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Abstract: With the evolution of the Internet of things and smart cities, a new trend of the Internet of simulation has
emerged to utilise the technologies of cloud, edge, fog computing, and high-performance computing for design and
analysis of complex cyber-physical systems using simulation. These technologies although being applied to the
domains of big data and deep learning are not adequate to cope with the scale and complexity of emerging connected,
smart, and autonomous systems. This study explores the existing state-of-the-art in automating, augmenting, and
integrating systems across the domains of smart cities, autonomous vehicles, energy efficiency, smart manufacturing
in Industry 4.0, and healthcare. This is expanded to look at existing computational infrastructure and how it can be
used to support these applications. A detailed review is presented of advances in approaches providing and supporting
intelligence as a service. Finally, some of the remaining challenges due to the explosion of data streams; issues of
safety and security; and others related to big data, a model of reality, augmentation of systems, and computation
are examined.
1 Introduction

The trends of grid [1], cloud [2], and high-performance computing
(HPC) [3] are a culmination of what could be termed the third
industrial revolution of digitisation and automation of individual
systems and processes [4, 5]. The current wave of Internet of
things (IoT) [6], edge [7], fog [8] computing, as well as big data
[9] with deep learning [10] and Internet of simulation (IoS) [11]
are the trends of the fourth industrial revolution (Industry 4.0)
[12, 13]. With applications within Industry 4.0, the Internet of
everything and anything [14], and beyond where every part of
society and industry is digitally integrated, there are significant
challenges that must be addressed. This paper therefore presents a
detailed review of existing state-of-the-art and core challenges
that must be addressed to achieve the desired level of intelligence,
automation, and integration in emerging systems.

Across each of the domains, there have been significant techno-
logical advances in enabling cyber-physical system of systems
(SoS) to be integrated together in a holistic fashion. However,
there remain substantial challenges that must be addressed. The
first of these is the explosion of big data streams [15, 16] resulting
from large-scale data collection in the integration of systems from
smart cities, autonomous vehicles, IoT, smart manufacturing, health-
care, as well as the aerospace, defence, through to finance industries.

Secondly, the increasing intelligence and interconnectivity of
these systems into a shared environment requires a shared model
of reality [17]. This model of reality provides a set of shared
perspectives on reality that can be integrated with simulation and
decision support systems via simulation in the IoS [11]. These
perspectives can provide to the cyber-physical systems that exist
within each of the domains intelligence as a service. Necessarily
unifying the standards to integrate both the existing and future
technologies [18] will require significant research and development.

Additionally, the service economy [19] will continue to act as
the cornerstone for these developments. Specifically from a
service-oriented architecture (SOA) perspective [20, 21], the services
and micro-services may be hardware systems or devices, human
individuals, Cloud hosted software [software as a service (SaaS)],
or even simulations (SIMaaS). The aggregation or composition of
these services into workflows and subsequently, the workflows
into services will provide a scalable approach to design and
augmenting existing systems [22, 23].

Further, the trends of cloud, edge, and fog computing must be
pushed to their limits and combined into hybrid models with
extensive virtualisation to abstract away from individual cloud or
HPC providers. Developing the physical and virtual computational
and communication infrastructure will underpin each of these
areas. This includes technologies such as 5G and long-term
evolution (LTE) [24], which along with software-defined networks
will have to be advanced to improve reliability, bandwidth, and
security.

The remainder of this paper is structured as follows: in Section 2,
the motivation for cyber-physical SoSs integration and automation
is presented across a range of application domains. In Section 3,
the underlying computing infrastructure is explored from cloud
computing through to the edge and fog paradigms [25]. Section 4
discusses some of the core challenges that have yet to be
addressed as a result of the expansion of autonomous IoT systems.
In Section 4.2, the need for a shared model of reality is discussed
to augment systems with additional contextual awareness. Also,
finally, some of the security challenges are outlined in Section 4.3
before conclusion are presented in Section 5.
2 Emerging applications

The emergence of the Internet of anything and everything [14] from
IoT [26] is driving smarter and more context-aware systems and
applications. These concepts augment the technologies related to
cloud and edge computing [27] and allow computational power
to be balanced against location which has an impact on both
network latencies and security. The ubiquitous management of the
computational systems and communication networks is anticipated
to be augmenting and penetrating most cyber-physical systems that
we interact with on a daily basis within the coming decade.

