

Edinburgh Research Explorer

A Framework for Program Development Based on Schematic
Proof

Citation for published version:
Basin, D, Bundy, A, Kraan, I & Matthews, S 1993, 'A Framework for Program Development Based on
Schematic Proof' Proceedings of the 7th International Workshop on Software Specification and Design
(IWSSD-93).

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the 7th International Workshop on Software Specification and Design (IWSSD-93)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/a-framework-for-program-development-based-on-schematic-proof(989ef849-18ba-46da-b6c1-bb3e17d49388).html

A Framework for Program DevelopmentBased on Schematic ProofDavid Basin1, Alan Bundy2, Ina Kraan2, and Sean Matthews11 Max-Planck-Institut f�ur InformatikIm StadtwaldD-66123 Saarbr�ucken, Germanyfbasin,seang@mpi-sb.mpg.de2 Department of Arti�cial IntelligenceUniversity of EdinburghEdinburgh, Scotland, U.K.fbundy,inakg@ai.ed.ac.ukAbstract. Often, calculi for manipulating and reasoning about pro-grams can be recast as calculi for synthesizing programs. The di�er-ence involves often only a slight shift of perspective: admitting metavari-ables into proofs. We propose that such calculi should be implementedin logical frameworks that support this kind of proof construction andthat such an implementation can unify program veri�cation and syn-thesis. Our proposal is illustrated with a worked example developed inPaulson's Isabelle system. We also give examples of existent calculi thatare closely related to the methodology we are proposing and others thatcan be pro�tably recast using our approach.1 IntroductionWhat is the di�erence between program veri�cation and program synthesis? Cana calculus designed for one of these activities be reused or recast for the other?These two questions motivate our work here; their answers are important asthey help us not only to understand better the theoretical relationship betweenthese development paradigms, but also to develop calculi and implement themon machines.Let us illustrate the relationship between these two approaches, and thatthere exists a space of design options between them, by choosing a popular kindof programming logic as an example: constructive type theory as a logic forfunctional programs, as embodied in Martin-L�of's type theory [26], Nuprl [10]or the Calculus of Constructions [11]. In such logics one proves that a term tmeets a speci�cation T by demonstrating that t has the type T , denoted t 2 T .For example, if t 2 (8x :T1: 9y :T2: R[x; y])then, by the nature of the logic, for any x in in T1, t(x) evaluates to a pairhf(x); p(x)i in T2 where p(x) is a proof that R[x; f(x)]. If R[x; y] were the re-lation that y is a sorted version of x, then f(x) must be a sorting program.

Whether such a type theory is used for veri�cation, synthesis, or both, dependson how its rules are formalized. Martin-L�of, in presenting his logic, gives rulesfor demonstrating that terms in the theory are members of types; that is, therules construct veri�cation proofs (showing a given t meets some speci�cationT). The Nuprl system provides similar rules as \re�nement rules": one startswith a goal T and constructs a proof that T is true. In such proofs, the programt may or may not be given a priori, and the system contains two (very similar)sets of rules depending on whether t is present (i.e., the goal is t 2 T) or not(i.e., the goal is simply T). In the former case, proofs verify programs. In thelatter, they say how to construct or synthesize programs, and the system mayextract the inhabiting term t. The synthesis and extraction may be understoodin a very simple way: the term t is initially a metavariable, and each proof ruleelaborates a bit more of the structure of t (using substitutions derived from uni�-cation). The Oyster system [6] uses exactly this approach and manipulates thesemetavariables behind the scenes. In [28], Paulson sketches an implementationin Isabelle of Martin-L�of's calculus. Here the relationship between veri�cationand synthesis is especially clear: they are one and the same activity! That is,metavariables become \�rst-class" objects and may appear directly in proofs aswell as proof rules; hence one reasons about a term t 2 T where t may be aspeci�c ground term of the type theory, a metavariable, or even a combinationof both. In the �rst case we have veri�cation, in the second synthesis, and inthe third a hybrid where some parts of the program structure are known andothers left unspeci�ed (see [17] for examples of uses for this). In all three casesthe same kind of proof rule is used to build proofs, independent of whether thegoal contains an actual or a schematic term; hence veri�cation and synthesis areuni�ed.This idea of unifying veri�cation and synthesis through metavariables is notnew. It goes back at least as far as Green's use of resolution not only for checkinganswers to queries, but also for synthesizing programs [13]. In his work, meta-variables were introduced through Skolemization in preparation for resolution(see section 4 for further details).In this report we suggest that the second-order generalization of this idea canbe applied to unify program veri�cation and synthesis in a wide range of settings.Our contributions will be several fold: �rst, we give this generalization, justifywhy it is appropriate, and explain how it can be simply implemented using theIsabelle theorem prover (section 2); second we present a worked example of thekind of development paradigm we have in mind, that of logic program synthesis(section 3); �nally, we conclude with a brief survey of related work and giveexamples of existent calculi that are closely related to the methodology we areproposing and show how others can be pro�tably recast using our approach.

