chips. We hasten to

point out that integration (as in a synchronization

detecter) over a period less than that of the code used

allows short-term correlations; that is, a short pattern

occurring in two different codes or twice in the same code

could appear as a legitimate code synchronization when the

integration period does not significantly exceed the

pattern period.

28



Fig. 2.6 Comparative autocorrelation and crosscorrelation
for 31-chip mirror image m-sequences.
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Figure 2.6 and 2.7 are given as illustrations of

crosscorrelation and autocorrelation for maximal

sequences. The autocorrelation for curve of the [5,3] code

shows a zero-shift correlation value of 31. For the [5,3]

and [5,2] codes cross-correlated, however, the peak value

is 11. It gives an index of discrimination of 20 and is

37.5% less than the autocorrelation value. The [5,3] and

[5,2] codes are images; that is, one is the same as the

other, but generated in reverse order. Crosscorrelation of

the [5,3] and [5,4,3,2] code is lower than that for the

image codes, but is still such that the peak

crosscorrelation value is seven, a value that occurs at 10

different shift positions.

The significant point is that these particular pairs

of code sequences are not capable of operating in the same



Fig. 2.7 Comparative autocorrelation and crosscorrelation
for 31 chip m-sequences(not images).
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link if the transmitted power from either transmitter

exceeds the other enough to raise the peak

crosscorrelation to a value near peak autocorrelation.

Of course, such short codes should not be used, but the

comparison is resonably representative of operation even

with much longer sequences used in code division

mutiplexing or other mutiple access applications.

Judge[9] has considered code division mutiplexing by

using quasi-orthogonal binary function(linear maximal

sequences) and states that for two equal power signals

mutiplexed together signal to noise is

T = the crosscorrelation integration period,

T0= the code bit period,

K1= value of DC correlation.

Judge's result shows that some Mersenne prime

sequences exhibit crosscorrelation values superior to

others, sometimes even for nonprime sequences longer than

prime sequences.
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In systems using mark-space signalling, or in code

division multiple access applications, the periodic and

aperiodic crosscorrelation functions are of major

importance. The detailed discussion for periodic and

aperiodic crosscorrelation is given in next two section.

2.2.2 Periodic crosscorrelation

Since no analytical expression is known which can be

used to calculate the crosscorrelation function between

two particular m-sequences, the values must be computed by

performing mutiplication bit by bit and adding the result

as we discussed before. This is a somewhat impractical

solution, and it would at least be attractive if it would

be shown statistically that the fluctuation in the

crosscorrelation value for a pair of sequences was small

for all relative phase shifts so that the mean could be

used representatively. However, in Appendix D it is shown

that the mean of the periodic crosscorrelation for all

shifts is given by 1/N and the variance for all shifts is

approximately given by 1 + (1/N).

For instance, for m-sequence pairs of period N = 1023

the maximum crosscorrelation value may vary from 65 to 383

from pair to pair[1]. However, if the sequence pair with

the lower crosscorrelation bounded by 65 is chosen there
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is still a fluctuation from relative phase shift to phase

representative for the periodic crosscorrelation from

relative phase shift to phase shift. In order to indicate

what can be expected for the crosscorrelation a few lower

bounds can be established. From the result of Gold[2]

developed in Appendix C,

The left-hand side of equation 2.8 is upper bounded by

Nmax (θkr). Furthermore, the right-hand side cannot be less

than N2 - (N - 1)max(θk)max(θr). Therefore

N max (ekr) > N2 - (N - 1)max(θk)max(θr)

Since m-sequences are considered, the maximum value of the

autocorrelation outside the main peak is -1, so that

A much tighter bound due to Sidel'nikov[19] is valid for a

set of K sequences where K > N. Then the maximum

crosscorrelation between any sequence pair taken from this

set is lower bounded by

A designer's approach to the avoidance of large mutual

crosscorrelation has been to examine the factors of the

period of the sequences. If it was found that the sequence

period had small factors, the chance of large values of
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crosscorrelation between some pairs was considered high.

It is however a rather drastic approach to use this guide

and totally exclude all sequences with periods having

small factors does however a general sieve to remove only

those particular sequence pairs which are likely to

exhibit large crosscorrelation. It can be shown that it is

the combination of sequence period factors and the

decimation property of m-sequences which makes possible

large crosscorrelation values. Let q denote a positive

integer, and consider the sequence ar formed by taking

every qth element of the m-sequence ak. The sequence ak is

said to be a decimation by q of ak. If gcd(N, q) = 1,

where "gcd" denotes the greatest common divisor, the

decimation is called proper and the sequence ar of period

N is another m-sequence. In this way it is possible to

construct all m-seqences of a particular period by proper

decimations of one m-sequence.

The crosscorrelation between two sequences ak and ar

can now be defined as

This means that the crosscorrelation between ak and ar for

any i can be obtained through the process of multiplying

the digits al and aqi, 1 = 1, 2, ..., N, and summing over

the period where gcd(N, q) = 1.
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To obtain the mutual crosscorrelation for the

different relative phases i between the m-sequence pair,

it is necessary to carry out the decimation on all the

cyclic permutations. However, the decimations by any

particular q = q1 on the cyclic permutations TSak, s = 0,

1, ..., N-1 will in general not lead to all possible

relative phase positions between ak and ar. The complete

result is obtained through further decimations of the form

q2 = q12h mod N for positive integers h. The number c of

times Ts can be used on the original sequence ak, after

which decimation by q1 results in a new phase for ar, is

given by

cq mod(yN) = c
	

(2.10)

where y is any positive integer. Equation 2.10 can also be

written as

The number of times Ts can be used on the original

sequence ak, after which decimation by q1 does not result

in a new phase for ar, is a direct measure of how often

the sequence digits al = aqi1 . The number of times al =

aq  equals N/c = 'DI, where I I denotes the number of

elements in the set D, so that
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both of which give +1 as the result. For cases where MIDI

is large, the crosscorrelation will have a large positive

bias, which is sufficient for one to expect the

correlation to exhibit large peak values.

