
R e l a t i o n a l R i p p l i n g : A G e n e r a l A p p r o a c h * 

A lan Bundy a 
Department of Artificial Inl 

80 South Bridge, Edinburgh, EH1 1HN, 

Abst rac t 

We propose a new version of rippling, called 
relational rippling. Rippling is a heuristic for 
guiding proof search, especially in the step 
cases of inductive proofs. Relational rippling 
is designed for representations in which value 
passing is by shared existential variables, as op
posed to function nesting. Thus relational rip
pling can be used to guide reasoning about logic 
programs or circuits represented as relations. 
We give an informal motivation and introduc
tion to relational rippling. More details, includ
ing formal definitions and termination proofs 
can be found in the longer version of this pa
per, [Bundy and Lombart, 1995]. 

Keywords: Rippling, heuristics, inductive proof, 
automated theorem proving, logic program transform
ation. 

1 I n t r oduc t i on 
Rippling is a heuristic technique for controlling search 
during automatic theorem proving, [Bundy et a/., 1993]. 
It was originally developed for inductive theorem prov
ing. Its role is to manipulate the induction conclusion 
to make it more like the induction hypothesis, thus en
abling the hypothesis to prove the conclusion. Rippling 
can also be used for non-inductive proofs whenever a 
problem can be solved by reducing a syntactic difference 
between it and some previously solved problem. 

"Part of the research reported in this paper was conducted 
while the first author was a visitor at the Max Planck Insti-
tut fur Informatik in Saarbriicken. He would like to thank 
his hosts, Harald Ganzinger and David Basin for inviting 
him to MPI and making his stay so pleasant. We would 
also like to thank David Basin, Toby Walsh, Helen Lowe, Ju
lian Richardson and members of the mathematical reasoning 
group at Edinburgh for discussions about earlier versions of 
the ideas described here. This work is part of a project sup
ported by SERC grant GR/H/23610, ESPRIT BRP grant 
6810 and ARC grant 438. The second author is supported 
by the Belgian National Fund for Scientific Research, and his 
stay in Edinburgh is supported by HC&M Logic Program 
Synthesis and Transformation. 

nd Vincent Lombar t 
.diligence, University of Edinburgh, 
Scotland. Email: {bundy,vincent}aisb.ed.ac.uk 

Rippling works by identifying the syntactic differ
ence between the current problem and the previous one, 
[Basin and Walsh, 1993], and then moving that difference 
through nested functions to a place where it no longer 
prevents a match between them. Following Boyer and 
Moore, this matching process is called fertilization. Rip
pling is predicated on the assumption that value passing 
is done via function nesting. But there is a popular al
ternative technique for value-passing: via existentially 
quantified shared variables. This is the technique used, 
for instance, in logic programming. It is also used in 
the relational representation of circuits. There is thus a 
strong motivation to adapt the ideas of rippling to situ
ations in which value passing is done via shared variables 
between relations, instead of nested functions. We will 
call this adapted rippling, relational rippling. When we 
need to draw a distinction, we will call the original rip
pling: functional rippling. 

Our goal is to implement relational rippling in a proof 
planning environment, [Bundy, 1988]. This entails de
vising relational rippling tactics to guide a proof editor 
like Oyster and devising methods to specify these tac
tics in a meta-logic for use by a proof planner like CIAM, 
[Bundy et al., 1990]. 

Notational Conventions 

We use upper case for variables (free or bound), lower 
case for constants and greek letters for meta-variables. 
Where variables are universally quantified at top level 
we will usually omit the quantifier. The notation p(X) 
means that p contains at least one free occurrence of X. 
It may also contain other variables. 

We use => for the rewrite arrow and —+ for implica
tion. Reasoning is backwards from goal to hypothesis. 
Therefore, when an implication, A —► B, is used as a 
rewrite rule on positions of positive polarity it is applied 
right to left, i.e. B => A. 

2 Background 

To make this paper self-contained we give a brief intro
duction to functional rippling and to value passing via 
shared existential variables. 

BUNDY AND LOMBART 175 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


176 AUTOMATED REASONING 



• Value passing by shared existential variables dis
places the arguments of predicates in skeletons. 
Compare the arguments of the two p predicates in 
(3). These arguments need to be replaced when de
fining skeletons, in order to ensure preservation. 

• There is a loss of directionality when functional ex
pressions are translated into relational ones. For 
instance, the left hand side of (3) could equally well 
represent S1(f(Y')) as f(s1(X)). We need to an
notate wave-rules in a way that imposes a sense of 
direction on them to prevent looping and ensure ter
mination. 

• Relational rippling needs to be supplemented with 
other processes. It needs to be initialised and it 
needs to be integrated with functional rippling. 

For these reasons relational rippling has proved quite 
difficult to formalise. Before arriving at the proposals in 
this paper, we experimented with a number of alternat
ives, each of which was eventually rejected, often because 
of quite subtle problems. 