2 Schematic Proofs2.1 Modeling Proof Rules and DeductionsWe are proposing an approach for implementing program synthesis calculi, soit is �tting that we begin by considering some of the design issues involvedwhich lead us to our choice. This will also help us compare our work with otherapproaches later.In logic texts, proof rules, and sometimes axioms, are presented schemati-cally. That is, they contain metavariables ranging over terms and formulae. Forexample, in a proof rule like A BA ^ B (^-I)A and B are not formulae but variables ranging over formulae. On the otherhand, aside, perhaps, from when one is doing metatheory, one works only withground terms.1 For our work we must allow both proof rules and proofs them-selves to be schematic. What is involved in providing machine support for this?For logics without operators that bind variables (e.g., quanti�ers) the an-swer is easy: we can represent both proof rules and proofs using terms thatmay contain �rst-order metavariables. That is, the metavariables range over thesyntactic categories of the logic (terms, formulae, etc.) and may be manipulatedusing (sorted, if there is more than one category) �rst-order uni�cation. So in theabove rule for ^-I, A and B may be �rst-order metavariables ranging over, say,propositional logic terms. Another example would be Prolog, where a programis a set of axioms with schematic terms and execution corresponds to buildinga proof that can contain schematic terms.When logical syntax employs operators that bind variables, �rst-order meta-variables are insu�cient. Consider for example the rule8x:AA[t=x] : (8-E)If we tried to represent the schematic formula in the premise of this rule as 8x:A,where A is a �rst-order metavariable and substitution is as usually de�ned in�rst-order logic, then we could neither adequately instantiate A nor properlysubstitute t for x. The former is problematic because substitution should becapture avoiding (how is A to reference the name of the bound variable | whichin this case is x?); the latter is problematic because �rst-order substitution is1 We employ the following terminology: A logical framework like Isabelle provides ametalogic for encoding and reasoning about object logics. Metavariables are variablesin the metalogic which range over the syntactic categories of the object logic. We callterms containing metavariables schematic terms and proofs containing metavariablesschematic proofs. Schematic terms are also used in in informal mathematics, althoughthe metalogic is unspeci�ed. We will exclusively use the term ground to refer to termswhich contain no metavariables, although they may contain variables of the objectlogic (either free or bound).

only de�ned on ground terms. Of the few proof systems that allow metavariablesin proofs (e.g., [12,23,29]) higher-order metavariables are used and object-levelsyntax is encoded using some kind of higher-order abstract syntax. A notableexception is the KIV system[16], which possesses both �rst-order metavariablesand binding operators in the logic; it copes with the above mentioned instantia-tion problems somewhat crudely: substitution for metavariables allows captureand substitution for ordinary variables is allowed only in ground terms; althoughthis preserves validity of proofs, it greatly restricts the way in which they maybe built.One option for implementing schematic rules and proofs on a machine is toformalize an appropriate notion of variables ranging over terms with holes andtheir interaction with binding operators. Such a calculus has been formalized in[31]. A simpler approach, used by advocates of \higher order abstract syntax",is to use variables ranging over functions in the lambda calculus. Under thisapproach a schematic term like A[x] is represented as an application A(x) whereA ranges over functions.2 With this representation, given a term like 8x:A(x) wemay instantiate A with a formula valued function, say �y:y+3 = 5, and performa �-reduction yielding 8x: x + 3 = 5. Now applying 8-E with some (perhapsschematic) argument t yields t + 3 = 5. This is identical to �rst instantiating8x:A(x) with t (yielding A(t)) and then instantiating A. The point is that thisrepresentation allows us proofs (and proof rules) where each step is valid forall instantiations. Hence, we may construct a program incrementally through aproof and the result is logically the same as if we had �rst given the programand then veri�ed it (with the same proof!).Implemented languages and frameworks supporting higher-order metavari-ables and uni�cation, such as �-Prolog or ELF, could provide an implementationto base our work upon. We have chosen Isabelle as it is well suited for interactiveproof construction, manipulation of schematic rules and proofs, and has supportfor automated proof construction. These points will become clearer with ourexample.2.2 Construction of Synthesis ProofsWe have conducted a number of synthesis experiments in the Isabelle system.These include synthesizing logic programs, functional programs, and represen-tations of circuits. In this section we provide details on how Isabelle can beused this way, and background necessary to understand our worked example.An detailed description of Isabelle can be found in [28].For the kinds of examples we have in mind, it helps to begin with the view of ajudgement or assertion. Most proof systems have only one judgement, provability,but one can imagine other kinds; e.g., Martin-L�of has four in his type theory(typehood, equality of types, membership in a type, and equalities of members).We will use this notion to capture the idea that sequents we manipulate have2 Functions whose domain is the syntactic category of x and co-domain the syntacticcategory of A[x].