Gold[4] describes in his paper an analytical technique

which tells how to select m-sequences with a specified

upper bound on the crosscorrelation function.

2.2.3 Aperiodic crosscorrelation

Although there are no anaytical expressions which give

can be applied. The result in equation 2.6 for a set of K

sequences can also be used to lower bound the aperiodic

In fact equation 2.6 is derived from an expression

relating the maximum values of the aperiodic

autocorrelation and aperiodic crosscorrelation parameter

is shown in Appendix E. thus

This seems to verify the common observation that when

autocorrelation parameters are good the crosscorrelation

parameters are not very good. Any of the sequences which

satisfy the bound from Gold's theorem are upper bounded by
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As for the aperiodic autocorrelation, the aperiodic

crosscorrelation is sensitive to phase shifts. It is,

however, a formidable task to find optimal phases for

mutiple access applications which require a large number

of sequences. Pursley and Roefs[21] have calculated peak

crosscorrelation parameters for some short m-sequences and

Gold sequences.

Notice that although reciprocal sequences have

periodic crosscorrelations very close to the bound from

Gold's theorem and thus are attractive from a periodic

viewpoint, the interference due to other users depending

such sequences. The reason is that when k and r are

reciprocal sequences and are placed in phase positions so

as to obtain optimal sequences with least sidelobe energy,

If however some of the sieves used to find optimal

sequences with least sidelobe energy are removed, more

than one possible phase exists and it is possible to

will not behave differently from any other sequence pair.
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2.3 Crosscorrelation spectra in Gold codes

The Gold code sequences are of great utility when

crosscorrelation is a prime consideration. Their real

advantages lies in that for every code in a set of 2n - 1

codes, each of length 2n - 1, crosscorrelation values are

well defined, and a system can be designed to operate

within this definition.

The Gold code sets to be defined shortly have a

crosscorrelation spectrum which is three-valued.

Consider an m-sequence that is represented by a binary

vector b of length N, and a second sequence b' obtained by

sampling every qth symbol of b. The decimation of an m-

sequence may or may not yield another m-sequence. When the

decimation does yield an m-sequence, the decimation is

said to be a proper decimation. The table of irreducible

polynomials in reference[17] can be used to determine

whether a particular decimation of a particular m-sequence

is proper. One entry from this table is:

DEGREE 6 1 103F 3 127B 5 147H 7 111A

9 015 11 155E 21 007
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Here, each octal number represents a polynomial and those

numbers followed by an E, F, G, or H are primitive

polynomials which generate m-sequences. Let b denote the

m-sequence generated by 103 in the table. The decimal

number q preceding the octal entry indicates that the

sequence generated by that polynomial is the qth

decimation of the sequence generated by the first entry in

the table. Thus b' = b[3] is generated by the polynomial

127, which is not primitive, so that b' is not an m-

sequence and this decimation is not proper. It has also

been proven(Sarwate and Pursley) that b' = b[q] has period

N if and only if gcd(N,q) = 1. Since N = 2 6 - 1 = 63 for

the degree 6 polynomials, gcd(63,3) = 3 and the period of

b' does not equal N. Sarwarte and Pursley have also shown

that proper decimation by odd integers q will give all of

the m-sequences of period N. Thus any pair of m-sequences

having the same period N can be related by b' = b[q] for

some q.

The crosscorrelation spectrum of pairs of m-sequences

can be three-valued, four-valued, or possibly many-valued,

where those three values are -t(n), -1, [t(n) - 2]

where
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where the code period N = 2n - 1, are called preferred

pairs of m-sequences. Finding preferred pairs of m-

sequences is necessary in defining sets of Gold codes. The

following conditions are sufficient to define a preferred

pair b and b' of m-sequences:

Here, we find a preferred pair of m-sequences having a

period 31 units and evaluate their crosscorrelation

spectrum for the period, N = 31, degree, n = 5. The

referenced(Peterson and Weldon) table of irreducible

polynomials contains the following entry:

DEGREE 5 1 45 E 3 75G 5 67H.

Arbitrarily choose b as the m-sequence generated by the

primitive polynomial 45. The decimation b' = b[3] is

proper, so that the pair (b, b[3]) is a candidate pair.

The first condition is satisfied since n = 1 mod 4. The

second condition is satisfied also since q is odd and q =

2k + 1 for k = 1. Finally, gcd(5,1) = 1, so that all three

conditions are satisfied and a preferred pair has been

found. The m-sequences b and b[3] are
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b 	 1010111011000111110011010010000

b' 1011010100011101111100100110000

Fig. 2.8 Crosscorrelation spectrum for N = 31, n = 5

A straightforward but tedious manual calculation of the

crosscorrelation will show in Figure 2.8 that for any

phase shift the crosscorrelation takes on one of the three

values -9, -1, or 7.

Let b(D) and b'(D) represent a preferred pair of m-

sequences having period N = 2n - 1. The family of codes

of Gold codes for this preferred pair of m-sequences. In

shift of the m-sequence b'(D) by j units.
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The result that Gold codes have three-level

crosscorreltion values with crosscorrelation and

relative(approximate) frequencies of occurence is shown in

Table 2.2

Table 2.2 Three-level crosscorrelation properties in Gold
codes.



