Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Visualising First-Order Proof Search

Citation for published version:
Steel, G 2005, 'Visualising First-Order Proof Search'. in Proceedings of the 2005 Workshop on User
Interfaces for Theorem Provers (UITP '05). pp. 179-189.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Preprint (usually an early version)

Published In:
Proceedings of the 2005 Workshop on User Interfaces for Theorem Provers (UITP '05)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 20. Feb. 2015

https://core.ac.uk/display/28971039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/visualising-firstorder-proof-search(956a0ae0-18dd-490f-bc4d-2313d566fd36).html

UITP 2005 Preliminary Version

Visualising First-Order Proof Search

Graham Stedl !

School of Informatics,
University of Edinburgh,
Edinburgh, EH8 9LE, Scotland

Abstract

This paper describes a method for visualising proof search in automatic resolution-style
first-order theorem provers. The method has been implemented in a simple tool called viz,
which takes advantage of the widely-supported scalar vector graphics format to produce
graphs which can be viewed interactively. This allows the user to zoom in and out, pan,
and get more information by clicking on particular parts of the graph. We demonstrate how
the graphs can be used to suggest improvements to the strategy and heuristics used in the
proof attempt.

Key words: First-order theorem proving, visualisation

1 Introduction

At first thought, it may seem that resolution-style first-order provers do not re-
quire elaborate user interfaces, since they are automatic ‘ push button’ technologies.
There is no choosing and invoking of tactics, as there is in an interactive prover.
However, any serious effort to use a first-order prover to prove non-trivial theo-
rems, or investigate open conjectures, involves considerable interaction. Typically,
onefirst triesto prove smaller theorems and lemmas in the domain of interest. The
behaviour of the prover is ‘tuned’ on these theorems, by trying different strategies
and weighting functions, and by devising domain-specific redundancy rules. The
prover can then be set to work on the final theorem. More interaction and chang-
ing of settings will typically be required before afinal result is obtained. Even the
experts employ this methodology: Larry Wos' recent book, [19], explainshow itis
used at Argonne labs, where the Otter team have successfully tackled several open
guestions in mathematics, including the famous Robbins conjecture.

One magjor difficulty in thisinteraction cycleisinterpreting the output from the
prover. Typically, this consists of lines of text scrolling rapidly up the screen, each
containing details of aclausethat has been derived. Even when aproof iseventually

1 Email: gr aham st eel @d. ac. uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

STEEL

found, it is hard to see what went on during the search. This paper describesasim-
ple tool, viz, for automatically producing trees illustrating the search pattern from
this output. The trees include information about logical dependency, the weight of
the clauses under consideration, the time elapsed in the search and, when a proof is
found, the critical path of inferencesleading to the proof. The graphs are produced
as scalable vector graphics files, which can be viewed interactively by avariety of
programs, allowing the user to zoom in and out, pan, and print selected areas of the
graph. Clicking on a node causes an alert window to pop up giving the formula of
the clause represented by that node.

In therest of this paper, wefirstin §2 giveavery brief introduction to automatic
resolution-style theorem proving for those unfamiliar with the area. We describe
our search trees and how they may be used in §3. We look at some related work in
84 and give further work and conclusionsin §5.

2 Resolution-style Theorem Proving

Readers familiar with automatic first-order theorem proving may skip this section.
For those requiring a more detailed treatment, oneis provided in [13, Chapter 4].

Although many refinements have been made to the resolution method first pro-
posed by Robinson, [12], the basic idea remains the same. Suppose you have a
set of axioms, A, and a conjecture, C'. Resolution-style provers proceed by negat-
ing the conjecture, and then attempting to derive a contradiction. All axioms and
the conjecture are converted into clauses, i.e. formulae in clausal normal form.
New consequences of the axioms and negated conjecture are derived by the reso-
lution inference rule (or by an equational version, such as paramodulation). These
new consequences are placed in the usable set. Proof search typically proceeds by
picking a clause from the usable set, which becomes the given clause, and then
applying resolution to it in all possible ways to derive new consequences. These
new consequences are placed in the usable set, and the given clause is moved to the
wor ked-off set. The process repeats until the empty clause is derived, indicating a
contradiction.