certain shapes. For example, if we wish to reason about imperative programsusing a Hoare logic, then the judgements are triples of the form fSgP fQgwhere S and Q are �rst order formulae and P a \while-loop" program. In thiscase, proof rules will be structured so that they unify with such triples. Anotherexample is that of reasoning about VLSI or gate-level circuits: the judgementsthere are 8x: spec(x) R Prog(x)where x is a vector of variables representing port values, Prog is a term (ormetavariable) representing a circuit with external ports among the x, spec is aspeci�cation in �rst (or higher-order) logic expressing constraints on the x, andR is a re�nement relation expressing the relationship between the program andthe speci�cation. Typically such relations are equivalence or implication (whenthe program may be more \concrete" than the speci�cation). We will continuethis discussion of hardware synthesis in section 4.We wish to formalize such judgements in Isabelle and give proof rules suchthat proofs will verify or construct (depending if there are metavariables inthe original conjecture) programs that are correct with respect to the intendedsemantics of the given programming logic. Isabelle is well suited to supportthis activity. First, Isabelle is a logical framework. This means we can declarewithin it a desired object language (syntactic categories and constructors) andaxiomatize its proof rules. For instance, in �rst-order logic we would declarefunction constants like implication and universal quanti�cation respectively oftypes o ! o! o and (i! o) ! o, where i is the sort of �rst order individuals,and o the sort of formulae. This logic is then axiomatized by giving introductionand elimination rules for these de�ned logical constants.Isabelle provides direct support for the construction of schematic proof rulesand proofs. It manipulates directly schematic inference rules of the form [[�1; : : : ;�n]] =)� where the � may contain higher-order metavariables. The =) is meta-level im-plication and this sequent represents the formula �1 =) (: : : =) (�n =) �) : : :)in Isabelle's metalogic, which is a fragment of higher-order logic. (The readershould be careful not to confuse Isabelle's implication, =), with implication inthe object logic, or its higher order universal quanti�er \!!" with quanti�ers inthe object logic.) A proof in Isabelle proceeds by applying derived rules to formu-lae of the above form until all the �i are proven, at which point � is also proven.In our work, � may initially contain metavariables, and at the end we can reado� an assignment for them from the �nal proof. This is illustrated below.3 An Example: Logic Program SynthesisWe have chosen this problem domain as it admits a simple exposition and illus-trates the essential ideas of our proposed methodology: with only a few simplederived inference rules we may synthesize interesting logic programs from �rst-order logic speci�cations. This domain is also interesting in its own right. Eventhough full �rst-order logic can be seen as a programming language (e.g., viatransformation to normal programs [22]), there are many bene�ts to having a

logic for deriving logic programs from �rst-order speci�cations. For example,we may wish to synthesize an e�cient program by changing the underlying al-gorithm embodied in the recursive structure of the speci�cation. Synthesizing aquick-sort sorting algorithm from a \slow sort" speci�cation, perm(x; y)^ord(y),is an example of this. Alternatively, we may wish to alter the way an algorithmis represented, for example converting a normal program (in the sense of [21],i.e., one which may contain negative atoms in the program body) to a Hornclause program. Such a transformation could prevent
oundering during Prologexecution. This approach to logic program development is described in detail in[19,20]; these papers describe the use of the CLAM theorem prover to synthesizeprograms from their speci�cations automatically.We must begin by �xing a programming logic and relationship between pro-grams and speci�cations. We choose �rst-order logic as a speci�cation languageand say a program is correct when it is equivalent to its speci�cation. Actu-ally, this is not enough: even for logic programs without impure features thereare many rival notions of equivalence. The di�erences though (see [24,5]) arenot relevant from the standpoint of illustrating our methodology. The notionof equivalence we choose is to associate a set of Horn clauses with their ClarkCompletion [21] and show its equivalence to its speci�cation in predicate calcu-lus with theories of standard data-types (e.g., numbers or lists). The details ofthis follow.We de�ne a Horn body to be a formula as followsG ::= A j G1 ^G2 j G1 _G2 j 9x:Gwhere A is a set of atomic predicate names (e.g., known relations like =, 6=,TRUE, FALSE and previously de�ned programs including the one currently be-ing de�ned). We de�ne a Horn Program to be a formula of the form name(x)$body(x) where body is a Horn body, name is an atomic predicate with variablesx and the free variables of body are contained in x. This de�nition guaranteesthat name body is a Horn clause (in the sense of [27]); such a de�nition maybe straightforwardly translated to a set of standard Prolog Horn clauses. As anexample, the following relation sum is a Horn program:sum(x; y; z)$ (x = 0 ^ y = z) _9x0:(succ(x0) = x ^ ((z = 0 ^ FALSE) _9z0:(succ(z0) = z ^ sum(x0; y; z0))))And it translates directly into the following Prolog program:sum(0,Y,Y).sum(succ(X),Y,succ(Z)) :- sum(X,Y,Z).(note that the program may be run in various modes; i.e., it can not only add,but also subtract or �nd pairs of numbers summing to a third).We will reason about judgements of the form 8x: (spec(x)$ prog(x)), wherespec is a concrete �rst-order speci�cation and prog is a schematic Horn program.

