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Visualising First-Order Proof Search

Graham Steel 1

School of Informatics,
University of Edinburgh,

Edinburgh, EH8 9LE, Scotland

Abstract

This paper describes a method for visualising proof search in automatic resolution-style
first-order theorem provers. The method has been implemented in a simple tool called viz,
which takes advantage of the widely-supported scalar vector graphics format to produce
graphs which can be viewed interactively. This allows the user to zoom in and out, pan,
and get more information by clicking on particular parts of the graph. We demonstrate how
the graphs can be used to suggest improvements to the strategy and heuristics used in the
proof attempt.

Key words: First-order theorem proving, visualisation

1 Introduction

At first thought, it may seem that resolution-style first-order provers do not re-
quire elaborate user interfaces, since they are automatic ‘push button’ technologies.
There is no choosing and invoking of tactics, as there is in an interactive prover.
However, any serious effort to use a first-order prover to prove non-trivial theo-
rems, or investigate open conjectures, involves considerable interaction. Typically,
one first tries to prove smaller theorems and lemmas in the domain of interest. The
behaviour of the prover is ‘tuned’ on these theorems, by trying different strategies
and weighting functions, and by devising domain-specific redundancy rules. The
prover can then be set to work on the final theorem. More interaction and chang-
ing of settings will typically be required before a final result is obtained. Even the
experts employ this methodology: Larry Wos’ recent book, [19], explains how it is
used at Argonne labs, where the Otter team have successfully tackled several open
questions in mathematics, including the famous Robbins conjecture.

One major difficulty in this interaction cycle is interpreting the output from the
prover. Typically, this consists of lines of text scrolling rapidly up the screen, each
containing details of a clause that has been derived. Even when a proof is eventually
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found, it is hard to see what went on during the search. This paper describes a sim-
ple tool, viz, for automatically producing trees illustrating the search pattern from
this output. The trees include information about logical dependency, the weight of
the clauses under consideration, the time elapsed in the search and, when a proof is
found, the critical path of inferences leading to the proof. The graphs are produced
as scalable vector graphics files, which can be viewed interactively by a variety of
programs, allowing the user to zoom in and out, pan, and print selected areas of the
graph. Clicking on a node causes an alert window to pop up giving the formula of
the clause represented by that node.

In the rest of this paper, we first in §2 give a very brief introduction to automatic
resolution-style theorem proving for those unfamiliar with the area. We describe
our search trees and how they may be used in §3. We look at some related work in
§4 and give further work and conclusions in §5.

2 Resolution-style Theorem Proving

Readers familiar with automatic first-order theorem proving may skip this section.
For those requiring a more detailed treatment, one is provided in [13, Chapter 4].

Although many refinements have been made to the resolution method first pro-
posed by Robinson, [12], the basic idea remains the same. Suppose you have a
set of axioms, A, and a conjecture, C. Resolution-style provers proceed by negat-
ing the conjecture, and then attempting to derive a contradiction. All axioms and
the conjecture are converted into clauses, i.e. formulae in clausal normal form.
New consequences of the axioms and negated conjecture are derived by the reso-
lution inference rule (or by an equational version, such as paramodulation). These
new consequences are placed in the usable set. Proof search typically proceeds by
picking a clause from the usable set, which becomes the given clause, and then
applying resolution to it in all possible ways to derive new consequences. These
new consequences are placed in the usable set, and the given clause is moved to the
worked-off set. The process repeats until the empty clause is derived, indicating a
contradiction.

The next given clause to be considered is often chosen by some weighting
heuristic, giving a best-first search. A common heuristic is to chose the small-
est clause (in terms of number of variables and function symbols) first. To get good
results in a particular domain, quite complicated heuristics often have to be devel-
oped. The search process may also be modified in other ways, by changing the
strategy. Commonly used strategies include looking out for derived clauses con-
taining particular subterms (this is called hotlisting), or the so-called set of support
strategy, where only a certain subset of the input clauses, and their consequences,
are considered as possible given clauses. The strategy may also prescribe a depth-
first or breadth-first search, ignoring heuristics. Additionally, the strategy may be
altered at the inference level, by restrictions such as basicness, [1].

In modern provers, there are also a number of reduction rules, which operate
on derived clauses. They either rewrite the clause to a smaller but equivalent ver-
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sion, or attempt to detect the redundancy of the newly derived clause. A clause is
redundant in a particular search if we have already derived a smaller equivalent,
or more general version. Redundant clauses may be discarded without affecting
completeness.

3 viz Search Trees

In this section we describe the trees produced by viz. Refer to Figure 1 for an
example, where we show the search for a proof of Pelletier’s 54th problem, [10],
using the theorem prover SPASS, [18].

