25 research outputs found

    A Graphical Tool and Methods for Assessing Margin Definition From Daily Image Deformations

    Get PDF
    Estimating the proper margins for the planning target volume (PTV) could be a challenging task in cases where the organ undergoes significant changes during the course of radiotherapy treatment. Developments in image-guidance and the presence of onboard imaging technologies facilitate the process of correcting setup errors. However, estimation of errors to organ motions remain an open question due to the lack of proper software tools to accompany these imaging technological advances. Therefore, we have developed a new tool for visualization and quantification of deformations from daily images. The tool allows for estimation of tumor coverage and normal tissue exposure as a function of selected margin (isotropic or anisotropic). Moreover, the software allows estimation of the optimal margin based on the probability of an organ being present at a particular location. Methods based on swarm intelligence, specifically Ant Colony Optimization (ACO) are used to provide an efficient estimate of the optimal margin extent in each direction. ACO can provide global optimal solutions in highly nonlinear problems such as margin estimation. The proposed method is demonstrated using cases from gastric lymphoma with daily TomoTherapy megavoltage CT (MVCT) contours. Preliminary results using Dice similarity index are promising and it is expected that the proposed tool will be very helpful and have significant impact for guiding future margin definition protocols

    Clustering analysis using Swarm Intelligence

    Get PDF
    This thesis is concerned with the application of the swarm intelligence methods in clustering analysis of datasets. The main objectives of the thesis are ∙ Take the advantage of a novel evolutionary algorithm, called artificial bee colony, to improve the capability of K-means in finding global optimum clusters in nonlinear partitional clustering problems. ∙ Consider partitional clustering as an optimization problem and an improved antbased algorithm, named Opposition-Based API (after the name of Pachycondyla APIcalis ants), to automatic grouping of large unlabeled datasets. ∙ Define partitional clustering as a multiobjective optimization problem. The aim is to obtain well-separated, connected, and compact clusters and for this purpose, two objective functions have been defined based on the concepts of data connectivity and cohesion. These functions are the core of an efficient multiobjective particle swarm optimization algorithm, which has been devised for and applied to automatic grouping of large unlabeled datasets. For that purpose, this thesis is divided is five main parts: ∙ The first part, including Chapter 1, aims at introducing state of the art of swarm intelligence based clustering methods. ∙ The second part, including Chapter 2, consists in clustering analysis with combination of artificial bee colony algorithm and K-means technique. ∙ The third part, including Chapter 3, consists in a presentation of clustering analysis using opposition-based API algorithm. ∙ The fourth part, including Chapter 4, consists in multiobjective clustering analysis using particle swarm optimization. ∙ Finally, the fifth part, including Chapter 5, concludes the thesis and addresses the future directions and the open issues of this research

    Clustering analysis using Swarm Intelligence

    Get PDF
    This thesis is concerned with the application of the swarm intelligence methods in clustering analysis of datasets. The main objectives of the thesis are ∙ Take the advantage of a novel evolutionary algorithm, called artificial bee colony, to improve the capability of K-means in finding global optimum clusters in nonlinear partitional clustering problems. ∙ Consider partitional clustering as an optimization problem and an improved antbased algorithm, named Opposition-Based API (after the name of Pachycondyla APIcalis ants), to automatic grouping of large unlabeled datasets. ∙ Define partitional clustering as a multiobjective optimization problem. The aim is to obtain well-separated, connected, and compact clusters and for this purpose, two objective functions have been defined based on the concepts of data connectivity and cohesion. These functions are the core of an efficient multiobjective particle swarm optimization algorithm, which has been devised for and applied to automatic grouping of large unlabeled datasets. For that purpose, this thesis is divided is five main parts: ∙ The first part, including Chapter 1, aims at introducing state of the art of swarm intelligence based clustering methods. ∙ The second part, including Chapter 2, consists in clustering analysis with combination of artificial bee colony algorithm and K-means technique. ∙ The third part, including Chapter 3, consists in a presentation of clustering analysis using opposition-based API algorithm. ∙ The fourth part, including Chapter 4, consists in multiobjective clustering analysis using particle swarm optimization. ∙ Finally, the fifth part, including Chapter 5, concludes the thesis and addresses the future directions and the open issues of this research