One example domain is that of cooperative robotics where
advances in autonomous systems [28] are enhanced with
additional computational capability from the cloud. The resulting
emerging field of cloud robotics combines the two research fields
to provide intelligence services to robots from the cloud [29–31],
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assist in robot interaction [32, 33], and allows robots to provide
services back to the system [34, 35].

There is now a growing trend to adopt these, and related, research
concepts into society and across industry as automated intelligent
systems. This paper explores in detail the state-of-the-art and
challenges particularly related to manufacturing and infrastructure
for smart cities. The rest of this section explores more widely
the applications and domains where there is a current focus on
autonomy and connectivity which includes defence and security,
aerospace, and finance. The adoption of IoT and IoS within each
of the domains is also explored before the rest of this paper
explores the detail around infrastructure and intelligence and
ongoing research.
2.1 Smart cities

Smart cities are one of the latest trends in urban planning but as
yet do not have a unified definition in the literature [36]. The
lack of a standard definition results from the variety of cities that
are being coined as smart as well as how and why they are being
transformed [37]. The range of definitions include a focus on
computing, connectivity, data, efficiency, infrastructure, and
services [38–40]. Alternatively, they focus on the social, cultural,
and governance aspects [41, 42]. Across these broad definitions,
there are numerous ‘smart’ cities internationally.

However, as the global population continues to grow, and
continues to migrate closer to cities with in excess 50% of
the global population currently residing in cities, it is essential
to understand how a city becomes ‘smart’ and what the end or
intermediary results look like [43]. As discussed in both [43, 44],
one of the fundamental aspects of a smart city is understanding
its multidimensionality. As shown in Fig. 1, there are the
technological factors, the business or institutional aspects, the city
and human factors, and then the virtual dimension of data [44].
This can be alternatively defined as existing systems/agents (which
Fig. 1 Layers of abstraction in SOAs (business and technical), and physical citi
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includes humans) that must be refactored; the computational
infrastructure including cloud, IoT, and IoS technologies; and the
data dimension.

We consider a smart city to be cyber-physical SoS heavily reliant
on intelligent autonomy, distributed computing, IoT, and IoS such
that it brings together technology, governance, and society to
manage and monitor power and communication infrastructure, the
environment, traffic, and other aspects of the city for the benefit and
well-being of its inhabitants through ubiquitous sensing and embed-
ded intelligence, and facilitates economic growth through innovation,
connectivity, and data aggregation [17, 45]. For example, applying
robotics within a smart city may include applications for repair and
maintenance [46, 47] or driverless transportation [48] which is dis-
cussed in more detail in the next section.
2.2 Autonomous vehicles

Transportation infrastructure provides many opportunities for
intelligence and autonomy. Driverless cars and trucks being one
of the most publicly visible systems being developed; though as
yet, there is still high level of concern surrounding their adoption
[49]. To map their development, different levels of automation
are defined by how involved a human driver is in controlling
the vehicle [50]. Some of the foundational technologies providing
lower levels of autonomy already are included in advanced
driver-assistance systems, while the higher levels of automation
are still being developed [51].

For fully autonomous driving, several real-time systems must
interact to perform perception, planning, and control [52]. There
are a number of potential strategies, early approaches mapped
actions directly from sensory input, but modern approaches use
a mediated approach where the immediate environment is
reconstructed and recognised before actions are determined [53].
Hybrid approaches with minimal reconstruction have also been
developed [54].
es [44]
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The success of the autonomous driver relies heavily on correct
perception and localisation; therefore, there have been numerous
data sets provided, the most commonly used being the KITTI
benchmark [55] which focuses on motion estimation. Others have
noticed a need for localisation across a range scenarios and
conditions [56].