3.1 Tree Features

Search spaces for deductive problems are traditionally represented by trees. Each
node on the tree represents a clause, and each edge represents logical dependency.
However, in the specific case of first-order theorem proving, there is much more
information we would like to be able to visualise. For example, many heuristics
are based on the some kind of weight function over clauses. We would therefore
like to be able to see the weight of each clause. In the trees produced by viz,
this is represented by the size of the node. We scale all nodes with respect to the
maximum weight reached during search, and a minimum value that represents a
clause of weight zero.

Nodes are labelled with their clause number, and a second number denoting
when the clause in question was considered as a given clause. Typically, the for-
mula represented by the node would be far too long to be used as the node label.
However, the tool would be cumbersome to use if the user had always to read off
the clause number, and then refer manually to the raw output to see the actual con-
tent of the clause. Therefore, viz allows the user to click on a node, bringing up a
pop-up window giving the clause itself and the numerical weight value. Figure 2
shows this in operation.

In the context of best-first search, we are interested in knowing in what order
clauses were derived, and when they were considered as a given clause. This fa-
cilitates a search for bottlenecks, and heuristics that might overcome them. Our
solution in viz is to colour the nodes in a progressive scale, for example from dark
blue to white. Figure 1 illustrates this. The Darker clauses were considered first,
the lighter clauses later. Axioms, which were never considered as given clauses,
are white with a black outline.

An important feature of a successful search is the critical path, i.e. the chain
of nodes leading to the derivation of the empty clause. This would be hard to see
in a standard search tree, since the logical interdependencies of nodes quickly get
complicated, even in the case of quite small proofs. Our system viz draws all nodes
on the critical path in a diamond shape, allowing easy identification.
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Fig. 2. Viewing a viz graph using Batik

3.2 Linear Search Trees

A particular strategy for resolution is the linear strategy. Here, new consequences
are derived only by resolution between axioms and the given clause, and the first
given clause must be the conjecture. No resolution steps between axioms are con-
sidered. The strategy is only complete for certain classes of problems, but this
includes some significant applications.

The restriction of the strategy allows us to simplify the tree without losing im-
portant information. We do this by removing the axiom nodes from the tree, and
instead labelling the edges with the number of the axiom that has been applied.
Again, we allow the user to click on the edge label to see the axiom formula. This
allows quite large proof searches to be visualised in a comprehensible fashion. Fig-
ure 3 gives an example of this. Here the search is for Gavin Lowe’s attack on the
Needham-Schroeder Public Key protocol, [7], as performed by CORAL, [14], a
version of SPASS using a linear strategy.

The viz linear mode can also be used as simpli£cation technique for problems
which do not in fact employ the linear strategy. The resulting graphs have far
fewer edges and a simpler layout, emphasising the search pattern rather then logical
dependence. Sometimes, however, this can make the proof unclear. A way around
this would be to add back in all the edges for the critical path only. An example
of this is given in Figure 4, where we have used viz to draw a linear simpli£cation
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of the same search shown in Figure 1. The edges that have been added back have
been coloured red.