The next given clause to be considered is often chosen by some weighting
heuristic, giving a best-first search. A common heuristic is to chose the small-
est clause (in terms of number of variables and function symbols) first. To get good
results in a particular domain, quite complicated heuristics often have to be devel-
oped. The search process may also be modified in other ways, by changing the
strategy. Commonly used strategies include looking out for derived clauses con-
taining particular subterms (thisis called hotlisting), or the so-called set of support
strategy, where only a certain subset of the input clauses, and their consequences,
are considered as possible given clauses. The strategy may aso prescribe a depth-
first or breadth-first search, ignoring heuristics. Additionaly, the strategy may be
altered at the inference level, by restrictions such as basicness, [1].

In modern provers, there are also a number of reduction rules, which operate
on derived clauses. They either rewrite the clause to a smaller but equivalent ver-

2

STEEL

sion, or attempt to detect the redundancy of the newly derived clause. A clauseis
redundant in a particular search if we have already derived a smaller equivalent,
or more general version. Redundant clauses may be discarded without affecting
compl eteness.

3 vizSearch Trees

In this section we describe the trees produced by viz. Refer to Figure 1 for an
example, where we show the search for a proof of Pelletier’s 54th problem, [10],
using the theorem prover SPASS, [18].

3.1 Tree Features

Search spaces for deductive problems are traditionally represented by trees. Each
node on the tree represents a clause, and each edge represents logical dependency.
However, in the specific case of first-order theorem proving, there is much more
information we would like to be able to visualise. For example, many heuristics
are based on the some kind of weight function over clauses. We would therefore
like to be able to see the weight of each clause. In the trees produced by viz,
this is represented by the size of the node. We scale al nodes with respect to the
maximum weight reached during search, and a minimum value that represents a
clause of weight zero.

Nodes are labelled with their clause number, and a second number denoting
when the clause in question was considered as a given clause. Typically, the for-
mula represented by the node would be far too long to be used as the node label.
However, the tool would be cumbersome to use if the user had always to read off
the clause number, and then refer manually to the raw output to see the actual con-
tent of the clause. Therefore, viz allows the user to click on a node, bringing up a
pop-up window giving the clause itself and the numerical weight value. Figure 2
shows this in operation.

In the context of best-first search, we are interested in knowing in what order
clauses were derived, and when they were considered as a given clause. This fa
cilitates a search for bottlenecks, and heuristics that might overcome them. Our
solution in vizisto colour the nodes in a progressive scale, for example from dark
blue to white. Figure 1 illustrates this. The Darker clauses were considered first,
the lighter clauses later. Axioms, which were never considered as given clauses,
are white with ablack outline.

An important feature of a successful search is the critical path, i.e. the chain
of nodes leading to the derivation of the empty clause. This would be hard to see
in a standard search tree, since the logical interdependencies of nodes quickly get
complicated, even in the case of quite small proofs. Our system viz draws all nodes
on the critical path in a diamond shape, alowing easy identification.

3

S "ON Wa|qo.d s.Jansjjad 981 yosess ‘T ‘B4

el 7000

44%1’ "_ .

STEEL

Squiggle:out.svg
ﬂle Eﬂil llEW 7_P’rncessing Vgn lenls ;
=l BooaaldE (& »r e
B Location: |fi|e:famd,'nfs[pegasus[disk[ptnos 1/grahamsfpapersfuitp-05fout.s/g | -

3'5 Script alert:
ﬂj Clause 120: || F{U,skf6(V)) F(skf7(U,\),ske1)* —> F(V,skc 1) F(ski5(skf6(v)),skcl). Weight: 14 Sequence no.: 52

[ox]

Fig. 2. Viewing a viz graph using Batik

3.2 Linear Search Trees

A particular strategy for resolution is the linear strategy. Here, new consequences
are derived only by resolution between axioms and the given clause, and the first
given clause must be the conjecture. No resolution steps between axioms are con-
sidered. The strategy is only complete for certain classes of problems, but this
includes some significant applications.