CHAPTER III

GOLD CODE GENERATION

3.1 Algorithm for Gold code selection

Any code can be represented by a polynomial, where the

binary codes are represented by a polynomial of the form

1 + AX + BX2 + CX3 + 	 + ZXn

Here, each coefficient(A, B, 	 Z) is either 0 or 1,

each term of the polynomial (except for the first, 1)

corresponds to a stage of a binary shift register, and

there are n stages in the register. That is, each term in

the polynomial containing an X corresponds one-to-one

with a stage in a binary shift register.

The feedback connections in the code generator are

defined by the terms in the polynomial whose coefficient

is 1.

For instance, a code generator whose characteristic

polynomial is 1 + 1X + 1X 2 + 1X3 + 1X7 would have seven

stages with feedback taken from its first, second, third,

and seventh stages. Here, we can express this code as

[7, 3, 2, 1] = 1 + X + X 2 + X3 + X7

Linear maximal codes, in which we have major interest,

have characteristic polynomials that are primitive. That

is, the primitive or nonfactorable polynomials each define
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a different linear maximal code. Fortunately, the tables

of polynomials mentioned in Appendix F both define

primitive polynomials and provide information that allows

proper selection of pairs of codes for use in generating

Gold codes.

Table 3.1 Performance of preferred pairs compared with
worst case pairs.

Before going further, let us make it clear that the

codes need be properly chosen. Arbitrary selection of code

pairs from the tables can result in very poor correlation
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performance, as is demonstrated by the results shown in

Table 3.1.

The preferred pairs of codes, as selected by the Gold-

derived algorithm, always give undesired correlation that

even), however.

The Gold-derived algorithm for selection of preferred

pairs requires the use of code tables that list the

polynomial roots(as do Peterson's tables[17]). The

algorithm is used as follows:

1. Select a polynomial of the proper degree from the

table(an n-stage shift register requires an nth degree

polynomial).

2. Read the number(k) in the polynomial roots column

associated with the polynomial selected.

3. If the code generator has an odd number of stages,

then calculate 2k + 1. If the number of stages is even,

4. The number calculated in step 3 is the polynomial

root of a second code that completes a preferred pair.

Use of any polynomial (code) with the polynomial root

calculated in step 4 will produce Gold codes when combined

with the original code that has properly bounded
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correlation with all members of the set. As an example,

for 19-stage codes, suppose we select a code whose

polynomial is 2000047, which converts to

010000000000000100111 or 1 + X + X 2 + X5 + X19 . The

polynomial has 1 as its polynomial roots. with the

algorithm from the foregoing definition (step 4), we

calculate the second polynomial

2 1 + 1 = 3.

root required as 2k + 1 =

Correlation
Irreducible Number of Polynomial funtion of
polynomials maximals Degree 	 roots sequences

Marsh Yes 	 All 19 No No
(1957)

Peterson Yes 	 All 16 Yes No
(1961) Partial 17-34

Watson No 	 1 100 No No
(1961)

Gold No 	 All 13 Yes Yes
(1964)

Bradford No 	 Partial 58 No No
(1965)

Table 3.2 Description of available tables of binary
polynomials.

A second polynomial having polynomial root = 3 is 2020471

or 1 + X3 + X4 + X5 + X8 X13 X19. This pair of codes

would , when combined, produce Gold codes, every one of
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which would have crosscorrelation bounded at 2( 11+ 1 )/ 2 + 1

= 1025, which is 20 Log2 19/1025 = 54dB below the peak of

autocorrelation. A listing of some readily available

tables of primitive polynomials is given in table 3.2.

Note that of those given, however, only two list the

polynomial roots.

3.2 Generation of general Gold codes

Gold code sequence generators are useful because of

the large number of codes they supply, although they

require only one pair of feedback tap sets. A bonus

awarded on the basis of the use of these codes is that

only a few sets of feedback connection are required for

each simple shift register generator (SSRG) while

retaining the capacity to generate a large number of

codes. The single-tap SSRG is the fastest configuration

possible. Thus the Gold code sequences are potentially

available at rates equal to the capacity of the fastest

SSRG.

The Gold codes are generated by modulo-2 addition of a

pair of maximal linear sequences as shown in Figure 3.1.

The code sequences are added chip-by-chip by synchronous

clocking. Here, code 1 and code 2 are the same length.

Thus the two code generators maintain the same phase
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relationship, and the codes generated are the same length

as the two base codes, which are added together but are

nonmaximal. A specific example is shown in Figure 3.2.

Fig. 3.1 Configuration of Gold code generator

The shift and add property of maximal sequences tells

us that any maximal sequence added to a phase-shifted

replica of itself(any integal number of bits) produces a

different phase shift as an output. Here the same
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operation is performed, with the new sequence having the

same length as those being added, and nonmaximal.

Furthermore, every change in phase position between the

two generators causes a new sequence to be generated. To

see this advantage, consider the following example.

Given a five-stage sequence generator, we choose a set

of feedback taps, [5,3] and [5,4,2,1] from the reference

table in Appendix F. Here, there are only six feedback

sets available for the five-stage register and half are

images of the other half. If more than six 31-chip codes

are needed, we cannot get them from our five-stage

regiser.

Therefore, we use two five-stage sequence generators

connected in the Gold code sequence generator

configuration, as shown in Figure 3.2. Table 3.3 also

shows the modulo - 2 -combined Gold codes produced by

combining the two output maximal codes with different

initial offsets; that is, the two code generators are

started with initial conditions offset by various amounts

to give different output codes. The all-ones vector is set

into both registers as an initial condition. In addition

one, three, and five-chip shifts(from all-ones vector) are

also shown in initial conditions:
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Fig. 3.2 Gold code generation.

Table 3.3 Modulo-2-combined Gold code
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Any shift in initial conditions from 0 to 30 chips can be

used (A 31-chip shift is the same as the zero shift).