3.2 Skeleton Preservation 
Consider annotating the equivalence (3) as a wave-rule. 
We will want to hide the predicates S1 and ,S2 as wave-
fronts, but we also want to hide the existential quanti
fication that connects them to the ps. This suggests: 

However, note that the skeletons on each side are not 
preserved due to their different arguments. The prob
lem is caused by the displacement of their arguments by 
the wave-fronts. These displaced arguments need to be 
replaced. To do this we annotate each argument position 
with the argument that has been displaced from it, e.g. 

where the annotation appears in a box beneath the argu
ment position. In the process of matching the wave-rule 
against the current goal, the meta-variables a and B are 
instantiated to the displaced arguments. In simple cases, 
they will be instantiated to X and Y', respectively, but 
in more complex cases it might not be the case. 

When forming the skeleton we not only remove wave-
fronts but we replace each argument in the skeleton with 
its annotation. The skeletons on both sides of the wave-
rule are both now , i.e. the skeleton is preserved. 
For readability, these displaced argument annotations 
will be dropped when not needed. 

3.3 Directional i ty 
Note that (3) can also be annotated as a wave-rule in 
the reverse direction. 

To prevent looping we require some additional annota
tion to give a direction to the rule. The intuition behind 
relational rippling is that the wave-fronts ripple past each 
part of the skeleton in turn. We see them as going into 

one argument and out of another. We can capture this 
intuition by annotating each argument position in the 
skeleton with an arrow. A downwards arrow means that 
the wave-front must go into this argument and upwards 
arrow means that the wave-front must go out of this ar
gument. Arrows in wave-rule and goal must match. So 
(3) can be annotated in two ways: 

(4) 

BUNDY AND LOMBART 177 



3.5 The Transport Problem 
Note that we have omitted some steps from the abstract 
ripple-past in figure 1 above. Consider, for instance, (6). 
After the ripple-past it will be left in the state labelled 
(8) in figure 2. To prepare this goal for the next ripple-
past we need to rearrange the conjunction and the ex
istential quantifiers into the state labelled (9). We call 
this the transport problem. 

We have experimented with various solutions to this 
problem. One solution is to use a matching algorithm 
which builds in the associativity and commutativity of 
conjunction and the commutativity and alpha convert-
ability of existential quantification. For instance, we can 
treat both goal and rule LHS as a set of conjuncts and 
rearrange them as required for the match. This is a 
straightforward solution but has two disadvantages: 

• if it is necessary to justify such a match in the un
derlying logic then it must be unpacked into the 
various rule applications; and 

• it does not scale up to a situation where other con
nectives are interleaved with the conjunctions. 

For these reasons we have also experimented with the 
use of attraction, [Bundy and Welham, 1981], and nor
malisation. The variable to be rippled-past is identified 
and annotated. Rewrite rules are then applied which 
bring occurrences of this variable closer together while 
preserving the skeleton. These rules are based on associ
ativity and commutativity of conjunction and commut
ativity of existential quantification. Wave-rules are kept 
in a normal form, also based on these rules. The sub
expression to be rewritten is put in this normal form after 
collection. The major disadvantage of this approach is 
that the normal form is not canonical, so backtracking 
is theoretically required — although seldom needed in 
practice. 

4 The In i t ia l isa t ion M e t h o d 
The ripple-past method assumes that the goal contains 
wave-fronts. Unfortunately, after induction the induc
tion conclusion will not contain any wave-fronts. The 

178 AUTOMATED REASONING 



BUNDYANDLOMBART 179 



skeleton preservation. The directionality annotations 
they had developed are now dynamically added. The 
rippling-past process on which they focus has be embed
ded between an initialization phase and a final rippling-
out. A termination measure has been defined. 

The annotations used in [Lombart and Deville, 1994] 
are slightly different from those proposed here: the wave-
fronts do not include the existential quantifiers, and the 
directionalities are implicit (because they are statically 
fixed), but this is only syntactic sugar. On the other 
hand, they do not have skeleton preservation annota
tions. 

7.2 Ahs & Wiggins 
Ahs and Wiggins were the first to propose a version of 
relational rippling in [Ahs and Wiggins, 1994]. Although 
they also motivate their work by analogy to functional 
rippling, they do not make the simplifying assumptions 
of Lombart and Deville, so their proposal is more general. 
In [Ahs, 1995] Ahs gives details of a wave-rule parser 
and illustrates it on some examples. However, he gives 
no formal definitions or theoretical account. This means 
that his parser is inherently ad hoc; there is no basis to 
judge whether it is correctly implemented. His wave an
notation puts wave-fronts and wave-holes around some 
distinguished variables. It is not clear how these an
notations guide the rippling process. For instance, what 
we call the transport problem is not addressed, nor is 
the problem of skeleton preservation or termination. It 
is not clear how the wave annotations could help solve 
these problems. 

