10,684 research outputs found

    Status and projections of the NAS program

    Get PDF
    NASA's Numerical Aerodynamic Simulation (NAS) Program has completed development of the initial operating configuration of the NAS Processing System Network (NPSN). This is the first milestone in the continuing and pathfinding effort to provide state-of-the-art supercomputing for aeronautics research and development. The NPSN, available to a nation-wide community of remote users, provides a uniform UNIX environment over a network of host computers ranging from the Cray-2 supercomputer to advanced scientific workstations. This system, coupled with a vendor-independent base of common user interface and network software, presents a new paradigm for supercomputing environments. Background leading to the NAS program, its programmatic goals and strategies, technical goals and objectives, and the development activities leading to the current NPSN configuration are presented. Program status, near-term plans, and plans for the next major milestone, the extended operating configuration, are also discussed

    GR@PPA 2.7 event generator for pppp/ppˉp\bar{p} collisions

    Full text link
    The GR@PPA event generator has been updated to version 2.7. This distribution provides event generators for VV (WW or ZZ) + jets (≤\leq 4 jets), VVVV + jets (≤\leq 2 jets) and QCD multi-jet (≤\leq 4 jets) production processes at pppp and ppˉp\bar{p} collisions, in addition to the four bottom quark productions implemented in our previous work (GR@PPA\_4b). Also included are the top-pair and top-pair + jet production processes, where the correlation between the decay products are fully reproduced at the tree level. Namely, processes up to seven-body productions can be simulated, based on ordinary Feynman diagram calculations at the tree level. In this version, the GR@PPA framework and the process dependent matrix-element routines are separately provided. This makes it easier to add further new processes, and allows users to make a choice of processes to implement. This version also has several new features to handle complicated multi-body production processes. A systematic way to combine many subprocesses to a single base-subprocess has been introduced, and a new method has been adopted to calculate the color factors of complicated QCD processes. They speed up the calculation significantly.Comment: 21 pages, no figur

    Formal Compiler Implementation in a Logical Framework

    Get PDF
    The task of designing and implementing a compiler can be a difficult and error-prone process. In this paper, we present a new approach based on the use of higher-order abstract syntax and term rewriting in a logical framework. All program transformations, from parsing to code generation, are cleanly isolated and specified as term rewrites. This has several advantages. The correctness of the compiler depends solely on a small set of rewrite rules that are written in the language of formal mathematics. In addition, the logical framework guarantees the preservation of scoping, and it automates many frequently-occurring tasks including substitution and rewriting strategies. As we show, compiler development in a logical framework can be easier than in a general-purpose language like ML, in part because of automation, and also because the framework provides extensive support for examination, validation, and debugging of the compiler transformations. The paper is organized around a case study, using the MetaPRL logical framework to compile an ML-like language to Intel x86 assembly. We also present a scoped formalization of x86 assembly in which all registers are immutable

    Motivation, Design, and Ubiquity: A Discussion of Research Ethics and Computer Science

    Full text link
    Modern society is permeated with computers, and the software that controls them can have latent, long-term, and immediate effects that reach far beyond the actual users of these systems. This places researchers in Computer Science and Software Engineering in a critical position of influence and responsibility, more than any other field because computer systems are vital research tools for other disciplines. This essay presents several key ethical concerns and responsibilities relating to research in computing. The goal is to promote awareness and discussion of ethical issues among computer science researchers. A hypothetical case study is provided, along with questions for reflection and discussion.Comment: Written as central essay for the Computer Science module of the LANGURE model curriculum in Research Ethic

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    AutoAccel: Automated Accelerator Generation and Optimization with Composable, Parallel and Pipeline Architecture

    Full text link
    CPU-FPGA heterogeneous architectures are attracting ever-increasing attention in an attempt to advance computational capabilities and energy efficiency in today's datacenters. These architectures provide programmers with the ability to reprogram the FPGAs for flexible acceleration of many workloads. Nonetheless, this advantage is often overshadowed by the poor programmability of FPGAs whose programming is conventionally a RTL design practice. Although recent advances in high-level synthesis (HLS) significantly improve the FPGA programmability, it still leaves programmers facing the challenge of identifying the optimal design configuration in a tremendous design space. This paper aims to address this challenge and pave the path from software programs towards high-quality FPGA accelerators. Specifically, we first propose the composable, parallel and pipeline (CPP) microarchitecture as a template of accelerator designs. Such a well-defined template is able to support efficient accelerator designs for a broad class of computation kernels, and more importantly, drastically reduce the design space. Also, we introduce an analytical model to capture the performance and resource trade-offs among different design configurations of the CPP microarchitecture, which lays the foundation for fast design space exploration. On top of the CPP microarchitecture and its analytical model, we develop the AutoAccel framework to make the entire accelerator generation automated. AutoAccel accepts a software program as an input and performs a series of code transformations based on the result of the analytical-model-based design space exploration to construct the desired CPP microarchitecture. Our experiments show that the AutoAccel-generated accelerators outperform their corresponding software implementations by an average of 72x for a broad class of computation kernels

    Advanced software techniques for space shuttle data management systems Final report

    Get PDF
    Airborne/spaceborn computer design and techniques for space shuttle data management system

    A communication channel model of the software process

    Get PDF
    Beginning research into a noisy communication channel analogy of software development process productivity, in order to establish quantifiable behavior and theoretical bounds is discussed. The analogy leads to a fundamental mathematical relationship between human productivity and the amount of information supplied by the developers, the capacity of the human channel for processing and transmitting information, the software product yield (object size) the work effort, requirements efficiency, tool and process efficiency, and programming environment advantage. An upper bound to productivity is derived that shows that software reuse is the only means that can lead to unbounded productivity growth; practical considerations of size and cost of reusable components may reduce this to a finite bound

    Ground Systems Development Environment (GSDE) software configuration management

    Get PDF
    This report presents a review of the software configuration management (CM) plans developed for the Space Station Training Facility (SSTF) and the Space Station Control Center. The scope of the CM assessed in this report is the Systems Integration and Testing Phase of the Ground Systems development life cycle. This is the period following coding and unit test and preceding delivery to operational use. This report is one of a series from a study of the interfaces among the Ground Systems Development Environment (GSDE), the development systems for the SSTF and the SSCC, and the target systems for SSCC and SSTF. This is the last report in the series. The focus of this report is on the CM plans developed by the contractors for the Mission Systems Contract (MSC) and the Training Systems Contract (TSC). CM requirements are summarized and described in terms of operational software development. The software workflows proposed in the TSC and MSC plans are reviewed in this context, and evaluated against the CM requirements defined in earlier study reports. Recommendations are made to improve the effectiveness of CM while minimizing its impact on the developers

    Aerospace Ground Equipment for model 4080 sequence programmer. A standard computer terminal is adapted to provide convenient operator to device interface

    Get PDF
    The Aerospace Ground Equipment (AGE) provides an interface between a human operator and a complete spaceborne sequence timing device with a memory storage program. The AGE provides a means for composing, editing, syntax checking, and storing timing device programs. The AGE is implemented with a standard Hewlett-Packard 2649A terminal system and a minimum of special hardware. The terminal's dual tape interface is used to store timing device programs and to read in special AGE operating system software. To compose a new program for the timing device the keyboard is used to fill in a form displayed on the screen
    • …
    corecore