Thus, from this Gold sequence generator, 33 maximal-length

codes are available. Extending this demonstration, we can

show that any two-register Gold code generator of length n

can generate 2n - 1 m-sequences(length 2n - 1) plus the

two maximal base sequences. A multiple-register Gold code

generator can generate (2n - 1)r nonmaximal sequences of

length 2n - 1 plus r m-sequences of the same length where

r is the number of registers and n is register length.

In addition to their advantage in generating large

numbers of codes, the Gold codes may be chosen so that

over a set of codes available from a given generator the

crosscorrelation between the codes is uniform and bounded.

Thus the Gold codes are attractive for applications in

which a number of code-division-multiplexed signals are to

be used. The same guarantee of bounded crosscorrelation is

impossible for m-sequences of the same length.

Gold[22] has presented a method for choosing the

linear maximal codes used as components to Gold sequences

that gives a set of sequences, each of whose members has

crosscorrelation, and autocorrelation side lobes, bounded
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An equivalent result is given by Anderson[32] for the

Gold codes; that is, Anderson's expression for the

crrosscorrelation bound is

Here one expression gives crosscorrelation in chips,

whereas the other gives a percentage of maximum

correlation. By normalizing maximum correlation to one,

Anderson also states that the crosscorrelation

function for maximal sequences is bounded by

the Gold codes exhibit crosscorrelation that is

(57E)/(1/1-1-.)) =47i- greater than m-sequences of the same

length.



3.3 Generation of balanced Gold codes

Gold has shown that Gold codes can be broken into

three classes of balance. A balanced code is one in which

the number of "zeros" differs from the number of ones by

one. The other two classes have an excess and deficiency

of "ones". For n odd Gold has shown that the number of

"ones" and the number of codes with that number of "ones"

is as shown in Table 3.4.

Table 3.4 Number of balanced and unbalanced codes for n
odd.

Here, in the first set there are 2n -1 "ones" and therefore

2n-1 - 1 "zeros" and therefore set 1 is balanced. Sets 2

and 3 are not balanced. Because balanced codes have more

desirable spectral characteristics, we show, following

Gold how to generate balanced codes; that is, we generate

Gold codes of the first set. We do this by selecting the

proper relative phase of the two original m-sequences.
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First we must determine the characteristic phase.

Every m-sequence has a characteristic phase. One important

property is that if a maximal PN sequence, in its

characteristic phase, is sampled at every other symbol,

the same sequence results. Let f(x) be the nth degree

characteristic. Any phase of the m-sequence can be

represented by the ratio g(x)/f(x), where g(x) is the

number of the generating function and is of degree less

than n. As we have seen, long division of these

polynomials results in a formal binary power series whose

binary coefficients are the symbols of the sequence

generated by the shift register. The formula for the

polynomial g(x) that results in the characteristic phase

for the m-sequence has been shown by Gold to be given by

g(x) = d[xf(x)]/dx 	 f(x) odd degree

g(x) = f(x) + d[xf(x)]/dx 	 f(x) even degree

Differentiation is carried out in the usual way with

coefficients interpreted, mod 2.

As an example, consider the characteristic polynomial

f(x) = 1 + x + x 3 .

We compute
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By long division we have

We conclude that the initial conditions must have been 111

to yield the successive "ones". The sequence and the

sequence represented by odd numbered symbols is given by

sequence 	 11101001110100...

sampled 	 1 1 1 0 1 0 0...
sequence

3.3.1 Relative phase requirement for balanced codes

We shall now descrive the relative phase in which the

preferred pair of maximal PN sequences must be added in

order to result in a balanced member of the the family.

56



Let a and b be the preferred pair of m-sequences in

their characteristic phase. When x is of odd degree it is

clear that the generator polynomial is of the form

G(x) = {1 + c(x) }/{l + d(x)}

where the degree of d(x) is n and the degree of c(x) is

not greater than n 1. By long division it is clear that

the quotient will be of the form 1 + x + .... so that the

initial symbol of the characteristic sequence will be a

"one".

Any relative phase shifts of the sequence a and b (in

their characteristic phase) that are obtained by shifting

the sequence b unti1 its initial "one" corresponds to a

"zero" in the sequence a will result in a balanced Gold

code when the two sequences are added together mod 2.

Let us consider an example. Let n = 3 and f(x) = x 3 +

x + 1. Now s is a root of f(x) and s 3 is a root of the

other part of the preferred pair. Since the polynomial for

s 3 is not listed in reference[Peterson and Weldon], try

the reciprocal polynomial, that is, g(x) = x 3 + x2 + 1. We

find that g(s 3 ) = O. Hence the two sequences are

a= 1/(1 + x + x3 ) = 1 + x + x2 +

= 1110100 (initial condition is 111)

b = (1 + x2 )/(1 + x2 + x 3 ) = 1 + Ox + Ox2 +

= 1001011 (initial condition is 100)
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If the sequence b is shifted cyclically three, five,

or six positions to the right, then the initial "one" in

sequence b will be under a "zero" in sequence a. Addition

of the two sequences in all cases leads to a balanced Gold

code.

If, however the code is shifted by any other phase

(that is, zero, one, two, and four shift), an unbalanced

code is produced. These results are summarized in Table

3.5.

a 1110100

b 	 1001011

Table 3.5 Relative phase shifts of the sequence a and b
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3.3.2 Initial conditions for balanced Gold codes

We have seen how to proceed to produce balanced Gold

codes. Generator for the balanced Gold codes is the same

as given in Figure 3.1. The initial conditions for SRG 2

are those initial conditions, of the m-sequence that

determine the charcteristic phase of the maximal PN

sequence generated by shift register 2. These initial

conditions are determined such that the numerator of the

generating functions is determined by

g(x) = d/dx[xf(x)] n odd

g(x) = f(x) + d/dx[xf(x)] n = 0 mod 4

as before. Then the initial conditions are obtained by

long division of g(x)/f(x) to provide the first n

coefficients, which are, in fact, the n initial

conditions.