8 Conclusion 

In this paper we have proposed a new version of rip
pling which can reason about representations which used 
shared existential variables instead of function nesting to 
pass values. Relational rippling consists of two phases: 
initialisation and rippling-past and it must sometimes 
be combined with functional rippling. Initialisation is 
fairly straightforward, so most of our attention has been 
directed to rippling-past. 

We have defined some meta-level annotation to be ad
ded to object-level formulae. This annotation is used 
to restrict the application of rewrite rules and hence re
duce search and ensure termination. Wave-rules must be 
both skeleton preserving and measure decreasing. These 

180 AUTOMATED REASONING 



properties are inherited by the expressions being rewrit
ten. 

In an extended version of this paper, [Bundy and Lom-
bart, 1995], we give formal definitions of the various con
cepts introduced informally here: well annotated term; 
skeleton; erasure; well-founded measures for attraction 
rules and relational wave-rules; the wave-rule types; pre
conditions of the various methods; etc. These definitions 
have been used to show that each phase of rippling ter
minates, as does the process as a whole. They can also 
be used to give a formal specification of a program to 
parse rewrite rules as wave-rules and attraction rules and 
automatically annotate them. Finally, they can be used 
to specify the methods and tactics which will be needed 
to implement relational rippling in a proof planning con
text. Such formal definitions are badly needed and their 
absence has hampered previous attempts to implement 
relational rippling. As a result of this formal analysis 
the proposals given here are quite improved from previ
ous proposals. 

The proposals here have been hand tested on a range 
of examples, both abstract and concrete, drawn from 
the step cases of inductive proofs of relational theorems. 
So far, they have been very successful in guiding these 
proofs. These tests have confirmed that relational rip
pling dramatically reduces the search for a proof most 
of the time there is no branching despite a highly ex
plosive search space. This reduction in the search space 
seems not to exclude the required proofs. Even when 
relational rippling fails, an analysis of the failure can 
suggest how to patch the proof. 

It remains to complete the implementation of the pro
posals made here and to test them more extensively. 

References 
[Ahs and Wiggins, 1994] T. Ahs and G. A. Wiggins. 

Relational rippling for logic program synthesis and 
transformation, 1994. Presented at the Fourth In
ternational Workshop on Logic Program Synthesis 
and Transformation; available as DAI research paper, 
forthcoming. 

[Ahs, 1995] T. Ahs. Relational rippling (working title), 
1995. Ph.L. Thesis, Computing Science Department, 
Uppsala University, Sweden. 

[Basin and Walsh, 1993] D. Basin and T. Walsh. Differ
ence unification. In Proceedings of the 13th IJCAI. In

ternational Joint Conference on Artificial Intelligence, 
1993. Also available as Technical Report MPI-I-92-
247, Max-Planck-Institute fur Informatik. 

[Basin and Walsh, 1994] D.A. Basin and T. Walsh. An
notated rewriting in inductive theorem proving. Tech
nical report, MPI, 1994. Submitted to JAR. 

[Bundy and Lombart, 1995] A. Bundy and V. Lombart. 
Relational rippling: a general approach. Research Pa
per forthcoming, Dept. of Artificial Intelligence, Edin
burgh, 1995. Shortened version submitted to IJCAI-
95. 

[Bundy and Welham, 198l] A. Bundy and B. Welham. 
Using meta-level inference for selective application of 
multiple rewrite rules in algebraic manipulation. Arti-
ficial Intelligence, 16(2):189-212, 1981. Also available 
from Edinburgh as DAI Research Paper 121. 

[Bundy et a/., 1990] A. Bundy, F. van Harmelen, 
C. Horn, and A. Smaill. The Oyster-Clam system. 
In M.E. Stickel, editor, 10th International Conference 
on Automated Deduction, pages 647-648. Springer-
Verlag, 1990. Lecture Notes in Artificial Intelligence 
No. 449. Also available from Edinburgh as DAI Re
search Paper 507. 

[Bundy et a/., 1993] A. Bundy, A. Stevens, F. van 
Harmelen, A. Ireland, and A. Smaill. Rippling: A 
heuristic for guiding inductive proofs. Artificial Intel
ligence, 62:185-253, 1993. Also available from Edin
burgh as DAI Research Paper No. 567. 

[Bundy, 1988] A. Bundy. The use of explicit plans to 
guide inductive proofs. In R. Lusk and R. Over-
beek, editors, 9th Conference on Automated Deduc-
tion, pages 111-120. Springer-Verlag, 1988. Longer 
version available from Edinburgh as DAI Research Pa
per No. 349. 

[Lombart and Deville, 1994] V. Lombart and Y. Deville. 
Rippling on relational structures. Research report, 
November 1994. Available as research report RR94-
16, Departement d'ingenierie informatique, Universite 
catholique de Louvain, Belgium. 

BUNDY AND LOMBART 181 


