2,521 research outputs found

    Massive-Scale Automation in Cyber-Physical Systems: Vision & Challenges

    Get PDF
    The next era of computing is the evolution of the Internet of Things (IoT) and Smart Cities with development of the Internet of Simulation (IoS). The existing technologies of Cloud, Edge, and Fog computing as well as HPC being applied to the domains of Big Data and deep learning are not adequate to handle the scale and complexity of the systems required to facilitate a fully integrated and automated smart city. This integration of existing systems will create an explosion of data streams at a scale not yet experienced. The additional data can be combined with simulations as services (SIMaaS) to provide a shared model of reality across all integrated systems, things, devices, and individuals within the city. There are also numerous challenges in managing the security and safety of the integrated systems. This paper presents an overview of the existing state-of-the-art in automating, augmenting, and integrating systems across the domains of smart cities, autonomous vehicles, energy efficiency, smart manufacturing in Industry 4.0, and healthcare. Additionally the key challenges relating to Big Data, a model of reality, augmentation of systems, computation, and security are examined

    Dense Moving Fog for Intelligent IoT: Key Challenges and Opportunities

    Get PDF
    As the ratification of 5G New Radio technology is being completed, enabling network architectures are expected to undertake a matching effort. Conventional cloud and edge computing paradigms may thus become insufficient in supporting the increasingly stringent operating requirements of \emph{intelligent~Internet-of-Things (IoT) devices} that can move unpredictably and at high speeds. Complementing these, the concept of fog emerges to deploy cooperative cloud-like functions in the immediate vicinity of various moving devices, such as connected and autonomous vehicles, on the road and in the air. Envisioning gradual evolution of these infrastructures toward the increasingly denser geographical distribution of fog functionality, we in this work put forward the vision of dense moving fog for intelligent IoT applications. To this aim, we review the recent powerful enablers, outline the main challenges and opportunities, and corroborate the performance benefits of collaborative dense fog operation in a characteristic use case featuring a connected fleet of autonomous vehicles.Comment: 7 pages, 5 figures, 1 table. The work has been accepted for publication in IEEE Communications Magazine, 2019. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Evolution of VANETS to IoV: Applications and Challenges

    Get PDF
    Advancement in wireless communication technology along with the evolution of low power computational devices, have given rise to the Internet of things paradigm. This paradigm is transforming conventional VANETs into Internet-of- vehicles. This transition has led to a substantial commercial interest; as a result, there has been a significant boost in the field of the Internet of vehicles during the past few years. IoV promises a wide range of applications of commercial interest as well as public entertainment and convenience (collision warning systems, on-demand in-car entertainment, smart parking, traffic information). Applications related to vehicular and passenger safety are particularly of great commercial as well as a research interest as such IoV is going to be a core component in implementing the smart city concept. This paper gives an overview of the transition of conventional VANETs to IoV and highlights the potential applications and challenges faced by the Internet of Vehicles (IoV) paradigm

    Service Provisioning in Edge-Cloud Continuum Emerging Applications for Mobile Devices

    Get PDF
    Disruptive applications for mobile devices can be enhanced by Edge computing facilities. In this context, Edge Computing (EC) is a proposed architecture to meet the mobility requirements imposed by these applications in a wide range of domains, such as the Internet of Things, Immersive Media, and Connected and Autonomous Vehicles. EC architecture aims to introduce computing capabilities in the path between the user and the Cloud to execute tasks closer to where they are consumed, thus mitigating issues related to latency, context awareness, and mobility support. In this survey, we describe which are the leading technologies to support the deployment of EC infrastructure. Thereafter, we discuss the applications that can take advantage of EC and how they were proposed in the literature. Finally, after examining enabling technologies and related applications, we identify some open challenges to fully achieve the potential of EC, and also research opportunities on upcoming paradigms for service provisioning. This survey is a guide to comprehend the recent advances on the provisioning of mobile applications, as well as foresee the expected next stages of evolution for these applications

    Street Smart in 5G : Vehicular Applications, Communication, and Computing

    Get PDF
    Recent advances in information technology have revolutionized the automotive industry, paving the way for next-generation smart vehicular mobility. Specifically, vehicles, roadside units, and other road users can collaborate to deliver novel services and applications that leverage, for example, big vehicular data and machine learning. Relatedly, fifth-generation cellular networks (5G) are being developed and deployed for low-latency, high-reliability, and high bandwidth communications. While 5G adjacent technologies such as edge computing allow for data offloading and computation at the edge of the network thus ensuring even lower latency and context-awareness. Overall, these developments provide a rich ecosystem for the evolution of vehicular applications, communications, and computing. Therefore in this work, we aim at providing a comprehensive overview of the state of research on vehicular computing in the emerging age of 5G and big data. In particular, this paper highlights several vehicular applications, investigates their requirements, details the enabling communication technologies and computing paradigms, and studies data analytics pipelines and the integration of these enabling technologies in response to application requirements.Peer reviewe