Autonomous drivers are often assumed to operate in isolation,
but there is growing interest in the possibility for interconnected
vehicles, an Internet of vehicles or a vehicular cloud [57]. The
interconnection of these systems has the potential to allow for
holistic traffic management and the use as a service of the data
generated by the vehicle.

This trend is not only limited to land vehicles; however, ships [58]
and aerial vehicles [59] are also being automated for similar
transportation tasks.
2.3 Power and energy efficiency

The growing need for renewable energy generation is driving a move
from the existing power grid infrastructure to more distributed
generation units known as microgrids [60, 61]. Adding intelligence
to this increasingly distributed power grid to match generation
with demand has been called the smart grid [62]. The vision
of smart grids is one where intelligent, demand-side systems
manage smart, renewable energy generation combined with energy
storage to provide smart production, management, and distribution
[63]. These applications rely on large-scale data collection and
processing [64], meaning that the communication and computing
infrastructure is a vital component in the smart grid [65] with
communication security being of particular importance [66]. Given
that the intelligence of many of these power systems depends
on large-scale computer systems, the efficiency of data centres is
a crucial component in increasing overall energy efficiency.
At present, 3% of global power is used in data centres [67],
up from 1.3% in 2010 and 0.8% in 2005 [68]. Data centre power
consumption is not only the result of computational power
consumption, the efficiency metric of data centres power usage
effectiveness (PUE) is a ratio of power consumed by IT and
non-IT equipment [69]. Cooling equipment power consumption
can be as much as 50% of total power consumption [66]. As
demand increases, improving the efficiency of data centres requires
intelligent scheduling [70], modelling of workload patterns [71],
and improvements in cooling [72]. There are also further
efficiency gains achievable by utilising the waste heat generated
by the data centre [73]. There has been increased effort to model
the power consumption of data centres [74] for prediction of PUE
and optimise the data centre [75].
2.4 Smart manufacturing and Industry 4.0

The technology of the digital revolution, sometimes regarded as
the third industrial revolution [4, 5], is now reaching a level
of maturity and pervasiveness the fourth industrial revolution
dubbed Industry 4.0 is emerging [76]. The technologies of personal
computing have grown to incorporate devices from laptops through
to smart phones, smart watches, and numerous sensors being used
throughout products and in daily life. At an industrial level, there
is almost ubiquitous use of HPC and cloud computing platforms
that provide massive degrees of computational power which can
be combined with the emerge of connected technologies such as
4G, 5G, and LTE [24].

These advances facilitate the integration of intelligent automation
into the manufacturing value chain as Industry 4.0 [76, 77]. The
adoption of IoT devices within the manufacturing process
and within customer products, known as the industrial IoT [78],
provides a data-driven system. These smart factories are able
to utilise the data and readings from the IoT devices to flexibly
adapt to changing demands in the marketplace. Within factories
themselves, the real-time data streams generated by the
interconnection of large numbers of autonomous systems allow the
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factory to gain a level of self-awareness, calculating machine
health, behaviour, and self-optimising operations [13].

Within this the fourth industrial revolution, the trend will move
from merely connecting real-time big data streams from IoT
devices within factories and products to an closed-loop ecosystem
bringing together IoT with the devices from the factories and the
products; data streams from those devices and systems; IoS with
modelling and simulation to analyse and use those data streams to
improve products and improve manufacturing processes [44].

2.5 Health and well-being

The application of autonomous systems to the domain of healthcare
is growing. The adoption of evidence-based medicine [79] and the
widespread record keeping of the medical community provides
opportunities to apply big data analytics to the field [80]. There is
also large amounts of additional health data being generated by the
marketplace of wearable health devices within IoT [81]. Security
of this online, personalised health data has become an increasing
concern [82] and the move towards blockchain record systems
[83] aims to facilitate the secure sharing of patient records.
Additionally, there has been a move to utilise robotic systems in
patient care to reduce the demand on healthcare services [84].