The initial conditions for the SRG 1 are only subject

to the constraint that the first stage (the one on the

right) contain a zero.

As an example of the above technique, we shall

construct a balanced Gold code of period 31 = 2 5 - 1. A

preferred pair is found in Appendix C[6].
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given in an octal representation. 45 converted to binary

digit would give 100101 which specified in terms of

variable is 1 + x2 + x5 since the binary digits are the

coefficients of the polynomial. The characteristic

sequence generated by the shift register corresponding to

polynomial 45 is represented by the ratio

g(x)/(1 + x 2 + x5 )

where,

g(x) = d/dx(x + x 3 + x 6 ) = 1 + x2

The initial conditions required for this register are

found from the quotient,

(1 + x2 )/(1 + x 2 + x5 ) = 1 + x5 +

The initial conditions for register B become

[0 0 0 0 1]

The only constraint on the initial conditions of

register A is that the entry in the first stage be zero.

Hence our Gold code encoder is shown in Figure 3.3.
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Fig. 3.3 Balanced Gold code generation of length 31.

An example of the Tracking and Data Relay Satellite

System(TDRSS, which is a NASA program) staggered

quardriphase signals is shown in Figure 3.4 based on the

above stated extension of Figure 3.3.



Fig. 3.4 Gold code pair generator for mode 2 return link.
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3.4 Number of Gold codes

Table 3.6 gives the number of Gold codes calculated

for m-sequences with periods from 3 to 65,535. The first

column identifies the number of shift register stages. The

next column shows period of code. The third and fourth

columns contain maximal connected sets and total possible

preferred pairs respectively[3]. Here, maximal connected

set means the largest possible connected set of a

preferred pair. The fifth and sixth columns give number of

linear m-sequences and number of available all m-

sequeences separately[14]. Notice that the sixth column

includes number of mirror image m-sequences. The final

column gives the number of all possible Gold codes

including mirror image Gold codes.



Table 3.6 Number of Gold codes
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Example : For n = 9, we can get N = 2n - 1 = 2 9 - 1 =

511. The referenced table [3] gives 2 as the maximal

connected set. Here if we include image cases, the total

number of maximal connected sets are 4. Hence the total

number of combinations for Gold code generation are :
4
( ) = 6.
2

But the pair between certain Gold sequence and its image

sequence does not generate Gold code seqence. Since we

have to deduct these cases, the total possible preferred

pairs are 6 - 2 = 4. Each preferred pair gives rise to a

set of Gold sequences, and thus there are 4 different sets

of Gold sequences, each of period 511. Each set contains

513 sequences, and the total number of Gold codes is

4 * 513 = 2,052

The referenced table [14] gives 10 and 48 as the number

for linear m-sequences and all m-sequences respectively.

Notice that we have to choose the Gold code from one

preferred pair, when we design a system with CDMA. Because

Gold code sequences generated from the different preferred

pairs sometimes have a higher crosscorrelation value than

the crosscorrelation value for codes generated from the

same preferred pair.
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Example : Let us consider crosscorrelation values

between the Gold code a generated from preferred pair

[5,2] and [5,4,3,2] and the Gold code b generated from

preferred pair [5,2] and [5,4,2,1].

a 1101111110110010100010000000111

b 0010000001100111011110011001111

A computer calculation shows that the crosscorrelation

takes on one of the four values -9, -1, +7, +15. From this

we can see that Gold code pair a and b does not satisfy

the Gold code definition, namely that the crosscorrelation

be 3 valued.
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CHAPTER IV

NUMBER OF SIMULTANEOUS USERS IN GOLD CODE

4.1 Worst case

For this condition all users are assumed to have the

peak magnitude of crosscorrelation that is {2(n+1)/2 1)

for n odd and {2 (n+2)/2 + 1) for n even. The result is

generalized as a function of n, which is the number of

shift register stages, and tabulated in Table 4.1 for both

n odd and n even(not divisible by 4).

Table 4.1 Number of simultaneous users.(worst case)

67



It is noted that number of simultaneous users with

given level of interference are found by taking the worst

case condition. For the worst case condition, number of

simultaneous users with given level of interference is

For our problem, under consideration, that is with

five shift register stages we have,

Peak of autocorrelation = N = 2n - 1 = 31

The worst case crosscorrelation peak = 9

Hence, number of simultaneous users with given level

of interference is

Integer value of [31/9] = 3

Now as seen from above, that we have peak of

autocorrelation equals N = 2n - 1 and for the worst case

condition the number of simultaneous users are {2 (n-1)/2 -

1}. Then the interference by these users with the worst

case crosscorrelation peak of {2 (n+1)/2 + 1) will be {2(n -

1)/2 _ 1)(2(n+1)/2 1,. It can be seen here that, even

with these number of simultaneous users, the margin

between the autocorrelation peak and the peak value of

interference will be very small, so it becomes very

difficult to acquire the signal.
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Example : Consider the case of n = 5 as an example of

the computation. As we saw above, we can have 3

simultaneous users with the worst case crosscorrelation

peak of 9. Hence, the total interference = 9 x 3 = 27.

That means that 27 units out of 31 units will be used by

interferers and it will be difficult to acquire the

signal. Therefore, for a practical case, fewer than 3

users can operate simultaneously to avoid the difficulty

of acquisition.