The restriction of the strategy allows us to simplify the tree without losing im-
portant information. We do this by removing the axiom nodes from the tree, and
instead labelling the edges with the number of the axiom that has been applied.
Again, we allow the user to click on the edge label to see the axiom formula. This
allows quite large proof searchesto be visualised in acomprehensible fashion. Fig-
ure 3 gives an example of this. Here the search is for Gavin Lowe's attack on the
Needham-Schroeder Public Key protocol, [7], as performed by CORAL, [14], a
version of SPASS using a linear strategy.

The viz linear mode can also be used as simpli£cation technique for problems
which do not in fact employ the linear strategy. The resulting graphs have far
fewer edges and asimpler layout, emphasising the search pattern rather then logical
dependence. Sometimes, however, this can make the proof unclear. A way around
this would be to add back in all the edges for the critical path only. An example
of thisis given in Figure 4, where we have used viz to draw alinear ssimpli£cation

5

STEEL

of the same search shown in Figure 1. The edges that have been added back have
been coloured red.

FIN VT F 3\ 7
‘ & VPl b P A O
e /r SPSRRRRIAY
9999 99D F S UV S %
99990 Y S S AT !
980 E DIV IRRNER.

ANy
CHAALE A ‘
RS S A
Sy F
‘o T
| '
: m

;

BE e 85 ey 3 v W v S e 0 em 5 ep HE e NF e ¥ e M

Fig. 3. Linear search tree - NSPK attack

3.3 Using the Trees

It is often possible to see a great deal even from a cursory inspection of the trees.
For example, one can often see large ‘wasted areas’ - collections of nodes off the

6

STEEL

Fig. 4. Linear simplifcation of Pelletier’s problem no. 54

STEEL

critical path, that descend from just one node higher up the tree. This alows the
user to inspect these higher nodes and think about whether there is a general rule
(perhaps specific to the domain or theory) that could allow these nodesto be pruned
from the search.

By tracing the colours of the nodes on the critical path, one can see where the
discovery of the proof was ‘held up’. If there is a marked change in colour from
one node to ancther on the critical path, this indicates such a hold up in the proof
discovery. By examining the clauses involved, and their weights as indicated by
the node size, the user can improve the weighting heuristic. This may also suggest
changes to strategy: for example, hotlisting a crucial subterm in the clause which
holds up the critical path.

In Figure 5, we give another example of output from viz. This proof shows the
discovery of aknown attack on the Common Cryptographic Architecture API of the
IBM 4758 hardware security module, [2]. In the fully zoomed-out diagram, we can
see that there are two wide but shallow subsections of the proof, in the top left and
bottom right portions of the diagram. Furthermore, we can see that al the clauses
in the bottom right are descendants of one clause (marked on the diagram with an
arrow). Examining this clause, we find that it requires our intruder to build a three
part term using bitwise XOR to complete the attack. The three partsrequired areall
in theinitial knowledge of the intruder. However, the combinatorial possibilities of
combining his knowledge with XOR are such that the majority of the proof search
takes place just to put these three pieces together. We can see that thisis where we
might make an improvement in performance that will be vital for tackling larger
problems.

We anticipate that other ways of using the graphs will suggest themselves, as
our work with first-order provers in security protocol problems continues. We in-
tend to continue the development of viz, adding more features to the graphs (see

§5).

3.4 Implementation Details

viz first uses the ‘dot’ graph drawing program to produce an outline drawing of
the graph. Thisisin scalable vector graphics (svg) format. A second pass is then
made to add the annotations and pop-ups for the clause formulae. Thefinal svgfile
can be viewed in any w3c compliant svg viewer. Batik ?, produced by the Apache
organisation, isafreely available open-source svg viewer which seemsto do agood
job on the graphs viz produces.

