
Ph.D. in Electronic and Computer Engineering

Dept. of Electrical and Electronic Engineering

University of Cagliari

Clustering Analysis using Swarm

Intelligence

Settore/i scientifico disciplinari di afferenza: ING-INF/05

Mohammad Reza Farmani

Coordinator : Fabio Roli

Tutor : Giuliano Armano

XXVIII Cycle

Esame finale anno accademico 2014-2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UniCA Eprints

https://core.ac.uk/display/35316221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ph.D. in Electronic and Computer Engineering

Dept. of Electrical and Electronic Engineering

University of Cagliari

Clustering Analysis using Swarm

Intelligence

Settore/i scientifico disciplinari di afferenza: ING-INF/05

Mohammad Reza Farmani

Coordinator : Fabio Roli

Tutor : Giuliano Armano

XXVIII Cycle

Esame finale anno accademico 2014-2015

I dedicate this dissertation to my lovely parents

Acknowledgements

This dissertation would not have been possible without the help of several people

who, in one way or another, have extended their valuable assistance in completion of

my studies.

First of all, I would like to express my sincere thanks to my supervisor, Prof.

Giuliano Armano, for giving me the opportunity to be a part of his research group. I

am especially thankful for his continuous support of my study and research, and also

for his patience, motivation, enthusiasm, and immense knowledge.

I would like to give a great thank my friends who have supported me through-

out the process. My friends in IASC group: Alessandro Giuliani, Andrea Manconi,

Emanuele Tamponi, Amir Mohammad Amiri, Maria Giovanna, Matteo Baire, and

Emanuele Manca. I will never forget the wonderful environment that we had from

the very early days.

Last but not least, I thank to my close friends Simone Porru, Mansour Ahmadi,

Mehran Zareh, Farideh Tavazoee, Matteo Orru, and Bahram Lavi. I need to thank

so many other friends that for lack of space I cannot list here.

7

Abstract

This thesis is concerned with the application of the swarm intelligence methods in
clustering analysis of datasets. The main objectives of the thesis are

∙ Take the advantage of a novel evolutionary algorithm, called artificial bee colony,
to improve the capability of K-means in finding global optimum clusters in
nonlinear partitional clustering problems.

∙ Consider partitional clustering as an optimization problem and an improved ant-
based algorithm, named Opposition-Based API (after the name of Pachycondyla
APIcalis ants), to automatic grouping of large unlabeled datasets.

∙ Define partitional clustering as a multiobjective optimization problem. The
aim is to obtain well-separated, connected, and compact clusters and for this
purpose, two objective functions have been defined based on the concepts of
data connectivity and cohesion. These functions are the core of an efficient
multiobjective particle swarm optimization algorithm, which has been devised
for and applied to automatic grouping of large unlabeled datasets.

For that purpose, this thesis is divided is five main parts:

∙ The first part, including Chapter 1, aims at introducing state of the art of swarm
intelligence based clustering methods.

∙ The second part, including Chapter 2, consists in clustering analysis with com-
bination of artificial bee colony algorithm and K-means technique.

∙ The third part, including Chapter 3, consists in a presentation of clustering
analysis using opposition-based API algorithm.

∙ The fourth part, including Chapter 4, consists in multiobjective clustering anal-
ysis using particle swarm optimization.

∙ Finally, the fifth part, including Chapter 5, concludes the thesis and addresses
the future directions and the open issues of this research.

8

Contents

1 Introduction and structure of the thesis 13

1.1 Clustering and Swarm Intelligence . 13

1.2 Organization of the Dissertation . 20

2 Clustering Analysis with Combination of Artificial Bee Colony

Algorithm and K-means Technique 23

2.1 Introduction . 23

2.2 K-means Clustering Algorithm . 24

2.3 Artificial Bee Colony Algorithm . 25

2.4 Combination of ABC and K-means . 27

2.5 Experimental Results and Discussion 29

3 Clustering Analysis using Opposition-Based API Algorithm 33

3.1 Introduction . 33

3.2 Clustering Problem . 35

3.3 API Algorithm . 37

3.4 Opposition-Based API Algorithm . 39

3.5 Clustering Formulation and Fitness Functions 40

3.6 Experimental Results and Discussion 42

4 Multiobjective Clustering Analysis using Particle Swarm

Optimization 53

4.1 Clustering Problem . 54

9

4.2 Multiobjective Clustering with Particle Swarm Optimization 56

4.3 Experimental Results and Discussion 67

5 Conclusions and open issues 75

Bibliography 76

10

List of Figures

3-1 Search space of the API algorithm. 𝑠1, 𝑠2, and 𝑠3 are sites randomly

generated around nest 𝑁 and their maximum distance from the nest

being given by 𝐴𝑠𝑖𝑡𝑒. The small squares denote local exploration of site

𝑠2 (points situated at a maximum distance of 𝐴𝑙𝑜𝑐𝑎𝑙 from the site

center 𝑠2). 38

3-2 Active thresholds and their corresponding cluster centroids in vector 𝑖

(the white and grey centroids are active and inactive, respectively). . . 41

4-1 Example dataset for the NC algorithm. CC1, BC1, PC1, and CS1

include the core neighbors, density connected neighbors, extended

neighbors, and final neighbors of point 1, respectively. 57

4-2 The locus-based adjacency method used to transform nine data points

to a particle vector which represents a clustering solution consisting of

three clusters. 63

4-3 Three particles of the multiobjective clustering problem based on

connectivity, 𝑓1, and cohesion, 𝑓2, as the objective functions. Particle 1

and particle 2 dominate particle 3 and can be selected as the

candidate clustering (pareto) solutions considering the trade-off

between two objective functions (𝑓1 should be maximized and 𝑓2

should be minimized). 65

4-4 Distance technique to find final solution as the closest solution in the

pareto set to the utopia location. 67

4-5 Exmple of 2-dimensional datasets with different shapes of clusters. . . 69

11

12

1

Introduction and structure of the

thesis

1.1 Clustering and Swarm Intelligence

Research investigations in different organizations have recently shown that huge amount

of data are being stored and collected in databases and this large amount of stored

data continues to grow fast. The main reasons of the dramatical increment in this

data volume can be listed as explosive growth in the generation of electronic in-

formation, rapid advancement in computer network, improvement in computer per-

formance, and technology advances in data acquisition. Valuable knowledge which is

hidden in this large amount of stored data should be revealed to improve the decision-

making process in organizations. Therefore, a field called knowledge discovery and

data mining in databases has been emerged due to such large databases Han et al.

(2011). Extracting or mining knowledge from large amounts of data is referred by

data mining approaches. These methodologies apply data analysis techniques to dis-

cover previously unknown, valid patterns and relationships in large datasets. Data

mining analysis includes a number of technical approaches such as classification, data

summarization, finding dependency networks, clustering, regression, and detecting

anomalies. The process of grouping data into classes or clusters such that the data in

each cluster share a high degree of similarity while being very dissimilar to data from

13

other clusters is called data clustering. Attribute values which describe the objects

are used for assessing the dissimilarities among clusters. Different areas such as data

mining, machine learning, biology, and statistics include the roots of data clustering.

Generally speaking, hierarchical and partitional clustering are the two main cate-

gories of clustering methods Kao et al. (2008); Alsabti et al. (1997); Nguyen and Cios

(2008); Niknam et al. (2008a,b, 2009); Chahine (2012); Fathian et al. (2007); Krishna

and Murty (1999); Maulik and Bandyopadhyay (2000); Shelokar et al. (2004). Each

category contains various algorithms for finding the clusters. Hierarchical cluster-

ing results in a tree which presents a sequence of clustering while each cluster is a

group of dataset Leung et al. (2000). However hierarchical clustering algorithms do

not need the number of clusters and are independent from the initial conditions, but

they are static. That means data points that belong to a cluster cannot be assigned

to other clusters in the process of clustering. Moreover, due to lack of information

about the global shape or size of the clusters, these algorithms may not be successful

to separate overlapping clusters Jain et al. (1999). On the other hand, partitional

clustering decomposes a dataset into a set of disjoint clusters. Many partitional clus-

tering algorithms try to minimize some measure of dissimilarity in the samples within

each cluster while maximizing the dissimilarity of different clusters. The drawbacks of

hierarchical algorithms can be considered as the advantages of partitional algorithms,

and vice versa Frigui and Krishnapuram (1999).

Swarm Intelligence (SI) is an innovative artificial intelligence category inspired

by intelligent behaviors of insect or animal groups in nature, such as ant colonies,

bird flocks, bee colonies, bacterial swarms, and so on. Over the recent years, the SI

methods like ant-based clustering algorithms were successful dealing with clustering

problems. So, the research community has given them special attention recently. This

attention is mainly because ant-based approaches are particularly proper to perform

exploratory analysis, and also because there is still a lot of investigation to perform

on this field. Different features such as the performance and convergence capability,

stability, robustness, etc allow us to apply these methods in real world applications.

Application of the SI methods in partitional clustering has been investigated by re-

14

searchers all over the globe Bandyopadhyay and Maulik (2002); Das et al. (2008);

Selim and Alsultan (1991); Omran et al. (2005). Kao et al. have introduced a hybrid

method based on combining k-means, Nelder-Mead simplex, and Particle Swarm Op-

timization (PSO) for cluster analysis Kao et al. (2008). A hybrid algorithm according

to the combination of Genetic Algorithm (GA), k-means, and logarithmic regression

expectation maximization has been presented by Cao et al.Nguyen and Cios (2008).

Zalik has proposed the performance of correct clustering without pre-assigning the ex-

act number of clusters within k-means Alsabti et al. (1997). Krishna and Murty have

shown an approach called genetic k-means algorithm for clustering analysis Krishna

and Murty (1999). A GA based method, which contains a basic mutation operator

specific to clustering called distance-based mutation, has been introduced by Mualik

Maulik and Bandyopadhyay (2000). This method is used to solve the clustering prob-

lem on real life datasets to evaluate the performance. An algorithm named HBMO

has been proposed by Fathian et al. to solve clustering problems Fathian et al. (2007).

A GA that exchanges neighboring centers for k-means clustering has demonstrated

by Laszlo and Mukherjee Chahine (2012). Shelokar et al. have introduced an evolu-

tionary algorithm based on Ant Colony Optimization (ACO) for clustering problems

Shelokar et al. (2004). A combination of two evolutionary algorithms, ACO and

Simulated Annealing (SA), has been proposed by Niknam et al. to solve clustering

problems in Niknam et al. (2008a,b). They also have presented a hybrid evolutionary

algorithm based on PSO and SA to find optimal cluster centers Niknam et al. (2009).

The Artificial Bee Colony (ABC) algorithm is developed through simulation of

intelligent foraging behavior of honey bees, and has been found to be robust in solving

continuous nonlinear optimization problems. Since the ABC algorithm is simple in

concept, easy to implement, and has fewer control parameters, it has attracted the

attention of researchers and been widely used in solving many numerical optimization

Karaboga and Basturk (2007a,b) and engineering optimization problems Baykasoglu

et al. (2007); Tasgetiren et al. (2011). As mentioned earlier, the main drawback of

the k-means algorithm is that the result is sensitive to the selection of the initial

cluster cancroids and may converge to the local optima Selim and Ismail (1984).

15

Therefore, the initial selection of the k-means cancroids affects the main processing

of the k-means and the partition result of the dataset as well. In the current study,

the ABC algorithm is utilized to find the optimal initial cluster cancroids for the

k-means algorithm. Contrary to the localized searching of the k-means algorithm,

the ABC performs a globalized search in the entire solution space.

Ants have an incredible optimizing capacity due to their ability to communicate

indirectly by means of pheromone deposits Bonabeau et al. (1999); Dorigo et al. (1999,

2006). In the most research works, clustering analysis is considered as an optimization

problem and solved by using the different types of ACO and ant-based algorithms.

The idea is to make a group of ants to explore the search space of the optimization

problems and find the best candidates of solutions. These candidates create clusters

of the datasets and are selected according to a fitness function, which evaluate their

quality with respect to the optimization problem. The API algorithm is inspired by

a model of the foraging behavior of a population of primitive ants named P. apicalis

(after apicalis in Pachycondyla apicalis) Monmarché et al. (2000). It is demonstrated

in Monmarché et al. (2000); Ciornei and Kyriakides (2012); Aupetit et al. (2005)

that API can be applied to continuous optimization problems and achieved robust

performance for all the test problems. In order to improve the convergence of the

ant-based clustering algorithm, a combination of the popular k-means algorithm and

the stochastic and exploratory behavior of clustering ants is proposed in Monmarché

et al. (1999a). This method, called AntClass algorithm, is mainly based on work of

Lumer and Faieta Lumer and Faieta (1994). An ant system and ACO, which is based

on the parameterized probabilistic model of the pheromone, is presented by Dorigo

Dorigo et al. (1999).Monmarche et al. applies explorative and stochastic principles

from the ACO meta-heuristic combined with deterministic and heuristic principles of

k-means Monmarché et al. (1999b) . A novel strategy called ACLUSTER is devel-

oped in Ramos and Merelo (2004) to deal with unsupervised clustering as well as data

retrieval problems. This algorithm was applied to textual document clustering and

the authors proposed the use of bio-inspired spatial transition probabilities to avoid

exploring non-interesting regions. Laborche et al. proposed a clustering algorithm,

16

called ANTCLUST Labroche et al. (2002). This algorithm is based on a modeling

of the chemical recognition system of ants which allows a colonial odor construction

used for determining the ants’ nest membership. In this way, ants can discriminate

between nest mates and intruders. A hybridization of the classical Fuzzy C-Means

(FCM) algorithm with the ant systems is presented in Kanade and Hall (2003) to

determine the number of clusters in a given dataset automatically. In this algorithm,

the ant-based clustering is firstly refined using the FCM algorithm. Handl et al. argue

that although many of the ant-based clustering algorithms have resulted promisingly

so far, there is a lack of knowledge about the actual performance of many of them

Handl et al. (2003). In their method, they applied the agglomerative hierarchical

clustering algorithm to the positions of the data items on the grid to overcome those

limitations. It is also shown that the developed method performs well comparing

with the other algorithms such as k-means and agglomerative average link Handl

and Meyer (2002). Two other ant-based clustering algorithms, named Ant-Clust and

AntTree, are presented in Labroche et al. (2003); Azzag et al. (2003), respectively. In

Ant-Clust, the ants proceed according to chemical properties and odors to recognize

themselves as similar or not. Both algorithms are applied to unsupervised learning

problems. Tsai et al. proposed a novel clustering algorithm called ACO with Differ-

ent Favor (ACODF) Tsai et al. (2004). This algorithm applies a direct adaptation

of the ACO for solving clustering problems. It is shown that ACODF performs bet-

ter than some other combined meta-heuristic methods such as genetic k-means. An

ACO methodology is described for optimally clustering N objects into K clusters in

Shelokar et al. (2004). The proposed algorithm is tested on several simulated and real

datasets and the obtained results show its effectiveness in terms of quality comparing

to other heuristic methods. Hartmann added a neural network to each ant in his

proposed algorithm which enables the ants to take the objects of their vicinity as

input, and return the move action, the pick up or drop action, as outputs Hartmann

(2005). In this way, the ants are trained to make annular clusters while one cluster

would be encircling another. An approach called AntPart is introduced in Admane

et al. (2006) to solve exclusive unsupervised classification problems. A particular

17

species of ants called Pachycondyla Apicalis is modeled to develop the model and

its performance are compared with other methods such as AntClass, AntTree, and

AntClust. To avoid the search of optimal clusters being trapped in local optimums,

Huang et al. proposed a method named Chaotic Ant Clustering Algorithm (CACAS)

Huang et al. (2007). In this method, chaotic perturbation is used to enables the ant

to escape from local optimas. An advanced clustering algorithm called ant colony

ISODATA is proposed in for applying in real time computer simulation Wang et al.

(2007). An efficient and fast algorithm is proposed by Tao et al. Tao et al. (2007).

This method is applied in aggregation analysis and obtained very promising experi-

mental results. Boryczka used a modified version of the short-term memory Boryczka

(2008), introduced in Lumer and Faieta (1994), and improved its convergence. This

modified clustering algorithm is called ACA and applied in a knowledge discovery

context. A new algorithm for clustering datasets is proposed in Ghosh et al. (2008)

which is mainly based on the ants’ aggregation pheromone property. This method is

used to form homogeneous groups of data. A new clustering strategy is proposed in

Sadeghi et al. (2008) which used artificial ants trying to do clustering by inserting and

removing operations. In this work, clustering is performed with the aim of groups of

ants which are as many as the number of clusters. It is shown that the algorithm out-

performs k-means and an another ant clustering approach. Ant clustering algorithm

is also used in Chen and Mo (2009) to improve k-means and optimize the rule of ant

clustering algorithm. Weili introduced an algorithm named Improved Entropy-based

Ant Clustering (IEAC) Weili (2009). In this algorithm, the information entropy is

utilized to model behaviors of agents. The entropy function resulted in better quality

in the obtained clusters.

Similar to other SI methods, PSO is based on a phenomenon occurring in nature

–the social behavior of bird flocking or fish schooling Poli et al. (2007). Two PSO-

based clustering methods are proposed in Rana et al. (2011). In the first, PSO is used

to find the centroid of a user specified number of clusters. In the second, K-means

is used to extend the algorithm to seed the initial swarm. It is shown that this algo-

rithm has better convergence accuracy, compared to the classical version of K-means.

18

Ghali et al. propose a clustering method called exponential particle swarm optimiza-

tion (EPSO) Ghali et al. (2009). Instead of using a linear inertia weight, exponential

inertia weight is applied in EPSO and they show that EPSO has better performance

in data clustering than PSO in terms of quantization error and accuracy. A dynamic

PSO based clustering algorithm (DCPSO) is proposed in Omran et al. (2006) for tack-

ling color image segmentation. Binary PSO is used in this algorithm to automatically

determine the optimum number of clusters and simultaneously cluster the dataset.

A dynamic binary PSO-based multiobjective clustering approach (DCBMPSO) is

proposed in Latiff et al. (2008) to determine the number of clusters in the wireless

sensor network problem. DCBMPSO finds the optimal number of clusters in the

network and minimizes the total network energy dissipation simultaneously. In this

method, two clustering metrics named total network energy consumption and intra-

cluster distance are defined to select the best set of network cluster heads. Janson

et al. Janson and Merkle (2005) introduce ClustMPSO as a multiobjective PSO-

based clustering algorithm and apply it to predict the three dimensional structure in

a molecule docking problem. In their algorithm, all particles are divided into several

subswarms and new strategies are proposed for updating the personal and global best

particles. It is presented that ClustMPSO outperforms another well-known cluster-

ing method dealing with the docking problem. A multiobjective PSO and simulated

annealing clustering algorithm (MOPSOSA) is proposed in Abubaker et al. (2015).

This method simultaneously optimizes three different objective functions as the clus-

ter validity indices to find the proper values of the number of clusters and cluster of

the datasets. Euclidean, point symmetry, and short distances are considered as the

validity indices in MOPSOSA. The method obtains more promising results in com-

parison with some other conventional clustering algorithms. Several other PSO-based

clustering algorithms are introduced in the clustering literature so far and for a com-

prehensive review about PSO-based clustering one can refer to Sarkar et al. (2013).

However, they mostly consider a single function as the objective of the clustering

problem and the recent works which use the term ’multiobjective’ do not apply the

concept of pareto optimal solutions Kasprzak and Lewis (2001).

19

1.2 Organization of the Dissertation

The dissertation is organized as follows:

In Chapter 2, the ABC algorithm, one of the new SI methods, is used to find

the optimal initial cluster cancroids for the K-means algorithm. Contrary to the lo-

calized searching of the K-means algorithm, the ABC performs a globalized search

in the entire solution space. The proposed algorithm, named ABCk, has developed

a combined algorithm for solving the clustering problem. The algorithm has been

implemented and tested on several well known real datasets and preliminary compu-

tational experience showed very encouraging results.

In Chapter 3, partitional clustering is considered as an optimization problem

and an improved ant-based algorithm, named Opposition-Based API, is applied to

automatic grouping of large unlabeled datasets. The proposed algorithm employs

Opposition-Based Learning (OBL) for ants’ hunting sites generation phase in API.

Experimental results are compared with the classical API clustering algorithm and

three other recently evolutionary-based clustering techniques.

Chapter 4 is confined to the application of particle swarm optimization (PSO)

algorithm to clustering. Similar to other swarm intelligence methods, PSO is based

on a phenomenon occurring in nature - the social behavior of bird flocking or fish

schooling. Several PSO-based clustering algorithms are introduced in the clustering

literature so far and for a comprehensive review about PSO-based clustering. How-

ever, they mostly consider a single function as the objective of the clustering problem

and the recent works which use the term âĂŹmultiobjectiveâĂŹ do not apply the

concept of pareto optimal solutions. We introduced a multiobjective clustering par-

ticle swarm optimization (MCPSO) framework to obtain well-separated, connected,

and compact clusters in any unlabeled datasets with different dimensions and clus-

ter characteristics. MCPSO also aims to determine the optimal number of clusters,

automatically. To achieve this objectives, two contradictory objective functions are

defined based on the concepts of connectivity and cohesion and MCPSO is used to

find a set of non-dominated clustering solutions as a pareto front. Finally, we utilize

20

a simple decision maker to select the best solution along the obtained pareto solu-

tions. A comprehensive comparison of the results of MCPSO with four conventional

clustering approaches is investigated.

Chapter 5 summarizes the contributions and explains the open issues.

21

22

2

Clustering Analysis with

Combination of Artificial Bee Colony

Algorithm and K-means Technique

Among different proposed clustering methods, K-means clustering algorithm is an

efficient clustering technique to cluster datasets, but this method highly depends

on the initial state and usually converges to local optimum solution. This chapter

takes the advantage of a novel evolutionary algorithm, called artificial bee colony, to

improve the capability of K-means in finding global optimum clusters in nonlinear

partitional clustering problems. Artificial bee colony algorithm is inspired by the in-

telligent foraging behavior of honey bees. The performance of the proposed algorithm

is evaluated through several benchmark datasets. The simulation results show that

the combination of artificial bee colony algorithm and K-means technique improves

the performance K-means to find global optimums.

2.1 Introduction

In this chapter, a partitional clustering method is considered. One of the most popular

partitional clustering methods, which is developed about three decades ago, is k-

means algorithm. This algorithm is defined over continuous data and used in variety

23

of domains. However, as k-means needs initial partitions to start its process, better

results are given only when the initial partitions are close to the final solution. In other

words, the results of this technique highly depend on the initial sate and converge to

local optimal solution. The remainder of this paper is organized as follows: Section

2.2 provides a general overview of the K-means. In section 2.3, the ABC algorithm

is introduced. The combination of ABC and K-means for clustering problems is

described in section 2.4. Section 2.5 provides the experimental results for comparing

the performance of the proposed method with the simple K-means algorithm. The

discussion of the experiments’ results is also presented in this section. The conclusion

is in section 2.6.

2.2 K-means Clustering Algorithm

The K-means is a simple algorithm which is proposed based on the firm foundation

of analysis of variances. In this method, a group of data vectors will be clustered

into a predefined number of clusters. The K-means starts with randomly initial

cluster centroids and keeps reassigning the data objects in the dataset to cluster

centroids based on the similarity between the data objects and the cluster centroids.

The reassignment procedure will stops when a convergence criterion, such as the

fixed iteration number, or no change in the cluster results after a certain number of

iteration, is met. The K-means clustering process is described in the four following

steps:

1- Create K cluster centroid vectors randomly to set an initial dataset partition.

2- Assign each document vector to the closest cluster centroids.

3- Recalculate the cluster centroid 𝐶𝑗 by:

𝐶𝑗 =
1

𝑛

∑︁
∀𝑑𝑗∈𝑆𝑗

𝑑𝑗 (2.1)

where 𝑑𝑗 denotes the document vectors that belong to cluster 𝑆𝑗; 𝐶𝑗 stand for the

centroid vector; 𝑛𝑗 is the number of document vectors that belong to cluster 𝑆𝑗.

24

4- Repeat step 2 and 3 until the convergence is achieved.

As the K-means’ performance significantly depends on the selection of the initial

cluster centroids, the algorithm may finally converge to the local optima. Therefore,

the processing of the K-means is to search the local optimal solution in the vicinity

of the initial solution and to refine partition result. The same initial cluster centroids

in a dataset will always generate the same cluster results. However, if good initial

clustering centroids can be obtained using any other techniques, the K-means would

work well in refining the clustering centroids to find the optimal clustering centers.

2.3 Artificial Bee Colony Algorithm

Karaboga recently proposed a swarm intelligence algorithm inspired by the foraging

behaviors of bee colonies Karaboga and Basturk (2007a). This algorithm then further

developed by Karaboga, Baturk, and Akay et al. Karaboga and Basturk (2007b,b,

2008); Karaboga and Akay (2009). The Artificial Bee Colony (ABC) algorithm simu-

lates the search space as the foraging environment and each point in the search space

corresponds to a food source (solution) that the artificial bees could exploit. The

fitness of the solution is represented as the nectar amount of a food source. In this

algorithm, three kinds of bees exist in a bee colony: employed bees, onlooker bees,

and scout bees. Employed bees exploit the specific food sources they have explored

before and give the quality information of the food sources to the onlooker bees.

Information about the food sources is received by onlooker bees, and then, a food

source to exploit depending on the information of nectar quality will be chosen by

them. The more nectar the food source contains, the larger probability the onlooker

bees will choose it. A parameter, called ”limit” controls the employed bees whose

food should be abandoned. These food sources will become scout bees who search

the whole environment randomly. In the ABC algorithm, half of the colony comprises

of employed bees and the other half includes the onlooker bees. Each food source is

exploited by only one employed bee. That is, the number of the employed bees or

the onlooker bees is equal to the number of food sources. The details of the ABC

25

algorithm description are given below:

1- Initialization phase: All the vectors of the population of food sources 𝑥𝑖,𝑗 are

initialized by scout bees and control parameters are set. Where 𝑖 = 1, 2, ..., 𝑆𝑁 ,

𝑗 = 1, 2, ..., 𝐷. 𝑆𝑁 is the number of food sources and equals to half of the colony

size. 𝐷 is the dimension of the problem, representing the number of parameters to

be optimized. The following equation might be used for initialization purposes:

𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑(0, 1)(𝑢𝑗 − 𝑙𝑗) (2.2)

𝑙𝑗 and 𝑢𝑗 are lower and upper bounds of the 𝑗th parameter. In this phase, the fitness

of food sources (objective function values) will be evaluated and additional counters

which store the numbers of trails of each bee are set to 0.

2- Employed bees phase: Employed bees search for new food sources having more

nectar (better fitness value) within the neighborhood of the food sources 𝑥𝑖,𝑗 in their

memory. After finding a neighbor food source, they evaluate its fitness. Following

equation is used to determine a neighbor food source 𝑣𝑖,𝑗:

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜑(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) (2.3)

Where 𝑘 is a randomly selected food source different from 𝑖, and 𝑗 is a randomly

selected dimension. 𝜑 is a random number which uniformly distributed in range [-

1,1]. As it can be seen, the new food source 𝑣 determined by changing one dimension

on 𝑥. If the new value in this dimension produced by this operation exceed its

predetermined boundaries, it will set to be the boundaries. Then, the new food

source is evaluated and a greedy selection is applied on the original food source and

the new one. The better one will be kept in the memory. The trials counter of this

food will be reset to zero if the food source is improved, otherwise, its value will be

incremented by one.

3- Onlooker bees phase: Onlooker bees waiting in the hive receive the food source

information from employed bees and then probabilistically choose their food sources

depending on this information. By using the fitness values provided by employed bees,

26

the probability values of food sources will be calculated. An onlooker bee chooses a

food source depending on its probability value. That is to say, there may be more

than one onlooker bee choosing a same food source if that food source has a higher

fitness. The probability is calculated according to:

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖∑︀𝑆𝑁
𝑗=1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗

(2.4)

After food sources have been probabilistically chosen for onlooker bees, each onlooker

bee finds a new food source in its neighborhood using equation 2.3. Fitness values

of these new food sources will be computed and, as in the employed bees phase, a

greedy selection is applied between vi and xi. In other words, more onlooker bees will

be recruited to richer food sources.

4- Scout bees phase: In this phase, if the value of trials counter of a food source

is greater than "limit" parameter, the food source will be abandoned and the bee

becomes a scout bee. According to equation 2.2, as in the initialization phase, a new

food source will be produced randomly in the search space for each scout bee. And

the trials counter of the bee will be reset to zero.

The tree employed, onlooker, and scout bees’ phases will repeated until the ter-

mination criterion is met and best food source which shows the best optimal value

will be selected as the final solution.

2.4 Combination of ABC and K-means

The K-means algorithm is a fast method due to its simple and small number of

iterations. But the dependency of the algorithm on the initialization of centroids has

been a major problem, and it usually gets stuck in local optimal. On the other hand,

the ABC algorithm performs a global search in the entire solution space. If given time

enough, the ABC can generate good and global results. A new combined algorithm

is proposed here to use the merits of two algorithms. The new algorithm does not

depend on the initial centroids and can avoid being trapped in a local optimal solution

27

to some extent as well.

In the proposed algorithm, each food source in the search environment represents

a set of cluster centroids, that is, a food source represents one possible solution for

clustering, and the position 𝑥𝑖 is constructed as:

𝑥𝑖 = (𝐶𝑖1, 𝐶𝑖2,, 𝐶𝑖𝐾) (2.5)

Where 𝐾 is the number of clusters, 𝐶𝑖𝑗 is the 𝑗th cluster center vector of the 𝑖th food

source. The procedure for the proposed algorithm can be summarized as follows:

Setp 1: Initialize the positions of food sources (a group of centroids) randomly and

use the K-means algorithm to finish clustering task for all produced positions and

compute the fitness value of each group of centroids.

Setp 2: Search for new food sources and update the place of food sources by employed

bees. Apply the K-means algorithm and a greedy selection to evaluate new fitness

values and compare them with the original ones. Better food sources will be delivered

to onlooker bees.

Step 3: Calculate probability values of food sources and update their place accord-

ing to the probability values by onlooker bees. Again, the K-means algorithm and a

greedy selection will be applied to finish clustering, evaluate new fitness values and

compare them with the original ones to update them.

Step 4: Check the trial counter of food sources and produce a new food source (set

of centroids) in the search space for which exceed the "limit" parameter amount. To

measure the overall clustering quality of each food source, a clustering criterion func-

tion should be defined. In this work, a simple Sum-of-Squares-Error (SSE) criterion is

used as the clustering criterion function. SSE is the total sum of the squared distance

between all samples and their cluster centers. The SSE criterion function for a group

of clusters is given by:

𝐸 =
𝐾∑︁
𝑗=1

∑︁
𝑧𝑗∈𝐶𝑗

‖ 𝑧𝑗 − 𝐶𝑗 ‖2 (2.6)

Where 𝑧𝑗 represents all patterns in cluster 𝐶𝑗. The goal in SSE clustering is to obtain

28

a partitioning of the data set, such that 𝐸 is minimized. SSE criterion is valid for

cluster sample dense as well as the small differences in the number of various clustering

samples. However, if the shape and size of the cluster varies greatly, SSE rule may

cause error clustering. In the proposed algorithm, SSE is used to calculate fitness of

each food source.

2.5 Experimental Results and Discussion

The experimental results comparing the ABC+k-means with K-means algorithm are

provided for three real-life datasets (Iris, Wine, and Contraceptive Method Choice

(CMC)) which are described as follows:

Iris data (n = 150, d = 4, K = 3). These data with 150 random samples of flowers

from the iris species setosa, versicolor, and virginica used by Fisher Fisher (1936).

From each species there are 50 observations for sepal length, sepal width, petal length,

and petal width in cm.

Wine data (n = 178, d = 13, K = 3). These data are the results of a chemical analysis

of wines grown in the same region in Italy but derived from three different cultivars

Forina et al. (1991). The analysis determined the quantities of 13 constituents found

in each of the three types of wines. There are 178 instances with 13 numeric attributes

in wine data set. All attributes are continuous and there is no missing attributes.

Contraceptive Method Choice (CMC) data (n = 1473, d = 10, K = 3). These data

are a subset of the 1987 National Indonesia Contraceptive Prevalence Survey Lim

et al. (2000). The samples are married women who were either not pregnant or do

not know if they were at the time of interview. The problem is to predict the current

contraceptive method choice (no use, long-term methods, or short-term methods) of

a woman based on her demographic and socioeconomic characteristics.

In this study, in the ABC algorithm, 10, 100, and 20 are determined as colony size,

”limit” parameter, and number of iteration, respectively. The comparison of results

for each dataset based on the best solution found in 100 distinct runs of each algo-

rithm and the convergence processing time taken into attain the best solution. The

29

algorithms are implemented by using Matlab R2012b on a Intel Core i7, 2.4 GHz, 8

GB RAM computer. The comparison of results for each dataset based on the average

solutions found in 100 distinct runs of each algorithm and the convergence processing

time taken to attain the best solution. The quality of the respective clustering will

also be compared, where the quality is measured by the following three criteria:

1- The SSE criterion as defined in equation 2.6. Clearly, the smaller the sum is, the

higher the quality of clustering is.

2- The F-measure which uses the ideas of precision and recall from information re-

trieval Dalli (2003). Each class 𝑖 (as given by the class labels of the used bench-

mark dataset) is regarded as the set of 𝑛𝑖 items desired for a query; each clus-

ter 𝑗 (generated by the algorithm) is regarded as the set of 𝑛𝑗 items retrieved for

a query; 𝑛𝑖𝑗 gives the number of elements of cluster 𝑖 within cluster 𝑗. For each

class 𝑖 and cluster 𝑗 precision and recall are then defined as 𝑝(𝑖, 𝑗) = (𝑛𝑖𝑗/𝑛𝑗) and

𝑟(𝑖, 𝑗) = (𝑛𝑖𝑗/𝑛𝑖) and the corresponding value under the F-measure is 𝐹 (𝑖, 𝑗) =

((𝑏2 + 1)𝑝(𝑖, 𝑗)𝑟(𝑖, 𝑗))/(𝑏2𝑝(𝑖, 𝑗)𝑟(𝑖, 𝑗)), where 𝑏 = 1 is chosen here to obtain equal

weighting for 𝑝(𝑖, 𝑗) and 𝑟(𝑖, 𝑗). The overall F-measure for the dataset of size 𝑛 is

given by:

𝐹 * =
∑︁
𝑖

𝑛𝑖

𝑛
𝑀𝐴𝑋𝑖 {𝐹 (𝑖, 𝑗)} (2.7)

Obviously, the bigger F-measure is, the higher the quality of clustering is.

3- Accuracy which is the percentage of correctly assigned instances on the real-life

datasets.

The simulation results given in Tables 2.1-2.3 show that ABC+K-means is much

more precise than K-means algorithm. In other words, it provides the optimum value

and small standard deviation in compare to those of obtained by K-means. For

instance, the results obtained on the Iris dataset show that ABC+K-means converges

to the global optimum of 97.326 in all of runs while the average and standard deviation

amounts of K-means are 102.728 and 10.518. Table 2.2 shows the results of algorithms

on the Wine dataset. The average optimum values, which are obtained by ABC+K-

means and K-means in all runs, are 16574.492 and 16890.162, respectively. As it

30

Table 2.1: Results obtained by the algorithms for 100 different runs on Iris data.
Average Std. Dev. CPU times (sec) Fmeasure Accuracy

K-means 102.728 10.518 0.1 0.889 87.33%
ABC+K-means 97.326 0 23.7 0.892 89.25%

Table 2.2: Results obtained by the algorithms for 100 different runs on Wine data.
Average Std. Dev. CPU times (sec) Fmeasure Accuracy

K-means 16890.162 718.65 0.2 0.715 70.22%
ABC+K-means 16574.492 188.13 31.1 0.715 71.47%

is presented, the ABC+K-means noticeably resulted in a smaller standard deviation

value in comparison with the K-means. Table 2.3 provides the results of algorithms

on the CMC dataset. As seen from the results, the ABC+K-means is far superior in

term of the standard deviation value. Therefore, it is found that the ABC+K-means

clustering algorithm is able to provide the same partition of data points in all the

runs.

The simulation results of the tables also illustrate that the average of F-measure

and the accuracy of the proposed algorithm is better than or equal to those obtained

by the K-means algorithm on the all datasets. F-means is an indication that shows

how the clusters are spatially well separated and the accuracy presents the ability of

both algorithms to cluster the data into different partitions, correctly. To conclude,

the simulation results in the tables demonstrate that the proposed algorithm con-

verges to global optimum with a smaller standard deviation. However, in terms of

computational costs, ABC+K-means significantly needs more evaluation times which

is caused by the statistical behavior of all nature inspired optimization algorithms.

Table 2.3: Results obtained by the algorithms for 100 different runs on CMC data.
Average Std. Dev. CPU times (sec) Fmeasure Accuracy

K-means 5864.22 51.32 0.4 0.402 39.71%
ABC+K-means 5711.27 3.41 121.1 0.400 42.31%

31

32

3

Clustering Analysis using

Opposition-Based API Algorithm

In this chapter, partitional clustering is considered as an optimization problem and

an improved ant-based algorithm, named Opposition-Based API (after the name of

Pachycondyla APIcalis ants), is applied to automatic grouping of large unlabeled

datasets. The proposed algorithm employs Opposition-Based Learning (OBL) for

ants’ hunting sites generation phase in API. Experimental results are compared with

the classical API clustering algorithm and three other recently evolutionary-based

clustering techniques. It is shown that the proposed algorithm can achieve the optimal

number of clusters and, in most cases, outperforms the other methods on several

benchmark datasets in terms of accuracy and convergence speed.

3.1 Introduction

Despite being powerful, the ant-based algorithms, including API, can remain trapped

in local optimums. This situation can occur when a certain component is very de-

sirable on its own, but leads to a sub-optimal solution when combined with other

components. Considering the fact that implementations of the ant-based algorithms

basically depend on positive reinforcement of good solutions, ants will tend to select

similar paths after a certain number of iterations. Moreover, most of the reported

33

ant-based clustering methods need the number of clusters as an input parameter in-

stead of determining it automatically on the run. Many practical situations show

that it is impossible or very difficult to determine the appropriate number of groups

in a previously unlabeled datasets. Also, if a dataset contains high-dimensional fea-

ture vectors, it is practically impossible to graph the data for determining its number

of clusters. This paper contains two objectives. First, it attempts to show that

application of the API algorithm in clustering problems, with a modification of us-

ing Opposition-Based Learning (OBL) in hunting sites generation, can achieve very

promising results. The improvement is based on the idea of opposition numbers and

attempt to increase the exploration efficiency of the solution space Tizhoosh (2006).

The modification focuses on the initialization of sites’ positions. In other words, the

API algorithm is modified from its original form to a more intelligent approach to im-

prove its exploration capability and increase its convergence speed. Second, it tries to

determine the optimal number of clusters in any unlabeled dataset automatically. A

comprehensive comparison of the proposed algorithm’s results with classical API, and

the reported results of three other automatic clustering methods including Genetic

Algorithm (GA) Bandyopadhyay and Maulik (2002), Particle Swarm Optimization

(PSO) Omran et al. (2005), and Differential Evolution (DE) Das et al. (2008) has

been investigated. The accuracy of the final clustering results, the capability of the

algorithms to achieve nearly similar results over randomly repeated runs (robustness),

and the convergence speed are used as the performance metrics in the comparative

analyses.

Organization of the rest of this chapter is as follows. In Section 3.2, the cluster-

ing problem is defined in a formal language. The API algorithm is shortly reviewed

in Section 3.3. The proposed algorithm optimization algorithm and the clustering

scheme used in this study are presented in Sections 3.4 and 3.5. A comprehensive set

of experimental results are provided in Section 3.6. Finally, the work is concluded in

Section 3.7.

34

3.2 Clustering Problem

The clustering problem consists of dividing a set of data into different groups, based

on one or more features of the data Jain et al. (1999); Craigen et al. (1993). In

the area of machine learning, clustering analysis is considered as an unsupervised

learning method that constitutes a main role of an intelligent data analysis process.

This tool explores the data structure and attempt to group objects into clusters

such that the objects in the same clusters are similar and objects from different

clusters are dissimilar. It is called unsupervised learning because, unlike classification

(known as supervised learning), no a priori labeling of patterns is available to use in

categorizing the cluster structure of the whole dataset. As the aim of clustering is to

find any interesting grouping of the data, it is possible to define cluster analysis as an

optimization problem in which a given function, called the clustering validity index,

consisting of within cluster similarity and among clusters dissimilarities needs to be

optimized.

In every optimization algorithm it is necessary to measure the goodness of can-

didate solutions. In this problem, the fitness of clusters must be evaluated. In order

to achieve this, one given clustering definition called the clustering validity index has

been considered, that is the objects inside a cluster are very similar, whereas the

objects located in distinct clusters are very different. Thereby, the fitness function is

defined according to the concepts of cohesion and separation:

1) Cohesion: The variance value of the objects in a cluster indicates the cluster’s

compactness. In other words, the objects within a cluster should be as similar to

each other as possible.

2) Separation: The objects inside different clusters should be as dissimilar to each

other as possible. To achieve this objective, different distance measures such as Eu-

clidean, Minowsky, Manhatann, the cosine distance, etc are used as the cluster sepa-

ration’s indication Jain et al. (1999).

The clustering validity index is also used to determine the number of clusters. Tra-

ditionally, the clustering algorithms were run with a different number of clusters as

35

an input parameter. Then, based on the best gained validity measure of the dataset

partitioning, the optimal number of clusters was selected Halkidi and Vazirgiannis

(2001). Since the definitions of cohesion and separation are given, the fitness function

of clustering can be introduced. There are some well-known clustering validity indexes

in the literature which their maximum and minimum values indicate proper clusters.

Therefore, these indexes can be used to define the fitness functions for optimization

algorithms. In the current paper, two validity measures are employed in the study of

automatic clustering algorithms. These two indexes are introduced as follows:

1- 𝐷𝐵 measure index Davies and Bouldin (1979a): This index is evaluated by di-

vision of within-cluster scatter by between-cluster separation. These two values are

formulated as:

𝑆𝑖,𝑞 =

[︃
1

𝑁𝑖

∑︁
𝑋∈𝐶𝑖

‖ 𝑋 −𝑚𝑖 ‖𝑞
]︃ 1

𝑞

(3.1)

and

𝑑𝑖𝑗,𝑡 =

[︃
𝑑∑︁

𝑝=1

| 𝑚𝑖,𝑝 −𝑚𝑗,𝑝 |𝑡
]︃ 1

𝑡

=‖ 𝑚𝑖 −𝑚𝑗 ‖ (3.2)

where 𝑆𝑖,𝑞 and 𝑑𝑖𝑗,𝑡 are the 𝑖th cluster scatter and the between 𝑖th and 𝑗th cluster

distance values and 𝑋 is a set of data points within 𝐶𝑖 cluster. The 𝑖th cluster center

is shown by 𝑚𝑖, 𝑞, 𝑡 ≥ 1, 𝑞 is an integer, and 𝑞 and 𝑡 can be independently selected.

The number of elements in the 𝑖th cluster 𝐶𝑖 is 𝑁𝑖. By defining

𝑅𝑖,𝑞𝑡 = 𝑚𝑎𝑥

{︂
𝑆𝑖,𝑞 + 𝑆𝑗,𝑞

𝑑𝑖𝑗,𝑡

}︂
𝑗∈𝑘,𝑗 ̸=𝑖

(3.3)

𝐷𝐵 measure index is formulated as:

𝐷𝐵(𝐾) =
1

𝐾

𝐾∑︁
𝑖=1

𝑅𝑖,𝑞𝑡 (3.4)

where 𝐾 is the number of clusters. The smaller 𝐷𝐵(𝐾) value is, the more valid is

the clustering process.

2- 𝐶𝑆 measure index Chou et al. (2004): First the centroid of the cluster 𝐶𝑖 is

36

calculated as the average of the elements within that cluster:

𝑚𝑖 =
1

𝑁𝑖

∑︁
𝑥𝑗∈𝐶𝑖

𝑥𝑗 (3.5)

Then the 𝐶𝑆 measure can be formulated as:

𝐶𝑆(𝐾) =

∑︀𝐾
𝑖=1

[︁
1
𝑁𝑖

∑︀
𝑋𝑖∈𝐶𝑖

{𝑑(𝑋𝑖, 𝑋𝑞)}
]︁

∑︀𝐾
𝑖=1 [𝑚𝑖𝑛𝑗∈𝐾,𝑗 ̸=𝑖 {𝑑(𝑚𝑖,𝑚𝑗)}]

(3.6)

𝑑(𝑋𝑖, 𝑋𝑞) is a distance metric between any two data points 𝑋𝑖 and 𝑋𝑞. As the 𝐶𝑆

measure is also a function of the sum of within-cluster scatter to between-cluster

separation, both the 𝐷𝐵 and 𝐶𝑆 measures has the same concept. It is stated in

Chou et al. (2004) that while dealing with datasets of different densities and/or sizes

the 𝐶𝑆 measure is more efficient than the other measures introduced in the literature.

3.3 API Algorithm

The API algorithm is inspired by the colonies of P. APIcalis ants in tropical forests

near the Guatemala border in Mexico Monmarché et al. (2000). In this algorithm, a

population of 𝑛𝑎 ants (𝑎1, 𝑎2, ..., 𝑎𝑛𝑎) is located in search space 𝑆 to minimize objective

function 𝑓 . API contains two parameters named 𝑂𝑟𝑎𝑛𝑑 and 𝑂𝑒𝑥𝑝𝑙𝑜. 𝑂𝑟𝑎𝑛𝑑 generates

a random point (named nest 𝑁) that indicates a valid solution in search space 𝑆

according to a uniform distribution and 𝑂𝑟𝑎𝑛𝑑 generates a new points in the neigh-

borhood of 𝑁 and also hunting sites. In the beginning, the nest location 𝑁 placed

randomly in the search space using parameter 𝑂𝑟𝑎𝑛𝑑. Then, each ant ai of the na ants

leaves the nest to create hunting sites randomly and utilizes 𝑂𝑒𝑥𝑝𝑙𝑜 with an amplitude

𝐴𝑠𝑖𝑡𝑒(𝑎𝑖) of the neighborhood centered in N. The 𝐴𝑠𝑖𝑡𝑒(𝑎𝑖) values are set as:

𝐴𝑠𝑖𝑡𝑒(1) = 0.01, ..., 𝐴𝑠𝑖𝑡𝑒(𝑖) = 0.01𝑥𝑖, ..., 𝐴𝑠𝑖𝑡𝑒(𝑛𝑎) = 0.01𝑥𝑛𝑎 (3.7)

where 𝑥 = (1/0.01)(1/𝑛𝑎).

37

Figure 3-1: Search space of the API algorithm. 𝑠1, 𝑠2, and 𝑠3 are sites randomly
generated around nest 𝑁 and their maximum distance from the nest being given
by 𝐴𝑠𝑖𝑡𝑒. The small squares denote local exploration of site 𝑠2 (points situated at a
maximum distance of 𝐴𝑙𝑜𝑐𝑎𝑙 from the site center 𝑠2).

Afterwards, local search starts and each ant 𝑎𝑖 goes to one of its 𝑝 hunting sites 𝑠′

in the neighborhood of its site 𝑠 using 𝑂𝑒𝑥𝑝𝑙𝑜 with an amplitude 𝐴𝑙𝑜𝑐𝑎𝑙(𝑎𝑖). 𝐴𝑙𝑜𝑐𝑎𝑙(𝑎𝑖) is

set to 𝐴𝑠𝑖𝑡𝑒(𝑎𝑖)/10 based on the behavior of real ants. If 𝑓(𝑠′) ≤ 𝑓(𝑠), the local search

will be considered as successful (a prey has been caught) and ant 𝑎𝑖 will memorize

point 𝑠′ and update its memory from 𝑠 to 𝑠′ and does a new exploration in the vicinity

of the new site. On the contrary, 𝑎𝑖 will randomly choose another site among its 𝑝

sites saved in memory in the next exploration. If ant 𝑎𝑖 cannot catch any prey in

a hunting site which has been explored successively for more than 𝑡𝑙𝑜𝑐𝑎𝑙(𝑎𝑖) times,

that hunting site will be forgotten and repeated by a new site created using 𝑂𝑒𝑥𝑝𝑙𝑜.

Then, nest 𝑁 moves after 𝑇 movements of the na ants (after every 𝑛𝑎 × 𝑇 individual

moves) and goes to the best point found since its own last displacement. Finally, all

sites will be erased from the ants’ memories to avoid local minima. It is presented

in Figure 3.1 how the initial solution space is divided into smaller search spaces in

the AIP algorithm. The API algorithm usually terminates after a specific number of

iterations or when the best-so-far solution achieves a desired value.

38

3.4 Opposition-Based API Algorithm

In most instances, Evolutionary Algorithms (EAs) start with random initial popula-

tions and attempt to lead them toward some optimal solutions. This searching process

usually terminates when EAs meet some predefined criteria. However, the distance

of these initial guesses from the optimal solutions has a significant effect on the com-

putation effort and the obtained solutions’ quality. The concept of Opposition-Based

Learning (OBL) is introduced by Tizhoosh Tizhoosh (2006) to increase the chance

of starting from fitter initial (closer to optimal solutions) points in the search space.

In the proposed method, the opposition points of the initial guesses are found simul-

taneously. After making a comparison between initial solutions and their opposites

in the search space, the fitter ones are chosen as the initial solutions. The judgment

between a point and its opposite position is made based on their corresponding fitness

function values. This procedure has the potential to improve the convergence speed

and quality of solutions and can be applied not only to initial points but also contin-

uously to each solution in the current population. The concept of opposite point can

be defined as Tizhoosh (2006):

Let 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝐷) be a point in a 𝐷-dimensional space, where 𝑥1, 𝑥2, ..., 𝑥𝐷 ∈ R

and 𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖]∀𝑖 ∈ {1, 2, ..., 𝐷}. The opposition point 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝐷) is defined

by:

𝑥𝑖 = 𝑎𝑖 + 𝑏𝑖 − 𝑥𝑖 (3.8)

Now assume that 𝑓(𝑋) and 𝑓(𝑋) are the fitness function values which are evaluated

simultaneously to measure the fitness of the main point 𝑋 and its opposition position

𝑋 in the search space. Making a comparison between these two fitness values we

continue the optimization process with the fitter one. In other words, if 𝑓(𝑋) ≤ 𝑓(𝑋)

then point 𝑋 can be replaced with 𝑋; otherwise, the process will be continued by 𝑋.

In this study, we enhance the hunting sites’ creation step of the API algorithm

by using OBL scheme. We choose the original API as the main algorithm and the

proposed opposition-base idea is embedded in API to improve its performance and

39

convergence speed.

In this part, we explain the OBL approach added to the original API algorithm.

Based on optimization literature, the common method to create initial solutions, in

absence of a priori knowledge, is random number generation. Therefore, as explained

previously, by applying the OBL concept, fitter starting candidate solutions can be

obtained when there is no a priori knowledge about the solutions. The following steps

show the implementation of opposition-based initialization for API:

1- Create hunting sites 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛𝑎} randomly using 𝑂𝑒𝑥𝑝𝑙𝑜 where 𝑠𝑗 = (𝑥𝑖𝑗, ..., 𝑥𝐷𝑗)

and 𝑥𝑖𝑗 ∈ [𝑎𝑖, 𝑏𝑖]∀𝑖 ∈ {1, 2, ..., 𝐷} , 𝑗 ∈ {1, ..., 𝑛𝑎}.

2- Calculate opposite points 𝑆𝑜 = {𝑠𝑜1, 𝑠𝑜2, ..., 𝑠𝑜𝑛𝑎} of the initialized random sites:

𝑥𝑜𝑖𝑗 = 𝑎𝑖 + 𝑏𝑖 − 𝑥𝑖𝑗 (3.9)

where 𝑠𝑜𝑗 = (𝑥𝑜𝑖𝑗, ..., 𝑥𝑜𝐷𝑗).

3- Select 𝑛𝑎 fittest hunting sites from {𝑆 ∪ 𝑆𝑜} as initial hunting sites using fitness

function values.

A similar approach is applied to the algorithm when an ant loses all of its p sites

and needs to create new hunting sites. Therefore, after making new sites by that ant,

hunting sites which are ideally fitter than current created ones will be established in

each iteration.

3.5 Clustering Formulation and Fitness Functions

The clustering method we applied in this work is the scheme proposed in Das et al.

(2008), in which the chromosomes of a Differential Evolution (DE) algorithm are

assigned to vectors of real numbers. These vectors contain 2𝐾𝑚𝑎𝑥 entries, where

𝐾𝑚𝑎𝑥 is the maximum number of clusters specified by user.

To control the activation of each cluster during the clustering process, first 𝐾𝑚𝑎𝑥

elements of the defined vectors are assigned to random positive floating numbers 𝑇𝑖,𝑗

(for 𝑗th cluster center in the 𝑖th vector) in [0,1]. These floating numbers are called

40

Figure 3-2: Active thresholds and their corresponding cluster centroids in vector 𝑖
(the white and grey centroids are active and inactive, respectively).

activation thresholds. In this model, if 𝑇𝑖,𝑗 ≥ 0.5, the 𝑗th cluster center in the 𝑖th

vector will be used for clustering of the associated data. In contrast, if 𝑇𝑖,𝑗 ≤ 0.5, the

corresponding 𝑗th cluster center will not be considered in the partitioning process. In

other words, 𝑇𝑖,𝑗’s are used as selection rules in each vector controlling the activation

of cluster centers. The second part of vectors contains 𝐾𝑚𝑎𝑥 𝐷-dimensional centroids.

Figure 3.2 shows a vector containing of five centroids and their corresponding acti-

vation thresholds. As it can be seen, only three of those centroids are active (have

activation thresholds more than 0.5) in this vector.

In this scheme, when a new vector is constructed, the 𝑇 values are used to active

the cancroids of clusters. If in a vector all 𝑇𝑖,𝑗’s are smaller than 0.5, two of the

thresholds will be selected randomly and their values will be reinitialized between 0.5

and 1.0 which means the minimum number of clusters in a vector is 2.

In OBAPI, each clustering vector is considered as a hunting site. Ants are moving

on the search space and can take or drop centroids according to the behavioral rules

of the algorithm. Then, the nest is brought closer to the proper hunting sites and ants

go back to new fruitful sites to try another pick up. To compare the performance of

our proposed algorithm with the performance of other reported algorithms Das et al.

(2008), we also applied the 𝐶𝑆 measure and 𝐷𝐵 measure introduced in Section 3.2.

Therefore, two fitness functions are constructed as:⎧⎪⎨⎪⎩𝑓1 = 1
𝐶𝑆𝑖(𝐾)

𝑓2 = 1
𝐷𝐵𝑖(𝐾)

(3.10)

41

where 𝐶𝑆𝑖 and 𝐷𝐵𝑖 are the clustering indexes defined in Equations 3.4 and 3.6. These

indexes evaluate the quality of the clusters delivered by vector 𝑖. Since all selected

centroids and their opposites are always built inside the boundary of the dataset,

there is no probability of a division by zero while computing the 𝐷𝐵 and/or 𝐶𝑆

measures.

3.6 Experimental Results and Discussion

In this work, five real world clustering problems from the UCI database Blake and

Merz (1998), which is a well-known database repository for machine learning, are

used to evaluate the performance of the Opposition-Based API (OBAPI) algorithm.

The datasets are briefly summarized as (Here, 𝑛 is the number of data points, 𝑑 is

the number of features, and 𝐾 is the number of clusters):

1) Iris (𝑛 = 150, 𝑑 = 4, 𝐾 = 3): This dataset with 150 random samples of flowers

from the iris species setosa, versicolor, and virginica consists 50 observations for sepal

length, sepal width, petal length, and petal width in 𝑐𝑚.

2) Wine (𝑛 = 178, 𝑑 = 13, 𝐾 = 3): This dataset is the results of a chemical analysis of

wines grown in the same region in Italy but derived from three different cultivars. The

analysis determined the quantities of 13 constituents found in each of the three types

of wines. There are 178 instances with 13 numeric attributes in the wine dataset. All

attributes are continuous and there is no missing attributes.

3) Wisconsin breast cancer (𝑛 = 683, 𝑑 = 9, 𝐾 = 2): The Wisconsin breast cancer

database has 9 relevant features: clump thickness, cell size uniformity, cell shape

uniformity, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,

normal nucleoli, and mitoses. The dataset has two types: benign (239 objects) or

malignant (444 objects) tumors.

4) Vowel (𝑛 = 871, 𝑑 = 3, 𝐾 = 6): This dataset consists of 871 Indian Telugu

vowel sounds. The dataset has 3 features which are the first, second, and third vowel

frequencies, and 6 overlapping classes named d (72 objects), a (89 objects), i (172

objects), u (151 objects), e (207 objects), and o (180 objects).

42

5) Glass (𝑛 = 214, 𝑑 = 9, 𝐾 = 6): This dataset presents 6 different glass types called

building windows float processed (70 objects), building windows nonfloat processed

(76 objects), vehicle windows float processed (17 objects), containers (13 objects),

tableware (9 objects), and headlamps (29 objects), respectively. Each of these types

has 9 features: refractive index, sodium, magnesium, aluminum, silicon, potassium,

calcium, barium, and iron.

The performance of the OBAPI algorithm is compared with three recently pro-

posed partitional clustering algorithms called automatic clustering using an improved

deferential evolution (ACDE) Das et al. (2008), genetic clustering with an unknown

number of clusters K (GCUK) Bandyopadhyay and Maulik (2002), and dynamic clus-

tering particle swarm optimization (DCPSO) Omran et al. (2005). The improvement

effects of our modified algorithm with normal API have been also investigated dealing

with similar clustering problems. We used the default parameter settings, selected in

Monmarché et al. (2000), for all conducted experiments:

1- Number of ants, Na = 20.

2- Number of iterations (explorations performed by each ant between two nest moves),

𝑇 =50.

3- Number of hunting sites, 𝑝 = 2.

4- Search number (number of times ant 𝑎𝑖 cannot catch any prey in a hunting site

which has been explored successively), 𝑡𝑙𝑜𝑐𝑎𝑙(𝑎𝑖) = 50, 𝑖 = 1, ..., 𝑁𝑎.

For API and OBAPI, the hunting sites (cluster centroids) are selected randomly

between the minimum and maximum numerical values of any feature of the datasets.

Parameter 𝑂𝑟𝑎𝑛𝑑 generates a uniformly distributed random point within those inter-

vals. Parameter 𝑂𝑒𝑥𝑝𝑙𝑜 is also used to create new hunting site 𝑠′ = (𝑥′
1, ..., 𝑥

′
𝐷) from

𝑠 = (𝑥1, ..., 𝑥𝐷) as follows:

𝑥′
𝑖 = 𝑥𝑖 + 𝑈 × 𝐴× (𝑏𝑖 − 𝑎𝑖), ∀𝑖 ∈ [1, ..., 𝐷] (3.11)

where 𝑥𝑖𝑗 ∈ [𝑎𝑖, 𝑏𝑖]∀𝑖 ∈ {1, 2, ..., 𝐷}, 𝑈 is a uniformly distributed value within [-

0.5,+0.5] and 𝐴 is the maximum amplitude of the move introduced in Equation 3.7.

43

The maximum and minimum number of clusters, 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛, are set to 20 and

2, respectively.

In this study, a comprehensive comparison between the results of the API and

OBAPI algorithms and the results of the ACDE, GCUK, and DCPSO reported in

Das et al. (2008) has been made to verify the performance of our proposed approach.

We compare the convergence speed of all the algorithms by measuring the number

of function calls (NFCs) which is most commonly and fair used metric in optimiza-

tion literature. The quality of obtained solutions, determined by the 𝐶𝑆 and 𝐷𝐵

measures, and ability of the algorithms to find the optimal number of clusters have

been also considered as two other evaluation metrics. In order to minimize the effect

of the stochastic nature of API and OBAPI on the metrics, our reported results for

each clustering problem is the average over 40 independent trials which is equal to the

number of independent the algorithms’ runs reported in Das et al. (2008). The results

of two sets of experiments are presented by utilizing the five evolutionary clustering

algorithms (API, OBAPI, ACDE, GCUK, and DCPSO) while 𝐶𝑆 and 𝐷𝐵 measures

are separately considered as their fitness functions. For a detailed discussion on the

parameter settings and simulation strategy of the ACDE, GCUK, and DCPSO algo-

rithms please refer to Das et al. (2008); Bandyopadhyay and Maulik (2002); Omran

et al. (2005). We implemented both the API and OBAPI algorithms in Python 2.7.6

on a Intel Core i7, with 2.4 GHz, 8 GB RAM in Ubuntu 14.04 environment.

In order to compare the accuracy of OBAPI and API with ACDE, DCPSO, and

GCUK, maximum NFCs is set to 106 and considered as the termination criterion for

each clustering algorithm. Afterwards, final solutions are considered as the number of

clusters found, final value of fitness function, and two other metrics called inter-cluster

and intra-cluster distances. The inter-cluster distance shows the average of distances

among centroids of the obtained clusters and the intra-cluster distance presents the

average of distances among data vectors inside a cluster. To achieve crisp and compact

clusters, the clustering algorithms try to maximize the inter-cluster distance and

minimize intra-cluster distance, simultaneously. Table 3.1 shows the average number

of found clusters, the final 𝐶𝑆 values (Equation 3.6), and the inter-cluster and intra-

44

Table 3.1: Mean and standard deviation values of final solutions of the clustering al-
gorithms over 40 independent trials using 𝐶𝑆 measure (maximum number of function
calls, NFCs = 106, is set as the termination criterion).

Data Algorithm Clust. Num. CS value intra- dist. inter- dist.

Iris

OBAPI 3.11±0.05214 0.6122±0.053 2.8736±1.542 2.7211±0.362
API 3.42±0.02451 0.6812±0.142 3.2232±0.324 2.4516±0.024

ACDE 3.25±0.0382 0.6643±0.097 3.1164±0.033 2.5931±0.027
DCPSO 2.23±0.0443 0.7361±0.671 3.6516±1.195 2.2104±0.773
GCUK 2.35±0.0985 0.7282±2.003 3.5673±2.792 2.5058±1.409

Wine

OBAPI 3.16±0.0874 0.9622±0.047 4.005±0.004 3.6411±0.324
API 3.21±0.0456 0.9132±0.0514 4.096±0.041 3.1123±0.745

ACDE 3.25±0.0391 0.9249±0.032 4.046±0.002 3.1483±0.078
DCPSO 3.05±0.0352 1.8721±0.037 4.851±0.184 2.6113±1.637
GCUK 2.95±0.0112 1.5842±0.328 4.163±1.929 2.8058±1.365

Breast

OBAPI 2.00±0.00 0.4726±0.015 4.3232±0.214 3.2114±0.526
API 2.15±0.0496 0.4869±0.637 4.4568±0.0354 3.0412±2.324

ACDE 2.00±0.00 0.4532±0.034 4.2439±0.143 3.2577±0.138
DCPSO 2.25±0.0632 0.4854±0.009 4.8511±0.373 2.3613±0.021
GCUK 2.00±0.0083 0.6089±0.016 4.9944±0.904 2.3944±1.744

Vowel

OBAPI 6.13±0.0421 0.9011±0.624 1406.32±9.324 2796.67±0.547
API 5.77±0.0645 0.9232±0.224 1434.85±0.457 2732.11±0.213

ACDE 5.75±0.0751 0.9089±0.051 1412.63±0.792 2724.85±0.124
DCPSO 7.25±0.0183 1.1827±0.431 1482.51±3.973 1923.93±1.154
GCUK 5.05±0.0075 1.9978±0.966 1495.13±12.334 1944.38±0.747

Glass

OBAPI 6.00±0.00 0.3112±0.647 521.278±65.23 896.31±6.123
API 6.11±0.0324 0.4236±0.278 550.217±14.52 871.35±3.662

ACDE 6.05±0.0148 0.3324±0.487 563.247±134.2 853.62±9.044
DCPSO 5.96±0.0093 0.7642±0.073 599.535±10.34 889.32±4.233
GCUK 5.85±0.0346 1.4743±0.236 594.67±1.789

Table 3.2: Clustering error mean and standard deviation values over 40 independent
trials using 𝐶𝑆 measure (NFCs = 106).

Data clust. error
OBAPI API ACDE DCPSO GCUK

Iris 2.14±0.00 2.22±0.01 2.35±0.00 4.15±0.00 5.00±0.00
Wine 34.21±2.00 37.23±2.30 36.65±0.00 99.4±1.09 100.24±1.05
Breast 21.87±0.47 26.63±0.04 22.25±0.28 27.01±1.25 29.00±1.55
Vowel 401.62±4.12 425.89±0.08 418.75±3.10 453.58±6.61 476.42±6.92
Glass 87.65±0.47 95.24±0.05 92.55±0.19 102.1±0.68 98.21±0.08

45

Table 3.3: Mean and standard deviation values of NFCs required by clustering algo-
rithms to reach the defined cutoff thresholds (using 𝐶𝑆 measure and over 40 inde-
pendent trials).

Data Algorithm Cutoff value Ave. NFCs intra- dist. inter- dist.

Iris

OBAPI

0.95

284567.23±24.36 3.3145±0.471 2.8674±0.547
API 432578.36±84.65 3.9124±0.841 2.0456±0..875

ACDE 459888.95±20.50 3.7836±0.509 2.0758±0.239
DCPSO 679023.85±31.75 3.9637±1.666 2.0093±0.795
GCUK 707723.70±120.21 3.9992±2.390 1.9243±1.843

Wine

OBAPI

1.90

42311.84±77.12 3.9165±0.874 3.5211±0.0774
API 66251.32±87.59 4.6232±0.547 2.8765±0.145

ACDE 67384.25±56.45 4.9872±0.148 3.1275±0.0357
DCPSO 700473.35 ±31.42 4.0743±0.093 1.9967±1.828
GCUK 785333.05±21.75 5.9870±1.349 2.1323±1.334

Breast

OBAPI

1.10

165278.32±15.36 5.1221±0.132 2.8011±0.411
API 273111.67±14.56 5.43266±0.025 2.832±0.741

ACDE 292102.50±29.73 4.9744±0.105 3.0096±0.246
DCPSO 587832.50±7.34 5.6546±0.241 2.1173±0.452
GCUK 914033.85±24.83 8.0442±0.435 2.0542±1.664

Vowel

OBAPI

2.50

292487.32±14.36 1475.32±0.852 2932.64±1.459
API 405524.65±32.11 1482.65±0.741 2687.57±0.573

ACDE 437533.35±51.73 1494.12±0.378 2739.85±0.163
DCPSO 500493.15±35.47 1575.51±3.786 1923.93±1.154
GCUK 498354.10±74.60 1593.72±1.789 2633.45±1.213

Glass

OBAPI

1.80

288524.62±74.32 572.326±65.78 861.56±0.901
API 408975.41±98.32 600.985±42.32 852.11±0.324

ACDE 443233.30±47.65 590.572±34.24 853.62±0.44
DCPSO 566335.80±25.73 619.980±15.98 846.67±0.804
GCUK 574938.65±82.64 615.88±20.95 857.34±1.465

46

cluster distances obtained by OBAPI and API and the other three algorithms. The

mean values and standard deviations of misclassified data are presented in Table 3.2.

These values have been obtained based on the fact that the benchmark datasets have

known nominal partitions and the objects that were assigned to clusters other than

the nominal ones cause some misclassification errors. Then, we need to compare the

different algorithms in term of convergence speed. For each dataset, a cutoff value

of 𝐶𝑆 fitness function is selected as a threshold. This values is somewhat larger

than the minimum 𝐶𝑆 fitness function amount obtained by each algorithm in Table

3.3. The NFCs that each algorithm takes to achieve the cutoff 𝐶𝑆 fitness function

value is given in Table 3.3. Exactly similar experiments are conducted again over

the benchmark datasets using a 𝐷𝐵 measure fitness function (Equation 3.4) and the

similar entries are presented in Tables 3.4 to 3.6. Best obtained values are sown in

boldface in all the tables.

It is demonstrated in Tables 3.1 and 3.4 that for the iris dataset the OBAPI has

gained the lowest values of the final 𝐶𝑆 and 𝐷𝐵 measures and the best values of mean

intra- and inter-cluster distances. As discussed in Das et al. (2008), the considerable

overlap between two clusters (virginica and versicolor) in the iris dataset has caused

GCUK and DCPSO to gain only two clusters on average while OBAPI, API, and

ACDE were successful in finding about three clusters and among them OBAPI has

yielded the closest value to the real number of iris clusters. For the wine dataset,

all the algorithms have been outperformed by DCPSO in term of number of clusters.

However, all the five algorithms have obtained comparable accuracies. Again, OBAPI

has achieved the best average values of fitness functions, and intra- and inter-cluster

distances.

It is also observed in Tables 3.1 and 3.4 that for the breast cancer dataset, despite

the fact that OBAPI, ACDE, and GCUK were competitively successful to yield high

accurate vales of the number of clusters, ACDE has outperformed the other algorithms

in terms of the other metrics. This challenge may happen due to substantial increase

in the number of both data vectors and features of the current dataset in comparison

to other ones that had some bad effects on the performance of the OBAPI algorithm.

47

Table 3.4: Mean and standard deviation values of the clustering algorithms over 40
independent trials using 𝐷𝐵 measure fitness function (maximum number of function
calls, NFCs = 106, is set as the termination criterion)

Dataset Algorithm Clust. Num 𝐷𝐵 value intra- dist. inter- dist.

Iris

OBAPI 3.01±0.0124 0.4011±0.014 2.9911±0.745 2.8965±0.475
API 3.15±0.0851 0.4565±0.087 3.1845±0.047 2.3574±0.012

ACDE 3.05±0.0712 0.4645±0.022 3.1633±0.076 2.8387±0.658
DCPSO 2.25±0.0593 0.6899±0.008 3.8536±0.122 2.2544±0.039
GCUK 2.30±0.0738 0.7377±0.065 3.8436±0.076 2.1438±0.022

Wine

OBAPI 3.10±0.054 2.9614±0.047 4.2156±0.469 3.3641±6.457
API 3.15±0.0741 3.2652±0.412 4.6689±0.0485 2.9611±5.648

ACDE 3.25±0.0931 3.0432±0.021 4.4212±0.096 3.1029±0.047
DCPSO 3.05±0.0024 4.3432±0.232 4.8668±0.154 2.6113±1.635
GCUK 2.95±0.0173 5.3424±0.343 5.1312±1.342 2.7565±2.128

Breast Cancer

OBAPI 2.05±0.0845 0.5315±0.241 4.6415±0.214 3.0524±0.078
API 2.46±0.0785 0.5801±0.325 4.6213±0.075 3.0065±0.045

ACDE 2.05±0.0563 0.5813±0.006 4.5463±0.023 3.1002±0.064
DCPSO 2.50±0.0621 0.5754±0.073 4.9232±0.373 2.2684±0.063
GCUK 2.50±0.0352 0.6328±0.002 6.5541±0.433 1.8032±0.016

Vowel

OBAPI 5.80±0.542 0.9200±0.247 1440.17±0.321 2311.22±0.784
API 5.68±0.0745 1.0013±0.214 1451.13±0.123 2300.69±0.145

ACDE 5.75±0.0241 0.9224±0.334 1449.12±0.834 2289.85±0.163
DCPSO 7.25±0.0652 1.2821±0.009 1500.57±3.748 1747.76±1.764
GCUK 5.05±0.0561 2.9482±0.028 1573.23±4.675 2271.89±1.222

Glass

OBAPI 6.02±0.149 1.00±0.014 501.268±3.8 898.11±4.30
API 6.25±0.0312 1.0423±0.021 505.621±0.36 895.63±4.25

ACDE 6.05±0.0248 1.0092±0.083 501.757±4.3 893.46±3.32
DCPSO 5.95±0.0193 1.5152±0.073 514.554±9.5 856.00±8.07
GCUK 5.85±0.0346 1.8371±0.034 518.903±2.9 852.32±5.43

Table 3.5: Clustering error mean and standard deviation values over 40 independent
trials using 𝐷𝐵 measure (NFCs = 106).

Data clust. error
OBAPI API ACDE DCPSO GCUK

Iris 1.92±0.01 2.34±0.04 2.22±0.00 2.79±0.55 2.75±0.08
Wine 31.23±0.00 36.11±0.32 40.15±0.00 112.5±2.50 118.45±1.77
Breast 28.58±0.36 29.65±0.11 26.75±0.25 30.23±0.46 26.50±0.80
Vowel 410.98±3.10 420.25±6.41 418.35±7.50 435.00±3.75 473.46±3.57
Glass 6.23±0.54 7.65±0.26 8.86±0.42 14.35±0.26 17.98±0.67

48

Table 3.6: Mean and standard deviation values of NFCs required by clustering algo-
rithms to reach the defined cutoff thresholds (using 𝐷𝐵 measure and over 40 inde-
pendent trials).

Data Algorithm Cutoff value Ave. NFCs intra- dist. inter- dist.

Iris

OBAPI

0.80

335614.21±13.54 3.5147±0.014 2.6385±0.574
API 484175.32±85.62 3.8657±0.0487 2.1152±0.398

ACDE 504783.45±12.65 3.9928±0.029 2.1029±0.842
DCPSO 679084.75±16.57 3.7852±1.842 1.7641±0.439
GCUK 790865.90±10.21 4.4587±3.782 1.9383±1.307

Wine

OBAPI

6.00

315268.26±6.32 4.2589±0.048 3.6015±0.184
API 479523.14±4.57 4.7612±0.541 3.1511±0.415

ACDE 464653.35±5.50 4.8292±0.732 3.0219±0.069
DCPSO 486885.85±2.85 5.1472±0.472 2.1161±1.623
GCUK 598743.35±8.09 4.9383±1.722 2.9121±0.353

Breast

OBAPI

0.90

293142.26±4.62 5.6516±0.745 2.8641±0.689
API 446213.62±9.78 5.9863±0.851 2.5876±0.459

ACDE 424732.30±8.93 5.4489±0.342 3.0234±0.683
DCPSO 467854.60±10.12 5.2885±0.552 2.0124±1.596
GCUK 678874.90±7.82 6.8832±0.733 2.1637±1.458

Vowel

OBAPI

3.00

291454.25±1.25 1362.11±1.98 2315.65±0.475
API 463211.65±3.87 1684.28±1.85 1896.45±0.847

ACDE 435743.05±2.65 1544.92±0.834 2081.31±0.679
DCPSO 556865.00 ±4.26 1652.58±2.341 1264.87±3.069
GCUK 575854.65±1.29 1582.55±7.332 1989.38±7.734

Glass

OBAPI

2.00

324825.32 ±14.67 128.475±16.3 14.42±Âś1.54
API 486425.41±14.52 146.574±34.62 13.24±4.21

ACDE 506754.00±12.27 132.757±15.8 13.46±2.54
DCPSO 569787.95±10.83 155.856±24.7 10.42±4.69
GCUK 687678.75±10.97 178.809±30.3 10.21±1.09

49

However, as it can be seen the difference between the final solutions of the two best

algorithms (ACDE and OBAPI) is not significant. Tables 3.1 and 3.4 also show

that the OBAPI algorithm has provided better results than the other four algorithms

dealing with vowel and glass datasets which consist of large number of data vectors

as well as six overlapping clusters.

The clustering errors reported in Tables 3.2 and 3.5 imply that, despite of the

acceptable performance over clustering of the benchmark datasets, all the five al-

gorithms contain some misclassification with respect to the nominal clusters. It is

explained in Das et al. (2008) that this clustering error is not only caused by the

optimization algorithms’ performance. But, some other factors such as definition as-

sumptions of the fitness functions, error in collecting data, outliers in the datasets,

and errors made by human in the nominal data might be more significant reasons

for this type of errors. As it can be seen, except the breast cancer dataset, OBAPI

achieved the least amount of clustering error among the five clustering algorithms for

both CS and DB measure fitness functions.

Tables 3.3 and 3.6 clearly illustrates the effectiveness of the proposed OBAPI algo-

rithm dealing with clustering of the benchmarks. As it is shown, a significantly lower

NFCs is needed by our algorithm to reduce both 𝐶𝑆 and 𝐷𝐵 fitness function values

to the cutoff thresholds in all cases. After OBAPI, ACDE, API, DCPSO, and GCUK

have needed lesser NFCs to achieve cutoff threshold values, respectively. Moreover,

OBAPI has yielded the best amount of mean intra- and inter-cluster distances over

most datasets.

To conclude, the obtained results indicate that OBAPI surpass normal API on

the clustering of all the benchmarks. The OBL method applied to the API led

to accuracy improvements in most clustering problems and convergence speed-ups

reaching about 33%. It is interesting to see that improvements of the convergence

speed were relatively similar for all benchmark datasets. In contrast, OBAPI was not

as successful as ACDE dealing with the breast cancer dataset in term of accuracy. In

general, it seems that OBL performs well with the more difficult problems, as it helps

the learning process. These results are very encouraging, as they demonstrate that

50

opposition can help improve performance. However, it is important to consider here

that OBAPI performs better than normal API according to the current comparison

strategies as well.

51

52

4

Multiobjective Clustering Analysis

using Particle Swarm Optimization

In this chapter, partitional clustering is defined as a multiobjective optimization prob-

lem. The aim is to obtain well-separated, connected, and compact clusters and for this

purpose, two objective functions are defined based on the data connectivity and co-

hesion concepts. In addition, an efficient multiobjective particle swarm optimization

algorithm is applied to automatic grouping of large unlabeled datasets. A compre-

hensive experimental study is conducted and the obtained results are compared with

the results of four other classical clustering techniques. It is shown that the proposed

algorithm can achieve the optimal number of clusters, is robust and, in most cases,

outperforms the other methods on several benchmark datasets in term of accuracy.

Introduction

In this chapter, a multiobjective clustering particle swarm optimization (MCPSO)

framework is proposed to obtain well-separated, connected, and compact clusters in

any unlabeled datasets with different dimensions and cluster characteristics. MCPSO

also aims to determine the optimal number of clusters, automatically. To achieve this

objectives, two contradictory objective functions are defined based on the concepts

of connectivity and cohesion and MCPSO is used to find a set of non-dominated

53

clustering solutions as a pareto front. Finally, we utilize a simple decision maker

to select the best solution along the obtained pareto solutions. A comprehensive

comparison of the results of MCPSO with four conventional clustering approaches is

investigated. The accuracy 1measured on the results of final clustering, together with

computational time, are used as the performance metrics in the comparative analyses.

The rest of this chapter is organized as follows. In Section 4.2, the clustering

problem, similarity measures, and clustering validity measures are defined in a formal

language. The proposed MCPSO algorithm and the clustering objective functions

are introduced in detail in Section 4.3. A comprehensive set of experimental results

are provided in Section 4.4. Finally, the work is concluded in Section 4.5.

4.1 Clustering Problem

The clustering problem consists of dividing a set of data into different groups, based

on one or more features of the data (Jain et al., 1999). This tool explores the data

structure and attempt to group objects into clusters such that the objects in the

same clusters are similar and objects from different clusters are dissimilar. Let 𝑋 =

{x1,x2, ...,x𝑛} be a set of 𝑑-dimensional 𝑛 vectors in the given search space 𝑆. The

𝑖th vector x𝑖 corresponds to the 𝑖th object in 𝑆 and each element 𝑥𝑖,𝑗 characterizes

the 𝑗th value of the 𝑖th vector where 𝑖 = 1, ..., 𝑛 and 𝑗 = 1, ..., 𝑑. Given the set of

vectors 𝑋, the aim of a clustering algorithm is to find the optimal set of 𝐾 clusters

𝐶* = {𝐶1, 𝐶2, ..., 𝐶𝐾}, 𝐶𝑝 ∩ 𝐶𝑞 = ∅ where 𝑝, 𝑞 ∈ {1, 2, ..., 𝐾} and 𝑝 ̸= 𝑞, in such a

way that the objects inside a cluster are very similar, whereas the objects located in

distinct clusters are very different based on a given similarity measure function.

As it is mentioned, clustering is the method of grouping objects of a dataset into

distinct partitions based on some similarity measures. It is shown that usually the

similarity between two different vectors x𝑖 and x𝑗 in a given feature space 𝑆 is related

to the amount of distance between them Jain et al. (1999). As a general method the

1Selected datasets are in fact labeled. Hence, we have been able to measure the average ’accuracy’
on clusters, assuming that each of them is actually related to a label.

54

distance between objects of a given 𝑑-dimensional vector space can be found using

the Minowsky metric given by Hamerly and Elkan (2003):

𝐷𝑝(x𝑖,x𝑗) =

(︂ 𝑑∑︁
𝑡=1

(︀
𝑥𝑖,𝑡 − 𝑥𝑗,𝑡

)︀𝑝)︂1/𝑝

(4.1)

The Euclidean and Manhattan distance measures are two special cases of the Mi-

nowsky metric when 𝑝 = 2 and 𝑝 = 1, respectively Jain et al. (1999). It is shown in

Hamerly and Elkan (2003) that the distances between vectors increase dramatically

with the growth of feature space dimensions. So the Minowsky metric is not efficient

enough dealing with high dimensional clustering problems. As an alternative, the

cosine metric can be used due to its vector normalization over a common range:

𝐷𝑐𝑜𝑠𝑖𝑛𝑒(x𝑖,x𝑗) =

𝑑∑︀
𝑡=1

𝑥𝑖,𝑡𝑥𝑗,𝑡

‖ x𝑖 ‖‖ x𝑗 ‖
(4.2)

The Mahalanobis metric is another distance measure which is defined by Jain et al.

(1999):

𝐷2
𝑚(x𝑖,x𝑗) = (x𝑖 − x𝑗)

∑︀−1(x𝑖 − x𝑗)
𝑇 (4.3)

where
∑︀−1 is the covariance matrix of the vectors and 𝑇 stands for the transpose

operation. This metric takes into account the correlations of the dataset and in

this way easily considers different associations between features and thus is a scale-

invariant measure.

There is always a question for clustering analysis which is how to evaluate the

goodness of the results of a clustering algorithm. In order to answer to this question,

many validity indexes are introduced in terms of statistical and mathematical func-

tions Halkidi and Vazirgiannis (2001). In some cases, these measures can be used

to determine the number of clusters. The clustering validity functions are defined to

ideally provide three aspects of clustering:

(1) cohesion: The objects within a cluster should be as similar to each other as

possible.

55

(2) separation: The objects inside different clusters should be as dissimilar to each

other as possible.

(3) connectivity : The neighboring objects in the search space should belong to the

same cluster.

However, the concept of separation is related to and opposite of cohesion of clusters.

There are two main groups of validity functions which are named internal and ex-

ternal criteria.The internal validity criteria attempt to evaluate the quality of the

results of data clustering without having access to any external information. Sum of

Squares Error (SSE) (Halkidi and Vazirgiannis, 2001), Chou-Su (CS) measure Chou

et al. (2004), Davies-Bouldin (DB) measure Davies and Bouldin (1979b), and Sil-

houtte Coefficient (CS) are some of the well-known internal validity indexes in the

literature. The external criteria evaluate the goodness of the clustering results based

on some known information which are sometimes available in terms of data labels

in the clustering problems. Rand index Rand (1971) and Jaccard index Halkidi and

Vazirgiannis (2001) are two measures in the category of the 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 indexes which

need a reference clustering to evaluate the validity of solutions.

4.2 Multiobjective Clustering with Particle Swarm

Optimization

In this section, we propose a clustering method based on particle swarm optimization

algorithm Kennedy and Eberhart (2001) in a multiobjective framework (MCPSO).

MCPSO consists of two main phases named optimization and decision making. Two

conflicting objective functions are defined based on connectivity and cohesion with

the aim of obtaining well-separated, compact, and connected clusters. The optimiza-

tion phase results in a set of optimal clusterings, called pareto solutions Kasprzak and

Lewis (2001), which represent compromises among the conflicting objectives. Each

pareto solution is a trade-off partitioning with different number of clusters. Therefore,

MCPSO is also able to determine the optimal number of clusters, automatically. As

56

Figure 4-1: Example dataset for the NC algorithm. CC1, BC1, PC1, and CS1 in-
clude the core neighbors, density connected neighbors, extended neighbors, and final
neighbors of point 1, respectively.

anyone of the pareto solutions can be an acceptable clustering and considered opti-

mum in some respects, we apply a simple decision maker to select the best clustering

solution along the pareto solutions based on a compromise on two objectives.

In the clustering analysis, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is a local concept that measures the de-

gree to which neighboring data points in a dataset share the same cluster Handl

and Knowles (2007). Single linkage agglomerative clustering Voorhees (1985) and

other density-based clustering methods Ester et al. (1996) mainly use this concept

and are proper to find clusters with random shapes. k-nearest neighbors (KNN),

𝜖-neighborhood Ester et al. (1996), and the Neighborhood Construction (NC) algo-

rithm İnkaya and Özdemirel (2013) are some of the popular proposed neighborhood

construction algorithms. It is stated in İnkaya and Özdemirel (2013) that the NC

algorithm shows better performance in comparison with KNN and 𝜖-neighborhood

dealing with clusters with arbitrary shapes and different densities. Moreover, NC is

capable of finding neighbors of a single data point and can generate sub-clusters by

merging the data points having common neighbors. NC performs four steps, which

are briefly described here:

Step 1: For each point 𝑖 in a dataset 𝐷, a list 𝐿𝑖 is generated, which contains all

57

other points listed in increasing order of their distance to point 𝑖. Be 𝑇𝑖 the set of all

points in 𝐷 but 𝑖 and 𝑇𝑖(𝑗) the 𝑗th member of the ordered set 𝑇𝑖, 𝑇𝑖(𝑗)’s density, say

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖(𝑗), is defined as the number of points in 𝐷 lying inside the sphere passing

through points 𝑖 and 𝑇𝑖(𝑗) with diameter 𝑑𝑖𝑇𝑖(𝑗). Points with density values equal

to and more than 0 are considered as the points with direct and indirect connec-

tions to point 𝑖, respectively. Points in 𝑇𝑖 that are closer to point 𝑖 than the nearest

point with indirect connection are named core neighbors of point 𝑖 and included in

set CC𝑖. The core neighbors set of point 1, CC1 = {2, 3}, is shown in Figure 1.

𝑇1 = {2, 3, 4, 5, 6, 7, 8, 9} and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦1 = {0, 0, 2, 1, 0, 2, 3, 0} are the increasing order

and density sets of point 1.

Step 2: The first point in 𝑇𝑖 at which the density starts to decrease is considered as

the break point, say 𝑏𝑟𝑒𝑎𝑘𝑖. A break point can be interpreted as the beginning of a

region with different density in 𝐷. Points in 𝑇𝑖 that are closer to point 𝑖 than 𝑏𝑟𝑒𝑎𝑘𝑖

are listed in 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 connected neighbors set BC𝑖. BC1 = {2, 3, 4} is presented for

point 1 in Figure 4.1.

Step 3: Point 𝑖 and 𝑇𝑖(𝑏𝑟𝑒𝑎𝑘𝑖) are indirectly connected if BC𝑖 ∩ BC𝑇𝑖(𝑏𝑟𝑒𝑎𝑘𝑖) ̸= ∅.

Therefore, 𝑏𝑟𝑒𝑎𝑘𝑖 and its subsequent points will be considered as extended neigh-

bors until the next break point cannot satisfy this condition. In Figure 1, the first

break point for point 1 is data point 5. The intersection of BC1 = {2, 3, 4} and

BC5 = {3, 1, 2} is nonempty. Hence, point 5 added to extended neighbors set for point

1 (PC1). Following the ordering in 𝑇1, another break point is found (point 6). As

BC1∩BC6 = ∅, the extended neighbors set PC1 for point 1 becomes PC1 = {2, 3, 4, 5}

(Figure 4.1).

Step 4: In the last step, first final neighbors set CS𝑖 of point 𝑖 is initialized as PC𝑖.

Then, a mutual connectivity test is conducted between point 𝑖 and all the members

of CS𝑖. The mutual connectivity test is explained in detail in (İnkaya and Özdemirel,

2013). Let CS𝑖(𝑗) be the 𝑗th member of the set CS𝑖. If point 𝑖 and point CS𝑖(𝑗)

pass the mutuality test, CS𝑖(𝑗) will be considered as the final neighbors of point 𝑖.

Otherwise, CS𝑖(𝑗) and the points coming after it will be removed from CS𝑖. After con-

ducting step 1 through step 4, CS1 = {2, 3, 4, 5} is obtained for point 1 (Figure 4.1).

58

Finally, sub-cluster 𝑀1 = {1, 2, 3, 4, 5} is created by adding point 1 itself to CS1.

As the obtained sub-clusters of all data points can be considered as a foundation of

a clustering solution, we applied this method to evaluate the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 objective

function value. It is worth nothing that the NC procedure is precomputed only once

in the initialization phase of the algorithm. Let 𝐾 and 𝑁 be the number of clus-

ters and data points, respectively. Connectivity of cluster 𝐶𝑖 with respect to the all

sub-clusters can be defined as:

𝐶𝑜𝑛𝑖 =
1

𝑁

𝑁∑︁
𝑗=1

| 𝐶𝑖 ∩𝑀𝑗 |
| 𝑀𝑗 |

(4.4)

In this equation, |𝐶𝑖∩𝑀𝑗 |
|𝑀𝑗 | takes a value of one if cluster 𝐶𝑖 and sub-cluster 𝑀𝑗 fully

overlap. If sub-cluster 𝑀𝑗 is part of a cluster other than 𝐶𝑖, then 𝐶𝑖 ∩𝑀𝑗 = ∅ and

consequently |𝐶𝑖∩𝑀𝑗 |
|𝑀𝑗 | will take a value of zero. In other cases, this value would be in

between zero and one which means sub-cluster 𝑀𝑗 is divided among cluster 𝐶𝑖 and

one or more other clusters. We define the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 objective function for all 𝐾

clusters as:

𝑓1 =
1

𝐾

𝐾∑︁
𝑖=1

𝐶𝑜𝑛𝑖 (4.5)

The value of 𝑓1 would be in the interval [0, 1]. A value near to zero indicates that

neighboring data points are divided in the different clusters whereas a value close

to one shows that neighboring data points are mostly assigned to the same clusters.

Therefore, as an objective, 𝑓1 should be maximized.

In order to express cluster 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, we compute sum of the maximum within-cluster

distances between data points:

𝑓2 =
1

𝐾

𝐾∑︁
𝑖=1

[︃
1

𝑁𝑖

∑︁
x𝑝∈𝐶𝑖

max
x𝑞∈𝐶𝑖

{︁
𝐷(x𝑝,x𝑞)

}︁]︃
(4.6)

where 𝐷(., .) is the 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 distance function (such as Euclidean distance) and 𝑁𝑖 is

the number of data points in cluster 𝐶𝑖. As an objective, 𝑓2 should be minimized to

obtain maximum similarity among data points assigned to each cluster. This function

59

has been applied as the numerator of CS measure in Chou et al. (2004) and proved to

be more efficient in tackling clusters of different densities and/or sizes than the other

popular validity measures.

These two objective functions are able to balance each other’s inclination towards in-

creasing or decreasing the number of clusters. When the number of clusters increases,

𝑓1 worsens (decreases) and 𝑓2 improves (decreases). As it is mentioned earlier, the

concept of 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 can be perceived as the opposite of 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, so we only con-

sidered 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 to define the objective functions.

Particle Swarm Optimization (PSO) Kennedy and Eberhart (2001) is inspired by

the social and cognitive behavior of birds in a flock or fish in a school adapting to

their environments to find a source of food. PSO leads the population of particles

(swarm) toward the best area of the search space to find the global optimal solution.

In PSO, a velocity vector is used to update the current position of each particle in

the swarm. The velocity vector is updated based on the memory gained by each

particle as well as the knowledge gained by the swarm as a whole. In other words,

particles adapt themselves to the environment using both their own memory and the

knowledge gained by the swarm. The position x of particle 𝑖 at iteration 𝑘 is updated

by the following equation:

x𝑘+1
𝑖 = x𝑘

𝑖 + v𝑘+1
𝑖 ∆𝑡 (4.7)

where v𝑘+1
𝑖 is the corresponding velocity vector, and ∆𝑡 is the time step value Shi

and Eberhart (1998a). The velocity vector of each particle is calculated as:

v𝑘+1
𝑖 = 𝑤v𝑘

𝑖 + 𝑐1𝑟1

(︀
p𝑘
𝑖 − x𝑘

𝑖

)︀
∆𝑡

+ 𝑐2𝑟2

(︀
p𝑘
𝑔 − x𝑘

𝑖

)︀
∆𝑡

(4.8)

where v𝑘
𝑖 is the velocity of particle 𝑖 at iteration 𝑘, 𝑟1 and 𝑟2 are random numbers

between 0 and 1, p𝑘
𝑖 shows the best position of particle 𝑖 which is obtained so far

(personal best), and p𝑘
𝑔 corresponds to the global best position in the swarm at

iteration 𝑘 (global best). Three other terms are problem-dependent parameters. 𝑐1

and 𝑐2 represent trust parameters, indicating how much confidence the current particle

has in itself (𝑐1 or cognitive parameter) and how much it has in the swarm (𝑐2 or

60

social parameter). Complete mathematical analysis of PSO is beyond the scope of

this study; however, knowing 𝑟1, 𝑟2 ∈ [0, 1], it is demonstrated in Oliveira et al. (2002)

that the necessary and sufficient conditions for convergence of PSO can be derived

as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 < (𝑐1𝑟1 + 𝑐2𝑟2) < 4

(𝑐1𝑟1 + 𝑐2𝑟2)

2
− 1 < 𝑤 < 1

(4.9)

where 𝑤 is the inertia weight factor which plays an important role to control explo-

ration and exploitation in the search space and convergence of PSO. A large amount

of the inertia weight factor increases the ability of global search, while a small amount

of the inertia weight factor facilitates a local search. The algorithm has a tendency to

search more globally at the beginning and more locally at the end of the run course by

reducing 𝑤 from a relatively large value to a small value throughout the whole PSO

process. It is also demonstrated that, compared with all fixed inertia weight factors,

a dynamic inertia weight starting with a value close to 1 and dropping to 0.1 during

the run course will give the best performance to PSO Shi and Eberhart (1998a).

The original form of PSO does not have essential capabilities for handling multiob-

jective (MO) optimization problems. But, recently, some different approaches have

been proposed that used the basic concept of PSO to solve MO problems (MOPSO)

Reyes-Sierra and Coello (2006). A MO optimization problem can be defined as the

problem of finding a set of 𝑛 vectors X = [𝑋1, 𝑋2, ..., 𝑋𝑛] which satisfies 𝑚 equal-

ity constraints ℎ𝑖(X) = 0, 𝑖 = 1, ...,𝑚 and 𝑝 inequality constraints 𝑔𝑗(X) < 0,

𝑗 = 1, ..., 𝑝 and optimizes (minimize or maximize) a vector of 𝑘 objective functions

𝐹 (X) = [𝑓1(X), 𝑓1(X), ..., 𝑓𝑘(X)]𝑇 , simultaneously. For MO problems, each objec-

tive function achieves its optimum at different points. Thus, the concept of pareto

optimality is used to consider this type of problems (Kasprzak and Lewis, 2001).

Considering a minimization problem, a decision vector X* ∈ X is called pareto op-

timal (non-dominated) solution if and only if there exists no X′ ∈ X such that

𝑓𝑖(X
′) ≤ 𝑓𝑖(X

*), for 𝑖 = 1, ..., 𝑘, and with 𝑓𝑖(X
′) < 𝑓𝑖(X

*) for at least one 𝑖.

61

The recent MOPSO works applied the concept of pareto optimality to select non-

dominated particles in a swarm as leaders to converge the solutions to the true pareto

front Reyes-Sierra and Coello (2006). In the case of MO problems, each particle could

have a set of different leaders from which just one must be selected in order to update

its position. The set of leaders (non-dominated solutions) found during the optimiza-

tion process is usually stored in a different repository from the swarm. These stored

non-dominated solutions are used as the leaders when the particles’ positions have

to be updated in the search space. Moreover, the repository’s contents are usually

considered as the final pareto optimal solutions of the algorithm.

We applied the locus-based adjacency genetic scheme proposed in Park and Song

(1998) to construct particles in a swarm. In this graph-based scheme, shown in

Figure 2, each particle is presented as a vector consisting of 𝑁 elements where 𝑁 is

the number of data points. These elements can take values in the range {1, 2, ..., 𝐾},

where 𝐾 is the number of clusters. Let 𝑎 be the value in the connections vector that

is assigned to the data point 𝑏. This assignment is interpreted as a link between data

points 𝑎 and 𝑏 which means they belong to the same cluster in the clustering solution.

All connected data points are then placed inside the same cluster and are assigned

to their cluster number in the particle vector (Figure 4.2). The main advantage of

using this scheme is that the number of clusters can be determined automatically for

each particle. This particle is indeed representative of a candidate clustering solution.

Therefore, it is possible for the algorithm to compare particles as clustering solutions

with different number of clusters and lead them toward global optimum in just one

run.

As defined in the previous section, a discrete particle presentation is used in this

work to set up the clustering methodology. Therefore, it is not possible to use PSO in

its original (continuous) form and we use the extension of PSO algorithm introduced

in Jarboui et al. (2007) within our MO framework. This extended version is able to

deal with a combinatorial representation of PSO by adding only one more parameter

to continuous PSO. Here we introduce the algorithm briefly, but the comprehensive

combinatorial PSO is defined in details in Jarboui et al. (2007). Let particle 𝑖 be

62

Figure 4-2: The locus-based adjacency method used to transform nine data points to
a particle vector which represents a clustering solution consisting of three clusters.

shown as a candidate clustering solution vector x𝑘
𝑖 =

{︀
𝑥𝑘
𝑖1, 𝑥

𝑘
𝑖2, ..., 𝑥

𝑘
𝑖𝑁

}︀
at iteration

𝑘. Another vector y𝑘
𝑖 =

{︀
𝑦𝑘𝑖1, 𝑦

𝑘
𝑖2, ..., 𝑦

𝑡
𝑖𝑁

}︀
is assigned to vector x that can take values

in {−1, 0, 1}. Vector y𝑘
𝑖 transforms the discrete and continuous representations of

particle 𝑖 to each other and its 𝑗th element is defined by:

𝑦𝑘𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑥𝑘
𝑖𝑗 = 𝑝𝑘𝑖𝑗,

−1 if 𝑥𝑘
𝑖𝑗 = 𝑝𝑘𝑗𝑔,

1 or − 1 randomly if 𝑥𝑘
𝑖𝑗 = 𝑝𝑘𝑖𝑗 = 𝑝𝑘𝑗𝑔,

0 if otherwise.

(4.10)

where 𝑝𝑘𝑖𝑗 and 𝑝𝑘𝑗𝑔 are the 𝑗th elements of personal best vector p𝑘
𝑖 =

{︀
𝑝𝑘𝑖1, 𝑝

𝑘
𝑖2, ..., 𝑝

𝑘
𝑖𝑁

}︀
and global best vector p𝑘

𝑔 =
{︀
𝑝𝑘1𝑔, 𝑝

𝑘
2𝑔, ...𝑝

𝑘
𝑁𝑔

}︀
, respectively. Elements of the particle’s

velocity vector v𝑘+1
𝑖 =

{︀
𝑣𝑘+1
𝑖1 , 𝑣𝑘+1

𝑖2 , ..., 𝑣𝑘+1
𝑖𝑁

}︀
are updated by:

𝑣𝑘+1
𝑖𝑗 = 𝑤𝑣𝑘𝑖𝑗 + 𝑐1𝑟1

(︀
−1 − 𝑦𝑘𝑖𝑗

)︀
+ 𝑐2𝑟2

(︀
1 − 𝑦𝑘𝑖𝑗

)︀
(4.11)

Then the update solution 𝑦𝑖𝑗 is calculated by:

63

𝑦𝑘+1
𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

+1 if 𝜆𝑘+1
𝑖𝑗 > 𝛼,

−1 if 𝜆𝑘+1
𝑖𝑗 < −𝛼,

0 if otherwise.

(4.12)

where 𝜆𝑘+1
𝑖𝑗 = 𝑦𝑘𝑖𝑗 + 𝑣𝑘+1

𝑖𝑗 and 𝛼 is the parameter that adjusts intensification and

diversification of the algorithm. Finally, following rules result in elements of the new

particle vector at iteration 𝑘 + 1:

𝑥𝑘+1
𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑝𝑘𝑗𝑔 if 𝑦𝑘+1
𝑖𝑗 = 1,

𝑝𝑘𝑖𝑗 if 𝑦𝑘+1
𝑖𝑗 = −1,

random value in {1, 2, ..., 𝐾} if otherwise.

(4.13)

where 𝐾 is the number of clusters. The small and large values of 𝛼 incline the PSO

toward intensification (setting 𝑥𝑘+1
𝑖𝑗 to 𝑝𝑘𝑗𝑔 or 𝑝𝑘𝑖𝑗) and diversification (setting 𝑥𝑘+1

𝑖𝑗 to

other than values).

The proposed Multiobjective Clustering Particle Swarm Optimization (MCPSO)

algorithm is discussed in this section:

1. Initialization: A random distribution of initial swarm is generated by using the

K-means algorithm with different number of clusters and an initial set of random

velocities is assigned to them. The personal best for each particle is also initialized

to the starting location of that particle.

2. Evaluations: The objective functionsâĂŹ (Equation 4.5 and Equation 4.6) values

are evaluated for the given input vector of particles.

3. Analysis: The concept of MaxiMin strategy Simon (1958) is applied here to

determine pareto optimal solutions. This method has some valuable advantages with

regard to MO optimization problems. For instance, MaxiMin strategy needs no nich-

64

Figure 4-3: Three particles of the multiobjective clustering problem based on con-
nectivity, 𝑓1, and cohesion, 𝑓2, as the objective functions. Particle 1 and particle 2
dominate particle 3 and can be selected as the candidate clustering (pareto) solutions
considering the trade-off between two objective functions (𝑓1 should be maximized
and 𝑓2 should be minimized).

ing or clustering technique for preserving the diversity of optimal solutions along the

pareto front. This property significantly decreases the computational cost of the opti-

mizer. The applied strategy is described in detail in Li (2004) This method improves

the convergence and diversity of the pareto optimal solutions. As mentioned before,

the set of found non-dominated particles is stored in a repository different from the

swarm.

4. Personal best selection: Selection of personal bests is straightforward. If the

current particle vector x𝑘
𝑖 dominates its previous personal best particle, p𝑘

𝑖 at itera-

tion 𝑘 + 1, then p𝑘+1
𝑖 is set to the current particle 𝑖 vector.

5. Leader selection: As mentioned before, the leader selection is an important step

of the MOPSO algorithm. A very simple approach is to randomly select one of the

non-dominated particles as a new leader. In this way, each non-dominated solution

can be considered as a leader, p𝑘
𝑔 , in Equation 4.10. Here, we choose randomly a

leader from the top portion of the best particles at each iteration.

65

6. Updating velocity vectors: The new velocity vector for each particle is calcu-

lated using Equation 11. In this study, the inertia weight factor, 𝑤𝑘, is dynamically

adjusted throughout the optimization process Hart and Vlahopoulos (2010):

𝑤𝑘 = (𝑤max − 𝑤min)

(︂
𝑘max − 𝑘

𝑘max

)︂
+ 𝑤min (4.14)

where 𝑘max is the maximum number of iteration. Equation 4.14 contains three pa-

rameters which are defined to control the magnitude of the velocity vector during the

optimization. When a bound constraint is violated, the algorithm sets the value of

𝑤𝑘 to 0. Thus, the particle only uses its cognitive and social experiences to update

its position and comes back into the feasible space.

7. Updating the particle vectors: The particle vectors in the swarm are updated

using Equation 12 and Equation 13. The selected leader in step 5 is used as p𝑘
𝑔 in

this equation.

8. Termination criterion: We applied a maximum number of iteration 𝑘𝑚𝑎𝑥 to

terminate the algorithm.

Figure 4.3 illustrates a set of clustering solutions that correspond to a tradeoff be-

tween two objective functions proposed. Pareto solutions are depicted as gray circles

which dominate other clustering candidates shown as white circles. The solutions to

the top right of the pareto front, such as particle 1, correspond to the particles that

made effort to achieve solutions with higher number of neighboring data points in the

same cluster (maximizing 𝑓1 with lower number of clusters). In contrast, the solutions

close to the bottom left of the pareto front, such as particle 2, represent particles that

were more successful in creating compact clusters (minimizing 𝑓2 with higher number

of clusters). The other dominated particles, such as particle 3, were not successful

to obtain well connected and compact clustering solutions in comparison with the

pareto ones.

Pareto optimal solutions represent a set of solutions in the sense that improving the

value in one objective function leads to a degradation in at least one other objective

function. Therefore, a decision maker is required to make a tradeoff decision when

66

Figure 4-4: Distance technique to find final solution as the closest solution in the
pareto set to the utopia location.

presented with a large finite number of pareto solutions. A decision maker usually

chooses only one point or a few points based on some predefined criteria. Several

methods exist to determine which member of pareto set should be selected as the

final solution Kasprzak and Lewis (2001). Here, we use a distance technique that

finds the solution in the pareto set which has the minimum distance from an ideal

solution called utopia point. We define utopia location as the intersection point of

the lines passed through the top right and bottom left solutions of the pareto front

in the area of possible outcomes (Fig 4). In other words, coordinates of the utopia

point is the best values obtained for each objective function during the optimization

process.

4.3 Experimental Results and Discussion

In this section, we empirically evaluate the performance of MCPSO. The test datasets

and clustering validity criteria are presented. Then, we perform a set of experiments

in order to set the parameters of MCPSO by using some pilot datasets. Finally, the

performance of our proposed algorithm is compared with other clustering algorithms.

We implemented MCPSO in Python 2.7.6 on a Intel Core i7, with 2.4 GHz, 8 GB

67

Table 4.1: The MCPSO algorithm parameters
Parameter Description Value

Δ𝑡 Time step value 1
𝑐1 Cognitive parameter 1.42
𝑐2 Social parameter 1.63
𝑟1 Random value [0, 1]
𝑟2 Random value [0, 1]
𝑤max Maximum value of inertia weight factor 0.9
𝑤min Minimum value of inertia weight factor 0.4
𝛼 Decision parameter 0.5
𝑘max Number of iterations 1000
𝐾max Maximum number of clusters 150 ∼ 10
𝑁 Number of particles 2×𝐾max

𝑃max Maximum number of non-dominated solutions 150

RAM in Ubuntu 14.04 environment.

In this study, we use 27 different experimental datasets, collected from reposi-

tories in (Bache and Lichman, 2013; Franti, 2015), to test our method. These are

2- and higher-dimensional datasets with outliers and intra- and inter-clusters varia-

tions, which consist of different shapes of clusters (such as spiral, circular, elongated).

Figure 4.5 presents some example of 2-dimensional datasets.

Rand (R) index is used to compare the performance of MCPSO with other clus-

tering algorithms. The R index is a measure of the similarity between the obtained

clusters and the known correct clusters Rand (1971):

R =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
(4.15)

When the decision is to assign two data points to the same cluster, 𝑡𝑝 and 𝑓𝑝 stand for

the number of correct and incorrect assignments, respectively, and when the decision is

to assign two data points to different clusters, 𝑡𝑛 and 𝑓𝑛 are the number of correct and

incorrect assignments, respectively. The R index thus has a value in the interval [0,1]

and its value closer to 1 indicates better quality of the obtained clusters comparing

with the true clusters.

In this study, a comprehensive experimental design is conducted in order to de-

termine the best settings for the parameters of MCPSO. We selected 10 datasets

68

Figure 4-5: Exmple of 2-dimensional datasets with different shapes of clusters.

69

with different properties of all datasets and carried out 30 independent experiments.

Parameter 𝐾max is the maximum number of clusters expected in the dataset. We

select 150 as a default which is quite high large value. When the dataset has few

number of clusters, 𝐾max can be set to smaller values, such as 10, to construct more

accurate clustering solutions. We also set the number of particles, 𝑁 , to twice 𝐾max,

and recorded the iteration number in which the obtained non-dominated solutions

had not been changed for 50 iterations. We experimentally assessed that this value is

less than 1000 in all experiments and, therefore, we set it as the maximum iteration

number 𝑘max. In all experiments, the final number of non-dominated clustering solu-

tions are less than 100. Therefore, we selected 𝑃max = 150 as the size limit of number

of pareto solutions which is more than sufficient to store all non-dominated solutions.

Investigating different random values of the cognitive and social parameters, we

found that constant 𝑐1 = 1.42 and 𝑐2 = 1.63 resulted in better quality solutions in

term of R. The same values are used for all the datasets. As discussed, Equation 4.14

adaptively controls parameter 𝑤𝑘. Thus, only its limits have to be chosen by the user.

The maximum inertia weight factor, 𝑤max, is typically 0.9, as it allows to quickly

find a global optimum. At each iteration, this value is repeatedly decreased (until

𝑤min = 0.4) to control the exploratory and the explotative nature of the algorithm

during the optimization process Shi and Eberhart (1998b).

As in Jarboui et al. (2007), the authors do not describe how the decision parameter

𝛼 is set, here we selected 𝛼 = 0.5 to keep the balance between intensification and

diversification of the algorithm. A time step unit ∆𝑡 = 1 is used throughout this

study. All parameter settings used for MCPSO in our experimental study are given

in Table 4.1.

In this section, the performance of the MCPSO algorithm is compared with the

results of K-means, signle-linkage, DBSCAN Ester et al. (1996), and NC-closures

İnkaya and Özdemirel (2013). K-means and single-linkage are the representatives

of the partitional and hierarchical clustering algorithms, respectively. The density-

based clustering is performed by DBSCAN and NC-closures is the method that uses

the concept of neighborhood construction to create clusters by merging the obtained

70

Table 4.2: Mean and standard deviation of the Rand index (R) measured one the
outputs of MCPSO (over 40 independent runs), K-means, single-linkage, DBSCAN,
and NC-closures.

Dataset 𝐾 𝐷 MCPSO K-means single-linkage DBSCAN NC-closures
Jain 2 2 0.95± 0.008 0.89± 0.012 0.75± 0.004 0.96±0.002 0.90± 0.006

Flame 2 2 0.91±0.021 0.83± 0.006 0.85± 0.003 0.89± 0.051 0.87± 0.042

Thyoid 2 5 0.90±0.015 0.82± 0.007 0.80± 0.017 0.78± 0.002 0.81± 0.012

Wdbc 2 32 0.92± 0.009 0.77± 0.045 0.93±0.004 0.86± 0.014 0.84± 0.027

Pathbased 3 2 0.94±0.006 0.84± 0.005 0.85± 0.037 0.90± 0.005 0.89± 0.007

Spiral 3 2 0.89± 0.003 0.79± 0.084 0.87± 0.002 0.93±0.020 0.81± 0.007

Compound 6 2 0.92±0.075 0.81± 0.003 0.75± 0.052 0.80± 0.016 0.79± 0.014

Aggregation 7 2 0.97±0.028 0.94± 0.003 0.89± 0.014 0.88± 0.023 0.85± 0.017

Glass 7 9 0.95± 0.007 0.96±0.014 0.90± 0.004 0.92± 0.006 0.90± 0.016

Unbalance 8 2 0.97±0.002 0.95± 0.032 0.88± 0.062 0.91± 0.088 0.90± 0.023

Yeast 10 8 0.91±0.035 0.85± 0.005 0.783± 0.037 0.73± 0.058 0.77± 0.014

R15 15 2 0.94±0.042 0.91± 0.037 0.87± 0.009 0.89± 0.014 0.90± 0.007

S 1 15 2 0.85±0.005 0.79± 0.014 0.64± 0.014 0.58± 0.036 0.76± 0.004

S 2 15 2 0.80±0.014 0.64± 0.075 0.48± 0.003 0.41± 0.032 0.56± 0.042

S 3 15 2 0.76±0.027 0.57± 0.034 0.39± 0.098 0.32± 0.063 0.49± 0.007

S 4 15 2 0.79±0.018 0.50± 0.031 0.33± 0.005 0.37± 0.011 0.43± 0.003

Dim032 16 32 0.90± 0.001 0.92±0.006 0.86± 0.003 0.90± 0.007 0.83± 0.13

Dim064 16 64 0.90±0.018 0.89± 0.023 0.85± 0.033 0.89± 0.017 0.84± 0.074

Dim128 16 128 0.88±0.038 0.87± 0.009 0.81± 0.000 0.85± 0.017 0.83± 0.009

Dim256 16 256 0.83±0.001 0.80± 0.044 0.78± 0.006 0.81± 0.005 0.75± 0.033

Dim512 16 512 0.80±0.022 0.76± 0.000 0.70± 0.007 0.73± 0.027 0.70± 0.063

A 1 20 2 0.92± 0.033 0.94±0.035 0.88± 0.017 0.92± 0.011 0.90± 0.003

A 2 35 2 0.90± 0.000 0.91± 0.017 0.83± 0.046 0.90±0.098 0.86± 0.000

A 3 50 2 0.88±0.002 0.86± 0.040 0.79± 0.066 0.86± 0.011 0.81± 0.000

Birch 1 100 2 0.82±0.042 0.53± 0.037 0.30± 0.067 0.36± 0.001 0.49± 0.003

Birch 2 100 2 0.76±0.087 0.59± 0.034 0.32± 0.067 0.41± 0.000 0.61± 0.003

Birch 3 100 2 0.72±0.018 0.51± 0.040 0.31± 0.007 0.44± 0.098 0.45± 0.023

71

Table 4.3: Mean and standard deviation of the average number of clusters (Av. 𝐾) de-
termined by MCPSO (over 40 independent runs), K-means, single-linkage, DBSCAN,
and NC-closures.

Dataset 𝐾 𝐷 MCPSO K-means single-linkage DBSCAN NC-closures
Jain 2 2 2.13± 0.001 2.27± 0.007 5.35± 0.001 2.10±0.000 2.20± 0.003

Flame 2 2 2.14±0.003 3.14± 0.006 4.21± 0.011 2.41± 0.005 2.26± 0.002

Thyoid 2 5 2.56±0.008 3.36± 0.003 9.63± 0.010 13.68± 0.012 5.11± 0.002

Wdbc 2 32 2.50± 0.005 10.42± 0.005 2.47±0.001 4.89± 0.009 3.65± 0.007

Pathbased 3 2 3.26±0.003 8.36± 0.022 8.45± 0.003 6.12± 0.003 5.44± 0.006

Spiral 3 2 3.63± 0.002 10.98± 0.008 14.32± 0.022 3.43±0.006 7.42± 0.001

Compound 6 2 6.78±0.009 12.63± 0.003 9.32± 0.005 35.12± 0.006 24.62± 0.004

Aggregation 7 2 7.22±0.007 7.86± 0.004 15.63± 0.006 19.37± 0.003 10.42± 0.001

Glass 7 7 7.64± 0.004 7.37±0.008 15.74± 0.023 9.63± 0.001 17.49± 0.006

Unbalance 8 2 8.31±0.008 9.11± 0.006 0.88± 0.006 12.84± 0.007 10.42± 0.066

Yeast 10 8 11.62±0.007 15.32± 0.003 27.32± 0.004 32.14± 0.013 25.13± 0.003

R15 15 2 15.96±0.006 17.68± 0.004 35.24± 0.017 24.32± 0.004 18.34± 0.002

S 1 15 2 19.34±0.002 25.34± 0.004 32.13± 0.004 39.63± 0.007 29.42± 0.002

S 2 15 2 21.67±0.035 31.46± 0.007 44.12± 0.004 49.13± 0.007 34.34± 0.004

S 3 15 2 27.13±0.007 41.63± 0.007 47.63± 0.009 37.36± 0.007 30.14± 0.004

S 4 15 2 30.11±0.005 51.63± 0.007 87.16± 0.001 76.61± 0.011 64.38± 0.002

Dim032 16 32 20.14± 0.003 18.34±0.003 28.46± 0.074 25.74± 0.004 25.46± 0.007

Dim064 16 64 22.46±0.006 37.63± 0.009 35.64± 0.006 41.63± 0.037 39.14± 0.003

Dim128 16 128 23.63±0.007 28.34± 0.003 35.14± 0.002 31.02± 0.008 26.14± 0.002

Dim256 16 256 24.63±0.004 29.13± 0.002 51.33± 0.002 34.63± 0.002 30.11± 0.006

Dim512 16 512 29.34±0.004 35.41± 0.011 43.45± 0.023 54.78± 0.032 31.06± 0.047

A 1 20 2 22.14± 0.006 21.36±0.046 42.16± 0.074 24.16± 0.009 29.75± 0.037

A 2 35 2 39.63± 0.004 47.13± 0.063 57.14± 0.008 42.14±0.013 40.16± 0.006

A 3 50 2 57.32±0.005 64.35± 0.046 86.47± 0.046 60.19± 0.037 63.18± 0.007

Birch 1 100 2 114.63±0.007 135.32± 0.008 151.42± 0.041 172.63± 0.084 169.41± 0.033

Birch 2 100 2 125.74±0.087 163.47± 0.011 206.14± 0.078 187.96± 0.033 154.74± 0.063

Birch 3 100 2 136.45±0.016 179.84± 0.047 230.67± 0.011 241.63± 0.003 200.41± 0.067

72

closures. K-means and single-linkage are run with different number of clusters as an

input. We vary this number between 2-10% of the number of points in the datasets

with increments of 1, and the best R index value is selected for each algorithm. The

number of clusters found and quality of clustering solutions of DBSCAN are affected

by a parameter named MinPts (within a range of 1 to 15) Dunn (1974). Therefore, we

run DBSCAN with all possible MinPts values and again select the best R value as the

final result. In order to minimize the effect of the stochastic nature of MCPSO on the

R index and on number of clusters, 40 independent trails are ran and (as explained)

the decision making process is implemented to select the final clustering from the

obtained non-dominated solutions in each run. Finally, the solution corresponding to

the best R value is selected as the final clustering.

The results over 27 datasets are summarized in Table 4.2 and Table 4.3. It can

be seen that single-linkage, K-means, and DBSCAN have better performance on only

a few datasets (Wdbc, Glass, Dim032, A 1, A2, Jain , and Spiral) in terms of R and

the average number of clusters (Av. 𝐾). There are elongated shape and spatially

well-separated clusters in Wbdc dataset which is the cluster model assumed by the

single-linkage method. Therefore, this algorithm shows a good performance on Wbdc.

However, MCPSO has obtained the second best values of R and 𝐾 among the other

algorithms dealing with this dataset. Glass, Dim032, and A 1 contain spherical

Gaussian clusters which can be assumed as the proper clustering shapes for K-means.

However, it is shown that by increasing the dimensions and/or the actual number of

clusters of the Dim (Dim064, Dim128, Dim256, and Dim512) and A (A 2 and A 3)

problem sets, MCPSO slightly surpasses K-means. DBSCAN is the algorithm which

shows a good performance dealing with arbitrary shape clusters. Even if a cluster

is completely surrounded (but not connected) by a different cluster, this method is

capable of obtaining promising results. Jain, Spiral, and A 2 are the representative

of such clustering problems. Again, it is presented that MCPSO resulted in R and

Av. 𝐾 values which are very close to the results of DBSCAN on Jain, Spiral, and A

2.

High dimensional Dim sets, Birch and S series, R15, and some other clustering

73

Table 4.4: Average running time of MCPSO, K-means, single-linkage, DBSCAN, and
NC-closures implemented in Python 2.7.6 on a Intel Core i7, with 2.4 GHz, 8 GB
RAM in Ubuntu 14.04 environment. Average characteristic values in all datasets are
shown to provide an overview of the number of data points (𝑁), dimensions (𝐷), and
clusters (𝐾) considered in our experimental study.
Average characteristics Average Running Time (sec)

𝑁 𝐷 𝐾 MCPSO K-means single-linkage DBSCAN NC-closures
5183.85 40 22.11 510.12 12.34 21.36 16.14 246.15

problems in Table 4.2 and Table 4.3 can be considered as difficult clustering problems

which contain clusters with large differences in densities, overlaps, and many outliers.

K-means and DBSCAN tend to subdivide elongated cluster shapes and single-linkage

tends to isolate outliers on datasets with overlaps. The average representative run-

ning times for the five algorithms in our experiments are presented in Table 4.4. The

average values of the number of data points, clusters, and dimensions are calculated

to show the characteristics of the all datasets. In general, experimental results point

out that the MCPSO algorithm is much more time consuming than K-means, DB-

SCAN, and single-linkage. This is basically due to its stochastic nature and to the

random behavior of particles. Therefore, the computational time can be considered

as the main limitation of the MCPSO algorithm which requires improvement.

Low values of R and the significant increase in 𝐾 (average) depend on the drawbacks

of K-means, single-linkage, and DBSCAN dealing with difficult clustering problems.

On the other hand, the results for MCPSO show the strong performance and ro-

bustness expected from the simultaneous optimization of the two objectives. While

the NC procedure takes care cluster 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 within the first objective function,

the second objective function helps MCPSO to achieve well-separated clusters. The

results obtained by NC-closures display that this method shows a more robust be-

havior, in comparison with K-means, single-linkage, and DBSCAN, in the task of

dealing with outliers in the datasets. However, as the separation is not independently

taken into account as an objective, NC-closures is not successful to overcome all other

methods in any problem.

74

5

Conclusions and open issues

Different swarm based clustering methodologies have been addressed in this thesis.

They represent improvements with respect to the state-of-the-art and conventional

algorithms. In the first part of the thesis, including Chapter 1, the state-of-the-art

swarm intelligence clustering algorithms have been presented.

In Chapter 2, it is shown that despite The K-means algorithm is a simple and

efficient clustering method that has been applied to many engineering problems, it

suffers from several drawbacks due to its choice of initializations. This chapter has

developed a combined algorithm for solving the clustering problem which is based

on the combination of Artificial Bee Colony algorithm and K-means technique. The

algorithm has been implemented and tested on several well known real datasets and

preliminary computational experience is very encouraging. In other word it has been

proved that the ABC+K-means algorithm will definitely converge to optimal solution

in almost runs. The ABC+K-means clustering algorithm developed in this paper can

be applied when the number of clusters is known a prior.

The main motivation for Chapter 3 was utilizing the notion of opposition values to

accelerate an ant-based algorithm called API (after the name of Pachycondyla API-

calis ants) for crisp clustering of real-world datasets. The performance of the proposed

algorithm is studied by comparing it with three different state-of-the-art clustering

algorithms and original version of API. The obtained results over five benchmark

datasets show that the enhanced API algorithm, called OBAPI, is able to outperform

75

four other algorithms over a majority of the datasets. The proposed method can

significantly decrease the number of function evaluations while improving the quality

of solutions in most cases without adding any new parameter to the original API.

Moreover, OBAPI is able to automatically find the optimal number of clusters and

does not need to know them in advance. It is also important to note that the re-

sults discussed in this work are only examined and valid for the clustering problems

used here. In other words, the proposed technique makes a heuristic method which

is only studied for clustering datasets with average number of features. As a part

of our future work, we plan to enhance and apply the OBAPI algorithm in bi- or

multi-clustering of some gene expression datasets which consist of high dimensional

data.

In Chapter 4, a multiobjective particle swarm optimization algorithm for parti-

tional clustering of different datasets is proposed. In order to achieve this goal, two

objective functions are defined to consider the concepts of 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛.

Each particle represents a possible clustering solution in the swarm and a set of non-

domintaed particles are obtained after each run of the algorithm. Finally, a simple

decision maker selects the best solution giving equal credits to each objective. The

performance of the proposed algorithm is studied in comparison with four different

conventional clustering algorithms. The obtained results over 27 benchmark datasets

show that the proposed method, called MCPSO, is able to outperform the other algo-

rithms in terms of precision and robustness over a majority of the datasets. Moreover,

MCPSO does not need to know the number of clusters in advance, as it is able to

automatically find it. As a part of our future work, we plan to enhance and ap-

ply the MCPSO algorithm to some real-world datasets which consist of more high

dimensional data.

76

Bibliography

I. E. Evangelou, D. G. Hadjimitsis, A. A. Lazakidou, and C. Clayton, “Data mining

and knowledge discovery in complex image data using artificial neural networks,”

in in Proc. Workshop Complex Reason. Geogr. Data, Paphos. Citeseer, 2001.

R. O. Duda, P. E. Hart et al., Pattern classification and scene analysis. Wiley New

York, 1973, vol. 3.

K. Fukunaga, Introduction to statistical pattern recognition. Academic press, 2013.

P. Hansen and B. Jaumard, “Cluster analysis and mathematical programming,” Math-

ematical programming, vol. 79, no. 1-3, pp. 191–215, 1997.

T. Lillesand, R. W. Kiefer, and J. Chipman, Remote sensing and image interpretation.

John Wiley & Sons, 2014.

M. Rao, “Cluster analysis and mathematical programming,” Journal of the American

statistical association, vol. 66, no. 335, pp. 622–626, 1971.

E. W. Forgy, “Cluster analysis of multivariate data: efficiency versus interpretability

of classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters,”

Computers, IEEE Transactions on, vol. 100, no. 1, pp. 68–86, 1971.

T. M. Mitchell et al., “Machine learning. wcb,” 1997.

E. Falkenauer, Genetic algorithms and grouping problems. John Wiley & Sons, Inc.,

1998.

77

S. Paterlini and T. Minerva, “Evolutionary approaches for cluster analysis,” in Soft

Computing Applications. Springer, 2003, pp. 165–176.

O. Maimon and L. Rokach, Data mining and knowledge discovery handbook. Springer,

2005, vol. 2.

R. Xu, D. Wunsch et al., “Survey of clustering algorithms,” Neural Networks, IEEE

Transactions on, vol. 16, no. 3, pp. 645–678, 2005.

S. Mitra, S. K. Pal, and P. Mitra, “Data mining in soft computing framework: a

survey,” Neural Networks, IEEE Transactions on, vol. 13, no. 1, pp. 3–14, 2002.

Y.-T. Kao, E. Zahara, and I.-W. Kao, “A hybridized approach to data clustering,”

Expert Systems with Applications, vol. 34, no. 3, pp. 1754–1762, 2008.

K. Alsabti, S. Ranka, and V. Singh, “An efficient k-means clustering algorithm,” 1997.

C. D. Nguyen and K. J. Cios, “Gakrem: a novel hybrid clustering algorithm,” Infor-

mation Sciences, vol. 178, no. 22, pp. 4205–4227, 2008.

T. Niknam, B. B. Firouzi, and M. Nayeripour, “An efficient hybrid evolutionary al-

gorithm for cluster analysis,” in World Applied Sciences Journal. Citeseer, 2008.

T. Niknam, J. Olamaie, and B. Amiri, “A hybrid evolutionary algorithm based on

aco and sa for cluster analysis,” Journal of Applied Science, vol. 8, no. 15, pp.

2695–2702, 2008.

T. Niknam, B. Amiri, J. Olamaei, and A. Arefi, “An efficient hybrid evolutionary

optimization algorithm based on pso and sa for clustering,” Journal of Zhejiang

University Science A, vol. 10, no. 4, pp. 512–519, 2009.

F. S. Chahine, A genetic algorithm that exchanges neighboring centers for fuzzy c-

means clustering. Nova Southeastern University, 2012.

M. Fathian, B. Amiri, and A. Maroosi, “Application of honey-bee mating optimization

algorithm on clustering,” Applied Mathematics and Computation, vol. 190, no. 2,

pp. 1502–1513, 2007.

78

K. Krishna and M. N. Murty, “Genetic k-means algorithm,” Systems, Man, and Cy-

bernetics, Part B: Cybernetics, IEEE Transactions on, vol. 29, no. 3, pp. 433–439,

1999.

U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based clustering technique,”

Pattern recognition, vol. 33, no. 9, pp. 1455–1465, 2000.

P. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, “An ant colony approach for

clustering,” Analytica Chimica Acta, vol. 509, no. 2, pp. 187–195, 2004.

D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Tech-

nical report-tr06, Erciyes university, engineering faculty, computer engineering de-

partment, Tech. Rep., 2005.

D. Karaboga and B. Basturk, “Artificial bee colony (abc) optimization algorithm for

solving constrained optimization problems,” in Foundations of Fuzzy Logic and Soft

Computing. Springer, 2007, pp. 789–798.

——, “A powerful and efficient algorithm for numerical function optimization: artifi-

cial bee colony (abc) algorithm,” Journal of global optimization, vol. 39, no. 3, pp.

459–471, 2007.

A. Baykasoglu, L. Ozbakir, and P. Tapkan, “Artificial bee colony algorithm and its

application to generalized assignment problem,” Swarm Intelligence: Focus on Ant

and particle swarm optimization, pp. 113–144, 2007.

M. F. Tasgetiren, Q.-K. Pan, P. N. Suganthan, and A. H. Chen, “A discrete artifi-

cial bee colony algorithm for the total flowtime minimization in permutation flow

shops,” Information Sciences, vol. 181, no. 16, pp. 3459–3475, 2011.

S. Z. Selim and M. A. Ismail, “K-means-type algorithms: a generalized convergence

theorem and characterization of local optimality,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, no. 1, pp. 81–87, 1984.

79

D. Karaboga and B. Basturk, “On the performance of artificial bee colony (abc)

algorithm,” Applied soft computing, vol. 8, no. 1, pp. 687–697, 2008.

D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,”

Applied mathematics and computation, vol. 214, no. 1, pp. 108–132, 2009.

R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of

eugenics, vol. 7, no. 2, pp. 179–188, 1936.

M. Forina et al., “Arvus-an extendible package for data exploration, classification and

correlation,” Institute of Pharmaceutical and Food Analysis and Technologies, Via

Brigata Salerno, vol. 16147, 1991.

T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, “A comparison of prediction accuracy, com-

plexity, and training time of thirty-three old and new classification algorithms,”

Machine learning, vol. 40, no. 3, pp. 203–228, 2000.

A. Dalli, “Adaptation of the f-measure to cluster based lexicon quality evaluation,”

in Proceedings of the EACL 2003 Workshop on Evaluation Initiatives in Natural

Language Processing: are evaluation methods, metrics and resources reusable? As-

sociation for Computational Linguistics, 2003, pp. 51–56.

J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques. Elsevier,

2011.

H. Frigui and R. Krishnapuram, “A robust competitive clustering algorithm with

applications in computer vision,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 21, no. 5, pp. 450–465, 1999.

Y. Leung, J.-S. Zhang, and Z.-B. Xu, “Clustering by scale-space filtering,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 12, pp.

1396–1410, 2000.

O. Younis and S. Fahmy, “Heed: a hybrid, energy-efficient, distributed clustering

approach for ad hoc sensor networks,” Mobile Computing, IEEE Transactions on,

vol. 3, no. 4, pp. 366–379, 2004.

80

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing

surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

S. Bandyopadhyay and U. Maulik, “Genetic clustering for automatic evolution of

clusters and application to image classification,” Pattern recognition, vol. 35, no. 6,

pp. 1197–1208, 2002.

S. Das, A. Abraham, and A. Konar, “Automatic clustering using an improved differ-

ential evolution algorithm,” Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, vol. 38, no. 1, pp. 218–237, 2008.

S. Z. Selim and K. Alsultan, “A simulated annealing algorithm for the clustering

problem,” Pattern recognition, vol. 24, no. 10, pp. 1003–1008, 1991.

M. G. Omran, A. P. Engelbrecht, and A. Salman, “Dynamic clustering using parti-

cle swarm optimization with application in unsupervised image classification,” in

Proceedings of world academy of science, engineering and technology, vol. 9, 2005.

M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization,” Computational

Intelligence Magazine, IEEE, vol. 1, no. 4, pp. 28–39, 2006.

E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from natural to

artificial systems. Oxford university press, 1999, no. 1.

N. Monmarché, G. Venturini, and M. Slimane, “On how pachycondyla apicalis ants

suggest a new search algorithm,” Future Generation Computer Systems, vol. 16,

no. 8, pp. 937–946, 2000.

I. Ciornei and E. Kyriakides, “Hybrid ant colony-genetic algorithm (gaapi) for global

continuous optimization,” Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, vol. 42, no. 1, pp. 234–245, 2012.

S. Aupetit, N. Monmarché, M. Slimane, and P. Liardet, “An exponential representa-

tion in the api algorithm for hidden markov models training,” in Artificial Evolution.

Springer, 2005, pp. 61–72.

81

N. Monmarché, M. Slimane, and G. Venturini, “On improving clustering in numerical

databases with artificial ants,” in Advances in Artificial Life. Springer, 1999, pp.

626–635.

E. D. Lumer and B. Faieta, “Diversity and adaptation in populations of clustering

ants,” in Proceedings of the third international conference on Simulation of adaptive

behavior: from animals to animats 3: from animals to animats 3. MIT Press, 1994,

pp. 501–508.

M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete opti-

mization,” Artificial life, vol. 5, no. 2, pp. 137–172, 1999.

N. Monmarché, M. Slimane, and G. Venturini, “Antclass: discovery of clusters in

numeric data by an hybridization of an ant colony with the kmeans algorithm,”

1999.

V. Ramos and J. J. Merelo, “Self-organized stigmergic document maps: Environment

as a mechanism for context learning,” arXiv preprint cs/0412075, 2004.

N. Labroche, N. Monmarche, and G. Venturini, “A new clustering algorithm based

on the chemical recognition system of ants,” in ECAI, 2002, pp. 345–349.

P. M. Kanade and L. O. Hall, “Fuzzy ants as a clustering concept,” in Fuzzy Infor-

mation Processing Society, 2003. NAFIPS 2003. 22nd International Conference of

the North American. IEEE, 2003, pp. 227–232.

J. Handl, J. D. Knowles, and M. Dorigo, “On the performance of ant-based clustering.”

in HIS, 2003, pp. 204–213.

J. Handl and B. Meyer, “Improved ant-based clustering and sorting in a document re-

trieval interface,” in Parallel Problem Solving from NatureâĂŤPPSN VII. Springer,

2002, pp. 913–923.

N. Labroche, N. Monmarché, and G. Venturini, “Antclust: ant clustering and

web usage mining,” in Genetic and Evolutionary ComputationâĂŤGECCO 2003.

Springer, 2003, pp. 25–36.

82

H. Azzag, N. Monmarche, M. Slimane, and G. Venturini, “Anttree: a new model for

clustering with artificial ants,” in Evolutionary Computation, 2003. CEC’03. The

2003 Congress on, vol. 4. IEEE, 2003, pp. 2642–2647.

C.-F. Tsai, C.-W. Tsai, H.-C. Wu, and T. Yang, “Acodf: a novel data clustering

approach for data mining in large databases,” Journal of Systems and Software,

vol. 73, no. 1, pp. 133–145, 2004.

V. Hartmann, “Evolving agent swarms for clustering and sorting,” in Proceedings of

the 7th annual conference on Genetic and evolutionary computation. ACM, 2005,

pp. 217–224.

L. Admane, K. Benatchba, M. Koudil, L. Siad, and S. Maziz, “Antpart: an algorithm

for the unsupervised classification problem using ants,” Applied Mathematics and

Computation, vol. 180, no. 1, pp. 16–28, 2006.

X. Huang, Y. Yang, and X. Niu, “Towards improving ant-based clustering-an chaotic

ant clustering algorithm,” in Computational Intelligence and Security Workshops,

2007. CISW 2007. International Conference on. IEEE, 2007, pp. 421–424.

Y. Wang, R.-W. Li, B. Li, P.-J. Zhang, and Y.-H. Li, “Research on an ant colony iso-

data algorithm for clustering analysis in real time computer simulation,” in Digital

Media and its Application in Museum & Heritages, Second Workshop on. IEEE,

2007, pp. 223–229.

Z. Tao, L. Xiaodong, and Z. Zaixu, “An improved clustering algorithm based on ant

colony approach,” in Computational Intelligence and Security Workshops, 2007.

CISW 2007. International Conference on. IEEE, 2007, pp. 437–440.

B. Boryczka, “Ant clustering algorithm, intelligent information systems,” 2008.

A. Ghosh, A. Halder, M. Kothari, and S. Ghosh, “Aggregation pheromone density

based data clustering,” Information Sciences, vol. 178, no. 13, pp. 2816–2831, 2008.

83

Z. Sadeghi, M. Teshnehlab, and M. M. Pedram, “K-ants clustering-a ew strategy

based on ant clustering,” in Scope of the Symposium, 2008, p. 45.

Q. Chen and J. Mo, “Optimizing the ant clustering model based on k-means al-

gorithm,” in Computer Science and Information Engineering, 2009 WRI World

Congress on, vol. 3. IEEE, 2009, pp. 699–702.

Z. Weili, “An improved entropy-based ant clustering algorithm,” in Information En-

gineering, 2009. ICIE’09. WASE International Conference on, vol. 2. IEEE, 2009,

pp. 41–44.

H. R. Tizhoosh, “Opposition-based reinforcement learning.” JACIII, vol. 10, no. 4,

pp. 578–585, 2006.

D. Craigen, S. Gerhart, and T. Ralston, “An international survey of industrial appli-

cations of formal methods,” in Z User Workshop, London 1992. Springer, 1993,

pp. 1–5.

M. Halkidi and M. Vazirgiannis, “Clustering validity assessment: Finding the optimal

partitioning of a data set,” in Data Mining, 2001. ICDM 2001, Proceedings IEEE

International Conference on. IEEE, 2001, pp. 187–194.

D. L. Davies and D. W. Bouldin, “A cluster separation measure,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, no. 2, pp. 224–227, 1979.

C.-H. Chou, M.-C. Su, and E. Lai, “A new cluster validity measure and its application

to image compression,” Pattern Analysis and Applications, vol. 7, no. 2, pp. 205–

220, 2004.

C. Blake and C. J. Merz, “{UCI} repository of machine learning databases,” 1998.

J. Han and M. Kamber, Data mining: concepts and techniques, the Morgan Kaufmann

Series in data management systems. Morgan Kaufmann, 2000.

J. Kennedy and R. C. Eberhart, Swarm Intelligence. Morgan Kaufman, 2001.

84

P. K. Bharne, V. Gulhane, and S. K. Yewale, “Data clustering algorithms based

on swarm intelligence,” in Electronics Computer Technology (ICECT), 2011 3rd

International Conference on, vol. 4. IEEE, 2011, pp. 407–411.

C. Grosan, A. Abraham, and M. Chis, “Swarm intelligence in data mining,” in Studies

in Computational Intelligence. Springer, 2006, vol. 34, pp. 1–20.

A. Abraham, S. Das, and S. Roy, “Swarm intelligence algorithms for data clustering,”

in Soft Computing for Knowledge Discovery and Data Mining. Springer, 2008, pp.

279–313.

M. G. Omran, A. Salman, and A. P. Engelbrecht, “Dynamic clustering using particle

swarm optimization with application in image segmentation,” Pattern Analysis and

Applications, vol. 8, no. 4, pp. 332–344, 2006.

R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm intelli-

gence, vol. 1, no. 1, pp. 33–57, 2007.

S. Rana, S. Jasola, and R. Kumar, “A review on particle swarm optimization al-

gorithms and their applications to data clustering,” Artificial Intelligence Review,

vol. 35, no. 3, pp. 211–222, 2011.

N. I. Ghali, N. El-Dessouki, A. Mervat, and L. Bakrawi, “Exponential particle swarm

optimization approach for improving data clustering,” International Journal of

Electrical, Computer, and Systems Engineering, vol. 3, no. 4, pp. 208–212, 2009.

N. A. Latiff, C. Tsimenidis, B. S. Sharif, and C. Ladha, “Dynamic clustering using

binary multi-objective particle swarm optimization for wireless sensor networks,”

in Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE

19th International Symposium on. IEEE, 2008, pp. 1–5.

S. Janson and D. Merkle, A new multi-objective particle swarm optimization algorithm

using clustering applied to automated docking. Springer, 2005.

85

A. Abubaker, A. Baharum, and M. Alrefaei, “Automatic clustering using multi-

objective particle swarm and simulated annealing,” PloS one, vol. 10, no. 7, pp.

205–220, 2015.

S. Sarkar, A. Roy, and B. S. Purkayastha, “Application of particle swarm optimization

in data clustering: A survey,” International Journal of Computer Applications,

vol. 65, no. 25, pp. 38–46, 2013.

E. M. Kasprzak and K. E. Lewis, “Pareto analysis in multiobjective optimization us-

ing the collinearity theorem and scaling method,” Structural and Multidisciplinary

Optimization, vol. 22, no. 3, pp. 208–218, 2001.

G. Hamerly and C. Elkan, “Learning the k in k-means,” in Neural Information Pro-

cessing Systems. MIT Press, 2003.

D. L. Davies and D. W. Bouldin, “A cluster separation measure,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 1, no. 2, pp. 224–227, 1979.

W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal

of the American Statistical association, vol. 66, no. 336, pp. 846–850, 1971.

J. Handl and J. Knowles, “An evolutionary approach to multiobjective clustering,”

Evolutionary Computation, IEEE Transactions on, vol. 11, no. 1, pp. 56–76, 2007.

E. M. Voorhees, “The effectiveness and efficiency of agglomerative hierarchic clustering

in document retrieval,” Cornell University, Tech. Rep., 1985.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discov-

ering clusters in large spatial databases with noise,” in Proceeding the 2nd Inter-

national Conference on Knowledge Discovery and Data Mining, vol. 96, 1996, pp.

226–231.

K. İnkaya and Özdemirel, “A neighborhood construction algorithm for the clustering

problem,” Middle East Technical University, Ankara, Turkey, Tech. Rep., 2013.

86

Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Evolutionary Com-

putation Proceedings, 1998. IEEE World Congress on Computational Intelligence.,

The 1998 IEEE International Conference on. IEEE, 1998, pp. 69–73.

P. Oliveira, J. Cunha, and J. Coelho, “Design of pid controllers using the particle

swarm algorithm,” in Twenty-first IASTED international conference: modelling,

identification, and control (MIC 2002), Innsbruck, Austria, 2002.

M. Reyes-Sierra and C. C. Coello, “Multi-objective particle swarm optimizers: A

survey of the state-of-the-art,” International journal of computational intelligence

research, vol. 2, no. 3, pp. 287–308, 2006.

Y. Park and M. Song, “A genetic algorithm for clustering problems,” in Proceedings

of the third annual conference on genetic programming, 1998, pp. 568–575.

B. Jarboui, M. Cheikh, P. Siarry, and A. Rebai, “Combinatorial particle swarm opti-

mization (cpso) for partitional clustering problem,” Applied Mathematics and Com-

putation, vol. 192, no. 2, pp. 337–345, 2007.

H. Simon, “Games and decisions-introduction and critical survey-luce, rd, raiffa, h,”

1958.

X. Li, “Better spread and convergence: Particle swarm multiobjective optimization

using the maximin fitness function,” in Genetic and Evolutionary Computation–

GECCO 2004. Springer, 2004, pp. 117–128.

C. G. Hart and N. Vlahopoulos, “An integrated multidisciplinary particle swarm

optimization approach to conceptual ship design,” Structural and Multidisciplinary

Optimization, vol. 41, no. 3, pp. 481–494, 2010.

K. Bache and M. Lichman, “UCI Machine Learning Repository. University of Cali-

fornia, School of Information and Computer Science, Irvine, CA,” 2013.

P. Franti, “Speech and Image Processing Unit, clustering datasets. School of Com-

puting, University of Eastern Finland,” 2015.

87

Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in

Evolutionary programming VII. Springer, 1998, pp. 591–600.

J. C. Dunn, “Well-separated clusters and optimal fuzzy partitions,” Journal of Cy-

bernetics, vol. 4, no. 1, pp. 95–104, 1974.

M. Zareh, C. Seatzu, and M. Franceschelli, “Consensus of second-order multi-agent

systems with time delays and slow switching topology,” in Networking, Sensing and

Control (ICNSC), 2013 10th IEEE International Conference on, 2013, pp. 269–275.

——, “Consensus on the average in arbitrary directed network topologies with time-

delays,” in 4th IFAC Workshop on Distributed Estimation and Control in Networked

Systems, 2013, pp. 342–347.

M. Zareh, D. V. Dimarogonas, M. Franceschelli, K. H. Johansson, and C. Seatzu,

“Consensus in multi-agent systems with non-periodic sampled-data exchange and

uncertain network topology,” in Control, Decision and Information Technologies

(CoDIT), 2014 International Conference on. IEEE, 2014, pp. 411–416.

——, “Consensus in multi-agent systems with second-order dynamics and non-

periodic sampled-data exchange,” in Emerging Technology and Factory Automation

(ETFA), 2014 IEEE. IEEE, 2014, pp. 1–8.

88

List of Publications Related to the

Thesis

Published papers

∙ G. Armano, M.R. Farmani, Multiobjective Clustering Analysis using Particle

Swarm Optimization, Expert Systems with Applications, in press, 2016.

∙ M.R Farmani, G. Armano, Clustering Analysis using Opposition-Based API

Algorithm, IJCCI, the 7th International Joint Conference on Computational

Intelligence, Lisbon 2015.

∙ G. Armano, M.R. Farmani, Clustering Analysis with Combination of Artificial

Bee Colony Algorithm and k-means Technique, 6th International Conference on

Computer Science and Information Technology (ICCSIT), Paris 2013.

89

	Introduction and structure of the thesis
	Clustering and Swarm Intelligence
	Organization of the Dissertation

	Clustering Analysis with Combination of Artificial Bee Colony Algorithm and K-means Technique
	Introduction
	K-means Clustering Algorithm
	Artificial Bee Colony Algorithm
	Combination of ABC and K-means
	Experimental Results and Discussion

	Clustering Analysis using Opposition-Based API Algorithm
	Introduction
	Clustering Problem
	API Algorithm
	Opposition-Based API Algorithm
	Clustering Formulation and Fitness Functions
	Experimental Results and Discussion

	Multiobjective Clustering Analysis using Particle Swarm Optimization
	Clustering Problem
	Multiobjective Clustering with Particle Swarm Optimization
	Experimental Results and Discussion

	Conclusions and open issues
	Bibliography