One such example is the work by Howard [85] which involves
physically embedding a microprocessor on human brain tissue to
monitor, decode, and then manipulate brain signals. This work has
application in researching diseases such as Alzheimer’s and
Parkinson’s. By connecting the devices, as IoT systems, to the
network signals could potentially be monitored in real time and
the huge amounts of collected data can be analysed. This could
result in identifying disease progression without the need for
observing the likes of motor and speech symptoms [86].
3 Computational infrastructure

Underpinning the applications discussed in the previous section is
the distributed computational infrastructure which includes cloud
[87, 88], edge, and fog computing. The later refers mostly to
the low power, geographically distributed devices forming the
IoT [6, 26]. This section explores each of these before hybrid
infrastructure approaches are explored in the following section.

3.1 Cloud computing

Cloud computing is focused on the provision of an on-demand
network accessible and easily configurable computing resources
[88]. It is typically defined in terms of the service layers [89],
shown in Fig. 2. The uppermost layers within a cloud computing
architecture are the service layers comprising SaaS [23], platform
as a service (PaaS), and infrastructure as a service (IaaS). The
software layer may comprise both applications, functions, and data
as services (FaaS, DaaS). The resource abstraction layer provides
the containers and virtual machines typically used to host the
service layers within the cloud. Below the various levels of
abstraction lies the underlying operating systems [90].

Beyond the service layers, there are various deployment models
[91]. The most common are public and private clouds, the latter
being dedicated to a single user or organisation. A growing trend
is that of hybrid clouds which use mixtures of the private and
public models, often to facilitate scale-up. A further trend is that
of joint or virtual clouds which creates another level of abstraction
presenting a unified perspective on cloud services from a range of
providers [92].

3.2 Edge computing

The cloud computing era provided a mechanism for computation and
data processing to be performed off-site at a low cost. However, the
centralised nature of the cloud introduces significant limitations due
to communication bandwidths and latencies that have been shown to
77n for Artificial Intelligence and
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Fig. 2 Cloud layers of abstraction for IoT and IoS [17]
be inappropriate for latency-sensitive applications such as health
monitoring or autonomous vehicles [93]. Therefore, with the
availability of smaller and cheaper but yet powerful compute
devices, the edge computing paradigm brings the processing back
closer to the devices themselves [7].

Edge computing is sometimes regarded as synonymous with
mobile cloud and cloudlets. The former focuses entirely on the use
of mobile devices which are typically low powered and location-
aware [94]. Mobile devices are therefore limited in the level of
data processing and computation that they can provide leading to
the conceptualisation of cloudlets [95]. Cloudlets are small clusters
of compute resources, typically of a high density, that are
accessible to nearby devices [96].

3.3 Fog computing

We have discussed how the cloud computing paradigm does not suit
certain domains and applications; however, the edge paradigm also
has limitations due to the level of processing required by some of
those same applications. These require the ability to connect with
and share with other system’s data in the way that a cloud would
facilitate while requiring the mobility of edge computing [97].

Therefore, we now have the emerging hybrid paradigm of fog
computing [8, 98]. In order for this paradigm to successfully
achieve integration of these systems, the reliability of every aspect
must be managed and guaranteed with a level of quality of service
[99]. The fog paradigm provides a virtual layer between data
centres and IoT devices that extends the virtual cloud paradigm
discussed previously. In doing so, it must also encapsulate specialist
compute facilities such as HPC as shown in Fig. 2. Appropriate
deployment of fog computing as hybrid unifying model across
distributed computing paradigms may provide a suitable approach
to mitigate the issues of scalability, fault-tolerance, elasticity [7],
as well as facilitating management services to detect failures [98].

3.4 Services

Services and SOAs are now a common paradigm for designing
distributed systems and addressing the growing complexity of
systems. Services can be used to easily augment existing systems
without affecting system performance by providing new or
updated services and promoting reuse of existing services. In
78 This is an open access article publis
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adding intelligence to systems, especially those interfacing with
infrastructure, it is important that the new functionality or the
upgrade not interfere with operation of the original underlying
systems.

A marketplace of services can facilitate discovery and integration
of services which can be integrated together into workflows
to perform specific functions [21]. Fig. 1 shows an example of
services in a potential smart city adapted from [44]. The figure
demonstrates the multi-dimensional nature of cyber-physical
systems:

† City infrastructure layers including utilities, transport, through
to human residents.
† Business service layers reflecting operation and management
aspects.
† Technical computing architectural layers, shown here in terms
of layers of an SOA.
† Layers of data and models of reality that provide the intelligence
and information to allow such an integrated cyber-physical system
to operate.