    Hybrid ACO and SVM algorithm for pattern classification

    Get PDF
    Ant Colony Optimization (ACO) is a metaheuristic algorithm that can be used to solve a variety of combinatorial optimization problems. A new direction for ACO is to optimize continuous and mixed (discrete and continuous) variables. Support Vector Machine (SVM) is a pattern classification approach originated from statistical approaches. However, SVM suffers two main problems which include feature subset selection and parameter tuning. Most approaches related to tuning SVM parameters discretize the continuous value of the parameters which will give a negative effect on the classification performance. This study presents four algorithms for tuning the SVM parameters and selecting feature subset which improved SVM classification accuracy with smaller size of feature subset. This is achieved by performing the SVM parameters’ tuning and feature subset selection processes simultaneously. Hybridization algorithms between ACO and SVM techniques were proposed. The first two algorithms, ACOR-SVM and IACOR-SVM, tune the SVM parameters while the second two algorithms, ACOMV-R-SVM and IACOMV-R-SVM, tune the SVM parameters and select the feature subset simultaneously. Ten benchmark datasets from University of California, Irvine, were used in the experiments to validate the performance of the proposed algorithms. Experimental results obtained from the proposed algorithms are better when compared with other approaches in terms of classification accuracy and size of the feature subset. The average classification accuracies for the ACOR-SVM, IACOR-SVM, ACOMV-R and IACOMV-R algorithms are 94.73%, 95.86%, 97.37% and 98.1% respectively. The average size of feature subset is eight for the ACOR-SVM and IACOR-SVM algorithms and four for the ACOMV-R and IACOMV-R algorithms. This study contributes to a new direction for ACO that can deal with continuous and mixed-variable ACO

    The evolution of social traits and biodiversity in the ants.

    Get PDF
    Cooperation has shaped the evolution of life on Earth. The ants are the most numerically diverse of the eusocial Hymenoptera, and display wide variation in social complexity. This positions the ants as an ideal taxon in which to study social evolution in a comparative framework. Social evolution theory has generated many hypotheses that are testable in ants, however the lack of comprehensive or complete phylogenies, and the decentralised and scattered nature of trait data, has been an obstacle to these types of study. In this thesis I construct a large species-level, and a complete genus-level, phylogeny of the ants, and draw together a large dataset of social traits from the literature in order to test hypotheses concerning the evolution of social traits in the ants. I find evidence that the earliest ant was large bodied, and lived in small highly related colonies. I show that group size is a significant trait in the evolution of sociality in ants, predicting the probability of a species having polymorphic workers, or of being polyandrous. I also show that the change in these traits is correlated between ancestral nodes on the phylogeny. Furthermore, in the Attini, colony size correlates closely with non-reproductive and reproductive division of labour. Together these results cement group size as a driving force of social evolution in the ants, and this has interesting implications for social evolution in general. Finally, I report the first evidence that intermediate colony sizes, the presence of discrete worker castes and polygyny are associated with increased diversification rates in ants. This thesis provides a valuable tool for the study of comparative hypotheses in the ants in the form of a complete genus-level phylogeny, and offers significant evidence to support several key hypotheses in social evolution. Furthermore, these results generate hypotheses regarding the evolution of social traits for future research

    A Nature inspired guidance system for unmanned autonomous vehicles employed in a search role.