As �rst-order logic is our speci�cation language, veri�cation will take place inIsabelle's standard theory of �rst-order logic augmented with axioms for naturalnumbers and lists. These are standard Isabelle theories and come with the systemalong with tactic support for rewriting. For example, we could prove in thistheory, by induction on x, that8x y z: (x+ y = z $ sum(x; y; z));where sum is the program given above. Alternatively, we could begin with ametavariable for sum and synthesize it from such a proof. We show this shortly.Proof Rules for Program SynthesisGiven a schematic goal, there are two ways we might prove it. The �rst cor-responds to veri�cation: instantiate the goal with a program and proceed fromthere to show the equivalence. Indeed, given a goal spec(x) $ P (x) the �rstthought that might occur to us is to complete the proof in one step, by instanti-ating the metavariable P with spec. If our speci�cation language does not satisfythe same restrictions as our programming language (and ours does not) then ar-bitrary instantiation cannot be admitted; we must insist that P is instantiatedwith a Horn program. Such constraints are not unique to our work and we willsee examples in Section 4 of such side conditions. In our case, we must insistthat any instantiation yields a Horn body. Note, furthermore, that even whenspec is already a Horn body we may still wish to delay instantiation and insteadtry another proof strategy to synthesize a more e�cient program. This is anal-ogous to program transformation work (e.g., the \fold-unfold" technique of [7])where the initial program speci�cation is already executable but the program ismanipulated to derive a more e�cient program.Usually, instead of reducing synthesis to veri�cation, we proceed by decom-posing the speci�cation using rules that at the same time preserve the necessarysyntactic properties of the synthesized program (i.e., never introduce non-Hornstructure during metavariable re�nement). Let us give an example of such arule. Our Isabelle theory contains an inductively de�ned type for the naturalnumbers built from 0 and successor succ along with Peano axiomatization. Wecan use this to derive rules that construct Horn programs that recurse or casesplit depending on their argument values. The following is a simple example ofintroducing a case split in a Horn program depending on whether a number is 0or not:Case Split:[| ALL y. B(0,y) <-> C(y); !!n. ALL y. B(succ(n),y) <-> D(n,y) |]==> ALL x y. B(x,y) <-> (x=0 & C(y)) | (EX n.succ(n)=x & D(n,y))A few explanations are in order. ALL and EX are universal and existential quanti�-cation in the encoded logic and, as previously mentioned, should not be confusedwith \!!" which is universal quanti�cation in Isabelle's metalanguage. Similarly

&, |, and <-> are object-level conjunction, disjunction, and equivalence as op-posed to meta-level connectives like ==>. The rule is initially postulated with freevariables B, C, and D; this prevents their premature instantiation during proof(which would lead to a proof of something more specialized). When the proof iscompleted, these variables are replaced by schematic variables (whereby each ispre�xed with a \?" which is Isabelle's way of denoting metavariables).Reading the above rule as a re�nement rule (i.e., a way to re�ne a goalinto subgoals that imply the original goal) it says that to prove that B(x,y) isequivalent to (x=0 & C(y)) | (EX n.succ(n)=x & D(n,y)) it su�ces to provetwo cases: one where B(0,y) is equivalent to C(y) and the other, where, for somegiven n (an eigenvariable), B(succ(n),y) is equivalent to D(n,y). This rule isprovable in Isabelle by induction on x: the base case and step case follow fromthe �rst and second hypothesis respectively.Now suppose that we have a goalALL x y. spec(x,y) <-> ?P(x,y)where spec is a ground speci�cation (e.g., like sum) and ?P a metavariable. Wecan use the above rule to reduce the goal to two subgoalsALL y. spec(0,y) <-> ?C(y)and ALL y. spec(succ(n),y) <-> ?D(n,y).Furthermore, this uni�es ?P(x,y) with(x=0 & ?C(y)) | (EX n. succ(n)=x & ?D(n,y)): (1)This last term meets our syntactic requirement for the body of a Horn clauseprogram, provided ?C(y) and ?D(n,y) do too. Hence, we have reduced �ndinga program ?P to �nding programs ?C and ?D that meet simpler speci�cations.Moreover, when ?C and ?D are structurally correct, so is ?P. When the proof isdone, and ?C and ?D have been instantiated with ground terms, than so will ?P.Note too that the same proof rule can be used when ?P(x,y) is instead a groundterm, provided that it uni�es with (1).This proof rule is really a special case of the following induction rule. Wewill see shortly how this rule is used to create a de�nition of a Horn programwhich may (through use of the induction hypothesis given in the last goal) berecursively de�ned.Induction:[| ALL x y z. P(x,y,z) <-> (x=0 & Q(y,z)) | (EX n.succ(n)=x & R(n,y,z));ALL y z.S(0,y,z) <-> Q(y,z);!!m. ALL y z. S(m,y,z) <-> P(m,y,z) ==> ALL y z.S(succ(m),y,z) <-> R(m,y,z) |]==> ALL x y z. S(x,y,z) <-> P(x,y,z)It is worth reemphasizing that these rules are formally derived, not assertedas axioms; there is no doubt that they are correct.We are now ready for an example.