4.2 Average case

Average case condition means considering the average

value of crosscorrelation magnitudes taking into account

the frequency of occurence of these magnitudes. The

general result for both n odd and n even(not divisible by

4) is tabulated in Table 4.2. The first column identifies

the number of shift register stages. The next column shows

the magnitude of crosscorrelation function. The third

column contains the frequency of occurence of

crosscorrelation magnitude. The fourth column includes the

average value for the magnitude of crosscorrelation

function. The final column gives the number of

simultaneous users.
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Table 4.2 Number of simultaneous users.(average case)

Now the number of simultaneous users are found by

taking average case condition as shown below. For average

case, the number of simultaneous users with given level of

interference is

For the problem with five shift register stages which

we have been considering, n = 5 and the code length =

autocorrelation peak = 31. And from Table 4.2 the average

value of crosscorrelation magnitude is
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Then the number of simultaneous users is

Integer value of (31/4.5) = 6

Also using the formula shown in Table 4.2, the number of

simultaneous users is

Now the average margin between the peak

autocorrelation and the crosscorrelation with the

interference would be

4

Therefore, for the problem we have been considering,

the average margin would be only

(31 - (4.5)(6)) = 4



CHAPTER V

NUMBER OF SIMULTANEOUS USERS IN CDMA NETWORKS

5.1 Analysis of the CDMA networks

The most commonly used quantity in CDMA systems is

that of "process gain", although it must be pointed out

that what is usually intended is not process gain but

"jamming margin". The processing gain achieved using large

spreading chip/data bit ratios could efficiently be

utilized by transmitting many signals simultaneously on

the same carrier frequency and appling code division

mutiplexing. 	 Successful use of spread spectrum CDMA

techniques requires the construction of spreading codes

giving rise to a minimum of interlink interference.

However, situations arise where the effects of interlink

interference are amplified owing to operational

considerations. Consider a network operated in a master-

slave configuration. Let slave station M1 transmit the

desired signal S to the master, which is d1 km away, and

let another slave station M2 at a distance d2 km from the

master transmit a signal I which is interference to the

M1-master link. Let C(dB) be the signal/interference

ratio(S/I) required at the terminals of the master

station's receiving input to produce the desired output

S/I. The requirement is that
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With transmitting powers of PM1 and PM2 and path losses of

L1 and L2 respectively, equation 5.1 after rearranging

yields

Equation 5.2b is an explicit formula for the near-far

problem and will put a restriction on where slave station

M2 can operate if the original system specification is to

be met. If the transmitter powers remain constant while

the value of L2 is reduced, the inequality in equation

5.2a may be violated for any practical code design. The

value chosen for the factor C will however depend on how

well the codes can be designed. In CDMA networks all

members communicate on the same frequency. Usually there

is also a common data rate Rd = 1/Td and a common

spreading code chip rate R c = 1/Tc . In burst transmission

networks no overall timing reference to enable chip

synchronization is usually achievable. In portable systems

a probe signal from a possible time master would not be a

sufficiently accurate time reference, since one would lack

compensation for the different delays in the various

transmission paths. Thus it is unlikely that the spreading

codes would be chip synchronized.
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The receiver will attempt to extract the individual

spreading codes from a composite of many during the

matched filter processing. Crosscorrelation functions play

key roles in calculating system perforance for such

situations. The wideband input signal consists of the

wanted signal as well as the interfering signals, each

spread by their own code. The spreading code modulating

the wanted signal will match the receiver filter and the

correlation peak will be sampled at a rate equal to the

data rate. If the unwanted signals were totally

uncorrelated with the wanted signal, then they would

produce no correlation peaks at the filter output.

However, the effect of crosscorrelation between the local

sequence and the sequences of the unwanted signals appears

as crosscorrelation peaks at the output of the filter.



5.2 Simulation

5.2.1 Theoretical bound

For the comparison with the simulated results, we

calculate the probability, that the crosscorrelation with

interfering users would exceed the threshold value 15 as a

function of the number simultaneous communication

stations, for the system in our example.

Table 5.1 shows the probability for 2 to 6

simultaneous users. The first column identifies the number

of simultaneous users. The next column shows the number of

ways to exceed the threshold value of 15. The third column

contains the number of possible combinations. The fourth

column gives probability of exceeding the threshold value.

The final column includes total probability of exceeding

the threshold value.



SU 	 0(r) > 15 	 Number 	 Probability Total Prob

Table 5.1 The probability exceeding threshold value 15
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SU
	 e(r) > 15 	 Number 	 Probability Total Prob

Table 5.1 (Continued)

5.2.2 Flow diagram

A simplified diagram for the calculation of

crosscorrelation values in CDMA networks is shown in

Figure 5.1

77



Fig. 5.1 Flow diagram for the simulator in CDMA networks.
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Fig. 5.1 (Continue)
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Fig. 5.1 (Continued)

5.2.3 Computer simulation

For the purpose of computer simulation, let us

consider a network configuration such as that shown in

Figure 5.2 where a number of stations at some time are in

simultaneous pair wise communication and are causing

mutual interference to each other.

80



Fig. 5.2 Network model for CDMA application

In this network configuration, we neglect the near-far

problem, the sidelobe energy problem, and noise. Specific

Gold code assignments are randomly generated from one

preferred pair. Table 5.2 shows Gold code sequences used

in this simulation. Here the codes expressed in bold

character are our local Gold code sequences.



Table 5.2 Gold codes used in simulator
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The stations are using the Gold code of period 31 and

a configuration can be obtained by specifying the number

of stations. For such a situation maximum the

autocorrelation value is 31.

First, we calculate crosscorrelation value between the

desired code and accumulated interferenced code for each

network configuration. Here, we examine 961

crosscorrelation values for 2 simultaneous communication

stations and 29,791 crosscorrelation values for more than

2 simultaneous communication stations.

