3,261 research outputs found

    Spectacular pehnomena and limits to rationality in genetic and cultural evolution

    Get PDF
    In studies of both animal and human behaviour, game theory is used as a tool for understanding strategies that appear in interactions between individuals. Game theory focuses on adaptive behaviour, which can be attained only at evolutionary equilibrium. Here we suggest that behaviour appearing during interactions is often outside the scope of such analysis. In many types of interaction, conflicts of interest exist between players, fueling the evolution of manipulative strategies. Such strategies evolve out of equilibrium, commonly appearing as spectacular morphology or behaviour with obscure meaning, to which other players may react in non-adaptive, irrational way approach, and outline the conditions in which evolutionary equilibria cannot be maintained. Evidence from studies of biological interactions seems to support the view that behaviour is often not at equilibrium. This also appears to be the case for many human cultural traits, which have spread rapidly despite the fact that they have a negative influence on reproduction

    What is Life?

    Get PDF
    In searching for life in extraterrestrial space, it is essential to act based on an unequivocal definition of life. In the twentieth century, life was defined as cells that self-replicate, metabolize, and are open for mutations, without which genetic information would remain unchangeable, and evolution would be impossible. Current definitions of life derive from statistical mechanics, physics, and chemistry of the twentieth century in which life is considered to function machine like, ignoring a central role of communication. Recent observations show that context-dependent meaningful communication and network formation (and control) are central to all life forms. Evolutionary relevant new nucleotide sequences now appear to have originated from social agents such as viruses, their parasitic relatives, and related RNA networks, not from errors. By applying the known features of natural languages and communication, a new twenty-first century definition of life can be reached in which communicative interactions are central to all processes of life. A new definition of life must integrate the current empirical knowledge about interactions between cells, viruses, and RNA networks to provide a better explanatory power than the twentieth century narrative

    Allelomimesis as universal clustering mechanism for complex adaptive systems

    Full text link
    Animal and human clusters are complex adaptive systems and many are organized in cluster sizes ss that obey the frequency-distribution D(s)∝s−τD(s)\propto s^{-\tau}. Exponent τ\tau describes the relative abundance of the cluster sizes in a given system. Data analyses have revealed that real-world clusters exhibit a broad spectrum of τ\tau-values, 0.7(tuna fish schools)≀τ≀2.95(galaxies)0.7\textrm{(tuna fish schools)}\leq\tau\leq 2.95\textrm{(galaxies)}. We show that allelomimesis is a fundamental mechanism for adaptation that accurately explains why a broad spectrum of τ\tau-values is observed in animate, human and inanimate cluster systems. Previous mathematical models could not account for the phenomenon. They are hampered by details and apply only to specific systems such as cities, business firms or gene family sizes. Allelomimesis is the tendency of an individual to imitate the actions of its neighbors and two cluster systems yield different τ\tau values if their component agents display different allelomimetic tendencies. We demonstrate that allelomimetic adaptation are of three general types: blind copying, information-use copying, and non-copying. Allelomimetic adaptation also points to the existence of a stable cluster size consisting of three interacting individuals.Comment: 8 pages, 5 figures, 2 table

    Electrochemistry of Eugenol and its Metabolism on a Bare Screen-Printed Electrode

    Get PDF
    Eugenol is an essential oil widely used in pharmaceutical and food industry. However, the metabolism of eugenol leads to the formation of a highly reactive phenoxyl radical that can induce toxicity with macromolecules. Herein, a simple and a cost-effective methodology was described for the mimicry of eugenol metabolism. Electrochemical measurements were recorded on bare screen-printed electrodes (SPEs) and the generated metabolites were collected and detected by electrospray ionization (ESI)/Mass spectrometry (MS). The reactive intermediate was successfully formed illustrating a cheaper alternative towards the mimicry of human metabolism

    Towards Social Autonomous Vehicles: Efficient Collision Avoidance Scheme Using Richardson's Arms Race Model