3.1 Example: the sum predicateOur example is to synthesize the above sum predicate. What follows are snap-shots taken directly from an Isabelle session (apart from \pretty printing").The initial goal, as previously indicated, is the equivalence between a groundspeci�cation and a metavariable. There is one additional complication: to syn-thesize recursive programs we need to create a de�nition that may refer to itself.Isabelle has no facility for creating dynamically new (schematic) de�nitions dur-ing a proof, so instead we allow proof under an assumption ?H that is to become(incrementally) instantiated with the de�nition of the (Clark completed) Hornprogram. Hence, our initial goal is:?H ==> (ALL x y z. x + y = z <-> ?P(x,y,z))We begin by resolving (Isabelle has a resolve tactic which combines higher-order uni�cation with backchaining) the conclusion of this with the inductionrule we have previously derived. Examining the previously given induction rule,we see this yields three subgoals; but the �rst subgoal we unify against ?H,initializing our schematic de�nition. Hence the entire proof step (invoked witha tactic that �rst resolves with the induction rule, then discharges the �rstassumption through uni�cation with ?H) reduces the initial goal to the followingtwo subgoals.(ALL x y z. ?P(x,y,z) <-> x = 0 & ?Q(y,z) | (EX n. succ(n) = x & ?R(n,y,z)))==> (ALL x y z. x + y = z <-> ?P(x,y,z))1. ALL x y z. ?P(x,y,z) <-> x = 0 & ?Q(y,z) | (EX n. succ(n) = x & ?R(n,y,z))==> ALL y z. 0 + y = z <-> ?Q(y,z)2. !!m.[| ALL x y z. ?P(x,y,z) <-> x = 0 & ?Q(y,z) | (EX n. succ(n) = x & ?R(n,y,z));ALL y z. m + y = z <-> ?P(m,y,z) |]==> ALL y z. succ(m) + y = z <-> ?R(m,y,z)Isabelle always prints the goal that is being proved followed by numbered sub-goals whose proof is required to establish the goal. Here the top three lines showthe goal with ?H already partially instantiated to a program for ?P; with eachsuccessive snapshot we will see this program further instantiated. The remaininglines are the numbered subgoals and consist of the base and step cases of theinduction proof. Note that we are not forced by the system to give a name tothe predicate ?P we are synthesizing.We now turn our attention to the two cases. Each case will further instan-tiate the program we are building, the base case instantiating ?Q (which is thebase case of the recursion) and the step case ?R. The base case is simple: Wedirect Isabelle's rewriting tactic to apply the appropriate Peano axiom to re-duce 0 + y = z to y = z; we prove the resulting simpli�ed subgoal by unifying?Q(y,z) with y = z which is a Horn body; the equivalence immediately follows.The step case is more complex, and leads to a more involved program construct.Here we resolve against the derived case-split rule. This further contributes tothe synthesized program by partially instantiating ?R.

(ALL x y z. ?P(x,y,z) <-> x = 0 & y = z | (EX n. succ(n) = x & (z = 0 & ?C(n,y)| (EX na. succ(na) = z & ?D(n,na,y)))))==> (ALL x y z. x + y = z <-> ?P(x,y,z))1. !!m.[| ALL x y z. ?P(x,y,z) <-> x = 0 & y = z | (EX n. succ(n) = x & (z = 0 & ?C(n,y)| (EX na. succ(na) = z & ?D(n,na,y))));ALL y z. m + y = z <-> ?P(m,y,z) |]==> ALL y. succ(m) + y = 0 <-> ?C(m,y)2. !!m n.[| ALL x y z. ?P(x,y,z) <-> x = 0 & y = z | (EX n. succ(n) = x & (z = 0 & ?C(n,y)| (EX na. succ(na) = z & ?D(n,na,y))));ALL y z. m + y = z <-> ?P(m,y,z) |]==> ALL y. succ(m) + y = succ(n) <-> ?D(m,n,y)The case split has yielded two subgoals. In the �rst, we simplify the conclusion toALL y. False <-> ?C(n,y). Since False is a Horn body, we may unify ?C(m,y)with it. This expands our program and leaves us with the following singletonsubgoal.(ALL x y z. ?P(x,y,z) <-> x = 0 & y = z | (EX n. succ(n) = x & (z = 0 & False| (EX na. succ(na) = z & ?D(n,na,y)))))==> (ALL x y z. x + y = z <-> ?P(x,y,z))1. !!m n.[| ALL x y z. ?P(x,y,z) <-> x = 0 & y = z | (EX n. succ(n) = x & (z = 0 & False| (EX na. succ(na) = z & ?D(n,na,y))));ALL y z. m + y = z <-> ?P(m,y,z) |]==> ALL y. succ(m) + y = succ(n) <-> ?D(m,n,y)Rewriting simpli�es succ(m) + y = succ(n) to m + y = n and the goal be-comes:(ALL x y z. ?P(x,y,z) <-> x = 0 & y = z | (EX n. succ(n) = x & (z = 0 & False| (EX na. succ(na) = z & ?D(n,na,y)))))==> (ALL x y z. x + y = z <-> ?P(x,y,z))1. !!m n y.[| ALL x y z. ?P(x,y,z) <-> x = 0 & y = z | (EX n. succ(n) = x & (z = 0 & False| (EX na. succ(na) = z & ?D(n,na,y))));ALL y z. m + y = z <-> ?P(m,y,z) |]==> m + y = n <-> ?D(m,n,y)And now the conclusion may be resolved against the induction hypothesisALL y z. m + y = z <-> ?P(m,y,z).Using the induction hypothesis this way gives us a recursive program as itinvokes a call to the predicate we are de�ning. This completes the proof andIsabelle yields the following proven sequent with no subgoals.