93
0

96
1

55

97
2

82

92

86

94
3

87

102
5

67

104
4

55

107
8

77

109
6

66

114
9

77

119
7

67

122
12

77

125
13

70

129
10

70

133
11

3

132
16

2

139
29

90

136
82

87

140
95

91

143
14

70

147
18

3

146
23

2

151
15

3

150
17

2

157
45

90

154
121

87

158
145

91

160
19

91

162
24

91

163
33

86

166
43

89

165
48

88

167
53

90

164
58

87

168
63

91

170
20

77

171
21

3

175
22

3

174
31

2

177
109

86

180
216

89

179
219

88

181
317

90

178
363

87

182
378

91

183
28

89

184
38

91

186
25

77

187
26

3

191
27

3

190
47

2

193
149

86

196
312

89

195
315

88

200
73

55

201
78

82

203
30

77

206
32

88

207
97

90

209
34

55

210
35

82

212
83

55

213
88

82

218
37

79

220
36

55

221
80

81

223
44

66

226
39

3

228
68

3

231
40

77

235
41

83

238
42

3

237
162

2

247
108

55

248
118

82

253
64

79

255
46

77

258
49

88

259
86

90

261
113

55

262
123

82

265
50

82

264
54

55

267
51

55

268
61

81

270
52

66

277
55

79

279
93

3

285
74

79

287
56

77

288
57

3

293
59

83

294
98

3

298
60

3

297
164

2

307
62

55

309
84

66

312
103

3

314
65

3

317
66

77

321
67

83

324
69

3

323
179

2

327
70

3

336
71

77

339
72

3

341
151

86

344
283

89

343
288

88

345
298

90

342
303

87

346
308

91

351
133

80

353
75

77

354
76

3

359
77

83

362
79

3

361
197

2

365
128

55

366
153

81

374
81

55

376
85

66

381
193

77

386
158

67

391
111

67

396
122

67

398
87

77

399
89

3

402
148

55

406
90

83

407
91

59

414
92

77

415
290

86

421
94

3

426
96

77

429
99

3

431
143

3

434
100

77

438
101

83

439
102

59

446
107

77

447
104

2

448
138

3

451
105

77

454
106

3

453
243

2

456
313

86

459
333

89

458
338

88

460
343

90

457
348

87

461
353

91

462
307

86

472
173

80

474
110

55

475
132

82

480
140

67

482
112

55

485
114

48

492
178

79

494
115

77

495
116

3

500
117

83

501
119

59

506
163

55

507
183

81

511
120

77

520
230

77

522
124

55

524
168

55

525
188

81

528
125

48

531
126

3

534
127

77

538
129

83

540
181

66

543
130

59

550
131

77

558
139

55

559
134

3

562
135

3

565
136

77

568
137

3

567
154

2

579
147

66

583
141

3

587
142

77

590
144

3

602
146

77

609
165

67

611
213

66

615
150

55

616
155

82

621
170

67

623
152

55

624
157

82

629
175

67

631
198

55

635
156

55

637
177

66

641
161

55

642
159

3

644
160

3

650
180

66

656
218

66

660
182

90

662
166

3

666
167

77

669
169

3

672
223

66

683
171

77

685
172

3

689
174

3

691
203

3

699
176

3

703
186

77

708
199

67

710
208

3

713
194

90

718
205

67

723
207

80

725
184

77

727
228

55

728
185

3

736
187

70

735
189

69

737
190

68

740
191

3

743
233

55

746
192

3

750
271

3

768
195

77

769
196

3

778
221

66

783
200

77

785
201

3

789
202

3

798
204

3

802
206

3

806
222

77

807
209

3

809
214

3

812
210

3

815
211

77

818
212

3

817
215

2

830
238

67

836
217

55

837
275

82

842
281

80

847
248

80

849
220

55

850
277

82

855
285

79

860
278

67

863
224

70

862
225

69

864
226

68

869
253

79

872
227

3

876
229

3

880
329

3

889
258

66

898
231

2

903
232

3

902
234

2

905
251

86

912
263

66

915
235

89

916
349

91

918
236

55

919
237

82

924
242

80

926
241

55

927
264

81

928
239

3

930
240

3

936
250

66

940
244

3

942
293

88

943
328

90

944
245

3

947
246

77

950
247

3

949
249

2

958
268

3

966
254

80

968
252

55

969
261

82

974
266

67

976
273

3

979
255

3

981
256

3

984
257

77

987
259

3

986
260

2

993
318

67

1003
262

55

1005
272

66

1012
323

67

1014
265

55

1016
280

66

1019
267

3

1021
269

3

1024
270

3

1041
324

67

1042
274

3

1047
276

55

1050
292

66

1054
279

55

1057
289

55

1059
294

66

1066
336

67

1067
282

3

1070
284

77

1072
295

55

1073
344

82

1078
286

3

1081
287

77

1087
296

55

1088
346

82

1090
327

66

1094
291

55

1095
321

82

1100
332

67

1107
297

55

1108
358

82

1129
299

2

1130
304

3

1133
300

77

1137
301

83

1140
302

3

1148
306

3

1151
305

77

1160
311

55

1161
330

82

1162
309

3

1165
310

77

1176
314

55

1177
339

82

1187
316

55

1188
341

82

1194
319

3

1199
320

77

1205
322

55

1212
325

3

1214
326

3

1225
368

3

1234
331

55

1240
334

3

1248
335

85

1254
337

55

1263
340

55

1270
342

55

1276
373

2

1280
345

55

1287
347

55

1295
350

2

1298
351

3

1301
352

77

1304
354

3

1303
355

2

1314
356

88

1318
357

82

1317
361

55

1320
359

55

1326
360

66

1333
362

79

1340
364

3

1346
365

77

1350
366

83

1353
367

3

1352
369

2

1364
370

90

1366
371

77

1370
372

83

1371
374

59

1377
375

17

1384
376

78

1385
377

56

1395
379

21

1435
380

29

1438
381

41

Fig. 3. Linear search tree - NSPK attack

3.3 Using the Trees

It is often possible to see a great deal even from a cursory inspection of the trees.
For example, one can often see large ‘wasted areas’ - collections of nodes off the
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critical path, that descend from just one node higher up the tree. This allows the
user to inspect these higher nodes and think about whether there is a general rule
(perhaps specific to the domain or theory) that could allow these nodes to be pruned
from the search.