Next, we calculate the probability that the

crosscorrelation is greater than the threshhold value of

15 for 6 network configurations. Here the threshold value

is defined such that for value less than this value, the

link operates normally; whereas for value greater than

this threshold, the link fails. The procedure has been to

study each configuration for a value of crosscorrelation,

thus providing a statistical estimate of the network

failure. Notice that we examine the probability for

balanced and unbalanced Gold codes of each preferred pair

such as that shown in Table 5.3.

83



Simultaneous
	

2
	

3
	

4
	

5
	

6
number of users

Table 5.3 Simulation results(probability).

Simultaneous
number of users

2 3 4 5 6

Preferred pair
[52,5432]
Balanced 5.9 6.6 8.3 9.1 10.3

Unbalanced 5.9 6.8 9.3 8.6 12.3

Preferred pair
[52,5421]
Balanced 6.2 7.2 8.2 7.9 8.6

Unbalanced 6.4 7.0 8.0 7.8 8.6

Preferred pair
[5432,5421]
Balanced 6.4 7.3 8.2 8.7 9.1
Unbalanced 6.4 7.4 7.6 8.8 9.7

Table 5.4 Simulation results(ave. value of crosscorrel.).
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Finally, we calculated average value of the

crosscorrelations shown in Table 5.4. Figure 5.3, 5.4,

5.5, and 5.6 give theoretical bound compaired with

simulation results.
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Fig. 5.3 Num. of Simul. Users vs Probability
Unbalanced Gold code



Fig.5.4 Num. of Simul. Users vs Probability
Balanced Gold code



Fig. 5.5 Num. of Users vs Ave. X—correl. Value
Unbalanced Gold code



Fig. 5.6 Num. of Users vs Ave. X—correl. Value
Balanced Gold code



5.3 Discussion of the results of the simulations

The simulation was performed for comparison between

the theoretical bound and simulatd results in each CDMA

network configuration. The operation of a CDMA network

configuration using a Gold code generated from the given

preferred pair was simulated. The balanced Gold code and

unbalanced Gold code given by each preferred pair were

investigated for possible variations in the performance

results.

When the performance results of the simulation in CDMA

networks are compared with the theoretical bound, The

simulation results were found to deviate by a factor of as

much as 3 from the theoretical bound such as shown in

Figure 5.3 to 5.6 because the theoretical bound is based

on the sum of the magnitudes of the crosscorrelation,

while the actual result depends on the magnitude of sum of

the crosscorrelation.

Example : Let us consider the following simple codes.

Here C code is our local code.

A -1 -1 1

B 1 -1 1

C 1 1 1

The crosscorrelation magnitudes between code A and C and

between code B and C are always 1. Hence average
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crosscorrelation value by theoretical calculation in CDMA

is always 2. But actual calculation gives the

crosscorrelation magnitudes of 0, 0, and 3. Therefore,

average crosscorrelation value is 1.

We checked simulation results by using sampled

different Gold code from the same preferred pair. However,

it is found that the results are not much different. In

those figures, we can notice that probability and average

code length are different for every preferred pair of

given simultaneous users. This means that we can decrease

interference if we use optimal code in given simultaneous

users.

This simulation results are the part of calculation

for given Gold code which is greater than 4 simultaneous

users. We also used the approximations in calculating the

theoretical bound. Through the supercomputer, whole

calculation is done by using exact probabilities for all

possible Gold code which remains for future study. An

analysis of the statistical behavior of the noise

corrupted Gold code and the analysis of CDMA networks

considering the near-far problem is also recommended for

future research in this area.

91



CHAPTER VI

CONCLUSION

We started our investigation with the correlation

property of binary sequencese we have presented the

autocorrelation and crosscorrelation properties for

periodic and aperiodic sequences. In addition, we have

included the correlation properties of the Gold codes.

We then discussed Gold code generation for the

balanced and unbalanced Gold codes.

Thirdly, we investigated the number of simultaneous

users in a CDMA system using Gold codes for the worst case

and the average case of mutual interference.

Finally, we compared simulated results with the

theoretical bound. There we found that the simulation

results deviate by a large factor from the theoretical

bound because of the approximations made in calculating

the theoretical bound. We recommend the analysis of the

statistcal behavior of the noise corrupted Gold code and

the analysis of CDMA networks considering the near-far

problem for future research in this area.
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APPENDIX A

PROGRAM FOR CALCULATION OF CROSSCORRELATION VALUES IN CDMA

NETWORKS USING GOLD CODE

This program calculate crosscorrelation value, its

average value, probability of crosscorrelation value

exceeding the threshold value from the Gold codes used in

CDMA networks. The Gold codes used in this program is

given by Gold code generation program in Appendix B.

The program given here is good for all period of Gold

codes, but it can read 4 codes. By adding input array and

loop, We can expand for the increased codes. But it takes

a long time to calculate more than N4 of crosscorrelation

values for even N = 31. This simulation program is done in

C computer language.
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#include <stdio.h>
#define max 500
int A[max], B[max], C[max], D[max], E[max], F[max],

X[max], Y[max], Z[max], W[max],
h,i,j,n,m,temp,templ,Acode,Bcode,Ccode,Dcode,sign,
done,k;

float ave,sum4,sum3,sum2,suml,sum,nb,prob,ave,prob;
main()
{

scanf("%d",&Acode);
n = 1;
while (Acode != 20)
{

A[n] = Acode;
X[n] = Acode;
scanf("%d",&Acode);
n++;

sign = 0;
for (i=1; i<=n-1; i++)
{

if (abs(A[i])<=1)
{

if (A[i]==0)
A[i] = -1;

else
sign = 1;

if (sign)
{

for (1=1; i<=n-1; i++)
A[i] = X[i];

