research

Allelomimesis as universal clustering mechanism for complex adaptive systems

Abstract

Animal and human clusters are complex adaptive systems and many are organized in cluster sizes ss that obey the frequency-distribution D(s)sτD(s)\propto s^{-\tau}. Exponent τ\tau describes the relative abundance of the cluster sizes in a given system. Data analyses have revealed that real-world clusters exhibit a broad spectrum of τ\tau-values, 0.7(tuna fish schools)τ2.95(galaxies)0.7\textrm{(tuna fish schools)}\leq\tau\leq 2.95\textrm{(galaxies)}. We show that allelomimesis is a fundamental mechanism for adaptation that accurately explains why a broad spectrum of τ\tau-values is observed in animate, human and inanimate cluster systems. Previous mathematical models could not account for the phenomenon. They are hampered by details and apply only to specific systems such as cities, business firms or gene family sizes. Allelomimesis is the tendency of an individual to imitate the actions of its neighbors and two cluster systems yield different τ\tau values if their component agents display different allelomimetic tendencies. We demonstrate that allelomimetic adaptation are of three general types: blind copying, information-use copying, and non-copying. Allelomimetic adaptation also points to the existence of a stable cluster size consisting of three interacting individuals.Comment: 8 pages, 5 figures, 2 table

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020