At the moment, viz will only parse output from SpAss and dalac, [17], but it
would be a simple matter to port it to other provers (a priority for future work is
a version that parses the TSTP syntax, [16]). The viz script itself is available at
http://honepages.inf. ed. ac. uk/ gsteel /vi z/.

2 http://xm . apache. org/ bati k/

http://homepages.inf.ed.ac.uk/gsteel/viz/
http://xml.apache.org/batik/

STEEL

f

e

/Y

R, N S s .|

=
e T
\A\\\\\ 7777 77

AL /ﬁ

| .
WA K N\ e
///// N ////////// \ // /d//|/\lJ/

| R
\ N

\

-

!//l - - -

= s

O //////////
b

Fig. 5. Bond’s attack on IBM 4758 CCA

STEEL

4 Related work

In the past, trees have generaly only been used in resolution theorem proving to
illustrate a proof, rather than the search for a proof (e.g., the Tree Viewer for TSTP
syntax proofs, [16]). However, search trees have been used in interactive theorem
proving. Lowe and Duncan’s XBarnacle, [8], used treesto facilitate user interaction
with the proof planner Clam, [3]. XBarnacle allows the user to select the level of
detail displayed, so the tree can be drawn with just nodes, or with nodes fully
labelled with the subgoal at that node, and various levels in between. A further
feature is to show the heuristic scores of all methods applicable to a node, to allow
a user to see how the choice was made. We could perhaps adapt these features
usefully to viz. Changing the level of detail could be achieved by some scripting
commands which act on the svg file itself. We could use another pop-up window
to offer information about the weighting score of other nodes in the usable set at
the time each node was considered as a given clause. Usable sets are typicaly
extremely large for non-trivial problems, so this would have to take the form of
some kind of statistical summary.

Hutter and Sengler, [5], implemented a tree-based graphical user interface for
the interactive prover, INKA, [6]. Their interface also used colour. Nodes were
coloured to indicateif the subgoal had been proved, remained open, or was blocked
(i.e. remained unsolved after all applicable methods had been applied). Thisis
another idea we could use in viz. We could colour leaf nodes to indicate whether
they had some children which remained in the usable set, or if all their children had
been detected as redundant. Thiswould be very useful information for the user.

5 Conclusions

Our tool viz seems to offer some immediate benefits in terms of visualising proof
search in a resolution-style prover. These include being able to quickly identify
bottlenecks and wasted areas. With further work, we should be able to offer more
useful featuresto the user, such as marking leaf nodes with redundant children, and
allowing the user to vary the level of detail on display. We aso plan to adapt viz
to other provers. It could then be used to compare different strategies on the same
problems, as in [9], or to compare search performance on benchmark problems,
for example the TPTP corpus, [15]. If adapted to draw the graphs in real-time, it
could be used to track proof search during the CASC automated theorem proving
competition, [11].

One problem we will certainly need to address is that of viewing large graphs.
As we explained in §1, users of theorem provers typically train their settings on
smaller examples which we can already visualise, but to gain real benefit from
the tool, we would also have to be able to handle graphs with tens or hundreds
of thousands of nodes. For the general problem of viewing large graphs, there
has already been considerable work (see e.g. [4] for a survey). For our particular
problem, we would probably also want to be able to do some pre-processing, in

10

STEEL

order to get a summary picture of alarge proof search. The use of the linear mode
described in §3.2 is one example of how this could be done.

We intend to pursue all of these devel opments them as we continue our research
into using first-order theorem provers to investigate computer security problems.

Acknowledgements
We are grateful to Geoff Sutcliffe for comments on an earlier draft of this paper.

References

[1] Bachmair, L., H. Ganzinger, C. Lynch and W. Snyder, Basic paramodulation and
superposition, in: D. Kapur, editor, 11th Conference on Automated Deduction, number
607 in LNCS, 1992, pp. 462-476.