    Survey of advances and challenges in intelligent autonomy for distributed cyber-physical systems

    Get PDF
    With the evolution of the Internet of things and smart cities, a new trend of the Internet of simulation has emerged to utilise the technologies of cloud, edge, fog computing, and high-performance computing for design and analysis of complex cyber-physical systems using simulation. These technologies although being applied to the domains of big data and deep learning are not adequate to cope with the scale and complexity of emerging connected, smart, and autonomous systems. This study explores the existing state-of-the-art in automating, augmenting, and integrating systems across the domains of smart cities, autonomous vehicles, energy efficiency, smart manufacturing in Industry 4.0, and healthcare. This is expanded to look at existing computational infrastructure and how it can be used to support these applications. A detailed review is presented of advances in approaches providing and supporting intelligence as a service. Finally, some of the remaining challenges due to the explosion of data streams; issues of safety and security; and others related to big data, a model of reality, augmentation of systems, and computation are examined

    6G—Enabling the New Smart City: A Survey

    Get PDF
    Smart cities and 6G are technological areas that have the potential to transform the way we live and work in the years to come. Until this transformation comes into place, there is the need, underlined by research and market studies, for a critical reassessment of the entire wireless communication sector for smart cities, which should include the IoT infrastructure, economic factors that could improve their adoption rate, and strategies that enable smart city operations. Therefore, from a technical point of view, a series of stringent issues, such as interoperability, data privacy, security, the digital divide, and implementation issues have to be addressed. Notably, to concentrate the scrutiny on smart cities and the forthcoming influence of 6G, the groundwork laid by the current 5G, with its multifaceted role and inherent limitations within the domain of smart cities, is embraced as a foundational standpoint. This examination culminates in a panoramic exposition, extending beyond the mere delineation of the 6G standard toward the unveiling of the extensive gamut of potential applications that this emergent standard promises to introduce to the smart cities arena. This paper provides an update on the SC ecosystem around the novel paradigm of 6G, aggregating a series of enabling technologies accompanied by the descriptions of their roles and specific employment schemes

    Artificial Intelligence Towards Future Industrial Opportunities and Challenges

    Get PDF
    The industry 4.0 will bring reflective changes to our society, including an important digital shift in the manufacturing sector. At present, several manufacturing firms are trying to adopt the practices of industry 4.0 throughout their supply chain. The Fourth Industrial Revolution and the artificial intelligence at its core are fundamentally changing the way we live, work and interact as citizens. The complexity of this transformation may look overwhelming and to many threatening. Recently, the dramatic growth of new generation information technologies has prompted several countries to seek new strategies for industrial revolution. The globalization and the competitiveness are forcing companies to rethink and to innovate their production processes following the so-called Industry 4.0 paradigm. It represents the integration of tools already used in the past (big data, cloud, robot, 3D printing, simulation, etc.) that are now connected into a global network by transmitting digital data. Digitization and intelligentization of manufacturing process is the need for today’s industry. The manufacturing industries are currently changing from mass production to customized production. The rapid advancements in manufacturing technologies and applications in the industries help in increasing productivity. The term Industry 4.0 stands for the fourth industrial revolution which is defined as a new level of organization and control over the entire value chain of the life cycle of products; it is geared towards increasingly individualized customer requirements. Industry 4.0 is still visionary but a realistic concept which includes Internet of Things, Industrial Internet, Smart Manufacturing and Cloud based Manufacturing. Industry 4.0 concerns the strict integration of human in the manufacturing process so as to have continuous improvement and focus on value adding activities and avoiding wastes. The objective of this work is to provide an overview of Industry 4.0 and understanding of the pillars of Industry 4.0 with its applications and identifying the challenges and issues occurring with implementation the Industry 4.0 and to study the new trends and streams related to Industry 4.0 with artificial intelligence by using flexible intelligent approach. Based on intelligent and flexible AI methods and the complex safety relations in the process industry, we identify and discuss several technical challenges associated with process safety: knowledge acquisition with scarce labels for process safety; knowledge-based reasoning for process safety; accurate fusion of heterogeneous data from various sources; and effective learning for dynamic risk assessment and aided decision-making
    corecore