By tracing the colours of the nodes on the critical path, one can see where the
discovery of the proof was ‘held up’. If there is a marked change in colour from
one node to another on the critical path, this indicates such a hold up in the proof
discovery. By examining the clauses involved, and their weights as indicated by
the node size, the user can improve the weighting heuristic. This may also suggest
changes to strategy: for example, hotlisting a crucial subterm in the clause which
holds up the critical path.

In Figure 5, we give another example of output from viz. This proof shows the
discovery of a known attack on the Common Cryptographic Architecture API of the
IBM 4758 hardware security module, [2]. In the fully zoomed-out diagram, we can
see that there are two wide but shallow subsections of the proof, in the top left and
bottom right portions of the diagram. Furthermore, we can see that all the clauses
in the bottom right are descendants of one clause (marked on the diagram with an
arrow). Examining this clause, we find that it requires our intruder to build a three
part term using bitwise XOR to complete the attack. The three parts required are all
in the initial knowledge of the intruder. However, the combinatorial possibilities of
combining his knowledge with XOR are such that the majority of the proof search
takes place just to put these three pieces together. We can see that this is where we
might make an improvement in performance that will be vital for tackling larger
problems.

We anticipate that other ways of using the graphs will suggest themselves, as
our work with first-order provers in security protocol problems continues. We in-
tend to continue the development of viz, adding more features to the graphs (see
§5).

3.4 Implementation Details

viz first uses the ‘dot’ graph drawing program to produce an outline drawing of
the graph. This is in scalable vector graphics (svg) format. A second pass is then
made to add the annotations and pop-ups for the clause formulae. The final svg file
can be viewed in any w3c compliant svg viewer. Batik 2 , produced by the Apache
organisation, is a freely available open-source svg viewer which seems to do a good
job on the graphs viz produces.

At the moment, viz will only parse output from SPASS and daTac, [17], but it
would be a simple matter to port it to other provers (a priority for future work is
a version that parses the TSTP syntax, [16]). The viz script itself is available at
http://homepages.inf.ed.ac.uk/gsteel/viz/.

2 http://xml.apache.org/batik/
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Fig. 5. Bond’s attack on IBM 4758 CCA
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4 Related work

In the past, trees have generally only been used in resolution theorem proving to
illustrate a proof, rather than the search for a proof (e.g., the Tree Viewer for TSTP
syntax proofs, [16]). However, search trees have been used in interactive theorem
proving. Lowe and Duncan’s XBarnacle, [8], used trees to facilitate user interaction
with the proof planner Clam, [3]. XBarnacle allows the user to select the level of
detail displayed, so the tree can be drawn with just nodes, or with nodes fully
labelled with the subgoal at that node, and various levels in between. A further
feature is to show the heuristic scores of all methods applicable to a node, to allow
a user to see how the choice was made. We could perhaps adapt these features
usefully to viz. Changing the level of detail could be achieved by some scripting
commands which act on the svg file itself. We could use another pop-up window
to offer information about the weighting score of other nodes in the usable set at
the time each node was considered as a given clause. Usable sets are typically
extremely large for non-trivial problems, so this would have to take the form of
some kind of statistical summary.

Hutter and Sengler, [5], implemented a tree-based graphical user interface for
the interactive prover, INKA, [6]. Their interface also used colour. Nodes were
coloured to indicate if the subgoal had been proved, remained open, or was blocked
(i.e. remained unsolved after all applicable methods had been applied). This is
another idea we could use in viz. We could colour leaf nodes to indicate whether
they had some children which remained in the usable set, or if all their children had
been detected as redundant. This would be very useful information for the user.

5 Conclusions

Our tool viz seems to offer some immediate benefits in terms of visualising proof
search in a resolution-style prover. These include being able to quickly identify
bottlenecks and wasted areas. With further work, we should be able to offer more
useful features to the user, such as marking leaf nodes with redundant children, and
allowing the user to vary the level of detail on display. We also plan to adapt viz
to other provers. It could then be used to compare different strategies on the same
problems, as in [9], or to compare search performance on benchmark problems,
for example the TPTP corpus, [15]. If adapted to draw the graphs in real-time, it
could be used to track proof search during the CASC automated theorem proving
competition, [11].

One problem we will certainly need to address is that of viewing large graphs.
As we explained in §1, users of theorem provers typically train their settings on
smaller examples which we can already visualise, but to gain real benefit from
the tool, we would also have to be able to handle graphs with tens or hundreds
of thousands of nodes. For the general problem of viewing large graphs, there
has already been considerable work (see e.g. [4] for a survey). For our particular
problem, we would probably also want to be able to do some pre-processing, in
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order to get a summary picture of a large proof search. The use of the linear mode
described in §3.2 is one example of how this could be done.

We intend to pursue all of these developments them as we continue our research
into using first-order theorem provers to investigate computer security problems.
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