Further, these systems can be derived into three overlapping
groups:

(i) Existing systems which may be partially integrated together.
(ii) Computational systems including those needed for further
integration, automation, and data processing.
(iii) Data which brings them all together along with context.

In example shown the services, systems, devices, and individuals
integrate across the city and different infrastructure levels by
providing services that are readily combined with those from
pother providers.

Integrating pre-existing systems remains challenging due to lack
of compatible standards, and becomes ever harder with the need to
augment those existing systems with intelligence, autonomy, and
data collection. In Fig. 1, the existing city and compute infrastructure
is integrated, this includes both business and the conceptual layers
[21] – and additionally the Cloud computing: SaaS, PaaS, and
IaaS providing a fifth utility. One remaining challenge with SOA
is the automatic re-factoring of services to ensure continuous oper-
ation and future compatibility [100, 101].
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4 Remaining challenges

So far, this paper has explored the wide range of emerging
applications related to autonomous cyber-physical systems and
taken a detailed look at the technologies that currently underpin
these advances. There are however several challenges that have yet
to be resolved, many of which will continue to grow, that this
section explores.
4.1 Challenge: data explosion

Throughout the discussion, so far the term data explosion has been
used in conjunction with the IoT and big data trends. Big data
analytics provide techniques for the analysis and visualisation of
extremely large data sets [102]. Specifically, these data sets are too
big to store on a single machine and so must be distributed.
Already, the growth of data is exponential [103] and increasing
data collection and further cloud services will only accelerate this
further [104]. Very quickly, this could lead to a situation where we
are no longer able to process the explosion in data collection.

This challenge of data explosion refers to the fact that what we
currently define as big data is a snapshot of the scale of data that
will be communicated and processed in the near future. Firstly, the
type of data is diverse ranging from scientific data collected by
NASA through to social media interactions or the Internet itself.
Companies such as Google, Facebook, Microsoft, Alibaba, Baidu,
and Amazon are already processing terabytes of data on a daily
basis and storing several exabytes. This progression and the
generation of several exabytes of new data every day means that it
is anticipated that will be in excess of 40 zettabytes by 2020
which is beyond the scale that any existing research on big data
has ever attempted to process or analyse [9, 105–107].

This data explosion is being driven partly by the growth in IoT,
reaching between 20 and 30 billion devices by 2020 [108–110],
and the large-scale collection of data primarily for product
improvement and customer analysis. It is envisioned that this
absolute collection of data will enable machine learning techniques
to provide models and simulations as part of IoS that can support
the desired level of autonomy [15]. IoT promises ubiquitous
sensing and a network of data-driven devices, a network of things
[111], that is unprecedented today, which will then be augmented
with intelligence and analysis from IoS [11].

This rapid increase in the number of devices and quantity of data
results in a series of challenges that must be imminently addressed.
Firstly, the quantity of data is too large to be continuously stored and
must therefore be filtered. This filtering will have to occur at stages
across a physical network which would be overwhelmed by the
quantity of communication. Instead, there will have to be further
advances in stream processing to collect relevant information from
sources and discard the rest [16, 112].

Secondly, the variety of data sources and heterogeneity of data
types and formatting results in a huge multidimensional space
from which it is infeasible to manually identify meaningful features
for conventional machine learning approaches. Therefore, it is
necessary to develop techniques for the automatic identification of
features and intelligent and meaningful dimensional reduction
in order to retain the most relevant information.