[2] Bond, M. and R. Anderson, API level attacks on embedded systems, IEEE Computer
Magazine (2001), pp. 67-75.

[3] Bundy, A., F. van Harmelen, C. Horn and A. Smaill, The Oyster-Clam system, in: M. E.
Stickel, editor, 10th International Conference on Automated Deduction, Lecture Notes
in Arti£cial Intelligence 449 (1990), pp. 647-648, also available from Edinburgh as
DAI Research Paper 507.

[4] Herman, I., G. Melangon and M. S. Marshall, Graph visualization and navigation
in information visualization: A survey, IEEE Transactions on Visualization and
Computer Graphics 6 (2000), pp. 24-43.

[5] Hutter, D. and C. Sengler, The graphical user interface of INKA, in: N. Merriam,
editor, Proceedings International Workshop on User Interfaces for Theorem Provers
UITP-96, York, U.K., 1996, pp. 43-50.

[6] Hutter, D. and C. Sengler, INKA: the next generation, in: M. A. McRobbie and
J. K. Slaney, editors, 13th Conference on Automated Deduction (1996), pp. 288-292,
springer Lecture Notes in Arti£cial Intelligence No. 1104.

[7] Lowe, G., An attack on the Needham-Schroeder public-key authentication protocol.,
Information Processing Letters 56 (1995), pp. 131-133.

[8] Lowe, H. and D. Duncan, XBarnacle: Making theorem provers more accessible, in:
14th Conference on Automated Deduction (1997), pp. 404-408.

[9] McCune, W., 33 basic test problems: A practical evaluation of some paramodulation
strategies, in: R. Veroff, editor, Automated Reasoning and its Applications: Essays in
Honor of Larry Wos, MIT Press, 1997 pp. 71-114.

[10] Pelletier, F. J., Seventy-£Eve problems for testing automatic theorem provers, Journal of
Automated Reasoning 2 (1986), pp. 191-216.

[11] Pelletier, F. J., G. Sutcliffe and C. Suttner, The development of casc, Al
Communications 15 (2002), pp. 79-90.

11

STEEL

[12] Robinson, J., A machine-oriented logic based on the resolution principle, Journal of
the Association for Computing Machinery 12 (1965), pp. 23-41.

[13] Steel, G., “Discovering Attacks on Security Protocols by Refuting Incorrect Inductive
Conjectures,” Ph.D. thesis, University of Edinburgh (2004), electronic copy available
on request from the author: gr aham st eel @d. ac. uk.

[14] Steel, G., A. Bundy and M. Maidl, Attacking a protocol for group key agreement by
refuting incorrect inductive conjectures, in: D. Basin and M. Rusinowitch, editors,
Proceedings of the International Joint Conference on Automated Reasoning, number
3097 in Lecture Notes in Artifcial Intelligence (2004), pp. 137-151.

[15] Sutcliffe, G. and C. Suttner, The TPTP Problem Library: CNF Release v1.2.1, Journal
of Automated Reasoning 21 (1998), pp. 177-203.

[16] Sutcliffe, G., J. Zimmer and S. Schulz, TSTP Data-Exchange Formats for Automated
Theorem Proving Tools, in: V. Sorge and W. Zhang, editors, Distributed and Multi-
Agent Reasoning, Frontiers in Arti£cial Intelligence and Applications, 10S Press, 2004
(to appear).

[17] Vigneron, L., Positive deduction modulo regular theories, in: H. K. Bining, editor,
Computer Science Logic, 9th International Workshop, Lecture Notes in Computer
Science 1092 (1996), pp. 468-485.

[18] Weidenbach, C. et al., System description: Spass version 1.0.0, in: H. Ganzinger,
editor, Automated Deduction — CADE-16, 16th International Conference on
Automated Deduction, LNAI 1632 (1999), pp. 378-382.

[19] Wos, L. and G. Pieper, “Automated Reasoning and the Discovery of Missing and
Elegant Proofs,” Rinton Press, 2003.

12

graham.steel@ed.ac.uk