(ALL x y z. ?P(x,y,z) <-> x = 0 & y = z | (EX n. succ(n) = x & (z = 0 & False| (Ex na. succ(na) = z & ?P(n,y,na)))))==> (ALL x y z. x + y = z <-> ?P(x,y,z))Taking stockLet us review what has been accomplished and what the example demonstrates.First through our proof we have constructed the Horn program ?P(x,y,z) givenin the �nal proof state and proved it correct. Program instantiation occurred onlythrough resolution and the same proof would have worked if we had given theprogram ?P up front. So there is no di�erence between veri�cation and synthesishere. This is true for any proof similarly developed.Second, the resulting proof is guaranteed to be logically correct. This followsas every rule used to build the proof is either a primitive rule in our theory ora derived rule. This point deserves further clari�cation though. To handle theproblem of de�ning a recursive predicate, we set up the proof within an assumed\context": the hypothesis ?H, which is instantiated with the recursive de�nitionor de�nitions. Naturally, if the context is inconsistently instantiated the proof,while still correct, will not give rise to a veri�ed program. Our emphasis in thispaper is on the schematic proof mechanism itself and its
exibility | there aremeans, of course, to ensure consistency of contexts depending on the logic inquestion. In our logic we could check consistency afterwards analogous to whatoccurs after synthesis in INKA (see section 4) or the way recursive de�nitionsare checked in NQTHM. Another way would be to include in the logic a meansof establishing through proof that the de�nition is sensible (e.g., well-founded).Such an interactive obligation would be easier in type theory, for example, whererecursive de�nitions can be given using �x-point combinators and terminationshown via appropriate inductions.A �nal point is that the object constructed satis�es our structural require-ment: it is a Horn-clause program.3 As with context consistency, this is a meta-level problem in the sense that we do not enforce it in our logical theory. (Thoughthere are theories, of course, that do have well-formedness proof obligations, e.g.,Martin-L�of's type theories.) In our case, structural correctness is particularlyeasy to understand and (at the meta-level) to ensure. That is, if we restrictproof steps that instantiate the program so that they use our derived rules,the induction hypothesis, or atomic rules, then the objects synthesized will al-ways meet our structural requirement. This invariant follows by induction onthe structure of derivations using these rules.4 Related WorkIn this section we will look at a selection of other work in program synthe-sis/transformation and relate that work to the approach we propose.3 Not quite as uni�cation never forced us to name the synthesized predicate ?P. Butthe result is a Horn program under any predicate name.

Resolution Based SynthesisIn [13] Green suggests using the \answer predicate trick" in resolution (see also[9] for a description of this trick) to �nd uni�ers using resolution to answerquestions. In this setting, as in Prolog, object-level variables stand in for meta-variables and are assigned values, possibly incrementally, using resolution.Let R(x; y) be a �rst-order relation between x and y. Green's contribution isto show how resolution can serve as a basis for answering each of the followingtypes of questions:Problem Question Desired Answerchecking R(a; b) yes or nosimulation 9x:R(a; x) yes x = b or noverifying 8x:R(x; g(x)) yes or no x = cprogramming 8x: 9y:R(x; y) yes y = f(x) or no x = cThe �rst three are straightforward, but the last may be surprising; it is directlyrelated to our proposal. To see if 8x: 9y:R(x; y) follows from a set of formulae,Green negates it, turns it into a clause, and searches for a refutation. Negatedand clausi�ed it becomes f:R(x0; y)g, and if we can prove inconsistency we geta uni�er for y, e.g., y = car(x0). Hence we have y as a \function" of x0, andonly �rst-order variables and uni�cation have been used in the proof process.Green can get away with using �rst-order variables because skolemizing removesbinding operators and, at the same time extends (implicitly) the signature (e.g.,with x0) in which the theorem is proved. He is really not synthesizing a function,but a �rst-order object. However, since the context variables are arbitrary, hecan generalize afterwards.We see here the essence of the schematic proof idea in a simple �rst ordersetting: the same resolution steps can be used either to verify that a function iscorrect, or to construct a function.Deductive SynthesisThere are a number of approaches loosely classi�ed under the heading of de-ductive synthesis, which also have close ties to schematic proof. In Manna andWaldinger's deductive tableau system, [25], one proves a goal 8x:9 y:R(x; y) bymanipulating R(x; y) in a \tableau" where the x are turned into eigenvariablesand the y are kept in \output columns", essentially as metavariables. This isquite similar to Green's approach, except that the goal is not negated, sincethe proof is not refutation based. Similarly to Green's and our work, each proofstep may extend the output metavariables using substitutions derived by ruleapplication. At the end of the proof, if variables have been instantiated only byprimitive program constructors (this is analogous to our side conditions), thetableau yields a completed program. Again, this is very similar to the schematicproof idea, and, as with Green's work, they are able to operate on quanti�er freeterms, so they can use �rst-order metavariables in their proofs (later implicitlygeneralizing the �rst-order object they have constructed to a program).