    Get PDF
    Since the very earliest days of the human race, people have been studying animal behaviours. In those early times, being able to predict animal behaviour gave hunters the advantages required for success. Then, as societies began to develop this gave way, to an extent, to agriculture and early studies, much of it trial and error, enabled farmers to successfully breed and raise livestock to feed an ever growing population. Following the advent of scientific endeavour, more rigorous academic research has taken human understanding of the natural world to much greater depth. In recent years, some of this understanding has been applied to the field of computing, creating the more specialised field of natural computing. In this arena, a considerable amount of research has been undertaken to exploit the analogy between, say, searching a given problem space for an optimal solution and the natural process of foraging for food. Such analogies have led to useful solutions in areas such as numerical optimisation and communication network management, prominent examples being ant colony systems and particle swarm optimisation; however, these solutions often rely on well-defined fitness landscapes that may not always be available. One practical application of natural computing may be to create behaviours for the control of autonomous vehicles that would utilise the findings of ethological research, identifying the natural world behaviours that have evolved over millennia to surmount many of the problems that autonomous vehicles find difficult; for example, long range underwater navigation or obstacle avoidance in fast moving environments. This thesis provides an exploratory investigation into the use of natural search strategies for improving the performance of autonomous vehicles operating in a search role. It begins with a survey of related work, including recent developments in autonomous vehicles and a ground breaking study of behaviours observed within the natural world that highlights general cooperative group behaviours, search strategies and communication methods that might be useful within a wider computing context beyond optimisation, where the information may be sparse but new paradigms could be developed that capitalise on research into biological systems that have developed over millennia within the natural world. Following this, using a 2-dimensional model, novel research is reported that explores whether autonomous vehicle search can be enhanced by applying natural search behaviours for a variety of search targets. Having identified useful search behaviours for detecting targets, it then considers scenarios where detection is lost and whether natural strategies for re-detection can improve overall systemic performance in search applications. Analysis of empirical results indicate that search strategies exploiting behaviours found in nature can improve performance over random search and commonly applied systematic searches, such as grids and spirals, across a variety of relative target speeds, from static targets to twice the speed of the searching vehicles, and against various target movement types such as deterministic movement, random walks and other nature inspired movement. It was found that strategies were most successful under similar target-vehicle relationships as were identified in nature. Experiments with target occlusion also reveal that natural reacquisition strategies could improve the probability oftarget redetection

    The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems

    Get PDF
    The Travel Salesman Problem (TSP) consists in finding the minimal-length closed tour that connects the entire group of nodes of a given graph. We propose to solve such a combinatorial optimization problem with the AddACO algorithm: it is a version of the Ant Colony Optimization method that is characterized by a modified probabilistic law at the basis of the exploratory movement of the artificial insects. In particular, the ant decisional rule is here set to amount in a linear convex combination of competing behavioral stimuli and has therefore an additive form (hence the name of our algorithm), rather than the canonical multiplicative one. The AddACO intends to address two conceptual shortcomings that characterize classical ACO methods: (i) the population of artificial insects is in principle allowed to simultaneously minimize/maximize all migratory guidance cues (which is in implausible from a biological/ecological point of view) and (ii) a given edge of the graph has a null probability to be explored if at least one of the movement trait is therein equal to zero, i.e., regardless the intensity of the others (this in principle reduces the exploratory potential of the ant colony). Three possible variants of our method are then specified: the AddACO-V1, which includes pheromone trail and visibility as insect decisional variables, and the AddACO-V2 and the AddACO-V3, which in turn add random effects and inertia, respectively, to the two classical migratory stimuli. The three versions of our algorithm are tested on benchmark middle-scale TPS instances, in order to assess their performance and to find their optimal parameter setting. The best performing variant is finally applied to large-scale TSPs, compared to the naive Ant-Cycle Ant System, proposed by Dorigo and colleagues, and evaluated in terms of quality of the solutions, computational time, and convergence speed. The aim is in fact to show that the proposed transition probability, as long as its conceptual advantages, is competitive from a performance perspective, i.e., if it does not reduce the exploratory capacity of the ant population w.r.t. the canonical one (at least in the case of selected TSPs). A theoretical study of the asymptotic behavior of the AddACO is given in the appendix of the work, whose conclusive section contains some hints for further improvements of our algorithm, also in the perspective of its application to other optimization problems

    Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques

    Get PDF
    The goal of QoS-aware service composition is to generate optimal composite services that satisfy the QoS requirements defined by clients. However, when compositions contain more than one execution path (i.e., multiple path's compositions), it is difficult to generate a composite service that simultaneously optimizes all the execution paths involved in the composite service at the same time while meeting the QoS requirements. This issue brings us to the challenge of solving the QoS-aware service composition problem, so called an optimization problem. A further research challenge is the determination of the QoS characteristics that can be considered as selection criteria. In this thesis, a smart QoS-aware service composition approach is proposed. The aim is to solve the above-mentioned problems via an optimization mechanism based upon the combination between runtime path prediction method and heuristic algorithms. This mechanism is performed in two steps. First, the runtime path prediction method predicts, at runtime, and just before the actual composition, execution, the execution path that will potentially be executed. Second, both the constructive procedure (CP) and the complementary procedure (CCP) heuristic algorithms computed the optimization considering only the execution path that has been predicted by the runtime path prediction method for criteria selection, eight QoS characteristics are suggested after investigating related works on the area of web service and web service composition. Furthermore, prioritizing the selected QoS criteria is suggested in order to assist clients when choosing the right criteria. Experiments via WEKA tool and simulation prototype were conducted to evaluate the methods used. For the runtime path prediction method, the results showed that the path prediction method achieved promising prediction accuracy, and the number of paths involved in the prediction did not affect the accuracy. For the optimization mechanism, the evaluation was conducted by comparing the mechanism with relevant optimization techniques. The simulation results showed that the proposed optimization mechanism outperforms the relevant optimization techniques by (1) generating the highest overall QoS ratio solutions, (2) consuming the smallest computation time, and (3) producing the lowest percentage of constraints violated number

    A nature inspired guidance system for unmanned autonomous vehicles employed in a search role

    Get PDF
    Since the very earliest days of the human race, people have been studying animal behaviours. In those early times, being able to predict animal behaviour gave hunters the advantages required for success. Then, as societies began to develop this gave way, to an extent, to agriculture and early studies, much of it trial and error, enabled farmers to successfully breed and raise livestock to feed an ever growing population. Following the advent of scientific endeavour, more rigorous academic research has taken human understanding of the natural world to much greater depth. In recent years, some of this understanding has been applied to the field of computing, creating the more specialised field of natural computing. In this arena, a considerable amount of research has been undertaken to exploit the analogy between, say, searching a given problem space for an optimal solution and the natural process of foraging for food. Such analogies have led to useful solutions in areas such as numerical optimisation and communication network management, prominent examples being ant colony systems and particle swarm optimisation; however, these solutions often rely on well-defined fitness landscapes that may not always be available. One practical application of natural computing may be to create behaviours for the control of autonomous vehicles that would utilise the findings of ethological research, identifying the natural world behaviours that have evolved over millennia to surmount many of the problems that autonomous vehicles find difficult; for example, long range underwater navigation or obstacle avoidance in fast moving environments. This thesis provides an exploratory investigation into the use of natural search strategies for improving the performance of autonomous vehicles operating in a search role. It begins with a survey of related work, including recent developments in autonomous vehicles and a ground breaking study of behaviours observed within the natural world that highlights general cooperative group behaviours, search strategies and communication methods that might be useful within a wider computing context beyond optimisation, where the information may be sparse but new paradigms could be developed that capitalise on research into biological systems that have developed over millennia within the natural world. Following this, using a 2-dimensional model, novel research is reported that explores whether autonomous vehicle search can be enhanced by applying natural search behaviours for a variety of search targets. Having identified useful search behaviours for detecting targets, it then considers scenarios where detection is lost and whether natural strategies for re-detection can improve overall systemic performance in search applications. Analysis of empirical results indicate that search strategies exploiting behaviours found in nature can improve performance over random search and commonly applied systematic searches, such as grids and spirals, across a variety of relative target speeds, from static targets to twice the speed of the searching vehicles, and against various target movement types such as deterministic movement, random walks and other nature inspired movement. It was found that strategies were most successful under similar target-vehicle relationships as were identified in nature. Experiments with target occlusion also reveal that natural reacquisition strategies could improve the probability oftarget redetection.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore