66 research outputs found

    The OYSTER-CLAM system

    Get PDF

    Relational Rippling: a General Approach

    Get PDF
    We propose a new version of rippling, called relational rippling. Rippling is a heuristic for guiding proof search, especially in the step cases of inductive proofs. Relational rippling is designed for representations in which value passing is by shared existential variables, as opposed to function nesting. Thus relational rippling can be used to guide reasoning about logic programs or circuits represented as relations. We give an informal motivation and introduction to relational rippling. More details, including formal definitions and termination proofs can be found in the longer version of this paper, [Bundy and Lombart, 1995]

    A Science of Reasoning

    Get PDF
    This paper addresses the question of how we can understand reasoning in general and mathematical proofs in particular. It argues the need for a high-level understanding of proofs to complement the low-level understanding provided by Logic. It proposes a role for computation in providing this high-level understanding, namely by the association of proof plans with proofs. Proof plans are defined and examples are given for two families of proofs. Criteria are given for assessing the association of a proof plan with a proof. 1 Motivation: the understanding of mathematical proofs The understanding of reasoning has interested researchers since, at least, Aristotle. Logic has been proposed by Aristotle, Boole, Frege and others as a way of formalising arguments and understanding their structure. There have also been psychological studies of how people and animals actually do reason. The work on Logic has been especially influential in the automation of reasoning. For instance, resolution..

    The use of proof plans to sum series

    Full text link

    A Framework for Program Development Based on Schematic Proof

    Get PDF
    Often, calculi for manipulating and reasoning about programs can be recast as calculi for synthesizing programs. The difference involves often only a slight shift of perspective: admitting metavariables into proofs. We propose that such calculi should be implemented in logical frameworks that support this kind of proof construction and that such an implementation can unify program verification and synthesis. Our proposal is illustrated with a worked example developed in Paulson's Isabelle system. We also give examples of existent calculi that are closely related to the methodology we are proposing and others that can be profitably recast using our approach

    Valid extensions of introspective systems: a foundation for reflective theorem provers

    Get PDF
    Introspective systems have been proved ueful in several applications, especially in the area of automated reasoning. In this paper we propose to use structured algebraic specifications to describe the embedded account of introspective systems. Our main result is that extending such an introspective system in a valid manner can be reduced to development of correct software. Since sound extension of automated reasoning systems again can be reduced to valid extension of introspective systems, our work can be seen as a foundation for extensible introspective reasoning systems, and in particular for reflective provers. We prove correctness of our mechanism and report on first experiences we have made with its realization in the KIV system (Karlsruhe Interactive Verifier)

    Strict General Setting for Building Decision Procedures into Theorem Provers

    Get PDF
    The efficient and flexible incorporating of decision procedures into theorem provers is very important for their successful use. There are several approaches for combining and augmenting of decision procedures; some of them support handling uninterpreted functions, congruence closure, lemma invoking etc. In this paper we present a variant of one general setting for building decision procedures into theorem provers (gs framework [18]). That setting is based on macro inference rules motivated by techniques used in different approaches. The general setting enables a simple describing of different combination/augmentation schemes. In this paper, we further develop and extend this setting by an imposed ordering on the macro inference rules. That ordering leads to a ”strict setting”. It makes implementing and using variants of well-known or new schemes within this framework a very easy task even for a non-expert user. Also, this setting enables easy comparison of different combination/augmentation schemes and combination of their ideas

    The Use of Proof Planning for Cooperative Theorem Proving

    Get PDF
    AbstractWe describebarnacle: a co-operative interface to theclaminductive theorem proving system. For the foreseeable future, there will be theorems which cannot be proved completely automatically, so the ability to allow human intervention is desirable; for this intervention to be productive the problem of orienting the user in the proof attempt must be overcome. There are many semi-automatic theorem provers: we call our style of theorem provingco-operative, in that the skills of both human and automaton are used each to their best advantage, and used together may find a proof where other methods fail. The co-operative nature of thebarnacleinterface is made possible by the proof planning technique underpinningclam. Our claim is that proof planning makes new kinds of user interaction possible.Proof planning is a technique for guiding the search for a proof in automatic theorem proving. Common patterns of reasoning in proofs are identified and represented computationally as proof plans, which can then be used to guide the search for proofs of new conjectures. We have harnessed the explanatory power of proof planning to enable the user to understand where the automatic prover got to and why it is stuck. A user can analyse the failed proof in terms ofclam's specification language, and hence override the prover to force or prevent the application of a tactic, or discover a proof patch. This patch might be to apply further rules or tactics to bridge the gap between the effects of previous tactics and the preconditions needed by a currently inapplicable tactic

    Visualising First-Order Proof Search

    Get PDF
    This paper describes a method for visualising proof search in automatic resolution-style first-order theorem provers. The method has been implemented in a simple tool called viz, which takes advantage of the widely-supported scalar vector graphics format to produce graphs which can be viewed interactively. This allows the user to zoom in and out, pan, and get more information by clicking on particular parts of the graph. We demonstrate how the graphs can be used to suggest improvements to the strategy and heuristics used in the proof attempt
    corecore