Another approach to deductive synthesis, proposed for example by Biundo[2,3], and Steinbr�uggen [30] is, given a formula � = 8x: 9y: p(x; y), to prove in-stead the skolemized version �0 = 8x: p(x; f(x)). Proving �0 is not only su�cientto prove �, but it provides us with a recursive function f that meets the speci�-cation p as well. In Biundo's work, proof proceeds top down, with f an uninter-preted function constant. At some point the system has isolated, in various \sub-goals", f(x; y) as conditional equations. For example, 8x y: y = 0! f(x; y) = xand 8x y v: y = succ(v) ! f(x; y) = succ(f(x; v)) arise in the synthesis of theplus function (given a de�nition for subtraction). These equations can be ac-cepted as a de�nition for f after side conditions are checked (e.g., that f ter-minates, is deterministic, and is de�ned on all inputs). Note that this approach,unlike those previously discussed, does not really incrementally \instantiate"f . Instead, the de�nition of f is given to the system (and side conditions arechecked) all at once. Incremental development here is problematic since we can-not view these equations as saying how to assign a unique term in the object logicto f ; indeed, no such term exists! However, if instead of using her equationalrepresentation of functions, they existed as terms in her object language, likein Boyer and Moore's logic [4], then another option would be available to her.Under such a representation it would be possible to view an equation involvinga skolem function as specifying an equality between a schematic function andits speci�cation. This would be analogous to the relationship between schema-tic Horn programs and their speci�cations in our logic programming example(where $ plays the role of equality). In such a setting, her skolem functionscould be replaced by metavariables and instantiated incrementally.A �nal example of a deductive synthesis approach, and one which clearlyexempli�es the schematic proof idea, is that of the KIV theorem prover. KIVis a prover for dynamic logic that supports proofs with metavariables. Withindynamic logic one can formulate other logics such as Hoare logic, when we couldthen manipulate formulae like fPgS fQg. As with our approach, any of thesecomponents can be partially or completely uninstantiated (by using metavari-ables) during the proof. KIV uses �rst-order metavariables (see comments insection 2) but we believe the work would be better served by implementationin a system like Isabelle which supports higher-order schematic proofs, whileproviding the same kind of tactic based metareasoning support as currently.Constructive Type TheoriesAs explained in the introduction, our schematic proof idea can be seen to cap-ture the kind of program construction that takes place in many type theories.The common explanation of program extraction in a type theory like Nuprl's isthat, as the logic is constructive, a proof yields a program which exhibits theimplicit construction. This is correct but the emphasis can be misleading. As in-dicated previously, the schematic proof idea is enough to account for extractionin type theories like Martin-L�of's or Nuprl's; so constructivity is not signi�cantin extraction, but rather execution. That is, because the logic is constructive,the terms extracted can be e�ectively executed and their evaluation behavior

agrees with the semantics of the type theory. We could extend such languages toextract constructions from classical proofs (e.g., see [18]), but we would not beable to execute the results since, for example, there is no general way to decidewhich branch of a case-split to execute when this corresponds to a use of the lawof the excluded middle.Hardware SynthesisWe conclude with an example from the domain of hardware synthesis; what isinteresting about this example is that it presents an idea based on \validationfunctions" and \achievement theorems" which seems rather di�erent from theschematic proof idea but can be cleanly reformulated in our framework. The re-formulation yields a conceptually and implementationally simpler calculus thanthe original presentation.The Veritas group at Kent [14,15] proposed a novel approach to synthesizingcircuits. Their technique, which they call Formal Synthesis , is to re�ne a \designgoal" (spec) interactively, using methods, eventually concluding with a theoremthat some circuit speci�cation circ achieves spec; i.e., that circ ! spec. Eachmethod consists of a pair of functions: a subgoal function and a validation func-tion. The former decomposes a speci�cation spec into subspeci�cations speci.The latter constructs from a proof that the circi achieve speci, an implementa-tion circ with a proof that circ that achieves spec.The relationship between implementation and speci�cation is di�erent fromthe one we used for logic program synthesis (implication instead of equivalence)but the idea is the same: apply rules to decompose the speci�cation and eachrule should tell how to construct an implementation that stands in the desiredrelation to the speci�cation. An example should make this clear, as well as ourrecasting.The Split method takes a speci�cation which is the conjunction of speci�ca-tions and returns the individual speci�cations as subgoals.spec1 spec2spec1 ^ spec2 (Split)The validation theorem for this is the following inference rule4circ1 ! spec1 circ2 ! spec2(circ1 ^ circ2)! (spec1 ^ spec2)Looking at the above validation theorem we immediately see that this is aderivable rule in Isabelle (in a �rst or higher-order theory). Their other rules4 In the hardware formal reasoning community, circuits are often represented as rela-tions expressing constraints (on port values) [8]. These constraints may be joined bylogical ^ and this also represents an operator that builds a circuit from two subcir-cuits by parallel composition. So the ^ used to construct the implementation in thevalidation theorem represents both a circuit constructor (so we see we are buildinga circuit) and a logical operator (so we may prove facts about it).