Thirdly and most controversially is the challenge of understanding
and managing data privacy. With this level of data collection,
which is necessary to achieve the desired level of automation,
there are associated privacy costs. For example, in the context
of autonomous vehicles, there remains a question of what data
needs to be collected in order to facilitate full autonomy. With
autonomous vehicles, there also remains a question of liability
which requires additional data to be recorded to provide context
for adverse events. It is therefore posited that a solution must be
found that balances the freedom and privacy of individuals with
the data required by regulatory frameworks, the data required by
manufacturers, and data required by other interacting autonomous
systems [113, 114].
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4.2 Challenge: shared model of reality

Simulation and virtual engineering are already heavily utilised in
most engineering disciplines for the development of cyber-physical
systems. The increasing complexity and greater application of
cyber-physical systems has seen a growing need for integration
between simulations from different domains in order to fully
understand system level interactions and behaviours. This in turn
has led to the development of tools and standards to enable
simulation integration and co-simulation: DIS [115], HLA [116,
117], FMI [118], and FDMU [119]. The growing trend towards
online, easily integrated simulations has been called the IoS [11].

Similar to the way IoT connects devices, IoS allows the
connection of simulations. This result in the benefit of being able
to construct large co-simulations from component simulations
of parts and mitigates the difficulty of developing large-scale
monolithic simulations [18, 120]. Additionally, this allows
individual system to be developed in a more agile way, responding
faster to changes in requirements new environments [22]. The
ability to readily compose detailed simulations is of particular
importance for intelligent systems, especially if they augment
existing systems as the additions can be extensively tested as
virtual prototypes before deployment. Simulations can also be
utilised to provide training environments for artificial intelligence
(AI) [54, 121] and can also provide decision support and predictive
power (see Fig. 2). With large-scale distributed simulations, this
parallel simulation of reality can be shared across many agents
leading to a consensus of the environment and potentially a
knowledge beyond that perceivable by a single agent’s sensors.

There are trade-offs when developing simulations between level
of detail, speed of execution, and accuracy. For example, a heat
exchanger can be modelled as a series of one-dimensional (1D)
equations or a 3D computational fluid dynamics simulation.
To ensure a timely response in real-time systems, the detail and
scope of a simulation may be reduced, whereas increased detail
may be more important in systems using simulation for longer
term planning. In both cases, using simulation to assist and enable
intelligence may require large amounts of computing power.
In mobile or battery-powered systems, where power usage and
weight are a key design criteria, it may be necessary to offload
computation and utilise cloud or HPC computing for simulation.

There are a number of challenges to the implementation of IoS and
its wide use in intelligent autonomous systems. The problem
of automated simulation integration is a particular challenge
[22, 122]. Integrating an arbitrary collection of simulations
remains infeasible for a number of reasons including: differing
levels of fidelity, incompatible data types or representations,
incompatible timesteps, or solvers. Often, widespread integration
of simulations is impossible as many simulations do not scale to
the required level [123]. Another issues are that simulations are
often created from specific viewpoints and the requirements for the
desired simulation may not match with any existing simulation.
Even though there is increased interest in large-scale simulation
and there are numerous benefits in its application to autonomous
systems, there are still many open challenges and none of the
existing standards satisfy all requirements for a true IoS [124, 125].
4.3 Challenge: safety and security

Earlier in this section, the issue of data privacy was discussed
and challenges to maintaining safety and security are directly
relevant. From the perspective of security, there remains an issue
of providing practical solutions to system security without
massively degrading performance and a comprehensive review of
security within IoT is provided by Jing et al. [126].

One particular challenge with IoT and the continued increase
in the use of data centres will be to find methods to inhibit
denial-of-service attack (DDOS) attacks from IoT devices. An
example of this is the Mirai attack that gained control of devices
and loaded malware into memory [127]. Alternatively, there was
the demonstration of remote code execution on IP CCTV and
79n for Artificial Intelligence and
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DVR devices from which a DDOS attack could be launched [128].
Given the billions of IoT devices that are already connected, most of
which are relatively unsecured, there is a clear need for a concerted
effort to update existing systems to be more secure and develop new
more resilient security techniques.