    Full text link
    Background Road collisions and casualties pose a serious threat to commuters around the globe. Autonomous Vehicles (AVs) aim to make the use of technology to reduce the road accidents. However, the most of research work in the context of collision avoidance has been performed to address, separately, the rear end, front end and lateral collisions in less congested and with high inter-vehicular distances. Purpose The goal of this paper is to introduce the concept of a social agent, which interact with other AVs in social manners like humans are social having the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. The proposed social agent is based on a human-brain inspired mentalizing and mirroring capabilities and has been modelled for collision detection and avoidance under congested urban road traffic. Method We designed our social agent having the capabilities of mentalizing and mirroring and for this purpose we utilized Exploratory Agent Based Modeling (EABM) level of Cognitive Agent Based Computing (CABC) framework proposed by Niazi and Hussain. Results Our simulation and practical experiments reveal that by embedding Richardson's arms race model within AVs, collisions can be avoided while travelling on congested urban roads in a flock like topologies. The performance of the proposed social agent has been compared at two different levels.Comment: 48 pages, 21 figure

    Synovial joint lubrication – does nature teach more effective engineering lubrication strategies?

    Get PDF
    Nature shows numerous examples of systems which show energy efficiency, elegance in their design and optimum use of materials. Biomimetics is an emerging field of research in engineering and successes have been documented in the diverse fields of robotics, mechanics, materials engineering and many more. To date little biomimetics research has been directed towards tribology in terms of transferring technologies from biological systems into engineering applications. The potential for biomimicry has been recognised in terms of replicating natural lubricants but this system reviews the potential for mimicking the synovial joint as an efficient and durable tribological system for potential engineering systems. The use of materials and the integration of materials technology and fluid/surface interactions are central to the discussion

    Finding Rhythm in Speech: A Response to Cummins

    Get PDF
    This paper attempts to address three critical questions left unanswered by Cummins’ review: are rhythm and entrainment physical, perceptual or social phenomena, what are the underlying mechanisms, and what is their role in behaviour such as speech and music? These issues are addressed from the perspective of an engineer/computer-scientist/ roboticist for whom modelling such behaviours within a computational framework not only provides an empirical methodology for validating theoretical claims, but also facilitates the construction of artificial devices that are capable of exhibiting/exploiting those behaviours in the context of human-machine interaction. The paper draws on insights from a range of different perspectives, and attempts to weave them together within a coherent theoretical framework. It is concluded that (i) rhythm and entrainment are phenomena that emerge naturally from the structural coupling within and between even simple systems, (ii) living systems have evolved very effective mechanisms for managing such behaviours for intrinsic and extrinsic gains, and (iii) the fields of energetics and information theory provide the appropriate tools for analysing and characterising such behaviour within a general theoretical framework. It is hoped that these insights will inspire future cross- disciplinary research in these areas, and lead to a deeper understanding of these fundamental behaviours

    Pigment Epithelium-Derived Factor – An Angiostatic Factor with a Broader Function in Melanoma

    Get PDF
    CapĂ­tulo 8: Open Access.Supported by grants Ministerio de Educacion y Ciencia SAF2007-62292 and SAF2010-19256 to BJ. AFB has been supported by a CSIC-JAE fellowship and JLO by a SAF2007-62292 contract.Peer Reviewe

    THE ECOLOGY OF MUTUALISM

    Get PDF
    Elementary ecology texts tell us that organisms interact in three fundamen­ tal ways, generally given the names competition, predation, and mutualism. The third member has gotten short shrift (264), and even its name is not generally agreed on. Terms that may be considered synonyms, in whole or part, are symbiosis, commensalism, cooperation, protocooperation, mutual aid, facilitation, reciprocal altruism, and entraide. We use the term mutual­ism, defined as an interaction between species that is beneficial to both, since it has both historical priority (311) and general currency. Symbiosis is the living together of two organisms in close association, and modifiers are used to specify dependence on the interaction (facultative or obligate) and the range of species that can take part (oligophilic or polyphilic). We make the normal apologies concerning forcing continuous variation and diverse interactions into simple dichotomous classifications, for these and all subsequent definitions
    • 

    corecore