are more complex, but they too are all derivable | the authors point this outthemselves. Therefore the recasting of their idea as a schematic proof approachis especially simple. We may do away with their machinery of subgoaling andvalidation functions; instead we start simply with a schematic achievement theo-rem where the circuit is given by a metavariable, and directly apply their derivedrules as schematic inference rules. As with the rules for logic program synthesis,the entire development calculus can be simply and formally developed within Is-abelle, giving a formal guarantee of correctness not just to the proofs but to thecalculus itself. We are currently experimenting with an implementation basedon these ideas.5 ConclusionWe have given a general framework for unifying the ideas of synthesis and veri-�cation; we have shown how it can be applied to formalize and use new calculias well as understand and simplify a range of previously proposed approaches.AcknowledgementsThe �rst author thanks Tobias Nipkow for extensive help and encouragementusing Isabelle.References1. David A. Basin. Extracting circuits from constructive proofs. In IFIP-IEEE In-ternational Workshop on Formal Methods in VLSI Design, Miami, USA, January1991.2. S. Biundo. Automated synthesis of recursive algorithms as a theorem proving tool.In Eighth European Conference on Arti�cial Intelligence, pages 553{8. Pitman,1988.3. S. Biundo. Plan generation using a method of deductive program synthesis. Re-search Report RR-90-09, DFKI, 1990.4. Robert S. Boyer and J. Strother Moore. A Computational Logic. Academic Press,1979.5. A. Bundy. Tutorial notes; reasoning about logic programs. In Logic programmingin action, pages 252{277. Springer Verlag, 1992.6. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In10th International Conference on Automated Deduction, pages 647{648. Springer-Verlag, 1990.7. R.M. Burstall and J. Darlington. A transformation system for developing recursiveprograms. Journal of the Association for Computing Machinery, 24(1):44{67, 1977.8. Albert Camilleri, Mike Gordon, and Tom Melham. Hardware veri�cation usinghigher-order logic. In From HDL Descriptions to Guaranteed Correct Circuit De-signs, pages 43{67. Elsevier Science Publishers B. V. (North-Holland), 1987.9. C-L. Chang and R. C-T. Lee. Symbolic logic and mechanical theorem proving.Academic Press, 1973.

10. Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof De-velopment System. Prentice Hall, 1986.11. Thierry Coquand and G�erard Huet. The Calculus of Constructions. Informationand Computation, pages 95{120, 1988.12. Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logicprogramming language. In 9th International Conference On Automated Deduction,Argonne, Illinois, 1988.13. Cordell Green. Application of theorem proving to problem solving. In Proceedingsof the IJCAI-69, pages 219{239, 1969.14. F. K. Hanna, M. Longley, and N. Daeche. Formal synthesis of digital systems.In IMEC-IFIP International Workshop on: Applied Formal Methods For CorrectVLSI Design, volume 2, pages 532{548, Leuven, Belgium, 1989.15. F.K. Hanna, N. Daeche, and M. Longley. VERITAS+: A speci�cation languagebased on type theory. In Hardware Speci�cation, Veri�cation and Synthesis: Math-ematical Aspects, Ithaca, New York, 1989. Springer-Verlag.16. M. Heisel, W. Reif, and W. Stephan. Tactical theorem proving in program veri�-cation. In 10th International Conference On Automated Deduction, pages 117{131,Kaiserslautern, FRG, 1990.17. Jane Hesketh, Alan Bundy, and Alan Smaill. Using middle-out reasoning to trans-form naive programs into tail recursive ones. In Proceedings of CADE-11, 1992.18. Douglas J. Howe. On computational open-endedness in Martin-L�of's type theory.In Sixth Annual Symposium on Logic in Computer Science, Amsterdam, 1991.19. Ina Kraan, David Basin, and Alan Bundy. Logic program synthesis via proofplanning. In Logic Program Synthesis and Transformation, pages 1{14. Springer-Verlag, 1993.20. Ina Kraan, David Basin, and Alan Bundy. Middle-out reasoning for logic programsynthesis. In 10th International Conference on Logic Programing (ICLP93), 1993.21. J.W. Lloyd. Foundations of Logic Programs. Symbolic Computation. Springer-Verlag, 1987. Second, extended edition.22. J.W. Lloyd and R.W. Topor. Making Prolog more expressive. J. Logic Program-ming, 1(3):225{240, 1984.23. Z. Luo and R. Pollack. Lego proof development system: User's manual. ReportECS-LFCS-92-211, Department of Computer Science, University of Edinburgh,May 1992.24. M.J. Maher. Equivalences of logic programs. In Foundations of DeductiveDatabases and Logic Programming. Morgan Kaufmann, 1987.25. Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACMTransactions on Programming Languages and Systems, 2(1):90{121, 1980.26. Per Martin-L�of. Constructive mathematics and computer programming. In SixthInternational Congress for Logic, Methodology, and Philosophy of Science, pages153{175, Amsterdam, 1982. North Holland.27. Dale Miller. Abstractions in logic programs. In Logic and Computer Science, pages329{359. Academic Press, 1990.28. L.C. Paulson. Isabelle: the next 700 theorem provers. In Logic and ComputerScience, pages 77{90. Academic Press, 1990.29. Frank Pfenning. Logic programming in the LF logical framework. In LogicalFrameworks, pages 149 { 181. Cambridge University Press, 1991.30. Ralf Steinbr�uggen. Programs viewed as SKOLEM functions. In Methods of Pro-gramming, Selected Papers on the CIP-Project, LNCS, pages 125 { 134. Springer-Verlag, 1991.

31. Carolyn Talcott. A theory of binding structures, and applications to rewriting.TCS volume 112, 1993.