}
n =1;
scanf("%d",&Bcode);
while (Bcode != 20)
{

B[n] = Bcode;
Y[n] = Bcode;
scanf("%d",&Bcode);
n++;

sign = 0;
for (i=1; i<=n-1; i++)
{

if (abs(B[i])<=1)
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if (B[i]==0)
B[i] = -1;

}

else
sign = 1;

)
if (sign)
{

for (i=1; i<=n-1; i++)
B[i] = Y[i];

}

n = 1;
scanf("%d",&Ccode);
while (Ccode != 20)
{

C[n] = Ccode;
Z[n] = Ccode;
scanf("%d",&Ccode);
n++;

)
sign = 0;
for (i=1; i<=n-1; i++)
{

if (abs(C[i])<=1)
{

if (C[i] == 0)
C[i] = -1;

else
sign = 1;

)
if (sign)

for (i=1; i<=n-1; i++)
C[i] = Z[i];

)
n = 1;
scanf ("%d", &Dcode);
while (Dcode != 20)
{

D[n] = Dcode;
W[n] = Dcode;
scanf("%d", &Dcode);
n++;

}
sign = 0;
for (i=1; i<=n- ; i++)
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if (abs(D[i])<=1)

if (D[i]==0)
D[i] = -1;

}

else
sign = 1;

if (sign)
{

for (i=1; i<=n-1; i++)
D[i] =

}

in = 1; n = n - 1;sum4 = 0.0;
nb = 0.0;
while (m <= n)

h = 1; sum3 = 0.0;
while (h <= n)
{

sum2 = 0.0;
for (1=1; i<=n; i++)
{

E[i]= A[i] + B[i] + C[i];
}
for (j=1; j<=n; j++)

sum = 0.0;
for (i=1; i<=n; i++)
{

F[i] = D[i]*E[i];
sum = sum + F[i];

if (j%10 1= 0)
printf("%6.1f\t",sum);
else
{

printf(n6.1f\t",sum);
printf("\n");

}

if (sum<0)
{

sum1 = -sum;
sum2 = sum2 + suml;

}

else { sum1 = sum;
sum2 = sum2 + suml;

if (sum1 >= 16)

96



++nb;
tempi = E[1];
for (k=1; k<=n-1; k++)
{

E[k] = E[k+1];
)
E[n] = tempi;

}

sum3 = sum2 + sum3;
ave = sum2/n;
printf(" Ave = %5.1f\n",ave);
printf("\n");

temp = C[1];
for (j=1; j<=n-1; j++)
{

C[j] = C[j+1];

C[n] = temp;
h++;

printf(" sum2 = %6.1f\n",sum2);
printf(" sum3 = %6.1f\n",sum3);

sum4 = sum3 + sum4;
ave = sum3/(n*n);
prob = nb/(n*n);
printf(" Average = %5.1f\n",ave);
printf(" Number = %5.0f\n", nb);
printf(" prob = %8.4f\n", prob);
temp = B[1];
for (i=1; i<=n-1; i++)
{

B[i] = B[i+1];

B[n] = temp;
m++;

}

printf(" Sum4 = %10.0f\n", sum4);
ave = sum4/(n*n*n);
prob = nb/(n*n*n);
printf(" Average = %5.1f\n", ave);
printf(" Number = %7.0f\n", nb);
printf(" prob = %8.4f\n", prob);
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APPENDIX B

THE PROGRAM FOR GOLD CODE GENERATION

This program generates Gold codes from the m-sequences

for preferred pair. The program given here is good for all

period of Gold codes if we input the Gold code sequences

given from the preferred pair. This program is done in C

computer language.
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#include<stdio.h>
#define max 500
int A[max], B[max],

C[max],ans,i,j,n,m,temp,Acod,Bcod,done,sum,n1;
main()
(
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APPENDIX C

EXPRESSION FOR CROSSCORRELATION BETWEEN M-SEQUENCES USING

THEIR AUTOCORRELATION FUNCTIONS

In order to relate the crosscorrelation of sequences

to their autocorrelation, one might apply the following

theorem due to Gold[2]:

from the definition of the crosscorrelation Okr(l). The

right-hand side can then be developed to give

From this it is possible to develop the result[3]
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for sequences where Ck(0) = Cr(0) = N.

Then

[ckr(1 	 N) ]2 	 [ckrL 	(1	 N + 1)]2 + [ckr(1)]2

[ckr(1 + 1) ]2



APPENDIX D

CROSSCORRELATION PARAMETERS FOR MAXIMAL LENGTH SEQUENCES

Let ak be a maximal length sequence with period N = 2m

- 1 and ar another m-sequence with the same period. Both

sequences thus have an autocorrelation given by

The crosscorrelation between ak and ar is given by
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This is because er(1) has period N and one peak during the

period



APPENDIX E

BOUNDS ON APERIODIC AUTOCORRELATION AND CROSS CORRELATION

OF SEQUENCES

From the theorem of Gold developed in Appendix C, it

is also possible to show that the odd correlation

parameters are related through

Applying this to all members of a set A consisting of K

sequences of period N where the inphase autocorrelation

The left side of this equation is upper bound by
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The right-hand side is lower bounded by K2N2:



APPENDIX F

FEEDBACK CONNECTIONS FOR LINEAR M-SEQUENCES
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15 	 32,767 	 [15,13,10,9][15,13,10,1][15,14,9,2]
[15,1][15,9,4,1][15,12,3,1][15,10,5,4]
[15,10,5,4,3,2][15,11,7,6,2,1]
[15,7,6,3,2,1][15,10,9,8,5,3]
[15,12,5,4,3,2][15,10,9,7,5,3]
[15,13,12,10][15,13,10,2][15,12,9 1 1]
[15,14,12,2][15,13,9,6][15,7,4,1]
[15,4][15,13,7,4]

Mersenne prime length generator.
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