One concept that is gaining traction with cloud computing, and
may be applicable to IoT, is that of performing computation on
encrypted data, using homomorphic encryption, this can provide
a significant performance improvement by removing the need to
encrypt and decrypt data in the cloud [129]. Fully homomorphic
approaches remain slow and therefore ‘somewhat’ homomorphic
encryption techniques have been developed to improve
performance, but at the cost of limiting the data values and types
that can be processed [130]. Currently, these techniques only
operate on numerical data and as such are limited to application
of searching, sorting, and other arithmetic operations where
the encryption process is order-preserving [131]. Therefore, for
such techniques to become universally applicable, they must
be improved to operate on more complex data types. Further,
since the principle requires systems to operate on encrypted data,
the intelligent systems, such as simulations (SIMaaS), must also
be adapted to be able to do so. This in itself is a major challenge
since there is normally internal state and internal parametrisation
which may or may not be encrypted. It is also anticipated that
future techniques involving IoT devices will utilise a mixture of
native hardware and software encryption but in order to do so,
there must be a clear set of security standards shared across
systems and devices.

A further concept that is attracting attention is that of quantum-key
distribution techniques [132] since they provide a mechanism to
immediately identify if an unauthorised individual is listening on
the communication. These techniques are currently limited firstly
by the distance over which they can be used, currently limited to
∼21 km [133]. By improving the detectors, the range can be
increased to nearly 100 km and can be extended further by using
repeaters. As the range and accuracy of detectors increases, these
approaches are likely to form a part in defining security standards
and protocols. In the same way, the recent adoption of blockchain
technology [134] is likely to form a major influencer of future
standards in the domains of finance and healthcare in particular
[83]. However, it is questionable whether these approaches will be
practicable for general data security. Therefore, as data processing
becomes increasingly distributed, and operates in virtual clouds,
there remains a challenge to certify the security and certain
conditions that will be maintained.

Moving on from data and communication security, there remains
the issue of guaranteeing the safety of these systems, in adherence
with standards appropriate for each domain. Current safety critical
systems are not typically connected via networks to other systems.
However, as their complexity increases and their need for
increased compute power grows, they will inevitably begin to rely
on platforms such as cloud computing which are not typically
used or designed for safety critical systems. Additionally, these
systems are no longer statically defined but evolve using machine
learning. There must therefore be mechanisms to consistently,
automatically, and repeatedly evaluate the safety of any given
system [135]. As a result, there have been recent calls for the
development of black boxes to monitor adaptive systems that have
AI [136, 137]. Alternatively, techniques such as provenance can
be adopted which use historical data analysis to evaluate the
performance of systems and alert regulators or engineers when the
performance or behaviour deviates from expectations [138].
5 Conclusion

The technologies enabling greater connectivity between devices and
more distributed computing such as cloud computing, big data, and
IoT are allowing for greater levels of intelligence and autonomy in
cyber-physical systems. These include advances in Industry 4.0,
smart cities, autonomous vehicles, and healthcare. These new
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paradigms and applications have the potential to radically change
the way society interacts with cyber-physical systems.

However, this increased level of connectivity presents a number
of challenges that must be addressed if the vision of large-scale
autonomy and intelligence is to be achieved. An increase in
connectivity and growing recognition of data as the world’s most
valuable resource will lead to a demand that may outstrip the
ability to process, store, or even transmit data in the quantities
being proposed. Automated integration and processing of data
for data reduction will be a vital technology to allow for the
large-scale data gathering being proposed.

Autonomous systems that control cyber-physical systems will
process collected data either locally in edge and fog computing
systems or in the cloud. Simulation is already being used to train
and test intelligent systems in isolation. In the future, edge and
cloud computing could operate in parallel to provide real-time
simulations to distribute cyber-physical systems. By being able
to readily integrate multiple simulations together, a high-fidelity
training environment can be provided along with accurate
prediction and ultimately, a shared model of reality in the IoS.

Additionally, there are still significant challenges in managing
the security of collected data and distributed systems. Techniques
such as homomorphic encryption and quantum-key distribution
could help with security challenges but ultimately, this is a
persistent challenge that must be continually addressed as exploits
are found. Owing to this, systems need to be designed with agility
in mind in order to be able to quickly react to changes in the
security landscape. There should also be mechanisms for initial
verification of safety protocol compliance along with mechanisms
for continual evaluation of compliance to counteract any service
performance degradation over time.
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