-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

The OYSTER-CLAM system

Citation for published version:

Bundy, A, van Harmelen, F, Horn, C & Smaill, A 1990, The OYSTER-CLAM system. in Proceedings of the
10th International Conference on Automated Deduction: Kaiserslautern, FRG, July 24-27, 1990
Proceedings. vol. Lecture Notes in Artificial Intelligence No. 449, Lecture Notes in Computer Science, vol.
449, Springer-Verlag GmbH, pp. 647-648. DOI: 10.1007/3-540-52885-7_123

Digital Object Identifier (DOI):
10.1007/3-540-52885-7_123

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Proceedings of the 10th International Conference on Automated Deduction

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/28961484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/3-540-52885-7_123
https://www.research.ed.ac.uk/portal/en/publications/the-oysterclam-system(3156ab35-984f-4657-b1b4-105b2caf4636).html

The OYSER-CIAM system *

Alan Bundy Frank van Harmelen Christian Horn!
Alan Smaill
Department of Artificial Intelligence
University of Edinburgh

1 OYSIER

OYSTER [Hor88] is an interactive proof editor closely based on the Cornell
NuPRL system, but implemented in Prolog. The object-level logic is a version
of Martin-L&f type theory (a higher order constructive logic including induction)
in a sequent-calculus formulation. Proofs are constructed in a top-down fashion
by application of the rules of inference. Notational definitions and libraries of
theorems are supported.

The tactic language for the system is Prolog. Predicates describing properties
of a proof under construction are available to the user, who may also include
arbitrary Prolog in tactics. Soundness of the system is ensured by the use of an
abstract data type of proofs: partial proofs can only be altered by application
of the primitive proof rules. Tactics can be combined using system defined
tacticals. Prolog pattern-matching and backtracking in tactics have proved
useful in the automation of proof search.

Since the object-level logic is constructive, terms of an enlarged A-calculus can
be computed from complete proofs, and these so-called extract terms can then
be executed by application on appropriate inputs. This allows the system to
be used as a program synthesis environment, since a theorem can be regarded
as a specification which is realised by its extract term.

The system is written in some 2000 lines of Prolog, making it considerably more
compact than the original NuPRL system, while the speed of the two systems
is comparable.

“The research reported in this paper was supported by SERC grant GR/E/44598, and an
SERC Senior Fellowship to the first author.

f Author’s address: Department of Mathematics, Humboldt University, Postfach 1297, 1086
Berlin, GDR

The Oyster-Clam system 2

2 CIAM

CIAM is a meta-level system built on top of OYSTER to turn the interactive proof
editor into a fully automatic theorem proving system.

For every tactic written in the OYSTER system, CIAM is equipped with a specific-
ation of the tactic. We call such specifications methods. Methods consist of an
input formula, preconditions, output formulae and postconditions. A method
is said to be applicable if the goal to be proved matches the input formula of a
method, and the method’s preconditions hold. The preconditions, formulated
in a meta-logic, refer to syntactic properties of the input formula. Using the
input formula and preconditions of a method, CIAM can predict if a particu-
lar OYSIER tactic will be applicable without actually running it. Similarly, the
output formulae gives a schematic description of the formulae resulting from a
tactic application, and the postconditions specify further syntactic properties
of these formulae.

CIAM employs these methods in the search for a proof of a given formula by
finding an applicable method, computing the schematic output formulae and
postconditions of this method, and finally finding methods applicable to these
output formulae, this process being repeated recursively until no unproved for-
mulae remain.

We call this process of concatenating methods by search at the meta-level proof
planning, and the resulting tree of methods is called a proof plan. This proof
plan can then be executed at the object-level: for each method in the proof
plan, the system will execute the corresponding OYSTER tactic. This process of
plan execution is not guaranteed to succeed, though it typically does. Thus the
method acts as a heuristic operator which can capture the essential precondi-
tions of a tactic while leaving out expensive checks for finer details.

The process of proof plan construction as described above involves search: for a
given sequent, more than one method may be applicable. We have experimented
with a number of different search strategies (depth-first, breadth-first, iterative
deepening, heuristic search). In practice, the search at the meta-level is small
enough for a depth-first planner to succeed without very much backtracking,
often none.

CIAM is implemented in 2300 lines of Prolog code, and currently contains a
set of methods and tactics modelled on the Boyer-Moore theorem prover. The
system can, for instance, find an automatic proof of the existence of prime
factorisation, thus extending the work by Boyer and Moore, since CIAM not
only verifies a given algorithm for prime factorisation, but indeed synthesizes
this algorithm from an existentially quantified specification. CIAM takes 176
seconds to construct a plan for this theorem consisting of 15 methods, while
the object-level proof consists of 553 steps, executed by OYSTER in 358 secs.
More detailed descriptions of CIAM can be found in [vH89] and [BvHS89].

The Oyster-Clam system 3

References

[BVHS89] A. Bundy, F. van Harmelen, and A. Smaill. Extensions to the
rippling-out tactic for guiding inductive proofs. Research Paper 459,
Dept. of Artificial Intelligence, University of Edinburgh, 1989. Also
in the proceedings of CADE-10.

[Hor88] C. Horn. The Nurprl proof development system. Working paper 214,
Dept. of Artificial Intelligence, University of Edinburgh, 1988. The
Edinburgh version of Nurprl has been renamed Oyster.

[VH89] F. van Harmelen. The CLAM proof planner, user manual and pro-
grammer manual: version 1.4. Technical Paper TP-4, DAI, 1989.

